WO2021043078A1 - 切换指示方法、切换方法、装置、服务节点、终端及介质 - Google Patents

切换指示方法、切换方法、装置、服务节点、终端及介质 Download PDF

Info

Publication number
WO2021043078A1
WO2021043078A1 PCT/CN2020/112005 CN2020112005W WO2021043078A1 WO 2021043078 A1 WO2021043078 A1 WO 2021043078A1 CN 2020112005 W CN2020112005 W CN 2020112005W WO 2021043078 A1 WO2021043078 A1 WO 2021043078A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
configuration
parameter
switching
parameters
Prior art date
Application number
PCT/CN2020/112005
Other languages
English (en)
French (fr)
Inventor
李剑
魏兴光
郝鹏
李儒岳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3191646A priority Critical patent/CA3191646A1/en
Publication of WO2021043078A1 publication Critical patent/WO2021043078A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a wireless communication network, for example, to a handover instruction method, handover method, device, service node, terminal, and medium.
  • Dormancy behavior means that the user terminal (User Equipment, UE) stops monitoring the Physical Downlink Control Channel (PDCCH), but continues to perform other activities, such as channel state information (CSI) measurement, automatic Gain control (Automatic Gain Control, AGC) and beam management (Beam Management, BM), etc.
  • CSI channel state information
  • AGC Automatic Gain Control
  • Beam Management Beam Management
  • BM Beam Management
  • dynamically instructing the UE to switch between the sleep state and the normal state requires a large signaling overhead, or when the UE has the ability to configure multiple bandwidth parts (Bandwidth Part, BWP), the BWP switching technology can be used
  • BWP switching technology can be used
  • the present application provides a switching instruction method, switching method, device, service node, terminal, and medium, so as to improve the applicability of state switching and improve switching efficiency.
  • the embodiment of the present application provides a handover indication method, including:
  • Radio Resource Control RRC
  • the embodiment of the present application also provides a handover method, including:
  • An embodiment of the present application also provides a handover indication device, including:
  • the target parameter determination module is set to determine the target parameter according to the configuration parameters of RRC;
  • the instruction module is configured to send a control message to the terminal, the control message including the target parameter, and the control message is used to instruct the terminal to switch between the sleep state and the normal state according to the target parameter.
  • An embodiment of the present application also provides a switching device, including:
  • a receiving module configured to receive a control message, the control message including the target parameter determined according to the configuration parameter of the RRC;
  • the switching module is set to switch between the sleep state and the normal state according to the target parameter.
  • the embodiment of the present application also provides a service node, including:
  • One or more processors are One or more processors;
  • Storage device set to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the switching instruction method described above.
  • the embodiment of the present application also provides a terminal, including:
  • One or more processors are One or more processors;
  • Storage device set to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the aforementioned switching method.
  • the embodiment of the present application also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned switching instruction method or switching method is realized.
  • FIG. 1 is a flowchart of a handover indication method provided by an embodiment
  • FIG. 2 is a schematic diagram of a BWP configuration parameter restriction operation provided by an embodiment
  • FIG. 3 is a schematic diagram of another BWP configuration parameter restriction operation provided by an embodiment
  • FIG. 4 is a flowchart of a handover method provided by an embodiment
  • FIG. 5 is a schematic structural diagram of a handover indication device provided by an embodiment
  • FIG. 6 is a schematic structural diagram of a switching device provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a service node provided by an embodiment
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment.
  • the UE monitors the PDCCH in a certain period in the normal state, and stops monitoring the PDCCH in the dormant state, but still continues to perform other activities, such as CSI measurement, AGC, and BM.
  • the switching delay mainly depends on the T activation_time (including the Medium Access Control-Control Element (MAC-CE) analysis delay, radio frequency (Radio Frequency) , RF) wake-up delay, AGC adjustment delay and time-frequency offset synchronization delay, etc.).
  • the RF on the secondary cell Secondary Cell, Scell
  • Scell secondary Cell
  • the UE's monitoring cycle of PDCCH can be dynamically modified through Downlink Control Information (DCI) signaling.
  • DCI Downlink Control Information
  • the monitoring cycle in the normal state is relatively short and the monitoring is more frequent, while the monitoring cycle in the dormant state is relatively short. Long, the monitoring is relatively sparse, but this dynamic indication method requires a large signaling overhead and is low in efficiency; it can also be based on the BWP switching technology to switch the UE from the dormant BWP to the normal (active) BWP, This requires the UE to have the ability to configure multiple BWPs, but this ability to configure multiple BWPs is based on the band (band) granularity, that is, the configuration of multiple BWPs is not supported on some frequency bands.
  • band band
  • BWP Mathematical Numerology
  • BWP-Samenumerolog BWP Same Mathematical Numerology
  • This embodiment provides a handover indication method.
  • Parameters are configured through RRC signaling, and target parameters are determined according to the configuration parameters.
  • the target parameters are sent to the terminal through a control message, thereby instructing the terminal to perform state switching, where the control message is used to indicate to the terminal.
  • the target parameter the signaling overhead is small, and the method can be applied even when the UE does not have the ability to configure multiple BWPs, which improves the applicability of state switching. By efficiently indicating the state switching to the terminal, it improves Switching efficiency.
  • Fig. 1 is a flowchart of a handover indication method provided by an embodiment.
  • the handover indication method of this embodiment is applied to the serving node. As shown in FIG. 1, the method includes step 110 and step 120.
  • the target parameter is determined according to the configuration parameter of the radio resource control RRC.
  • configuration parameters for instructing the UE to perform state switching can be configured through RRC signaling, where the state switching includes switching from the sleep state to the normal state, and from the normal state to the sleep state.
  • the configuration parameters can be used to configure the PDCCH monitoring period of the UE on the Scell.
  • two PDCCH monitoring periods are configured on the Scell, one long period and one short period, the long period corresponds to the sleep state, and the short period corresponds to the normal state.
  • the control message further instructs the UE to switch the PDCCH monitoring period. For example, 1 bit is used to switch the PDCCH monitoring period on one Scell.
  • the UE switches to the sleep state, otherwise the UE switches to the normal state; configuration parameters are also available For BWPs that are configured for switching, for example, the BWP in the dormant state and the BWP in the normal state are configured.
  • the control message can further instruct the UE to switch from the dormant BWP to the activated BWP, so as to switch from the dormant state to the normal state, or through control
  • the message further instructs the UE to switch from the active BWP to the dormant BWP, thereby switching from the normal state to the dormant state.
  • the configuration parameters can be one set or multiple sets, and the serving node can determine the target parameter and indicate it to the UE according to actual needs.
  • step 120 a control message is sent to the terminal, where the control message includes the target parameter, and the control message is used to instruct the terminal to switch between the sleep state and the normal state according to the target parameter.
  • control message may be DCI
  • the indication field set in the DCI may indicate the BWP used by the Scell, or indicate whether to monitor the PDCCH in each secondary cell, or indicate switching to monitor the monitoring period and offset of the PDCCH.
  • the method of this embodiment does not require the UE to have the ability to configure multiple BWPs, and the control message is only used to indicate the target parameter, and the signaling overhead is small.
  • the configuration parameters include a first set of parameters and a second set of parameters; the first set of parameters include the monitoring period and offset of the PDCCH; the second set of parameters includes at least two BWPs, wherein at least one BWP corresponds to In the dormant state.
  • two sets of configuration parameters can be configured through RRC.
  • the first set of configuration parameters is used to indicate the UE's monitoring period and offset of the PDCCH, where the offset is used to indicate the time slot for monitoring in one monitoring period. For example, if a monitoring period includes 10 time slots and the offset is 3, the PDCCH is monitored in the third time slot of the 10 time slots in the monitoring period.
  • the second set of configuration parameters includes at least two BWPs, of which at least one BWP is in a dormant state, and the second set of configuration parameters is indicated to the UE as a target parameter, and the UE can implement state switching through BWP switching accordingly.
  • the determining the target parameter according to the configuration parameters of the radio resource control RRC includes: selecting the target parameter from the first set of parameters and the second set of parameters according to at least one of the following information: frequency band information, Terminal capability information, new air interface NR version information supported by the serving node or terminal, and Scell activation delay requirement information.
  • the serving node can select one of the two sets of configuration parameters as the target parameter. For example, when the UE has the ability to configure multiple BWPs in the current frequency band and supports BWP switching , You can select the second set of configuration parameters as the target parameters, otherwise, you can select the first set of configuration parameters as the target parameters. For another example, in the case that the UE has a low-delay demand service, the Scell activation delay demand is relatively high, and the serving node can select the first set of configuration parameters as the target parameter.
  • control message is sent through a primary cell (Primary Cell, Pcell) or a scheduling cell.
  • Primary Cell Primary Cell, Pcell
  • scheduling cell a scheduling cell
  • control message includes a target parameter indication field; the number of bits in the target parameter indication field is m-1, and m-1 bits correspond to m-1 secondary cells respectively; or, the target The number of bits in the parameter indication field is twice that of m-1, and every 2 bits corresponds to a secondary cell; where m represents the maximum number of carriers supported by the NR system.
  • the control message indicates the target parameter to the terminal through a target parameter indication field with a certain number of bits.
  • the target parameter indication field is used to indicate the switching of different PDCCH monitoring periods and offsets ;
  • the target parameter indication field is used to indicate the switching of different BWPs.
  • m-1 bits may be used to indicate the target parameters of m-1 secondary cells, and each bit corresponds to a secondary cell; or, m-1 may be indicated by 2*(m-1) bits.
  • the target parameter of each secondary cell corresponds to one secondary cell every 2 bits, where m represents the maximum number of carriers supported by the NR system.
  • control message includes DCI, and a new DCI format defined in a power saving application scenario may be used.
  • the configuration parameters include configuration parameters of a virtual BWP; the virtual BWP corresponds to a BWP in a normal state, and the first configuration parameter between the virtual BWP and a corresponding BWP in the normal state is different; The second configuration parameter between the virtual BWP and the corresponding BWP in the normal state is the same.
  • the serving node configures the configuration parameters of the virtual BWP through RRC and sends it to the UE.
  • the virtual BWP is bound to a BWP in a normal state. Configuring the bound two BWPs is equivalent to configuring only one BWP. Some configuration parameters (second configuration parameters) are the same, and some configuration parameters (first configuration parameters) are different, thereby improving the switching efficiency between the two BWPs.
  • the first configuration parameter includes at least one of the following: PDCCH search space, control resource set (Control Resource Set, CORESET) configuration parameter, channel state information reference signal (Channel State Information-Reference Signal, CSI-RS) ) Configuration parameters, Aperiodic Tracking Reference Signal (A-TRS) configuration parameters, Sounding Reference Signal (SRS) configuration parameters, and BM configuration parameters.
  • control resource set Control Resource Set, CORESET
  • channel state information reference signal Channel State Information-Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • A-TRS Aperiodic Tracking Reference Signal
  • SRS Sounding Reference Signal
  • the second configuration parameter includes at least one of the following: bandwidth, subcarrier spacing (Subcarrier Spacing, SCS), and center frequency.
  • bandwidth subcarrier spacing
  • SCS subcarrier Spacing
  • the BWP is the same as the BWP index (Identity, ID) of the corresponding BWP in the normal state.
  • the first configuration parameter is a dedicated BWP (Dedicated) parameter
  • the second configuration parameter is a common BWP parameter.
  • the specific parameters and sub-parameters configured between the first BWP and the second BWP may be different, and the common parameters are the same.
  • BWP-specific parameters include at least one of the following: physical downlink shared channel configuration parameters (Physical Downlink Shared Channel-configuration, PDSCH-config), physical downlink control channel configuration parameters (PDCCH-config), semi-persistent transmission configuration parameters (Semi -Persistent Scheduling-configuration, SPS-config), radio link monitoring configuration parameters (Radio Link Monitoring-config), physical uplink data channel configuration parameters (PUSCH-config), physical uplink control channel configuration parameters (PUCCH-config), configuration Authorization configuration parameters (Configured Grant-config), sounding reference signal configuration parameters (SRS-config), beam failure recovery configuration parameters (Beam Failure Recovery-config);
  • BWP common parameters include at least one of the following: physical downlink control channel common configuration parameters (PDCCH-config common), physical downlink data channel shared configuration parameters (PDSCH-config common), general parameters (Generic Parameters), physical uplink control channel shared configuration parameters (PUCCH-config common), physical uplink data channel shared configuration parameters (PUSCH-config common), the common configuration parameters of
  • the target parameters include: the configuration parameters of the virtual BWP and the corresponding configuration parameters of the BWP in the normal state.
  • the method when the target parameter includes the second set of parameters, the method further includes: receiving the capability information of the set capability reported by the terminal; and performing the processing of the at least two BWPs according to the capability information of the set capability
  • the configuration parameter limits the operation, wherein the at least two BWPs include a first BWP and a second BWP.
  • the setting capability refers to the energy-saving capability of the UE in an application scenario that saves energy.
  • the energy-saving capability information by limiting the configuration parameters, the configuration parameter ranges of the BWP before and after the switching overlap, thereby reducing the change of the configuration parameters during the BWP switching process, improving the efficiency of BWP switching, and thereby improving the efficiency of state switching.
  • the switching mode between at least two BWPs is dynamic BWP switching.
  • the UE can configure at most 4 uplink BWPs and 4 downlink BWPs on each carrier. At the same time, each UE can only have one activated uplink BWP and one activated downlink BWP.
  • the configuration on each BWP can be different, and the UE can dynamically adjust and activate the BWP according to service conditions. For example, the UE is configured with 2 downlink BWPs: the bandwidth of BWP1 is smaller than the bandwidth of BWP2.
  • BWP2 can be activated for downlink service transmission, and when the UE has a small downlink service volume, it can be switched to BWP2 to save energy consumption.
  • BWP switching There are three main methods for BWP switching: 1) DCI switching, the UE determines the target uplink BWP and target downlink BWP of the handover according to the bandwidth part indicator field in DCI format 0_1 and DCI format 1_1; 2) RRC signaling switching, UE according to RRC signaling The firstActiveUplinkBWP-Id and firstActiveDownlinkBWP-Id in the command determine the target uplink BWP and target downlink BWP for handover; 3) BWP inactivity timer switching, when the UE’s inactivity timer expires, the UE switches the downlink BWP to The default downstream BWP is switched to the downstream BWP whose BWPID is defaultDownlinkBWP-Id.
  • the switching mode between at least two BWPs may be DCI switching.
  • the configuration parameter restriction operation includes at least one of the following: BWP configuration parameter restriction operation, reference signal configuration parameter restriction operation, antenna port configuration parameter restriction operation, SRS antenna switching configuration parameter restriction operation, and transmission configuration instruction (Transmission Configuration Indication) Indicator (TCI) State configuration parameters restrict operations.
  • the BWP configuration parameter limiting operation includes: limiting the overlap of the frequency domain positions of the first BWP and the second BWP, wherein the bandwidth of the first BWP is smaller than the bandwidth of the second BWP.
  • up to 4 BWPs can be set.
  • Fig. 2 is a schematic diagram of a BWP configuration parameter restriction operation provided by an embodiment.
  • two BWPs are configured through RRC.
  • the frequency domain positions of the first BWP and the second BWP overlap, where the oblique area is the first BWP, and the outermost box represents the second BWP.
  • the bandwidth of the first BWP is smaller than the bandwidth of the second BWP.
  • Fig. 3 is a schematic diagram of another BWP configuration parameter restriction operation provided by an embodiment.
  • three BWPs are configured through RRC.
  • the vertical line area represents the first BWP
  • the oblique line area represents the second BWP
  • the outermost box represents the third BWP
  • the first BWP the second BWP
  • the frequency domain position overlaps with the third BWP, where the bandwidth of the first BWP is smaller than the bandwidth of the second BWP, and the bandwidth of the second BWP is smaller than the bandwidth of the third BWP.
  • the reference signal configuration parameter restriction operation includes: restricting the time-frequency domain position of the first BWP reference signal to be a subset of the time-frequency domain position of the second BWP reference signal.
  • the reference signal includes at least one of the following: channel state reference signal (CSI-RS), tracking reference signal (Tracking Reference Signal, TRS), sounding reference signal (SRS), demodulation reference signal (De-Modulation Reference Signal, DMRS), Phase-tracking Reference Signal (PTRS), Aperiodic-Tracking Reference Signal (A-TRS), Aperiodic-Channel State Information-Reference Signal (A-CSI-RS) and Semi-persistent Channel state reference signal (Semi-Persistent Scheduling-Channel State Information-Reference Signal, SPS-CSI-RS).
  • CSI-RS channel state reference signal
  • TRS tracking reference signal
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase-tracking Reference Signal
  • the antenna port configuration parameter limitation operation includes: limiting the number of antenna ports of the first BWP to be less than or equal to the number of antenna ports of the second BWP.
  • the antenna port includes at least one of the following: PDCCH antenna port, PDSCH antenna port, CSI-RS antenna port, synchronization signal broadcast channel antenna port (SS/PBCH), PUSCH antenna port, PUCCH antenna port, DMRS antenna port, SRS antenna port, PRACH antenna port (physical random access channel); for example, the CSI-RS antenna port of the second BWP configuration is 2 ports, which are 3000 and 3001 respectively, and the CSI-RS antenna port of the first BWP configuration can only be 1 port ( 3000) or 2 ports (3000 and 3001);
  • the TCI state configuration parameter restriction operation includes: sharing the TCI state of the first BWP and the second BWP.
  • the SRS antenna switching configuration parameter limitation operation includes: limiting the SRS antenna switching configuration parameter of the first BWP to be a subset of the SRS antenna switching configuration parameter of the second BWP.
  • the setting capability is determined according to at least one of terminal type and frequency band information.
  • the frequency band information can be described as FR frequency range 1 or FR frequency range 2.
  • the foregoing embodiment limits the configuration parameters to overlap the configuration parameter ranges of the BWP before and after the switching, thereby reducing the change of the configuration parameters during the BWP switching process, improving the efficiency of BWP switching, and thereby improving the efficiency of state switching.
  • the above-mentioned BWP configuration parameter restriction operation is also applicable to the application scenario of BWP handover.
  • the configuration parameters of BWP are restricted according to the setting ability of the UE.
  • the configuration parameters during the BWP handover process are reduced. The change to improve the efficiency of BWP switching.
  • the above-mentioned BWP configuration parameter restriction operation is performed only when the dynamic BWP is switched.
  • Fig. 4 is a flowchart of a handover method provided by an embodiment. As shown in FIG. 4, the handover method provided in this embodiment includes step 210 and step 220. For technical details that are not described in detail in this embodiment, reference may be made to any of the foregoing embodiments.
  • step 210 a control message is received, the control message including the target parameter determined according to the configuration parameter of the RRC.
  • step 220 switch between the sleep state and the normal state according to the target parameter.
  • the UE when the target parameter indicated by the serving node is the first set of configuration parameters, the UE changes the PDCCH monitoring period according to the target parameter, and monitors the PDCCH according to the offset indicated by the target parameter. If the indicated monitoring period is greater than the current UE If the indicated monitoring period is less than the current monitoring period of the UE, the UE switches to the normal state. In the case that the target parameter indicated by the serving node is the second set of configuration parameters, the UE can switch from the virtual BWP to the BWP in the normal state according to the target parameter to realize the state switching.
  • the UE implements state switching according to the target parameters in the control message by receiving the control message sent by the serving node.
  • the control message is used to indicate the target parameter, and the signaling overhead is small, that is, the UE does not have multiple configurations.
  • this method can also be applied, which improves the applicability of state switching, and improves the switching efficiency by efficiently instructing the terminal to switch the state.
  • the method further includes: reporting the capability information of the set capability to the service node.
  • the set capability refers to the energy-saving capability and low-complexity capability of the UE in the energy-saving application scenario.
  • the service node is enabled to perform the operation of the first BWP and the second BWP.
  • the configuration parameter limits the operation. By limiting the configuration parameters, the BWP configuration parameter ranges before and after the switching overlap, thereby reducing the change of the configuration parameters during the BWP switching process, improving the BWP switching efficiency, and then improving the efficiency of the state switching.
  • the configuration parameters include a first set of parameters and a second set of parameters; the first set of parameters include the monitoring period and offset of the PDCCH; the second set of parameters includes at least two bandwidth part BWPs, where at least one BWP corresponds to In the dormant state.
  • the target parameter is selected by the service node from the first set of parameters and the second set of parameters according to at least one of the following information:
  • Frequency band information Frequency band information, terminal capability information, new air interface NR version information supported by the serving node or terminal, and secondary cell activation delay requirement information.
  • control message is received through the Pcell or the scheduling cell.
  • control message includes a target parameter indication field
  • the number of bits in the target parameter indication field is m-1, and m-1 bits correspond to m-1 secondary cells respectively; or, the number of bits in the target parameter indication field is twice that of m-1, and every 2 bits corresponds to A secondary cell; where m represents the maximum number of carriers supported by the NR system.
  • control message includes DCI, and a new DCI format defined in an application scenario that saves energy can be used.
  • the configuration parameters include configuration parameters of a virtual BWP; the virtual BWP corresponds to a BWP in a normal state, and the first configuration parameter and its sub-parameters between the virtual BWP and the corresponding BWP in the normal state
  • the parameters may be configured differently; the second configuration parameter between the virtual BWP and the corresponding BWP in the normal state is the same.
  • the first configuration parameter includes at least one of the following: PDCCH search space, CORESET configuration parameter, CSI-RS configuration parameter, A-TRS configuration parameter, sounding reference signal SRS configuration parameter, and BM configuration parameter.
  • the second configuration parameter includes at least one of the following: bandwidth, subcarrier spacing SCS, and center frequency point.
  • the virtual BWP is the same as the BWP index of the corresponding BWP in the normal state.
  • the first configuration parameter is a BWP-specific parameter
  • the second configuration parameter is a BWP common parameter.
  • the target parameters include: configuration parameters of the virtual BWP and corresponding configuration parameters of the BWP in the normal state.
  • the target parameter when the target parameter includes the second set of parameters, it further includes:
  • the capability information of the set capability reported to the service node so that the serving node performs the configuration parameter restriction operation on the first BWP and the second BWP according to the capability information of the set capability, where the first BWP is the BWP before handover , The second BWP is the BWP after the handover.
  • the configuration parameter ranges of the BWP before and after the switching overlap, thereby reducing the change of the configuration parameters during the BWP switching process, improving the efficiency of BWP switching, and thereby improving the efficiency of state switching.
  • the configuration parameter restriction operation includes at least one of the following: BWP configuration parameter restriction operation, reference signal configuration parameter restriction operation, antenna port configuration parameter restriction operation, SRS antenna switching configuration parameter restriction operation, and transmission configuration indication TCI status configuration Parameter limit operation.
  • the switching mode between the at least two BWPs is dynamic BWP switching.
  • the BWP configuration parameter limiting operation includes: limiting the overlap of the frequency domain positions of the first BWP and the second BWP, wherein the bandwidth of the first BWP is smaller than the bandwidth of the second BWP.
  • the reference signal configuration parameter restriction operation includes: restricting the time-frequency domain position of the first BWP reference signal to be a subset of the time-frequency domain position of the second BWP reference signal.
  • the antenna port configuration parameter limitation operation includes: limiting the number of antenna ports of the first BWP to be less than or equal to the number of antenna ports of the second BWP.
  • the transmission configuration indication status configuration parameter restriction operation includes: sharing the transmission configuration indication status of the first BWP and the second BWP.
  • the SRS antenna switching configuration parameter limitation operation includes: limiting the SRS antenna switching configuration parameter of the first BWP to be a subset of the SRS antenna switching configuration parameter of the second BWP.
  • the setting capability is determined according to at least one of terminal type and frequency band information.
  • the serving node (for example, gNB) sends RRC configuration parameters to the UE, where the configuration parameters include Pcell and Scell configuration parameters, and the target parameter is the configuration of multiple BWPs on the Scell, for example, two BWPs, respectively It is BWP1 and BWP2.
  • the BWPs is configured for cross-carrier scheduling.
  • BWP1 can increase the CSI measurement period on BWP1 by configuring parameters to make the UE more energy-saving.
  • BWP2 is a self-scheduled BWP.
  • BWP1 In the case that the currently activated BWP on the Scell is BWP1, if a service arrives and the Scell needs to be activated quickly, the UE will blindly check the control channel on the activated BWP on the Pcell or other scheduled Scell according to the target parameters indicated by the serving node. The message completes the BWP switch, that is, the state change.
  • BWP1 can be configured to a smaller bandwidth, so that the terminal is more energy-efficient, and BWP2 can be configured to a large bandwidth.
  • the RRC message may not configure the index number of the search space for the BWP of the Scell.
  • the terminal can also be configured with CSI-RS resource configuration, CSI calculation configuration, and channel resource configuration for CSI feedback through RRC;
  • the types of CSI-RS include periodic CSI-RS and semi-static CSI-RS.
  • CSI feedback types include periodic feedback, semi-continuous feedback and aperiodic feedback.
  • periodic CSI and semi-persistent CSI feedback are fed back on the Physical Uplink Control Channel (PUCCH); aperiodic CSI and semi-persistent CSI feedback are fed back on the Physical Uplink Share Channel (PUSCH). ) For feedback.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Share Channel
  • periodic CSI and periodic CSI-RS are configured and activated by RRC, semi-persistent CSI_RS and semi-persistent CSI on PUCCH are activated by MAC-CE; aperiodic CSI-RS, aperiodic CSI and semi-persistent on PUSCH CSI is triggered or activated by DCI.
  • the BWP may be an uplink BWP or a downlink BWP.
  • control message includes DCI
  • serving node sends the DCI message to the UE.
  • the UE determines which Scells need to complete the BWP handover based on the newly added indication field in the DCI message; for example, the newly added indication field is configured as 010000100100111, indicating that the number 2/7/10/13/14/15 corresponds to The Scell needs to complete the BWP switch, that is, the sleep state is switched to the normal state, and the PDCCH is detected on the respective Scell after the switch is completed.
  • the newly added indication field is configured as 010000100100111, indicating that the number 2/7/10/13/14/15 corresponds to The Scell needs to complete the BWP switch, that is, the sleep state is switched to the normal state, and the PDCCH is detected on the respective Scell after the switch is completed.
  • the serving node when the current data packet drops suddenly, can instruct the Scell to perform BWP switching through the BWP indication field in the DCI message and return to the dormant state.
  • the UE implements state switching according to the target parameter in the control message by receiving the control message sent by the serving node.
  • the control message is only used to indicate the target parameter, and the signaling overhead is small, even if the UE does not have multiple configurations.
  • this method can also be applied, which improves the applicability of state switching. By efficiently instructing the terminal to switch the state, the switching efficiency is improved.
  • Fig. 5 is a schematic structural diagram of a handover indication device provided by an embodiment.
  • the switching instruction device includes: a target parameter determination module 310 and an instruction module 320.
  • the target parameter determining module 310 is configured to determine the target parameter according to the configuration parameters of the radio resource control RRC;
  • the instruction module 320 is configured to send a control message to the terminal, the control message including the target parameter, and the control message is used to instruct the terminal to switch between the sleep state and the normal state according to the target parameter.
  • parameters are configured through RRC signaling, and target parameters are determined according to the configuration parameters.
  • the target parameters are sent to the terminal through a control message, thereby instructing the terminal to perform state switching.
  • the control message is only used to indicate the target parameter.
  • the signaling overhead is small, and the method can be applied even when the UE does not have the ability to configure multiple BWPs, which improves the applicability of state switching, and improves the switching efficiency by efficiently indicating state switching to the terminal.
  • the configuration parameters include a first set of parameters and a second set of parameters
  • the first set of parameters includes the monitoring period and offset of the physical downlink control channel PDCCH;
  • the second set of parameters includes at least two bandwidth part BWPs, where at least one BWP corresponds to a sleep state.
  • the target parameter determination module 310 is set to:
  • Frequency band information Frequency band information, terminal capability information, new air interface NR version information supported by the serving node or terminal, and secondary cell activation delay requirement information.
  • control message is sent through the primary cell or the scheduling cell.
  • control message includes a target parameter indication field
  • the number of bits of the target parameter indication field is m-1, and the m-1 bits correspond to m-1 secondary cells respectively; or,
  • the number of bits of the target parameter indication field is twice that of m-1, and every 2 bits corresponds to a secondary cell; where m represents the maximum number of carriers supported by the NR system.
  • control message includes downlink control information DCI.
  • the configuration parameters include configuration parameters of a virtual BWP
  • the virtual BWP corresponds to a BWP in a normal state, and the first configuration parameter between the virtual BWP and the corresponding BWP in the normal state is different; the second configuration parameter between the virtual BWP and the BWP in the corresponding normal state the same.
  • the first configuration parameter includes at least one of the following:
  • control resource set CORESET configuration parameters channel state information reference signal CSI-RS configuration parameters, aperiodic tracking reference signal configuration parameters, sounding reference signal configuration parameters, and BM configuration parameters.
  • the second configuration parameter includes at least one of the following: bandwidth, subcarrier spacing SCS, and center frequency point.
  • the virtual BWP is the same as the BWP index of the corresponding BWP in the normal state.
  • the first configuration parameter is a BWP-specific parameter
  • the second configuration parameter is a BWP common parameter
  • the target parameter includes:
  • the handover indication device further includes:
  • the capability information receiving module is set to receive the capability information of the set capability reported by the terminal;
  • the restriction module is configured to perform configuration parameter restriction operations on the at least two BWPs according to the capability information of the set capability, where the at least two BWPs include a first BWP and a second BWP.
  • the configuration parameter restriction operation includes at least one of the following: BWP configuration parameter restriction operation, reference signal configuration parameter restriction operation, antenna port configuration parameter restriction operation, SRS antenna switching configuration parameter restriction operation, and transmission configuration indication TCI State configuration parameters restrict operations.
  • the switching mode between the at least two BWPs is dynamic BWP switching.
  • the BWP configuration parameter limiting operation includes: limiting the overlap of the frequency domain positions of the first BWP and the second BWP, wherein the bandwidth of the first BWP is smaller than the bandwidth of the second BWP.
  • the reference signal configuration parameter restriction operation includes:
  • the time-frequency domain position of the reference signal of the first BWP is restricted to be a subset of the time-frequency domain position of the second BWP reference signal.
  • the antenna port configuration parameter restriction operation includes:
  • the transmission configuration indication state configuration parameter restriction operation includes:
  • the SRS antenna switching configuration parameter restriction operation includes:
  • the SRS antenna switching configuration parameter of the first BWP is restricted to be a subset of the SRS antenna switching configuration parameter of the second BWP.
  • the setting capability is determined according to at least one of terminal type and frequency band information.
  • the setting capability refers to the energy-saving capability of the UE in an application scenario that saves energy.
  • the energy-saving capability information by limiting the configuration parameters, the configuration parameter ranges of the BWP before and after the switching overlap, thereby reducing the change of the configuration parameters during the BWP switching process, improving the efficiency of BWP switching, and thereby improving the efficiency of state switching.
  • Fig. 6 is a schematic structural diagram of a switching device provided by an embodiment. As shown in FIG. 6, the switching device includes: a receiving module 410 and a switching module 420.
  • the receiving module 410 is configured to receive a control message, where the control message includes the target parameter determined according to the configuration parameter of the RRC;
  • the switching module 420 is configured to switch between the sleep state and the normal state according to the target parameter.
  • the switching module 420 is specifically configured as follows:
  • the repeated transmission information includes the number of repeated transmissions and the sounding reference signal resource index, and there are at least two sounding reference signal resources, repeat transmissions for a set number of times or half of the set number of times are performed through each sounding reference signal resource .
  • the switching device further includes:
  • the reporting module is configured to report the capability information of the set capability to the service node.
  • the serving node is enabled to perform the configuration parameter restriction operation on the at least two BWPs according to the capability information of the set capability, where the at least two BWPs include a first BWP and a second BWP.
  • the switching device of this embodiment realizes state switching according to the target parameter in the control message by receiving the control message sent by the serving node.
  • the control message is only used to indicate the target parameter, and the signaling overhead is small, even if the UE does not have configuration
  • this method can also be applied, which improves the applicability of state switching. By efficiently instructing the terminal to switch the state, the switching efficiency is improved.
  • the configuration parameters include a first set of parameters and a second set of parameters; the first set of parameters include PDCCH monitoring period and offset; the second set of parameters include at least two bandwidth parts BWP, where, At least one BWP corresponds to the dormant state.
  • the target parameter is selected by the service node from the first set of parameters and the second set of parameters according to at least one of the following information:
  • Frequency band information Frequency band information, terminal capability information, new air interface NR version information supported by the serving node or terminal, and secondary cell activation delay requirement information.
  • control message is received through the primary cell or the scheduling cell.
  • control message includes a target parameter indication field
  • the number of bits of the target parameter indication field is m-1, and the m-1 bits correspond to m-1 secondary cells respectively; or,
  • the number of bits of the target parameter indication field is twice that of m-1, and every 2 bits corresponds to a secondary cell; where m represents the maximum number of carriers supported by the NR system.
  • control message includes DCI, and a new DCI format defined in an application scenario that saves energy can be used.
  • the configuration parameters include configuration parameters of a virtual BWP
  • the virtual BWP corresponds to a BWP in a normal state, and the first configuration parameter between the virtual BWP and the corresponding BWP in the normal state is different; the second configuration parameter between the virtual BWP and the BWP in the corresponding normal state the same.
  • the first configuration parameter includes at least one of the following:
  • PDCCH search space CORESET configuration parameters, CSI-RS configuration parameters, A-TRS configuration parameters, sounding reference signal SRS configuration parameters, and BM configuration parameters.
  • the second configuration parameter includes at least one of the following: bandwidth, subcarrier spacing SCS, and center frequency point.
  • the virtual BWP is the same as the BWP index of the corresponding BWP in the normal state.
  • the first configuration parameter is a BWP-specific parameter
  • the second configuration parameter is a BWP common parameter.
  • the target parameters include: configuration parameters of the virtual BWP and corresponding configuration parameters of the BWP in a normal state.
  • the configuration parameter ranges of the BWP before and after the switching overlap, thereby reducing the change of the configuration parameters during the BWP switching process, improving the efficiency of BWP switching, and thereby improving the efficiency of state switching.
  • the setting capability is determined according to at least one of terminal type and frequency band information.
  • the embodiment of the present application also provides a service node.
  • the switching instruction method may be executed by a switching instruction device, which may be implemented in software and/or hardware, and integrated in the service node.
  • Fig. 7 is a schematic structural diagram of a service node provided by an embodiment.
  • a service node provided in this embodiment includes a processor 510 and a storage device 520.
  • FIG. 7 uses a processor 510 as an example.
  • the processor 510 and the storage device 520 in the device may be connected by a bus or other methods. Connect as an example.
  • the one or more programs are executed by the one or more processors 510, so that the one or more processors implement the handover instruction method described in any of the foregoing embodiments.
  • the storage device 520 in the service node can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as the switching instruction method in the embodiment of the present invention.
  • Corresponding program instructions/modules (for example, the modules in the switching instruction device shown in FIG. 5 include: a target parameter determination module 310 and an instruction module 320).
  • the processor 510 executes various functional applications and data processing of the service node by running the software programs, instructions, and modules stored in the storage device 520, that is, implements the switching instruction method in the foregoing method embodiment.
  • the storage device 520 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. (as in the above implementation) The configuration parameters and target parameters in the example).
  • the storage device 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 520 may further include a memory provided remotely with respect to the processor 510, and these remote memories may be connected to the service node through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the following operations are implemented: determine the target parameter according to the configuration parameters of the radio resource control RRC; send a control message to the terminal, so The control message includes the target parameter, and the control message is used to instruct the terminal to switch between the sleep state and the normal state according to the target parameter.
  • the embodiment of the present application also provides a terminal.
  • the switching method may be executed by a switching device, which may be implemented by software and/or hardware, and integrated in the terminal.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment.
  • a terminal provided in this embodiment includes: a processor 610 and a storage device 620.
  • one processor 610 is taken as an example.
  • the processor 610 and the storage device 620 in the device may be connected by a bus or other methods.
  • FIG. Connect as an example.
  • the one or more programs are executed by the one or more processors 610, so that the one or more processors implement the switching method described in any one of the foregoing embodiments.
  • the storage device 620 in the terminal is used as a computer-readable storage medium and can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, such as those corresponding to the switching method in the embodiment of the present invention.
  • Program instructions/modules (for example, the modules in the switching device shown in FIG. 6 include: a receiving module 410 and a switching module 420).
  • the processor 610 executes various functional applications and data processing of the terminal by running software programs, instructions, and modules stored in the storage device 620, that is, implements the switching method in the foregoing method embodiment.
  • the storage device 620 mainly includes a storage program area and a storage data area.
  • the storage program area can store an operating system and an application program required by at least one function; the storage data area can store data created according to the use of the device, etc. (as in the above implementation) Control messages, configuration parameters, etc. in the example).
  • the storage device 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 620 may further include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the following operations are implemented: receiving a control message, where the control message includes the target parameter determined according to the RRC configuration parameter; The target parameter switches between the sleep state and the normal state.
  • the terminal proposed in this embodiment and the handover method proposed in the above embodiment belong to the same inventive concept.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute a switching instruction method or a switching method when executed by a computer processor.
  • this application can be implemented by software and general hardware, or can be implemented by hardware.
  • the technical solution of the present application can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, read-only memory (ROM), Random Access Memory (RAM), flash memory (FLASH), hard disk or optical disk, etc., including multiple instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to execute any of this application
  • a computer device which can be a personal computer, server, or network device, etc.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), programmable logic devices (FGPA) And processors based on multi-core processor architecture.
  • DSP digital signal processors
  • ASIC application-specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种切换指示方法、切换方法、装置、服务节点、终端及介质。该方法根据无线资源控制RRC的配置参数确定目标参数;向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。

Description

切换指示方法、切换方法、装置、服务节点、终端及介质
本申请要求在2019年9月6日提交中国专利局、申请号为201910843884.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种切换指示方法、切换方法、装置、服务节点、终端及介质。
背景技术
休眠状态(Dormancy behavior)是指用户终端(User Equipment,UE)停止监控物理下行控制信道(Physical Downlink Control Channel,PDCCH),但仍持续进行其他活动,例如信道状态信息(ChannelStateInformation,CSI)测量、自动增益控制(Automatic Gain Control,AGC)和波束管理(Beam Management,BM)等。相关技术中动态指示UE在休眠状态和正常状态之间切换需要占用较大的信令开销,或者在UE具备配置多个带宽部分(Bandwidth Part,BWP)的能力的情况下,可以利用BWP切换技术实现UE的状态切换,这些方法都有局限性,无法高效地指示UE在休眠状态和正常状态之间的切换。
发明内容
本申请提供一种切换指示方法、切换方法、装置、服务节点、终端及介质,以提高状态切换的适用性并提高切换效率。
本申请实施例提供一种切换指示方法,包括:
根据无线资源控制(Radio Resource Control,RRC)的配置参数确定目标参数;
向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。
本申请实施例还提供了一种切换方法,包括:
接收控制消息,所述控制消息包括根据RRC的配置参数确定的目标参数;
按照所述目标参数进行休眠状态和正常状态的切换。
本申请实施例还提供了一种切换指示装置,包括:
目标参数确定模块,设置为根据RRC的配置参数确定目标参数;
指示模块,设置为向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。
本申请实施例还提供了一种切换装置,包括:
接收模块,设置为接收控制消息,所述控制消息包括根据RRC的配置参数确定的目标参数;
切换模块,设置为按照所述目标参数进行休眠状态和正常状态的切换。
本申请实施例还提供了一种服务节点,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的切换指示方法。
本申请实施例还提供了一种终端,包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的切换方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的切换指示方法或切换方法。
附图说明
图1为一实施例提供的一种切换指示方法的流程图;
图2为一实施例提供的BWP配置参数限制操作的示意图;
图3为一实施例提供的另一BWP配置参数限制操作的示意图;
图4为一实施例提供的一种切换方法的流程图;
图5为一实施例提供的一种切换指示装置的结构示意图;
图6为一实施例提供的一种切换装置的结构示意图;
图7为一实施例提供的一种服务节点的结构示意图;
图8为一实施例提供的一种终端的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
UE在正常状态下以一定的周期监控PDCCH,而在休眠状态下停止监控PDCCH,但仍持续进行其他活动,例如CSI测量、AGC和BM等。休眠状态与正常状态之间具有一定的切换时延,切换时延主要取决于T activation_time(包括介质访问控制层控制单元(Medium Access Control-Control Element,MAC-CE)解析时延、射频(Radio Frequency,RF)唤醒时延、AGC调整时延和时频偏同步时延等)。在UE处于休眠状态的情况下,辅小区(Secondary Cell,Scell)上的RF不关闭,可以减少切换时延。
相关技术中,可以通过下行控制信息(Downlink Control Information,DCI)信令动态修改UE对PDCCH的监控周期,正常状态下的监控周期相对较短,监控较为频繁,而休眠状态下的监控周期相对较长,监控较为稀疏,但这种动态 指示的方法需要占用较大的信令开销,效率低;还可以基于BWP切换的技术,使UE从休眠状态的BWP切换至正常状态(激活的)BWP,这要求UE具备配置多个BWP的能力,但这种配置多个BWP的能力是以频带(band)为粒度的,即在有些频带上不支持配置多个BWP,通过BWP不同数学命理学(BWP-Diffnumerology)和BWP相同数学命理学(BWP-Samenumerolog)两个UE能力通知,这种情况下,利用BWP切换技术实现UE状态切换的方法不再适用。相关技术中的方法对于信令开销或带宽限制有局限性,无法高效地指示UE在休眠状态和正常状态之间的切换。
本实施例提供一种切换指示方法,通过RRC信令配置参数,并根据配置参数确定目标参数,目标参数通过控制消息发送给终端,从而指示终端进行状态切换,其中,控制消息用于向终端指示目标参数,信令开销较小,并且,即使在UE不具备配置多个BWP的能力的情况下该方法也可以适用,提高了状态切换的适用性,通过高效地向终端指示状态切换,提高了切换效率。
图1为一实施例提供的一种切换指示方法的流程图。本实施例的切换指示方法应用于服务节点。如图1所示,该方法包括步骤110和步骤120。
在步骤110中,根据无线资源控制RRC的配置参数确定目标参数。
本实施例中,通过RRC信令可配置用于指示UE进行状态切换的配置参数,其中,状态切换包括从休眠状态切换到正常状态,以及从正常状态切换到休眠状态。例如,配置参数可用于配置Scell上UE对PDCCH的监控周期,例如Scell上配置2种PDCCH监控周期,一种长周期一种短周期,长周期对应休眠状态,短周期对应正常状态,则可通过控制消息进一步指示UE切换PDCCH监控周期,例如1比特用于一个Scell上的PDCCH监控周期的切换,如果该比特配置为0,则UE切换为休眠状态,否则UE切换为正常状态;配置参数还可用于配置切换的BWP,例如,配置休眠状态的BWP和正常状态的BWP,通过控制消息可进一步指示UE从休眠状态的BWP切换到激活的BWP,从而实现从休眠状态切换 到正常状态,或者通过控制消息进一步指示UE从激活的BWP切换到休眠状态的BWP,从而实现从正常状态切换到休眠状态。配置参数可以为一套或多套,服务节点可根据实际需求从中确定目标参数指示给UE。
在步骤120中,向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。
本实施例中,控制消息可以为DCI,通过DCI中设定的指示域可指示Scell使用的BWP,或者指示在每个辅小区中是否监控PDCCH或者指示切换监控PDCCH的监控周期和偏移等。本实施例的方法不要求在UE必须具备配置多个BWP的能力,控制消息仅用于指示目标参数,信令开销较小。
在一实施例中,所述配置参数包括第一套参数和第二套参数;第一套参数包括PDCCH的监控周期和偏移;第二套参数包括至少两个BWP,其中,至少一个BWP对应于休眠状态。
在一实施例中,通过RRC可以配置两套配置参数,第一套配置参数用于指示UE对PDCCH的监控周期和偏移,其中,偏移用于表示在一个监控周期内进行监控的时隙位置,例如,一个监控周期包括10个时隙,偏移为3,则在该监控周期的10个时隙中的第3个时隙监控PDCCH。第二套配置参数包括至少两个BWP,其中,至少一个BWP为休眠状态,将第二套配置参数作为目标参数指示给UE,UE可据此通过BWP切换实现状态切换。
在一实施例中,所述根据无线资源控制RRC的配置参数确定目标参数,包括:根据以下信息中的至少一种在所述第一套参数和第二套参数中选择目标参数:频带信息、终端能力信息、服务节点或终端支持的新空口NR版本信息以及Scell激活时延需求信息。
在向终端指示状态切换的过程中,服务节点可以从这两套配置参数中选择一套作为目标参数,例如,在UE在当前的频带中具备配置多个BWP的能力、支持BWP切换的情况下,可以选择第二套配置参数作为目标参数,否则,可以 选择第一套配置参数作为目标参数。又如,在UE有一个低延迟需求业务的情况下,对Scell激活时延需求比较高,服务节点可以选择第一套配置参数作为目标参数。
在一实施例中,所述控制消息通过主小区(Primary Cell,Pcell)或调度小区发送。
在一实施例中,所述控制消息包括目标参数指示域;所述目标参数指示域的比特数量为m-1,m-1个比特分别对应于m-1个辅小区;或者,所述目标参数指示域的比特数量为m-1的2倍,每2个比特对应于一个辅小区;其中,m表示NR***支持的最大载波数量。
本实施例中,控制消息通过一定比特数量的目标参数指示域向终端指示目标参数。例如,在服务节点选择第一套配置参数作为目标参数的情况下,例如gNB给Scell配置不同的PDCCH监控周期及偏移,则该目标参数指示域用于指示不同PDCCH监控周期及偏移的切换;在服务节点选择第二套配置参数作为目标参数的情况下,例如gNB给Scell配置多个BWP,则该目标参数指示域用于指示不同BWP的切换。
在一实施例中,可以通过m-1个比特分别指示m-1个辅小区的目标参数,每个比特对应于一个辅小区;或者,通过2*(m-1)个比特指示m-1个辅小区的目标参数,每2个比特对应于一个辅小区,其中,m表示NR***支持的最大载波数量。
在一实施例中,控制消息包括DCI,且可以使用节省能耗(Power Saving)的应用场景下定义的新DCI格式。
在一实施例中,所述配置参数包括虚拟BWP的配置参数;所述虚拟BWP对应于一个正常状态的BWP,所述虚拟BWP与对应的正常状态的BWP之间的第一配置参数不同;所述虚拟BWP与对应的正常状态的BWP之间的第二配置参数相同。
本实施例中,服务节点通过RRC配置虚拟BWP的配置参数并发送至UE,该虚拟BWP与一个正常状态的BWP绑定,配置绑定的两个BWP相当于只配置一个BWP,只是两者的部分配置参数(第二配置参数)相同,部分配置参数(第一配置参数)不同,从而提高两个BWP之间的切换效率。将虚拟BWP的配置参数和对应的正常状态的BWP的配置参数切换通过控制消息指示给UE,可使UE通过从虚拟BWP切换到正常状态的BWP,实现从休眠状态切换到正常状态,或者,指示UE通过从正常状态的BWP切换到虚拟BWP,实现从正常状态切换到休眠状态。
在一实施例中,第一配置参数包括以下至少之一:PDCCH的搜索空间、控制资源集(Control Resource Set,CORESET)配置参数、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)配置参数、非周期跟踪参考信号(Aperiodic Tracking Reference Signal,A-TRS)配置参数、探测参考信号(Sounding Reference Signal,SRS)配置参数、BM配置参数。
在一实施例中,第二配置参数包括以下至少之一:带宽、子载波间隔(Subcarrier Spacing,SCS)和中心频点。
在一实施例中,BWP与对应的正常状态的BWP的BWP索引(Identity,ID)相同。
在一实施例中,所述第一配置参数为BWP专有(Dedicated)参数,所述第二配置参数为BWP共有(Common)参数。本实施例中,配置第一BWP和第二BWP之间的专有参数及其子参数可以不同,共有参数相同。例如,BWP专有参数包括以下至少之一:物理下行共享信道配置参数(Physical Downlink Shared Channel-configuration,PDSCH-config),物理下行控制信道配置参数(PDCCH-config),半持续传输配置参数(Semi-Persistent Scheduling-configuration,SPS-config),无线链路监听配置参数(Radio Link Monitoring-config),物理上行数据信道配置参数(PUSCH-config),物理上行 控制信道配置参数(PUCCH-config),配置授权配置参数(Configured Grant-config),探测参考信号配置参数(SRS-config),波束失败恢复配置参数(Beam Failure Recovery-config);BWP共有参数包括以下至少之一:物理下行控制信道共有配置参数(PDCCH-config common),物理下行数据信道共有配置参数(PDSCH-config common),一般参数(Generic Parameters),物理上行控制信道共有配置参数(PUCCH-config common),物理上行数据信道共有配置参数(PUSCH-config common),随机接入信道共有配置参数(Rach-config common);
本实施例中,目标参数包括:虚拟BWP的配置参数以及对应的正常状态的BWP的配置参数。
在一实施例中,在目标参数包括第二套参数的情况下,还包括:接收终端上报的设定能力的能力信息;根据所述设定能力的能力信息执行对所述至少两个BWP的配置参数限制操作,其中,所述至少两个BWP包括第一BWP和第二BWP。
本实施例中,设定能力是指UE在节省能耗的应用场景下的节能能力。根据节能能力的能力信息,通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
本实施例中,RRC配置的第二套参数中,至少两个BWP之间的切换方式为动态BWP切换。
相关技术中,UE在每个载波上最多可配置4个上行BWP和4个下行BWP。同一时刻,每个UE只能有一个激活的上行BWP和一个激活的下行BWP。每个BWP上的配置可以不同,UE可以根据业务情况动态调整激活BWP。例如,UE配置了2个下行BWP:BWP1带宽小于BWP2带宽。在UE的下行业务量较大的情况下,可以激活BWP2用于下行业务传输,在UE下行业务量较小的情况 下,可以切换到BWP2以节约能耗。BWP的切换主要有三种方式:1)DCI切换,UE根据DCI format 0_1和DCI format 1_1中的带宽部分指示域确定切换的目标上行BWP和目标下行BWP;2)RRC信令切换,UE根据RRC信令中的firstActiveUplinkBWP-Id和firstActiveDownlinkBWP-Id确定切换的目标上行BWP和目标下行BWP;3)BWP非激活定时器(inactivity timer)切换,当UE的非激活定时器超时后,UE将下行BWP切换到默认下行BWP,即切换到BWPID为defaultDownlinkBWP-Id的下行BWP。本实施例中,至少两个BWP之间的切换方式可以为DCI切换。在一实施例中,配置参数限制操作包括以下至少之一:BWP配置参数限制操作、参考信号配置参数限制操作、天线端口配置参数限制操作、SRS天线切换配置参数限制操作和传输配置指示(Transmission Configuration Indicator,TCI)状态(State)配置参数限制操作。
在一实施例中,BWP配置参数限制操作包括:限制第一BWP和第二BWP的频域位置重叠,其中,第一BWP的带宽小于第二BWP的带宽。本实施例中,最多可设置4个BWP。
图2为一实施例提供的BWP配置参数限制操作的示意图。本实施例中通过RRC配置两个BWP,如图2所示,第一BWP和第二BWP的频域位置重叠,其中,斜线区域为第一BWP,最外的方框表示第二BWP,第一BWP的带宽小于第二BWP的带宽。
图3为一实施例提供的另一BWP配置参数限制操作的示意图。本实施例中通过RRC配置三个BWP,如图3所示,竖线区域表示第一BWP,斜线区域表示第二BWP,最外的方框表示第三BWP,第一BWP、第二BWP和第三BWP的频域位置重叠,其中,第一BWP的带宽小于第二BWP的带宽,第二BWP的带宽小于第三BWP的带宽。
在一实施例中,参考信号配置参数限制操作包括:限制第一BWP的参考信号的时频域位置为第二BWP参考信号的时频域位置的子集。参考信号包括以下 至少之一:信道状态参考信号(CSI-RS),跟踪参考信号(Tracking Reference Signal,TRS),探测参考信号(SRS),解调参考信号(De-Modulation Reference Signal,DMRS),相位跟踪参考信号(Phase-tracking Reference Signal,PTRS),非周期跟踪参考信号(A-TRS),非周期信道状态参考信号(Aperiodic-Channel State Information-Reference Signal,A-CSI-RS)以及半持续信道状态参考信号(Semi-Persistent Scheduling-Channel State Information-Reference Signal,SPS-CSI-RS)。在一实施例中,天线端口配置参数限制操作包括:限制第一BWP的天线端口数小于或等于第二BWP的天线端口数。天线端口包括以下至少之一:PDCCH天线端口,PDSCH天线端口,CSI-RS天线端口,同步信号广播信道天线端口(SS/PBCH),PUSCH天线端口,PUCCH天线端口,DMRS天线端口,SRS天线端口,PRACH天线端口(物理随机接入信道);例如,第二BWP配置的CSI-RS天线端口为2端口,分别是3000和3001,则第一BWP配置的CSI-RS天线端口只能为1端口(3000)或者2端口(3000和3001);
在一实施例中,TCI状态配置参数限制操作包括:共享第一BWP和第二BWP的TCI状态。
在一实施例中,SRS天线切换配置参数限制操作包括:限制第一BWP的SRS天线切换配置参数为第二BWP的SRS天线切换配置参数的子集。
在一实施例中,设定能力根据终端类型和频带信息中的至少之一确定。本实施例中,频带信息描述一下可以是FR频率范围1或FR频率范围2。
上述实施例通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
在一实施例中,上述BWP配置参数限制操作也适用于BWP切换的应用场景。在BWP切换的过程中,不考虑UE的休眠状态与正常状态的切换,根据UE的设定能力限制BWP的配置参数,通过限制切换前后的BWP的配置参数范 围重叠,减少BWP切换过程中配置参数的变化,从而提高BWP切换效率。
在一实施例中,上述BWP配置参数限制操作只在动态BWP切换时才进行。
本申请实施例还提供一种切换方法,应用于UE等终端。图4为一实施例提供的一种切换方法的流程图。如图4所示,本实施例提供的切换方法包括步骤210和步骤220。未在本实施例中详尽描述的技术细节可参见上述任意实施例。
在步骤210中,接收控制消息,所述控制消息包括根据RRC的配置参数确定的目标参数。
在步骤220中,按照所述目标参数进行休眠状态和正常状态的切换。
例如,在服务节点指示的目标参数为第一套配置参数的情况下,UE根据目标参数改变PDCCH的监控周期,并按照目标参数指示的偏移对PDCCH进行监控,如果指示的监控周期大于UE当前的监控周期,则UE切换为休眠状态,如果指示的监控周期小于UE当前的监控周期,则UE切换为正常状态。在服务节点指示的目标参数为第二套配置参数的情况下,UE根据目标参数可从虚拟BWP切换至正常状态的BWP,实现状态切换。
本实施例中,UE通过接收服务节点发送的控制消息,根据控制消息中的目标参数实现状态切换,其中,控制消息用于指示目标参数,信令开销较小,即在UE不具备配置多个BWP的能力的情况下该方法也可以适用,提高了状态切换的适用性,通过高效地向终端指示状态切换,提高了切换效率。
在一实施例中,所述方法还包括:向服务节点上报设定能力的能力信息。本实施例中,设定能力是指UE在节省能耗的应用场景下的节能能力和低复杂度能力,通过上报设定能力的能力信息,使服务节点执行对第一BWP和第二BWP的配置参数限制操作,通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
在一实施例中,配置参数包括第一套参数和第二套参数;第一套参数包括 PDCCH的监控周期和偏移;第二套参数包括至少两个带宽部分BWP,其中,至少一个BWP对应于休眠状态。
在一实施例中,目标参数由服务节点根据以下信息中的至少一种在所述第一套参数和第二套参数中选择得到:
频带信息、终端能力信息、服务节点或终端支持的新空口NR版本信息以及辅小区激活时延需求信息。
在一实施例中,通过Pcell或调度小区接收控制消息。
在一实施例中,控制消息包括目标参数指示域;
目标参数指示域的比特数量为m-1,m-1个比特分别对应于m-1个辅小区;或者,目标参数指示域的比特数量为m-1的2倍,每2个比特对应于一个辅小区;其中,m表示NR***支持的最大载波数量。
在一实施例中,控制消息包括DCI,且可以使用节省能耗的应用场景下定义的新DCI格式。
在一实施例中,所述配置参数包括虚拟BWP的配置参数;所述虚拟BWP对应于一个正常状态的BWP,所述虚拟BWP与对应的正常状态的BWP之间的第一配置参数及其子参数可以配置不同;所述虚拟BWP与对应的正常状态的BWP之间的第二配置参数相同。
在一实施例中,所述第一配置参数包括以下至少之一:PDCCH的搜索空间、CORESET配置参数、CSI-RS配置参数、A-TRS配置参数、探测参考信号SRS配置参数、BM配置参数。
在一实施例中,第二配置参数包括以下至少之一:带宽、子载波间隔SCS和中心频点。
在一实施例中,虚拟BWP与对应的正常状态的BWP的BWP索引相同。第一配置参数为BWP专有参数,所述第二配置参数为BWP共有参数。
在一实施例中,目标参数包括:虚拟BWP的配置参数以及对应的正常状态的BWP的配置参数。
在一实施例中,在目标参数包括第二套参数的情况下,还包括:
向服务节点上报的设定能力的能力信息,以使服务节点根据设定能力的能力信息执行对第一BWP和第二BWP的配置参数限制操作,其中,所述第一BWP为切换前的BWP,第二BWP为切换后的BWP。
本实施例通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
在一实施例中,配置参数限制操作包括以下至少之一:BWP配置参数限制操作、参考信号配置参数限制操作、天线端口配置参数限制操作、SRS天线切换配置参数限制操作和传输配置指示TCI状态配置参数限制操作。
在一实施例中,所述至少两个BWP之间的切换方式为动态BWP切换。
在一实施例中,BWP配置参数限制操作包括:限制第一BWP和第二BWP的频域位置重叠,其中,所述第一BWP的带宽小于所述第二BWP的带宽。
在一实施例中,参考信号配置参数限制操作包括:限制第一BWP的参考信号的时频域位置为第二BWP参考信号的时频域位置的子集。
在一实施例中,天线端口配置参数限制操作包括:限制第一BWP的天线端口数小于或等于第二BWP的天线端口数。
在一实施例中,传输配置指示状态配置参数限制操作包括:共享第一BWP和第二BWP的传输配置指示状态。
在一实施例中,SRS天线切换配置参数限制操作包括:限制第一BWP的SRS天线切换配置参数为第二BWP的SRS天线切换配置参数的子集。
在一实施例中,设定能力根据终端类型和频带信息中的至少之一确定。
在一实施例中,服务节点(例如gNB)发送RRC的配置参数至UE,其中,配置参数包括Pcell和Scell的配置参数,其中目标参数是Scell上配置多个BWP,例如配置2个BWP,分别是BWP1和BWP2,其中一个BWP配置为跨载波调度,例如BWP1,可以通过配置参数增大BWP1上CSI测量周期,使UE更加节能,BWP2是自调度BWP。在Scell上当前激活的BWP是BWP1的情况下,如果有业务到达,需要快速激活Scell,则UE根据服务节点指示的目标参数在Pcell或其他调度Scell上的激活BWP上盲检控制信道,根据控制消息完成BWP切换,即状态的改变,另外,BWP1可配置成较小带宽,从而使终端更节能,BWP2可以配置成大带宽。
在一实施例中,RRC消息可以给Scell的BWP不配置搜索空间的索引号。
在一实施例中,通过RRC还可以向终端配置CSI-RS资源配置、CSI计算配置和用于反馈CSI的信道资源配置;其中,CSI-RS的类型包括周期CSI-RS、半静态CSI-RS和非周期CSI-RS;CSI反馈类型包括周期反馈、半持续反馈和非周期反馈。
在一实施例中,周期CSI和半持续CSI反馈在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上进行反馈;非周期CSI和半持续CSI反馈在物理上行共享信道(Physical Uplink Share Channel,PUSCH)上进行反馈。
在一实施例中,周期CSI和周期CSI-RS由RRC配置并激活,半持续CSI_RS和PUCCH上的半持续CSI由MAC-CE激活;非周期CSI-RS、非周期CSI和PUSCH上的半持续CSI由DCI触发或激活。
上述实施例中,BWP可以为上行BWP,也可以为下行BWP。
在一实施例中,控制消息包括DCI,服务节点发送DCI消息至UE。
在一实施例中,UE基于DCI消息中的新增指示域确定哪些Scell需要完成BWP切换;例如,新增指示域配置为010000100100111,说明第2/7/10/13/14/15编号对应的Scell需要完成BWP切换,即休眠状态切换到正常状态,并且在切 换完成后在各自的Scell上探测PDCCH。
在一实施例中,在当前数据包骤然降低的情况下,服务节点可通过DCI消息中的BWP指示域指示Scell进行BWP切换,返回到休眠状态。
上述实施例中,UE通过接收服务节点发送的控制消息,根据控制消息中的目标参数实现状态切换,其中,控制消息仅用于指示目标参数,信令开销较小,即使在UE不具备配置多个BWP的能力的情况下该方法也可以适用,提高了状态切换的适用性,通过高效地向终端指示状态切换,提高了切换效率。
本申请实施例还提供一种切换指示装置。图5为一实施例提供的一种切换指示装置的结构示意图。如图5所示,所述切换指示装置包括:目标参数确定模块310和指示模块320。
目标参数确定模块310,设置为根据无线资源控制RRC的配置参数确定目标参数;
指示模块320,设置为向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。
本实施例的切换指示装置,通过RRC信令配置参数,并根据配置参数确定目标参数,目标参数通过控制消息发送给终端,从而指示终端进行状态切换,其中,控制消息仅用于指示目标参数,信令开销较小,即使在UE不具备配置多个BWP的能力的情况下该方法也可以适用,提高了状态切换的适用性,通过高效地向终端指示状态切换,提高了切换效率。
在一实施例中,所述配置参数包括第一套参数和第二套参数;
所述第一套参数包括物理下行控制信道PDCCH的监控周期和偏移;
所述第二套参数包括至少两个带宽部分BWP,其中,至少一个BWP对应于休眠状态。
在一实施例中,所述目标参数确定模块310,设置为:
根据以下信息中的至少一种在所述第一套参数和第二套参数中选择目标参数:
频带信息、终端能力信息、服务节点或终端支持的新空口NR版本信息以及辅小区激活时延需求信息。
在一实施例中,所述控制消息通过主小区或调度小区发送。
在一实施例中,所述控制消息包括目标参数指示域;
所述目标参数指示域的比特数量为m-1,m-1个比特分别对应于m-1个辅小区;或者,
所述目标参数指示域的比特数量为m-1的2倍,每2个比特对应于一个辅小区;其中,m表示NR***支持的最大载波数量。
在一实施例中,所述控制消息包括下行控制信息DCI。
在一实施例中,所述配置参数包括虚拟BWP的配置参数;
所述虚拟BWP对应于一个正常状态的BWP,所述虚拟BWP与对应的正常状态的BWP之间的第一配置参数不同;所述虚拟BWP与对应的正常状态的BWP之间的第二配置参数相同。
在一实施例中,所述第一配置参数包括以下至少之一:
PDCCH的搜索空间、控制资源集CORESET配置参数、信道状态信息参考信号CSI-RS配置参数、非周期跟踪参考信号配置参数、探测参考信号配置参数、BM配置参数。
在一实施例中,所述第二配置参数包括以下至少之一:带宽、子载波间隔SCS和中心频点。
在一实施例中,所述虚拟BWP与对应的正常状态的BWP的BWP索引相同。
在一实施例中,所述第一配置参数为BWP专有参数,所述第二配置参数为BWP共有参数;
在一实施例中,所述目标参数,包括:
所述虚拟BWP的配置参数以及对应的正常状态的BWP的配置参数。
在一实施例中,所述切换指示装置,还包括:
能力信息接收模块,设置为接收终端上报的设定能力的能力信息;
限制模块,设置为根据所述设定能力的能力信息执行对所述至少两个BWP的配置参数限制操作,其中,所述至少两个BWP包括第一BWP和第二BWP。
在一实施例中,所述配置参数限制操作包括以下至少之一:BWP配置参数限制操作、参考信号配置参数限制操作、天线端口配置参数限制操作、SRS天线切换配置参数限制操作和传输配置指示TCI状态配置参数限制操作。
在一实施例中,所述至少两个BWP之间的切换方式为动态BWP切换。
在一实施例中,BWP配置参数限制操作包括:限制所述第一BWP和所述第二BWP的频域位置重叠,其中,所述第一BWP的带宽小于所述第二BWP的带宽。
在一实施例中,参考信号配置参数限制操作包括:
限制所述第一BWP的参考信号的时频域位置为所述第二BWP参考信号的时频域位置的子集。
在一实施例中,天线端口配置参数限制操作包括:
限制所述第一BWP的天线端口数小于或等于所述第二BWP的天线端口数。
在一实施例中,传输配置指示状态配置参数限制操作包括:
共享所述第一BWP和所述第二BWP的传输配置指示状态。
在一实施例中,SRS天线切换配置参数限制操作包括:
限制所述第一BWP的SRS天线切换配置参数为所述第二BWP的SRS天线切换配置参数的子集。
在一实施例中,所述设定能力根据终端类型和频带信息中的至少之一确定。
本实施例中,设定能力是指UE在节省能耗的应用场景下的节能能力。根据节能能力的能力信息,通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
本申请实施例还提供一种切换装置。图6为一实施例提供的一种切换装置的结构示意图。如图6所示,所述切换装置包括:接收模块410和切换模块420。
接收模块410,设置为接收控制消息,所述控制消息包括根据RRC的配置参数确定的目标参数;
切换模块420,设置为按照所述目标参数进行休眠状态和正常状态的切换。
在一实施例中,所述切换模块420,具体设置为:
在所述重复传输信息包括重复传输次数和探测参考信号资源索引,且探测参考信号资源为至少两个的情况下,通过每个探测参考信号资源进行设定次数或设定次数一半次数的重复传输。
在一实施例中,所述切换装置还包括:
上报模块,设置为向服务节点上报设定能力的能力信息。通过上报设定能力的能力信息,使服务节点根据设定能力的能力信息执行对所述至少两个BWP的配置参数限制操作,其中,所述至少两个BWP包括第一BWP和第二BWP。
本实施例的切换装置,通过接收服务节点发送的控制消息,根据控制消息中的目标参数实现状态切换,其中,控制消息仅用于指示目标参数,信令开销较小,即使在UE不具备配置多个BWP的能力的情况下该方法也可以适用,提高了状态切换的适用性,通过高效地向终端指示状态切换,提高了切换效率。
在一实施例中,所述配置参数包括第一套参数和第二套参数;所述第一套参数包括PDCCH的监控周期和偏移;第二套参数包括至少两个带宽部分BWP,其中,至少一个BWP对应于休眠状态。
在一实施例中,目标参数由服务节点根据以下信息中的至少一种在所述第一套参数和第二套参数中选择得到:
频带信息、终端能力信息、服务节点或终端支持的新空口NR版本信息以及辅小区激活时延需求信息。
在一实施例中,通过主小区或调度小区接收控制消息。
在一实施例中,控制消息包括目标参数指示域;
所述目标参数指示域的比特数量为m-1,m-1个比特分别对应于m-1个辅小区;或者,
所述目标参数指示域的比特数量为m-1的2倍,每2个比特对应于一个辅小区;其中,m表示NR***支持的最大载波数量。
在一实施例中,控制消息包括DCI,且可以使用节省能耗的应用场景下定义的新DCI格式。
在一实施例中,所述配置参数包括虚拟BWP的配置参数;
所述虚拟BWP对应于一个正常状态的BWP,所述虚拟BWP与对应的正常状态的BWP之间的第一配置参数不同;所述虚拟BWP与对应的正常状态的BWP之间的第二配置参数相同。
在一实施例中,所述第一配置参数包括以下至少之一:
PDCCH的搜索空间、CORESET配置参数、CSI-RS配置参数、A-TRS配置参数、探测参考信号SRS配置参数、BM配置参数。
在一实施例中,第二配置参数包括以下至少之一:带宽、子载波间隔SCS和中心频点。
在一实施例中,虚拟BWP与对应的正常状态的BWP的BWP索引相同。在一实施例中,第一配置参数为BWP专有参数,所述第二配置参数为BWP共有参数。
在一实施例中,所述目标参数,包括:所述虚拟BWP的配置参数以及对应的正常状态的BWP的配置参数。
本实施例通过限制配置参数,使切换前后的BWP的配置参数范围重叠,从而减少BWP切换过程中配置参数的变化,提高BWP切换效率,进而提高状态切换的效率。
在一实施例中,所述设定能力根据终端类型和频带信息中的至少之一确定。
本申请实施例还提供一种服务节点。所述切换指示方法可以由切换指示装置执行,该切换指示装置可以通过软件和/或硬件的方式实现,并集成在所述服务节点中。
图7为一实施例提供的一种服务节点的结构示意图。如图7所示,本实施例提供的一种服务节点,包括:处理器510和存储装置520。该服务节点中的处理器可以是一个或多个,图7以一个处理器510为例,所述设备中的处理器510和存储装置520可以通过总线或其他方式连接,图7中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器510执行,使得所述一个或多个处理器实现上述任一实施例所述的切换指示方法。
该服务节点中的存储装置520作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例中切换指示方法对应的程序指令/模块(例如,附图5所示的切换指示装置中的模块,包括:目标参数确定模块310和指示模块320)。处理器510通过运行存储在存储装置520中的软件程序、指令以及模块,从而执行服务节点的各种功能应用以及数据处理,即实现上述方法实施例中的切换指示方法。
存储装置520主要包括存储程序区和存储数据区,其中,存储程序区可存 储操作***、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的配置参数、目标参数)。此外,存储装置520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至服务节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述服务节点中所包括一个或者多个程序被所述一个或者多个处理器510执行时,实现如下操作:根据无线资源控制RRC的配置参数确定目标参数;向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示终端按照所述目标参数进行休眠状态和正常状态的切换。
本实施例提出的服务节点与上述实施例提出的切换指示方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行切换指示方法相同的有益效果。
本申请实施例还提供一种终端。所述切换方法可以由切换装置执行,该切换装置可以通过软件和/或硬件的方式实现,并集成在所述终端中。
图8为一实施例提供的一种终端的结构示意图。如图8所示,本实施例提供的一种终端,包括:处理器610和存储装置620。该终端中的处理器可以是一个或多个,图8中以一个处理器610为例,所述设备中的处理器610和存储装置620可以通过总线或其他方式连接,图8中以通过总线连接为例。
所述一个或多个程序被所述一个或多个处理器610执行,使得所述一个或多个处理器实现上述任一实施例所述的切换方法。
该终端中的存储装置620作为一种计算机可读存储介质,可用于存储一个或多个程序,所述程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例中切换方法对应的程序指令/模块(例如,附图6所示的切换装置中的 模块,包括:接收模块410和切换模块420)。处理器610通过运行存储在存储装置620中的软件程序、指令以及模块,从而执行终端的各种功能应用以及数据处理,即实现上述方法实施例中的切换方法。
存储装置620主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等(如上述实施例中的控制消息、配置参数等)。此外,存储装置620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
并且,当上述终端中所包括一个或者多个程序被所述一个或者多个处理器610执行时,实现如下操作:接收控制消息,所述控制消息包括根据RRC的配置参数确定的目标参数;按照所述目标参数进行休眠状态和正常状态的切换。
本实施例提出的终端与上述实施例提出的切换方法属于同一发明构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行切换方法相同的有益效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种切换指示方法或切换方法。
通过以上关于实施方式的描述,所属领域的技术人员可以了解到,本申请可借助软件及通用硬件来实现,也可以通过硬件实现。基于这样的理解,本申请的技术方案可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括多个指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)执行本申请任意实施例所述的切换指示方法或切换方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和***(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (28)

  1. 一种切换指示方法,包括:
    根据无线资源控制RRC的配置参数确定目标参数;
    向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示所述终端按照所述目标参数进行休眠状态和正常状态的切换。
  2. 根据权利要求1所述的方法,其中,所述配置参数包括第一套参数和第二套参数;
    所述第一套参数包括物理下行控制信道PDCCH的监控周期和偏移;
    所述第二套参数包括至少两个带宽部分BWP,其中,至少一个BWP对应于休眠状态。
  3. 根据权利要求2所述的方法,其中,所述根据无线资源控制RRC的配置参数确定目标参数,包括:
    根据以下信息中的至少一种在所述第一套参数和所述第二套参数中选择所述目标参数:
    频带信息、终端能力信息、服务节点或终端支持的新空口NR版本信息以及辅小区激活时延需求信息。
  4. 根据权利要求2所述的方法,其中,所述控制消息通过主小区或调度小区发送。
  5. 根据权利要求2所述的方法,其中,所述控制消息包括目标参数指示域;
    所述目标参数指示域的比特数量为m-1,m-1个比特分别对应于m-1个辅小区;或者,
    所述目标参数指示域的比特数量为m-1的2倍,每2个比特对应于一个辅小区;其中,m表示NR***支持的最大载波数量。
  6. 根据权利要求2-5任一项所述的方法,其中,所述控制消息包括下行控制信息DCI。
  7. 根据权利要求1所述的方法,其中,所述配置参数包括虚拟BWP的配置参数;
    所述虚拟BWP对应于一个正常状态的BWP,所述虚拟BWP与对应的正常状态的BWP之间的第一配置参数不同;所述虚拟BWP与对应的正常状态的BWP之间的第二配置参数相同。
  8. 根据权利要求7所述的方法,其中,所述第一配置参数包括以下至少之一:
    PDCCH的搜索空间、控制资源集CORESET配置参数、信道状态信息参考信号CSI-RS配置参数、非周期跟踪参考信号A-TRS配置参数、探测参考信号SRS配置参数、波束管理BM配置参数。
  9. 根据权利要求7所述的方法,其中,
    所述第二配置参数包括以下至少之一:带宽、子载波间隔SCS和中心频点。
  10. 根据权利要求7所述的方法,其中,所述虚拟BWP与对应的正常状态的BWP的BWP索引相同。
  11. 根据权利要求7所述的方法,其中,所述第一配置参数为BWP专有参数,所述第二配置参数为BWP共有参数。
  12. 根据权利要求7-11任一项所述的方法,其中,所述目标参数,包括:
    所述虚拟BWP的配置参数以及对应的正常状态的BWP的配置参数。
  13. 根据权利要求2所述的方法,在所述目标参数包括所述第二套参数的情况下,还包括:
    接收所述终端上报的设定能力的能力信息;
    根据所述设定能力的能力信息执行对所述至少两个BWP的配置参数限制操作,其中,所述至少两个BWP包括第一BWP和第二BWP。
  14. 根据权利要求13所述的方法,其中,所述配置参数限制操作包括以下至少之一:
    BWP配置参数限制操作、参考信号配置参数限制操作、天线端口配置参数限制操作、SRS天线切换配置参数限制操作和传输配置指示TCI状态配置参数限制操作。
  15. 根据权利要求13所述的方法,其中,所述至少两个BWP之间的切换方式为动态BWP切换。
  16. 根据权利要求14所述的方法,其中,所述BWP配置参数限制操作包括:限制所述第一BWP和所述第二BWP的频域位置重叠,其中,所述第一BWP的带宽小于所述第二BWP的带宽。
  17. 根据权利要求14所述的方法,其中,所述参考信号配置参数限制操作包括:
    限制所述第一BWP的参考信号的时频域位置为所述第二BWP参考信号的时频域位置的子集。
  18. 根据权利要求14所述的方法,其中,所述天线端口配置参数限制操作包括:
    限制所述第一BWP的天线端口数小于或等于所述第二BWP的天线端口数。
  19. 根据权利要求14所述的方法,其中,所述传输配置指示状态配置参数限制操作包括:
    共享所述第一BWP和所述第二BWP的传输配置指示状态。
  20. 根据权利要求14所述的方法,其中,所述SRS天线切换配置参数限制操作包括:
    限制所述第一BWP的SRS天线切换配置参数为所述第二BWP的SRS天线切换配置参数的子集。
  21. 根据权利要求13-20任一项所述的方法,其中,所述设定能力根据终端类型和频带信息中的至少之一确定。
  22. 一种切换方法,包括:
    接收控制消息,所述控制消息包括根据无线资源控制RRC的配置参数确定的目标参数;
    按照所述目标参数进行休眠状态和正常状态的切换。
  23. 根据权利要求22所述的方法,还包括:
    向服务节点上报设定能力的能力信息。
  24. 一种切换指示装置,包括:
    目标参数确定模块,设置为根据无线资源控制RRC的配置参数确定目标参数;
    指示模块,设置为向终端发送控制消息,所述控制消息包括所述目标参数,所述控制消息用于指示所述终端按照所述目标参数进行休眠状态和正常状态的切换。
  25. 一种切换装置,包括:
    接收模块,设置为接收控制消息,所述控制消息包括根据无线资源控制RRC的配置参数确定的目标参数;
    切换模块,设置为按照所述目标参数进行休眠状态和正常状态的切换。
  26. 一种服务节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-21中任一项所述的切换指示方法。
  27. 一种终端,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求22-23中任一项所述的切换方法。
  28. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-21中任一项所述的切换指示方法或如权利要求22-23中任一项所述的切换方法。
PCT/CN2020/112005 2019-09-06 2020-08-28 切换指示方法、切换方法、装置、服务节点、终端及介质 WO2021043078A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3191646A CA3191646A1 (en) 2019-09-06 2020-08-28 Switching indication method and device, switching method and device, service node, terminal, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910843884.XA CN110519853B (zh) 2019-09-06 2019-09-06 切换指示方法、切换方法、装置、服务节点、终端及介质
CN201910843884.X 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043078A1 true WO2021043078A1 (zh) 2021-03-11

Family

ID=68631585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112005 WO2021043078A1 (zh) 2019-09-06 2020-08-28 切换指示方法、切换方法、装置、服务节点、终端及介质

Country Status (3)

Country Link
CN (1) CN110519853B (zh)
CA (1) CA3191646A1 (zh)
WO (1) WO2021043078A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519853B (zh) * 2019-09-06 2023-04-28 中兴通讯股份有限公司 切换指示方法、切换方法、装置、服务节点、终端及介质
WO2021108958A1 (zh) * 2019-12-02 2021-06-10 Oppo广东移动通信有限公司 一种定时器控制方法、配置方法、电子设备及存储介质
CN114731653A (zh) * 2019-12-06 2022-07-08 鸿颖创新有限公司 用于带宽部分切换操作的通信方法和用户设备
EP4057553A4 (en) * 2019-12-09 2022-11-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DISCONTINUOUS RECEIVER-TIMER CONTROL METHOD, ELECTRONIC DEVICE AND STORAGE MEDIA
CN112996088B (zh) * 2019-12-17 2022-07-12 维沃移动通信有限公司 一种辅小区休眠指示方法和通信设备
KR20220122668A (ko) * 2019-12-31 2022-09-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 전환 방법, 단말 장치, 네트워크 장치 및 통신 시스템
CN111148052B (zh) * 2020-01-21 2023-03-24 展讯通信(上海)有限公司 状态确定方法、***、介质及电子设备
EP4059287A4 (en) * 2020-02-12 2023-07-26 Apple Inc. METHOD FOR MANAGING LOW-LAYER INTERCELLULAR MOBILITY
CN115023986A (zh) * 2020-02-12 2022-09-06 高通股份有限公司 休眠辅小区定位信号
CN113839728A (zh) * 2020-06-24 2021-12-24 维沃移动通信有限公司 Dci检测方法、发送方法及相关设备
CN115669125A (zh) * 2020-06-29 2023-01-31 Oppo广东移动通信有限公司 通信方法、装置及可读存储介质
WO2022000246A1 (en) * 2020-06-30 2022-01-06 Zte Corporation Control channel monitoring procedure
WO2022006750A1 (en) * 2020-07-07 2022-01-13 Qualcomm Incorporated Positioning for secondary cell dormancy
CN114071671B (zh) * 2020-08-07 2024-05-14 大唐移动通信设备有限公司 一种信息传输方法、装置、终端和网络侧设备
US20230371006A1 (en) * 2020-09-30 2023-11-16 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for resource configuration
CN115529644A (zh) * 2022-09-16 2022-12-27 成都中科微信息技术研究院有限公司 一种提升基于Xn接口成功率的方法及NR***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124558A1 (en) * 2017-10-25 2019-04-25 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio
CN109963296A (zh) * 2017-12-22 2019-07-02 株式会社Kt 用于控制SCell状态的方法和装置
CN110012499A (zh) * 2018-01-04 2019-07-12 株式会社Kt 用于控制SCell状态的方法及其装置
CN110519853A (zh) * 2019-09-06 2019-11-29 中兴通讯股份有限公司 切换指示方法、切换方法、装置、服务节点、终端及介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105763294B (zh) * 2014-12-19 2019-03-15 中兴通讯股份有限公司 控制信息处理方法及装置
EP3478019A1 (en) * 2017-10-26 2019-05-01 Comcast Cable Communications LLC Activation and deactivation of configured grant
CN109788553A (zh) * 2017-11-10 2019-05-21 华为技术有限公司 一种带宽切换方法及装置
EP3806527A4 (en) * 2018-06-26 2022-01-19 Beijing Xiaomi Mobile Software Co., Ltd. BWP SWITCHING METHOD AND DEVICE, AND STORAGE MEDIA
US20220150833A1 (en) * 2019-04-17 2022-05-12 Beijing Xiaomi Mobile Software Co., Ltd. Terminal device sleep state control method and apparatus, and computer-readable storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124558A1 (en) * 2017-10-25 2019-04-25 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio
CN109963296A (zh) * 2017-12-22 2019-07-02 株式会社Kt 用于控制SCell状态的方法和装置
CN110012499A (zh) * 2018-01-04 2019-07-12 株式会社Kt 用于控制SCell状态的方法及其装置
CN110519853A (zh) * 2019-09-06 2019-11-29 中兴通讯股份有限公司 切换指示方法、切换方法、装置、服务节点、终端及介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Efficient and Low Latency Serving Cell Access Switching", 3GPP DRAFT; R1-1904491_EFFICIENT AND LOW LATENCY SERVING CELL ACCESS SWITCHING_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190404 - 20190408, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699738 *
MEDIATEK INC.: "Support ‘Dormancy’ with CSI Measurement for Fast SCell Activation", 3GPP DRAFT; R2-1906619, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730079 *
NOKIA, NOKIA SHANGHAI BELL: "On the alignment of DCI format sizes", 3GPP DRAFT; R1-1804614 DCI FORMAT SIZE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051426883 *

Also Published As

Publication number Publication date
CN110519853A (zh) 2019-11-29
CN110519853B (zh) 2023-04-28
CA3191646A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2021043078A1 (zh) 切换指示方法、切换方法、装置、服务节点、终端及介质
CN112335307B (zh) 无线通信***中动态(重)启动搜索空间的方法及装置
US10708832B2 (en) Deactivation method and apparatus for a secondary cell and communications system
US10757587B2 (en) Methods for controlling SCell state and apparatuses thereof
WO2020221210A1 (zh) 部分带宽切换方法、装置、服务节点、用户终端和介质
WO2021027918A1 (zh) 终端的省电方法、省电装置、信息的发送方法及装置、存储介质和电子装置
JP2022529889A (ja) 省電力コマンドの送受信
CN110677887B (zh) 切换方法、切换指示方法、装置、终端、服务节点及介质
JP2022521827A (ja) 省電力アクティブbwp
JP2022549513A (ja) 省電力およびセル休止動作
JP2022519356A (ja) 省電力モードの切替方法、省電力モードの配置方法及び通信機器
TWI747267B (zh) 在不同切換延遲內執行頻寬部分切換進程的方法和裝置
US20220006599A1 (en) Method and device for managing band width part
US20230239032A1 (en) Beam processing method and apparatus, and related device
RU2737282C1 (ru) Узел радиосети, беспроводное устройство и выполняемые на них способы
TWI783252B (zh) 將啟動次級小區在休眠與活動行為之間轉換之方法與裝置
EP3949591A1 (en) Bandwidth part specific scheduling configuration
CN110741612A (zh) 一种调度请求的配置方法、网络设备及终端设备
WO2022028191A1 (zh) 一种监测控制信道、确定传输配置指示的方法及终端
US11470601B2 (en) Transmission control method and apparatus for downlink control information, and storage medium, base station and terminal
WO2021056460A1 (zh) 一种测量管理方法及装置、通信设备
JP2022517178A (ja) Caのためのscell管理
WO2022188638A1 (zh) 一种数据传输方法及装置
CN116939645A (zh) 通信方法、用户设备及基站
WO2021062762A1 (zh) 一种信号接收方法、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20861898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3191646

Country of ref document: CA

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20861898

Country of ref document: EP

Kind code of ref document: A1