WO2021043318A1 - 一种聚合物光纤及其制备方法和发光织物 - Google Patents

一种聚合物光纤及其制备方法和发光织物 Download PDF

Info

Publication number
WO2021043318A1
WO2021043318A1 PCT/CN2020/115567 CN2020115567W WO2021043318A1 WO 2021043318 A1 WO2021043318 A1 WO 2021043318A1 CN 2020115567 W CN2020115567 W CN 2020115567W WO 2021043318 A1 WO2021043318 A1 WO 2021043318A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
polymer optical
temperature
refractive index
polyethylene terephthalate
Prior art date
Application number
PCT/CN2020/115567
Other languages
English (en)
French (fr)
Inventor
刘宇清
杨欣
李冉冉
潘志娟
王国和
张蓉
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021043318A1 publication Critical patent/WO2021043318A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the invention belongs to the cross field of optical information materials and textile materials, and particularly relates to optical fiber materials related to decorative fabrics, in particular to a polymer optical fiber, a preparation method thereof, and a luminous fabric.
  • optical fibers optical fibers
  • cotton yarns for example, by interweaving optical fibers and cotton yarns, and at the same time, bundling the fibers in the fabric, and coupling the bundled fibers with a certain light source.
  • the current optical fiber is basically a fiber made of glass or plastic polymer, that is, polymethyl methacrylate (PMMA) is used as the core layer, and fluororesin is used as the skin layer to wrap the core layer, such as China Invention CN104164734A (which discloses a polymethyl methacrylate optical fiber yarn, including an inner core and an outer coating layer, the inner core is polymethyl methacrylate, and the outer coating layer is fluororesin), another example is the Chinese invention patent CN103380240A (It discloses a illuminating fabric, a illuminating skin device, a complete set of equipment and its implementation method, and discloses that the optical fiber used is: the fiber core is polymethyl methacrylate, and the fiber cladding is fluorinated high Polymer), the method for preparing the above-mentioned optical fiber is mainly the preform-stretching method, that is, the material is made into a certain appearance knot by a certain method,
  • the technical problem to be solved by the present invention is to overcome the deficiencies in the prior art, and provide a method for preparing a polymer optical fiber that has low light loss, excellent toughness, and can be applied to decorative fabrics.
  • the invention also provides a polymer optical fiber prepared by the above method.
  • the invention also provides a luminous fabric including the polymer optical fiber.
  • the polymer optical fiber includes a core layer and a sheath layer arranged on the outer periphery of the core layer.
  • the material of the core layer includes polycarbonate, and the material of the sheath layer includes modified poly(p-phenylene).
  • the total light transmittance of the modified polyethylene terephthalate is 88%-90%, and the refractive index is 1.45-1.50, the total light of the transparent nylon
  • the transmittance is 90%-92%
  • the refractive index is 1.47-1.52
  • the refractive index of the polycarbonate is 1.55-1.59
  • the refractive index of the polycarbonate is the same as that of the modified polyethylene terephthalate.
  • the difference between the refractive index of the ester accounts for 5%-8% of the refractive index of the polycarbonate
  • the difference between the refractive index of the polycarbonate and the refractive index of the transparent nylon accounts for the percentage of the refractive index of the polycarbonate.
  • the percentage of the refractive index of carbonate is 4%-6%;
  • the method for preparing the polymer optical fiber includes the following steps:
  • step (1) Put the material of the core layer and the material of the skin layer processed in step (1) into the two screws of a twin-screw melt spinning machine and extrude under vacuum conditions through a spinneret to make a crude product ;
  • step (2) when the material of the skin layer is modified polyethylene terephthalate, the temperature of the rear area of the screw where the material of the skin layer is set is 275-285°C, the temperature of the front zone is 280-290°C, and the temperature of the box body is 280-290°C; when the material of the skin layer is transparent nylon, set the temperature of the rear zone of the screw where the material of the skin layer is 220- 225°C, the front zone temperature is 225-230°C, and the box temperature is 225-230°C.
  • step (2) the temperature in the rear zone of the screw where the material of the core layer is located is 275-280°C, the temperature in the front zone is 280-285°C, and the box temperature is 285-290°C.
  • step (2) the temperature of the spinneret is set to be 280-290°C.
  • step (2) the two screws of the twin-screw melt spinning machine are respectively provided with vacuum pumps matched with them, and the vacuum pumps are used to extract air and radiate from the raw material slices due to high temperature.
  • the generated water vapor reduces the bubbles in the generated material, which can improve the light transmission efficiency.
  • the temperature of the water cooling is 50-60°C.
  • step (3) the draft ratio of the draft roller after drafting is 1:1.5-4.
  • the modified polyethylene terephthalate is prepared by the following method: a copolymer of polyethylene terephthalate, styrene and acrylate, and cycloolefin polymer It is made by blending with polystyrene and melt-extrusion.
  • the feed mass ratio of the polyethylene terephthalate, the copolymer of styrene and acrylate, the cycloolefin polymer and the polystyrene is 1:0.018-0.048:0.018-0.036:0.027-0.048.
  • the melt extrusion in the preparation process of the modified polyethylene terephthalate, is carried out by using a screw extruder, and the temperature of the melt extrusion is: a zone 275 ⁇ 280°C, the second zone is 280-285°C, the third zone is 285-290°C, the box temperature is 285-290°C, and the die temperature is 285-290°C.
  • the modified polyethylene terephthalate has a melt index of 44-59 g/10min measured under the conditions of 280° C. and a load of 37.3 N in accordance with the ISO 1133-2005 standard.
  • the transparent nylon has a melt index of 20-26 g/10min, measured under the conditions of 230° C. and a load of 37.3 N in accordance with the ISO 1133-2005 standard.
  • the polycarbonate has a melt index of 19-23 g/10min measured under the conditions of 300° C. and a load of 37.3 N in accordance with the ISO 1133-2005 standard.
  • the difference between the refractive index of the polycarbonate and the refractive index of the modified polyethylene terephthalate accounts for 5.5 percent of the refractive index of the polycarbonate. %-7.6%, the difference between the refractive index of the polycarbonate and the refractive index of the transparent nylon accounts for 4.5%-5.5% of the refractive index of the polycarbonate.
  • total light refers to visible light (near infrared to near ultraviolet)
  • total light transmittance refers to the transmittance of all light
  • the present invention has the following advantages compared with the prior art:
  • the polymer optical fiber prepared by the present invention uses a specific material as the skin material, and controls the refractive index relationship between the skin material and the core material. After being made, it not only has excellent toughness and low optical loss, but also is based on the material.
  • the particularity enables it to be prepared by the melt spinning method, which overcomes the disadvantage of low efficiency in the preparation of the preform-stretching method in the prior art, and at the same time has a lower price, making the polymer optical fiber prepared by the method of the present invention It is especially suitable for decorative fabrics such as luminous fabrics with shorter light transmission.
  • FIG. 1 is a schematic diagram of the structure of the polymer optical fiber preparation process according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional view of one structure of a polymer optical fiber according to an embodiment of the present invention.
  • melt index of modified polyethylene terephthalate is measured in accordance with ISO 1133-2005 at 280°C and a load of 37.3N; the melt index of transparent nylon is measured in accordance with ISO 1133-2005 at 230°C Measured at a load of 37.3N; the melt index of polycarbonate is measured at 300°C and a load of 37.3N in accordance with the ISO 1133-2005 standard.
  • the structural system used in the preparation of each polymer optical fiber in the following embodiments includes two hoppers (11), two metering pumps (12), and two screws (13 ) (That is, the two screws of the twin-screw extruder), and two vacuum pumps (14) that are matched with the two screws to vacuum Water vapor to reduce bubbles in the material and improve light transmission efficiency), as well as the spinning die (15), the water cooling pool (16), the drawing roller (17), and the winding which are respectively connected with the two screw outlets Device (18); before the material enters the spinning die (15), the two sets of devices are connected to the hopper (11) and the metering pump (12), and then connected to the screw (13), each screw (13) A vacuum pump (14) is installed; after the raw material is sliced, it is heated by the screw (13), enters the spinning die (15), and is extruded.
  • the extruded crude fiber is water-cooled by the water-cooling pool (16), and then passed through multiple distributions.
  • the drawing rollers (17) with different speeds draw the optical fiber thin and increase the orientation degree of macromolecules in the fiber, and finally it is collected by a winding device (18).
  • This example provides a polymer optical fiber. As shown in Figure 2, it includes a core layer (32) and a skin layer (31) covering the outer surface of the core layer (32).
  • the material of the core layer (32) is polycarbonate ( PC, the refractive index is 1.59, the melt index is 22g/10min), the material of the skin layer (31) is modified polyethylene terephthalate (modified PET, the total light transmittance is 90%, and the refractive index is 1.49 , The melt index is 44g/10min), and its cross-section is shown in Figure 3.
  • the above-mentioned modified polyethylene terephthalate is prepared by the following method: it is composed of the following parts by weight of raw materials: 100 parts of polyethylene terephthalate, a copolymer of styrene and acrylate (NAS) 2 parts, 3 parts of cyclic olefin polymer (COP), 3 parts of polystyrene; the preparation method is:
  • the preparation method of polymer optical fiber includes the following steps:
  • modified PET components are set to the temperature of the rear zone of the screw at 280°C, the temperature of the front zone at 285°C, and the box temperature. 285°C, PC component setting screw back zone temperature 280°C, front zone temperature 285°C, box temperature 285°C, spinneret temperature 285°C;
  • the cross-section of the optical fiber is connected to the LED light source, the skin layer (31) can emit side light, the thickness of the core layer (32) is 600 ⁇ m, and the thickness of the skin layer (31) is 60 ⁇ m.
  • This fiber is knitted or woven with common textile fibers. A luminous fabric can be obtained.
  • This example provides a polymer optical fiber, including a core layer (34), a first polymer material layer, a second polymer material layer, a first polymer material layer, a second polymer material layer, and a skin layer (33).
  • a polymer material layer and skin layer (33) are respectively modified polyethylene terephthalate (modified PET, total light transmittance is 90%, refractive index is 1.50, and melt index is 59g/10min)
  • the material of the second polymer material layer and the core layer (34) are polycarbonate (PC, refractive index of 1.59, melt index of 23g/10min), and the cross section is shown in FIG. 4.
  • the above-mentioned modified polyethylene terephthalate is prepared by the following method: it is composed of the following parts by weight of raw materials: 100 parts of polyethylene terephthalate, a copolymer of styrene and acrylate (NAS) 2 parts, 2 parts of cyclic olefin polymer (COP), 3 parts of polystyrene; the preparation method is:
  • the preparation method of polymer optical fiber includes the following steps:
  • PET components are set to the temperature of the rear zone of the screw of 283°C, the temperature of the front zone of 288°C, and the temperature of the box body of 288°C. , PC component setting screw rear zone temperature 280°C, front zone temperature 285°C, box temperature 290°C, spinneret temperature 290°C;
  • the thickness of the skin layer (33) is 650nm
  • the thickness of the first polymer material layer and the second polymer material layer are 110nm respectively
  • the diameter of the core layer (34) is 600nm.
  • the cross-section of the optical fiber is connected to the LED light source, and the skin layer can emit side light. And the luminous effect is better than that of the fiber described in Example 2. By knitting or weaving this fiber with commonly used textile fibers, a fabric with better luminous effect can be obtained.
  • This example provides a polymer optical fiber, which includes a core layer (36) and a skin layer (35) covering the outer surface of the core layer (36).
  • the material of the core layer (36) is polycarbonate (PC, with a refractive index of 1.59).
  • the melt index is 22g/10min)
  • the material of the skin layer (35) is modified polyethylene terephthalate (modified PET, the total light transmittance is 89%, the refractive index is 1.47, the melt index is 49g/ 10min)
  • the cross section is shown in Figure 5.
  • the above-mentioned modified polyethylene terephthalate is prepared by the following method: it is composed of the following parts by weight of raw materials: 100 parts of polyethylene terephthalate, a copolymer of styrene and acrylate (NAS) 4 parts, 3 parts of cyclic olefin polymer (COP), 3 parts of polystyrene; the preparation method is:
  • the preparation method of polymer optical fiber includes the following steps:
  • PET components are set to the temperature of the rear zone of the screw at 275°C, the temperature of the front zone at 280°C, and the box temperature at 285°C. , PC component setting screw rear zone temperature 275°C, front zone temperature 280°C, box temperature 285°C, spinneret temperature 285°C;
  • the skin layer (35) is triangular, the core layer (36) is round, the thickness of the core layer (36) is 670 ⁇ m, and the minimum thickness of the skin layer (35) is 80 ⁇ m.
  • the cross-section of the fiber is connected to the LED light source, and the skin layer can emit side light. Fibers and commonly used textile fibers can be knitted or woven to obtain luminous fabrics; and because the cross-section of the skin of this type of fiber is triangular, natural triangular prisms are formed at the three corners of the fiber, and the light is dispersed here. Textiles made of this kind of fiber can form a natural iridescent color in the sun.
  • This example provides a polymer optical fiber, including a core layer (38), a skin layer (37) covering the outer surface of the core layer (38).
  • the material of the core layer (38) is polycarbonate (PC, with a refractive index of 1.57). , The melt index is 19g/10min), the material of the skin layer (37) is modified polyethylene terephthalate (modified PET, the total light transmittance is 90%, the refractive index is 1.46, and the melt index is 53g/ 10min), the cross section is shown in Figure 6.
  • the above-mentioned modified polyethylene terephthalate is prepared by the following method: it is composed of the following parts by weight of raw materials: 100 parts of polyethylene terephthalate, a copolymer of styrene and acrylate (NAS) 4 parts, 3 parts of cyclic olefin polymer (COP), 4 parts of polystyrene; the preparation method is:
  • the preparation method of polymer optical fiber includes the following steps:
  • PET components are set to the temperature of the rear zone of the screw at 280°C, the temperature of the front zone at 285°C, and the box temperature at 285°C. , PC component setting screw rear zone temperature 280°C, front zone temperature 285°C, box temperature 288°C, spinneret temperature 290°C;
  • the core layer is a five-pointed star and the skin layer is a circular spinning die for spinning forming.
  • the skin layer (37) is circular, the core layer (38) is a five-pointed star, the maximum diameter of the core layer (38) is 630 ⁇ m, and the minimum thickness of the skin layer (37) is 100 ⁇ m.
  • the cross-section of the fiber is connected to the LED light source, and the skin layer can emit side light. By knitting or weaving this fiber with common textile fibers, a luminous fabric can be obtained, and the light is concentrated on the five top corners of the five-pointed star of the core layer, and 5 brighter ones can be seen from the side of the light. Light.
  • This example provides a polymer optical fiber, including a plurality of core layers (40) arranged side by side, and a skin layer (39) covering the outer surface of the plurality of side-by-side core layers (40).
  • the material of the core layer (40) is Polycarbonate (PC, refractive index of 1.55, melt index of 23g/10min), the material of the skin layer (39) is transparent nylon (total light transmittance of 92%, refractive index of 1.47, melt index of 22g/10min) , Its cross-section is shown in Figure 7.
  • the preparation method of polymer optical fiber includes the following steps:
  • the transparent nylon component is set to the temperature of the rear zone of the screw at 225°C, the temperature of the front zone at 230°C, and the box temperature at 230°C. , PC component setting screw rear zone temperature 275°C, front zone temperature 280°C, box temperature 285°C, spinneret temperature 285°C;
  • each core layer (40) is 50 ⁇ m
  • the outer diameter of the skin layer (39) is 800 ⁇ m
  • the cross section of the fiber is connected to the LED light source, and the skin layer can emit side light
  • the light distribution is relatively uniform, this fiber and the commonly used textile fiber through knitting or weaving process, can obtain the luminous fabric.
  • This example provides a polymer optical fiber. As shown in Figure 2, it includes a core layer (32) and a skin layer (31) covering the outer surface of the core layer (32).
  • the material of the core layer (32) is polycarbonate ( PC, the refractive index is 1.55, the melt index is 19g/10min), the material of the skin layer (31) is transparent nylon (the transmittance is 90%, the refractive index is 1.47, the melt index is 22g/10min), the cross section is shown in the figure 3 shown.
  • the preparation method of polymer optical fiber includes the following steps:
  • the transparent nylon components are set to the temperature of the rear zone of the screw at 225°C, the temperature of the front zone at 230°C, and the box temperature at 230 °C, PC component setting screw rear zone temperature 275°C, front zone temperature 280°C, box temperature 285°C, spinneret temperature 285°C;
  • the cross-section of the optical fiber is connected to the LED light source, the skin layer (31) can emit side light, the diameter of the core layer (32) is 720 ⁇ m, and the thickness of the skin layer (31) is 70 ⁇ m.
  • This fiber is knitted or woven with common textile fibers. A luminous fabric can be obtained.
  • Example 2 It is basically the same as Example 2, except that the material of the skin layer is a commercially available conventional PET material with a refractive index of 1.56 and a total light transmittance of 87%.
  • PC polycarbonate
  • fluororesin optical fiber Commercially available polycarbonate (PC)/fluororesin optical fiber.
  • Cationic dyeing rate FZ/T 50020-2013.
  • the polymer optical fiber of the present invention uses a specific material as the sheath material, and controls the refractive index relationship between the sheath material and the core material, and can not only have excellent toughness and low optical loss after being manufactured. , And the price is lower, making it particularly suitable for decorative fabrics such as short-distance light-transmitting light-emitting fabrics; at the same time, the polymer optical fiber of the present invention can be made by melt extrusion and spinning methods, avoiding the prior art Only the defect of low production efficiency of the preform-stretching method can be adopted, and continuous production can be realized, which is conducive to the expansion of scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)

Abstract

一种聚合物光纤及其制备方法和发光织物,聚合物光纤包括芯层(32)、设置于芯层(32)外周的皮层(31),芯层(32)的材料包括聚碳酸酯,皮层(31)的材料包括改性聚对苯二甲酸乙二酯和/或透明尼龙;制备方法包括如下步骤:(1)将芯层(32)的材料与皮层(31)的材料分别进行干燥处理;(2)将步骤(1)处理后的芯层(32)的材料与皮层(31)的材料分别加入双螺杆熔融纺丝机的两个螺杆(13)中经喷丝板在真空条件下挤出,制成粗品;(3)将所得的粗品经水冷,再经不同速度的牵伸辊(17)牵伸,制成;发光织物包括上述的聚合物光纤;该聚合物光纤能够兼具极佳的韧性、较低的光损耗,而且价格更低廉,制备方法更简单和快捷,使其尤为适用于装饰用面料中。

Description

一种聚合物光纤及其制备方法和发光织物 技术领域
本发明属于光信息材料与纺织材料交叉领域,尤其涉及装饰用面料所涉及的光纤材料,具体涉及一种聚合物光纤及其制备方法和发光织物。
背景技术
目前纺织领域已有人采用光纤(光导纤维)作为一种原料进行制备发光织物,例如通过将光纤与棉纱相交织,同时对织物中的光纤进行集束处理,并将集束后的光纤与一定光源进行耦连,形成光纤发光织物,但是目前的光纤基本是由玻璃或者塑料聚合物制成的纤维,即以聚甲基丙烯酸甲酯(PMMA)为芯层,氟树脂作为包裹芯层的皮层,例如中国发明CN104164734A(其公开了一种聚甲基丙烯酸甲酯光纤纱线,包括内芯和外裹层,内芯为聚甲基丙烯酸甲酯,外裹层为氟树脂),又如中国发明专利CN103380240A(其公开了一种光照织物、一种光照皮肤设备、一种成套设备及其实施方法,公开了其采用的光纤为:光纤纤芯为聚甲基丙烯酸甲酯,光纤包层为氟化高聚物),上述光纤的制备方法主要是预制件-拉伸法,即先将材料通过一定方法制成具有一定外观结,然后将预制件置于拉伸装置中加热并拉伸成上千米的光导纤维;然而此类光纤传输效率高,可用作光传导工具,但是性脆、弹性和柔软性等性能较差,在纺织领域的编织和应用过程中易断裂、舒适性不够,同时氟树脂成本高昂,因此较难以在装饰用面料中得到大规模的应用。
发明内容
本发明所要解决的技术问题是克服现有技术中的不足,提供一种兼具较低的光损、极佳的韧性并能够适用于装饰用面料的聚合物光纤的制备方法。
本发明同时还提供了一种上述方法制备的聚合物光纤。
本发明同时还提供了一种包括上述聚合物光纤的发光织物。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种聚合物光纤的制备方法,所述聚合物光纤包括芯层、设置于所述芯层外周的皮层,所述芯层的材料包括聚碳酸酯,所述皮层的材料包括改性聚对苯二甲酸乙二酯和/或透明尼龙,所述改性聚对苯二甲酸乙二酯的全光线透过率为88%-90%、折射率为1.45-1.50,所述透明尼龙的全光线透过率为90%-92%、折射率为1.47-1.52,所述聚碳酸酯的折射率为1.55-1.59,所述聚碳酸酯的折射率与所述改性聚对苯二甲酸乙二酯的折射率的差值占所述聚碳酸酯的折射率的百分含量为5%-8%,所述聚碳酸酯的折射率与所述透明尼龙的折射率的差值占所述聚碳酸酯的折射率的百分含量为4%-6%;
所述聚合物光纤的制备方法包括如下步骤:
(1)将所述芯层的材料与所述皮层的材料分别进行干燥处理;
(2)将步骤(1)处理后的所述芯层的材料与所述皮层的材料分别加入双螺杆熔融纺丝机的两个螺杆中经喷丝板在真空条件下挤出,制成粗品;
(3)将所得的所述粗品经水冷,再经不同速度的牵伸辊牵伸,制成所述聚合物光纤。
根据本发明的一些优选且具体的方面,步骤(2)中,当所述皮层的材料为改性聚对苯二甲酸乙二酯时,设定所述皮层的材料所在的螺杆后区温度为275-285℃,前区温度为280-290℃,箱体温度为280-290℃;当所述皮层的材料为透明尼龙时,设定所述皮层的材料所在的螺杆后区温度为220-225℃,前区温度为225-230℃,箱体温度为225-230℃。
根据本发明的一些优选且具体的方面,步骤(2)中,设定所述芯层的材料所在的螺杆后区温度为275-280℃,前区温度为280-285℃,箱体温度为285-290℃。
根据本发明的一些优选且具体的方面,步骤(2)中,设定所述喷丝板的温度为280-290℃。
根据本发明的一些优选方面,步骤(2)中,所述双螺杆熔融纺丝机的两个螺杆分别设置与其自身配合的真空泵,所述真空泵用于抽出空气及 由于高温而从原料切片内散发出的水蒸气,从而使生成的材料内气泡减少,可提高光传输效率。
根据本发明的一些优选且具体的方面,步骤(3)中,所述水冷的温度为50-60℃。
根据本发明的一些优选且具体的方面,步骤(3)中,所述牵伸辊牵伸后的牵伸比为1∶1.5-4。
根据本发明的一些优选方面,所述改性聚对苯二甲酸乙二酯通过如下方法制备而得:将聚对苯二甲酸乙二酯、苯乙烯和丙烯酸酯的共聚物、环烯烃聚合物和聚苯乙烯混合、熔融挤出而制成。
根据本发明的一些优选且具体的方面,所述聚对苯二甲酸乙二酯、所述苯乙烯和丙烯酸酯的共聚物、所述环烯烃聚合物和所述聚苯乙烯的投料质量比为1∶0.018-0.048∶0.018-0.036∶0.027-0.048。
根据本发明的一些优选且具体的方面,所述改性聚对苯二甲酸乙二酯的制备过程中,所述熔融挤出采用螺杆挤出机进行,熔融挤出的温度为:一区275~280℃,二区280-285℃,三区285-290℃,箱体温度285-290℃,模头温度285-290℃。
根据本发明的一些优选且具体的方面,所述改性聚对苯二甲酸乙二酯以ISO 1133-2005标准在280℃条件下、载荷37.3N时测定的熔融指数为44-59g/10min。
根据本发明的一些优选且具体的方面,所述透明尼龙以ISO 1133-2005标准在230℃条件下、载荷37.3N时测定的熔融指数为20-26g/10min。
根据本发明的一些优选且具体的方面,所述聚碳酸酯以ISO 1133-2005标准在300℃条件下、载荷37.3N时测定的熔融指数为19-23g/10min。
根据本发明的一些优选方面,所述聚碳酸酯的折射率与所述改性聚对苯二甲酸乙二酯的折射率的差值占所述聚碳酸酯的折射率的百分含量为5.5%-7.6%,所述聚碳酸酯的折射率与所述透明尼龙的折射率的差值占所述聚碳酸酯的折射率的百分含量为4.5%-5.5%。
根据本发明,全光线指的是可见光(近红外线到近紫外线),全光线透过率就是指这所有的光的透过率。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明制备的聚合物光纤采用特定的材料作为皮层材料,并控制皮层材料与芯层材料的折射率关系,制成后不仅能够兼具极佳的韧性、较低的光损耗,同时基于材质的特殊性使其能够采用熔融纺丝法进行制备,克服了现有技术中采用预制件-拉伸法制备存在效率较低的缺陷,同时兼具价格更低廉,使得本发明方法制备的聚合物光纤尤为适用于装饰用面料这种较短程光传输的发光织物中。
附图说明
图1是本发明实施例聚合物光纤制备工艺结构示意图;
图2为本发明实施例聚合物光纤的其中一种结构示意图;
图3为本发明实施例聚合物光纤的其中一种结构的横截面示意图;
图4为本发明实施例聚合物光纤的其中一种结构的横截面示意图;
图5为本发明实施例聚合物光纤的其中一种结构的横截面示意图;
图6为本发明实施例聚合物光纤的其中一种结构的横截面示意图;
图7为本发明实施例聚合物光纤的其中一种结构的横截面示意图。
具体实施方式
以下结合具体实施例对上述方案做进一步说明;应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。下述中,如无特殊说明,所有的原料均来自于商购或者通过本领域的常规方法制备而得。
下述中,改性聚对苯二甲酸乙二酯的熔融指数以ISO 1133-2005标准在280℃条件下、载荷37.3N时测定;透明尼龙的熔融指数以ISO 1133-2005标准在230℃条件下、载荷37.3N时测定;聚碳酸酯的熔融指数以ISO 1133-2005标准在300℃条件下、载荷37.3N时测定。
实施例1
如图1所示,下述实施例中各聚合物光纤的制备所采用的结构*** 包括分别分列于两侧的两个料斗(11)、两个计量泵(12)、两个螺杆(13)(即双螺杆挤出机的两个螺杆)、两个分别与所述两个螺杆配合抽真空的真空泵(14)(真空泵(14)用于抽出空气及由于高温而从切片内散发出的水蒸气,从而使材料内气泡减少,提高光传输效率),以及分别与所述两个螺杆出口连通的纺丝模头(15),水冷池(16)、牵拉辊(17)、收卷装置(18);在物料材料进入纺丝模头(15)前,两组装置均为料斗(11)与计量泵(12)相连,然后接入螺杆(13),每个螺杆(13)上安装有一个真空泵(14);原料切片后经过螺杆(13)的加热,进入纺丝模头(15),挤出,接着挤出的粗品纤维经过水冷池(16)水冷,再经过多个配速不同的牵拉辊(17)的拉伸,将光纤拉细并使纤维内大分子取向度提高,最后由一个收卷装置(18)收集。
实施例2
本例提供一种聚合物光纤,如图2所示,包括芯层(32)、包覆在芯层(32)外表面的皮层(31),芯层(32)的材料为聚碳酸酯(PC,折射率为1.59,熔融指数为22g/10min),皮层(31)的材料为改性聚对苯二甲酸乙二酯(改性PET,全光线透过率为90%,折射率为1.49,熔融指数为44g/10min),其横截面如图3所示。
上述的改性聚对苯二甲酸乙二酯通过如下方法制备而得:其由以下重量份的原料组成:聚对苯二甲酸乙二酯100份、苯乙烯和丙烯酸酯的共聚物(NAS)2份、环烯烃聚合物(COP)3份、聚苯乙烯3份;制备方法为:
(1)在高速混合机里添加各原料,搅拌20分钟,得预混料;
(2)将所得预混料置于螺杆挤出机中进行熔融共混(温度参数:一区275~280℃,二区280℃,三区285℃,箱体温度285℃,模头温度285℃)、挤出,冷却,切片,即可得到所述改性聚对苯二甲酸乙二酯。
聚合物光纤的制备方法包括如下步骤:
(1)将上述制备的改性PET切片在120℃的真空干燥箱中干燥8小时,将PC切片在120℃的真空干燥箱中干燥8小时,分别得到干燥后的改性PET和PC切片;
(2)将干燥后的改性PET和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,改性PET组分设定螺杆后区温度280℃、前区温度285℃、箱体温度285℃,PC组分设定螺杆后区温度280℃、前区温度285℃、箱体温度285℃,喷丝板温度285℃;
(3)经过皮芯结构(核壳结构)的纺丝模头纺丝成型;
(4)经过水冷池55℃冷却,由牵拉辊牵伸,牵伸比1:3,并由收卷装置收集成卷。
该光纤截面接LED光源,皮层(31)可侧发光,芯层(32)的厚度为600μm,皮层(31)的厚度为60μm,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光织物。
实施例3
本例提供一种聚合物光纤,包括芯层(34)、第一聚合物材料层、第二聚合物材料层、第一聚合物材料层、第二聚合物材料层和皮层(33),第一聚合物材料层、皮层(33)的材料分别为改性聚对苯二甲酸乙二酯(改性PET,全光线透过率为90%,折射率为1.50,熔融指数为59g/10min),第二聚合物材料层、芯层(34)的材料分别为聚碳酸酯(PC,折射率为1.59,熔融指数为23g/10min),其横截面如图4所示。
上述的改性聚对苯二甲酸乙二酯通过如下方法制备而得:其由以下重量份的原料组成:聚对苯二甲酸乙二酯100份、苯乙烯和丙烯酸酯的共聚物(NAS)2份、环烯烃聚合物(COP)2份、聚苯乙烯3份;制备方法为:
(1)在高速混合机里添加各原料,搅拌20分钟,得预混料;
(2)将所得预混料置于螺杆挤出机中进行熔融共混(温度参数:一区275~280℃,二区280℃,三区285℃,箱体温度285℃,模头温度285℃)、挤出,冷却,切片,即可得到所述改性聚对苯二甲酸乙二酯。
聚合物光纤的制备方法包括如下步骤:
(1)将上述制备的改性PET切片在120℃的真空干燥箱中干燥8小时,将PC切片在120℃的真空干燥箱中干燥8小时,分别得到干燥后的改性PET和PC切片;
(2)将干燥后的改性PET和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,PET组分设定螺杆后区温度283℃、前区温度288℃、箱体温度288℃,PC组分设定螺杆后区温度280℃、前区温度285℃、箱体温度290℃,喷丝板温度290℃;
(3)经过多层皮芯结构的纺丝模头纺丝成型;
(4)经过水冷池60℃冷却,由牵拉辊牵伸,牵伸比1:2,并由收卷装置收集成卷。
皮层(33)的厚度为650nm,第一聚合物材料层、第二聚合物材料层的厚度分别为110nm,芯层(34)的直径为600nm,该光纤截面接LED光源,皮层可侧发光,且发光效果优于实施例2中所述纤维,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光效果更好的织物。
实施例4
本例提供一种聚合物光纤,包括芯层(36)、包覆在芯层(36)外表面的皮层(35),芯层(36)的材料为聚碳酸酯(PC,折射率为1.59,熔融指数为22g/10min),皮层(35)的材料为改性聚对苯二甲酸乙二酯(改性PET,全光线透过率为89%,折射率为1.47,熔融指数为49g/10min),其横截面如图5所示。
上述的改性聚对苯二甲酸乙二酯通过如下方法制备而得:其由以下重量份的原料组成:聚对苯二甲酸乙二酯100份、苯乙烯和丙烯酸酯的共聚物(NAS)4份、环烯烃聚合物(COP)3份、聚苯乙烯3份;制备方法为:
(1)在高速混合机里添加各原料,搅拌20分钟,得预混料;
(2)将所得预混料置于螺杆挤出机中进行熔融共混(温度参数:一区275~280℃,二区280℃,三区285℃,箱体温度285℃,模头温度285℃)、挤出,冷却,切片,即可得到所述改性聚对苯二甲酸乙二酯。
聚合物光纤的制备方法包括如下步骤:
(1)将上述制备的改性PET切片在120℃的真空干燥箱中干燥8小时,将PC切片在120℃的真空干燥箱中干燥8小时,分别得到干燥后的改性PET和PC切片;
(2)将干燥后的改性PET和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,PET组分设定螺杆后区温度275℃、前区温度280℃、箱体温度285℃,PC组分设定螺杆后区温度275℃、前区温度280℃、箱体温度285℃,喷丝板温度285℃;
(3)经过皮层为三角形,芯层为圆形的纺丝模头纺丝成型;
(4)经过水冷池55℃冷却,由牵拉辊牵伸,牵伸比1:3,并由收卷装置收集成卷。
皮层(35)为三角形,芯层(36)为圆形,芯层(36)的厚度为670μm,皮层(35)的最小厚度为80μm,该光纤截面接LED光源,皮层可侧发光,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光织物;且由于该种光纤的皮层截面为三角形,在纤维的三个角上形成了天然的三棱镜,光线在此处发生色散,该种纤维制成的纺织品在阳光下,可形成天然的彩虹色。
实施例5
本例提供一种聚合物光纤,包括芯层(38)、包覆在芯层(38)外表面的皮层(37),芯层(38)的材料为聚碳酸酯(PC,折射率为1.57,熔融指数为19g/10min),皮层(37)的材料为改性聚对苯二甲酸乙二酯(改性PET,全光线透过率为90%,折射率为1.46,熔融指数为53g/10min),其横截面如图6所示。
上述的改性聚对苯二甲酸乙二酯通过如下方法制备而得:其由以下重量份的原料组成:聚对苯二甲酸乙二酯100份、苯乙烯和丙烯酸酯的共聚物(NAS)4份、环烯烃聚合物(COP)3份、聚苯乙烯4份;制备方法为:
(1)在高速混合机里添加各原料,搅拌20分钟,得预混料;
(2)将所得预混料置于螺杆挤出机中进行熔融共混(温度参数:一区275~280℃,二区280℃,三区285℃,箱体温度285℃,模头温度285℃)、挤出,冷却,切片,即可得到所述改性聚对苯二甲酸乙二酯。
聚合物光纤的制备方法包括如下步骤:
(1)将上述制备的改性PET切片在120℃的真空干燥箱中干燥8小 时,将PC切片在105℃的真空干燥箱中干燥8小时,分别得到干燥后的改性PET和PC切片;
(2)将干燥后的改性PET和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,PET组分设定螺杆后区温度280℃、前区温度285℃、箱体温度285℃,PC组分设定螺杆后区温度280℃、前区温度285℃、箱体温度288℃,喷丝板温度290℃;
(3)经过芯层为五角星形,皮层为圆形的纺丝模头纺丝成型。
(4)经过水冷池60℃冷却,由牵拉辊牵伸,牵伸比1:2.5,并由收卷装置收集成卷。
皮层(37)为圆形,芯层(38)为五角星形,芯层(38)的最大直径为630μm,皮层(37)的最小厚度为100μm,该光纤截面接LED光源,皮层可侧发光,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光织物,且光线在芯层五角星形的五个顶角上聚集,从光线的侧面能看到5条更亮的光线。
实施例6
本例提供一种聚合物光纤,包括多个并列设置的芯层(40)、包覆在多个并列设置的芯层(40)外表面的皮层(39),芯层(40)的材料为聚碳酸酯(PC,折射率为1.55,熔融指数为23g/10min),皮层(39)的材料为透明尼龙(全光线透过率为92%,折射率为1.47,熔融指数为22g/10min),其横截面如图7所示。
聚合物光纤的制备方法包括如下步骤:
(1)将透明尼龙切片在100℃的真空干燥箱中干燥8小时,将PC切片在120℃的真空干燥箱中干燥8小时,分别得到干燥后的透明尼龙和PC切片;
(2)将干燥后的透明尼龙和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,透明尼龙组分设定螺杆后区温度225℃、前区温度230℃、箱体温度230℃,PC组分设定螺杆后区温度275℃、前区温度280℃、箱体温度285℃,喷丝板温度285℃;
(3)经过海岛形结构(即多个芯层)的纺丝模头纺丝成型;
(4)经过水冷池60℃冷却,由牵拉辊牵伸,牵伸比1:2,并由收卷装置收集成卷。
多个芯层(40)并列分布于皮层(39)内,每个芯层(40)的直径分别为50μm,皮层(39)的外径为800μm,该光纤截面接LED光源,皮层可侧发光,且光的分布较为均一,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光织物。
实施例7
本例提供一种聚合物光纤,如图2所示,包括芯层(32)、包覆在芯层(32)外表面的皮层(31),芯层(32)的材料为聚碳酸酯(PC,折射率为1.55,熔融指数为19g/10min),皮层(31)的材料为透明尼龙(透光度为90%,折射率为1.47,熔融指数为22g/10min),其横截面如图3所示。
聚合物光纤的制备方法包括如下步骤:
(1)将透明尼龙切片在100℃的真空干燥箱中干燥8小时,将PC切片在120℃的真空干燥箱中干燥8小时,分别得到干燥后的透明尼龙切片和PC切片;
(2)将干燥后的透明尼龙切片和PC切片分别加入双螺杆熔融纺丝机的两个螺杆中,透明尼龙组分设定螺杆后区温度225℃、前区温度230℃、箱体温度230℃,PC组分设定螺杆后区温度275℃、前区温度280℃、箱体温度285℃,喷丝板温度285℃;
(3)经过皮芯结构(核壳结构)的纺丝模头纺丝成型;
(4)经过水冷池60℃冷却,由牵拉辊牵伸,牵伸比1:3.5,并由收卷装置收集成卷。
该光纤截面接LED光源,皮层(31)可侧发光,芯层(32)的直径为720μm,皮层(31)的厚度为70μm,将此纤维与常用的纺织纤维经针织或机织等工艺,可以获得发光织物。
对比例1
基本同实施例2,其区别仅在于,皮层的材料为市售的常规PET材料,其折射率为1.56,全光线透过率为87%。
对比例2
市售的聚碳酸酯(PC)/氟树脂光纤。
性能测试
将上述实施例2-7、对比例1所制得的聚合物光纤以及对比例2提供的光纤进行如下一些性能测试,具体结果参见表1。
表1
Figure PCTCN2020115567-appb-000001
上述的各性能测试标准如下:断裂伸长、断裂强力:GB/T 14337-2008
衰减系数:GB/T 15972.40-2008
阳离子染色上色率:FZ/T 50020-2013。
由上述实施例可知,本发明的聚合物光纤采用特定的材料作为皮层材料,并控制皮层材料与芯层材料的折射率关系,制成后不仅能够兼具极佳的韧性、较低的光损耗,而且价格更低廉,使其尤为适用于装饰用面料这种较短程光传输的发光织物中;同时本发明的聚合物光纤能够采用熔融挤出,纺丝的方法制成,避免了现有技术仅能采用预制件-拉伸法生产效率较低的缺陷,能够实现连续生产,有利于规模性的扩大化。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (18)

  1. 一种聚合物光纤的制备方法,其特征在于,所述聚合物光纤包括芯层、设置于所述芯层外周的皮层,所述芯层的材料包括聚碳酸酯,所述皮层的材料包括改性聚对苯二甲酸乙二酯和/或透明尼龙;
    所述改性聚对苯二甲酸乙二酯的全光线透过率为88%-90%、折射率为1.45-1.50,所述改性聚对苯二甲酸乙二酯通过如下方法制备而得:将聚对苯二甲酸乙二酯、苯乙烯和丙烯酸酯的共聚物、环烯烃聚合物和聚苯乙烯混合,熔融挤出而制成;所述聚对苯二甲酸乙二酯、所述苯乙烯和丙烯酸酯的共聚物、所述环烯烃聚合物和所述聚苯乙烯的投料质量比为1∶0.018-0.048∶0.018-0.036∶0.027-0.048;所述熔融挤出采用螺杆挤出机进行,熔融挤出的温度为:一区275~280℃,二区280-285℃,三区285-290℃,箱体温度285-290℃,模头温度285-290℃;
    所述透明尼龙的全光线透过率为90%-92%、折射率为1.47-1.52,所述聚碳酸酯的折射率为1.55-1.59;
    所述聚碳酸酯的折射率与所述改性聚对苯二甲酸乙二酯的折射率的差值占所述聚碳酸酯的折射率的百分含量为5%-8%,所述聚碳酸酯的折射率与所述透明尼龙的折射率的差值占所述聚碳酸酯的折射率的百分含量为4%-6%;
    所述改性聚对苯二甲酸乙二酯以ISO 1133-2005标准在280℃条件下、载荷37.3N时测定的熔融指数为44-59g/10min;所述透明尼龙以ISO 1133-2005标准在230℃条件下、载荷37.3N时测定的熔融指数为20-26g/10min;所述聚碳酸酯以ISO 1133-2005标准在300℃条件下、载荷37.3N时测定的熔融指数为19-23g/10min;
    所述聚合物光纤的制备方法包括如下步骤:
    (1)将所述芯层的材料与所述皮层的材料分别进行干燥处理;
    (2)将步骤(1)处理后的所述芯层的材料与所述皮层的材料分别加入双螺杆熔融纺丝机的两个螺杆中经喷丝板在真空条件下挤出,制成粗品;
    当所述皮层的材料为改性聚对苯二甲酸乙二酯时,设定所述皮层的 材料所在的螺杆后区温度为275-285℃,前区温度为280-290℃,箱体温度为280-290℃;当所述皮层的材料为透明尼龙时,设定所述皮层的材料所在的螺杆后区温度为220-225℃,前区温度为225-230℃,箱体温度为225-230℃;
    设定所述芯层的材料所在的螺杆后区温度为275-280℃,前区温度为280-285℃,箱体温度为285-290℃;设定所述喷丝板的温度为280-290℃;
    (3)将所得的所述粗品经水冷,再经不同速度的牵伸辊牵伸,制成所述聚合物光纤;其中,所述水冷的温度为50-60℃,所述牵伸辊牵伸后的牵伸比为1∶1.5-4。
  2. 一种聚合物光纤的制备方法,其特征在于,所述聚合物光纤包括芯层、设置于所述芯层外周的皮层,所述芯层的材料包括聚碳酸酯,所述皮层的材料包括改性聚对苯二甲酸乙二酯和/或透明尼龙,所述改性聚对苯二甲酸乙二酯的全光线透过率为88%-90%、折射率为1.45-1.50,所述透明尼龙的全光线透过率为90%-92%、折射率为1.47-1.52,所述聚碳酸酯的折射率为1.55-1.59,所述聚碳酸酯的折射率与所述改性聚对苯二甲酸乙二酯的折射率的差值占所述聚碳酸酯的折射率的百分含量为5%-8%,所述聚碳酸酯的折射率与所述透明尼龙的折射率的差值占所述聚碳酸酯的折射率的百分含量为4%-6%;
    所述聚合物光纤的制备方法包括如下步骤:
    (1)将所述芯层的材料与所述皮层的材料分别进行干燥处理;
    (2)将步骤(1)处理后的所述芯层的材料与所述皮层的材料分别加入双螺杆熔融纺丝机的两个螺杆中经喷丝板在真空条件下挤出,制成粗品;
    (3)将所得的所述粗品经水冷,再经不同速度的牵伸辊牵伸,制成所述聚合物光纤。
  3. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,步骤(2)中,当所述皮层的材料为改性聚对苯二甲酸乙二酯时,设定所述皮层的材料所在的螺杆后区温度为275-285℃,前区温度为280-290℃,箱体温度为280-290℃;当所述皮层的材料为透明尼龙时,设定所述皮层的 材料所在的螺杆后区温度为220-225℃,前区温度为225-230℃,箱体温度为225-230℃。
  4. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,步骤(2)中,设定所述芯层的材料所在的螺杆后区温度为275-280℃,前区温度为280-285℃,箱体温度为285-290℃。
  5. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,步骤(2)中,设定所述喷丝板的温度为280-290℃。
  6. 根据权利要求1或2所述的聚合物光纤的制备方法,其特征在于,步骤(2)中,所述双螺杆熔融纺丝机的两个螺杆分别设置有与其自身配合的真空泵,所述真空泵用于抽出空气及由于高温而从原料切片内散发出的水蒸气。
  7. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,步骤(3)中,所述水冷的温度为50-60℃。
  8. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,步骤(3)中,所述牵伸辊牵伸后的牵伸比为1∶1.5-4。
  9. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,所述改性聚对苯二甲酸乙二酯通过如下方法制备而得:将聚对苯二甲酸乙二酯、苯乙烯和丙烯酸酯的共聚物、环烯烃聚合物和聚苯乙烯混合、熔融挤出而制成。
  10. 根据权利要求9所述的聚合物光纤的制备方法,其特征在于,所述聚对苯二甲酸乙二酯、所述苯乙烯和丙烯酸酯的共聚物、所述环烯烃聚合物和所述聚苯乙烯的投料质量比为1∶0.018-0.048∶0.018-0.036∶0.027-0.048。
  11. 根据权利要求9所述的聚合物光纤的制备方法,其特征在于,所述改性聚对苯二甲酸乙二酯的制备过程中,所述熔融挤出采用螺杆挤出机进行,熔融挤出的温度为:一区275~280℃,二区280-285℃,三区285-290℃,箱体温度285-290℃,模头温度285-290℃。
  12. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,所述改性聚对苯二甲酸乙二酯以ISO 1133-2005标准在280℃条件下、载荷 37.3N时测定的熔融指数为44-59g/10min。
  13. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,所述透明尼龙以ISO 1133-2005标准在230℃条件下、载荷37.3N时测定的熔融指数为20-26g/10min。
  14. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,所述聚碳酸酯以ISO 1133-2005标准在300℃条件下、载荷37.3N时测定的熔融指数为19-23g/10min。
  15. 根据权利要求2所述的聚合物光纤的制备方法,其特征在于,所述聚碳酸酯的折射率与所述改性聚对苯二甲酸乙二酯的折射率的差值占所述聚碳酸酯的折射率的百分含量为5.5%-7.6%,所述聚碳酸酯的折射率与所述透明尼龙的折射率的差值占所述聚碳酸酯的折射率的百分含量为4.5%-5.5%。
  16. 一种聚合物光纤,其特征在于,所述聚合物光纤由权利要求1-16所述的方法制备而得。
  17. 根据权利要求16所述的聚合物光纤,其特征在于,所述聚合物光纤的皮层为侧发光。
  18. 一种发光织物,其特征在于,所述发光织物包括权利要求16或17所述的聚合物光纤。
PCT/CN2020/115567 2019-09-04 2020-09-16 一种聚合物光纤及其制备方法和发光织物 WO2021043318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910831732.8 2019-09-04
CN201910831732.8A CN110685027B (zh) 2019-09-04 2019-09-04 聚合物光纤的制备方法

Publications (1)

Publication Number Publication Date
WO2021043318A1 true WO2021043318A1 (zh) 2021-03-11

Family

ID=69107798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115567 WO2021043318A1 (zh) 2019-09-04 2020-09-16 一种聚合物光纤及其制备方法和发光织物

Country Status (2)

Country Link
CN (1) CN110685027B (zh)
WO (1) WO2021043318A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685027B (zh) * 2019-09-04 2020-11-10 苏州大学 聚合物光纤的制备方法
CN114606599A (zh) * 2022-02-11 2022-06-10 信泰(福建)科技有限公司 一种基于tpu/pmma熔融挤出双组分包覆单丝的制作方法及其包裹单丝纱线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232609A (ja) * 1986-04-02 1987-10-13 Sumitomo Chem Co Ltd プラスチツク光伝送性繊維
CN1446297A (zh) * 2000-08-07 2003-10-01 卢米尼克斯股份公司 具有照明纤维的纺织产品、由该纺织产品制成的物品、及其生产方法
CN106796333A (zh) * 2014-10-06 2017-05-31 古河电气工业株式会社 室内电缆
CN107881595A (zh) * 2015-09-10 2018-04-06 孝感市元达新材料科技有限公司 一种发光织物
CN108008482A (zh) * 2016-11-02 2018-05-08 旭化成株式会社 塑料光纤线缆
CN110685027A (zh) * 2019-09-04 2020-01-14 苏州大学 聚合物光纤的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026910A (ja) * 1983-07-23 1985-02-09 Sumitomo Electric Ind Ltd 光フアイバ−心線
CN1221374C (zh) * 2003-08-22 2005-10-05 四川汇源光通信股份有限公司 连续反应共挤法制备阶跃型塑料光纤的方法
CN100538420C (zh) * 2005-05-09 2009-09-09 三菱丽阳株式会社 塑料光纤电缆
CN1758079A (zh) * 2005-09-23 2006-04-12 四川汇源塑料光纤有限公司 复芯塑料光纤及其制备方法
CN204288929U (zh) * 2014-12-29 2015-04-22 长飞光纤光缆股份有限公司 一种光电复合缆
CN104862825B (zh) * 2015-06-10 2017-10-27 马海燕 大直径皮芯型复合单丝及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232609A (ja) * 1986-04-02 1987-10-13 Sumitomo Chem Co Ltd プラスチツク光伝送性繊維
CN1446297A (zh) * 2000-08-07 2003-10-01 卢米尼克斯股份公司 具有照明纤维的纺织产品、由该纺织产品制成的物品、及其生产方法
CN106796333A (zh) * 2014-10-06 2017-05-31 古河电气工业株式会社 室内电缆
CN107881595A (zh) * 2015-09-10 2018-04-06 孝感市元达新材料科技有限公司 一种发光织物
CN108008482A (zh) * 2016-11-02 2018-05-08 旭化成株式会社 塑料光纤线缆
CN110685027A (zh) * 2019-09-04 2020-01-14 苏州大学 聚合物光纤的制备方法

Also Published As

Publication number Publication date
CN110685027B (zh) 2020-11-10
CN110685027A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2021043318A1 (zh) 一种聚合物光纤及其制备方法和发光织物
CN110670169B (zh) 一种聚合物光纤的制备方法
CN109706546B (zh) 一种石墨烯海岛纤维及其制造方法
CN1587467A (zh) 一种仿毛涤纶复合长丝的制造方法
US9752258B2 (en) Cationic-dyeable polyester fiber and conjugated fiber
CN106400175A (zh) 一种纺前着色涤纶高收缩fdy丝的生产方法
CN104641274B (zh) 光纤单元抱合用纤维
EP4047113A1 (en) Polyamide sea-island fiber, preparation method therefor, and use thereof
CN105133084A (zh) 用于发光织物的聚合物光纤、发光织物及其制造方法
KR101384083B1 (ko) 멜란지톤을 가지는 고신축성 폴리에스테르 가연복합사의 제조방법
CN109706545B (zh) 一种微孔中空石墨烯海岛纤维及其制造方法
CN1113115C (zh) 聚酯基混纤丝的制造方法
CN101294312B (zh) 异型工业丝及其生产方法、专用喷丝板
CN103741241B (zh) 有色fdy强力纤维的切片纺丝加工工艺
CN210605064U (zh) 一种通体发光光纤及发光制品
CN112823300B (zh) 发光纤维
JP5718045B2 (ja) 染色性に優れたポリエステル繊維および繊維集合体
CN110549705B (zh) 一种聚合物光纤及发光织物
CN110699776B (zh) 聚合物光纤及发光织物
CN204198908U (zh) 一种大有光聚酯纤维及其纺丝所用的喷丝板
CN102517672A (zh) 一种高模量、高拉伸功特种纤维的制备方法
CN109385676B (zh) 多微面反射异形复合彩色涤纶长丝生产工艺
CN104032427A (zh) 多异混纤维的制造方法
KR101241522B1 (ko) 신축성이 우수한 얀 및 그 제조방법
CN104294394A (zh) Poy复合长丝多道预网络长丝的加工工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860134

Country of ref document: EP

Kind code of ref document: A1