WO2021043323A1 - 一种优化燃料电池汽车功率分配方法 - Google Patents

一种优化燃料电池汽车功率分配方法 Download PDF

Info

Publication number
WO2021043323A1
WO2021043323A1 PCT/CN2020/120516 CN2020120516W WO2021043323A1 WO 2021043323 A1 WO2021043323 A1 WO 2021043323A1 CN 2020120516 W CN2020120516 W CN 2020120516W WO 2021043323 A1 WO2021043323 A1 WO 2021043323A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
soc
ion battery
vehicle
Prior art date
Application number
PCT/CN2020/120516
Other languages
English (en)
French (fr)
Inventor
樊海梅
张巍
熊金峰
时玉帅
Original Assignee
金龙联合汽车工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙联合汽车工业(苏州)有限公司 filed Critical 金龙联合汽车工业(苏州)有限公司
Priority to US17/624,308 priority Critical patent/US11677087B2/en
Publication of WO2021043323A1 publication Critical patent/WO2021043323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04611Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the technical field of fuel cell vehicle management, and specifically relates to a method for optimizing the power distribution of a fuel cell vehicle.
  • the purpose of the present invention is to provide a method for optimizing the power distribution of fuel cell vehicles, which can realize a good operation mode of power distribution between the fuel cell and the lithium-ion battery, and ensure the rational use of resources.
  • a method for optimizing the power distribution of fuel cell vehicles includes the following steps:
  • S01 Select a fixed time window and calculate the average power required by the entire vehicle within the time window. When the fuel cell power is greater than the vehicle average power, reduce the fuel cell power according to the power change rate; when the fuel cell power is less than the vehicle average power When, increase the power of the fuel cell according to the rate of power change;
  • S03 Select a fixed fuel cell power change rate within the limit range of the fuel cell power change rate, and calculate the average power required by the entire vehicle within the time window.
  • the fuel cell power is greater than the average power of the entire vehicle, the fuel cell is set according to the power The rate of change reduces the power; when the power of the fuel cell is less than the average power of the entire vehicle, the fuel cell is increased in power according to the rate of power change;
  • the selected fuel cell power change rate is from 0.05 KW/S to 2 KW/S.
  • the selected time window range is 1S to 10min.
  • the obtained optimal fuel cell power change rate exceeds the limit range of the fuel cell power change rate
  • the obtained optimal time window is selected as the fixed time window, and the calculated time window is within the range The average power required by the whole vehicle.
  • the fuel cell power is greater than the average power of the whole vehicle
  • the fuel cell is reduced in power according to the power change rate; when the fuel cell power is less than the average power of the whole vehicle, the fuel cell is increased in power according to the power change rate;
  • the method of the present invention starts from two perspectives. One is from the consideration of price and resource allocation. Under a suitable power control strategy, the fuel cell vehicle should be equipped with a small power lithium ion battery as much as possible within the range of SOC fluctuations, which can reflect greater Price advantage, good resource allocation strategy; Second, from the perspective of fuel cell vehicle operating conditions and lithium-ion battery life, if there is a demand for pure lithium power operating conditions, fuel cell vehicles have to be equipped with high-power lithium-ion batteries. Under non-pure lithium-ion driving conditions, reasonably select the degree of lithium-ion battery. Through the power control strategy, the SOC fluctuation can be controlled within a small range, and the SOC range that is most suitable for lithium-ion operation can be selected, which is beneficial to extend the lithium-ion battery. Service life.
  • the power distribution strategy of the present invention can reasonably allocate resources and maximize the application range of lithium-ion batteries.
  • FIG. 1 is a flowchart of the method for optimizing the power distribution of a fuel cell vehicle according to the present invention.
  • Figure 2 is the power diagram of the whole vehicle
  • Figure 3 is the speed map of the entire vehicle
  • Figure 4 is a complete vehicle mileage chart
  • Figure 5 is the SOC curve corresponding to different power change rates with a time window of 10S;
  • Figure 6 is the SOC curve corresponding to different time windows with a power change rate of 0.2KW/S;
  • Figure 7 is the SOC curve corresponding to different time windows with a power change rate of 0.1KW/S;
  • Fig. 8 is the SOC curve corresponding to different power changes with a time window of 2 min.
  • the optimized fuel cell vehicle power distribution method of the present invention formulates a reasonable fuel cell power follow strategy according to the fuel vehicle power, battery power, and lithium ion battery SOC and other values.
  • Purpose 1 When a large-capacity lithium-ion battery is configured, the SOC usage range of the lithium-ion battery can be adjusted to maintain the SOC fluctuation within the optimal small range and prolong the lithium-ion service life.
  • Objective 2 Based on this, it can reduce the demand for large-capacity lithium-ion batteries for fuel cell vehicle configurations on the current market, and a suitable fuel cell power growth rate and appropriate time window can achieve the development of small-capacity lithium-ion batteries on fuel cell vehicles. Application and reasonable allocation of resources.
  • the method specifically includes the following steps:
  • S01 Select a fixed time window and calculate the average power required by the vehicle within the time window. When the fuel cell power is greater than the vehicle average power, reduce the fuel cell power according to the power change rate; when the fuel cell power is less than the vehicle average power When, increase the power of the fuel cell according to the rate of power change;
  • S02 Select the power change rate of different fuel cells, and the selected fuel cell power change rate is preferably 0.05KW/S to 2KW/S, calculate the corresponding lithium-ion battery SOC, and obtain a set of SOC curves under different power change rates , Obtain the optimal fuel cell power change rate with the smallest fluctuation range of the lithium-ion battery SOC;
  • S03 Select a fixed fuel cell power change rate within the limit range of the fuel cell power change rate, and calculate the average power required by the entire vehicle within the time window.
  • the fuel cell power is greater than the average power of the entire vehicle, the fuel cell is set according to the power The rate of change reduces the power; when the power of the fuel cell is less than the average power of the entire vehicle, the fuel cell is increased in power according to the rate of power change;
  • step S05 when the obtained optimal fuel cell power change rate exceeds the fuel cell power change rate limit range, the obtained optimal time window is selected as the fixed time window, and the average power required by the entire vehicle within the time window is calculated, When the power of the fuel cell is greater than the average power of the vehicle, the fuel cell is reduced in power according to the power change rate; when the fuel cell power is less than the average power of the vehicle, the fuel cell is increased in power according to the power change rate;
  • Vehicle model 8 meters; driving area: Jiangsu Province: operating conditions: bus conditions.
  • the working condition data such as the required power, speed and mileage of the whole vehicle are shown in Figures 2, 3, and 4 below.
  • Step 1 Select a fixed time window of 10S.
  • the algorithm strategy is that when the fuel cell power is greater than the vehicle power, the fuel cell starts to reduce the power according to the power change rate; when the fuel cell power is less than the vehicle power, the fuel cell starts to increase according to the power change rate power;
  • Step 3 Due to the limitations of fuel cell technology and life, the current fuel cell power change rate in the domestic market cannot reach 1KW/S. The highest value in actual applications is 0.2KW/S, so the strategy should be changed to reduce the power change rate to adapt For the existing characteristics of fuel cells, changing strategies to reduce the limit of power change rate should be controlled within the range of less than or equal to 0.2. Select the fixed fuel cell power change rate 0.2KW/S and 0.1KW/S to calculate the average power required by the vehicle within the time window. When the fuel cell power is greater than the vehicle average power, the fuel cell starts to decrease according to the power change rate. Power: When the power of the fuel cell is less than the average power of the vehicle, the fuel cell starts to increase the power according to the rate of power change;
  • the corresponding lithium ion battery SOC under the time window a set of SOC curves under different windows is obtained.
  • the fuel cell power change rate is 0.2KW/S, it is shown in Figure 6, and when the fuel cell power change rate is 0.1KW/S, it is shown in Figure 7. Show. It can be seen from Figure 6 and Figure 7 that when the time window is 2 minutes, the SOC of the lithium ion battery has the smallest fluctuation range;
  • Step 5 According to the analysis of the actual vehicle operating conditions, the 2min time window has the advantage of a smaller SOC fluctuation range of the lithium ion battery.
  • Step 6 According to the calculated SOC fluctuation range of the lithium-ion battery and the allowable fluctuation range of the lithium-ion battery SOC, calculate the degree of the lithium-ion battery.
  • E 1 is the degree of low-capacity battery
  • ⁇ SOC 1 is the fluctuation range of low-capacity battery
  • E 2 is the degree of high-capacity battery
  • ⁇ SOC 2 is the fluctuation range of high-capacity battery.
  • the SOC fluctuation range is smaller. Choosing a suitable voltage range for lithium-ion operation can achieve the purpose of extending the life of the lithium-ion battery; if it is equipped with a lithium-ion battery with a smaller capacity, the SOC fluctuation range is larger Large, but it can save costs, rationally allocate resources, and maximize the application range of lithium-ion batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种优化燃料电池汽车功率分配方法,根据燃料整车功率、电池功率、以及锂离子电池SOC等值,制定合理的燃料电池功率跟随策略,同一时间窗口内根据整车需求,测试不同燃料电池的增长速率对锂离子电池SOC的影响;同一燃料电池的增长速率下根据整车需求,测试不同时间窗口范围对锂离子电池SOC的影响。找到合适的时间窗口与合适的燃料电池功率变化速率,使锂离子电池的SOC值保持在某一范围内波动。能够实现燃料电池与锂离子电池功率分配的良好运行方式,保证资源的合理利用,最大化延伸锂离子电池的应用范围。

Description

一种优化燃料电池汽车功率分配方法 技术领域
本发明属于燃料电池汽车管理技术领域,具体地涉及一种优化燃料电池汽车功率分配方法。
背景技术
随着环境与能源压力及国家对纯电汽车补贴力度的退坡,绝对零排放的燃料电池汽车越来越受到大家的青睐。但现燃料电池汽车实际上并不是严格意义上的氢燃料电池车,市场上的燃料电池车辆均需搭载锂离子电池作为辅助电源。故现市场上的燃料电池车辆只能算是一种双能源混动型车辆。因燃料电池输出功率变化缓慢,无法跟随整车功率需求达到瞬时变化,故其整车功率跟随能力较低。由于燃料电池***不能满足整车瞬间的大电流需求,此时需要锂离子电池作为整车所需其余能量E 整车-E 燃料电池的提供者;当车辆进行制动回馈时,燃料电池也无法快速的降低功率,也不能回收制动能量,此时的能量E 整车制动+E 燃料电池将会回馈给锂离子电池。
由于存在两个能量源,就需要考虑能源的功率分配问题,受燃料电池功率变化缓慢特性限制,在满足整车需求、保证燃料电池良好使用的前提下,寻找合适的燃料电池功率变化率,合适的时间窗口内的均值变化率,以达到最优适应各种工况条件下整车使用的目的。对于燃料电池车辆来说,若搭载较大电量锂离子电池,则对应的锂离子电池剩余电量(SOC)波动范围较小,容易选择最适合锂离子电池使用的SOC范围,能够达到延长锂离子电池寿命的目的,但不利于整车的轻量化及经济性;若搭载小电量的锂离子电池,则SOC波动范围相对增大,对锂离子电池的寿命会有一定的影响,但能够节约资源配置,将整车功率合理分配,最大化利用锂离子电池的应用范围,有利于整车价格的降低,保证资源合理利用。对于电池而言,不同度数的电池只有将电池
目前,燃料电池车辆搭载锂离子电池度数相对很大,有些已达到油电混动车辆搭载的锂离子电池度数的二倍,若没有纯锂电行驶工况需求,这些能量较大部分并未使用。因此,亟需一种功率分配策略来保证资源的合理利用。
发明内容
针对上述存在的技术问题,本发明的目的是提供一种优化燃料电池汽车功率分配方法,能够实现燃料电池与锂离子电池功率分配的良好运行方式,保证资源的合理利用。
本发明的技术方案是:
一种优化燃料电池汽车功率分配方法,包括以下步骤:
S01:选取固定时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
S02:选取不同燃料电池的功率变化率,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率;
S03:在燃料电池功率变化率限值范围内选取固定的燃料电池功率变化率,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
S04:选取不同的时间窗口,计算不同时间窗口下对应的锂离子电池SOC,得到一组不同窗口下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优时间窗口;
S05:根据采集的实车工况功率,得到最优的燃料电池功率变化率与时间窗口,计算锂离子电池SOC波动范围;
S06:根据计算得到的锂离子电池SOC波动范围与锂离子电池SOC允许波动范围,计算搭载锂离子电池度数。
优选的技术方案中,所述步骤S02中,选取的燃料电池功率变化率为0.05KW/S至2KW/S。
优选的技术方案中,所述步骤S04中,选取的时间窗口范围为1S至10min。
优选的技术方案中,所述步骤S05中,当得到的最优燃料电池功率变化率超出燃料电池功率变化率限值范围时,选取得到的最优时间窗口作为固定 时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
在燃料电池功率变化率限值范围内选取不同燃料电池的功率变化率,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率。
优选的技术方案中,所述步骤S06中,锂离子电池度数计算公式为:E 1*△SOC 1=E 2*△SOC 2,其中,E 1为搭载小电量电池度数,△SOC 1为小电量电池波动范围,E 2为搭载大电量电池度数,△SOC 2为大电量电池波动范围。
与现有技术相比,本发明的有益效果是:
本发明方法从两个角度出发,一从价格和资源配置考虑,在合适的功率控制策略下,燃料电池车辆在满足SOC波动范围内,尽可能搭载小电量锂离子电池,能够体现出较大的价格优势,良好的资源配置策略;二为从燃料电池车辆工况及锂离子电池寿命角度考虑,若存在纯锂电工况需求,则燃料电池车辆不得不搭载大电量锂离子电池。在非纯锂电行驶条件下,合理选择锂离子电池的度数,通过功率控制策略,使SOC波动能够控制在很小范围内,则能够选择最适合锂离子工作的SOC范围,有利于延长锂离子电池使用寿命。
本发明的功率分配策略,可以合理资源配置,最大化延伸锂离子电池的应用范围。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1是本发明优化燃料电池汽车功率分配方法的流程图。
图2是整车功率图;
图3是整车车速图;
图4是整车里程图;
图5是时间窗口为10S不同功率变化率对应的SOC曲线;
图6是功率变化率为0.2KW/S不同时间窗口对应的SOC曲线;
图7是功率变化率为0.1KW/S不同时间窗口对应的SOC曲线;
图8是时间窗口为2min不同功率变化对应的SOC曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明的优化燃料电池汽车功率分配方法,根据燃料整车功率、电池功率、以及锂离子电池SOC等值,制定合理的燃料电池功率跟随策略。同一时间窗口内根据整车需求,测试不同燃料电池的增长速率对锂离子电池SOC的影响;同一燃料电池的增长速率下根据整车需求,测试不同时间窗口范围对锂离子电池SOC的影响。找到合适的时间窗口与合适的燃料电池功率变化速率,使锂离子电池的SOC值保持在某一范围内波动。目的一:当配置大电量锂离子电池时,可以调整锂离子电池SOC使用区间,维持SOC在最优小范围内波动,延长锂离子使用寿命。目的二:以此为据可降低现市场上燃料电池车辆配置对大电量锂离子电池的需求,合适的燃料电池功率增长速率与合适的时间窗口能够实现小电量锂离子电池在燃料电池车辆上的应用,资源合理配置。
如图1所示,具体该方法包括以下步骤:
S01:选取固定时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
S02:选取不同燃料电池的功率变化率,选取的燃料电池功率变化率最好为0.05KW/S至2KW/S,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率;
S03:在燃料电池功率变化率限值范围内选取固定的燃料电池功率变化率,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
S04:选取不同的时间窗口,选取的时间窗口范围最好为1S至10min,计算不同时间窗口下对应的锂离子电池SOC,得到一组不同窗口下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优时间窗口;
S05:根据采集的实车工况功率,得到最优的燃料电池功率变化率与时间窗口,计算锂离子电池SOC波动范围;
S06:根据计算得到的锂离子电池SOC波动范围与锂离子电池SOC允许波动范围,计算搭载锂离子电池度数,锂离子电池度数的计算公式为:E 1*△SOC 1=E 2*△SOC 2,其中,E 1为搭载小电量电池度数,△SOC 1为小电量电池波动范围,E 2为搭载大电量电池度数,△SOC 2为大电量电池波动范围。
步骤S05中,当得到的最优燃料电池功率变化率超出燃料电池功率变化率限值范围时,选取得到的最优时间窗口作为固定时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
在燃料电池功率变化率限值范围内选取不同燃料电池的功率变化率,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率。
下面以具体的实施例进行说明:
以实车工况数据,对功率进行控制调整,测试算法分析结果。车辆车型:8米;行驶区域:江苏省:运行工况:公交工况。整车需求功率、车速、里程等工况数据如下图2、3、4所示。
步骤一:选取固定时间窗口10S,算法策略为当燃料电池功率大于整车功率时,燃料电池开始按功率变化率降功率;当燃料电池功率小于整车功率时,燃料电池开始按功率变化率升功率;
步骤二:选取不同燃料电池的功率变化速率(设燃料电池功率变化率为V W),分别取V W1=0.05、V W2=0.1、V W3=0.2、V W4=0.5、V W5=0.8、V W6=1、V W7=1.5、V W8=2,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,如图5所示。由图5可知,当燃料电池功率变化率为1时,锂离子电池SOC波动范围最小;
步骤三:受燃料电池技术及寿命的限制,目前国内市场的燃料电池功率 变化率还无法达到1KW/S,实际应用现最高值为0.2KW/S,故应更改策略,降低功率变化率以适应燃料电池现有特性,改变策略降低功率变化率的限值,应将此限值控制在小于等于0.2范围内。选取固定的燃料电池功率变化率0.2KW/S和0.1KW/S,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,燃料电池开始按功率变化率降功率;当燃料电池功率小于整车平均功率时,燃料电池开始按功率变化率升功率;
步骤四:选取不同的时间窗口T 1=30S、T 2=40S、T 3=50S、T 4=1min、T 5=2min、T 6=3min、T 7=5min、T 8=10min,计算不同时间窗口下对应的锂离子电池SOC,得到一组不同窗口下的SOC曲线,燃料电池功率变化率0.2KW/S时如图6所示,燃料电池功率变化率0.1KW/S时如图7所示。由图6、图7可知,当时间窗口为2min时,锂离子电池SOC具有最小波动范围;
步骤五:根据此实车工况分析,2min时间窗口具有锂离子电池SOC波动范围较小的优势,当时间窗口设置为2min,选取不同燃料电池的功率变化速率,分别取V W1=0.1、V W2=0.12、V W3=0.14、V W4=0.16、V W5=0.18、V W6=0.2,得到一组不同功率变化率下的SOC曲线,如图8所示。由图8可知,时间窗口设置2min时,燃料电池功率变化率0.1-0.2间,锂离子电池SOC波动范围均很小,其值为0.2时最优。
步骤六:根据计算得到的锂离子电池SOC波动范围与锂离子电池SOC允许波动范围,计算搭载锂离子电池度数,锂离子电池度数的计算公式为:E 1*△SOC 1=E 2*△SOC 2,其中,E 1为搭载小电量电池度数,△SOC 1为小电量电池波动范围,E 2为搭载大电量电池度数,△SOC 2为大电量电池波动范围。
若搭载较大电量锂离子电池,则SOC波动范围较小,选择合适锂离子工作的电压范围,能够达到延长锂离子电池寿命的目的;若搭载较小电量的锂离子电池,则SOC波动范围较大,但能够节约成本,合理资源配置,最大化延伸锂离子电池的应用范围。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保 护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (5)

  1. 一种优化燃料电池汽车功率分配方法,其特征在于,包括以下步骤:
    S01:选取固定时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
    S02:选取不同燃料电池的功率变化率,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率;
    S03:在燃料电池功率变化率限值范围内选取固定的燃料电池功率变化率,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
    S04:选取不同的时间窗口,计算不同时间窗口下对应的锂离子电池SOC,得到一组不同窗口下的SOC曲线,得到锂离子电池SOC具有最小波动范围的最优时间窗口;
    S05:根据采集的实车工况功率,得到最优的燃料电池功率变化率与时间窗口,计算锂离子电池SOC波动范围;
    S06:根据计算得到的锂离子电池SOC波动范围与锂离子电池SOC允许波动范围,计算搭载锂离子电池度数。
  2. 根据权利要求1所述的优化燃料电池汽车功率分配方法,其特征在于,所述步骤S02中,选取的燃料电池功率变化率为0.05KW/S至2KW/S。
  3. 根据权利要求1所述的优化燃料电池汽车功率分配方法,其特征在于,所述步骤S04中,选取的时间窗口范围为1S至10min。
  4. 根据权利要求1所述的优化燃料电池汽车功率分配方法,其特征在于,所述步骤S05中,当得到的最优燃料电池功率变化率超出燃料电池功率变化率限值范围时,选取得到的最优时间窗口作为固定时间窗口,计算时间窗口范围内整车所需的平均功率,当燃料电池功率大于整车平均功率时,将燃料电池按功率变化率降低功率;当燃料电池功率小于整车平均功率时,将燃料电池按功率变化率增加功率;
    在燃料电池功率变化率限值范围内选取不同燃料电池的功率变化率,计算相对应的锂离子电池SOC,得到一组不同功率变化率下的SOC曲线,得 到锂离子电池SOC具有最小波动范围的最优燃料电池功率变化率。
  5. 根据权利要求1所述的优化燃料电池汽车功率分配方法,其特征在于,所述步骤S06中,锂离子电池度数计算公式为:E 1*△SOC 1=E 2*△SOC 2,其中,E 1为搭载小电量电池度数,△SOC 1为小电量电池波动范围,E 2为搭载大电量电池度数,△SOC 2为大电量电池波动范围。
PCT/CN2020/120516 2019-09-03 2020-10-13 一种优化燃料电池汽车功率分配方法 WO2021043323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,308 US11677087B2 (en) 2019-09-03 2020-10-13 Method for optimizing power distribution of fuel cell vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910825557.1A CN110588443B (zh) 2019-09-03 2019-09-03 一种优化燃料电池汽车功率分配方法
CN201910825557.1 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021043323A1 true WO2021043323A1 (zh) 2021-03-11

Family

ID=68857248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120516 WO2021043323A1 (zh) 2019-09-03 2020-10-13 一种优化燃料电池汽车功率分配方法

Country Status (3)

Country Link
US (1) US11677087B2 (zh)
CN (1) CN110588443B (zh)
WO (1) WO2021043323A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183831A (zh) * 2021-04-26 2021-07-30 黄冈格罗夫氢能汽车有限公司 一种三能量源新能源汽车的能量管理方法和电子设备
CN113721154A (zh) * 2021-08-31 2021-11-30 潍柴动力股份有限公司 一种燃料电池工况点选取方法及装置
CN117799502A (zh) * 2024-03-01 2024-04-02 西北工业大学宁波研究院 一种uuv的混合动力***的能源管理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588443B (zh) 2019-09-03 2022-07-12 金龙联合汽车工业(苏州)有限公司 一种优化燃料电池汽车功率分配方法
CN111755719B (zh) * 2020-05-15 2021-10-12 广东鸿力氢动科技有限公司 一种燃料电池***集群的功率分配方法及装置
CN112977180B (zh) * 2021-04-13 2022-03-29 苏州市华昌能源科技有限公司 一种基于平均值的车载燃料电池能量管理方法
CN113525179B (zh) * 2021-08-27 2024-01-12 潍柴动力股份有限公司 一种燃料电池的动态响应控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207156A1 (en) * 2000-10-13 2003-11-06 Ovshinsky Stanford R. Very low emission hybrid electric vehicle incorporating an integrated propulsion system including a fuel cell and a high power nickel metal hydride battery pack
US20070284166A1 (en) * 2006-06-09 2007-12-13 Oliver Maier Advanced controls concept for hybrid fuel cell systems
CN202498998U (zh) * 2012-03-05 2012-10-24 浙江大学城市学院 燃料电池混合动力能量管理控制***
CN105667330A (zh) * 2016-01-11 2016-06-15 潍柴动力股份有限公司 一种dcdc的控制方法及***
CN105857219A (zh) * 2015-02-06 2016-08-17 株式会社万都 用于功率控制的装置和方法
CN108944900A (zh) * 2018-08-28 2018-12-07 安徽江淮汽车集团股份有限公司 燃料电池汽车能量管理控制方法
CN109693578A (zh) * 2019-02-01 2019-04-30 中国第一汽车股份有限公司 一种燃料电池车整车功率分配控制方法和***
CN110182071A (zh) * 2019-05-10 2019-08-30 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法
CN110588443A (zh) * 2019-09-03 2019-12-20 金龙联合汽车工业(苏州)有限公司 一种优化燃料电池汽车功率分配方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100511355B1 (ko) * 2000-10-03 2005-08-31 마츠시타 덴끼 산교 가부시키가이샤 전력생성 제어시스템, 전력생성 제어방법, 컴퓨터 프로그램 제품 및 매체
KR101023584B1 (ko) * 2004-12-29 2011-03-21 유티씨 파워 코포레이션 수명 연장을 위한 작동 온도를 갖는 연료 전지 조립체
EP2590256A1 (fr) * 2011-11-02 2013-05-08 Belenos Clean Power Holding AG Procédé de gestion du fonctionnement d'un système hybride
US8952649B2 (en) * 2012-06-19 2015-02-10 GM Global Technology Operations LLC Efficiency based stand-by mode for fuel cell propulsion systems
CN108099635B (zh) * 2017-11-13 2019-09-24 山东斯博科特电气技术有限公司 燃料电池混合动力有轨电车多能量源耦合惩罚控制***
CN108394401B (zh) * 2018-01-30 2020-03-17 清华大学 汽车动力装置的控制方法、***、装置及存储介质
CN110271454A (zh) * 2019-06-27 2019-09-24 江铃汽车股份有限公司 一种燃料电池电动汽车功率优化方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030207156A1 (en) * 2000-10-13 2003-11-06 Ovshinsky Stanford R. Very low emission hybrid electric vehicle incorporating an integrated propulsion system including a fuel cell and a high power nickel metal hydride battery pack
US20070284166A1 (en) * 2006-06-09 2007-12-13 Oliver Maier Advanced controls concept for hybrid fuel cell systems
CN202498998U (zh) * 2012-03-05 2012-10-24 浙江大学城市学院 燃料电池混合动力能量管理控制***
CN105857219A (zh) * 2015-02-06 2016-08-17 株式会社万都 用于功率控制的装置和方法
CN105667330A (zh) * 2016-01-11 2016-06-15 潍柴动力股份有限公司 一种dcdc的控制方法及***
CN108944900A (zh) * 2018-08-28 2018-12-07 安徽江淮汽车集团股份有限公司 燃料电池汽车能量管理控制方法
CN109693578A (zh) * 2019-02-01 2019-04-30 中国第一汽车股份有限公司 一种燃料电池车整车功率分配控制方法和***
CN110182071A (zh) * 2019-05-10 2019-08-30 中国第一汽车股份有限公司 一种功率跟随型燃料电池整车能量管理控制方法
CN110588443A (zh) * 2019-09-03 2019-12-20 金龙联合汽车工业(苏州)有限公司 一种优化燃料电池汽车功率分配方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113183831A (zh) * 2021-04-26 2021-07-30 黄冈格罗夫氢能汽车有限公司 一种三能量源新能源汽车的能量管理方法和电子设备
CN113183831B (zh) * 2021-04-26 2023-07-18 黄冈格罗夫氢能汽车有限公司 一种三能量源新能源汽车的能量管理方法和电子设备
CN113721154A (zh) * 2021-08-31 2021-11-30 潍柴动力股份有限公司 一种燃料电池工况点选取方法及装置
CN117799502A (zh) * 2024-03-01 2024-04-02 西北工业大学宁波研究院 一种uuv的混合动力***的能源管理方法
CN117799502B (zh) * 2024-03-01 2024-05-14 西北工业大学宁波研究院 一种uuv的混合动力***的能源管理方法

Also Published As

Publication number Publication date
US20220359896A1 (en) 2022-11-10
CN110588443A (zh) 2019-12-20
CN110588443B (zh) 2022-07-12
US11677087B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2021043323A1 (zh) 一种优化燃料电池汽车功率分配方法
Hong et al. An energy management strategy based on dynamic power factor for fuel cell/battery hybrid locomotive
CN109693578B (zh) 一种燃料电池车整车功率分配控制方法和***
CN113022385B (zh) 燃料电池锂电池混合动力***参数匹配方法
CN110040038A (zh) 一种氢-电混合燃料电池客车能量管理控制方法及***
CN108099635B (zh) 燃料电池混合动力有轨电车多能量源耦合惩罚控制***
Wang et al. Application of energy management strategy based on state machine in fuel cell hybrid power system
CN112510798B (zh) 一种梯次电池混合储能***的功率分配方法
CN109849694B (zh) 一种基于在线凸规划的混合储能式有轨电车能量管理方法
CN113682203B (zh) 基于燃料电池有轨电车全生命周期状态的能量调控方法
Ren et al. An energy conservation and environmental improvement solution-ultra-capacitor/battery hybrid power source for vehicular applications
CN108583311B (zh) 计及不确定性的混合动力有轨电车次优能量管理***
CN114030392B (zh) 燃料电池-锂电池混源供电***效率优化能量管理策略
Li et al. Research on energy management strategy of hydrogen fuel cell vehicles
CN102555830A (zh) 基于双储能单元的汽车供电***和汽车供电控制方法
CN117498472A (zh) 一种低压配网不对称故障时光储***协调控制方法
Tang et al. Degradation adaptive energy management strategy for FCHEV based on the Rule-DDPG method: tailored to the current SOH of the powertrain
CN116544982A (zh) 一种光伏消纳与峰谷套利的光储***及其控制方法
CN116187702A (zh) 一种源网荷储协同互动优化调度***
CN116093990A (zh) 基于氢能多能联供的耦合***及其控制方法、装置及介质
Meng et al. A fuel cell vehicle power distribution strategy based on PEMFC online identification and ess equivalent consumption calculation
CN110091862B (zh) 协调经济性与耐久性的燃料电池混合动力能量管理方法
Marzougui et al. Improvement of energy management algorithm for fuel cell electrical vehicle with fuzzy logic
CN112737131A (zh) 一种飞轮储能和锂电池复合的储能***及其工作方法
Zhang et al. Hierarchical control strategy for hybrid heavy-duty trucks considering equivalent hydrogen consumption and fuel cell life

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860139

Country of ref document: EP

Kind code of ref document: A1