WO2021043008A1 - 信令信息的传输方法、装置、通信节点和存储介质 - Google Patents

信令信息的传输方法、装置、通信节点和存储介质 Download PDF

Info

Publication number
WO2021043008A1
WO2021043008A1 PCT/CN2020/110425 CN2020110425W WO2021043008A1 WO 2021043008 A1 WO2021043008 A1 WO 2021043008A1 CN 2020110425 W CN2020110425 W CN 2020110425W WO 2021043008 A1 WO2021043008 A1 WO 2021043008A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
information
control information
uplink
transmission
Prior art date
Application number
PCT/CN2020/110425
Other languages
English (en)
French (fr)
Inventor
肖华华
蒋创新
鲁照华
张淑娟
李儒岳
吴昊
叶新泉
邵诗佳
潘煜
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/639,941 priority Critical patent/US20220330258A1/en
Priority to EP20861209.3A priority patent/EP4027561A4/en
Publication of WO2021043008A1 publication Critical patent/WO2021043008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communication, for example, it relates to signaling information transmission methods, devices, communication nodes, and storage media.
  • Multi-TRP Multiple Transmission and Reception Point
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • Multi-Panel transmission is an important technology introduced by NR, which is to install multiple antenna panels at the receiving end and/or transmitting end to improve the spectrum efficiency of the wireless communication system.
  • Multi-TRP or Multi-panel repetition to send or receive is an effective means to improve the reliability, which can improve the wireless communication system, especially the ultra-reliable and low-latency communication (Ultra-reliable and Low-latency). Latency (Communications, URLLC) transmission reliability.
  • This application provides methods, devices, communication nodes, and storage media for signaling information transmission.
  • the embodiment of the present application provides a method for transmitting signaling information, including:
  • the channel state information of M physical uplink channels is determined based on the signaling information, and M is a positive integer greater than 1.
  • the embodiment of the present application also provides a method for transmitting signaling information, including:
  • Transmit signaling information where the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1.
  • the embodiment of the present application also provides a signaling information transmission device, including:
  • the receiving module is set to receive signaling information
  • the determining module is configured to determine channel state information of M physical uplink channels based on the signaling information, where M is a positive integer greater than 1.
  • the embodiment of the present application also provides a signaling information transmission device, including:
  • the transmission module is configured to transmit signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1.
  • the embodiment of the present application also provides a communication node, including:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the signaling information transmission method described in the embodiment of the present application.
  • the embodiment of the present application also provides a communication node, including:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the signaling information transmission method described in the embodiment of the present application.
  • the embodiments of the present application also provide a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, it implements any one of the signaling information transmission methods in the embodiments of the present application.
  • FIG. 1 is a schematic flowchart of a method for transmitting signaling information according to an embodiment of the application
  • FIG. 2 is a schematic flowchart of another method for transmitting signaling information according to an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a signaling information transmission device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of another signaling information transmission apparatus provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a communication node provided by an embodiment of this application.
  • Fig. 6 is a schematic structural diagram of another communication node provided by an embodiment of the application.
  • FIG. 1 is a schematic flowchart of a method for transmitting signaling information provided by an embodiment of this application.
  • This method may be suitable for determining the channel state information of an uplink channel.
  • This method may be provided by this application.
  • the signaling information transmission device can be implemented by software and/or hardware and integrated on the communication node.
  • the communication node covers any suitable type of user terminal.
  • one panel can correspond to one port group (such as antenna port group, antenna group), and the two are in a one-to-one correspondence, or they can be replaced with each other.
  • the panel refers to an antenna panel, and a transmission reception point (TRP) or communication node (including but not limited to a terminal, a base station, etc.) may include at least one antenna panel.
  • TRP transmission reception point
  • the antenna ports on a panel can be divided into a port group.
  • a panel can be divided into multiple sub-panels, and the multiple antenna ports included in each sub-panel can be divided into a port group.
  • an antenna with a positive 45° polarization is a sub-panel
  • an antenna with a negative 45° polarization is a sub-panel.
  • the panel and the sub-panel are collectively referred to as a panel, which is represented by a panel.
  • the panel can be replaced by a port group (or spatial parameters, such as transmit beam, receive beam, quasi-co-location type type D).
  • the transmission unit includes an uplink transmission unit and a downlink transmission unit.
  • the uplink transmission unit can be an antenna panel, a panel, a sub-panel, a port group corresponding to the antenna panel (or port group for short), a port sub-group, a port group corresponding to a TRP, etc.
  • a port group includes at least one port.
  • the transmission unit is a physical antenna group, antenna assembly, antenna element group, panel, sub-panel, etc. used to transmit the physical uplink shared channel or the physical uplink control channel, or to receive the physical downlink shared channel or the physical downlink control channel.
  • the uplink transmission unit index refers to at least one of antenna panel index, panel index, sub-panel index, port group index corresponding to the antenna panel, port group index, port group index corresponding to a TRP, and port sub-group index.
  • Reference signals include but are not limited to: Channel State Information-Reference Signal (CSI-RS) resources, Synchronization Signals Block (SSB) resources, Physical broadcast channel (Physical Broadcast Channel, PBCH) resources, synchronous broadcast block/physical broadcast channel (SSB/PBCH) resources, and uplink sounding reference signal (Sounding reference signal, SRS) resources.
  • CSI-RS resources mainly refer to non-zero power channel state information-reference signal (Non Zero Power Channel State Information-Reference Signal, NZP-CSI-RS) resources.
  • the reference resource set includes one or more reference signal resources, such as CSI-RS resource set (ie CSI-RS resource set), SRS resource set (ie SRS resource set), and SSB resource set (ie SSB resource set).
  • a reference resource configuration can also include one or more reference resource sets, such as CSI-RS resource configuration (i.e. CSI-RS resource config), SSB resource configuration (i.e. SSB resource config), and SRS resource configuration (i.e. SRS resource config) .
  • config can be replaced with settings, that is, setting.
  • an SRS resource set includes K SRS resources, that is, SRS resources. For example, the resource index of the K SRS resources is stored.
  • the value of K is 1 or 2.
  • the value of K may be one of 1, 2, 3, or 4, or it may be that multiple reference signal resources included in a reference signal resource set are divided into multiple Reference signal resource group, unless otherwise specified, the reference signal resource group and the reference signal resource group in this application can be replaced with each other.
  • the identifier is used to identify the serial number and index of a thing.
  • a reference signal resource For example, a reference signal resource, reference signal resource group, reference signal resource configuration, channel state information (CSI) report, CSI report set, terminal, base station, panel, and other corresponding indexes.
  • CSI channel state information
  • the standard divides the physical channel into a physical downlink control channel (PDCCH), a physical uplink control channel (PUCCH), and a physical downlink shared channel (PDSCH). ), physical uplink shared channel (PUSCH).
  • PDCCH is mainly used to transmit physical downlink control signaling (Downlink Control Information, DCI)
  • PUCCH is mainly used to transmit uplink control information, such as Channel State Information (CSI), and Hybrid automatic repeat transmission (Hybrid Automatic Repeat). request, HARQ), scheduling request (Scheduling Request), etc.
  • the PDSCH is mainly used to transmit downlink data
  • the PUSCH is mainly used to transmit information such as uplink data and CSI.
  • CSI includes downlink channel state information fed back by the terminal and uplink channel state information indicated by the base station of the terminal.
  • the channel state information of the downlink includes but is not limited to at least one of the following information: channel state information-reference signal resource indicator (CSI-RS Resource Indicator, CRI), synchronization signal block resource indicator (Synchronization Signals Block Resource Indicator) , SSBRI), channel quality indicator (Channel Quality Indicator, CQI), precoding matrix indicator (Precoding Matrix Indicator, PMI), layer indicator (Layer Indicator, LI), rank indicator (Rank Indicator, RI); uplink channel
  • the status information includes but is not limited to at least one of the following information: uplink sounding signal resource indicator (SRS resource Indicator, SRI), transmission precoding matrix indicator (Transmitted Precoding Matrix Indicator, TPMI), transmission rank indicator (Transmitted Rank Indicator, TRI) ), modulation and coding scheme (Modulation and coding scheme, MCS), and
  • Spatial filtering parameters, spatial correlation parameters, and beam parameters may also be indicated by SRI or determined by quasi co-located (QCL) parameters.
  • the uplink channel state information can also be referred to as uplink channel parameters.
  • the uplink sounding signal resource indicator field in the downlink control information includes an uplink sounding signal resource indicator used to indicate the SRS resource index (or indicator) in the SRS resource set, which is mainly used for codebook-based uplink transmission, or includes A group of uplink sounding signal resource indications used to indicate the SRS resource index (or indicator) in the SRS resource set, mainly used for non-codebook-based uplink transmission.
  • Physical Random Access Channel PRACH is A channel used to transmit uplink random access information.
  • the physical uplink channel includes at least one of the following: PUSCH; PUCCH, PRACH, and the physical downlink channel includes at least one of the following: PDSCH; PDCCH
  • the M physical uplink channels in this application may be M for transmitting the physical uplink
  • the physical uplink channel resources of the data or a physical uplink channel resource at different transmission times, or different transmission carriers, and one transmission on different transmission subbands, such as M PUSCHs, including M transmissions of uplink data on different uplink transmission units PUSCH channel resources, or M transmissions of physical uplink data on a PUSCH resource at different times.
  • the M physical downlink channels in this application can be M physical downlink channel resources or one physical downlink channel resource
  • the uplink data transmitted by the M physical uplink channels may also be referred to as transmission information, and the transmission information may be information before channel coding, or a transmission block, or one or more code blocks in the uplink control information.
  • the coding block corresponds to a large coding block.
  • the channel state information of the M physical uplink channels described in this application is the channel state information of the uplink, because PUSCH, PUCCH, etc. are all uplinks.
  • the transmission in this application can be either sending or receiving.
  • M data for example, PDSCH or PUSCH
  • M data comes from the same transport block (Transport Block, TB), only after the corresponding channel coding
  • the redundancy version (Redundancy version, RV) is different, and even the RV after the channel coding of M data is the same.
  • RV refers to different redundancy versions after channel coding of transmission data.
  • the channel version ⁇ 0, 1, 2, 3 ⁇ can be used.
  • the transmission of M signaling is repetition, which means that the content carried by the M signaling is the same, for example, the DCI content carried by the M PDCCH is the same (such as the content of the DCI in each domain).
  • the values are the same), for example, the values of the contents carried by the M PUCCHs are the same.
  • M repetition data such as M repetition PUSCH or M repetition PDSCH
  • M repetition signaling such as M repetition PUCCH or M repetition PDCCH
  • M different TRPs or from M Different antenna panels, or M different bandwidth parts (Bandwidth Part, BWP), or M different carrier components (Carrier Component, CC), where the M panels or M BWP or M CCs may belong to The same TRP can also belong to multiple TRPs.
  • BWP Bandwidth Part
  • Carrier Component, CC Carrier Component
  • the PDCCH needs to be mapped to a set of resource elements (resource elements, RE), such as one or more control channel elements (CCE), where one RE includes One subcarrier includes one symbol in the time domain.
  • RE resource elements
  • CCE control channel elements
  • the set of one or more CCEs used to transmit PDCCH is sometimes called control resource set (CORESET), which includes multiple physical resource blocks in the frequency domain and K symbols in the time domain.
  • K is a natural number.
  • K can be an integer of 1, 2, or 3.
  • Symbols include but are not limited to one of the following: Orthogonal frequency division multiplexing (OFDM), Single-Carrier Frequency Division Multiple Access (SC-FDMA), positive Orthogonal frequency division Multiple Access (OFDMA).
  • one aggregation level candidate PDCCH is configured into a set.
  • the candidate PDCCH set under this level is the search space (Search Space, SS), and the collection of multiple search spaces forms a search space set (SS set, SSSET, or SSS), each terminal can be configured with at least one search space set.
  • the PDCCH detection timing (i.e. occasion) of the current terminal and the detected PDCCH candidates (i.e. candidate) or PDCCH candidates will be configured in the search space.
  • the occurrence is also called PDCCH monitoring timing (i.e. PDCCH monitoring occasion), and the occurrence is activated by The PDCCH monitoring period (i.e.
  • PDCCH monitoring periodicity on the downlink bandwidth part (Bandwidth Part, BWP), the PDCCH monitoring offset (i.e. PDCCH monitoring offset), the PDCCH monitoring pattern (i.e. PDCCH monitoring pattern), etc. determine when the PDCCH is detected Domain information.
  • Candidate is also called PDCCH detection candidate (ie PDCCH monitoring candidate), which is a candidate PDCCH to be detected for a search space configuration.
  • PDCCH includes multiple formats, and each format corresponds to the downlink control information DCI in a corresponding format.
  • Each DCI also includes multiple signaling indication fields, where detection can also be called monitoring or blind detection, which is mainly used to determine which of the multiple candidate PDCCHs is the PDCCH used to transmit downlink control information to the terminal.
  • the time unit of transmission may include a set of one or more symbols, such as a time slot or a mini time slot.
  • the terminal includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes M panels.
  • M panels respectively transmit M PUSCHs, and the M PUSCHs are repetitioned, and the M PUSCHs can come from M terminals or M panels, or M CCs or M BWPs, where the M panels , Or M CCs or M BWPs can come from one terminal or from multiple terminals.
  • one panel or one port group corresponds to one PUSCH transmission, and the PUSCH of the M repetitions may be transmitted through space division, frequency division multiplexing, or time division multiplexing.
  • M SRS resource sets configured by the base station can also be replaced with M SRS resource groups in one SRS resource set, where the SRS resources included in the M SRS resources do not overlap or overlap each other, and M is an integer greater than 1.
  • the method in this application can also be used for uplink physical control channels.
  • the signaling information transmission method provided in the present application can better solve the problems encountered in the transmission of multiple panels or multiple transmission and receiving nodes, thereby improving the performance of the system.
  • the signaling information transmission method provided by this application includes S110 and S120.
  • S110 Receive signaling information.
  • the communication node in this embodiment that is, the terminal, receives the signaling information configured by the base station.
  • the signaling information is set to indicate channel state information of M physical uplink channels. M is a positive integer greater than 1.
  • the signaling information may include M downlink control information, which respectively indicate the channel state information of the M physical uplink channels; the signaling information may also include two levels of downlink control information, indicating M physical uplink channels, of which the two levels of downlink control information include One first-level downlink control information and M-1 second-level downlink control information. If the content included in the M-1 second-level downlink control information is empty, the second-level downlink control information with empty content may not be transmitted; the signaling information may include one downlink control information, and the downlink control information
  • the information includes M SRI values, and each SRI value corresponds to a physical uplink channel, or includes M groups of SRIs, and each group of SRI corresponds to a physical uplink channel.
  • the DCI information indicates the SRI information corresponding to the two repetition PUSCHs.
  • Manner 1 Two DCIs, namely DCI0 and DCI1, respectively indicate SRI0 of PUSCH0 and SRI1 of PUSCH1.
  • the terminal After receiving the two SRI0 and SRI1, the terminal can determine whether it is the SRI of PUSCH0 or PUSCH1 by means of information binding.
  • DCI0 that transmits SRI0 carries the following information, such as RV version, BWP value, resource allocation value, component carrier (CC) value, demodulation reference signal (Demodulation Reference Signal, DMRS) value, corresponding to SRI
  • the SRS resource set includes Panel ID information.
  • PDCCH information includes CORESET, SS, SS set corresponding to PDCCH, PDCCH detection opportunity Occasion, and PDCCH detection Candidate.
  • Manner 2 Through two levels of DCI, including the first level of DCI and the second level of DCI, when the value of the first level of DCI is less than A, it means that there is only one SRI. If the value of the first-level DCI is greater than A, then the second-level DCI is started, and the second-level DCI indicates the PMI, RI and other information of the PUSCH. Among them, A is a positive integer, and the value of A can be set according to the actual situation.
  • Manner 3 Indicated by one DCI, but the SRI table indicated by the DCI needs to be extended to include two SRI values (or two sets of SRI values), and the two SRI values (two sets of SRI values) respectively correspond to the first PUSCH And the second PUSCH.
  • S120 Determine channel state information of M physical uplink channels based on the signaling information.
  • the communication node After receiving the signaling information, the communication node, that is, the terminal, can determine the channel state information of the M physical uplink channels based on the channel state information of the M physical uplink channels indicated by the signaling information.
  • the determination strategy can be determined according to the indicating means of the signaling information, which is not limited here.
  • the method for transmitting signaling information provided by this application first receives signaling information, which is used to indicate channel state information of M physical uplink channels; and then determines M physical uplink channels based on the signaling information Channel status information. Using this method effectively solves the technical problem that the channel state information of multiple physical uplink channels cannot be determined when transmitting by multiple panels and multiple transmitting and receiving nodes.
  • the signaling information can effectively determine the transmission time of multiple panels and multiple transmitting and receiving nodes.
  • the association relationship between the domain value set of the downlink control information and the uplink sounding reference signal resource set indicates channel state information of M physical uplink channels.
  • the domain value set of the downlink control information is M domain value sets divided by the value of at least one of the following domains of the downlink control information:
  • Redundancy version domain ; carrier indication domain; bandwidth part indication domain; antenna port domain.
  • the determining channel state information of M physical uplink channels based on the signaling information includes at least one of the following:
  • the association relationship of the signal resource set determines the channel state information of the M physical uplink channels; the channel state information of the M physical uplink channels is determined based on the association relationship between the bandwidth part indicator field value set of the downlink control information and the uplink sounding reference signal resource set ; Determine the channel state information of the M physical uplink channels based on the association relationship between the antenna port domain value set of the downlink control information and the uplink sounding reference signal resource set. For example, the channel state information of M physical uplink channels is determined according to the association relationship between the redundancy version domain value set of the downlink control information and the uplink sounding reference signal resource set.
  • the signaling information may include M downlink control information DCI. Therefore, the signaling information received by the terminal includes M downlink control information DCI.
  • M M is an integer greater than 1
  • DCI indicates the CSI (including but not limited to at least one of the following: SRI, TPMI, RI, MCS) of the PUSCH transmitted by M panels, where TPMI and RI may be jointly coded through precoding and The number of layers is indicated together), which is achieved by binding the SRS resource set to the value of one or more domains in the DCI.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs, and each PUSCH is repetition.
  • the PUSCH in this embodiment can also be replaced with a PUCCH.
  • This embodiment is mainly used to explain how the base station uses M DCIs to indicate the CSI corresponding to the M PUSCHs, and how the terminal determines which panel the M CSI corresponds to the PUSCH transmitted by the M CSI according to the received DCI.
  • M is greater than An integer of 1.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the division of the RV version set may be other values agreed by the base station and the terminal, such as ⁇ 0, 1 ⁇ and ⁇ 2, 3 ⁇ .
  • Antenna ports mainly refer to DMRS.
  • M 2
  • DMRS set0 includes the value ⁇ 0,...,L/2 ⁇
  • DMRS set1 includes the value ⁇ L/2+1,...,L-1 ⁇
  • L is a positive integer, which represents the number of elements in the set of DMRS ports.
  • At least one of the RV seti, CI seti, BWPI seti, and DMRS seti is bound to SRS resource seti.
  • the corresponding field in the i-th DCI is a value in the set of at least one of RV seti, CI seti, BWPI seti, and DMRS seti
  • the CSI value carried by the i-th DCI corresponds to the value of the i-th DCI.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the terminal performs the following steps:
  • the value of the Redundancy version field in the i-th DCI comes from RV seti; the value of the carrier indicator field in the i-th DCI comes from CI seti; the bandwidth in the i-th DCI The value of part of the indicator field comes from BWPI seti; the value of the antenna port field in the i-th DCI comes from DMRS seti, and it can be determined that the value of CSIi carried in the i-th DCI corresponds to the PUSCHi of the i-th panel.
  • the value of the CSI may be used to determine at least one of the following information used to transmit PUSCHi: spatial parameter information (such as transmission beams), number of layers, or precoding matrix information, MCS, where the precoding matrix information and The number of layers may be jointly notified through a Precoding information and number of layers.
  • spatial parameter information such as transmission beams
  • MCS precoding matrix information
  • the configuration of the codebook restriction (ie codebookSubset) in the codebook configuration corresponding to the TPMI indicated by the M DCIs is independent, where the codebookSubset takes
  • the values include fullyAndPartialAndNonCoherent, partialAndNonCoherent, and nonCoherent.
  • fullyAndPartialAndNonCoherent, partialAndNonCoherent, and nonCoherent correspond to three configurations of codebook restrictions, where fullyAndPartialAndNonCoherent includes all related codewords that are fully related, partially related, and non-related, and partialAndNonCoherent corresponding codewords , And nonCoherent only corresponds to non-correlated codewords.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the association relationship between the physical downlink control channel information set corresponding to the downlink control information and the uplink transmission unit indicates the channel state information of the M physical uplink channels.
  • the physical downlink control channel information set is a set formed by the value of at least one of the following information:
  • the carrier component that transmits the physical downlink control channel; the bandwidth part of the physical downlink control channel is transmitted; the control resource set group where the physical downlink control channel is located; the physical downlink control channel detection timing; the physical downlink control channel detection candidate.
  • the determining channel state information of M physical uplink channels based on the signaling information includes at least one of the following:
  • the correlation between the physical downlink control channel detection opportunity value set and the uplink transmission unit determines the channel state information of the M physical uplink channels; based on the physical downlink control channel detection candidate value set corresponding to the downlink control information and the uplink transmission unit
  • the association relationship determines the channel state information of M physical uplink channels. For example, the channel state information of M physical uplink channels is determined according to the association relationship between the carrier component value set for transmitting the physical downlink control channel and the uplink transmission unit.
  • the signaling information may include M pieces of downlink control information.
  • M is an integer greater than 1
  • DCI indicates the CSI (including but not limited to at least one of SRI, TPMI, RI, and MCS) of the PUSCH transmitted by M panels.
  • TPMI and RI may be jointly coded through precoding (Indicated together with the number of layers), implemented by transmitting PDCCH resources, where the PDCCH resources include but are not limited to BWP and CC.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs, and each PUSCH is repetitioned.
  • This example is mainly used to explain how the base station uses M DCIs to indicate the CSI information corresponding to the M PUSCHs, and how the terminal determines which panel the M CSI corresponds to the PUSCH transmitted by the M CSI according to the received DCI information. Integers greater than 1, this example can also be used for PUCCH.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the base station divides the resources used to transmit DCI into M resource groups, and each resource group is bound to an uplink transmission unit (for example, a panel), for example, divides at least one of the following resources used to transmit DCI into M resource groups:
  • the terminal performs the following steps:
  • the value of the carrier used to receive the i-th DCI comes from CC seti; or the value of the BWP used to receive the i-th DCI comes from BWP seti, it can be determined that the value of CSIi carried in the i-th DCI corresponds to the i-th The PUSCHi of the panel.
  • the value of the CSI may be used to determine at least one of the following information used to transmit PUSCHi: spatial parameter information (such as transmission beam), number of layers, or precoding matrix information, MCS, where precoding information and layer The number may be jointly notified through a Precoding information and number of layers.
  • the configuration of the codebook restriction in the codebook configuration corresponding to the TPMI indicated by the M DCIs is independent.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the signaling information may include M pieces of downlink control information.
  • M DCIs indicate the CSI of PUSCH transmitted by M panels (including but not limited to at least one of SRI, TPMI, RI, MCS, where TPMI and RI may be jointly coded and indicated by precoding and the number of layers), through PDCCH
  • the information implementation of the PDCCH includes but is not limited to the CORESET group, SS, occasion, and candidate corresponding to the PDCCH.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs, and each PUSCH is repetition. This example can also be used for PUCCH.
  • This example is used to illustrate how the base station uses M DCIs to indicate the CSI information corresponding to the M PUSCHs, and how the terminal determines which panel the M CSIs correspond to the PUSCH transmitted by the M CSI according to the received DCI information, and M is greater than 1. Integer.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the base station divides the PDCCH information carrying DCI into M PDCCH information groups, and each PDCCH information group is bound to an uplink transmission unit (for example, a panel).
  • the PDCCH information is divided into M PDCCH information groups: CORESET, SS, SSSET, occasion, candidate.
  • CORESET is the control resource set used to transmit PDCCH
  • CORESET ID is the identifier of the control resource set.
  • the control resource set value is from CORESET seti
  • the search space value is from SS Seti
  • the search space set value is from SSSET Seti
  • PDCCH The value of the detection occasion comes from occasion Seti
  • the value of the candidate for detecting PDCCH (candidate) comes from candidate Seti, indicating that the CSI value carried by the i-th DCI corresponds to the CSI of the i-th PUSCH or the PUSCH transmitted by the i-th Panel.
  • I 0,...,M-1.
  • the terminal performs the following steps:
  • the value of the control resource set comes from CORESET seti
  • the value of the search space comes from SS Seti
  • the value of search space set comes from SSSET Seti
  • detection The PDCCH occurrence value of PDCCH comes from occurrence Seti
  • the value of the CSI may be used to determine at least one of the following information used to transmit PUSCHi: spatial parameter information (such as transmission beam), number of layers, or precoding matrix information, MCS, where precoding information and layer The number may be jointly notified through a Precoding information and number of layers.
  • the configuration of the codebook restriction in the codebook configuration corresponding to the TPMI indicated by the M DCIs is independent.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the determining the channel state information of the M physical uplink channels based on the signaling information includes: an uplink sounding reference resource set or an uplink sounding reference resource set indicated by an uplink sounding reference resource indication field based on the signaling information
  • the uplink transmission unit index of the sounding reference resource determines the channel state information of M physical uplink channels. That is, the channel state information of M physical uplink channels is determined according to the uplink sounding reference resource set or the uplink transmission unit index of the uplink sounding reference resource indicated by the uplink sounding reference resource indication field of the signaling information.
  • the signaling information may include M pieces of downlink control information.
  • M DCIs indicate the CSI of PUSCH transmitted by M panels (including but not limited to at least one of SRI, TPMI, RI, MCS, where TPMI and RI may be jointly coded and indicated by precoding and the number of layers), through SRS This is achieved by including panel ID information in the resource set or SRS resource.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs, and each PUSCH is repetition.
  • the method in this embodiment can also be used for PUCCH.
  • This example is used to illustrate how the base station uses M DCIs to indicate the CSI information corresponding to the M PUSCHs, and how the terminal determines which panel the M CSIs correspond to the PUSCH transmitted by the M CSI according to the received DCI information, and M is greater than 1. Integer.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • Each SRS resource includes an index that identifies an uplink transmission unit.
  • the SRS resource field configured in high-layer signaling includes a panelId.
  • the selected SRS ID it is known which panel the selected SRS resource is used for.
  • the index panelId of the uplink transmission unit is added to the SRS-resource configured by the high-level signaling, and the value is an integer from 0 to M-1.
  • the SRS resource set includes the index panelId of the uplink transmission unit.
  • the field of the SRS resource set configured in high-level signaling includes the index panelId of the uplink transmission unit, and the value is an integer from 0 to M-1.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the terminal performs the following steps:
  • the terminal receives the SRIi (or SRIi group) of the SRS indicator field of the i-th DCI, and uses the SRIi (or SRIi group) to check its corresponding SRS resource set or the value of the panelId included in the SRS resource high-level signaling to determine Which Panel the SRIi corresponds to, so as to determine which panel the CSIi carried in the DCI is used for, and this panel uses at least one of the following parameters corresponding to the CSIi to transmit PUSCH: spatial parameter information ( For example, the transmission beam), the number of layers, or precoding matrix information, MCS, where the precoding matrix information and the number of layers may be jointly notified through a precoding information and number of layers.
  • spatial parameter information For example, the transmission beam
  • MCS precoding matrix information
  • the configuration of the codebook restriction in the codebook configuration corresponding to the TPMI indicated by the M DCIs is independent.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the signaling information includes first-level downlink control information, and the first-level downlink control information is used to determine the channel state information of the first physical uplink channel.
  • the first physical uplink channel may be any one of the M physical uplink channels, such as the first physical uplink channel.
  • the signaling information may also include second-level downlink control information, that is, the signaling information may include two-level downlink control information: first-level downlink control information and second-level downlink control information.
  • determining the channel state information of M physical uplink channels based on the signaling information includes at least one of the following: determining the second-level downlink according to the uplink sounding signal resource indicator field of the first-level downlink control information The content of the control information; the detection situation of the second-level downlink control information is determined according to the uplink sounding signal resource information indicated in the first-level downlink control information; wherein the second-level downlink control information belongs to the M downlink control information information.
  • the first-level downlink control information may be used to determine at least one of the following: the content of the second-level downlink control information included in the signaling information; and the detection status of the second-level downlink control information. Among them, the detection situation can be understood as whether to detect the second-level downlink control information.
  • the determining channel state information of M physical uplink channels based on the signaling information includes at least one of the following:
  • the second-level downlink control information When the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is less than a predetermined value, the second-level downlink control information is not detected; When the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the control information is less than a predetermined value, the content of the second-level downlink control information is empty; When the number of sounding signal resources or the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the second level of downlink control information is detected; the number of uplink sounding signal resources indicated by the first level of downlink control information is or When the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the content of the second-level downlink control information is not empty; the number of uplink sounding signal resources or uplink sounding signals indicated by the first-level downlink control information When the number of resource groups is greater than or equal to a predetermined value, the
  • the content of the second-level downlink control information may be determined based on the uplink sounding signal resource indicator field of the first-level downlink control information, that is, according to the first level
  • the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information determines the content of the second-level downlink control information.
  • the detection situation of the second-level downlink control information may be determined according to the uplink sounding signal resource information indicated in the first-level downlink control information, that is, the second-level downlink control information
  • the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information determines the detection situation of the second-level downlink control information.
  • the predetermined value can be a positive integer, such as 1.
  • determining the content of the second-level downlink control information according to the uplink sounding signal resource indication field of the first-level downlink control information includes at least one of the following: When the number of sounding signal resources or the number of uplink sounding signal resource groups is less than a predetermined value, the content of the second-level downlink control information is empty; the number of uplink sounding signal resources indicated by the first-level downlink control information Or when the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the content of the second-level downlink control information is not empty; the number of uplink sounding signal resources or the uplink sounding signal indicated by the first-level downlink control information When the number of signal resource groups is greater than or equal to a predetermined value, the second-level downlink control information includes the channel state information of the second physical uplink channel.
  • determining the detection condition of the second-level downlink control information according to the uplink sounding signal resource information indicated in the first-level downlink control information includes at least one of the following: When the number of uplink sounding signal resources or the number of uplink sounding signal resource groups is less than a predetermined value, the second-level downlink control information is not detected; the number of uplink sounding signal resources indicated by the first-level downlink control information Or when the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the second level of downlink control information is detected.
  • the content of the second-level downlink control information is empty; or, in the downlink
  • the content of the second-level downlink control information includes instructions for indicating a second physical uplink channel Channel status information.
  • the uplink sounding signal resource indication may be a codebook transmission mode for uplink transmission.
  • the uplink sounding signal resource indication group may be a transmission mode other than a codebook for uplink transmission.
  • the second physical uplink channel can be understood as an uplink channel channel among the M physical uplink channels except the physical uplink channel indicated by the first-level downlink control channel.
  • the signaling information includes two levels of DCI.
  • the two levels of DCI indicate the CSI of M panels (including but not limited to at least one of SRI, TPMI, RI, and MCS).
  • TPMI and RI may be jointly coded through pre-coding. The code and the number of layers are indicated together), which is realized by two-level PDCCH.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs, and each PUSCH is repetitioned.
  • This example is used to illustrate how the base station indicates the CSI information corresponding to the M PUSCHs through two levels of DCI, and how the terminal determines which panel the M CSI corresponds to the PUSCH transmitted by the M CSI according to the received DCI, and M is greater than 1. Integer.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the SRS table corresponding to the SRS indicator field in the DCI is extended.
  • Table A1 is an extended table.
  • One possible expansion is to expand the table into the following table A1, the expanded part is underlined.
  • bit field of the mapping index namely Bit field mapped to index SRI(s) 0 0 1 1 2 0; 1 3 Reserve, namely Reserve
  • Table A2 is another extension table.
  • One possible extension is to extend the table into the following table A2.
  • the extension part is an underlined row, which includes at least two SRI values, The value of the SRI on the left of the semicolon and the value of the SRI on the right of the semicolon respectively correspond to the CSI of the PUSCH transmitted by the two uplink transmission units.
  • the SRI is used to indicate the SRS resource index (or indicator) in the SRS resource set.
  • the semicolon can also have other representations, such as brackets, line breaks, slashes, etc., as long as it can be used to divide the index into multiple Group.
  • Table 3 is another extended table.
  • One possible extension is to extend the table to the following table A3.
  • the extended part is an underlined row, which includes at least two sets of SRI values , A group of SRI values on the left side of the semicolon, and a group of SRI values on the right side of the semicolon, respectively corresponding to the CSI of the PUSCH transmitted by two uplink transmission units.
  • Each group of SRI values can include at least one SRI value, among which, the semicolon
  • the index of the SRS indicated in the extended row in the extended table can have other values, and it is not specified, as long as the number of SRI indicated in the rows in Tables A1 and A2 is greater than 1, the indicated in Table A3
  • the SRI includes at least two sets of SRI, and the rows in the table can also be exchanged.
  • the table containing more than one SRI row or two sets of SRIs may also be a newly added table.
  • the row in the SRI table indicated by the SRS indicator field in the first level of DCI includes M SRIs (table A1 or A2) or SRI groups (table A3); when scheduling the DCI of the PDSCH There are M TCI states (states) values in the TCI field included in the base station; the base station is configured with two CORESET groups, which means that the base station has indicated the SRS resource of M uplink PUSCH at the same time, where M>1 is an integer.
  • the base station The second-level DCI will be transmitted, where the second-level DCI includes at least one of TPMI/RI, DMRS, resource allocation and other information used to indicate PUSCH transmitted by other panels other than PUSCH0 corresponding to the first panel. Otherwise, if the row in the SRI table indicated by the SRS indicator field in the first-level DCI includes one SRI or SRI group, the base station will no longer transmit the second-level DCI, that is, only one panel is used for uplink transmission. .
  • the terminal performs the following steps:
  • the terminal receives the first-level DCI, in at least one of the following situations: the row in the SRI table indicated by the SRS indicator field in the first-level DCI includes M SRIs (tables A1 or A2) or SRI groups (tables) A3); There are M TCI states values in the TCI field included in the DCI scheduling PDSCH; the base station is configured with two CORESET groups, which means that the base station has indicated the SRS resource of M uplink PUSCH at the same time, where M>1 is an integer, At this time, the terminal will receive the second-level DCI, where the second-level DCI includes at least TPMI/RI, DMRS, resource allocation and other information indicating the PUSCH of other panels other than the PUSCH0 corresponding to the first panel one.
  • the terminal no longer receives the second-level DCI, that is Only one panel is used for uplink transmission, so that it can dynamically switch between single-panel transmission and multi-panel joint transmission.
  • the terminal will determine the SRS resource index (ie index) corresponding to each panel of the uplink transmission according to the information in the first-level DCI, so as to know the spatial parameter information for sending the uplink PUSCH, or the number of layers and precoding information to be sent.
  • the second-level DCI can determine the PUSCH resource allocation information and PMI information of each panel.
  • the first-level DCI information may also carry at least one of the following of the first panel: PMI; resource allocation information; DMRS port information.
  • the configuration of the codebook restriction in the codebook configuration corresponding to the TPMI indicated by the first-level DCI and the second-level DCI is independent.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the signaling information includes a piece of downlink control information
  • the uplink sounding signal resource indicator field in the downlink control information indicates M uplink sounding signal resource indicators
  • the M uplink sounding signal resource indicators are used for Determine the channel state information of M physical uplink channels. Determine M uplink sounding signal resource indications according to the uplink sounding signal resource indication field in the downlink control information.
  • the signaling information includes downlink control information.
  • 1 DCI indicates the CSI of PUSCH transmitted by M panels (including but not limited to at least one of SRI, TPMI, RI, MCS, where TPMI and RI may be jointly coded and indicated by precoding and the number of layers), uplink transmission It is a codebook-based transmission method.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by 1 DCI respectively transmit M PUSCHs, and each PUSCH is repetition, and this embodiment can also be used for PUCCH.
  • This example is used to explain how the base station uses 1 DCI to indicate the CSI information corresponding to the M PUSCHs, and how the terminal determines which panel the M CSI corresponds to the PUSCH transmitted by the M CSI according to the received DCI information, and M is greater than 1. Integer.
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the SRS table corresponding to the SRS indicator field in the DCI is redesigned, for example, a new table is added.
  • Table B1 is another extended table.
  • the extended part is an underlined row, which includes at least two SRI values, and one SRI value to the left of the semicolon.
  • the value of the SRI on the right side of the semicolon corresponds to the CSI of the PUSCH transmitted by the two uplink transmission units, where the SRI is used to indicate the SRS resource index (or indicator) in the SRS resource set.
  • one possible extension is to extend the table to the following table B2, which is another extended table.
  • the extended part is the underlined line, which includes at least two SRI values, one SRI value to the left of the semicolon, and one SRI value to the right of the semicolon, respectively corresponding to the CSI of the PUSCH transmitted by the two uplink transmission units, where SRI is used SRS resource index (or indicator) in the indicator SRS resource set.
  • SRI is used SRS resource index (or indicator) in the indicator SRS resource set.
  • SRI is used SRS resource index (or indicator) in the indicator SRS resource set.
  • the semicolon can also have other representations, such as brackets, line breaks, slashes, etc., as long as it can be used to divide the index into multiple Group.
  • Table B3 is a new table.
  • Each entry in this table includes at least two SRI values, one SRI value to the left of the semicolon, and one SRI value to the right of the semicolon, respectively corresponding to the CSI of the PUSCH transmitted by two uplink transmission units, where SRI is used to indicate SRS SRS resource index (or indicator) in resource set.
  • the semicolon can also have other representations, such as brackets, line breaks, slashes, etc., as long as it can be used to divide the index into multiple groups
  • M SRS 2 00 0; 0 01 1; 1 10 1; 0 11 1; 1
  • Table B4 is another newly added table.
  • the index of the SRS indicated in the extension row in the extension table can have other values, which are not specified, as long as the number of SRS resources indicated by the row is greater than 1, and the rows in the table can also be exchanged .
  • the table containing more than one SRS resource row may also be a newly added table.
  • the base station and the terminal agree on any one of the tables B1 to B4, and make one of the following agreements: if it is a table B1 or B2, then in the table B1, if the value of SRI is less than or equal to 1, or In the case where the SRI value of Table B2 is less than 3, it means that the terminal transmits only one PUSCH and the SRI corresponds to the transmit beam of the first panel. Otherwise, it means that the terminal has two repeated PUSCH transmissions, and Panel0 corresponds to the first SRI. Value, Panel1 corresponds to the value of the second SRI, so that it can dynamically switch from repetitive transmission and non-repetitive transmission.
  • the first value of SRI corresponds to the transmit beam of the first panel
  • the second value of SRI corresponds to the transmit beam of the second panel. If it is in Table B4, then the SRI corresponds to the transmit beam of the first panel, and the value of the SRI of Panel1 is determined according to the value of the SRI and the value of the offset.
  • the value of the offset Offset can be indicated by a newly added Offset field of DCI, or implicitly indicated by other fields of DCI.
  • the Offset can be determined by the value of the antenna port field Antenna ports.
  • the terminal performs the following steps:
  • the terminal receives the one DCI and determines the SRI information of each panel according to the received table configured by the base station.
  • the base station is configured with Table B1 or B2, when the value of SRI in Table B1 is less than or equal to 1, or when the value of SRI in Table B2 is less than 3, it means that the terminal only transmits one PUSCH.
  • SRI corresponds to the transmission beam of the first panel, otherwise it means that the terminal has two repeated PUSCH transmissions, and Panel0 corresponds to the first value of SRI, and Panel1 corresponds to the second value of SRI, so that it can be dynamically transmitted from the repeated transmission Switch with non-repetitive transmission.
  • the first value of SRI corresponds to the transmit beam of the first panel
  • the second value of SRI corresponds to the transmit beam of the second panel. If it is in Table B4, then the SRI corresponds to the transmit beam of the first panel, and the value of the SRI of Panel1 is determined according to the value of the SRI and the value of the offset.
  • the CSI indicated by the base station includes TPMI information
  • some new entries need to be added to the table corresponding to the precoding information and the layer number fields.
  • columns 1 to L1 It represents the precoding of the PUSCH transmitted by the first panel
  • the L1+1 ⁇ Lth columns represent the precoding of the PUSCH transmitted by the second panel.
  • the first panel corresponds to the transmission of the L1 layer
  • the second panel corresponds to the transmission of the L-L1 layer.
  • L1 can take the value 1, 2.
  • the M SRS resource sets in this embodiment can also be replaced with multiple SRS resource groups of one SRS resource set.
  • the SRI is used to indicate the SRS resource in the SRS resource set selected by the base station, and the transmission beam or precoding of the PUSCH is transmitted. It may be the same as the transmission beam or precoding of the SRS resource indicated by the SRI, so that it can be considered that the SRI indicates the transmission beam or precoding corresponding to the PUSCH.
  • the signaling information includes one piece of downlink control information
  • the uplink sounding signal resource indicator field in the downlink control information indicates M uplink sounding signal resource indicator groups
  • the M uplink sounding signal resource indicator groups Used to determine the channel state information of M physical uplink channels.
  • the signaling information includes downlink control information.
  • One DCI indicates the CSI (including but not limited to SRI) of the PUSCH transmitted by the M panels.
  • the uplink transmission is based on a non-codebook-based transmission mode.
  • the system of this embodiment includes one terminal and at least two TRPs (or one TRP includes two panels), and the terminal includes at least two panels.
  • the M panels indicated by the M DCIs respectively transmit M PUSCHs for repetition.
  • the channel state information of the physical uplink channel includes a channel rank, and the channel rank is obtained according to at least one of the following information: the uplink sounding signal resource indicated by the uplink sounding signal resource indication field in the one piece of downlink control information Indicates the total number; the M.
  • the uplink sounding signal resource indication is indicated in the uplink sounding signal resource indication field.
  • the channel rank is the total number of SRIs indicated by the uplink sounding signal resource indicator field divided by the M. That is, the channel rank is the total number of SRIs in all uplink sounding signal resource indicator fields indicated by the uplink sounding signal resource indicator field in the downlink control information divided by M.
  • This example is used to explain how the base station uses 1 DCI to indicate the CSI information corresponding to the M PUSCHs, and how the terminal determines which panel the M CSI corresponds to the PUSCH transmitted by the M CSI according to the received DCI information, and M is greater than 1. Integer.
  • the following steps can be performed:
  • the base station configures M SRS resource sets, and each SRS resource set includes K SRS resources.
  • the base station receives the M SRS resource sets transmitted by the terminal, and respectively estimates the optimal CSI value of each SRS resource set.
  • the SRS table corresponding to the SRS indicator field in the DCI is redesigned, for example, a new table is added.
  • One possible extension is to expand the table into the following table C1.
  • Table C1 is another kind of extended table.
  • the expanded part is underlined and includes at least two sets of SRI values.
  • the set of SRI to the left of the semicolon is taken Value
  • a group of SRI values on the right side of the semicolon correspond to the CSI of the PUSCH transmitted by two uplink transmission units
  • each group of SRI values may include at least one SRI value
  • a group of SRIs may also be referred to as an SRI group.
  • table C1 adds new entries (ie rows) to the original table. Add a new table as shown in Table C2 below.
  • Table C2 is another new table.
  • Each row contains at least two sets of SRI values, one set to the left of the semicolon and one set to the right of the semicolon.
  • the value corresponds to the CSI of the PUSCH transmitted by the two uplink transmission units.
  • the value of each group of SRI can include at least one SRI value.
  • a group of SRIs can also be called an SRI group, where the semicolon can also have other representations Forms, such as brackets, line feed, slash, etc., as long as they can be used to divide the index into multiple groups.
  • the index of the SRS indicated in the extension row in the extension table can have other values, which are not specified, as long as the number of groups of SRS resource indicated by the row is greater than 1, and the rows in the table can also be exchanged .
  • the table including rows of more than one group of SRS resource may also be a newly added table, and M SRS represents the total number of SRS of M SRS resource sets.
  • the left side of the semicolon ";" indicates the value of the SRI corresponding to the first panel
  • the right side of the semicolon indicates the value of the SRI corresponding to the second panel.
  • the semicolon can also have other representation forms, such as brackets, line breaks, and slashes, as long as it can be used to divide the index into multiple groups.
  • the base station and the terminal agree on any of the tables C1 to C2, and make one of the following agreements:
  • the left side of the semicolon ";" represents the value of SRI0 corresponding to the first panel
  • the right side of the semicolon represents the value of SRI1 corresponding to the second panel. According to the value of the SRI, each panel corresponding to The transmit beam (or precoding) and the number of layers.
  • the terminal performs the following steps:
  • the terminal receives the one DCI and determines the SRI information of each panel according to the received table configured by the base station.
  • the value indicated by the value of the SRS resource indicator field in the DCI includes an SRI group (the row with no horizontal lines), it means that the terminal only transmits one PUSCH, and the SRI corresponds to the first The number of transmission beams and layers of each panel, otherwise it means that the terminal has two repeated PUSCH transmissions, and the left side of the semicolon ";" represents the value of SRI0 corresponding to the first panel, and the right side of the semicolon represents the SRI1 corresponding to the second panel
  • the value of can be dynamically switched from repetitive transmission and non-repetitive transmission according to the row where the SRI is located.
  • the left side of the semicolon ";" represents the value of SRI0 corresponding to the first panel
  • the right side of the semicolon represents the value of SRI1 corresponding to the second panel
  • each panel is obtained according to the value of the SRI Corresponding transmission beam (or precoding) and number of layers. Because the transmission beam used by the PUSCH transmitted by each panel or the SRS resource indicated by the SRI corresponding to the precoding domain uses the same transmission beam or precoding, knowing the value of the SRI of each panel, you can know the panel transmission PUSCH transmission beam or precoding. And the number of transmission layers of each panel can be determined by dividing the number of total SRIs by M, or determined according to the number of SRIs included in the group of SRIs corresponding to the panel.
  • the signaling information includes downlink control information.
  • 1 DCI indicates the CSI of M panels (including but not limited to SRI).
  • SRI the CSI of M panels
  • each is determined according to the SRI and the method of adding Panel ID in the SRS resource configuration.
  • the base station configuration or the terminal receives the following SRI table configured by the base station, where the table is the same as the related technology.
  • the SRS resource configured by the base station or the SRS resource sent by the terminal includes a panel index that identifies the uplink transmission unit index or a high-level index for uniquely identifying the uplink transmission unit panel.
  • the SRS resource configured in high-level signaling is as follows:
  • each SRS resource includes PanelID
  • SRS resource3 The PanelID included in SRS resource4 is 1, then the above selection means that two panels are used for uplink transmission, and the beam transmission PUSCH0 of SRS resource 0 and SRS resource 1 corresponding to panel0 is a two-layer transmission, and SRS resource2 and SRS corresponding to panel1
  • the beam of resource3 transmits PUSCH1, and it is a two-layer transmission.
  • Notifying the terminal that the PUSCH or PUCCH corresponding to the UE is repetition, including but not limited to, the two PDCCHs means that the physical downlink control channel information is associated, and the DCI domains corresponding to the two PDCCHs All or part of the same.
  • the transmission mode of the M physical uplink channels includes repeated transmission and non-repetitive transmission, wherein the repeated transmission includes that the intersection of the transmission information included in the M physical uplink channel transmission is not empty, and the non-repetitive transmission
  • the repeated transmission includes at least one of the following: the intersection of the transmission information included in the M physical uplink channel transmissions is empty; the difference of the transmission information included in the M physical uplink channel transmissions is not empty.
  • the transmission information may be information before channel coding or a transmission block, or a coding block or a large coding block corresponding to multiple coding blocks in the uplink control information.
  • repeated transmission means that the transmission blocks transmitted by the M physical uplink shared channels are the same, or the content transmitted by the M physical uplink control channels are the same.
  • determining the channel state information of the M physical uplink channels based on the signaling information includes at least one of the following: a case where the relationship between the information indicated in the M downlink control information satisfies the first predetermined condition Under the following, it is determined that the transmission mode of the M physical uplink channels is repeated transmission; when the relationship between the parameters of the M downlink control channels where the M downlink control information is located satisfies a second predetermined condition, the M physical uplink channels are determined The transmission mode of the physical uplink channel is repeated transmission.
  • the transmission mode of the M physical uplink channels is repeated transmission in at least one of the following situations: where the M downlink control information is located When the relationship between the parameters of the M downlink control channels meets the second predetermined condition; when the relationship between the information indicated in the M downlink control information meets the first predetermined condition.
  • the first predetermined condition includes at least one of the following: all fields in the M downlink control information have the same value; the new data indication fields of the M downlink control information have the same value; The value of the redundancy version field of the M downlink control information is the same; the value of the modulation and coding scheme field of the M downlink control information is the same; the value of the mixed automatic repeat transmission process number field of the M downlink control information is the same The values are the same.
  • the second predetermined condition includes at least one of the following: the control resource sets corresponding to the M downlink control channels have the same search space; the control resource sets corresponding to the M downlink control channels have the same search space; The set of search spaces for the M downlink control channels; the physical downlink control channel detection timings corresponding to the M downlink control channels are the same; the physical downlink control channel detection candidates corresponding to the M downlink control channels are the same; the M downlink control channel uplink sounding signal resources The number of uplink sounding signal resource indications indicated by the indication field is 1; the number of uplink sounding signal resource indication groups indicated by the M downlink control channel uplink sounding signal resource indication fields is 1.
  • the association relationship of the hybrid automatic repeat transmission process corresponding to the M physical uplink channels is used to determine the transmission mode of the M physical uplink channels.
  • an association relationship between two HAQR processes is established, so that the terminal determines that the M uplink PUSCHs are repetition, and the base station transmits CSI information through M DCIs.
  • a high-level parameter identification index such as CoresetGroupID
  • the i-th PDCCH i-1 transmitted by the base station corresponds to the i-th CORESET group
  • the i-th PDCCH i-1 carries the i-th DCI i-1
  • the i-th PDCCH i-1 is scheduled by the i-th PDCCH i-1.
  • the information of the M PDCCHs determines that the M uplink PUSCHs are repetitions, where the base station will transmit CSI information through M DCIs, and mainly determine that the M PUSCHs are repetitions through the same process number.
  • the base station configures M CORESETs for the terminal.
  • the i-th PDCCH i-1 transmitted by the base station corresponds to the i-th CORESET, and the i-th PDCCH i-1 carries the i-th DCI i-1 , and the i- th PUSCH i-1 scheduled by the i-th PDCCH i-1
  • the panels corresponding to the M PUSCHs have an independent buffer for caching the M processes.
  • determining the channel state information of the M physical uplink channels based on the signaling information includes: determining that the M physical uplink channels are duplicated when the M downlink control information meets at least one of the following Transmission:
  • Each field is completely the same; the value of the new data indicator (NDI) is the same; the value of the redundancy version field after channel coding is the same; the value of the modulation and coding scheme field is the same; the number of hybrid automatic repeat transmission processes
  • the field values are the same; the corresponding control resource sets have the same search space; the corresponding control resource sets have the same search space set; the corresponding physical downlink control channel detection timing is the same; the corresponding physical downlink control channel detection candidates are the same; uplink detection
  • the number of uplink sounding signal resource indications indicated by the signal resource indication field is 1, and the number of uplink sounding signal resource indication groups indicated by the uplink sounding signal resource indication field is 1.
  • the M uplink PUSCHs are determined to be repetition based on the information of M PDCCHs, where the base station will transmit CSI information through M DCIs, and mainly use the DCI domain to determine that the M PUSCHs scheduled are repetitions.
  • the base station configures M CORESETs for the terminal.
  • the i-th PDCCH i-1 transmitted by the base station corresponds to the i-th CORESET, and the i-th PDCCH i-1 carries the i-th DCI i-1 . If the M DCI configured by the base station, or the terminal received
  • the M DCIs meet at least one of the following conditions: each domain of the M DCIs is completely consistent, and the new data indicator (NDI) values of the M DCIs are the same.
  • the values of the RV fields of the M DCIs are the same, the values of the Modulation and coding scheme (MCS) fields of the M DCIs are the same, and the HARQ process number field (HARQ process number) of the M DCIs If the value is the same, the CORESET corresponding to the M DCIs have the same search space, the CORESET corresponding to the M DCIs have the same search space set, and the PDCCH monitoring occasions corresponding to the M DCIs are the same.
  • the PDCCH monitoring Candidates corresponding to the M DCIs are the same.
  • the terminal considers that the M PUSCHs scheduled by the M DCIs are repetion.
  • the method further includes at least one of the following: determining the time unit where the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located; and according to the M downlink control information Determine the time unit where the predetermined downlink control information is located in the time unit where the M physical downlink shared channels are located; determine the time unit where the M uplink sounding reference resources are located according to the time unit where the predetermined downlink control information in the M downlink control information is located; Determine the time unit of the M channel state information report according to the time unit where the predetermined downlink control information in the M downlink control information is located.
  • the predetermined downlink control information is at least one of the following: downlink control information with the smallest transmission time slot among the M downlink control information; downlink control information with the largest transmission time slot among the M downlink control information Information; the downlink control information corresponding to the primary transmission node in the M downlink control information; the downlink control information configured by higher layer signaling; the predefined downlink control information; the physical downlink control channel resource index corresponding to the M downlink control information The smallest downlink control information; the downlink control information with the largest physical downlink control channel resource index corresponding to the M downlink control information; the downlink control information with the smallest resource index of the control resource set corresponding to the M downlink control information; the M The downlink control information with the largest resource index of the control resource set corresponding to each downlink control information.
  • the M DCIs transmitted by the base station may be in different time slots, and the resources scheduled by them are transmitted in the same time slot.
  • the resources mentioned include but not Limited to one of the following: PUSCH, PDSCH, pilot reference signal, PUCCH, CSI report, that is, report.
  • the terminal When the terminal receives the DCI, it needs to detect multiple candidate PDCCHs at the corresponding PDCCH monitoring occasion (PDCCH monitoring occasion), which requires a certain processing time. After obtaining the DCI content corresponding to the PDCCH, it takes a certain time to demodulate the downlink data Or process and fill the uplink data or signal to be sent. For example, it takes time to demodulate the PDSCH, time to process the PUSCH and PUCCH to be sent, and to perform CSI feedback. Therefore, generally speaking, the time slot m for transmitting DCI signaling at the base station and the resource time slot k scheduled by the DCI have a certain offset O. The definition of this offset should consider not only the capabilities of the terminal, but also the system delay. Make a better balance. There is generally a fixed configuration value in wireless communication standards.
  • TRP or terminal may repeatedly repetion to transmit a channel or signal. If the contents of the M DCIs are repetion, their scheduling resources (PUSCH, PDSCH, pilot reference signal, PUCCH) are transmitted in the same time slot, or the contents of the M DCIs can be different, but the scheduled resources are in Transmission in the same time unit, for example, frequency division multiplexing is repeated, that is, the M resources are transmitted in the same time unit, but occupy different physical resource blocks (PRG). Among them, PRBs can be divided into different groups or sets.
  • Each PRB group or set includes at least one PRB, such as one of the following concepts: subband, bandwidth part, PRB bundling, resource block group (Resource Block Group, RBG), the time unit includes a collection of one or more symbols, such as a time slot, a mini-slot, where a time slot slot is a collection of multiple symbols, generally a scheduled time unit, generally speaking
  • the next time slot under the normal cyclic prefix includes 14 symbols
  • the next time slot under the extended cyclic prefix includes 12 symbols.
  • the time slot can also be a mini slot, and one slot can include at least one mini slot.
  • M DCIs are transmitted in different time slots, for example, the i-th DCI transmission time slot is mi
  • O is a positive integer configured by a high-level parameter or a fixed positive integer, which represents the time slot offset of the DCI transmission time slot and the resource scheduled by the DCI.
  • the predetermined DCI is used to calculate the resources scheduled by the M DCIs and the time slot problem of the predetermined DCI.
  • the predetermined DCI can also be a predetermined PDCCH, and the predetermined PDCCH is used to carry the Book DCI.
  • the predetermined DCI transmission time slot is m, then the time slots of the resources scheduled by the M DCI are
  • ⁇ 1 , ⁇ PDCCH , O respectively represent the carrier spacing configuration parameters corresponding to the resources scheduled by the DCI, the carrier spacing configuration parameters corresponding to the transmission of the predetermined DCI, and the resources scheduled by the DCI are offset relative to the time slot for transmitting the predetermined DCI, Represents the next rounding operation.
  • the predetermined DCI is one of the following definitions: the DCI with the smallest transmission time slot among the M DCIs; the DCI with the largest transmission time slot among the M DCIs; the DCI configured by higher layer signaling; the predefined DCI; The DCI with the smallest PDCCH resource index corresponding to the M DCIs; the DCI with the largest PDCCH resource index corresponding to the M DCIs; the DCI with the smallest CORESET resource index corresponding to the M DCIs; the CORESET resource index corresponding to the M DCIs The largest DCI.
  • M 2 as an example to illustrate specific examples of resources scheduled by DCI in different situations:
  • the M DCIs are transmitted in different transmission time slots, but only one PDSCH is scheduled, or the M PDSCHs scheduled by the M DCIs are transmitted in the same time slot. Then the transmission time slot of the PDSCH is:
  • the TD is the PDSCH transmission time slot scheduled by the M DCIs
  • n1 is a positive integer
  • ⁇ PDSCH is the carrier interval configuration parameter numerology for transmitting PDSCH
  • ⁇ PDCCH is the carrier interval configuration parameter numerology of the physical layer downlink control channel PDCCH
  • K 0 is the time slot offset between the scheduled DCI and its scheduled PDSCH
  • K 0 is related to the PDSCH system parameter set numerology, according to high-level signaling and/or physical layer signaling configuration
  • K 0 is 0 or 1
  • n1 is the preset The time slot where the DCI is located.
  • the M DCIs are transmitted in different transmission time slots, but only one PUSCH is scheduled, or the M PUSCHs scheduled by the M DCIs are transmitted in the same time slot. Then the transmission time slot of the PUSCH is:
  • K 1 is the time slot between the scheduled DCI and its scheduled PUSCH
  • the offset, K 1 is determined by the PUSCH system parameter set numerology information, including configuration according to high-level signaling and/or physical layer signaling, K 1 is any positive integer from 1 to 6.
  • the M DCIs are transmitted in different transmission time slots, but only one SRS resource is scheduled, or the M SRS resources scheduled by the M DCIs are transmitted in the same time slot. Then the transmission time slot of the SRS resource is:
  • TA is the transmission time slot of the SRS resource
  • n1 is the time slot where the scheduled DCI is located
  • ⁇ SRS is the carrier spacing configuration parameter for transmitting SRS
  • ⁇ PDCCH is the carrier spacing configuration parameter for PDCCH transmission
  • K3 is between DCI and its scheduled SRS resource Slot offset
  • K3 is a positive integer
  • K3 is determined by the slot offset parameter in the SRS resource set resource set in high-level signaling
  • K3 is any positive integer from 0 to 32.
  • the M DCIs are transmitted in different transmission time slots, but only one CSI report is scheduled, or the M CSI reports scheduled by the M DCIs are transmitted in the same time slot. Then the transmission time slot of the CSI report is:
  • TS is the transmission time slot of the CSI report
  • n1 is the time slot where DCI is scheduled
  • ⁇ CSI is the carrier interval configuration parameter for transmitting CSI reports
  • ⁇ PDCCH is the carrier interval configuration parameter for transmitting PDCCH
  • K4 is the difference between DCI and its scheduled CSI report Inter-time slot offset
  • K4 is a positive integer
  • K4 is a time slot offset parameter determined by high-level signaling and/or physical layer parameters.
  • M DCIs are transmitted in different transmission time slots, but only one CSI-RS resource or CSI-RS resource set is scheduled, or the M CSI-RS resources or CSI-RS resource sets scheduled by the M DCIs are in the same one Time slot transmission. Then the transmission time slot of the CSI-RS resource or CSI-RS resource set is:
  • TC is the transmission time slot of the CSI-RS resource or CSI-RS resource set
  • n1 is the time slot where the DCI is scheduled
  • ⁇ CS-RSI is the carrier interval configuration parameter for transmitting CSI reports
  • ⁇ PDCCH is the carrier interval configuration for transmitting PDCCH Parameters
  • K5 is the time slot offset between DCI and its scheduled CSI-RS resource or CSI-RS resource set
  • K5 is a positive integer
  • K5 is a time slot offset parameter determined by high-level signaling and/or physical layer parameters.
  • the predetermined DCI may also be referred to as a reference DCI.
  • FIG. 2 is a schematic flowchart of another method for transmitting signaling information according to an embodiment of the application.
  • the method may be suitable for determining the channel state information of the uplink shared channel.
  • the method may be executed by the signaling information transmission device provided in this application, and the device may be implemented by software/or hardware and integrated on the communication node.
  • the communication node may be a base station.
  • the signaling information transmission method provided by this application includes S210.
  • S210 Transmit signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels, and M is an integer greater than 1.
  • the signaling information is used to indicate channel state information of M physical uplink channels.
  • the base station transmits the signaling information, such as to the terminal, so that the terminal can determine the channel state information of each physical uplink channel.
  • this application may also include configuration signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels.
  • the communication node in this embodiment that is, the base station configures signaling information to indicate the channel state information of M physical uplink channels .
  • the communication node, that is, the base station transmits the signaling information, such as to the terminal, so that the terminal can determine the channel state information of each physical uplink channel.
  • the embodiment of the present application provides a method for transmitting signaling information, which transmits signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels.
  • Using this method effectively solves the technical problem that the channel state information of multiple physical uplink channels cannot be determined when transmitting by multiple panels and multiple transmitting and receiving nodes.
  • the signaling information can effectively determine the transmission time of multiple panels and multiple transmitting and receiving nodes.
  • the signaling information includes M downlink control information.
  • the association relationship between the domain value set of the downlink control information and the uplink sounding reference signal resource set is used to indicate the channel state information of the M physical uplink channels.
  • the domain value set of the downlink control information is a set of M domain values divided by the value of at least one of the following domains of the downlink control information: a redundancy version domain (that is, a redundancy version domain); Carrier indicator field (i.e. Carrier indicator field); Bandwidth part indicator field (i.e. Bandwidth part indicator field); Antenna port field (i.e. Antenna ports field).
  • a redundancy version domain that is, a redundancy version domain
  • Carrier indicator field i.e. Carrier indicator field
  • Bandwidth part indicator field i.e. Bandwidth part indicator field
  • Antenna port field i.e. Antenna ports field.
  • the method includes at least one of the following:
  • the association relationship between the physical downlink control channel information set corresponding to the downlink control information and the uplink transmission unit is used to indicate the channel state information of the M physical uplink channels.
  • the physical downlink control channel information set is a set formed by the value of at least one of the following information: a carrier component for transmitting a physical downlink control channel; a bandwidth part for transmitting a physical downlink control channel; a physical downlink control channel The control resource set group where it is located; the physical downlink control channel detection timing; the physical downlink control channel detection candidate.
  • the method includes at least one of the following:
  • the correlation between the physical downlink control channel detection opportunity value set and the uplink transmission unit indicates the channel state information of the M physical uplink channels; the physical downlink control channel detection candidate value set corresponding to the downlink control information is used to detect the value of the candidate set and the uplink transmission unit
  • the association relationship indicates channel state information of M physical uplink channels.
  • the uplink sounding reference resource set or the uplink transmission unit index of the uplink sounding reference resource indicated by the uplink sounding reference resource indication field of the signaling information is used to indicate the channel state information of the M physical uplink channels.
  • the signaling information includes first-level downlink control information, and the first-level downlink control information is used to indicate the channel state information of the first physical uplink channel.
  • At least one of the following is included:
  • the content of the second level of downlink control information is determined according to the uplink sounding signal resource indication field of the first level of downlink control information; the detection of the second level of downlink control information is based on the uplink sounding signal indicated in the first level of downlink control information
  • the resource information is determined, where the second-level downlink control information belongs to the M pieces of downlink control information. That is, the uplink sounding signal resource indication field of the first-level downlink control information is used to determine the content of the second-level downlink control information; the uplink sounding signal resource information indicated in the first-level downlink control information is used to determine the second-level downlink control Information detection status.
  • At least one of the following is included:
  • the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is less than a predetermined value; the content of the second-level downlink control information is empty In the case that the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is less than a predetermined value; in the case of detecting the second-level downlink control information, the first-level downlink control information The number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the control information is greater than or equal to a predetermined value; when the content of the second-level downlink control information is not empty, the uplink indicated by the first-level downlink control information The number of sounding signal resources or the number of uplink sounding signal resource groups is greater than or equal to a predetermined value; the second-level downlink control information includes the channel state information of the second physical uplink channel, and the uplink indicated by the first
  • the predetermined value is a positive integer and can be 1. Therefore, when the uplink sounding signal resource indicator field of the downlink control information indicates an uplink sounding signal resource indicator or an uplink sounding signal resource indicator group, the second-level downlink control information The content of is empty; or, when the uplink sounding signal resource indicator field indication of the downlink control information is greater than one uplink sounding signal resource indicator or uplink sounding signal resource indicator group, the content of the second-level downlink control information includes Used to indicate the channel status information of the second physical uplink channel.
  • the signaling information includes a piece of downlink control information
  • the uplink sounding signal resource indication field in the downlink control information is used to indicate M uplink sounding signal resource indications
  • the M uplink sounding signal resource indications are used To determine the channel state information of M physical uplink channels.
  • the signaling information includes one piece of downlink control information, and the uplink sounding signal resource indicator field in the downlink control information is used to indicate M uplink sounding signal resource indicator groups, and the M uplink sounding signal resource indicator The group is used to determine the channel state information of M physical uplink channels.
  • the channel state information of the physical uplink channel includes a channel rank, wherein the channel rank is obtained according to at least one of the following information: uplink sounding indicated by an uplink sounding signal resource indicator field in the one piece of downlink control information
  • the signal resource indicates the total number; the M.
  • the channel rank is the total number of all SRIs indicated by the uplink sounding signal resource indication field in the downlink control information divided by M.
  • the transmission mode of the M physical uplink channels includes repeated transmission and non-repetitive transmission, wherein the repeated transmission includes that the intersection of the transmission information included in the M physical uplink channel transmission is not empty, and the non-repetitive transmission
  • the repeated transmission includes at least one of the following: the intersection of the transmission information included in the M physical uplink channel transmissions is empty; the difference of the transmission information included in the M physical uplink channel transmissions is not empty.
  • the configuration signaling information includes: when the transmission mode of the M physical uplink channels is repeated transmission, the relationship between the information indicated in the M downlink control information satisfies the first predetermined condition; When the transmission mode of the physical uplink channel is repeated transmission, the relationship between the parameters of the M downlink control channels where the M downlink control information is located satisfies the second predetermined condition.
  • the first predetermined condition includes at least one of the following:
  • All fields in the M downlink control information have the same value; the new data indication field of the M downlink control information has the same value; the redundancy version field of the M downlink control information has the same value; so The values of the modulation and coding scheme fields of the M downlink control information are the same; the values of the number field of the hybrid automatic repeat transmission process of the M downlink control information are the same.
  • the second predetermined condition includes at least one of the following: the control resource sets corresponding to the M downlink control channels have the same search space; the control resource sets corresponding to the M downlink control channels have the same search space; The set of search spaces for the M downlink control channels; the physical downlink control channel detection timings corresponding to the M downlink control channels are the same; the physical downlink control channel detection candidates corresponding to the M downlink control channels are the same; the M downlink control channel uplink sounding signal resources The number of uplink sounding signal resource indications indicated by the indication field is 1; the number of uplink sounding signal resource indication groups indicated by the M downlink control channel uplink sounding signal resource indication fields is 1.
  • the method includes: determining that the M physical uplink channels are repeatedly transmitted when the M downlink control information meets at least one of the following:
  • Each field is completely the same; the value field of the new data is the same; the value of the redundant version field after channel coding is the same; the value of the modulation and coding scheme field is the same; the value of the number field of the hybrid automatic repeat transmission process is the same; corresponding The control resource set has the same search space; the corresponding control resource set has the same search space set; the corresponding physical downlink control channel detection timing is the same; the corresponding physical downlink control channel detection candidates are the same; the uplink sounding signal resource indication field indicates the uplink The number of sounding signal resource indications is 1; the number of uplink sounding signal resource indication groups indicated by the uplink sounding signal resource indication field is 1.
  • the method further includes at least one of the following: determining the time unit where the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located; and according to the M downlink control information
  • the time unit where the predetermined downlink control information in the information is located determines the time unit where the M physical downlink shared channels are located; the time unit where the M uplink sounding reference resources are located is determined according to the time unit where the predetermined downlink control information in the M downlink control information is located ; Determine the time unit of the M channel state information report according to the time unit where the predetermined downlink control information in the M downlink control information is located. That is, the time unit where the M physical uplink channels are located is determined by the time unit where the predetermined downlink control information in the M downlink control information is located.
  • the predetermined downlink control information is at least one of the following:
  • Downlink control information configured by high-level signaling; predefined downlink control information; downlink control information with the smallest physical downlink control channel resource index corresponding to the M downlink control information; physical downlink control corresponding to the M downlink control information
  • FIG. 3 is a schematic structural diagram of an apparatus for transmitting signaling information provided in an embodiment of this application.
  • the signaling information transmission device can be integrated on the communication node, such as integrated on the base station.
  • the device includes: a transmission module 31 configured to transmit signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1.
  • the device may also include a configuration module, which is configured to configure signaling information.
  • the signaling information transmission device provided in this embodiment is used to implement the signaling information transmission method shown in FIG. 2.
  • the implementation principles and technical effects of the signaling information transmission device provided in this embodiment are the same as those described in FIG. 2
  • the transmission method of the information is similar, so I will not repeat it here.
  • the signaling information includes M downlink control information.
  • the association relationship between the domain value set of the downlink control information and the uplink sounding reference signal resource set is used to indicate the channel state information of the M physical uplink channels.
  • the domain value set of the downlink control information is a set of M domain values divided by the value of at least one of the following domains of the downlink control information: redundancy version domain; carrier indication domain; bandwidth part Indication domain; antenna port domain.
  • the device includes at least one of the following: indicating the channel state information of M physical uplink channels by using the association relationship between the set of redundancy version domain values of the downlink control information and the set of uplink sounding reference signal resources;
  • the association relationship between the carrier indicator field value set of the downlink control information and the uplink sounding reference signal resource set indicates the channel state information of M physical uplink channels; the bandwidth part of the downlink control information is used to indicate the field value set and the uplink sounding reference signal resource
  • the association relationship of the set indicates the channel state information of the M physical uplink channels; the association relationship between the antenna port domain value set of the downlink control information and the uplink sounding reference signal resource set is used to indicate the channel state information of the M physical uplink channels.
  • the association relationship between the physical downlink control channel information set corresponding to the downlink control information and the uplink transmission unit is used to indicate the channel state information of the M physical uplink channels.
  • the physical downlink control channel information set is a set formed by the value of at least one of the following information: a carrier component for transmitting a physical downlink control channel; a bandwidth part for transmitting a physical downlink control channel; a physical downlink control channel The control resource set group where it is located; the physical downlink control channel detection timing; the physical downlink control channel detection candidate.
  • the device includes at least one of the following: indicating the channel state information of the M physical uplink channels by the association relationship between the carrier component value set for transmitting the physical downlink control channel and the uplink transmission unit; and by transmitting the physical downlink control channel
  • the association relationship between the value set of the bandwidth part and the uplink transmission unit indicates the channel state information of M physical uplink channels;
  • the association relationship between the value set of the control resource set corresponding to the downlink control information and the uplink transmission unit indicates M physical The channel state information of the uplink channel;
  • the association relationship between the physical downlink control channel detection timing value set corresponding to the downlink control information and the uplink transmission unit is used to indicate the channel state information of the M physical uplink channels;
  • the downlink control information corresponds to
  • the association relationship between the physical downlink control channel detection candidate value set and the uplink transmission unit indicates the channel state information of the M physical uplink channels.
  • the uplink sounding reference resource set or the uplink transmission unit index of the uplink sounding reference resource indicated by the uplink sounding reference resource indication field of the signaling information is used to indicate the channel state information of M physical uplink channels.
  • the signaling information includes first-level downlink control information, and the first-level downlink control information is used to indicate the channel state information of the first physical uplink channel.
  • the device includes at least one of the following: the content of the second-level downlink control information is determined according to the uplink sounding signal resource indication field of the first-level downlink control information; the detection situation of the second-level downlink control information is determined according to The uplink sounding signal resource information indicated in the first level of downlink control information is determined, where the second level of downlink control information belongs to the M pieces of downlink control information.
  • the device includes at least one of the following: without detecting the second-level downlink control information, the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information When the content of the second-level downlink control information is empty, the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is less than the predetermined value; In the case of the second-level downlink control information, the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is greater than or equal to a predetermined value; the content of the second-level downlink control information is not empty In this case, the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is greater than or equal to a predetermined value; the second-level downlink control information includes the channel of the second physical uplink channel In the case of status information, the number of uplink sound
  • the content of the second-level downlink control information is empty; or, in the downlink
  • the content of the second-level downlink control information includes a channel for indicating a second physical uplink channel status information.
  • the signaling information includes a piece of downlink control information
  • the uplink sounding signal resource indication field in the downlink control information is used to indicate M uplink sounding signal resource indications
  • the M uplink sounding signal resource indications are used To determine the channel state information of M physical uplink channels.
  • the signaling information includes one piece of downlink control information
  • the uplink sounding signal resource indicator field in the downlink control information is used to indicate M uplink sounding signal resource indicator groups
  • the M uplink sounding signal resource indicator The group is used to determine the channel state information of M physical uplink channels.
  • the channel state information of the physical uplink channel includes a channel rank, wherein the channel rank is obtained according to at least one of the following information: uplink sounding indicated by an uplink sounding signal resource indicator field in the one piece of downlink control information
  • the signal resource indicates the total number; the M.
  • the channel rank is the total number of all SRIs indicated by the uplink sounding signal resource indication field in the downlink control information divided by M.
  • the transmission mode of the M physical uplink channels includes repeated transmission and non-repetitive transmission, wherein the repeated transmission includes that the intersection of the transmission information included in the M physical uplink channel transmission is not empty, and the non-repetitive transmission
  • the repeated transmission includes at least one of the following: the intersection of the transmission information included in the M physical uplink channel transmissions is empty; the difference of the transmission information included in the M physical uplink channel transmissions is not empty.
  • the device includes: in the case where the transmission mode of the M physical uplink channels is repeated transmission, the relationship between the information indicated in the M downlink control information satisfies a first predetermined condition; In the case where the transmission mode of the M physical uplink channels is repeated transmission, the relationship between the parameters of the M downlink control channels where the M downlink control information is located satisfies the second predetermined condition.
  • the first predetermined condition includes at least one of the following: all fields in the M downlink control information have the same value; the new data indication fields of the M downlink control information have the same value; The value of the redundancy version field of the M downlink control information is the same; the value of the modulation and coding scheme field of the M downlink control information is the same; the value of the mixed automatic repeat transmission process number field of the M downlink control information is the same The values are the same.
  • the second predetermined condition includes at least one of the following: the control resource sets corresponding to the M downlink control channels have the same search space; the control resource sets corresponding to the M downlink control channels have the same search space; The set of search spaces for the M downlink control channels; the physical downlink control channel detection timings corresponding to the M downlink control channels are the same; the physical downlink control channel detection candidates corresponding to the M downlink control channels are the same; the M downlink control channel uplink sounding signal resources The number of uplink sounding signal resource indications indicated by the indication field is 1; the number of uplink sounding signal resource indication groups indicated by the M downlink control channel uplink sounding signal resource indication fields is 1.
  • the device includes:
  • the M downlink control information meets at least one of the following, it is determined that the M physical uplink channels are repeatedly transmitted:
  • Each field is completely the same; the value field of the new data is the same; the value of the redundant version field after channel coding is the same; the value of the modulation and coding scheme field is the same; the value of the number field of the hybrid automatic repeat transmission process is the same; corresponding The control resource set has the same search space; the corresponding control resource set has the same search space set; the corresponding physical downlink control channel detection timing is the same; the corresponding physical downlink control channel detection candidates are the same; the uplink sounding signal resource indication field indicates the uplink The number of sounding signal resource indications is 1; the number of uplink sounding signal resource indication groups indicated by the uplink sounding signal resource indication field is 1.
  • the device further includes: a determining module, configured to be at least one of the following: determine the time unit where the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located ; Determine the time unit where the M physical downlink shared channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located; determine the M uplink probes according to the time unit where the predetermined downlink control information in the M downlink control information is located Refer to the time unit where the resource is located; determine the time unit of the M channel state information report according to the time unit where the predetermined downlink control information in the M downlink control information is located.
  • a determining module configured to be at least one of the following: determine the time unit where the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located ; Determine the time unit where the M physical downlink shared channels are located according to the time unit where the predetermined downlink control information in the M down
  • the predetermined downlink control information is at least one of the following:
  • Downlink control information configured by high-level signaling; predefined downlink control information; downlink control information with the smallest physical downlink control channel resource index corresponding to the M downlink control information; physical downlink control corresponding to the M downlink control information
  • FIG. 4 is a schematic structural diagram of another apparatus for transmitting signaling information provided in an embodiment of this application.
  • the device can be integrated on a communication node, such as a user terminal.
  • the device includes: a receiving module 41, configured to receive signaling information, the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1, and a determining module 42 is configured to To determine the channel state information of M physical uplink channels based on the signaling information.
  • the signaling information transmission device provided in this embodiment is used to implement the signaling information transmission method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the signaling information transmission device provided in this embodiment are the same as those shown in FIG. 1.
  • the signaling information transmission method of the embodiment is similar, and will not be repeated here.
  • the signaling information includes M downlink control information.
  • the association relationship between the domain value set of the downlink control information and the uplink sounding reference signal resource set indicates channel state information of M physical uplink channels.
  • the domain value set of the downlink control information is M domain value sets divided by the value of at least one of the following domains of the downlink control information:
  • Redundancy version domain ; carrier indication domain; bandwidth part indication domain; antenna port domain.
  • the determining module 42 includes at least one of the following:
  • the association relationship between the redundancy version domain value set of the downlink control information and the uplink sounding reference signal resource set determines the channel state information of M physical uplink channels; the carrier indicator domain value set of the downlink control information and the uplink sounding reference signal resource set The association relationship of the set determines the channel state information of the M physical uplink channels; the bandwidth part of the downlink control information indicates the relationship between the domain value set and the uplink sounding reference signal resource set to determine the channel state information of the M physical uplink channels; The association relationship between the antenna port domain value set of the downlink control information and the uplink sounding reference signal resource set determines the channel state information of the M physical uplink channels.
  • the association relationship between the physical downlink control channel information set corresponding to the downlink control information and the uplink transmission unit is used to indicate the channel state information of the M physical uplink channels.
  • the physical downlink control channel information set is a set formed by the value of at least one of the following information:
  • the carrier component that transmits the physical downlink control channel; the bandwidth part of the physical downlink control channel is transmitted; the control resource set group where the physical downlink control channel is located; the physical downlink control channel detection timing; the physical downlink control channel detection candidate.
  • the determining module 42 includes at least one of the following:
  • the association relationship between the carrier component value set of the transmission physical downlink control channel and the uplink transmission unit determines the channel state information of M physical uplink channels; the association relationship between the value set of the bandwidth part of the transmission physical downlink control channel and the uplink transmission unit determines M The channel state information of the physical uplink channel; the association relationship between the control resource set group value set corresponding to the downlink control information and the uplink transmission unit determines the channel state information of the M physical uplink channels; the physical downlink control corresponding to the downlink control information The association relationship between the channel detection timing value set and the uplink transmission unit determines the channel state information of M physical uplink channels; the association relationship between the physical downlink control channel detection candidate value set corresponding to the downlink control information and the uplink transmission unit determines M The channel state information of the physical uplink channel.
  • the determining module 42 is configured to determine the channels of M physical uplink channels for the uplink sounding reference resource set indicated by the uplink sounding reference resource indication field of the signaling information or the uplink transmission unit index of the uplink sounding reference resource status information.
  • the signaling information includes first-level downlink control information, and the first-level downlink control information is used to determine the channel state information of the first physical uplink channel.
  • the determining module 42 includes at least one of the following: determining the content of the second-level downlink control information according to the uplink sounding signal resource indication field of the first-level downlink control information; and according to the first-level downlink control information The uplink sounding signal resource information indicated in determines the detection status of the second-level downlink control information;
  • the second-level downlink control information belongs to the M downlink control information.
  • the determining module 42 includes at least one of the following:
  • the second-level downlink control information When the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the first-level downlink control information is less than a predetermined value, the second-level downlink control information is not detected; When the number of uplink sounding signal resources or the number of uplink sounding signal resource groups indicated by the control information is less than a predetermined value, the content of the second-level downlink control information is empty; When the number of sounding signal resources or the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the second level of downlink control information is detected; the number of uplink sounding signal resources indicated by the first level of downlink control information is or When the number of uplink sounding signal resource groups is greater than or equal to a predetermined value, the content of the second-level downlink control information is not empty; the number of uplink sounding signal resources or uplink sounding signals indicated by the first-level downlink control information When the number of resource groups is greater than or equal to a predetermined value, the
  • the signaling information includes a piece of downlink control information
  • the uplink sounding signal resource indicator field in the downlink control information indicates M uplink sounding signal resource indicators
  • the M uplink sounding signal resource indicators are used for Determine the channel state information of M physical uplink channels.
  • the signaling information includes one piece of downlink control information
  • the uplink sounding signal resource indicator field in the downlink control information indicates M uplink sounding signal resource indicator groups
  • the M uplink sounding signal resource indicator groups Used to determine the channel state information of M physical uplink channels.
  • the channel state information of the physical uplink channel includes a channel rank, wherein the channel rank is obtained according to at least one of the following information: uplink sounding indicated by an uplink sounding signal resource indicator field in the one piece of downlink control information
  • the signal resource indicates the total number; the M.
  • the channel rank is the total number of all SRIs indicated by the uplink sounding signal resource indication field in the downlink control information divided by M.
  • the transmission mode of the M physical uplink channels includes repeated transmission and non-repetitive transmission, wherein the repeated transmission includes that the intersection of the transmission information included in the M physical uplink channel transmission is not empty, and the non-repetitive transmission
  • the repeated transmission includes at least one of the following: the intersection of the transmission information included in the M physical uplink channel transmissions is empty; the difference of the transmission information included in the M physical uplink channel transmissions is not empty.
  • the determining module 42 is configured to determine that the transmission mode of the M physical uplink channels is repeated when the relationship between the information indicated in the M downlink control information satisfies the first predetermined condition Transmission; in the case where the relationship between the parameters of the M downlink control channels where the M downlink control information is located satisfies the second predetermined condition, it is determined that the transmission mode of the M physical uplink channels is repeated transmission.
  • the first predetermined condition includes at least one of the following:
  • All fields in the M downlink control information have the same value; the new data indication field of the M downlink control information has the same value; the redundancy version field of the M downlink control information has the same value; so The values of the modulation and coding scheme fields of the M downlink control information are the same; the values of the number field of the hybrid automatic repeat transmission process of the M downlink control information are the same.
  • the second predetermined condition includes at least one of the following: the control resource sets corresponding to the M downlink control channels have the same search space; the control resource sets corresponding to the M downlink control channels have the same search space; The set of search spaces for the M downlink control channels; the physical downlink control channel detection timings corresponding to the M downlink control channels are the same; the physical downlink control channel detection candidates corresponding to the M downlink control channels are the same; the M downlink control channel uplink sounding signal resources The number of uplink sounding signal resource indications indicated by the indication field is 1; the number of uplink sounding signal resource indication groups indicated by the M downlink control channel uplink sounding signal resource indication fields is 1.
  • the transmission mode of the M physical uplink channels is determined by the association relationship of the hybrid automatic repeat transmission process corresponding to the M physical uplink channels.
  • the determining module 42 is configured to determine that the M physical uplink channels are repeatedly transmitted when the M downlink control information meets at least one of the following:
  • Each field is completely the same; the value field of the new data is the same; the value of the redundant version field after channel coding is the same; the value of the modulation and coding scheme field is the same; the value of the number field of the hybrid automatic repeat transmission process is the same; corresponding The control resource set has the same search space; the corresponding control resource set has the same search space set; the corresponding physical downlink control channel detection timing is the same; the corresponding physical downlink control channel detection candidates are the same; the uplink sounding signal resource indication field indicates the uplink The number of sounding signal resource indications is 1; the number of uplink sounding signal resource indication groups indicated by the uplink sounding signal resource indication field is 1.
  • the device further includes a time unit determining module configured to be at least one of the following: determine the time at which the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located Unit; determine the time unit where the M physical downlink shared channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located; determine the M uplink units according to the time unit where the predetermined downlink control information in the M downlink control information is located The time unit where the sounding reference resource is located; the time unit for M channel state information reports is determined according to the time unit where the predetermined downlink control information in the M downlink control information is located.
  • a time unit determining module configured to be at least one of the following: determine the time at which the M physical uplink channels are located according to the time unit where the predetermined downlink control information in the M downlink control information is located Unit; determine the time unit where the M physical downlink shared channels are located according to the time unit where the predetermined downlink control information in the
  • the predetermined downlink control information is at least one of the following:
  • Downlink control information configured by high-level signaling; predefined downlink control information; downlink control information with the smallest physical downlink control channel resource index corresponding to the M downlink control information; physical downlink control corresponding to the M downlink control information
  • FIG. 5 is a schematic structural diagram of a communication node provided by an embodiment of the application.
  • the communication node provided by the present application includes one or more processors 51 and a storage device 52; there may be one or more processors 51 in the first terminal.
  • one processor 51 is taken as an example.
  • the storage device 52 is used to store one or more programs; the one or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the corresponding implementation as shown in FIG. 2 of this application The method described in the example.
  • the communication node further includes: a communication device 53, an input device 54 and an output device 55.
  • the processor 51, the storage device 52, the communication device 53, the input device 54 and the output device 55 in the communication node may be connected by a bus or other means.
  • the connection by a bus is taken as an example.
  • the input device 54 can be used to receive input digital or character information, and generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to perform information transceiving and communication under the control of the processor 51. Such as the transmission of signaling information.
  • the storage device 52 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the method described in the embodiment corresponding to FIG.
  • the storage device 52 may include a storage program area and a storage data area, wherein the storage program area can store an operating system and at least one application program required by a function; The data created by the use of the communication node, etc.
  • the storage device 52 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state memory
  • the storage device 52 may include a memory remotely arranged relative to the processor 51, and these remote memories may be connected to a communication node through a network. Examples of the foregoing network include, but are not limited to, the Internet, an intranet, a local area network, and a mobile Communication network and its combination.
  • FIG. 6 is a schematic structural diagram of another communication node provided in an embodiment of the application.
  • the communication node provided in this application includes one or more processors 61 and a storage device 62; there may be one or more processors 61 in the communication node, and one processor 61 is taken as an example in FIG. 6;
  • the storage device 62 is configured to store one or more programs; the one or more programs are executed by the one or more processors 61, so that the one or more processors 61 implement the embodiment corresponding to FIG. 1 of the present application The method described.
  • the communication node further includes: a communication device 63, an input device 64, and an output device 65.
  • the processor 61, the storage device 62, the communication device 63, the input device 64, and the output device 65 in the communication node may be connected by a bus or other methods.
  • the connection by a bus is taken as an example.
  • the input device 64 can be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the communication node.
  • the output device 65 may include a display device such as a display screen.
  • the communication device 63 may include a receiver and a transmitter.
  • the communication device 63 is configured to perform information transceiving and communication under the control of the processor 61. Such as the transmission of signaling information.
  • the storage device 62 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the method described in the embodiment corresponding to FIG.
  • the storage device 62 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the communication node and the like.
  • the storage device 62 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 62 may include a memory remotely provided with respect to the processor 61, and these remote memories may be connected to a communication node through a network.
  • networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • a method for transmitting signaling information includes: configuring signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1, and transmitting the signaling information.
  • a method for transmitting signaling information includes: receiving signaling information, where the signaling information is used to indicate channel state information of M physical uplink channels, and M is a positive integer greater than 1, based on the signaling The information determines the channel state information of M physical uplink channels.
  • terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了信令信息的传输方法、装置、通信节点和存储介质。该信令信息的传输方法包括:接收信令信息;基于所述信令信息确定M个物理上行信道的信道状态信息,M为大于1的正整数。

Description

信令信息的传输方法、装置、通信节点和存储介质
本申请要求在2019年09月03日提交中国专利局、申请号为201910828953.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯领域,例如涉及信令信息的传输方法、装置、通信节点和存储介质。
背景技术
多个传输接收节点(Multiple Transmission and Reception Point,Multi-TRP)联合传输或者接收是无线通信中的一个重要技术,它对增加无线通信的吞吐量有较显著的作用,所以在长期演进(Long Term Evolution,LTE),长期演进增强(Long Term Evolution-Advanced,LTE-A),新无线接入技术(New Radio Access Technology,NR)等标准中都支持多传输接收节点传输。多面板(Multi-Panel)传输是NR引入的一个重要技术,它是在接收端和/或发送端安装多个天线面板以提高无线通信***的频谱效率。另外,利用Multi-TRP或Multi panel的重复(repetition)发送或接收是一种有效的提高可靠性的手段,可以提高无线通信***,特别是提高超可靠度和低延迟通讯(Ultra-reliable and Low Latency Communications,URLLC)的传输可靠性。
然而,Multi-TRP和/或Multi panel的上行重复传输中如何确定上行信道的信道状态信息是亟待解决的技术问题。
发明内容
本申请提供信令信息的传输方法、装置、通信节点和存储介质。
本申请实施例提供了一种信令信息的传输方法,包括:
接收信令信息;
基于所述信令信息确定M个物理上行信道的信道状态信息,M为大于1的正整数。
本申请实施例还提供了一种信令信息的传输方法,包括:
传输信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数。
本申请实施例还提供了一种信令信息的传输装置,包括:
接收模块,设置为接收信令信息;
确定模块,设置为基于所述信令信息确定M个物理上行信道的信道状态信息,M为大于1的正整数。
本申请实施例还提供了一种信令信息的传输装置,包括:
传输模块,设置为传输信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例所述的信令信息的传输方法。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例所述的信令信息的传输方法。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种信令信息的传输方法。
附图说明
图1为本申请实施例提供的一种信令信息的传输方法的流程示意图;
图2为本申请实施例提供的另一种信令信息的传输方法的流程示意图;
图3为本申请实施例提供的一种信令信息的传输装置的结构示意图;
图4为本申请实施例提供的另一种信令信息的传输装置的结构示意图;
图5为本申请实施例提供的一种通信节点的结构示意图;
图6为本申请实施例提供的另一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在一个示例性实施方式中,图1为本申请实施例提供的一种信令信息的传输方法的流程示意图,该方法可以适用于确定上行信道的信道状态信息的情况,该方法可以由本申请提供的信令信息的传输装置执行,该信令信息的传输装置可以由软件和/或硬件实现,并集成在通信节点上。该通信节点涵盖任何适合类型的用户终端。
以下对本申请中的概念进行说明:
在本申请中,一个面板可以对应一个端口组(如天线端口组,天线组),两者是一一对应的,也可以相互替换。面板是指天线面板,一个传输接收点(Transmission Reception Point,TRP)或者通信节点(包括但不限于终端,基站等)都可以包括至少一个天线面板。每个面板上有一个或者多个天线阵子,多个阵子可以虚拟成一个天线端口。一个面板上的天线端口可以分成一个端口组。一个面板又可以分成多个子面板,每个子面板包括的多个天线端口可以分成一个端口组。比如双极化的天线,正45°极化的天线为一个子面板,而负45°极化的天线为一个子面板。本申请实施例中把面板和子面板都统称为面板,用panel表示,面板可以用端口组(或者空间参数,比如发送波束,接收波束,准共位置类型type D)代替。
传输单元包括上行传输单元和下行传输单元,上行传输单元可以是天线面板,面板,子面板,天线面板对应的端口组(或简称,端口组),端口子组,一个TRP对应的端口组等,一个端口组包括至少一个端口。传输单元是用于传输物理上行共享信道或者物理上行控制信道,或者用于接收物理下行共享信道或者物理下行控制信道的物理的天线组,天线组件,天线阵元组,面板,子面板等至少之一,或者逻辑的端口组。上行传输单元索引是指天线面板索引,面板索引,子面板索引,天线面板对应的端口组索引,端口组索引,一个TRP对应的端口组索引,端口子组索引等至少之一。
为了获得信道状态信息,需要发送参考信号,参考信号包括但不限于:信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源、同步信号块(Synchronization Signals Block,SSB)资源、物理广播信道(Physical Broadcast Channel,PBCH)资源、同步广播块/物理广播信道(SSB/PBCH)资源,上行探测参考信号(Sounding reference signal,SRS)资源。其中,CSI-RS资源主要是指非零功率信道状态信息-参考信号(Non Zero Power  Channel State Information-Reference Signal,NZP-CSI-RS)资源。而参考资源集合包括一个或多个参考信号资源,比如CSI-RS资源集合(即CSI-RS resource set),SRS资源集合(即SRS resource set),SSB资源集合(即SSB resource set)。一个参考资源配置中又可以包括一个或者多个参考资源集合,比如CSI-RS资源配置(即CSI-RS resource config),SSB资源配置(即SSB resource config),SRS资源配置(即SRS resource config)。其中,config又可以换成设置,即setting。一般来说,一个SRS resource set中包括K个SRS资源,即SRS resource,比如存储了所述K个SRS resource的资源索引,其中,在基于码本的上行传输中,所述的K取值为1或者2,在基于非码本的上行传输中,所述的K取值为1,2,3,4中的一个,也可以是一个参考信号资源集合中包括的多个参考信号资源分成多个参考信号资源组,在不是特别说明的情况下,本申请中的参考信号资源集合和参考信号资源组可以相互替换。
本申请中标识(Identifier,ID)用于标识一个事物的序号,索引。比如一个参考信号资源、参考信号资源组,参考信号资源配置、信道状态信息(Channel State Information,CSI)报告、CSI报告集合、终端、基站、面板等对应的索引。
为了传输数据或者信令,标准中把物理信道分成物理下行控制信道(Physical downlink control channel,PDCCH),物理上行控制信道(Physical uplink control channel,PUCCH),物理下行共享信道(Physical downlink shared channel,PDSCH),物理上行共享信道(Physical uplink shared channel,PUSCH)。其中,PDCCH主要用于传输物理下行控制信令(Downlink Control Information,DCI),而PUCCH主要用于传输上行控制信息,比如信道状态信息(Channel State Information,CSI),混合自动重复传输(Hybrid automatic repeat request,HARQ),调度请求(Scheduling Request)等,而PDSCH主要用于传输下行数据,PUSCH主要用于传输上行数据和CSI等信息。其中,CSI包括终端反馈的下行链路的信道状态信息和基站指示终端的上行链路的信道状态信息。其中,下行链路的信道状态信息包括但不限于以下信息中的至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI)、信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示(Precoding Matrix Indicator,PMI)、层指示(Layer Indicator,LI)、秩指示(Rank Indicator,RI);上行链路的信道状态信息包括但不限于以下信息中的至少之一:上行探测信号资源指示(SRS resource Indicator,SRI)、传输预编码矩阵指示(Transmitted Precoding Matrix Indicator,TPMI),传输秩指示(Transmitted Rank Indicator,TRI),调制和编码方案(Modulation and coding scheme,MCS),另外TPMI和TRI可能联合编码,用下行控制信令的预编码信息和层数域(即Precoding information and number  of layers)指示,空间滤波参数,空间相关参数,波束参数。空间滤波参数,空间相关参数,波束参数也可以通过SRI指示,或者通过准共位置(quasi co-located,QCL)参数确定。上行链路的信道状态信息也可以称作上行信道的参数。在下行控制信息中的上行探测信号资源指示域中包括一个用于指示SRS resource set中的SRS resource index(或者写作indicator)的上行探测信号资源指示,主要用于基于码本的上行传输,或者包括一组用于指示SRS resource set中的SRS resource index(或者写作indicator)的上行探测信号资源指示,主要用于基于非码本的上行传输,物理随机接入信道(Physical Random Access Channel,PRACH)是用于传输上行随机接入信息的信道。其中,物理上行信道包括如下至少之一:PUSCH;PUCCH,PRACH,而物理下行信道包括如下至少之一:PDSCH;PDCCH,本申请中的M个物理上行信道,可以是M个用于传输物理上行数据的物理上行信道资源,或者一个物理上行信道资源在不同传输时间,或者不同传输载波,不同传输子带上的一次传输,比如M个PUSCH,包括M个在不同上行传输单元上传输上行数据的PUSCH信道资源,或者物理上行数据在一个PUSCH的资源在不同时间上的M次传输,同理,本申请中的M个物理下行信道,可以是M个物理下行信道资源,或者一个物理下行信道资源在不同传输时间,或者不同传输载波,不同传输子带上的一次传输,比如M个PDCCH,可以包括M个PDCCH信道,或者一个PDCCH信道在不同的时间或者不同的频域传输了M次,其中,PDCCH携带了控制信道信息DCI。其中,所述的M个物理上行信道传输的上行数据也可以称为传输信息,所述传输信息可以是信道编码前的信息,或者传输块,或者是上行控制信息中的一个编码块或者多个编码块对应的一个大的编码块。本申请中所述的M个物理上行信道的信道状态信息,即是上行链路的信道状态信息,这是因为PUSCH、PUCCH等都是上行链路。本申请中的传输可以是发送,也可以是接收。
为了提高数据或者信令传输的可靠性,一种方式是重复(即repetition)的传输。M个数据(比如,PDSCH或PUSCH)传输是repetition的,是指所述M个数据携带了完全相同的信息,比如M个数据来自相同传输块(Transport Block,TB),只是对应的信道编码后的冗余版本(Redundancy version,RV)不同,甚至M个数据连信道编码后的RV都是一样的。RV是指对传输数据进行信道编码后的不同冗余版本,一般来说,可以取信道版本{0,1,2,3}。同样的,M个信令(比如PDCCH或PUCCH)传输是repetition的,是指所述M个信令携带的内容是相同的,比如M个PDCCH携带的DCI内容是相同的(比如每个域的取值都相同),比如M个PUCCH携带的内容取值是相同的。其中,M个repetition的数据(比如M个repetition PUSCH或M个repetition PDSCH)或者M个repetition的信令(比如M个repetition PUCCH或M个repetition PDCCH)可以来自M个 不同的TRP,或者来自M个不同的天线面板,或者M个不同的带宽部分(Bandwidth Part,BWP),或者M个不同的载波组件(Carrier Component,CC),其中所述的M个面板或者M个BWP或者M个CC可以属于同一个TRP,也可以属于多个TRP。
在NR等标准中,PDCCH是需要映射到一组资源单元(resource element,RE)上的,比如包括一个或者多个控制信道单元(Control Channel Element,CCE),其中,一个RE在频域上包括一个子载波,而在时域上包括一个符号。而用于传输PDCCH的一个或者多个CCE的集合,有时也叫控制资源集合(Control resource set,CORESET),其在频域上包括多个物理资源块,而在时域上包括K个符号,K为自然数,比如K可以取1、2、3的整数。符号包括但不限于以下之一:正交频分复用符号(Orthogonal frequency division multiplex,OFDM),单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA),正交频分复用多址接入(Orthogonal frequency division Multiple Access,OFDMA)。而为了检测PDCCH,将一个聚合等级的候选PDCCH配置成一个集合,这个等级下的候选PDCCH集合就是搜索空间(Search Space,SS),而多个搜索空间的集合形成一个搜索空间集合(SS set,SSSET,或SSS),每个终端可以配置至少一个搜索空间集合。而为了检测PDCCH。会在搜索空间里配置当前终端的PDCCH检测的时机(即occasion),以及检测的PDCCH候选(即candidate),或PDCCH候选,其中,occasion又叫PDCCH监测时机(即PDCCH monitoring occasion),occasion由激活的下行带宽部分(Bandwidth Part,BWP)上的PDCCH监测周期(即PDCCH monitoring periodicity),PDCCH的监测偏置(即PDCCH monitoring offset),PDCCH监测图样(即PDCCH monitoring pattern)等确定的检测PDCCH的时域信息。candidate又叫PDCCH检测候选(即PDCCH monitoring candidate),是一个搜索空间配置的候选的待检测的PDCCH,另外,PDCCH包括多种格式,每种格式都对应一个相对应格式下的下行控制信息DCI,每个DCI中又包括多个信令指示域,其中,检测也可以称为监测,盲检,主要是用来确定候选的多个PDCCH哪个是用于给终端传输下行控制信息的PDCCH。
在本申请中,传输的时间单元可以包括一个或者多个符号的集合,比如一个时隙,或者一个迷你时隙。
在本申请所列的实施例中,如果没有说明,一般来说,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括M个面板。M个面板分别传输M个PUSCH,所述M个PUSCH是repetition的,所述M个PUSCH可以来自M个终端或者M个面板,或者M个CC或者M个BWP,其中,所述的M个面板,或者M个CC或者M个BWP可以来自一个终端,也可以来自多 个终端。比如,一个面板或者一个端口组对应一个PUSCH传输,所述M个repetition的PUSCH可以是通过空分的方式,或者频分复用的方式,或者时分复用的方式传输。且基站配置的M个SRS resource set也可以替换成一个SRS resource set中的M个SRS resource组,其中,所述M个SRS resource包含的SRS resource互不重复或者重叠,M为大于1的整数。一实施例中,所述M取值为2,例如一个SRS resource set中包括SRS resource i,其中i=0,1,2,3。其中,SRS resource0和SRS resource1分成一组,而SRS resource2和SRS resource3分成一组,本申请中的方法也可以用于上行物理控制信道。
本申请提供的信令信息的传输方法能够更好的解决多面板或多个传输接收节点传输中遇到的问题,从而提升***的性能。如图1所示,本申请提供的信令信息的传输方法,包括S110和S120。
S110、接收信令信息。
为了解决多个传输接收节点和多面板传输中无法确定上行信道的信道状态信息的技术问题,本实施例中的通信节点,即终端接收由基站配置的信令信息。该信令信息设置为指示M个物理上行信道的信道状态信息。M为大于1的正整数。
信令信息可以包括有M个下行控制信息,分别指示M个物理上行信道的信道状态信息;信令信息也可以包括两级下行控制信息,指示M个物理上行信道,其中两级下行控制信息包括一个第一级下行控制信息和M-1个第二级下行控制信息。如果所述M-1个第二级下行控制信息包括的内容为空,也可以不用传输所述的内容为空的第二级下行控制信息;信令信息可以包括一个下行控制信息,该下行控制信息中包括M个SRI值,每个SRI值对应一个物理上行信道,或者包括M组SRI,每组SRI对应一个物理上行信道。
示例性的,通过DCI信息指示2个repetition的PUSCH对应的SRI信息。
方式1:通过两个DCI,即DCI0和DCI1分别指示PUSCH0的SRI0和PUSCH1的SRI1。
终端收到两个SRI0和SRI1后,可以通过信息绑定的手段确定是PUSCH0还是PUSCH1的SRI。比如传输SRI0的DCI0携带的如下信息,如RV版本,BWP取值,资源分配取值,载波组件(Component Carrier,CC)取值,解调参考信号(Demodulation Reference Signal,DMRS)取值,SRI对应的SRS resource set里包括了Panel ID信息。或者所述的DCI对应的第i个PDCCH信息与PUSCHi绑定,i=1,2。PDCCH信息包括PDCCH对应的CORESET,SS,SS集合,PDCCH检测时机Occasion,PDCCH检测Candidate。
方式2:通过两级DCI,包括第一级DCI和第二级DCI,第一级DCI取值小于A的时候,表示只有一个SRI。如果第一级DCI的取值大于A,则启动第二级DCI,第二级DCI指示PUSCH的PMI、RI等信息。其中,A为正整数,可以根据实际情况设置A的取值。
方式3:通过一个DCI指示,但所述DCI指示的SRI表格需要扩展,包括两个SRI值(或者两组SRI值),所述两个SRI值(两组SRI值)分别对应第一个PUSCH和第二个PUSCH。
S120、基于所述信令信息确定M个物理上行信道的信道状态信息。
接收信令信息后,通信节点,即终端可以基于该信令信息所指示的M个物理上行信道的信道状态信息,确定M个物理上行信道的信道状态信息。确定策略可以根据信令信息的指示手段确定,此处不作限定。
本申请提供的一种信令信息的传输方法,首先接收信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息;然后基于所述信令信息确定M个物理上行信道的信道状态信息。利用该方法有效解决了多面板和多个传输接收节点传输时,无法确定多个物理上行信道的信道状态信息的技术问题,通过信令信息能够有效的确定多面板和多个传输接收节点传输时多个物理上行信道的信道状态信息。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述下行控制信息的域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述下行控制信息的域值集合为由所述下行控制信息的以下至少之一域的取值分成的M个域值集合:
冗余版本域;载波指示域;带宽部分指示域;天线端口域。
在一个实施例中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
基于所述下行控制信息的冗余版本域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息的载波指示域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息的带宽部分指示域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息的天线端口域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息。如,根据所述下行控制信息的冗 余版本域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息。
示例性的,在基站配置信令信息的情况下,信令信息可以包括M个下行控制信息DCI。故终端接收到的信令信息中包括M个下行控制信息DCI。M(M为大于1的整数)个DCI指示M个面板传输的PUSCH的CSI(包括但不限于如下至少之一:SRI、TPMI、RI、MCS,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),通过SRS resource set跟DCI中的一个或者多个域的取值绑定实现。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的,本实施例的PUSCH也可以替换成PUCCH。
本实施例,主要用于说明基站如何通过M个DCI指示所述的M个PUSCH分别对应的CSI,以及终端如何根据接收的DCI确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。
对于基站来说,可以进行以下步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。
将M个SRS resource set跟DCI的以下至少之一的域的取值进行绑定:
冗余版本(即Redundancy version)域的取值,将上行传输的数据信道编码后的RV版本分成M个版本集合,RV seti,i=0,…,M-1,比如在M=2时,RV set0包括RV版本{0,2},而RV set1包括版本{1,3}。RV版本集合的划分可以是基站和终端约定的其它的取值,比如{0,1}和{2,3}等。
载波指示(即Carrier indicator)的取值,比如将载波聚合的取值分成M个集合,CI seti,i=0,…,M-1,比如在M=2时,CI set0包括取值{0,2},而CI set1包括取值{1,3},同样的也可以有其它的取值分组方式。
带宽部分指示(Bandwidth part indicator),比如将BWPI的取值分成M个集合,BWPI seti,i=0,…,M-1,比如在M=2时,BWPI set0包括取值{0,2},而BWPI set1包括取值{1,3},也可以有其它的取值分组方式。
天线端口(即Antenna ports),主要是指DMRS,将Antenna port域的取值分成M个集合DMRS seti,i=0,…,M-1,比如在M=2时,DMRS set0包括取值{0,…,L/2},而DMRS set1包括取值{L/2+1,…,L-1},也可以有其它的取值分组方式。其中,L为正整数,表示DMRS端口的集合的元素个数。
并且将所述的RV seti、CI seti、BWPI seti、DMRS seti的至少之一和SRS resource set i绑定。在第i个DCI中的对应域取值为RV seti、CI seti、BWPI seti、DMRS seti至少之一的集合里的取值的情况下,说明第i个DCI携带的CSI取值是对应第i个PUSCH的或者第i个Panel传输的PUSCH的CSI,i=0,…,M-1,第i个SRS resource set与第i个上行传输单元(比如面板)绑定。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi,所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过M个DCI传输所述的M个CSI,CSIi,i=0,…,M-1
M个DCI满足如下至少之一:第i个DCI的冗余版本域取值来自RV seti;第i个DCI的载波指示域的取值来自CI seti;第i个DCI的带宽部分指示域取值来自BWPI seti;第i个DCI的DMRS取值来自DMRS seti,i=0,…,M-1。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的M个DCI获取M个CSI,CSIi,i=0,…,M-1。
在如下至少之一的情况下,第i个DCI中的冗余版本Redundancy version域取值来自RV seti;第i个DCI中的载波指示域的取值来自CI seti;第i个DCI中的带宽部分指示域取值来自BWPI seti;第i个DCI中的天线端口域取值来自DMRS seti,可以确定第i个DCI中携带的CSIi取值对应第i个panel的PUSCHi。可以用所述CSI的取值来确定用于传输PUSCHi的如下信息中的至少之一:空间参数信息(比如发送波束),层数,或者预编码矩阵信息,MCS,其中,预编码矩阵信息和层数可能通过一个Precoding information and number of layers联合通知。
在本实施例中,在基站指示的CSI中包括TPMI信息的情况下,M个DCI指示的TPMI对应的码本配置中关于码书限制(即codebookSubset)的配置是独立的,其中,codebookSubset的取值包括fullyAndPartialAndNonCoherent,partialAndNonCoherent,nonCoherent,其中,fullyAndPartialAndNonCoherent,partialAndNonCoherent,nonCoherent对应码本限制的三种配置,其中fullyAndPartialAndNonCoherent包括全相关、部分相关、非相关的所***字,partialAndNonCoherent对应部分相关和非相关的码字,而nonCoherent只对应非相关的码字。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的多个SRS resource组。
在一个实施例中,所述下行控制信息对应的物理下行控制信道信息集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述物理下行控制信道信息集合为由如下至少之一信息的取值形成的集合:
传输物理下行控制信道的载波组件;传输物理下行控制信道的带宽部分;物理下行控制信道所在的控制资源集组;物理下行控制信道检测时机;物理下行控制信道检测候选。
在一个实施例中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
基于传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;基于传输物理下行控制信道的带宽部分取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息对应的控制资源集组取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息对应的物理下行控制信道检测时机取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;基于所述下行控制信息对应的物理下行控制信道检测候选取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息。如,根据传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息。
示例性的,在基站配置信令信息的情况下,信令信息可以包括M个下行控制信息。M(M为大于1的整数)个DCI指示M个面板Panel传输的PUSCH的CSI(包括但不限于SRI、TPMI、RI、MCS中的至少之一,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),通过传输PDCCH的资源来实现,其中,传输PDCCH的资源包括但不限于BWP,CC。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的。
本示例,主要用于说明基站如何通过M个DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI信息确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数,本示例也可以用于PUCCH。
对于基站来说,可以进行以下的步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi,所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过M个DCI传输所述的M个CSI,CSIi,i=0,…,M-1。
基站将用于传输DCI的资源分成M个资源组,每个资源组与一个上行传输单元(比如,面板)绑定,比如将用于传输DCI的如下至少之一的资源分成M个资源组:
载波,用于传输DCI的载波组件取值分成M个集合,CC seti,i=0,…,M-1,比如在M=2时,CC set0包括取值{0,2},而CC set1包括取值{1,3},同样的也可以有其它的取值分组方式。
带宽部分,比如将用于传输DCI的BWP的取值分成两个M个集合,BWP seti,i=0,…,M-1,比如在M=2时,BWP set0包括取值{0,2},而BWP set1包括取值{1,3},也可以有其它的取值分组方式。
在用于传输第i个DCI中的载波取值来自如下至少之一的情况下:CC seti;BWP seti,说明第i个DCI携带的CSI取值是对应第i个PUSCH的或者第i个Panel传输的PUSCH的CSI,i=0,…,M-1。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的M个DCI获取M个CSI,CSIi,i=0,…,M-1。
在用于接收第i个DCI中的载波取值来自CC seti;或用于接收第i个DCI中的BWP取值来自BWP seti,可以确定第i个DCI中携带的CSIi取值对应第i个panel的PUSCHi。可以用所述CSI的取值来确定用于传输PUSCHi的如下信息中的至少之一:空间参数信息(比如发送波束),层数,或者预编码矩阵信息,MCS,其中,预编码信息和层数可能通过一个Precoding information and number of layers联合通知。
在本实施例中,基站指示的CSI中如果包括TPMI信息,那么M个DCI指示的TPMI对应的码本配置中关于码书限制的配置是独立的。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的 多个SRS resource组。
示例性的,在配置信令信息的情况下,信令信息可以包括M个下行控制信息。M个DCI指示M个面板传输的PUSCH的CSI(包括但不限于SRI、TPMI、RI、MCS中的至少之一,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),通过PDCCH的信息实现,其中,PDCCH的信息包括但不限于PDCCH对应的CORESET组,SS,occasion,candidate。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的,本示例也可以用于PUCCH。
本示例用于说明基站如何通过M个DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI信息确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。
对于基站来说,可以进行以下的步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi,所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过M个DCI传输所述的M个CSI,CSIi,i=0,…,M-1。
基站将携带DCI的PDCCH信息分成M个PDCCH信息组,每个PDCCH信息组与一个上行传输单元(比如,面板)绑定,比如PDCCH的如下至少之一的信息分成M个PDCCH信息组:CORESET,SS,SSSET,occasion,candidate。
将配置给终端的控制资源集(即Control resource set)分成M组,CORESET seti,i=0,…,M-1,比如在M=2时,CORESET set0包括CORESET ID取值{0,2},而CORESET set1包括CORESET ID取值{3},同样的也可以有其它的取值分组方式,其中,CORESET是用于传输PDCCH的控制资源集合,CORESET ID为控制资源集合的标识。
将配置给终端的搜索空间SS分成M组,SS seti,i=0,…,M-1,比如在M=2时,SSset0包括SS ID取值{0~4}对应的SS,而SS set1包括SS ID取值{5~10}对应的SS,同样的也可以有其它的取值分组方式,其中,SS ID为搜索空间的标识。
将配置给终端的搜索空间集SSSET分成M组,SSSET seti,i=0,…,M-1,比如在M=2时,SSSET set0包括SSSET ID取值{0~4}对应的SSSET,而SSSET set1包括SSSET ID取值{5~10}对应的SSSET,同样的也可以有其它的取值分组方式,其中,SSSET ID为搜索空间集的标识。
将配置给终端的检测PDCCH的时机(occasion)分成M组,occasion seti,i=0,…,M-1,比如在M=2时,occasion set0包括occasion取值{0~4},而occasion set1包括occasion取值{5~10},当然也有其它的分组方式。
将配置给终端的检测PDCCH的候选(candidate)分成M组,candidate seti,i=0,…,M-1,比如在M=2时,candidate set0包括candidate取值{0~1},而candidate set1包括candidate取值{2,3},当然也有其它的分组方式。
在用于传输第i个DCI中的PDCCH信息中,满足以下条件之一的情况下:控制资源集合取值来自CORESET seti,搜索空间取值来自SS Seti,搜索空间集取值来自SSSET Seti,PDCCH检测的时机occasion取值来自occasion Seti,检测PDCCH的候选(candidate)取值来自candidate Seti,说明第i个DCI携带的CSI取值是对应第i个PUSCH的或者第i个Panel传输的PUSCH的CSI,i=0,…,M-1。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的M个DCI获取M个CSI,CSIi,i=0,…,M-1。
在用于传输第i个DCI中的PDCCH信息中,满足以下条件之一的情况下:控制资源集合取值来自CORESET seti,搜索空间取值来自SS Seti,搜索空间集取值来自SSSET Seti,检测的PDCCH的occasion取值来自occasion Seti,检测PDCCH的candidate取值来自candidate Seti,说明第i个DCI携带的CSI取值是对应第i个PUSCH的或者第i个Panel传输的PUSCH的CSI,i=0,…,M-1。可以用所述CSI的取值来确定用于传输PUSCHi的如下信息中的至少之一:空间参数信息(比如发送波束),层数,或者预编码矩阵信息,MCS,其中,预编码信息和层数可能通过一个Precoding information and number of layers联合通知。
在本实施例中,基站指示的CSI中如果包括TPMI信息,那么M个DCI指示的TPMI对应的码本配置中关于码书限制的配置是独立的。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的多个SRS resource组。
在一个实施例中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括:基于所述信令信息的上行探测参考资源指示域所指示的上行探测参考资源集合或上行探测参考资源的上行传输单元索引确定M个物理上行信道的信道状态信息。即根据所述信令信息的上行探测参考资源指示域所指示的上行探测参考资源集合或上行探测参考资源的上行传输单元索引确定M个物理上行信道的信道状态信息。
示例性的,在配置信令信息的情况下,信令信息可以包括M个下行控制信息。M个DCI指示M个面板传输的PUSCH的CSI(包括但不限于SRI、TPMI、RI、MCS中的至少之一,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),通过SRS resource set或者SRS resource中包括panel ID信息来实现。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的,本实施例的方法也可以用于PUCCH。
本示例用于说明基站如何通过M个DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI信息确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。
对于基站来说,可以进行以下的步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。
每个SRS resource里包括了标识上行传输单元的索引,比如在高层信令中配置的SRS resource的域里包括panelId。这样根据选择的SRS ID就知道所选择的SRS resource是用于哪个panel的。比如在高层信令配置的SRS-resource中增加上行传输单元的索引panelId,取值为0至M-1的整数。
Figure PCTCN2020110425-appb-000001
或者在SRS resource set里包括了上行传输单元的索引panelId,比如在高层信令中配置的SRS resource set的域里包括上行传输单元的索引panelId,取值为0至M-1的整数,
Figure PCTCN2020110425-appb-000002
Figure PCTCN2020110425-appb-000003
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,其高层信令中包括的对应的panelId=i,或者其包括的SRS resource中包括的panelId=i,确定其最优的CSI取值为CSIi,i=0,…,M-1。
(3)基站通过M个DCI传输所述的M个CSI,CSIi,i=0,…,M-1。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的M个DCI获取M个CSI取值CSIi,i=0,…,M-1。
终端通过接收第i个DCI的SRS指示域的SRIi(或者SRIi组),并用SRIi(或者SRIi组)去查其对应的SRS resource set或者SRS resource高层信令中包括的panelId的取值,以确定所述SRIi对应的是哪个Panel,从而确定所述DCI中携带的CSIi是用于哪个panel的,并且这个panel就用所述CSIi对应的如下参数中的至少之一来传输PUSCH:空间参数信息(比如发送波束),层数,或者预编码矩阵信息,MCS,其中,预编码矩阵信息和层数可能通过一个Precoding information and number of layers联合通知。
在本实施例中,基站指示的CSI中如果包括TPMI信息,那么M个DCI指示的TPMI对应的码本配置中关于码书限制的配置是独立的。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的多个SRS resource组。
在一个实施例中,所述信令信息包括第一级下行控制信息,第一级下行控制信息用于确定第一个物理上行信道的信道状态信息。
第一个物理上行信道可以为M个物理上行信道中的任意一个物理上行信道,比如第一个物理上行信道。可选的,信令信息还可以包括第二级下行控制信息,即信令信息可以包括两级下行控制信息:第一级下行控制信息和第二级下行控制信息。
在一个实施例中,基于所述信令信息确定M个物理上行信道的信道状态信息,包括如下至少之一:根据所述第一级下行控制信息的上行探测信号资源指示域确定第二级下行控制信息的内容;根据所述第一级下行控制信息中指示的上行探测信号资源信息确定第二级下行控制信息的检测情况;其中,所述第二级下行控制信息属于所述M个下行控制信息。
第一级下行控制信息可以用于确定如下至少之一:信令信息所包括的第二级下行控制信息的内容;第二级下行控制信息的检测情况。其中,检测情况可以理解为是否对第二级下行控制信息进行检测。
在一个实施例中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,不检测所述第二级下行控制信息;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,所述第二级下行控制信息的内容为空;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,检测所述第二级下行控制信息;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息的内容非空;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息中包括第二个物理上行信道的信道状态信息。
在基于信令信息确定M个物理上行信道的信道状态信息的过程中,可以基于第一级下行控制信息的上行探测信号资源指示域确定第二级下行控制信息的内容,即根据所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数确定第二级下行控制信息的内容。在基于信令信息确定M个物理上行信道的信道状态信息的过程中,可以根据所述第一级下行控制信息中指示的上行探测信号资源信息确定第二级下行控制信息的检测情况,即第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数确定第二级下行控制信息的检测情况。其中,预定值可以为正整数,如1。
在一实施例中,根据所述第一级下行控制信息的上行探测信号资源指示域确定第二级下行控制信息的内容,包括如下至少之一:在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,所述第二级下行控制信息的内容为空;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息的内容非空;在所述第一级下行控制信息指示的 上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息中包括第二个物理上行信道的信道状态信息。
在一实施例中,根据所述第一级下行控制信息中指示的上行探测信号资源信息确定第二级下行控制信息的检测情况,包括如下至少之一:在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,不检测所述第二级下行控制信息;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,检测所述第二级下行控制信息。
在所述下行控制信息的上行探测信号资源指示域指示一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容为空;或,在所述下行控制信息的上行探测信号资源指示域指示大于或等于一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容包括用于指示第二个物理上行信道的信道状态信息。
上行探测信号资源指示可以针对上行传输为码本的传输方式。上行探测信号资源指示组可以针对上行传输为非码本的传输方式。
第二个物理上行信道可以理解为M个物理上行信道中除第一级下行控制信道指示的物理上行信道外的上行信道信道。
示例性的,信令信息包括两级DCI,两级DCI指示M个面板Panel的CSI(包括但不限于SRI、TPMI、RI、MCS中的至少之一,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),通过两级PDCCH实现。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的。
本示例用于说明基站如何通过两级DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。
对于基站来说,可以进行以下的步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi, 所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过两级传输所述的M个CSI,CSIi,i=0,…,M-1。
为了便于两级DCI传输所述的M个CSI,比如传输CSI中的SRI,将DCI中SRS指示域对应的SRS表格进行扩展。
对于基于码本的传输方案,表A1为一种扩展表。一个可能的扩展是将表格扩展成如下的表A1所示,扩展部分如下划线的行。该示例中,总共2个panel,每个panel配置2个resource。
表A1一种扩展表
映射索引的位域,即Bit field mapped to index SRI(s)
0 0
1 1
2 0;1
3 保留,即Reserve
对于基于码本的传输方案,表A2为另一种扩展表,一个可能的扩展是将表格扩展成如下的表A2所示,扩展部分如下划线的行,其中,包括至少两个SRI取值,分号左边一个SRI取值,分号右边一个SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,其中,SRI用于指示SRS resource set中的SRS resource index(或者indicator)。该示例中,总共2个panel,每个panel配置2个resource,其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可。
表A2另一种扩展表
Bit field mapped to index SRI(s)
0 0
1 1
2 2
3 3
4 0;2
5 0;3
6 1;2
7 1;3
对于基于非码本的传输方案,表3为又一扩展表,一个可能的扩展是将表格扩展成如下的表A3所示,扩展部分如下划线的行,其中,包括至少两组SRI的取值,分号左边一组SRI取值,分号右边一组SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,每组SRI的取值可以包括至少一个SRI的值,其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可。该示例中,总共2个panel,每个panel配置2~4个resource。
表A3又一扩展表
Figure PCTCN2020110425-appb-000004
扩展表格中的扩展行里指示的SRS的索引可以有其它的取值,并不做规定,只要所述的行在表格A1和A2中指示的SRI的个数大于1,在表格A3中指示的SRI包括至少两组SRI就可以,所述的表格中行也可以进行交换。所述包括大于1个SRI的行或者两组SRI的表格也可以是新增加的表格。
在如下至少之一的情况下:第一级DCI中SRS指示域指示的所述SRI表格中的行中包括M个SRI(表格A1或者A2)或者SRI组(表格A3);在调度PDSCH的DCI中包括的TCI域中有M个TCI状态(即states)值;基站配置了两个CORESET组,表示基站同时指示了M个上行PUSCH的SRS resource,其中,M>1的整数,这时,基站会传输第二级DCI,其中,第二级DCI包括了用于指示了第一个panel对应的PUSCH0外的其它panel传输的PUSCH的TPMI/RI,DMRS,资源分配等信息中的至少之一。否则,在第一级DCI中SRS指示域指示的所述SRI表中的行中包括1个SRI或者SRI组的情况下,基站不再传输第二级DCI,即上行也只用一个panel进行传输。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的两级DCI获取M个CSI,CSIi,i=0,…,M-1。
终端通过接收第一级DCI,在如下至少之一的情况下:第一级DCI中SRS指示域指示的所述SRI表中的行中包括M个SRI(表格A1或者A2)或者SRI组(表格A3);在调度PDSCH的DCI中包括的TCI域中有M个TCI states值;基站配置了两个CORESET组,表示基站同时指示了M个上行PUSCH的SRS resource,其中,M>1的整数,这时,终端会接收第二级DCI,其中,第二级DCI包括了用于指示了第一个panel对应的PUSCH0外的其它panel的PUSCH的TPMI/RI,DMRS,资源分配等信息中的至少之一。否则,在第一级DCI中SRS指示域指示的所述SRI表中的行中包括1个SRI(表格A1或者A2)或者SRI组(表格A3)时,终端不再接收第二级DCI,即上行也只用一个panel进行传输,从而可以动态地在单panel传输和多panel联合传输间切换。
终端会根据第一级DCI中的信息确定上行传输的各个panel对应的SRS resource索引(即index),从而知道发送上行PUSCH的空间参数信息,或者发送的层数和预编码信息。而通过第二级DCI可以确定各个panel的发送PUSCH的资源分配信息,PMI信息等。第一级DCI信息也可以携带第一个panel的如下至少之一:PMI;资源分配信息;DMRS端口信息。
在本实施例中,基站指示的CSI中如果包括TPMI信息,那么第一级DCI 和第二级DCI指示的TPMI对应的码本配置中关于码书限制的配置是独立的。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的多个SRS resource组。
在一个实施例中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示,所述M个上行探测信号资源指示用于确定M个物理上行信道的信道状态信息。根据下行控制信息中的上行探测信号资源指示域确定M个上行探测信号资源指示。
示例性的,信令信息包括一个下行控制信息。1个DCI指示M个面板传输的PUSCH的CSI(包括但不限于SRI、TPMI、RI、MCS中的至少之一,其中,TPMI和RI可能联合编码通过预编码和层数一起指示),上行传输时基于码本(codebook based)的传输方式。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。1个DCI指示的M个面板分别传输M个PUSCH,各PUSCH是repetition的,本实施例也可以用于PUCCH。
本示例用于说明基站如何通过1个DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI信息确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。
对于基站来说,可以进行以下的步骤:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。M,K为大于1的整数,比如M=2,K=2。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi,所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过1个DCI传输所述的M个CSI,CSIi,i=0,…,M-1。
为了便于1个DCI传输所述的M个CSI,比如传输CSI中的SRI,将DCI中SRS指示域对应的SRS表格进行重新设计,比如增加一个新的表格。
一个可能的扩展是将表格扩展成如下的表B1所示,表B1为又一种扩展表,扩展部分如下划线的行,其中,包括至少两个SRI取值,分号左边一个SRI取值,分号右边一个SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,其中,SRI用于指示SRS resource set中的SRS resource index(或者indicator)。本示例中,总共2个panel,每个panel配置2个resource。
表B1又一种扩展表
Bit field mapped to index SRI(s)
0 0
1 1
2 0;1
3 1;0
对于基于码本的传输方案,一个可能的扩展是将表格扩展成如下的表B2所示,表B2为又一种扩展表。扩展部分如下划线的行,其中,包括至少两个SRI取值,分号左边一个SRI取值,分号右边一个SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,其中,SRI用于指示SRS resource set中的SRS resource index(或者indicator)。该示例中,总共2个panel,每个panel配置2个resource,其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可。
表B2又一种扩展表
Bit field mapped to index SRI(s)
0 0
1 1
2 2
3 3
4 0;1
5 1;0
6 0;0
7 1;1
或者新增加一个表格如下的表格B3所示,表B3为新增表。该表中每个条目包括至少两个SRI取值,分号左边一个SRI取值,分号右边一个SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,其中,SRI用于指示SRS resource set中的SRS resource index(或者indicator)。其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可
表B3新增表
Bit field mapped to index SRI(s),M SRS=2
00 0;0
01 1;1
10 1;0
11 1;1
或者新增加一个表格如下的表B4所示,表B4为又一新增表。
表B4又一新增表
Figure PCTCN2020110425-appb-000005
扩展表格中的扩展行里指示的SRS的索引可以有其它的取值,并不做规定,只要所述的行指示的SRS resource的个数大于1就可以,所述的表格中行也可以进行交换。所述包括大于1个SRS resource的行的表格也可以是新增加的表格。
基站和终端约定所述B1~B4中的任何一个表格,并做如下之一的约定:如果是表格B1或B2,那么在表格B1中在SRI的取值为小于或等于1的情况下,或者在表格B2的SRI取值小于3的情况下,表示终端只传输一个PUSCH,并且SRI对应第一个panel的发送波束,否则表示终端有两个重复的PUSCH发送,并且Panel0对应SRI的第一个取值,Panel1对应第二个SRI的取值,从而可以动态地从重复传输与非重复传输进行切换。
如果是表格B3,SRI的第一个值对应第一个panel的发送波束,SRI的第二个取值对应第二个panel的发送波束。如果是表格B4,那么SRI对应第一个panel的发送波束,并根据SRI的取值以及偏置的取值确定Panel1的SRI的取值。其中,偏置Offset的取值可以通过DCI的新增加的一个Offset域指示,也可以通过DCI的其它域隐含指示,比如通过天线端口域Antenna ports的取值确定Offset,例如天线端口取值于第一端口集合时(比如端口索引小于等于D,D为大于1的整数)Offset=0;或天线端口取值于第二端口集合时(比如端口索引大于D)Offset=1;比如通过Redundancy version域的取值确定Offset的取值。例如RV取值第一RV集合时(RV={0,1})Offset=0;或,RV取值第一RV集合时(RV={0,1})Offset=1。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的1个DCI获取M个CSI,CSIi,i=0,…,M-1。
终端通过接收所述一个DCI,并根据接收的基站配置的表格来确定每个panel的SRI信息。
如果基站配置的是表格B1或B2,那么在表格B1中当SRI的取值为小于或等于1的情况下,或者在表格B2的SRI取值小于3的情况下,表示终端只传输一个PUSCH,并且SRI对应第一个panel的发送波束,否则表示终端有两个重复的PUSCH发送,并且Panel0对应SRI的第一个取值,Panel1对应SRI的第二个取值,从而可以动态地从重复传输与非重复传输进行切换。
如果是表格B3,SRI的第一个值对应第一个panel的发送波束,SRI的第二个取值对应第二个panel的发送波束。如果是表格B4,那么SRI对应第一个panel的发送波束,并根据SRI的取值以及偏置的取值确定Panel1的SRI的取值。其中,偏置Offset的取值可以通过DCI的另外一个新增加的Offset域指示,也可以通过DCI的其它域隐含指示,比如通过天线端口域Antenna ports的取值确定Offset,例如天线端口取值于第一端口集合时(比如端口索引小于等于D,D为大于1的整数)Offset=0;或天线端口取值于第二端口集合时(比如端口索引大于D)Offset=1;比如通过Redundancy version域的取值确定Offset的取值。例如RV取值第一RV集合时(RV={0,1})Offset=0;或RV取值第一RV集合时(RV={0,1})Offset=1。
在本实施例中,基站指示的CSI中如果包括TPMI信息,需要在预编码信息和层数域对应的表格中增加一些新的条目,所述条目中指示的预编码中,第1至L1列表示第一个panel传输的PUSCH的预编码,而第L1+1~L列表示第二个panel传输的PUSCH的预编码。其中,第一个panel对应传输L1层,而第二个panel对应传输L-L1层。L1可取值1,2。而L可取值2,3,4,且L-L1大于0,比如L=2时,L1=1,一个panel传输1层。
本实施例中的M个SRS resource set也可以替换成一个SRS resource set的多个SRS resource组,SRI是用于指示基站选择的SRS resource set中的SRS resource,而传输PUSCH的发送波束或者预编码可以和SRI指示的SRS resource的发送波束或者预编码相同,从而可以认为SRI指示了PUSCH对应的发送波束或者预编码。
在一个实施例中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示组,所述M个上行探测信号资源指示组用于确定M个物理上行信道的信道状态信息。
示例性的,信令信息包括一个下行控制信息。1个DCI指示M个面板Panel 传输的PUSCH的CSI(包括但不限于SRI),上行传输时基于非码本(non codebook based)的传输方式。
在本实施例的***中,包括1个终端和至少两个TRP(或者一个TRP中包括两个面板),所述终端包括至少两个面板。M个DCI指示的M个面板分别传输M个PUSCH是repetition的。
在一个实施例中,所述物理上行信道的信道状态信息包括信道秩,所述信道秩根据如下至少之一信息获取:所述一个下行控制信息中上行探测信号资源指示域指示的上行探测信号资源指示总个数;所述M。
上行探测信号资源指示在上行探测信号资源指示域中指示。信道秩为所述上行探测信号资源指示域指示的SRI总个数除以所述M。即所述信道秩为所述下行控制信息中的上行探测信号资源指示域指示的所有上行探测信号资源指示域SRI总个数除以M。
本示例用于说明基站如何通过1个DCI指示所述的M个PUSCH分别对应的CSI信息,以及终端如何根据接收的DCI信息确定所述M个CSI分别对应哪个面板传输的PUSCH,M为大于1的整数。对于基站来说,可以进行以下步骤的:
(1)基站配置M个SRS resource set,每个SRS resource set包括K个SRS resource。M,K为大于1的整数,比如M=2,K=2。
(2)基站接收终端传输的所述M个SRS resource set,并分别估计每个SRS resource set的最优CSI值。
比如基站通过接收第i个SRS resource set,确定其最优的CSI取值为CSIi,所述CSIi包括SRI,TPMI,RI,MCS中的至少一个,i=0,…,M-1。
(3)基站通过1个DCI传输所述的M个CSI,CSIi,i=0,…,M-1。
为了便于1个DCI传输所述的M个CSI,比如传输CSI中的SRI,将DCI中SRS指示域对应的SRS表格进行重新设计,比如增加一个新的表格。一个可能的扩展是将表格扩展成如下的表C1所示,表C1为又一种扩展表,扩展部分如下划线的行,其中,包括至少两组SRI的取值,分号左边一组SRI取值,分号右边一组SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,每组SRI的取值可以包括至少一个SRI的值,一组SRI也可以称为一个SRI组。
表C1又一种扩展表
Figure PCTCN2020110425-appb-000006
Figure PCTCN2020110425-appb-000007
本示例中,表C1在原来表格上增加新的条目(即行)。增加一个新的表格如下的表C2所示,表C2为又一种新增表,每行中包括至少两组SRI的取值,分号左边一组SRI取值,分号右边一组SRI取值,分别对应两个上行传输单元传输的PUSCH的CSI,每组SRI的取值可以包括至少一个SRI的值,一组SRI也可以称为一个SRI组,其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可。
表C2又一种新增表
Figure PCTCN2020110425-appb-000008
Figure PCTCN2020110425-appb-000009
扩展表格中的扩展行里指示的SRS的索引可以有其它的取值,并不做规定,只要所述的行指示的SRS resource的组数大于1就可以,所述的表格中行也可以进行交换。所述包括大于1组SRS resource的行的表格也可以是新增加的表格,M SRS表示M个SRS resource set的总的SRS的个数。有下横线的行中,分号“;”左边表示第一个panel对应的SRI取值,而分号右边表示第二panel对应的SRI的取值。其中,分号也可以有其它的表示形式,比如括号,换行,画斜线等,只要能够用于将所述索引分成多个组即可。
基站和终端约定所述C1~C2中的任何一个表格,并做如下之一的约定:
如果是表格C1,在DCI中的SRS resource指示域的取值指示1组SRI的取值情况下(对应非画横线的行),表示终端只传输一个PUSCH,并且SRI对应第一个panel的发送波束和层数,否则表示终端有两个重复的PUSCH发送,并且分号“;”左边表示第一个panel对应的SRI0取值,而分号右边表示第二个panel对应的SRI1的取值,根据DCI中的SRS resource指示域的取值指示的行就可以动态地从重复传输与非重复传输进行切换。
如果是表格C2,分号“;”左边表示第一个panel对应的SRI0取值,而分号右边表示第二panel对应的SRI1的取值,根据所述SRI的取值从而得到每个panel 对应的发送波束(或者预编码)和层数。
而终端进行如下的步骤:
(1)接收基站配置的M个SRS resource set。
(2)根据所述M个SRS resource set配置,发送SRS resource。
(3)接收基站传输的1个DCI获取M个CSI,CSIi,i=0,…,M-1。
终端通过接收所述一个DCI,并根据接收的基站配置的表格来确定每个panel的SRI信息。
如果是表格C1,在DCI中的SRS resource指示域的取值指示的的取值包括一个SRI组的情况下(为非画横线的行),表示终端只传输一个PUSCH,并且SRI对应第一个panel的发送波束和层数,否则表示终端有两个重复的PUSCH发送,并且分号“;”左边表示第一个panel对应的SRI0取值,而分号右边表示第二个panel对应的SRI1的取值,根据SRI所在的行就可以动态地从重复传输与非重复传输进行切换。
如果是表格C2,分号“;”左边表示第一个panel对应的SRI0取值,而分号右边表示第二个panel对应的SRI1的取值,根据所述SRI的取值从而得到每个panel对应的发送波束(或者预编码)和层数。因为每个面板传输的PUSCH使用的发送波束或者预编码域对应的SRI指示的SRS resource使用相同的发送波束或者预编码,所以知道了每个面板的SRI的取值,就可以知道所述面板传输PUSCH的发送波束或者预编码。并且每个面板的传输层数可以为总SRI的个数除以M确定,或者根据所述面板对应的那组SRI包括的SRI的个数确定。
示例性的,信令信息包括一个下行控制信息。1个DCI指示M个面板Panel的CSI(包括但不限于SRI),上行传输时基于非码本(non codebook based)的传输方式,根据SRI和在SRS resource配置中增加Panel ID的方式确定每个上行传输panel传输的PUSCH对应的CSI信息。
基站配置或者终端接收基站配置的如下SRI的表格,其中,表格和相关技术相同。表D1为在Lmax=2的SRI表。表D2为Lmax=4的SRI表。其中,Lmax可以为选择的SRI的最大个数。
表D1 Lmax=2的SRI表
Figure PCTCN2020110425-appb-000010
Figure PCTCN2020110425-appb-000011
表D2 Lmax=4的SRI表
Figure PCTCN2020110425-appb-000012
Figure PCTCN2020110425-appb-000013
基站配置的SRS resource或者终端发送的SRS resource中,包括标识上行传输单元索引panel索引或者用于唯一标识上行传输单元panel的高层索引,比如在高层信令配置的SRS resource如下所示:
Figure PCTCN2020110425-appb-000014
例如panel0对应的PanelID=0,panel1对应的PanelID=1。
基站通过发送一个DCI或终端通过接收一个DCI确定终端的M个panel对应的SRI值,其中,所述的DCI中包括SRS resource指示域。比如,上述表格D1中M SRS=4的第9行(2,3),但每个SRS resource中包括了PanelID,如果比如SRS resource1和SRS resource2包括的是PanelID=0,而SRS resource3,SRS resource4包括的PanelID为1,那么上述选择表示上行传输使用了两个panel,且用panel0对应的SRS resource 2的波束传输PUSCH0,而用panel1对应的SRS resource3,用SRS resource3的波束传输PUSCH1。
比如上述表格D2中M SRS=4的第1行(0,1,2,3),但每个SRS resource中包括了PanelID,如果SRS resource1和SRS resource2包括的是PanelID=0,而SRS resource3,SRS resource4包括的PanelID为1,那么上述选择表示上行传输使用了两个panel,且panel0对应的SRS resource 0和SRS resource 1的波束传输PUSCH0,且为两层传输,而panel1对应的SRS resource2和SRS resource3的波束传输PUSCH1,且为两层传输。
通知终端所述UE对应的PUSCH或者PUCCH是重复传输的(repetition),包括但不限于,所述的2个PDCCH指的是物理下行控制信道信息是关联的,所述两个PDCCH对应的DCI域全部或者部分相同。
在一个实施例中,所述M个物理上行信道的传输模式包括重复传输和非重复传输,其中,重复传输包括所述M个物理上行信道传输中包括的传输信息的 交集非空,所述非重复传输包括如下至少之一:所述M个物理上行信道传输中包括的传输信息的交集为空;所述M个物理上行信道传输中包括的传输信息的差集非空。
传输信息可以是信道编码前的信息或是传输块,或者是上行控制信息中的一个编码块或者多个编码块对应的一个大的编码块。
示例性的,重复传输是指所述M个物理上行共享信道传输的传输块是相同的,或者所述M个物理上行控制信道传输的内容是相同的。
在一个实施例中,基于所述信令信息确定M个物理上行信道的信道状态信息,包括如下至少之一:在M个下行控制信息中指示的信息之间的关系满足第一预定条件的情况下,确定所述M个物理上行信道的传输模式为重复传输;在M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件的情况下,确定所述M个物理上行信道的传输模式为重复传输。
在基于信令信息确定M个物理上行信道的信道状态信息的情况下,可以在如下至少之一的情况下,确定所述M个物理上行信道的传输模式为重复传输:M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件的情况下;M个下行控制信息中指示的信息之间的关系满足第一预定条件的情况下。
在一个实施例中,所述第一预定条件包括如下至少之一:所述M个下行控制信息中所有的域取值完全相同;所述M个下行控制信息的新数据指示域取值相同;所述M个下行控制信息的冗余版本域的取值相同;所述M个下行控制信息的调制编码方案域的取值相同;所述M个下行控制信息的混合自动重复传输进程数域的取值相同。
在一个实施例中,所述第二预定条件包括如下至少之一:所述M个下行控制信道对应的控制资源集合有相同的搜索空间;所述M个下行控制信道对应的控制资源集合有相同的搜索空间集合;所述M个下行控制信道对应的物理下行控制信道检测时机相同;所述M个下行控制信道对应的物理下行控制信道检测候选相同;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示个数为1;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,M个物理上行信道对应的混合自动重复传输进程的关联关系用于确定M个物理上行信道的传输模式。
示例性的,通过建立两个HAQR process的关联关系,以使得终端确定M个上行PUSCH是repetition的,其中,基站会通过M个DCI传输CSI信息。
基站对所述终端配置C个CORESET,并把所述的C个CORESET分成M个CORESET group,其中,所述的CORESET中包括高层参数标识的索引(比如CoresetGroupID)用于标识所述的CORESET属于哪个CORESET group,C和M为大于1的正整数,且C大于或等于M,比如C=M=2,其中,一个CORESET group对应一个终端上行传输单元(比如panel或者TRP的面板)。
本示例中基站传输的第i个PDCCH i-1对应第i个CORESET group,且第i个PDCCH i-1携带第i个DCI i-1,而第i个PDCCH i-1调度的第i个PUSCH i-1对应的HARQ进程索引取值于第i个进程索引集合HarqIndexSet i-1,i=1,…,M。比如在M=2时,第一个HARQ进程索引集合HarqIndexSet 0={0-7},而HarqIndexSet 1={8-15}。RRC配置M个PDCCH分别调度的PUSCH对应的M个HarqIndexSet i-1,i=1,…,M的关联关系,比如在M=2时,约定HarqIndexSet 0中的第k个进程索引和HarqIndexSet 1中的第k+7个进程索引是有关联关系的,k=0,…,7。基站和终端约定如果第i个DCI i-1调度的PUSCH对应的HARQ进程索引和j个DCI调度的PUSCH对应的HARQ进程索引有关联关系,那么就认为所述的两个DCI调度的PUSCH是repetion的,i,j=1,…,M,且i不等于j,比如在M=2时,i=1,j=2。
示例性的,M个PDCCH的信息确定M个上行PUSCH是repetition的,其中,基站会通过M个DCI传输CSI信息,主要通过进程号相同来确定M个PUSCH是repetion的。
基站对所述终端配置M个CORESET。基站传输的第i个PDCCH i-1对应第i个CORESET,且第i个PDCCH i-1携带第i个DCI i-1,而第i个PDCCH i-1调度的第i个PUSCH i-1对应的HARQ进程索引为K0,i=1,…,M的,其中,K0为固定的值,取值为0~15中的任何一个整数。也就是说终端接收到M个DCI,如果他们调度的M个PUSCH对应的HARQ进程号都相同,那么就认为所述的M个DCI调度的PUSCH是repetion的。
可选的,所述M个PUSCH对应的panel有一个独立的缓冲用于缓存所述的M个进程。
在一个实施例中,基于所述信令信息确定M个物理上行信道的信道状态信息,包括:在M个下行控制信息满足如下至少之一的情况下,确定所述M个物理上行信道是重复传输的:
每个域是完全一致的;新数据取值域(New data indicator,NDI)取值相同;信道编码后的冗余版本域取值相同;调制编码方案域取值相同;混合自动重复传输进程数域取值相同;对应的控制资源集合有相同的搜索空间;对应的控制资源集合有相同的搜索空间集合;对应的物理下行控制信道检测时机相同;对 应的物理下行控制信道检测候选相同;上行探测信号资源指示域指示的上行探测信号资源指示个数为1,上行探测信号资源指示域指示的上行探测信号资源指示组数为1。
示例性的,通过M个PDCCH的信息确定M个上行PUSCH是repetition的,其中,基站会通过M个DCI传输CSI信息,主要通过DCI的域来确定其调度的M个PUSCH是repetion的。
基站对所述终端配置M个CORESET。基站传输的第i个PDCCH i-1对应第i个CORESET,且第i个PDCCH i-1携带第i个DCI i-1,如果基站配置的所述的M个DCI,或者说终端接收到的M个DCI满足如下条件至少之一:所述的M个DCI的每个域是完全一致的,所述的M个DCI的新数据取值域(New data indicator,NDI)取值相同,所述的M个DCI的RV域取值相同,所述的M个DCI的调制编码方案域(Modulation and coding scheme,MCS)取值相同,所述的M个DCI的HARQ进程数域(HARQ process number)取值相同,所述的M个DCI对应的CORESET有相同的搜索空间,所述的M个DCI对应的CORESET有相同的搜索空间集合,所述的M个DCI对应的PDCCH monitoring occasion相同,所述的M个DCI对应的PDCCH monitoring Candidate相同。
那么终端就认为所述M个DCI调度的M个PUSCH是repetion的。
如果所述M个PUSCH是repetition的,且在同一个时隙传输,那么就有如何确定它们传输时隙的问题,即是基于DCI1还是基于DCI0来算它们的传输时隙问题。
在一实施例中,该方法还包括以下至少之一:根据M个下行控制信息中的预定下行控制信息所在的时间单元确定所述M个物理上行信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个物理下行共享信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个上行探测参考资源所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个信道状态信息报告的时间单元。
在一实施例中,所述预定下行控制信息为如下至少之一:所述M个下行控制信息中传输时隙最小的下行控制信息;所述M个下行控制信息中传输时隙最大的下行控制信息;所述M个下行控制信息中主传输节点对应的下行控制信息;高层信令配置的下行控制信息;预定义的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最小的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最大的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最小的下行控制信息;所述M个下行控制 信息对应的控制资源集合资源索引最大的下行控制信息。
示例性的,基站传输的M个DCI可能是在不同的时隙,而它们调度的资源是在同一个时隙传输,如何确定所述M个资源的传输时隙,所讲的资源包括但不限于以下之一:PUSCH,PDSCH,导频参考信号,PUCCH,CSI报告,即report。
终端在接收到DCI时,需要在相应的PDCCH监测时机(PDCCH monitoring occasion)检测多个候选的PDCCH,这需要一定处理时间,在获得PDCCH对应的DCI内容后,又需要一定时间来解调下行数据或者处理和填充要发送的上行数据或者信号。比如需要时间来解调PDSCH,要时间来处理要发送的PUSCH、PUCCH,以及进行CSI反馈。所以一般来说在基站传输DCI信令的时隙m和所述DCI调度的资源时隙k有一定的偏置O,这个偏置的定义既要考虑终端的能力,又要考虑***延迟,需要做一个较好的平衡。在无线通信标准中一般都有一个固定的配置值。
为了提高可靠性,TRP或者终端可能重复repetion地传输一个信道或者信号。如果所述的M个DCI的内容是repetion的,从而他们调度资源(PUSCH,PDSCH,导频参考信号,PUCCH)在同一个时隙传输,或者M个DCI的内容可以不同,但调度的资源在同一个时间单元传输,比如是频分复用重复的,即M个所述的资源是在同一个时间单元传输,但占用不同的物理资源块(Physical Resource Block,PRG)。其中,PRB可以分成不同的组或者集合,每个PRB组或者集合包括至少一个PRB,比如如下之一的概念:子带,带宽部分,PRB绑定(bundling),资源块组(Resource Block Group,RBG),时间单元包括一个或者多个符号的集合,比如可以是时隙,迷你时隙,其中,时隙slot是包括多个符号的集合,一般为一个调度的本时间单位,一般来说在正常循环前缀下一个时隙包括14个符号,在扩展循环前缀下一个时隙包括12个符号,时隙也可以是迷你时隙mini slot,一个slot里可以包括至少一个mini slot。
如果M个DCI在不同的时隙传输,比如第i个DCI传输的时隙为m i,按相关技术,它们调度的资源会分别在第m i+O时隙传输,其中,i=1,…,M,m i为互不相同的正整数,而O为高层参数配置的正整数或者固定的正整数,表示DCI的传输时隙和DCI调度的资源的时隙偏置。而如果M个DCI调度的资源要在同一个时隙传输,就会出现问题。
一种办法是引入预定DCI,所述的预定DCI用于计算所述M个DCI调度的资源和预定DCI的时隙问题,当然也可以是预定PDCCH,所述的预定PDCCH用于携带所述的预定DCI。
比如预定DCI的传输时隙为m,那么所述M个DCI调度的资源的时隙为
Figure PCTCN2020110425-appb-000015
μ 1PDCCH,O分别表示DCI调度的资源所对应的载波间隔配置参数,传输预定DCI所对应的载波间距配置参数,DCI调度的资源相对于传输预定DCI的时隙偏置,
Figure PCTCN2020110425-appb-000016
表示下取整运算。所述预定DCI为如下定义之一:所述M个DCI中传输时隙最小的DCI;所述M个DCI中传输时隙最大的DCI;高层信令配置的DCI;预定义的DCI;所述M个DCI对应的PDCCH资源索引最小的DCI;所述M个DCI对应的PDCCH资源索引最大的DCI;所述M个DCI对应的CORESET资源索引最小的DCI;所述M个DCI对应的CORESET资源索引最大的DCI。下面以M=2为例说明DCI调度的资源在不同的情况下的具体示例:
示例1:M个DCI调度M个PDSCH,其中,M个PDSCH的传输时隙由预定DCI的传输时隙和预定DCI与所调度的PDSCH时隙偏置Offset1=K 0确定。
M个DCI在不同的传输时隙传输,但只调度了一个PDSCH,或者所述M个DCI调度的M个PDSCH在同一个时隙传输。那么所述PDSCH的传输时隙为:
Figure PCTCN2020110425-appb-000017
所述TD为所述M个DCI调度的PDSCH传输时隙,n1为正整数,μ PDSCH为传输PDSCH的载波间隔配置参数numerology,μ PDCCH为物理层下行控制信道PDCCH的载波间隔配置参数numerology,K 0为预定DCI与其调度的PDSCH之间的时隙偏移,K 0由PDSCH的***参数集numerology有关,根据高层信令和/或物理层信令配置,K 0为0或1,n1为预定DCI所在时隙。
示例2:M个DCI调度M个PUSCH,其中,M个PUSCH的传输时隙由预定DCI的传输时隙和预定DCI与所调度的PUSCH时隙偏置Offset2=K 1确定。
M个DCI在不同的传输时隙传输,但只调度了一个PUSCH,或者所述M个DCI调度的M个PUSCH在同一个时隙传输。那么所述PUSCH的传输时隙为:
Figure PCTCN2020110425-appb-000018
TU为所述PUSCH的传输时隙,n1预定DCI的传输时隙,μ PUSCH为PUSCH载波间隔配置参数,μ PDCCH为PDCCH载波间隔配置参数,K 1为预定DCI与其调度的PUSCH之间的时隙偏移,K 1由PUSCH的***参数集numerology信息 确定,包括根据高层信令和/或物理层信令配置,K 1为1至6中任一正整数。
示例3:M个DCI调度M个SRS resource,其中,M个SRS resource的传输时隙由预定DCI的传输时隙和预定DCI与所调度的SRS resource时隙偏置Offset3=K3确定。
M个DCI在不同的传输时隙传输,但只调度了一个SRS resource,或者所述M个DCI调度的M个SRS resource在同一个时隙传输。那么所述SRS resource的传输时隙为:
Figure PCTCN2020110425-appb-000019
TA为所述SRS resource的传输时隙,n1是预定DCI所在时隙,μ SRS为传输SRS的载波间隔配置参数,μ PDCCH为传输PDCCH的载波间隔配置参数,K3为DCI与其调度SRS resource之间时隙偏移,K3为正整数,K3由高层信令中SRS资源集resource set中时隙偏移参数确定,K3为0至32中任一正整数。
示例4:M个DCI调度M个CSI report,其中,M个CSI报告(CSI report)的传输时隙由预定DCI的传输时隙和预定DCI与所调度的CSI report时隙偏置Offset4=K4确定。
M个DCI在不同的传输时隙传输,但只调度了一个CSI报告,或者所述M个DCI调度的M个CSI报告在同一个时隙传输。那么所述CSI报告的传输时隙为:
Figure PCTCN2020110425-appb-000020
TS为所述CSI报告的传输时隙,n1是预定DCI所在时隙,μ CSI为传输CSI报告的载波间隔配置参数,μ PDCCH为传输PDCCH的载波间隔配置参数,K4为DCI与其调度CSI报告之间时隙偏移,K4为正整数,K4由高层信令和/或物理层参数确定的时隙偏移参数。
示例5:M个DCI触发M个CSI-RS,其中,M个CSI-RS的传输时隙由预定DCI的传输时隙和预定DCI与所调度的CSI-RS时隙偏置Offset5=K5确定。
M个DCI在不同的传输时隙传输,但只调度了一个CSI-RS resource或CSI-RS resource set,或者所述M个DCI调度的M个CSI-RS resource或CSI-RS resource set在同一个时隙传输。那么所述CSI-RS resource或CSI-RS resource set的传输时隙为:
Figure PCTCN2020110425-appb-000021
TC为所述CSI-RS resource或CSI-RS resource set的传输时隙,n1是预定DCI所在时隙,μ CS-RSI为传输CSI报告的载波间隔配置参数,μ PDCCH为传输PDCCH的载波间隔配置参数,K5为DCI与其调度CSI-RS resource或CSI-RS resource set之间时隙偏移,K5为正整数,K5由高层信令和/或物理层参数确定的时隙偏移参数。
在本文中,预定DCI也可以称作参考DCI。
在一个示例性实施方式中,本申请还提供了一种信令信息的传输方法,图2为本申请实施例提供的另一种信令信息的传输方法的流程示意图。该方法可以适用于确定上行共享信道的信道状态信息的情况,该方法可以由本申请提供的信令信息的传输装置执行,该装置可以由软件/或硬件实现,并集成在通信节点上。该通信节点可以为基站。本实施例尚未详尽的内容可以参见上述实施例,此处不作赘述。
如图2所示,本申请提供的信令信息的传输方法,包括S210。
S210、传输信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的整数。
所述信令信息用于指示M个物理上行信道的信道状态信息。
基站将信令信息进行传输,如传输至终端,以便终端确定各物理上行信道的信道状态信息。
本申请在传输信令信息前,还可以包括配置信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息。
M为大于1的正整数。为了解决多个传输接收节点和多面板传输中无法确定上行信道的信道状态信息的技术问题,本实施例中的通信节点,即基站配置信令信息,以指示M个物理上行信道的信道状态信息。配置完信令信息后,通信节点,即基站将信令信息进行传输,如传输至终端,以便终端确定各物理上行信道的信道状态信息。
本申请实施例提供了一种信令信息的传输方法,传输信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息。利用该方法有效解决了多面板和多个传输接收节点传输时,无法确定多个物理上行信道的信道状态信息的技术问题,通过信令信息能够有效的确定多面板和多个传输接收节点传输时多个物理上行信道的信道状态信息。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述信令信息包括M个下行控制信息。
在一个实施例中,用所述下行控制信息的域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述下行控制信息的域值集合为由所述下行控制信息的以下至少之一域的取值分成的M个域值集合:冗余版本域(即Redundancy version域);载波指示域(即Carrier indicator域);带宽部分指示域(即Bandwidth part indicator域);天线端口域(即Antenna ports域)。
在一个实施例中,该方法包括以下至少之一:
用所述下行控制信息的冗余版本域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的载波指示域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的带宽部分指示域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的天线端口域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,用所述下行控制信息对应的物理下行控制信道信息集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述物理下行控制信道信息集合为由如下至少之一信息的取值形成的集合:传输物理下行控制信道的载波组件;传输物理下行控制信道的带宽部分;物理下行控制信道所在的控制资源集组;物理下行控制信道检测时机;物理下行控制信道检测候选。
在一个实施例中,该方法包括以下至少之一:
用传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用传输物理下行控制信道的带宽部分取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的控制资源集组取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的物理下行控制信道检测时机取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的物理下行控制信道检测候选取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,用所述信令信息的上行探测参考资源指示域所指示的上 行探测参考资源集合或上行探测参考资源的上行传输单元索引指示M个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括第一级下行控制信息,第一级下行控制信息用于指示第一个物理上行信道的信道状态信息。
在一个实施例中,包括如下至少之一:
第二级下行控制信息的内容根据所述第一级下行控制信息的上行探测信号资源指示域确定;第二级下行控制信息的检测情况根据所述第一级下行控制信息中指示的上行探测信号资源信息确定,其中,所述第二级下行控制信息属于所述M个下行控制信息。即第一级下行控制信息的上行探测信号资源指示域用于确定第二级下行控制信息的内容;所述第一级下行控制信息中指示的上行探测信号资源信息用于确定第二级下行控制信息的检测情况。
在一个实施例中,包括如下至少之一:
在不检测第二级下行控制信息的情况下,第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值;在第二级下行控制信息的内容为空的情况下,第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值;在检测所述第二级下行控制信息的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值;在第二级下行控制信息的内容非空的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值;在第二级下行控制信息中包括第二个物理上行信道的信道状态信息,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值。
预定值为正整数,可以为1,故在所述下行控制信息的上行探测信号资源指示域指示一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容为空;或,在所述下行控制信息的上行探测信号资源指示域指示大于一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容包括用于指示第二个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括一个下行控制信息,用所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示,所述M个上行探测信号资源指示用于确定M个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括一个下行控制信息,用所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示组,所述M 个上行探测信号资源指示组用于确定M个物理上行信道的信道状态信息。
在一个实施例中,所述物理上行信道的信道状态信息包括信道秩,其中,所述信道秩根据如下至少之一信息获取:所述一个下行控制信息中上行探测信号资源指示域指示的上行探测信号资源指示总个数;所述M。
所述信道秩为所述下行控制信息中的上行探测信号资源指示域指示的所有SRI总个数除以M。
在一个实施例中,所述M个物理上行信道的传输模式包括重复传输和非重复传输,其中,重复传输包括所述M个物理上行信道传输中包括的传输信息的交集非空,所述非重复传输包括如下至少之一:所述M个物理上行信道传输中包括的传输信息的交集为空;所述M个物理上行信道传输中包括的传输信息的差集非空。
在一个实施例中,配置信令信息包括:在M个物理上行信道的传输模式为重复传输的情况下,M个下行控制信息中指示的信息之间的关系满足第一预定条件;在M个物理上行信道的传输模式为重复传输的情况下,M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件。
在一个实施例中,所述第一预定条件包括如下至少之一:
所述M个下行控制信息中所有的域取值完全相同;所述M个下行控制信息的新数据指示域取值相同;所述M个下行控制信息的冗余版本域的取值相同;所述M个下行控制信息的调制编码方案域的取值相同;所述M个下行控制信息的混合自动重复传输进程数域的取值相同。
在一个实施例中,所述第二预定条件包括如下至少之一:所述M个下行控制信道对应的控制资源集合有相同的搜索空间;所述M个下行控制信道对应的控制资源集合有相同的搜索空间集合;所述M个下行控制信道对应的物理下行控制信道检测时机相同;所述M个下行控制信道对应的物理下行控制信道检测候选相同;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示个数为1;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,该方法,包括:在M个下行控制信息满足如下至少之一的情况下,确定所述M个物理上行信道是重复传输的:
每个域是完全一致的;新数据取值域取值相同;信道编码后的冗余版本域取值相同;调制编码方案域取值相同;混合自动重复传输进程数域取值相同;对应的控制资源集合有相同的搜索空间;对应的控制资源集合有相同的搜索空间集合;对应的物理下行控制信道检测时机相同;对应的物理下行控制信道检 测候选相同;上行探测信号资源指示域指示的上行探测信号资源指示个数为1;上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,该方法,还包括以下至少之一:根据M个下行控制信息中的预定下行控制信息所在的时间单元确定所述M个物理上行信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个物理下行共享信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个上行探测参考资源所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个信道状态信息报告的时间单元。即M个物理上行信道所在的时间单元由M个下行控制信息中的预定下行控制信息所在的时间单元确定。
在一个实施例中,所述预定下行控制信息为如下至少之一:
所述M个下行控制信息中传输时隙最小的下行控制信息;所述M个下行控制信息中传输时隙最大的下行控制信息;所述M个下行控制信息中主传输节点对应的下行控制信息;高层信令配置的下行控制信息;预定义的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最小的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最大的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最小的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最大的下行控制信息。
本申请提供了一种信令信息的传输装置,图3为本申请实施例提供的一种信令信息的传输装置的结构示意图。该信令信息的传输装置可以集成在通信节点上,如集成在基站上。如图3所示,该装置包括:传输模块31,设置为传输信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数。该装置还可以包括配置模块,设置为配置信令信息。
本实施例提供的信令信息的传输装置用于实现如图2所示的信令信息的传输方法,本实施例提供的信令信息的传输装置实现原理和技术效果与图2所述的信令信息的传输方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述信令信息包括M个下行控制信息。
在一个实施例中,用所述下行控制信息的域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述下行控制信息的域值集合为由所述下行控制信息的 以下至少之一域的取值分成的M个域值集合:冗余版本域;载波指示域;带宽部分指示域;天线端口域。
在一个实施例中,该装置包括以下至少之一:用所述下行控制信息的冗余版本域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的载波指示域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的带宽部分指示域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息的天线端口域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,用所述下行控制信息对应的物理下行控制信道信息集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述物理下行控制信道信息集合为由如下至少之一信息的取值形成的集合:传输物理下行控制信道的载波组件;传输物理下行控制信道的带宽部分;物理下行控制信道所在的控制资源集组;物理下行控制信道检测时机;物理下行控制信道检测候选。
在一个实施例中,该装置包括以下至少之一:用传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用传输物理下行控制信道的带宽部分取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的控制资源集组取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的物理下行控制信道检测时机取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息;用所述下行控制信息对应的物理下行控制信道检测候选取值集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,用所述信令信息的上行探测参考资源指示域所指示的上行探测参考资源集合或上行探测参考资源的上行传输单元索引指示M个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括第一级下行控制信息,第一级下行控制信息用于指示第一个物理上行信道的信道状态信息。
在一个实施例中,该装置包括如下至少之一:第二级下行控制信息的内容根据所述第一级下行控制信息的上行探测信号资源指示域确定;第二级下行控制信息的检测情况根据所述第一级下行控制信息中指示的上行探测信号资源信 息确定,其中,所述第二级下行控制信息属于所述M个下行控制信息。
在一个实施例中,该装置包括如下至少之一:在不检测第二级下行控制信息的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值;在第二级下行控制信息的内容为空的情况下,第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值;在检测第二级下行控制信息的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值;在第二级下行控制信息的内容非空的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值;在第二级下行控制信息中包括第二个物理上行信道的信道状态信息的情况下,所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值。
在所述下行控制信息的上行探测信号资源指示域指示一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容为空;或,在所述下行控制信息的上行探测信号资源指示域指示大于一个上行探测信号资源指示或上行探测信号资源指示组的情况下,所述第二级下行控制信息的内容包括用于指示第二个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括一个下行控制信息,用所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示,所述M个上行探测信号资源指示用于确定M个物理上行信道的信道状态信息。
在一实施例中,所述信令信息包括一个下行控制信息,用所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示组,所述M个上行探测信号资源指示组用于确定M个物理上行信道的信道状态信息。
在一个实施例中,所述物理上行信道的信道状态信息包括信道秩,其中,所述信道秩根据如下至少之一信息获取:所述一个下行控制信息中上行探测信号资源指示域指示的上行探测信号资源指示总个数;所述M。
所述信道秩为所述下行控制信息中的上行探测信号资源指示域指示的所有SRI总个数除以M。
在一个实施例中,所述M个物理上行信道的传输模式包括重复传输和非重复传输,其中,重复传输包括所述M个物理上行信道传输中包括的传输信息的交集非空,所述非重复传输包括如下至少之一:所述M个物理上行信道传输中包括的传输信息的交集为空;所述M个物理上行信道传输中包括的传输信息的差集非空。
在一个实施例中,该装置,包括:在所述M个物理上行信道的传输模式为重复传输的情况下,M个下行控制信息中指示的信息之间的关系满足第一预定条件;在所述M个物理上行信道的传输模式为重复传输的情况下,M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件。
在一个实施例中,所述第一预定条件包括如下至少之一:所述M个下行控制信息中所有的域取值完全相同;所述M个下行控制信息的新数据指示域取值相同;所述M个下行控制信息的冗余版本域的取值相同;所述M个下行控制信息的调制编码方案域的取值相同;所述M个下行控制信息的混合自动重复传输进程数域的取值相同。
在一个实施例中,所述第二预定条件包括如下至少之一:所述M个下行控制信道对应的控制资源集合有相同的搜索空间;所述M个下行控制信道对应的控制资源集合有相同的搜索空间集合;所述M个下行控制信道对应的物理下行控制信道检测时机相同;所述M个下行控制信道对应的物理下行控制信道检测候选相同;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示个数为1;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,该装置包括:
在M个下行控制信息满足如下至少之一的情况下,确定所述M个物理上行信道是重复传输的:
每个域是完全一致的;新数据取值域取值相同;信道编码后的冗余版本域取值相同;调制编码方案域取值相同;混合自动重复传输进程数域取值相同;对应的控制资源集合有相同的搜索空间;对应的控制资源集合有相同的搜索空间集合;对应的物理下行控制信道检测时机相同;对应的物理下行控制信道检测候选相同;上行探测信号资源指示域指示的上行探测信号资源指示个数为1;上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,该装置,还包括:确定模块,设置为以下至少之一:根据M个下行控制信息中的预定下行控制信息所在的时间单元确定所述M个物理上行信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个物理下行共享信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个上行探测参考资源所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个信道状态信息报告的时间单元。
在一个实施例中,所述预定下行控制信息为如下至少之一:
所述M个下行控制信息中传输时隙最小的下行控制信息;所述M个下行控制信息中传输时隙最大的下行控制信息;所述M个下行控制信息中主传输节点对应的下行控制信息;高层信令配置的下行控制信息;预定义的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最小的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最大的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最小的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最大的下行控制信息。
本申请还提供了一种信令信息的传输装置,图4为本申请实施例提供的另一种信令信息的传输装置的结构示意图。该装置可以集成在通信节点上,如用户终端上。参见图4,该装置包括:接收模块41,设置为接收信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数;确定模块42,设置为基于所述信令信息确定M个物理上行信道的信道状态信息。
本实施例提供的信令信息的传输装置用于实现如图1所示实施例的信令信息的传输方法,本实施例提供的信令信息的传输装置实现原理和技术效果与图1所示实施例的信令信息的传输方法类似,此处不再赘述。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个实施例中,所述信令信息包括M个下行控制信息。
在一个实施例中,所述下行控制信息的域值集合与上行探测参考信号资源集合的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述下行控制信息的域值集合为由所述下行控制信息的以下至少之一域的取值分成的M个域值集合:
冗余版本域;载波指示域;带宽部分指示域;天线端口域。
在一个实施例中,确定模块42包括以下至少之一:
所述下行控制信息的冗余版本域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息的载波指示域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息的带宽部分指示域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息的天线端口域值集合与上行探测参考信号资源集合的关联关系确定M个物理上行信道的信道状态信息。
在一个实施例中,用所述下行控制信息对应的物理下行控制信道信息集合与上行传输单元的关联关系指示M个物理上行信道的信道状态信息。
在一个实施例中,所述物理下行控制信道信息集合为由如下至少之一信息的取值形成的集合:
传输物理下行控制信道的载波组件;传输物理下行控制信道的带宽部分;物理下行控制信道所在的控制资源集组;物理下行控制信道检测时机;物理下行控制信道检测候选。
在一个实施例中,确定模块42包括以下至少之一:
传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;传输物理下行控制信道的带宽部分取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息对应的控制资源集组取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息对应的物理下行控制信道检测时机取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息;所述下行控制信息对应的物理下行控制信道检测候选取值集合与上行传输单元的关联关系确定M个物理上行信道的信道状态信息。
在一个实施例中,确定模块42,设置为所述信令信息的上行探测参考资源指示域所指示的上行探测参考资源集合或上行探测参考资源的上行传输单元索引确定M个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括第一级下行控制信息,第一级下行控制信息用于确定第一个物理上行信道的信道状态信息。
在一个实施例中,确定模块42包括如下至少之一:根据所述第一级下行控制信息的上行探测信号资源指示域确定第二级下行控制信息的内容;根据所述第一级下行控制信息中指示的上行探测信号资源信息确定第二级下行控制信息的检测情况;
所述第二级下行控制信息属于所述M个下行控制信息。
在一个实施例中,确定模块42包括如下至少之一:
在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,不检测所述第二级下行控制信息;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,所述第二级下行控制信息的内容为空;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,检测所述第二级下行控制信息;在所述第一级下行控制信息 指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息的内容非空;在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,所述第二级下行控制信息中包括第二个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示,所述M个上行探测信号资源指示用于确定M个物理上行信道的信道状态信息。
在一个实施例中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示组,所述M个上行探测信号资源指示组用于确定M个物理上行信道的信道状态信息。
在一个实施例中,所述物理上行信道的信道状态信息包括信道秩,其中,所述信道秩根据如下至少之一信息获取:所述一个下行控制信息中上行探测信号资源指示域指示的上行探测信号资源指示总个数;所述M。
所述信道秩为所述下行控制信息中的上行探测信号资源指示域指示的所有SRI总个数除以M。
在一个实施例中,所述M个物理上行信道的传输模式包括重复传输和非重复传输,其中,重复传输包括所述M个物理上行信道传输中包括的传输信息的交集非空,所述非重复传输包括如下至少之一:所述M个物理上行信道传输中包括的传输信息的交集为空;所述M个物理上行信道传输中包括的传输信息的差集非空。
在一个实施例中,确定模块42,是设置为:在M个下行控制信息中指示的信息之间的关系满足第一预定条件的情况下,确定所述M个物理上行信道的传输模式为重复传输;在M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件的情况下,确定所述M个物理上行信道的传输模式为重复传输。
在一个实施例中,所述第一预定条件包括如下至少之一:
所述M个下行控制信息中所有的域取值完全相同;所述M个下行控制信息的新数据指示域取值相同;所述M个下行控制信息的冗余版本域的取值相同;所述M个下行控制信息的调制编码方案域的取值相同;所述M个下行控制信息的混合自动重复传输进程数域的取值相同。
在一个实施例中,所述第二预定条件包括如下至少之一:所述M个下行控制信道对应的控制资源集合有相同的搜索空间;所述M个下行控制信道对应的控制资源集合有相同的搜索空间集合;所述M个下行控制信道对应的物理下行 控制信道检测时机相同;所述M个下行控制信道对应的物理下行控制信道检测候选相同;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示个数为1;所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,所述M个物理上行信道的传输模式通过M个物理上行信道对应的混合自动重复传输进程的关联关系确定。
在一个实施例中,确定模块42,是设置为:在M个下行控制信息满足如下至少之一的情况下,确定所述M个物理上行信道是重复传输的:
每个域是完全一致的;新数据取值域取值相同;信道编码后的冗余版本域取值相同;调制编码方案域取值相同;混合自动重复传输进程数域取值相同;对应的控制资源集合有相同的搜索空间;对应的控制资源集合有相同的搜索空间集合;对应的物理下行控制信道检测时机相同;对应的物理下行控制信道检测候选相同;上行探测信号资源指示域指示的上行探测信号资源指示个数为1;上行探测信号资源指示域指示的上行探测信号资源指示组个数为1。
在一个实施例中,该装置还包括,时间单元确定模块,设置为以下至少之一:根据M个下行控制信息中的预定下行控制信息所在的时间单元确定所述M个物理上行信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个物理下行共享信道所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个上行探测参考资源所在的时间单元;根据M个下行控制信息中的预定下行控制信息所在的时间单元确定M个信道状态信息报告的时间单元。
在一个实施例中,所述预定下行控制信息为如下至少之一:
所述M个下行控制信息中传输时隙最小的下行控制信息;所述M个下行控制信息中传输时隙最大的下行控制信息;所述M个下行控制信息中主传输节点对应的下行控制信息;高层信令配置的下行控制信息;预定义的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最小的下行控制信息;所述M个下行控制信息对应的物理下行控制信道资源索引最大的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最小的下行控制信息;所述M个下行控制信息对应的控制资源集合资源索引最大的下行控制信息。
本申请实施例还提供了一种通信节点,图5为本申请实施例提供的一种通信节点的结构示意图。参见图5,本申请提供的通信节点,包括一个或多个处理器51和存储装置52;该第一终端中的处理器51可以是一个或多个,图5中以 一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请图2对应实施例中所述的方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图5中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。如进行信令信息的传输。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图2对应实施例所述方法对应的程序指令/模块(例如,信令信息的传输装置中的配置模块31和传输模块32。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种通信节点,图6为本申请实施例提供的另一种通信节点的结构示意图。参见图6,本申请提供的通信节点,包括一个或多个处理器61和存储装置62;该通信节点中的处理器61可以是一个或多个,图6中以一个处理器61为例;存储装置62用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器61执行,使得所述一个或多个处理器61实现如本申请图1对应实施例所述的方法。
通信节点还包括:通信装置63、输入装置64和输出装置65。
通信节点中的处理器61、存储装置62、通信装置63、输入装置64和输出装置65可以通过总线或其他方式连接,图6中以通过总线连接为例。
输入装置64可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置65可包括显示屏等显示设 备。
通信装置63可以包括接收器和发送器。通信装置63设置为根据处理器61的控制进行信息收发通信。如进行信令信息的传输。
存储装置62作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1对应实施例所述方法对应的程序指令/模块(例如,信令信息的传输装置中的接收模块41和确定模块42)。存储装置62可包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置62可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置62可包括相对于处理器61远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的方法。如一种信令信息的传输方法,包括:配置信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数;传输所述的信令信息。又如,一种信令信息的传输方法,包括:接收信令信息,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数;基于所述信令信息确定M个物理上行信道的信道状态信息。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
术语终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一 种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和***(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (23)

  1. 一种信令信息的传输方法,包括:
    接收信令信息;
    基于所述信令信息确定M个物理上行信道的信道状态信息,M为大于1的正整数。
  2. 根据权利要求1所述的方法,其中,所述信令信息包括M个下行控制信息。
  3. 根据权利要求2所述的方法,其中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
    基于所述M个下行控制信息的冗余版本域值集合与上行探测参考信号资源集合的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息的载波指示域值集合与上行探测参考信号资源集合的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息的带宽部分指示域值集合与上行探测参考信号资源集合的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息的天线端口域值集合与上行探测参考信号资源集合的关联关系确定所述M个物理上行信道的信道状态信息。
  4. 根据权利要求2所述的方法,其中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
    基于传输物理下行控制信道的载波组件取值集合与上行传输单元的关联关系确定所述M个物理上行信道的信道状态信息;
    基于传输物理下行控制信道的带宽部分取值集合与上行传输单元的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息对应的控制资源集组取值集合与上行传输单元的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息对应的物理下行控制信道检测时机取值集合与上行传输单元的关联关系确定所述M个物理上行信道的信道状态信息;
    基于所述M个下行控制信息对应的物理下行控制信道检测候选取值集合与上行传输单元的关联关系确定所述M个物理上行信道的信道状态信息。
  5. 根据权利要求2所述的方法,其中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括:
    基于所述信令信息的上行探测参考资源指示域所指示的上行探测参考资源 集合或上行探测参考资源的上行传输单元索引确定所述M个物理上行信道的信道状态信息。
  6. 根据权利要求2所述的方法,其中,所述信令信息包括第一级下行控制信息,所述第一级下行控制信息用于确定第一个物理上行信道的信道状态信息。
  7. 根据权利要求6所述的方法,其中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括如下至少之一:
    根据所述第一级下行控制信息的上行探测信号资源指示域确定第二级下行控制信息的内容;
    根据所述第一级下行控制信息中指示的上行探测信号资源信息确定第二级下行控制信息的检测情况;
    其中,所述第二级下行控制信息属于所述M个下行控制信息。
  8. 根据权利要求6所述的方法,其中,所述基于所述信令信息确定M个物理上行信道的信道状态信息,包括以下至少之一:
    在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,不检测第二级下行控制信息;
    在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数小于预定值的情况下,第二级下行控制信息的内容为空;
    在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,检测第二级下行控制信息;
    在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,第二级下行控制信息的内容非空;
    在所述第一级下行控制信息指示的上行探测信号资源个数或上行探测信号资源组个数大于或等于预定值的情况下,第二级下行控制信息中包括第二个物理上行信道的信道状态信息。
  9. 根据权利要求1所述的方法,其中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示,所述M个上行探测信号资源指示用于确定所述M个物理上行信道的信道状态信息。
  10. 根据权利要求1所述的方法,其中,所述信令信息包括一个下行控制信息,所述下行控制信息中的上行探测信号资源指示域指示M个上行探测信号资源指示组,所述M个上行探测信号资源指示组用于确定所述M个物理上行信道的信道状态信息。
  11. 根据权利要求10所述的方法,其中,所述物理上行信道的信道状态信息包括信道秩,其中,所述信道秩根据如下信息中的至少之一获取:所述下行控制信息中上行探测信号资源指示域指示的上行探测信号资源指示总个数;M。
  12. 根据权利要求1所述的方法,其中,所述M个物理上行信道的传输模式包括重复传输和非重复传输,其中,所述重复传输包括所述M个物理上行信道传输中包括的传输信息的交集非空,所述非重复传输包括如下至少之一:所述M个物理上行信道传输中包括的传输信息的交集为空;所述M个物理上行信道传输中包括的传输信息的差集非空。
  13. 根据权利要求2所述的方法,其中,基于所述信令信息确定M个物理上行信道的信道状态信息,包括如下至少之一:
    在所述M个下行控制信息中指示的信息之间的关系满足第一预定条件的情况下,确定所述M个物理上行信道的传输模式为所述重复传输;
    在所述M个下行控制信息所在的M个下行控制信道的参数之间的关系满足第二预定条件的情况下,确定所述M个物理上行信道的传输模式为所述重复传输。
  14. 根据权利要求13所述的方法,其中,所述第一预定条件包括如下至少之一:
    所述M个下行控制信息中所有的域取值完全相同;
    所述M个下行控制信息的新数据指示域取值相同;
    所述M个下行控制信息的冗余版本域的取值相同;
    所述M个下行控制信息的调制编码方案域的取值相同;
    所述M个下行控制信息的混合自动重复传输进程数域的取值相同。
  15. 根据权利要求13所述的方法,其中,所述第二预定条件包括如下至少之一:
    所述M个下行控制信道对应的控制资源集合有相同的搜索空间;
    所述M个下行控制信道对应的控制资源集合有相同的搜索空间集合;
    所述M个下行控制信道对应的物理下行控制信道检测时机相同;
    所述M个下行控制信道对应的物理下行控制信道检测候选相同;
    所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源指示个数为1;
    所述M个下行控制信道上行探测信号资源指示域指示的上行探测信号资源 指示组个数为1。
  16. 根据权利要求2所述的方法,还包括以下至少之一:
    根据所述M个下行控制信息中的预定下行控制信息所在的时间单元确定所述M个物理上行信道所在的时间单元;
    根据所述M个下行控制信息中的预定下行控制信息所在的时间单元确定M个物理下行共享信道所在的时间单元;
    根据所述M个下行控制信息中的预定下行控制信息所在的时间单元确定M个上行探测参考资源所在的时间单元;
    根据所述M个下行控制信息中的预定下行控制信息所在的时间单元确定M个信道状态信息报告的时间单元。
  17. 根据权利要求16所述的方法,其中,所述预定下行控制信息为如下至少之一:
    所述M个下行控制信息中传输时隙最小的下行控制信息;
    所述M个下行控制信息中传输时隙最大的下行控制信息;
    所述M个下行控制信息中主传输节点对应的下行控制信息;
    高层信令配置的下行控制信息;
    预定义的下行控制信息;
    所述M个下行控制信息对应的物理下行控制信道资源索引最小的下行控制信息;
    所述M个下行控制信息对应的物理下行控制信道资源索引最大的下行控制信息;
    所述M个下行控制信息对应的控制资源集合资源索引最小的下行控制信息;
    所述M个下行控制信息对应的控制资源集合资源索引最大的下行控制信息。
  18. 一种信令信息的传输方法,包括:
    传输信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数。
  19. 一种信令信息的传输装置,包括:
    接收模块,设置为接收信令信息;
    确定模块,设置为基于所述信令信息确定M个物理上行信道的信道状态信息,M为大于1的正整数。
  20. 一种信令信息的传输装置,包括:
    传输模块,设置为传输信令信息,其中,所述信令信息用于指示M个物理上行信道的信道状态信息,M为大于1的正整数。
  21. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-17中任一项所述的信令信息的传输方法。
  22. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求18所述的信令信息的传输方法。
  23. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-18中任一项所述的信令信息的传输方法。
PCT/CN2020/110425 2019-09-03 2020-08-21 信令信息的传输方法、装置、通信节点和存储介质 WO2021043008A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/639,941 US20220330258A1 (en) 2019-09-03 2020-08-21 Method for transmitting signaling information, and communication node and storage medium
EP20861209.3A EP4027561A4 (en) 2019-09-03 2020-08-21 METHOD AND APPARATUS FOR TRANSMITTING SIGNALING INFORMATION, AND COMMUNICATION NODE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910828953.XA CN110535614A (zh) 2019-09-03 2019-09-03 信令信息的传输方法、装置、通信节点和存储介质
CN201910828953.X 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021043008A1 true WO2021043008A1 (zh) 2021-03-11

Family

ID=68666484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110425 WO2021043008A1 (zh) 2019-09-03 2020-08-21 信令信息的传输方法、装置、通信节点和存储介质

Country Status (4)

Country Link
US (1) US20220330258A1 (zh)
EP (1) EP4027561A4 (zh)
CN (1) CN110535614A (zh)
WO (1) WO2021043008A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022029696A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Physical uplink shared channel repetition scheduled with multiple downlink control information over multiple transmission and reception points
DE102010051743B4 (de) 2010-11-19 2022-09-01 C. Miethke Gmbh & Co. Kg Programmierbares Hydrocephalusventil
EP4300861A4 (en) * 2021-03-18 2024-04-17 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD, TERMINAL EQUIPMENT AND NETWORK DEVICE

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395283B2 (en) * 2019-06-06 2022-07-19 Samsung Electronics Co., Ltd. Determination of search space sets for physical downlink control channel (PDCCH) monitoring
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质
WO2021114274A1 (zh) * 2019-12-13 2021-06-17 北京小米移动软件有限公司 无线通信方法、装置及存储介质
CN113015249B (zh) * 2019-12-20 2022-09-23 大唐移动通信设备有限公司 一种物理上行共享信道pusch非码本传输方法和装置
CN111901066A (zh) * 2020-02-04 2020-11-06 中兴通讯股份有限公司 信息确定方法、接收方法、装置、通信节点及存储介质
CN113259073B (zh) * 2020-02-07 2023-02-17 维沃移动通信有限公司 Pusch传输方法、pusch传输控制方法及相关设备
JP2023514126A (ja) * 2020-02-13 2023-04-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 複数の関連付けられたnzp csi-rsを用いた非コードブックベースのマルチtrp puschの信頼性
US20230076139A1 (en) * 2020-02-13 2023-03-09 Telefonaktiebolaget Lm Ericsson (Publ) PUCCH RELIABILITY ENHANCEMENTS WITH MULTIPLE TRPs
WO2021168599A1 (en) * 2020-02-24 2021-09-02 Qualcomm Incorporated Reference signal configurations for uplink beam selection
EP4117363A4 (en) * 2020-03-10 2023-05-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF DETERMINING AN UPLINK TRANSMISSION PARAMETER AND TERMINAL DEVICE
EP4124141A4 (en) * 2020-03-16 2024-04-10 Lg Electronics Inc METHOD AND APPARATUS FOR SENDING OR RECEIVING PUSH IN A WIRELESS COMMUNICATIONS SYSTEM
CN115280872A (zh) * 2020-03-17 2022-11-01 联发科技股份有限公司 5g新无线电(nr)中物理下行链路控制信道(pdcch)监测适配方法
EP4120763A4 (en) * 2020-04-02 2023-05-03 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND APPARATUS
WO2021221476A1 (ko) * 2020-04-29 2021-11-04 엘지전자 주식회사 복수 개의 trp를 위한 상향링크 송수신 방법 및 그를 위한 장치
CN113630880A (zh) * 2020-05-07 2021-11-09 维沃移动通信有限公司 控制信息的获取方法、指示方法、终端及网络设备
CN115443632A (zh) * 2020-05-11 2022-12-06 鸿颖创新有限公司 用于多传输/接收点操作的方法和用户设备
CN116325855A (zh) * 2020-08-07 2023-06-23 株式会社Ntt都科摩 终端、无线通信方法以及基站
WO2022027683A1 (zh) * 2020-08-07 2022-02-10 Oppo广东移动通信有限公司 确定传输使用的天线面板的方法和终端设备
CN114257353B (zh) * 2020-09-22 2023-08-01 ***通信有限公司研究院 信道传输方法、接收方法、终端及基站
CN114258131A (zh) * 2020-09-22 2022-03-29 ***通信有限公司研究院 物理上行共享信道的传输方法、接收方法、终端及基站
CN114337953B (zh) * 2020-09-30 2024-05-17 维沃移动通信有限公司 上行信道参数的确定和配置方法及装置
WO2022082359A1 (en) * 2020-10-19 2022-04-28 Apple Inc. Physical uplink shared channel repetition with different configurations
CN114915393A (zh) * 2021-02-10 2022-08-16 维沃移动通信有限公司 Pusch重复传输方法、装置及用户设备
WO2023010358A1 (zh) * 2021-08-04 2023-02-09 北京小米移动软件有限公司 上行协作trp确定方法、装置及存储介质
CN116094663A (zh) * 2021-10-29 2023-05-09 展讯半导体(南京)有限公司 传输方法及装置
CN117856839A (zh) * 2022-09-30 2024-04-09 华为技术有限公司 数据发送的方法和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108112075A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN108260217A (zh) * 2018-03-05 2018-07-06 中兴通讯股份有限公司 一种信息传输的方法、装置和通信节点
CN108282274A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置,终端和基站
WO2018182381A1 (ko) * 2017-03-31 2018-10-04 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
WO2019032855A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation CONTROL SIGNALING FOR SURFACE REFERENCE SIGNAL (SRS)
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360864A1 (en) * 2010-02-12 2011-08-24 Panasonic Corporation Component carrier (de)activation in communication systems using carrier aggregation
EP4131791A1 (en) * 2017-09-11 2023-02-08 Apple Inc. Apparatus and method for uplink control signaling in multi-transmission reception point operation for new radio and demodulation reference signal design

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282274A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置,终端和基站
WO2018182381A1 (ko) * 2017-03-31 2018-10-04 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
CN108112075A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法
WO2019032855A1 (en) * 2017-08-11 2019-02-14 Intel IP Corporation CONTROL SIGNALING FOR SURFACE REFERENCE SIGNAL (SRS)
CN108111283A (zh) * 2017-11-03 2018-06-01 中兴通讯股份有限公司 一种参考信号的传输方法及设备
CN108260217A (zh) * 2018-03-05 2018-07-06 中兴通讯股份有限公司 一种信息传输的方法、装置和通信节点
CN110838902A (zh) * 2018-08-17 2020-02-25 电信科学技术研究院有限公司 一种上行传输方法及装置
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Discussion on UL multi-panel transmission", 3GPP DRAFT; R1-1904574 DISCUSSION ON UL TRANSMISSION WITH MULTI-TRP V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 29 March 2019 (2019-03-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051691609 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010051743B4 (de) 2010-11-19 2022-09-01 C. Miethke Gmbh & Co. Kg Programmierbares Hydrocephalusventil
WO2022029696A1 (en) * 2020-08-07 2022-02-10 Telefonaktiebolaget Lm Ericsson (Publ) Physical uplink shared channel repetition scheduled with multiple downlink control information over multiple transmission and reception points
EP4300861A4 (en) * 2021-03-18 2024-04-17 Guangdong Oppo Mobile Telecommunications Corp Ltd WIRELESS COMMUNICATION METHOD, TERMINAL EQUIPMENT AND NETWORK DEVICE

Also Published As

Publication number Publication date
US20220330258A1 (en) 2022-10-13
CN110535614A (zh) 2019-12-03
EP4027561A1 (en) 2022-07-13
EP4027561A4 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2021043008A1 (zh) 信令信息的传输方法、装置、通信节点和存储介质
US10779293B2 (en) Downlink transmission method and user terminal equipment
KR101791396B1 (ko) 채널 상태 정보를 피드백하기 위한 방법, 사용자 장비, 및 시스템
US20200146047A1 (en) Data transmission method, terminal device, base station, and communications system
RU2530011C2 (ru) Способ и устройство связи
CN104885543A (zh) 用于在无线通信***中确定传输块大小的方法和设备
WO2021063227A1 (zh) 多点协作传输的参数确定方法及装置
CN103384183A (zh) 一种上行控制信息传输方法及装置
CN106209300B (zh) 一种控制信息发送方法和接收方法及发射机、接收机
US11909529B2 (en) Method, apparatus for transmitting HARQACK information, electronic device and storage medium
KR20180034539A (ko) 업링크 제어 정보 송신 방법과 수신 방법, 및 관련 장치
US9980261B2 (en) Methods for detecting and sending downlink control information and devices
US20140226554A1 (en) Method for calculating channel quality information, method for feeding back channel quality information and apparatus
WO2021136152A1 (zh) 物理信道传输方法、装置、节点和存储介质
JP6853284B2 (ja) チャネル状態情報をフィードバックする方法、ユーザ装置及びシステム
US20240097766A1 (en) Grouping of demodulation reference signal ports for co-scheduled user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861209

Country of ref document: EP

Effective date: 20220404