WO2021044760A1 - Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device - Google Patents

Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device Download PDF

Info

Publication number
WO2021044760A1
WO2021044760A1 PCT/JP2020/028490 JP2020028490W WO2021044760A1 WO 2021044760 A1 WO2021044760 A1 WO 2021044760A1 JP 2020028490 W JP2020028490 W JP 2020028490W WO 2021044760 A1 WO2021044760 A1 WO 2021044760A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
water heat
refrigeration cycle
joint
Prior art date
Application number
PCT/JP2020/028490
Other languages
French (fr)
Japanese (ja)
Inventor
峻 浅利
覚 岡田
敦史 馬場
晃平 丸子
優子 服部
賢 三浦
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to CN202080052769.1A priority Critical patent/CN114144625A/en
Priority to JP2021543651A priority patent/JP7280958B2/en
Priority to US17/753,426 priority patent/US20220333831A1/en
Priority to EP20861562.5A priority patent/EP4027096A4/en
Publication of WO2021044760A1 publication Critical patent/WO2021044760A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the embodiment according to the present invention relates to a water heat exchanger, a method for manufacturing the water heat exchanger, and a refrigeration cycle apparatus.
  • a temperature control device for example, a chiller, includes an object to be temperature controlled or a user-side unit that cools or heats a space, and a refrigeration cycle unit (hereinafter, also referred to as "refrigeration cycle device").
  • the refrigeration cycle device includes a compressor, a first heat exchanger, an expansion device, a second heat exchanger, and a four-way valve. When the refrigeration cycle device is heated, the liquid circulating in the chiller is heated. When the refrigeration cycle device is cooled, the liquid circulating in the chiller is cooled.
  • a plate-type water heat exchanger is known as a heat exchanger used in a refrigeration cycle device.
  • the plate type water heat exchanger includes a plurality of laminated thin heat exchange plates.
  • the plurality of heat exchange plates include a heat exchange plate having a flow path of a liquid circulating in a chiller and a heat exchange plate having a flow path of a refrigerant circulating in a refrigeration cycle device. This water heat exchanger exchanges heat between the liquid circulating in the chiller and the refrigerant flowing through the refrigeration cycle device.
  • the plate-type water heat exchanger is equipped with a pair of cover plates that sandwich and fix a plurality of laminated heat exchange plates.
  • the cover plate is provided with a joint that extends away from the heat exchange plate (opposite direction, outward direction).
  • the piping through which the refrigerant flows is connected to the water heat exchanger via a joint.
  • the material of the cover plate and heat exchange plate is metal such as stainless steel and aluminum.
  • the material of the joint is the same as that of the cover plate.
  • the material of the refrigerant piping flowing through the refrigeration cycle device is copper.
  • the inlet and outlet of the refrigerant of the water heat exchanger are composed of different kinds of metals such as stainless steel and copper. Dissimilar metals are joined, for example, by brazing.
  • iodine carbons have the property that the bond between iodine atom and carbon atom is easily broken.
  • Zinc contained in the brazing material reacts with halogen by using, for example, water as a catalyst.
  • Contact between a wax containing zinc and a refrigerant containing iodine carbons in the presence of water causes corrosion of the wax containing zinc.
  • Corrosion of wax material causes leakage of refrigerant.
  • zinc and halogen atoms may react to decompose the refrigerant.
  • CF3I is decomposed using zinc as a catalyst to produce iodine.
  • the zinc contained in the brazing material may react with the iodine atom of CF3I and the refrigerant may be decomposed.
  • An object to be solved by the present invention is to provide a water heat exchanger, a method for manufacturing the water heat exchanger, and a refrigeration cycle device capable of preventing corrosion of the brazing material and deterioration of the refrigerant.
  • the water heat exchanger of the embodiment includes a plurality of laminated heat exchange plates, a pair of cover plates sandwiching the plurality of heat exchange plates, a joint provided on at least one of the pair of cover plates, and the joint. It includes a refrigerant pipe joined by a brazing material, and a protective portion provided to prevent contact between the refrigerant pipe and the refrigerant flowing through the plurality of heat exchange plates via the joint and the brazing material. ..
  • the schematic diagram of the refrigeration cycle apparatus which concerns on embodiment of this invention.
  • the schematic sectional view of the connection part of the water heat exchanger which concerns on embodiment of this invention.
  • the figure explaining an example of the manufacturing method of the water heat exchanger which concerns on embodiment of this invention.
  • FIG. 1 is a schematic view of a refrigeration cycle device 100 according to an embodiment of the present invention.
  • the chiller 200 according to the present embodiment includes a refrigeration cycle device 100 and a user-side unit 300.
  • the chiller 200 according to the present embodiment is a thing that is a temperature control target of the chiller 200 by exchanging heat between the first refrigerant flowing through the refrigeration cycle device 100 and the second refrigerant flowing through the utilization side unit 300. Cool or heat the space.
  • the refrigeration cycle device 100 includes a compressor 1, a first heat exchanger 2, a fan 3, an expansion device 4, a second heat exchanger 5, an accumulator 6, and four sides.
  • a valve 7 and a first refrigerant pipe 10 are provided.
  • the first heat exchanger 2, the expansion device 4, the second heat exchanger 5, the accumulator 6, the compressor 1, and the four-way valve 7 are sequentially connected by the first refrigerant pipe 10.
  • the first refrigerant pipe 10 is made of a metal such as copper.
  • the first refrigerant pipe 10 circulates the first refrigerant.
  • the first refrigerant is, for example, a mixed refrigerant containing iodine carbons.
  • the mixed refrigerant containing iodine carbons is, for example, a mixed refrigerant containing CF3I.
  • the refrigerant used in the refrigeration cycle apparatus 100 is described as difluoromethane (HFC-32, R32, hereinafter referred to as “R32”) and pentafluoroethane (HFC125, R125, hereinafter referred to as “R125”). ) And CF3I mixed refrigerant.
  • the refrigerant used in the refrigeration cycle apparatus 100 is, for example, a mixed refrigerant containing 49.0% by weight R32, 11.5% by weight R125, and 39.5% by weight CF3I.
  • Refrigerants with such composition ratios (components) are tentatively registered as refrigerant number R466A in Standard 34 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE.
  • the compressor 1 compresses the first refrigerant.
  • the compressor 1 may be, for example, one whose operating frequency can be changed by known inverter control, or one whose operating frequency cannot be changed, that is, one whose operating frequency is fixed.
  • the first heat exchanger 2 is, for example, a fin-and-tube heat exchanger.
  • a fan 3 is arranged in the vicinity of the first heat exchanger 2.
  • the first heat exchanger 2 is an air heat exchanger that exchanges heat between the air sent from the fan 3 and the first refrigerant passing through the first heat exchanger 2.
  • the expansion device 4 is, for example, a PMV (Pulse Motor Valve).
  • the expansion device 4 can adjust the valve opening degree.
  • the expansion device 4 includes, for example, a valve body having a through hole, a needle capable of advancing and retreating with respect to the through hole, and a power source for advancing and retreating the needle.
  • the expansion device 4 stops (blocks) the flow of the first refrigerant flowing through the refrigeration cycle device 100.
  • the expansion device 4 is in the closed state, and the opening degree of the expansion device 4 is the smallest.
  • the opening degree of the expansion device 4 is the largest.
  • the second heat exchanger 5 exchanges heat between the second refrigerant flowing through the second refrigerant pipe 20 to be heated or cooled and the first refrigerant flowing through the first refrigerant pipe 10.
  • the second refrigerant is, for example, water.
  • the second refrigerant is sent from the circulation unit (not shown) of the chiller 200 to the second heat exchanger 5 via the second refrigerant pipe 20 by the pump 8. That is, the second heat exchanger 5 exchanges heat between the first refrigerant flowing through the first refrigerant pipe 10 and the water as the second refrigerant flowing through the second refrigerant pipe 20. It is a vessel.
  • the second heat exchanger 5 is simply referred to as a water heat exchanger 5.
  • the water heat exchanger 5 is, for example, a plate type water heat exchanger.
  • the water heat exchanger 5 includes a plurality of laminated heat exchange plates and a pair of cover plates that sandwich the plurality of laminated heat exchange plates from the stacking direction.
  • At least one cover plate 14 includes a plurality of joints 9 as inlets and outlets for the refrigerant.
  • Each heat exchange plate has a first refrigerant flow path through the refrigeration cycle apparatus 100 and a second refrigerant flow path through the circulation unit of the chiller 200.
  • the connection portion between the water heat exchanger 5 and the refrigerant pipe (first refrigerant pipe 10) will be described in detail with reference to FIG.
  • the accumulator 6 is provided between the water heat exchanger 5 and the compressor 1.
  • the accumulator 6 has a metal case such as steel.
  • a liquid phase refrigerant is stored in the lower part of the case.
  • a gas phase refrigerant is contained in the upper part of the case.
  • the accumulator 6 supplies the gas phase refrigerant to the compressor 1.
  • the four-way valve 7 switches between the heating operation and the cooling operation of the refrigeration cycle device 100 by switching the flow direction of the first refrigerant.
  • the water flowing through the second refrigerant pipe 20 is heated by the water heat exchanger 5.
  • the first refrigerant flows in the order of the compressor 1, the water heat exchanger 5, the expansion device 4, the first heat exchanger 2, and the accumulator 6.
  • the first refrigerant which has become a high-temperature and high-pressure gas in the compressor 1, exchanges heat with water in the water heat exchanger 5 and aggregates to change into a liquid.
  • the water heat exchanger 5 functions as an aggregator for aggregating the first refrigerant.
  • the first refrigerant aggregated in the water heat exchanger 5 is partially evaporated by being depressurized by the expansion device 4, and is changed to a low-temperature low-pressure liquid by the heat of vaporization. After that, the first refrigerant, which has become a low-temperature low-pressure liquid, exchanges heat with the air blown from the fan 3 in the first heat exchanger 2 and evaporates, and changes to a low-temperature low-pressure gas. At this time, the first heat exchanger 2 functions as an evaporator that evaporates the first refrigerant.
  • the refrigerating cycle device 100 when the refrigerating cycle device 100 is cooled, the water flowing through the second refrigerant pipe 20 is cooled.
  • the four-way valve 7 is reversed, and the flow of the refrigerant in the opposite direction to that in the case of the heating operation is generated. Therefore, the first refrigerant flows in the order of the compressor 1, the first heat exchanger 2, the expansion device 4, the water heat exchanger 5, and the accumulator 6.
  • the first refrigerant flowing through the water heat exchanger 5 exchanges heat with the water flowing through the second refrigerant pipe 20 and functions as an evaporator that evaporates the first refrigerant.
  • the first heat exchanger 2 functions as an aggregator for aggregating the first refrigerant.
  • connection portion 15 of the water heat exchanger 5 is an inlet / outlet for the refrigerant in the water heat exchanger 5.
  • FIG. 2 is a schematic cross-sectional view of the connection portion 15 of the water heat exchanger 5 according to the embodiment of the present invention.
  • the water heat exchanger 5 exchanges heat between the first refrigerant and the second refrigerant, water. Therefore, the water heat exchanger 5 is provided with an inlet / outlet corresponding to each refrigerant. The inlet and outlet of this refrigerant is called a connecting portion 15.
  • FIG. 2 is a cross-sectional view of a connection portion 15 between the first refrigerant pipe 10 through which the first refrigerant flows and the water heat exchanger 5. The connection between the second refrigerant pipe 20 through which the second refrigerant flows and the water heat exchanger 5 is not shown.
  • the connecting portion 15 is a portion that connects the joint 9 and the first refrigerant pipe 10.
  • the connecting portion 15 may include a portion of the first refrigerant pipe 10 that does not overlap with the joint 9.
  • the range of the connecting portion 15 may be from the end portion of the first refrigerant pipe 10 on the cover plate 14 side to the connecting portion between the joint 9 and the cover plate 14.
  • the joint 9 is provided on the cover plate 14.
  • the cover plate 14 and the joint 9 are made of stainless steel like the heat exchange plate.
  • the first refrigerant pipe 10 is made of copper.
  • the joint 9 and the first refrigerant pipe 10 are joined by a brazing material 11 that connects different types of metals. For example, as shown in FIG. 2, when the first refrigerant pipe 10 is internally fitted into the joint 9, the brazing material 11 is a portion where the joint 9 and the first refrigerant pipe 10 are superimposed, and the joint 9 and the first It is sandwiched between the refrigerant pipe 10 and the two to join them.
  • a zinc-containing brazing material such as silver wax is used for joining the joint 9 and the first refrigerant pipe 10.
  • Zinc contained in the brazing material reacts with halogen by using, for example, water as a catalyst. Therefore, contact between a wax containing zinc and a refrigerant containing iodine carbons in the presence of water causes corrosion of the wax containing zinc. Corrosion of wax material causes leakage of refrigerant.
  • zinc may react with halogen atoms such as iodine constituting the refrigerant using water as a catalyst, so that the refrigerant may be decomposed.
  • the zinc contained in the brazing material may react with the iodine atom of CF3I and the refrigerant may be decomposed.
  • the water heat exchanger 5 includes a protection unit 12 at the connection unit 15.
  • the protective portion 12 is provided so as to prevent contact between the refrigerant and the brazing material 11 that are circulated through the connecting portion 15, that is, the plurality of heat exchange plates laminated via the first refrigerant pipe 10 and the joint 9. ..
  • the protection unit 12 is provided on the flow path of the first refrigerant so as not to obstruct the flow of the first refrigerant.
  • the protective portion 12 is provided so as to cover, for example, a portion in which the joint 9 and the first refrigerant pipe 10 are overlapped and connected by the brazing material 11. That is, the protective portion 12 is continuously provided inside the joint 9, inside the overlapping portion between the joint 9 and the first refrigerant pipe 10, and inside the first refrigerant pipe 10. Further, the protective portion 12 may be provided in the gap formed between the tip portion of the first refrigerant pipe 10 on the cover plate 14 side and the joint 9.
  • the protective portion 12 is not provided on the heat exchange plate side of the cover plate 14.
  • the protective unit 12 is composed of, for example, a polymer compound obtained by polymerizing a vinyl compound containing a vinyl resin.
  • the vinyl resin includes a synthetic resin having a vinyl alcohol group represented by the demonstrative formula CH2CH (OH). Further, the vinyl resin includes, for example, a synthetic resin such as polyethylene, polyvinyl chloride, and polystyrene.
  • the vinyl resin may be a polymer obtained by polymerizing one kind of monomer such as polyvinyl alcohol (PVOH) or polyvinyl chloride (PVC), or an ethylene vinyl alcohol copolymer (Ethylene Vinyl alcohol). It may be a polymer obtained by polymerizing a monomer in which two or more kinds of compounds such as copolymer: EVOH) are bonded.
  • the material forming the protective portion 12 is not limited to vinyl resin.
  • the protective portion 12 may be made of a material such as synthetic rubber, synthetic fiber, or metal.
  • the protection unit 12 may be any material as long as it does not react with the refrigerant and the brazing material, has excellent gas barrier properties, does not deteriorate due to temperature changes of the refrigeration cycle device, and does not elute into the refrigerant.
  • FIG. 3 is a diagram illustrating an example of a method for manufacturing a water heat exchanger 5 having a protection unit 12 according to an embodiment of the present invention.
  • FIG. 3 shows a method of forming the protective portion 12 on the water heat exchanger 5 by dipping.
  • the protective portion 12 is formed by a method of immersing the formation target of the protective portion 12 in a solution containing the material forming the protective portion 12, so-called dipping.
  • a method of immersing the formation target of the protective portion 12 in a solution containing the material forming the protective portion 12, so-called dipping For example, when water-soluble PVOH is used as the material of the protective portion 12, a part of the water heat exchanger 5, that is, the portion having the connection portion 15 of the water heat exchanger 5 is immersed in the PVOH aqueous solution L.
  • a protective portion 12 is formed on the connecting portion 15.
  • the protective portion 12 can be reliably formed.
  • the portion of the protective portion 12 that does not need to be formed is appropriately masked. By doing so, the protective portion 12 can be formed by adhering the PVOH aqueous solution L to the desired portion.
  • FIG. 3 shows an example in which the protective portion 12 is formed by dipping
  • the method of forming the protective portion 12 is not limited to dipping.
  • the protective portion 12 may be formed by applying or spraying a solution containing a material for forming the protective portion 12 onto a portion where the protective portion 12 is to be installed.
  • the method of forming the protective portion 12 is not limited to the method of using a liquid material.
  • the protective portion 12 may be formed by sticking the sheet-shaped protective portion 12 at a desired position and adhering it to the pipe wall surface of the connecting portion 15. Further, the protective portion 12 formed of a shape memory alloy or an elastic body is inserted into the pipe in a folded state, expanded at a desired position, and the protective portion 12 is stretched and fixed to the pipe wall surface of the connecting portion 15. You may.
  • the water heat exchanger 5 and the refrigeration cycle device 100 have a protective unit 12 at the inlet and outlet of the refrigerant of the water heat exchanger 5 to prevent contact between the refrigerant and the brazing material 11. .. Further, in the method for manufacturing the water heat exchanger 5 according to the present embodiment, a protective portion 12 for preventing contact between the refrigerant and the brazing material 11 is formed at the inlet and outlet of the refrigerant of the water heat exchanger 5. Therefore, it is possible to prevent corrosion of the brazing material 11 due to the contact between the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, the refrigeration cycle device 100, and the refrigerant and the brazing material 11.
  • the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, and the refrigeration cycle device 100 can prevent the leakage of the refrigerant. Further, the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, and the refrigeration cycle device 100 prevent the zinc contained in the brazing material 11 from reacting with the halogen atom of the refrigerant, and prevent the refrigerant from being decomposed. be able to.
  • Refrigeration cycle device 1 ... Compressor, 2 ... First heat exchanger, 3 ... Fan, 4 ... Expansion device, 5 ... Second heat exchanger (water heat exchanger), 6 ... Accumulator, 7 ... Four-way valve, 8 ... pump, 9 ... joint, 10 ... first refrigerant pipe, 11 ... brazing material, 12 ... protection part, 14 ... cover plate, 15 ... connection part, 20 ... second refrigerant pipe, L ... PVOH Aqueous solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are a water heat exchanger capable of preventing corrosion of a brazing material and deterioration of a refrigerant, a method for manufacturing the water heat exchanger, and a refrigeration cycle device. The water heat exchanger according to the present embodiment comprises a plurality of stacked heat exchange plates, a joint (9) provided on at least one cover plate (14) of a pair of cover plates sandwiching the plurality of heat exchange plates, a first refrigerant pipe (10) joined to the joint (9) by a brazing material (11), and a protective portion (12) provided to prevent contact between the brazing material (11) and the refrigerant circulating to the plurality of heat exchange plates through the first refrigerant pipe (10) and the joint (9).

Description

水熱交換器、水熱交換器の製造方法、および冷凍サイクル装置Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle equipment
 本発明に係る実施形態は、水熱交換器、水熱交換器の製造方法、および冷凍サイクル装置に関する。 The embodiment according to the present invention relates to a water heat exchanger, a method for manufacturing the water heat exchanger, and a refrigeration cycle apparatus.
 温度制御装置、例えばチラーは、温度制御対象である物、または空間を冷却または加熱する利用側ユニットと、冷凍サイクルユニット(以下、「冷凍サイクル装置」ともいう。)と、を備えている。冷凍サイクル装置は、圧縮機と、第1の熱交換器と、膨張装置と、第2の熱交換器と、四方弁と、を備えている。冷凍サイクル装置が加熱運転されると、チラーを循環する液体が加熱される。冷凍サイクル装置が冷却運転されると、チラーを循環する液体が冷却される。 A temperature control device, for example, a chiller, includes an object to be temperature controlled or a user-side unit that cools or heats a space, and a refrigeration cycle unit (hereinafter, also referred to as "refrigeration cycle device"). The refrigeration cycle device includes a compressor, a first heat exchanger, an expansion device, a second heat exchanger, and a four-way valve. When the refrigeration cycle device is heated, the liquid circulating in the chiller is heated. When the refrigeration cycle device is cooled, the liquid circulating in the chiller is cooled.
 冷凍サイクル装置に利用される熱交換器として、プレート式の水熱交換器が知られている。プレート式の水熱交換器は、積層された複数の薄い熱交換プレートを備えている。複数の熱交換プレートには、チラーを循環する液体の流路を有する熱交換プレートと、冷凍サイクル装置を循環する冷媒の流路を有する熱交換プレートと、が含まれている。この水熱交換器は、チラーを循環する液体と冷凍サイクル装置を流れる冷媒との間で熱交換を行う。 A plate-type water heat exchanger is known as a heat exchanger used in a refrigeration cycle device. The plate type water heat exchanger includes a plurality of laminated thin heat exchange plates. The plurality of heat exchange plates include a heat exchange plate having a flow path of a liquid circulating in a chiller and a heat exchange plate having a flow path of a refrigerant circulating in a refrigeration cycle device. This water heat exchanger exchanges heat between the liquid circulating in the chiller and the refrigerant flowing through the refrigeration cycle device.
 プレート式の水熱交換器は、積層された複数の熱交換プレートを挟み込んで固定する一対のカバープレートを備えている。カバープレートには熱交換プレートから離れる方向(反対方向、外向き方向)に伸びる継手が設けられている。冷媒が流通する配管は継手を介して水熱交換器に接続される。 The plate-type water heat exchanger is equipped with a pair of cover plates that sandwich and fix a plurality of laminated heat exchange plates. The cover plate is provided with a joint that extends away from the heat exchange plate (opposite direction, outward direction). The piping through which the refrigerant flows is connected to the water heat exchanger via a joint.
 カバープレートや熱交換プレートの材質は、ステンレスやアルミニウムなどの金属である。継手の材質もカバープレートと同じである。一方、冷凍サイクル装置を流れる冷媒の配管の材質は銅である。このように、水熱交換器の冷媒の出入口は、例えば、ステンレスと銅といった異種の金属で構成される。異種の金属は、例えば、ろう付けにより接合される。 The material of the cover plate and heat exchange plate is metal such as stainless steel and aluminum. The material of the joint is the same as that of the cover plate. On the other hand, the material of the refrigerant piping flowing through the refrigeration cycle device is copper. As described above, the inlet and outlet of the refrigerant of the water heat exchanger are composed of different kinds of metals such as stainless steel and copper. Dissimilar metals are joined, for example, by brazing.
 近年、オゾン層への影響が少なく、地球温暖化への影響が小さいトリフルオロヨードメタン(CF3I、以下、「CF3I」と記載する。)などのヨードカーボン類を含む冷媒を冷凍サイクル装置へ採用することが検討されるようになった。 In recent years, refrigerants containing iodine carbons such as trifluoroiodomethane (CF3I, hereinafter referred to as "CF3I"), which has a small effect on the ozone layer and a small effect on global warming, have been adopted for refrigeration cycle equipment. Has come to be considered.
 しかしながら、ヨードカーボン類は、ヨウ素原子と炭素原子との結合が切断されやすい性質をもつ。ろう材に含まれる亜鉛は、例えば、水を触媒としてハロゲンと反応する。水の存在下で、亜鉛を含むろう材とヨードカーボン類を含む冷媒とが接触すると、亜鉛を含むろう材の腐食の原因となる。ろう材の腐食は、冷媒の漏えいの原因となる。また亜鉛とハロゲン原子とが反応して冷媒が分解される虞がある。 However, iodine carbons have the property that the bond between iodine atom and carbon atom is easily broken. Zinc contained in the brazing material reacts with halogen by using, for example, water as a catalyst. Contact between a wax containing zinc and a refrigerant containing iodine carbons in the presence of water causes corrosion of the wax containing zinc. Corrosion of wax material causes leakage of refrigerant. In addition, zinc and halogen atoms may react to decompose the refrigerant.
 また、亜鉛を触媒としてCF3Iが分解してヨウ素が生成されることが知られている。亜鉛を含むろう材とCF3Iを含む冷媒とが接触すると、ろう材に含まれる亜鉛がCF3Iのヨウ素原子と反応し、冷媒が分解される虞がある。 It is also known that CF3I is decomposed using zinc as a catalyst to produce iodine. When the brazing material containing zinc and the refrigerant containing CF3I come into contact with each other, the zinc contained in the brazing material may react with the iodine atom of CF3I and the refrigerant may be decomposed.
特表2012-506023号公報Special Table 2012-506023 特開2010-159310号公報Japanese Unexamined Patent Publication No. 2010-159310
 本発明が解決しようとする課題は、ろう材の腐食および冷媒の劣化を防止可能な水熱交換器、水熱交換器の製造方法、および冷凍サイクル装置を提供することである。 An object to be solved by the present invention is to provide a water heat exchanger, a method for manufacturing the water heat exchanger, and a refrigeration cycle device capable of preventing corrosion of the brazing material and deterioration of the refrigerant.
 実施形態の水熱交換器は、積層された複数の熱交換プレートと、前記複数の熱交換プレートを挟み込む一対のカバープレートと、前記一対のカバープレートの少なくとも一方に設けられる継手と、前記継手にろう材によって接合される冷媒管と、前記冷媒管および前記継手を介して前記複数の熱交換プレートに流通される冷媒と前記ろう材との接触を防ぐよう設けられる保護部と、を備えている。 The water heat exchanger of the embodiment includes a plurality of laminated heat exchange plates, a pair of cover plates sandwiching the plurality of heat exchange plates, a joint provided on at least one of the pair of cover plates, and the joint. It includes a refrigerant pipe joined by a brazing material, and a protective portion provided to prevent contact between the refrigerant pipe and the refrigerant flowing through the plurality of heat exchange plates via the joint and the brazing material. ..
本発明の実施形態に係る冷凍サイクル装置の模式図。The schematic diagram of the refrigeration cycle apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水熱交換器の接続部の模式的な断面図。The schematic sectional view of the connection part of the water heat exchanger which concerns on embodiment of this invention. 本発明の実施形態に係る水熱交換器の製造方法の一例を説明する図。The figure explaining an example of the manufacturing method of the water heat exchanger which concerns on embodiment of this invention.
 本発明に係る水熱交換器、水熱交換器の製造方法、および冷凍サイクル装置の実施形態について、図1から図3を参照して説明する。なお、各図において同じ、または相当する構成には同一の符号を付す。 The water heat exchanger according to the present invention, the method for manufacturing the water heat exchanger, and the embodiment of the refrigeration cycle device will be described with reference to FIGS. 1 to 3. In each figure, the same or corresponding configurations are designated by the same reference numerals.
 図1は、本発明の実施形態に係る冷凍サイクル装置100の模式図である。本実施形態に係るチラー200は、冷凍サイクル装置100と、利用側ユニット300と、を備えている。本実施形態に係るチラー200は、冷凍サイクル装置100を流れる第1の冷媒と利用側ユニット300を流れる第2の冷媒との間で熱交換することで、チラー200の温度制御対象である物または空間を冷却または加熱する。 FIG. 1 is a schematic view of a refrigeration cycle device 100 according to an embodiment of the present invention. The chiller 200 according to the present embodiment includes a refrigeration cycle device 100 and a user-side unit 300. The chiller 200 according to the present embodiment is a thing that is a temperature control target of the chiller 200 by exchanging heat between the first refrigerant flowing through the refrigeration cycle device 100 and the second refrigerant flowing through the utilization side unit 300. Cool or heat the space.
 図1に示すように、冷凍サイクル装置100は、圧縮機1と、第1の熱交換器2と、ファン3と、膨張装置4と、第2の熱交換器5と、アキュムレータ6と、四方弁7と、第1の冷媒管10とを備えている。第1の熱交換器2、膨張装置4、第2の熱交換器5、アキュムレータ6、圧縮機1、および四方弁7は、第1の冷媒管10により順次接続されている。 As shown in FIG. 1, the refrigeration cycle device 100 includes a compressor 1, a first heat exchanger 2, a fan 3, an expansion device 4, a second heat exchanger 5, an accumulator 6, and four sides. A valve 7 and a first refrigerant pipe 10 are provided. The first heat exchanger 2, the expansion device 4, the second heat exchanger 5, the accumulator 6, the compressor 1, and the four-way valve 7 are sequentially connected by the first refrigerant pipe 10.
 第1の冷媒管10は、銅などの金属製である。第1の冷媒管10は、第1の冷媒を流通させる。第1の冷媒は、例えば、ヨードカーボン類を含む混合冷媒である。ヨードカーボン類を含む混合冷媒とは、例えば、CF3Iを含む混合冷媒である。また、冷凍サイクル装置100に使用される冷媒は、ジフルオロメタン(HFC-32、R32、以下、「R32」と記載する。)、ペンタフルオロエタン(HFC125、R125、以下、「R125」と記載する。)及びCF3Iの混合冷媒である。冷凍サイクル装置100に使用される冷媒は、例えば、49.0重量パーセントのR32と、11.5重量パーセントのR125と、39.5重量パーセントのCF3Iと、を含む混合冷媒である。このような組成比(成分)の冷媒は、米国暖房冷凍空調学会(American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE)のStandard 34に冷媒番号R466Aとして仮登録されている。 The first refrigerant pipe 10 is made of a metal such as copper. The first refrigerant pipe 10 circulates the first refrigerant. The first refrigerant is, for example, a mixed refrigerant containing iodine carbons. The mixed refrigerant containing iodine carbons is, for example, a mixed refrigerant containing CF3I. The refrigerant used in the refrigeration cycle apparatus 100 is described as difluoromethane (HFC-32, R32, hereinafter referred to as “R32”) and pentafluoroethane (HFC125, R125, hereinafter referred to as “R125”). ) And CF3I mixed refrigerant. The refrigerant used in the refrigeration cycle apparatus 100 is, for example, a mixed refrigerant containing 49.0% by weight R32, 11.5% by weight R125, and 39.5% by weight CF3I. Refrigerants with such composition ratios (components) are tentatively registered as refrigerant number R466A in Standard 34 of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, ASHRAE.
 圧縮機1は、第1の冷媒を圧縮する。圧縮機1は、例えば公知のインバーター制御によって運転周波数を変更可能なものであっても良いし、運転周波数を変更できないもの、つまり運転周波数が固定のものであっても良い。 The compressor 1 compresses the first refrigerant. The compressor 1 may be, for example, one whose operating frequency can be changed by known inverter control, or one whose operating frequency cannot be changed, that is, one whose operating frequency is fixed.
 第1の熱交換器2は、例えば、フィンアンドチューブ式の熱交換器である。第1の熱交換器2の近傍には、ファン3が配置されている。第1の熱交換器2は、ファン3から送られる空気と第1の熱交換器2内を通る第1の冷媒との間で熱交換を行う空気熱交換器である。 The first heat exchanger 2 is, for example, a fin-and-tube heat exchanger. A fan 3 is arranged in the vicinity of the first heat exchanger 2. The first heat exchanger 2 is an air heat exchanger that exchanges heat between the air sent from the fan 3 and the first refrigerant passing through the first heat exchanger 2.
 膨張装置4は、例えばPMV(Pulse Motor Valve)である。膨張装置4は、弁開度を調節できる。膨張装置4は、例えば、貫通孔を有する弁本体と、貫通孔に対して進退可能なニードルと、ニードルを進退させる動力源と、を備えている。貫通孔をニードルで塞いだ場合、膨張装置4は、冷凍サイクル装置100を流れる第1の冷媒の流通を止める(遮断する)。このとき、膨張装置4は閉じた状態であり、膨張装置4の開度は最も小さい。ニードルが貫通孔から最も離れた場合、冷凍サイクル装置100の第1の冷媒の流通量は、最大化する。このとき、膨張装置4の開度は最も大きい。 The expansion device 4 is, for example, a PMV (Pulse Motor Valve). The expansion device 4 can adjust the valve opening degree. The expansion device 4 includes, for example, a valve body having a through hole, a needle capable of advancing and retreating with respect to the through hole, and a power source for advancing and retreating the needle. When the through hole is closed with a needle, the expansion device 4 stops (blocks) the flow of the first refrigerant flowing through the refrigeration cycle device 100. At this time, the expansion device 4 is in the closed state, and the opening degree of the expansion device 4 is the smallest. When the needle is farthest from the through hole, the flow rate of the first refrigerant of the refrigeration cycle device 100 is maximized. At this time, the opening degree of the expansion device 4 is the largest.
 第2の熱交換器5は、加熱または冷却の対象である第2の冷媒管20を流れる第2の冷媒と第1の冷媒管10を流通する第1の冷媒との間で熱交換する。第2の冷媒は、例えば、水である。第2の冷媒は、ポンプ8により第2の冷媒管20を介してチラー200の循環ユニット(図示省略)から第2の熱交換器5に送られる。すなわち、第2の熱交換器5は、第1の冷媒管10に流れる第1の冷媒と第2の冷媒管20に流れる第2の冷媒としての水との間で熱交換を行う水熱交換器である。以下、第2の熱交換器5を単に水熱交換器5と呼ぶ。 The second heat exchanger 5 exchanges heat between the second refrigerant flowing through the second refrigerant pipe 20 to be heated or cooled and the first refrigerant flowing through the first refrigerant pipe 10. The second refrigerant is, for example, water. The second refrigerant is sent from the circulation unit (not shown) of the chiller 200 to the second heat exchanger 5 via the second refrigerant pipe 20 by the pump 8. That is, the second heat exchanger 5 exchanges heat between the first refrigerant flowing through the first refrigerant pipe 10 and the water as the second refrigerant flowing through the second refrigerant pipe 20. It is a vessel. Hereinafter, the second heat exchanger 5 is simply referred to as a water heat exchanger 5.
 水熱交換器5は、例えば、プレート式の水熱交換器である。水熱交換器5は、積層された複数の熱交換プレートと、積層された複数の熱交換プレートを、その積層方向から挟み込む一対のカバープレートと、を備えている。少なくとも一方のカバープレート14は、冷媒の出入口としての複数の継手9を備えている。それぞれの熱交換プレートは、冷凍サイクル装置100を流れる第1の冷媒の流路、およびチラー200の循環ユニットを流れる第2の冷媒の流路を有している。なお、水熱交換器5と冷媒管(第1の冷媒管10)との接続部については、図2で詳細に説明する。 The water heat exchanger 5 is, for example, a plate type water heat exchanger. The water heat exchanger 5 includes a plurality of laminated heat exchange plates and a pair of cover plates that sandwich the plurality of laminated heat exchange plates from the stacking direction. At least one cover plate 14 includes a plurality of joints 9 as inlets and outlets for the refrigerant. Each heat exchange plate has a first refrigerant flow path through the refrigeration cycle apparatus 100 and a second refrigerant flow path through the circulation unit of the chiller 200. The connection portion between the water heat exchanger 5 and the refrigerant pipe (first refrigerant pipe 10) will be described in detail with reference to FIG.
 アキュムレータ6は、水熱交換器5と圧縮機1との間に設けられている。アキュムレータ6は、鉄鋼等の金属製のケースを有している。ケースの下部には液相の冷媒が収容されている。ケースの上部には気相の冷媒が収容されている。アキュムレータ6は、気相の冷媒を圧縮機1に供給する。 The accumulator 6 is provided between the water heat exchanger 5 and the compressor 1. The accumulator 6 has a metal case such as steel. A liquid phase refrigerant is stored in the lower part of the case. A gas phase refrigerant is contained in the upper part of the case. The accumulator 6 supplies the gas phase refrigerant to the compressor 1.
 四方弁7は、第1の冷媒の流れる向きを切り替えることで冷凍サイクル装置100の加熱運転と冷却運転とを切り替える。 The four-way valve 7 switches between the heating operation and the cooling operation of the refrigeration cycle device 100 by switching the flow direction of the first refrigerant.
 冷凍サイクル装置100が加熱運転する場合、水熱交換器5により第2の冷媒管20を流れる水が加熱される。加熱運転の場合、第1の冷媒は、圧縮機1、水熱交換器5、膨張装置4、第1の熱交換器2、アキュムレータ6の順に流れる。圧縮機1で高温高圧の気体となった第1の冷媒は、水熱交換器5において水と熱交換して凝集し、液体に変化する。この際、水熱交換器5は、第1の冷媒を凝集させる凝集器として機能する。水熱交換器5で凝集した第1の冷媒は、膨張装置4で減圧されることで一部蒸発し、その気化熱で低温低圧の液体に変化する。その後、低温低圧の液体となった第1の冷媒は、第1の熱交換器2において、ファン3から送風された空気と熱交換して蒸発し、低温低圧の気体に変化する。この際、第1の熱交換器2は、第1の冷媒を蒸発させる蒸発器として機能する。 When the refrigeration cycle device 100 is heated, the water flowing through the second refrigerant pipe 20 is heated by the water heat exchanger 5. In the case of heating operation, the first refrigerant flows in the order of the compressor 1, the water heat exchanger 5, the expansion device 4, the first heat exchanger 2, and the accumulator 6. The first refrigerant, which has become a high-temperature and high-pressure gas in the compressor 1, exchanges heat with water in the water heat exchanger 5 and aggregates to change into a liquid. At this time, the water heat exchanger 5 functions as an aggregator for aggregating the first refrigerant. The first refrigerant aggregated in the water heat exchanger 5 is partially evaporated by being depressurized by the expansion device 4, and is changed to a low-temperature low-pressure liquid by the heat of vaporization. After that, the first refrigerant, which has become a low-temperature low-pressure liquid, exchanges heat with the air blown from the fan 3 in the first heat exchanger 2 and evaporates, and changes to a low-temperature low-pressure gas. At this time, the first heat exchanger 2 functions as an evaporator that evaporates the first refrigerant.
 一方、冷凍サイクル装置100が冷却運転する場合、第2の冷媒管20を流れる水が冷却される。冷却運転の場合、四方弁7が反転されて、加熱運転の場合と逆向きの冷媒の流れが生じている。したがって、第1の冷媒は、圧縮機1、第1の熱交換器2、膨張装置4、水熱交換器5、アキュムレータ6の順に流れる。この際、水熱交換器5を流れる第1の冷媒は、第2の冷媒管20を流れる水と熱交換し、第1の冷媒を蒸発させる蒸発器として機能する。また、第1の熱交換器2は、第1の冷媒を凝集させる凝集器として機能する。 On the other hand, when the refrigerating cycle device 100 is cooled, the water flowing through the second refrigerant pipe 20 is cooled. In the case of the cooling operation, the four-way valve 7 is reversed, and the flow of the refrigerant in the opposite direction to that in the case of the heating operation is generated. Therefore, the first refrigerant flows in the order of the compressor 1, the first heat exchanger 2, the expansion device 4, the water heat exchanger 5, and the accumulator 6. At this time, the first refrigerant flowing through the water heat exchanger 5 exchanges heat with the water flowing through the second refrigerant pipe 20 and functions as an evaporator that evaporates the first refrigerant. Further, the first heat exchanger 2 functions as an aggregator for aggregating the first refrigerant.
 以上が冷凍サイクル装置100の説明である。次に、図2を参照して、水熱交換器5の接続部15について詳細に説明する。接続部15は、水熱交換器5における冷媒の出入口である。 The above is the explanation of the refrigeration cycle device 100. Next, the connection portion 15 of the water heat exchanger 5 will be described in detail with reference to FIG. The connection portion 15 is an inlet / outlet for the refrigerant in the water heat exchanger 5.
 図2は、本発明の実施形態に係る水熱交換器5の接続部15の概略的な断面図である。水熱交換器5は、第1の冷媒と第2の冷媒である水との間で熱交換を行う。そのため、水熱交換器5は、それぞれの冷媒に対応する出入口を備えている。この冷媒の出入口を接続部15と呼ぶ。図2は、第1の冷媒が流れる第1の冷媒管10と水熱交換器5との接続部15の断面図である。なお、第2の冷媒が流れる第2の冷媒管20と水熱交換器5との接続部の図示は省略する。 FIG. 2 is a schematic cross-sectional view of the connection portion 15 of the water heat exchanger 5 according to the embodiment of the present invention. The water heat exchanger 5 exchanges heat between the first refrigerant and the second refrigerant, water. Therefore, the water heat exchanger 5 is provided with an inlet / outlet corresponding to each refrigerant. The inlet and outlet of this refrigerant is called a connecting portion 15. FIG. 2 is a cross-sectional view of a connection portion 15 between the first refrigerant pipe 10 through which the first refrigerant flows and the water heat exchanger 5. The connection between the second refrigerant pipe 20 through which the second refrigerant flows and the water heat exchanger 5 is not shown.
 接続部15は、継手9と第1の冷媒管10とを接続する部位である。例えば、図2に示すように、第1の冷媒管10が継手9に内嵌めされている場合、継手9と第1の冷媒管10とが重畳している部分から継手9とカバープレート14との接続部分までが接続部15である。この場合、接続部15の範囲は、継手9の範囲と一致する。なお、接続部15の範囲は、継手9と重畳していない第1の冷媒管10の部分を含んでいても良い。また、接続部15の範囲は、第1の冷媒管10のカバープレート14側の端部から継手9とカバープレート14との接続部分までであっても良い。 The connecting portion 15 is a portion that connects the joint 9 and the first refrigerant pipe 10. For example, as shown in FIG. 2, when the first refrigerant pipe 10 is internally fitted in the joint 9, the joint 9 and the cover plate 14 start from the portion where the joint 9 and the first refrigerant pipe 10 overlap. Up to the connecting portion of is the connecting portion 15. In this case, the range of the connecting portion 15 coincides with the range of the joint 9. The range of the connecting portion 15 may include a portion of the first refrigerant pipe 10 that does not overlap with the joint 9. Further, the range of the connecting portion 15 may be from the end portion of the first refrigerant pipe 10 on the cover plate 14 side to the connecting portion between the joint 9 and the cover plate 14.
 継手9は、カバープレート14に設けられる。カバープレート14および継手9は、熱交換プレートと同じくステンレス製である。一方、第1の冷媒管10は、銅製である。継手9と第1の冷媒管10とは異種間の金属を接続するろう材11により接合される。例えば、図2に示すように、第1の冷媒管10が継手9に内嵌めされる場合、ろう材11は、継手9および第1の冷媒管10が重畳した部分で、継手9と第1の冷媒管10との間に挟み込まれて両者を接合している。 The joint 9 is provided on the cover plate 14. The cover plate 14 and the joint 9 are made of stainless steel like the heat exchange plate. On the other hand, the first refrigerant pipe 10 is made of copper. The joint 9 and the first refrigerant pipe 10 are joined by a brazing material 11 that connects different types of metals. For example, as shown in FIG. 2, when the first refrigerant pipe 10 is internally fitted into the joint 9, the brazing material 11 is a portion where the joint 9 and the first refrigerant pipe 10 are superimposed, and the joint 9 and the first It is sandwiched between the refrigerant pipe 10 and the two to join them.
 継手9と第1の冷媒管10との接合には、銀ろうなどの亜鉛を含むろう材が用いられる。ろう材に含まれる亜鉛は、例えば、水を触媒としてハロゲンと反応する。したがって、水の存在下で、亜鉛を含むろう材とヨードカーボン類を含む冷媒とが接触すると、亜鉛を含むろう材の腐食の原因となる。ろう材の腐食は、冷媒の漏えいの原因となる。また、水を触媒として亜鉛が冷媒を構成するヨウ素などのハロゲン原子と反応することで、冷媒が分解される虞がある。 A zinc-containing brazing material such as silver wax is used for joining the joint 9 and the first refrigerant pipe 10. Zinc contained in the brazing material reacts with halogen by using, for example, water as a catalyst. Therefore, contact between a wax containing zinc and a refrigerant containing iodine carbons in the presence of water causes corrosion of the wax containing zinc. Corrosion of wax material causes leakage of refrigerant. In addition, zinc may react with halogen atoms such as iodine constituting the refrigerant using water as a catalyst, so that the refrigerant may be decomposed.
 また、亜鉛を含むろう材とCF3Iを含む冷媒とが接触すると、ろう材に含まれる亜鉛がCF3Iのヨウ素原子と反応し、冷媒が分解される虞がある。 Further, when the brazing material containing zinc and the refrigerant containing CF3I come into contact with each other, the zinc contained in the brazing material may react with the iodine atom of CF3I and the refrigerant may be decomposed.
 そこで、本実施形態に係る水熱交換器5は、接続部15に保護部12を備えている。保護部12は、接続部15、つまり第1の冷媒管10と継手9とを介して積層された複数の熱交換プレートに流通される冷媒とろう材11との接触を防ぐよう設けられている。保護部12は、第1の冷媒の流路上に第1の冷媒の流通を妨げないよう設けられる。 Therefore, the water heat exchanger 5 according to the present embodiment includes a protection unit 12 at the connection unit 15. The protective portion 12 is provided so as to prevent contact between the refrigerant and the brazing material 11 that are circulated through the connecting portion 15, that is, the plurality of heat exchange plates laminated via the first refrigerant pipe 10 and the joint 9. .. The protection unit 12 is provided on the flow path of the first refrigerant so as not to obstruct the flow of the first refrigerant.
 保護部12は、例えば、継手9と第1の冷媒管10とがろう材11により重畳して接続されている部分を覆うように設けられる。すなわち、保護部12は、継手9の内側、継手9と第1の冷媒管10の重畳部分の内側、第1の冷媒管10の内側に連続して設けられる。また、保護部12は、第1の冷媒管10のカバープレート14側の先端部分と継手9との間に生じた隙間に設けられてもよい。 The protective portion 12 is provided so as to cover, for example, a portion in which the joint 9 and the first refrigerant pipe 10 are overlapped and connected by the brazing material 11. That is, the protective portion 12 is continuously provided inside the joint 9, inside the overlapping portion between the joint 9 and the first refrigerant pipe 10, and inside the first refrigerant pipe 10. Further, the protective portion 12 may be provided in the gap formed between the tip portion of the first refrigerant pipe 10 on the cover plate 14 side and the joint 9.
 なお、保護部12は、カバープレート14よりも熱交換プレート側には設けられていないことが好ましい。 It is preferable that the protective portion 12 is not provided on the heat exchange plate side of the cover plate 14.
 保護部12は、例えば、ビニル樹脂を含むビニル化合物を重合して得られる高分子化合物で構成される。ビニル樹脂には、示性式CH2CH(OH)で示されるビニルアルコール基を有する合成樹脂が含まれる。また、ビニル樹脂には、例えば、ポリエチレン、ポリ塩化ビニル、ポリスチレンなどの合成樹脂が含まれる。ビニル樹脂は、ポリビニルアルコール(Polyvinyl alcohol:PVOH)やポリ塩化ビニル(Polyvinyl Chloride:PVC)などの1種類の単量体が重合したポリマーであってもよいし、エチレンビニルアルコール共重合体(Ethylene Vinylalcohol copolymer:EVOH)などの2種類以上の化合物が結合した単量体が重合したポリマーであってもよい。 The protective unit 12 is composed of, for example, a polymer compound obtained by polymerizing a vinyl compound containing a vinyl resin. The vinyl resin includes a synthetic resin having a vinyl alcohol group represented by the demonstrative formula CH2CH (OH). Further, the vinyl resin includes, for example, a synthetic resin such as polyethylene, polyvinyl chloride, and polystyrene. The vinyl resin may be a polymer obtained by polymerizing one kind of monomer such as polyvinyl alcohol (PVOH) or polyvinyl chloride (PVC), or an ethylene vinyl alcohol copolymer (Ethylene Vinyl alcohol). It may be a polymer obtained by polymerizing a monomer in which two or more kinds of compounds such as copolymer: EVOH) are bonded.
 なお、保護部12を形成する材料は、ビニル樹脂に限定されない。例えば、保護部12は、合成ゴム、合成繊維、金属などの材料で形成されてもよい。保護部12は、冷媒およびろう材と反応せず、ガスバリア性に優れ、冷凍サイクル装置の温度変化により変質せず、冷媒に溶出しない材料であればどのような材料であってもよい。 The material forming the protective portion 12 is not limited to vinyl resin. For example, the protective portion 12 may be made of a material such as synthetic rubber, synthetic fiber, or metal. The protection unit 12 may be any material as long as it does not react with the refrigerant and the brazing material, has excellent gas barrier properties, does not deteriorate due to temperature changes of the refrigeration cycle device, and does not elute into the refrigerant.
 次に、保護部12を水熱交換器5に設置する方法を説明する。 Next, a method of installing the protection unit 12 in the water heat exchanger 5 will be described.
 図3は、本発明の実施形態に係る保護部12を有する水熱交換器5の製造方法の一例を説明する図である。図3は、ディッピング(dipping)により水熱交換器5に保護部12を形成する方法を示している。 FIG. 3 is a diagram illustrating an example of a method for manufacturing a water heat exchanger 5 having a protection unit 12 according to an embodiment of the present invention. FIG. 3 shows a method of forming the protective portion 12 on the water heat exchanger 5 by dipping.
 保護部12は、保護部12を形成する材料を含む溶液に保護部12の形成対象を浸漬する方法、いわゆるディッピングによって形成される。例えば、保護部12の材料として水溶性のPVOHを利用する場合、水熱交換器5の一部、即ち、水熱交換器5の接続部15を有する部分をPVOH水溶液Lに浸漬することによって、保護部12が接続部15に形成される。 The protective portion 12 is formed by a method of immersing the formation target of the protective portion 12 in a solution containing the material forming the protective portion 12, so-called dipping. For example, when water-soluble PVOH is used as the material of the protective portion 12, a part of the water heat exchanger 5, that is, the portion having the connection portion 15 of the water heat exchanger 5 is immersed in the PVOH aqueous solution L. A protective portion 12 is formed on the connecting portion 15.
 水熱交換器5に接続される第1の冷媒管10の長さがPVOH水溶液Lの流入を妨げるほど長い場合、PVOH水溶液Lに圧力をかけて第1の冷媒管10にPVOH水溶液Lを押し込み、接続部15にPVOH水溶液Lを充填することで保護部12を確実に形成できる。保護部12の形成が不要な部位は、適宜にマスキングされる。そうすることで、所望の部分にPVOH水溶液Lを付着させて保護部12を形成することができる。 When the length of the first refrigerant pipe 10 connected to the water heat exchanger 5 is long enough to prevent the inflow of the PVOH aqueous solution L, pressure is applied to the PVOH aqueous solution L to push the PVOH aqueous solution L into the first refrigerant pipe 10. By filling the connecting portion 15 with the PVOH aqueous solution L, the protective portion 12 can be reliably formed. The portion of the protective portion 12 that does not need to be formed is appropriately masked. By doing so, the protective portion 12 can be formed by adhering the PVOH aqueous solution L to the desired portion.
 なお、図3では、ディッピングにより保護部12を形成する例を示したが、保護部12の形成方法はディッピングに限定されない。例えば、保護部12を形成する材料を含む溶液を、保護部12を設置したい部分に塗布あるいは吹き付けることで、保護部12を形成してもよい。 Although FIG. 3 shows an example in which the protective portion 12 is formed by dipping, the method of forming the protective portion 12 is not limited to dipping. For example, the protective portion 12 may be formed by applying or spraying a solution containing a material for forming the protective portion 12 onto a portion where the protective portion 12 is to be installed.
 また、保護部12を形成する方法は、液体の材料を用いる方法に限定されない。例えば、シート状の保護部12を目的の位置に貼り付けて接続部15の管壁面に接着させることで保護部12を形成しても良い。また、形状記憶合金や弾性体で形成された保護部12を折りたたんだ状態で管内部に挿入し、目的の位置で拡張させて、保護部12を接続部15の管壁面に突っ張らせて固定しても良い。 Further, the method of forming the protective portion 12 is not limited to the method of using a liquid material. For example, the protective portion 12 may be formed by sticking the sheet-shaped protective portion 12 at a desired position and adhering it to the pipe wall surface of the connecting portion 15. Further, the protective portion 12 formed of a shape memory alloy or an elastic body is inserted into the pipe in a folded state, expanded at a desired position, and the protective portion 12 is stretched and fixed to the pipe wall surface of the connecting portion 15. You may.
 このように、本実施形態に係る水熱交換器5、および冷凍サイクル装置100は、水熱交換器5の冷媒の出入口に冷媒とろう材11との接触を防ぐ保護部12を有している。また、本実施形態に係る水熱交換器5の製造方法は、水熱交換器5の冷媒の出入口に冷媒とろう材11との接触を防ぐ保護部12を形成する。そのため水熱交換器5、水熱交換器5の製造方法、および冷凍サイクル装置100、冷媒とろう材11との接触に起因するろう材11の腐食を防止することができる。これにより、水熱交換器5、水熱交換器5の製造方法、および冷凍サイクル装置100は、冷媒の漏出を防ぐことができる。また、水熱交換器5、水熱交換器5の製造方法、および冷凍サイクル装置100は、ろう材11に含まれる亜鉛と冷媒のハロゲン原子とが反応するのを防ぎ、冷媒の分解を防止することができる。 As described above, the water heat exchanger 5 and the refrigeration cycle device 100 according to the present embodiment have a protective unit 12 at the inlet and outlet of the refrigerant of the water heat exchanger 5 to prevent contact between the refrigerant and the brazing material 11. .. Further, in the method for manufacturing the water heat exchanger 5 according to the present embodiment, a protective portion 12 for preventing contact between the refrigerant and the brazing material 11 is formed at the inlet and outlet of the refrigerant of the water heat exchanger 5. Therefore, it is possible to prevent corrosion of the brazing material 11 due to the contact between the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, the refrigeration cycle device 100, and the refrigerant and the brazing material 11. Thereby, the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, and the refrigeration cycle device 100 can prevent the leakage of the refrigerant. Further, the water heat exchanger 5, the manufacturing method of the water heat exchanger 5, and the refrigeration cycle device 100 prevent the zinc contained in the brazing material 11 from reacting with the halogen atom of the refrigerant, and prevent the refrigerant from being decomposed. be able to.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
100…冷凍サイクル装置、1…圧縮機、2…第1の熱交換器、3…ファン、4…膨張装置、5…第2の熱交換器(水熱交換器)、6…アキュムレータ、7…四方弁、8…ポンプ、9…継手、10…第1の冷媒管、11…ろう材、12…保護部、14…カバープレート、15…接続部、20…第2の冷媒管、L…PVOH水溶液。
 
100 ... Refrigeration cycle device, 1 ... Compressor, 2 ... First heat exchanger, 3 ... Fan, 4 ... Expansion device, 5 ... Second heat exchanger (water heat exchanger), 6 ... Accumulator, 7 ... Four-way valve, 8 ... pump, 9 ... joint, 10 ... first refrigerant pipe, 11 ... brazing material, 12 ... protection part, 14 ... cover plate, 15 ... connection part, 20 ... second refrigerant pipe, L ... PVOH Aqueous solution.

Claims (4)

  1.  積層された複数の熱交換プレートと、
     前記複数の熱交換プレートを挟み込む一対のカバープレートと、
     前記一対のカバープレートの少なくとも一方に設けられる継手と、
     前記継手にろう材によって接合される冷媒管と、
     前記冷媒管および前記継手を介して前記複数の熱交換プレートに流通される冷媒と前記ろう材との接触を防ぐよう設けられる保護部と、を備える水熱交換器。
    With multiple laminated heat exchange plates,
    A pair of cover plates that sandwich the plurality of heat exchange plates,
    A joint provided on at least one of the pair of cover plates and
    A refrigerant pipe joined to the joint by a brazing material and
    A water heat exchanger comprising the refrigerant pipe and a protective portion provided to prevent contact between the brazing material and the refrigerant flowing through the plurality of heat exchange plates via the joint.
  2.  前記保護部は、ビニル樹脂により形成されている請求項1に記載の水熱交換器。 The water heat exchanger according to claim 1, wherein the protective portion is made of vinyl resin.
  3. 請求項1に記載の水熱交換器の製造方法であって、
     前記ビニル樹脂を含む溶液に前記接続部を浸漬して前記保護部を形成する水熱交換器の製造方法。
    The method for manufacturing a water heat exchanger according to claim 1.
    A method for manufacturing a water heat exchanger in which the connection portion is immersed in a solution containing the vinyl resin to form the protection portion.
  4.  圧縮機と、
     膨張装置と、
     前記圧縮機、および前記膨張装置と接続し、蒸発器および凝集器の少なくともいずれか一方として機能する請求項1または2に記載の水熱交換器と、を備える冷凍サイクル装置。
     
    With a compressor,
    Inflator and
    A refrigeration cycle apparatus comprising the compressor and a water heat exchanger according to claim 1 or 2, which is connected to the inflator and functions as at least one of an evaporator and an aggregator.
PCT/JP2020/028490 2019-09-04 2020-07-22 Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device WO2021044760A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080052769.1A CN114144625A (en) 2019-09-04 2020-07-22 Water heat exchanger, method for manufacturing water heat exchanger, and refrigeration cycle device
JP2021543651A JP7280958B2 (en) 2019-09-04 2020-07-22 Water heat exchanger, method for manufacturing water heat exchanger, and refrigeration cycle device
US17/753,426 US20220333831A1 (en) 2019-09-04 2020-07-22 Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle apparatus
EP20861562.5A EP4027096A4 (en) 2019-09-04 2020-07-22 Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161016 2019-09-04
JP2019-161016 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044760A1 true WO2021044760A1 (en) 2021-03-11

Family

ID=74852537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028490 WO2021044760A1 (en) 2019-09-04 2020-07-22 Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device

Country Status (5)

Country Link
US (1) US20220333831A1 (en)
EP (1) EP4027096A4 (en)
JP (1) JP7280958B2 (en)
CN (1) CN114144625A (en)
WO (1) WO2021044760A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159310A (en) 2007-04-27 2010-07-22 Asahi Glass Co Ltd Stabilizer for working medium, working medium composition, and heat exchange method
JP2012506023A (en) * 2008-10-16 2012-03-08 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchanger
JP2016125083A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Corrosion suppression device
JP2017032198A (en) * 2015-07-31 2017-02-09 三菱電機株式会社 Heat exchange system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL59401C (en) * 1941-04-17
US2399103A (en) * 1944-06-05 1946-04-23 Nat Tube Co Joint and method of making the same
US4493864A (en) * 1982-07-01 1985-01-15 Arbonite Corporation Coated pipe and method of making same
JP2814868B2 (en) * 1992-06-17 1998-10-27 三菱電機株式会社 Plate type heat exchanger and method of manufacturing the same
JP2001031820A (en) * 1999-07-21 2001-02-06 Denki Kagaku Kogyo Kk Coating material, coated body, resin composition for coating inner surface of pipe joint and pipe joint
JP2005133981A (en) * 2003-10-28 2005-05-26 Mitsubishi Fuso Truck & Bus Corp Exhaust heat exchanger
JP2005273966A (en) 2004-03-23 2005-10-06 Daikin Ind Ltd Plate type heat exchanger and method of manufacturing the same
JP5156107B2 (en) * 2011-04-07 2013-03-06 三菱電機株式会社 Water heat exchanger
CN102445030A (en) * 2011-12-21 2012-05-09 浙江同星制冷有限公司 One-pipe fin type efficient heat exchanger
US20140000842A1 (en) * 2012-06-18 2014-01-02 Tranter, Inc. Heat exchanger with accessible core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159310A (en) 2007-04-27 2010-07-22 Asahi Glass Co Ltd Stabilizer for working medium, working medium composition, and heat exchange method
JP2012506023A (en) * 2008-10-16 2012-03-08 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchanger
JP2016125083A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Corrosion suppression device
JP2017032198A (en) * 2015-07-31 2017-02-09 三菱電機株式会社 Heat exchange system

Also Published As

Publication number Publication date
US20220333831A1 (en) 2022-10-20
CN114144625A (en) 2022-03-04
EP4027096A1 (en) 2022-07-13
EP4027096A4 (en) 2023-09-13
JPWO2021044760A1 (en) 2021-03-11
JP7280958B2 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
JP4225304B2 (en) Control method of refrigeration air conditioner
WO2015111175A1 (en) Heat pump apparatus
WO2013027757A1 (en) Combined binary refrigeration cycle apparatus
JPWO2014203354A1 (en) Refrigeration cycle equipment
JP6578094B2 (en) Air conditioner and its renewal method
WO2016071955A1 (en) Air conditioning apparatus
JP2011002217A (en) Refrigerating device and air conditioning apparatus
JP2000274789A (en) Refrigerating air conditioner and method for controlling the refrigerating air conditioner
EP2770278B1 (en) Water heater
WO2015140885A1 (en) Refrigeration cycle apparatus
WO2021044760A1 (en) Water heat exchanger, manufacturing method of water heat exchanger, and refrigeration cycle device
US11352532B2 (en) Refrigeration apparatus
JP2014219154A (en) Air conditioner
JP2009162403A (en) Air conditioner
WO2016038659A1 (en) Refrigeration cycle apparatus
JP2019019985A (en) Compressor and air-conditioner
JP6702241B2 (en) Refrigeration equipment
WO2016016999A1 (en) Refrigeration cycle device
JP7057521B2 (en) Refrigeration equipment
WO2022196535A1 (en) Shell and plate heat exchanger for water-cooled chiller and water-cooled chiller including the same
WO2020075238A1 (en) Plate heat exchanger and heat pump device
AU2022236143A9 (en) Shell and plate heat exchanger for water-cooled chiller and water-cooled chiller including the same
JP2021042872A (en) Refrigeration cycle device
JP2020173056A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861562

Country of ref document: EP

Effective date: 20220404