WO2021042939A1 - 电子设备、电池盖、及其制造方法 - Google Patents

电子设备、电池盖、及其制造方法 Download PDF

Info

Publication number
WO2021042939A1
WO2021042939A1 PCT/CN2020/107928 CN2020107928W WO2021042939A1 WO 2021042939 A1 WO2021042939 A1 WO 2021042939A1 CN 2020107928 W CN2020107928 W CN 2020107928W WO 2021042939 A1 WO2021042939 A1 WO 2021042939A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
glass sheet
battery cover
electronic device
manufacturing
Prior art date
Application number
PCT/CN2020/107928
Other languages
English (en)
French (fr)
Inventor
邹攀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2021042939A1 publication Critical patent/WO2021042939A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/035Re-forming glass sheets by bending using a gas cushion or by changing gas pressure, e.g. by applying vacuum or blowing for supporting the glass while bending
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of manufacturing processes of electronic devices, and in particular to an electronic device, a battery cover, and a manufacturing method thereof.
  • the shells of most mobile phones currently on the market have a sandwich structure that combines a glass battery cover, an aluminum alloy middle frame, and a screen glass cover. There is a seam between the aluminum alloy middle frame and the glass battery cover, which affects the user's sense of holding and destroys the feeling of integration of the entire mobile phone casing.
  • the glass shells with stable and reliable mass production are usually made into curved surfaces with curved surfaces and flat surfaces by hot pressing, which has a trend of homogeneity.
  • the concave and convex state of the mold surface will be transferred when the mold is pressed, that is, mold printing.
  • mold printing is serious, it is difficult to remove by polishing, and the roughness of the inner surface of the glass is 1-10um. Therefore, the existing hot pressing Molding technology
  • the molding temperature is generally limited to the softening point temperature of the glass. Due to the structure of the integrated glass, the height of the glass itself and the blocking of the middle frame, it is difficult for the polishing brush to touch the inner round corners where the middle frame and the battery cover are connected during polishing.
  • the glass needs to be CNC processed to form the glass into the required shape.
  • This solution also has the following disadvantages: 1. Long processing time, the required CNC processing time is 3-5 hours, and the cost is relatively high; 2. The glass is fragile during the processing, and the glass is easily broken due to the existence of micro cracks during the processing of the double-sided CNC processing of the glass; 3. It is difficult to remove the knife marks of the concave CNC processing, and it takes 2-3 hours of polishing time, and the polishing time is too long. Long will lead to other defects, such as sag and so on.
  • the present application provides an electronic device, a battery cover, and a manufacturing method thereof.
  • the electronic device, a battery cover, and a manufacturing method thereof have the advantages of short processing cycle and high yield.
  • the manufacturing mold includes a first mold and a second mold, the first mold has a groove, and the second mold has a protrusion ,
  • the manufacturing method includes: selecting a glass sheet; placing the glass sheet in the first mold, and the glass sheet and the groove define a sealed cavity; and covering the second mold on the glass Sheet, the protrusion faces the groove, and the protrusion is in contact with the glass sheet; the first mold, the second mold, and the glass sheet are heated; the sealed cavity is heated Vacuum is applied to deform the glass sheet to a predetermined shape.
  • the glass has the characteristics of being softened by heat, and the glass sheet can be processed into a predetermined shape by using the process of heating and vacuuming, thereby simplifying the process of the battery cover , Improve the yield rate, which can reduce the production cycle and save production costs.
  • the electronic device includes a battery cover manufactured according to the method for manufacturing the battery cover of the electronic device as described above.
  • the glass has the characteristics of being softened by heat, and the glass sheet can be processed into a predetermined shape by using the process of heating and vacuuming. This can simplify the process of the battery cover, improve the yield, and then Can reduce the production cycle and save production costs.
  • the battery cover according to the embodiment of the present application is used in an electronic device.
  • the battery cover includes a body and a flange, the body is connected with the flange and defines a battery compartment, and the inner wall of the battery compartment has a texture.
  • the battery cover of the embodiment of the present application by designing the battery cover as a structure including a body and a flange, and setting the texture on the inner wall of the battery compartment, on the one hand, the process of the battery cover can be simplified and the production of the battery cover can be shortened. Cycle; On the other hand, it can also increase the diversity of the battery cover shape.
  • Fig. 1 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a manufacturing mold according to an embodiment of the present application, in which the glass sheet is not deformed;
  • Fig. 3 is a schematic structural diagram of a manufacturing mold according to an embodiment of the present application, in which the glass sheet has been deformed;
  • Figure 4 is an exploded view of a manufacturing mold according to an embodiment of the present application, in which the glass sheet has been deformed;
  • Fig. 5 is a schematic structural diagram of a battery cover of an electronic device according to an embodiment of the present application.
  • FIG. 6 is a partial structural diagram of a glass sheet of an electronic device according to an embodiment of the present application, in which the texture of the glass sheet is not trimmed;
  • FIG. 7 is a schematic diagram of a partial structure of a glass sheet of an electronic device according to an embodiment of the present application, in which the texture of the glass sheet has been trimmed;
  • Fig. 8 is a flowchart of a method for manufacturing a battery cover according to an embodiment of the present application.
  • Fig. 9 is a flowchart of a method for manufacturing a battery cover according to an embodiment of the present application.
  • Fig. 10 is a flowchart of a method for manufacturing a battery cover according to an embodiment of the present application.
  • Battery cover 110 body 111, flange 112, rounded corner 113,
  • the battery cover 110 can be used on the electronic device 100, and the electronic device 100 can be a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the battery cover 110 of the electronic device 100 may define a battery compartment for holding components such as batteries or circuit boards.
  • the battery cover 110 can be used in the electronic device 100.
  • the battery cover 110 can include a body 111 and a flange 112.
  • the body 111 is connected to the flange 112 and defines a battery compartment.
  • the inner wall surface of the battery compartment has a texture.
  • the battery cover 110 of the embodiment of the present application by designing the battery cover 110 as a structure including a main body 111 and a flange 112, and providing a texture on the inner wall of the battery compartment, on the one hand, the process of the battery cover 110 can be simplified.
  • the production cycle of the battery cover 110 is shortened; on the other hand, the diversity of the shape of the battery cover 110 can also be increased.
  • the body 111 and the flange 112 may be integrally formed.
  • the material of the battery cover 110 is at least one of glass, plastic, composite plate, and the like.
  • the flange 111 is the middle frame of the electronic device 100.
  • the radius of the fillet between the main body 111 and the flange 112 is 0.5-3 mm. Therefore, the stress concentration between the main body 111 and the flange 112 can be reduced, so that the fatigue strength of the battery cover 110 can be improved.
  • the thickness of the main body 111 may be 0.5-0.8 mm, and the thickness of the flange 112 may be 1.0-1.5 mm.
  • the inner surface of the body 111 has a coating layer or a sprayed layer.
  • the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the battery cover 110 of the electronic device 100 may define a battery compartment for holding components such as batteries or circuit boards.
  • the manufacturing mold 200 may include a first mold 210 and a second mold 220, the first mold 210 has a groove 211, and the second mold 220 has a protrusion 221. It should be noted that the first mold 210 and the second mold 220 may perform a mold clamping operation. When the first mold 210 and the second mold 220 are closed, the protrusion 221 can extend into the groove 211, and the protrusion 221 and the groove 211 define a space for accommodating the glass sheet 300.
  • the porosity of at least one of the first mold 210 and the second mold 220 may be 12%-18%.
  • at least one of the first mold 210 and the second mold 220 is an endothermic mold. It can be understood that at least one of the first mold 210 and the second mold 220 may be made of a heat-absorbing material.
  • the method for manufacturing the battery cover 110 of the electronic device includes the following steps:
  • the glass sheet 300 is placed on the first mold 210, and the glass sheet 300 and the groove 211 define a sealed cavity 201.
  • the second mold 220 is placed on the glass sheet 300, the protrusion 221 faces the groove 211, and the protrusion 221 is in contact with the glass sheet 300. At this time, the glass sheet 300 is sandwiched between the first mold 210 and the second mold 220.
  • the first mold 210, the second mold 220, and the glass sheet 300 are heated. Since the glass sheet 300 has the characteristic of softening when heated, during the heating process, the glass sheet 300 gradually deforms and fits toward the inner wall surface of the groove 211. Since the protrusion 221 of the second mold 220 abuts on the glass sheet 300, The second mold 220 can accelerate the deformation of the glass sheet 300.
  • the sealed cavity 201 is evacuated. As the air pressure in the sealed cavity 201 decreases, the glass sheet 300 is further deformed, and the protrusion 221 gradually moves into the groove 211 .
  • the glass sheet 300 is deformed to a predetermined shape.
  • the protrusion 221 and the groove 211 define a space for receiving the glass sheet 300
  • the outer surface of the protrusion 221 is attached to one side surface of the glass sheet 300
  • the inner surface of the groove 211 is connected to the other side surface of the glass sheet 300. fit. In this way, the glass sheet 300 can be processed to form the battery cover 110.
  • the glass has the characteristics of being softened by heat, and the glass sheet 300 can be processed into a predetermined shape by using the process of heating and vacuuming, thereby simplifying the battery cover
  • the 110 process improves the yield rate, which in turn reduces the production cycle and saves production costs.
  • the manufacturing method of the battery cover 110 of the electronic device includes the following steps:
  • the first step select a glass sheet 300, the thickness of the glass sheet 300 may be 1.0-1.5 mm, and the softening point temperature of the glass sheet 300 may be 700°C-850°C.
  • Step 2 As shown in FIG. 2, cover the glass sheet 300 on the first mold 210, and the glass sheet 300 and the groove 211 define a sealed cavity 201.
  • the third step as shown in FIGS. 2 and 4, the second mold 220 is placed on the glass sheet 300, the protrusion 221 faces the groove 211, and the protrusion 221 is in contact with the glass sheet 300. At this time, the glass sheet 300 is sandwiched between the first mold 210 and the second mold 220.
  • the fourth step as shown in Figure 3, the first mold 210, the second mold 220, and the glass sheet 300 are heated, and the heating temperature is 800°C-850°C. Since the glass sheet 300 has the characteristic of softening when heated, during the heating process, the glass sheet 300 gradually deforms and fits toward the inner wall surface of the groove 211. Since the protrusion 221 of the second mold 220 abuts on the glass sheet 300, The second mold 220 can accelerate the deformation of the glass sheet 300. In order to facilitate assembly operations and improve heating efficiency, the first mold 210, the second mold 220, and the glass sheet 300 are moved 3-4 stations as a whole.
  • the first mold 210 or the second mold 220 is heated by a non-contact heating method.
  • the "non-contact heating method” here can be understood as the heat source does not directly contact the glass sheet 300, which is also called heat absorption molding, that is, the first mold 210 or the second mold 220 is heated by heat absorption and is heated by heat.
  • the transfer method transfers heat to the glass sheet 300 or the corresponding second mold 220 or the first mold 210. For example, when the first mold 210 is heated by a non-contact heating method, the heat is transferred to the glass sheet 300 and the second mold 220 through the first mold 210.
  • the stamping Since the outer surface of the glass is formed by suction and pressure, the stamping is concentrated on the outer surface of the product. After forming, the roughness of the inner surface of the glass is between 0.1-1um. The inner surface only needs to be polished lightly to obtain the mirror effect, which solves the existing problem. In the hot press forming technology, there is a problem of stamping on the inner corner of the glass bend. Moreover, the glass is pre-processed into the required shape first, and only the surface of the glass needs to be CNC processed, which can reduce the processing time, and the glass is not fragile, and the knives on the glass surface are also easy to remove.
  • Step 5 As shown in Fig. 3, in order to further accelerate the deformation of the glass sheet 300, the sealed cavity 201 is evacuated, the evacuation time is 60-90s, and the vacuum degree is 0.1-1 ⁇ 10 -8 MPa. As the air pressure in the sealed cavity 201 decreases, the glass sheet 300 is further deformed, and the protrusion 221 gradually moves into the groove 211. In order to facilitate assembly operations and improve heating efficiency, the first mold 210, the second mold 220, and the glass sheet 300 are moved 2-3 stations as a whole.
  • Step 6 As shown in FIG. 3, the glass sheet 300 is deformed to a predetermined shape. At this time, the protrusion 221 and the groove 211 define a space for accommodating the glass sheet 300, the outer surface of the protrusion 221 is attached to one side surface of the glass sheet 300, and the inner surface of the groove 211 is connected to the other side surface of the glass sheet 300. fit. In this way, the glass sheet 300 can be processed to form the battery cover 110.
  • the seventh step cooling the first mold 210, the second mold 220 and the glass sheet 300.
  • the first mold 210, the second mold 220, and the glass sheet 300 as a whole may go through a slow cooling stage first, and then a rapid cooling stage.
  • the overall structure constructed by the first mold 210, the second mold 220, and the glass sheet 300 has a cooling rate of V 1 (that is, the value of the temperature drop per unit time) in the rapid cooling stage, and the first mold
  • the cooling rate of the overall structure constructed by 210, the second mold 220 and the glass sheet 300 in the slow cooling stage is V 2 (that is, the value of the temperature drop per unit time), where V 1 > V 2 .
  • the first mold 210, the second mold 220 and the glass sheet 300 move 1-2 stations as a whole.
  • the deformed glass sheet is taken out of the mold. Since no pressure is applied to the second mold 220 during the molding process, the mold print caused by the pressing of the first mold 210 and the second mold 220 during the molding process will be lighter. This solves the problem that the high temperature of the glass during the hot pressing process will cause serious mold prints that are difficult to polish and remove.
  • Step 8 Grind, polish and chemically strengthen the glass sheet 300.
  • Step 9 Coating the glass sheet 300.
  • Step 10 Print graphic information on the glass sheet 300.
  • the eleventh step spray ink on the glass sheet 300. At this time, the glass sheet 300 is processed to form the battery cover 110.
  • the texture 301 can be processed on the glass sheet 300 by using a mold.
  • the outer surface of the protrusion 221 and the inner wall surface of the groove 211 have a texture 301.
  • the glass sheet 300 is attached to the outer surface of the protrusion 221 and the inner wall surface of the groove 211. Texture 301 is formed on the surface. Since the glass sheet 300 is in a heated state at this time, it has a certain fluidity, and the texture 301 on the protrusions 221 and the grooves 211 can be printed on the surface of the glass sheet 300.
  • the texture 301 can be formed, so that not only the process steps of processing the texture 301 can be omitted, but also the damage to the glass sheet 300 in the process of turning the texture 301 can be avoided, and the processing can be improved. Efficiency and yield rate.
  • the texture 301 can be trimmed, so that the appearance of the texture 301 can be improved. Further, when the texture 301 is trimmed, the thickness of the removed glass is greater than the depth of the texture 301 by 0.01-0.02 mm. As shown in FIG. 6, the texture 301 on the glass sheet 300 has not been trimmed at this time. As shown in FIG. 7, the texture 301 on the glass sheet 300 has been trimmed at this time.
  • the electronic device 100 includes a battery cover 110.
  • the battery cover 110 can be manufactured according to the manufacturing method described above.
  • the glass has the characteristics of being softened by heat, and the glass sheet 300 can be processed into a predetermined shape by the process of heating and vacuuming, thereby simplifying the process of the battery cover 110 and improving the quality of the battery cover 110. Therefore, the production cycle of the electronic device 100 can be reduced, and the production cost of the electronic device 100 can be saved.
  • the electronic device 100 may be a mobile phone, a tablet computer, a notebook computer, or a wearable device.
  • the battery cover 110 of the electronic device may define a battery compartment for holding components such as batteries or circuit boards.
  • the manufacturing mold 200 may include a first mold 210 and a second mold 220, the first mold 210 has a groove 211, and the second mold 220 has a protrusion 221. It should be noted that the first mold 210 and the second mold 220 can perform a mold clamping operation. When the first mold 210 and the second mold 220 are closed, the protrusion 221 may extend into the groove 211, and the protrusion 221 The groove 211 defines a space for accommodating the glass sheet 300.
  • the porosity of at least one of the first mold 210 and the second mold 220 may be 12%-18%.
  • at least one of the first mold 210 and the second mold 220 is an endothermic mold. It can be understood that at least one of the first mold 210 and the second mold 220 may be made of a heat-absorbing material.
  • the manufacturing method of the battery cover 110 of the electronic device includes the following steps:
  • the glass sheet 300 is placed on the first mold 210, and the glass sheet 300 and the groove 211 define a sealed cavity 201.
  • the second mold 220 is placed on the glass sheet 300, the protrusion 221 faces the groove 211, and the protrusion 221 is in contact with the glass sheet 300. At this time, the glass sheet 300 is sandwiched between the first mold 210 and the second mold 220.
  • the first mold 210, the second mold 220, and the glass sheet 300 are heated. Since the glass sheet 300 has the characteristic of softening when heated, during the heating process, the glass sheet 300 gradually deforms and fits toward the inner wall surface of the groove 211. Since the protrusion 221 of the second mold 220 abuts on the glass sheet 300, The second mold 220 can accelerate the deformation of the glass sheet 300.
  • the sealed cavity 201 is evacuated. As the air pressure in the sealed cavity 201 decreases, the glass sheet 300 is further deformed, and the protrusion 221 gradually moves into the groove 211 .
  • the glass sheet 300 is deformed to a predetermined shape.
  • the glass sheet 300 includes a body 111 and a flange 112, and the flange 112 is connected to the body 111 to define a battery compartment. At this time, the battery or circuit board can be accommodated in the battery compartment.
  • the protrusion 221 and the groove 211 define a space for accommodating the glass sheet 300.
  • the outer surface of the protrusion 221 is attached to one side surface of the glass sheet 300, and the groove 211 The inner surface is attached to the other side surface of the glass sheet 300.
  • the first mold 210, the second mold 220, and the glass sheet 300 are cooled.
  • the main body 111 is processed so that the thickness of the main body 111 is smaller than the thickness of the flange 112.
  • the battery cover 110 thus obtained has different thicknesses, so as to meet the use requirements of electronic devices.
  • the glass has the characteristics of being softened by heat, and the glass sheet 300 can be processed into a predetermined shape by the process of heating and vacuuming, and then the subsequent processing can make
  • the battery cover 110 has different thicknesses, which not only simplifies the process of the battery cover 110, but also enables it to meet different usage requirements, thereby improving the yield rate, reducing the production cycle, and saving production costs.
  • the method for manufacturing the battery cover 110 of the electronic device includes the following steps:
  • the first step select a glass sheet 300, the thickness of the glass sheet 300 may be 1.0-1.5 mm, and the softening point temperature of the glass sheet 300 may be 700°C-850°C.
  • Step 2 As shown in FIG. 2, cover the glass sheet 300 on the first mold 210, and the glass sheet 300 and the groove 211 define a sealed cavity 201.
  • the third step as shown in FIGS. 2 and 4, the second mold 220 is placed on the glass sheet 300, the protrusion 221 faces the groove 211, and the protrusion 221 is in contact with the glass sheet 300. At this time, the glass sheet 300 is sandwiched between the first mold 210 and the second mold 220.
  • the fourth step as shown in Figure 3, the first mold 210, the second mold 220, and the glass sheet 300 are heated, and the heating temperature is 800°C-850°C. Since the glass sheet 300 has the characteristic of softening when heated, during the heating process, the glass sheet 300 gradually deforms and fits toward the inner wall surface of the groove 211. Since the protrusion 221 of the second mold 220 abuts on the glass sheet 300, The second mold 220 can accelerate the deformation of the glass sheet 300. In order to facilitate assembly operations and improve heating efficiency, the first mold 210, the second mold 220, and the glass sheet 300 are moved 3-4 stations as a whole.
  • the first mold 210 or the second mold 220 is heated by a non-contact heating method.
  • the “non-contact heating method” here can be understood to mean that the heat source does not directly contact the glass sheet 300, that is, the first mold 210 or the second mold 220 is heated by heat absorption, and the heat is transferred to the glass sheet by heat transfer.
  • the glass sheet 300 or the corresponding second mold 220 or the first mold 210 can be understood to mean that the heat source does not directly contact the glass sheet 300, that is, the first mold 210 or the second mold 220 is heated by heat absorption, and the heat is transferred to the glass sheet by heat transfer.
  • the heat is transferred to the glass sheet 300 and the second mold 220 through the first mold 210; when the second mold 220 is heated by the non-contact heating method, the heat It is transferred to the glass sheet 300 and the first mold 210 through the second mold 220.
  • the stamping Since the outer surface of the glass is formed by suction and pressure, the stamping is concentrated on the outer surface of the product. After forming, the roughness of the inner surface of the glass is between 0.1-1um. The inner surface only needs to be polished lightly to obtain the mirror effect, which solves the existing problem. In the hot press forming technology, there is a problem of stamping on the inner corner of the glass bend. Moreover, the glass is pre-processed into the required shape first, and only the surface of the glass needs to be CNC processed, which can reduce the processing time, and the glass is not fragile, and the knives on the glass surface are also easy to remove.
  • Step 5 As shown in Fig. 3, in order to further accelerate the deformation of the glass sheet 300, the sealed cavity 201 is evacuated, the evacuation time is 60-90s, and the vacuum degree is 0.1-1 ⁇ 10 -8 MPa. As the air pressure in the sealed cavity 201 decreases, the glass sheet 300 is further deformed, and the protrusion 221 gradually moves into the groove 211. In order to facilitate assembly operations and improve heating efficiency, the first mold 210, the second mold 220, and the glass sheet 300 are moved 2-3 stations as a whole.
  • Step 6 As shown in FIG. 3, the glass sheet 300 is deformed to a predetermined shape.
  • the glass sheet 300 includes a body 111 and a flange 112, and the flange 112 is connected to the body 111 to define a battery compartment. At this time, the battery or circuit board can be contained in the battery compartment.
  • the protrusion 221 and the groove 211 define a space for accommodating the glass sheet 300.
  • the outer surface of the protrusion 221 is attached to one side surface of the glass sheet 300, and the groove 211
  • the inner surface is attached to the other side surface of the glass sheet 300.
  • a rounded corner 113 is formed between the main body 111 and the flange 112.
  • the fillet radius is 0.5-3mm.
  • the hot pressing When the temperature is low, the fluidity of the glass is insufficient, and the hot pressing only partially pressurizes the glass, and the glass is difficult to completely conform to the shape of the mold. Therefore, it is difficult for the hot pressing to form a curved surface with a fillet less than 3mm.
  • the fillet radius can be reduced.
  • the seventh step cooling the first mold 210, the second mold 220 and the glass sheet 300.
  • the first mold 210, the second mold 220, and the glass sheet 300 as a whole may go through a slow cooling stage first, and then a rapid cooling stage.
  • the overall structure constructed by the first mold 210, the second mold 220, and the glass sheet 300 has a cooling rate of V 1 (that is, the value of the temperature drop per unit time) in the rapid cooling stage, and the first mold
  • the cooling rate of the overall structure constructed by 210, the second mold 220 and the glass sheet 300 in the slow cooling stage is V 2 (that is, the value of the temperature drop per unit time), where V 1 > V 2 .
  • the first mold 210, the second mold 220 and the glass sheet 300 move 1-2 stations as a whole.
  • the deformed glass sheet is taken out of the mold. Since no pressure is applied to the second mold 220 during the molding process, the mold print caused by the pressing of the first mold 210 and the second mold 220 during the molding process will be lighter. This solves the problem that the high temperature of the glass during the hot pressing process will cause serious mold prints that are difficult to polish and remove.
  • Step 8 Process the main body 111 so that the thickness of the main body 111 is smaller than the thickness of the flange 112, and the thickness of the main body 111 can be 0.5-0.8 mm.
  • Step 9 Grind, polish and chemically strengthen the glass sheet 300.
  • Step 10 Coating the glass sheet 300.
  • Step 11 Print graphic information on the glass sheet 300.
  • the twelfth step spray ink on the glass sheet 300.
  • the glass sheet 300 is processed to form the battery cover 110.
  • the battery cover 110 thus obtained has different thicknesses, so as to meet the usage requirements of the electronic device 100.
  • the texture 301 can be processed on the glass sheet 300 by using a mold.
  • the inner wall surface of the protrusion 221 and the groove 211 has a texture 301.
  • the surface of the glass sheet 300 that is attached to the outer surface of the protrusion 221 and the inner wall surface of the groove 211 forms a texture. 301. Since the glass sheet 300 is in a heated state at this time, it has a certain fluidity, and the texture 301 on the protrusions 221 and the grooves 211 can be printed on the surface of the glass sheet 300.
  • the texture 301 can be formed, so that not only the process steps of processing the texture 301 can be omitted, but also the damage to the glass sheet 300 in the process of turning the texture 301 can be avoided, and the processing can be improved. Efficiency and yield rate.
  • the texture 301 can be trimmed, so that the appearance of the texture 301 can be improved. Further, when the texture 301 is trimmed, the thickness of the removed glass is greater than the depth of the texture 301 by 0.01-0.02 mm. As shown in FIG. 6, the texture 301 on the glass sheet 300 has not been trimmed at this time. As shown in FIG. 7, the texture 301 on the glass sheet 300 has been trimmed at this time.
  • the electronic device 100 includes a battery cover 110.
  • the battery cover 110 can be manufactured according to the manufacturing method described above.
  • the glass has the characteristics of being softened by heat, and the glass sheet 300 can be processed into a predetermined shape by the process of heating and vacuuming, thereby simplifying the process of the battery cover 110 and improving the quality of the battery cover 110. Therefore, the production cycle of the electronic device 100 can be reduced, and the production cost of the electronic device 100 can be saved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

一种电子设备(100)、电池盖(110)、及其制造方法。制造方法包括:将玻璃片(300)盖设于第一模具(210)上,玻璃片(300)与凹槽(211)限定出密封腔(201);将第二模具(220)盖设于玻璃片(300),凸起(221)朝向凹槽(211),且凸起(221)与玻璃片(300)接触;对第一模具(210)、第二模具(220)、玻璃片(300)进行加热;对密封腔(201)进行抽真空,随着密封腔(201)内的气压降低,玻璃片(300)变形,凸起(221)逐渐移动至凹槽(211)内;玻璃片(300)变形至预定形状。

Description

电子设备、电池盖、及其制造方法
相关申请的交叉引用
本申请基于申请号为201910829327.2、申请日为2019-09-03的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子设备的制造工艺技术领域,尤其是涉及一种电子设备、电池盖、及其制造方法。
背景技术
随着科技的不断发展,手机的更新换代越来越快,消费者倾向于追求更有创意、更新鲜、更吸引人的具有更高外观表现力的手机产品。目前市售的大部分手机的壳体为玻璃电池盖、铝合金中框、屏幕玻璃盖板组合在一起的三明治结构。在铝合金中框与玻璃电池盖之间存在接缝,影响使用者的握持感,且破坏整个手机壳体一体化的感觉。而市面上目前受各类技术限制,具有稳定可靠量产性的玻璃外壳通常都以热压成型的方式来制成弧面与平面衔接的曲面形状,具有同质化的趋势。
由于高温软化时,玻璃在模具受到挤压时会转写模具表面的凹凸状态,即模具印,模具印严重时抛光难以去除,且玻璃内表面的粗糙度在1-10um,因此现有热压成型技术成型温度一般限制在玻璃的软化点温度以下。由于一体玻璃的结构,玻璃本身的高度以及中框的阻挡,抛光时抛光毛刷很难接触到中框与电池盖衔接的内圆角处。
另外,相关技术中,对玻璃还要进行CNC加工,以使玻璃形成所需形状,该方案还存在以下缺点:1.加工时间长,所需CNC加工时间为3-5小时,成本较高;2.加工过程中玻璃易碎,玻璃双面CNC加工过程中由于加工过程中微裂纹的存在容易碎片;3.凹面CNC加工刀纹难以去除,需要2-3小时的抛光时间,且抛光时间过长会导致其他不良,如塌边等。
发明内容
本申请提供一种电子设备、电池盖、及其制造方法,所述电子设备、电池盖、及其制造方法具有加工周期短、良品率高的优点。
根据本申请实施例的电子设备的电池盖的制造方法,在所述制造方法中,制造模具包括第一模具和第二模具,所述第一模具具有凹槽,所述第二模具具有凸起,所述制造方法包括:选取玻璃片;将所述玻璃片放置于所述第一模具,所述玻璃片与所述凹槽限定出密封腔;将所述第二模具盖设于所述玻璃片,所述凸起朝向所述凹槽,且所述凸起与所述玻璃片接触;对所述第一模具、所述第二模具、所述玻璃片进行加热;对所述密封腔进行抽真空,使所述玻璃片变形至预定形状。
根据本申请实施例的电子设备的电池盖的制造方法,利用玻璃具有受热软化的特性,通 过利用加热、抽真空的工艺方法,可以将玻璃片加工成预定形状,由此可以简化电池盖的工艺,提升良品率,进而可以缩减生产周期,节约生产成本。
根据本申请实施例的电子设备,包括电池盖,所述电池盖根据如上所述的电子设备的电池盖的制造方法制成。
根据本申请实施例的电子设备,利用玻璃具有受热软化的特性,通过利用加热、抽真空的工艺方法,可以将玻璃片加工成预定形状,由此可以简化电池盖的工艺,提升良品率,进而可以缩减生产周期,节约生产成本。
根据本申请实施例的电池盖,用于电子设备,所述电池盖包括本体和翻边,所述本体与所述翻边连接且限定出电池仓,所述电池仓的内壁面具有纹理。
根据本申请实施例的电池盖,通过将电池盖设计为包括本体和翻边的结构,且使电池仓的内壁面上设置纹理,一方面,可以简化电池盖的工艺过程,缩短电池盖的生产周期;另一方面,还可以增加电池盖外形的多样性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电子设备的结构示意图;
图2是根据本申请实施例的制造模具的结构示意图,其中玻璃片未发生形变;
图3是根据本申请实施例的制造模具的结构示意图,其中玻璃片已发生形变;
图4是根据本申请实施例的制造模具的***图,其中玻璃片已发生形变;
图5是根据本申请实施例的电子设备的电池盖的结构示意图;
图6是根据本申请实施例的电子设备的玻璃片的局部结构示意图,其中未对玻璃片的纹理进行修整;
图7是根据本申请实施例的电子设备的玻璃片的局部结构示意图,其中已对玻璃片的纹理进行了修整;
图8是根据本申请实施例的电池盖的制造方法的流程图;
图9是根据本申请实施例的电池盖的制造方法的流程图;
图10是根据本申请实施例的电池盖的制造方法的流程图。
附图标记:
电子设备100,
电池盖110,本体111,翻边112,圆角113,
制造模具200,密封腔201,
第一模具210,凹槽211,第二模具220,凸起221,
玻璃片300,纹理301。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参照图5详细描述根据本申请实施例的电池盖110。需要说明的是,电池盖110可以用在电子设备100上,电子设备100可以为手机、平板电脑、笔记本电脑或可穿戴设备。具体地,电子设备100的电池盖110可以限定出电池仓,用于盛放电池或电路板等部件。
如图5所示,根据本申请实施例的电池盖110,其可以用于电子设备100,电池盖110可以包括本体111和翻边112,本体111与翻边112连接且限定出电池仓,所述电池仓的内壁面具有纹理。
根据本申请实施例的电池盖110,通过将电池盖110设计为包括本体111和翻边112的结构,且使电池仓的内壁面上设置纹理,一方面,可以简化电池盖110的工艺过程,缩短电池盖110的生产周期;另一方面,还可以增加电池盖110外形的多样性。
为了简化电池盖110的工艺过程,本体111和翻边112可以一体成型。电池盖110的材质为玻璃、塑料、复合板材等至少一种。翻边111为所述电子设备100的中框。
如图5所示,本体111与翻边112之间的圆角半径为0.5-3mm。由此可以减小本体111与翻边112之间的应力集中,从而可以提升电池盖110的的耐疲劳强度。进一步地,本体111的厚度可以为0.5-0.8mm,翻边112厚度为1.0-1.5mm。为了可以进一步提升电池盖110的结构强度,本体111的内表面具有镀膜层或喷涂层。
下面参考图1-图9描述根据本申请实施例的100110电子设备的电池盖的制造方法及电子设备。需要说明的是,电子设备100可以为手机、平板电脑、笔记本电脑或可穿戴设备。电子设备100的电池盖110可以限定出电池仓,用于盛放电池或电路板等部件。
在加工制造电池盖110时,制造模具200可以包括第一模具210和第二模具220,第一模具210具有凹槽211,第二模具220具有凸起221。需要说明的是,第一模具210可以第二模具220可以进行合模操作。当第一模具210和第二模具220合模时,凸起221可以伸入到凹槽211内,且凸起221与凹槽211限定出收容玻璃片300的空间。
需要说明的是,第一模具210和第二模具220中的至少一个气孔率可以为12%-18%。为了方便第一模具210和第二模具220吸热,第一模具210和第二模具220中的至少一个为吸热模具。可以理解的是,第一模具210和第二模具220中的至少一个可以由吸热材料制成。
如图8所示,为了方便描述电池盖110的制造方法的步骤,给各个步骤编辑了序号, 需要说明的是,该序号并不是对制造方法中的顺序进行的限制。根据本申请实施例的电子设备的电池盖110的制造方法包括如下步骤:
选取玻璃片300。
如图2所示,将玻璃片300盖设于第一模具210上,玻璃片300与凹槽211限定出密封腔201。
如图2、图4所示,将第二模具220盖设于玻璃片300,凸起221朝向凹槽211,且凸起221与玻璃片300接触。此时,玻璃片300夹设于第一模具210和第二模具220之间。
如图3所示,对第一模具210、第二模具220、玻璃片300进行加热。由于玻璃片300受热具有软化的特性,在加热过程中,玻璃片300逐渐发生形变,并朝向凹槽211的内壁面贴合,由于第二模具220的凸起221止抵在玻璃片300上,第二模具220可以加速玻璃片300发生形变。
如图3所示,为进一步地加速玻璃片300产生形变,对密封腔201进行抽真空,随着密封腔201内的气压降低,玻璃片300进一步变形,凸起221逐渐移动至凹槽211内。
如图3所示,玻璃片300变形至预定形状。此时凸起221与凹槽211限定出收容玻璃片300的空间,凸起221的外表面与玻璃片300的一侧表面贴合,凹槽211的内表面与玻璃片300的另一侧表面贴合。由此可以将玻璃片300加工形成电池盖110。
根据本申请实施例的电子设备的电池盖110的制造方法,利用玻璃具有受热软化的特性,通过利用加热、抽真空的工艺方法,可以将玻璃片300加工成预定形状,由此可以简化电池盖110的工艺,提升良品率,进而可以缩减生产周期,节约生产成本。
如图9所示,根据本申请实施例的电子设备的电池盖110的制造方法包括如下步骤:
第一步:选取玻璃片300,玻璃片300的厚度可以为1.0-1.5mm,玻璃片300的软化点温度可以为700℃-850℃。
第二步:如图2所示,将玻璃片300盖设于第一模具210上,玻璃片300与凹槽211限定出密封腔201。
第三步:如图2、图4所示,将第二模具220盖设于玻璃片300,凸起221朝向凹槽211,且凸起221与玻璃片300接触。此时,玻璃片300夹设于第一模具210和第二模具220之间。
第四步:如图3所示,对第一模具210、第二模具220、玻璃片300进行加热,加热温度为800℃-850℃。由于玻璃片300受热具有软化的特性,在加热过程中,玻璃片300逐渐发生形变,并朝向凹槽211的内壁面贴合,由于第二模具220的凸起221止抵在玻璃片300上,第二模具220可以加速玻璃片300发生形变。为了方便流水作业、提升加热效率,第一模具210、第二模具220以及玻璃片300整体移动3-4个工位。
需要说明的是,在对第一模具210、第二模具220、玻璃片300进行加热时,采用非接触式加热方式对第一模具210或第二模具220加热。这里的“非接触式加热方式” 可以理解为热源不会与玻璃片300直接接触,也称为热吸成型,也即第一模具210或第二模具220通过吸热的方式加热,并通过热传递的方式将热量传递到玻璃片300或相应的第二模具220或第一模具210。例如,当利用非接触式加热方式对第一模具210加热时,热量通过第一模具210传递至玻璃片300、第二模具220。
由于对玻璃外表面进行吸压成型,模印集中在产品外表面,成型后玻璃内表面的粗糙度在0.1-1um之间,内表面只需要轻轻抛光即可得到镜面效果,解决了现有热压成型技术中,玻璃弯折处内角存在模印的问题。且先将玻璃预加工成所需形状,只需要对玻璃的表面进行CNC加工,由此可以减少加工时间,且玻璃不易碎,玻璃表面的刀纹也容易去除。
第五步:如图3所示,为进一步地加速玻璃片300产生形变,对密封腔201进行抽真空,抽真空时间为60-90s,真空度为0.1-1×10 -8MPa。随着密封腔201内的气压降低,玻璃片300进一步变形,凸起221逐渐移动至凹槽211内。为了方便流水作业、提升加热效率,第一模具210、第二模具220以及玻璃片300整体移动2-3个工位。
第六步:如图3所示,玻璃片300变形至预定形状。此时凸起221与凹槽211限定出收容玻璃片300的空间,凸起221的外表面与玻璃片300的一侧表面贴合,凹槽211的内表面与玻璃片300的另一侧表面贴合。由此可以将玻璃片300加工形成电池盖110。
第七步:对第一模具210、第二模具220以及玻璃片300进行冷却。在冷却时,第一模具210、第二模具220以及玻璃片300整体可以先经过慢冷阶段,再经过快冷阶段。需要说明的是,在冷却时,第一模具210、第二模具220以及玻璃片300构造出的整体结构在快冷阶段的冷却速度为V 1(即单位时间温度下降的数值),第一模具210、第二模具220以及玻璃片300构造出的整体结构在慢冷阶段的冷却速度为V 2(即单位时间温度下降的数值),其中V 1>V 2
进一步地,在快冷阶段,第一模具210、第二模具220以及玻璃片300整体移动1-2个工位。将形变后的玻璃片从模具中取出,由于成型过程中没有对第二模具220施加压力,因此成型过程中由于第一模具210和第二模具220压合造成的模具印会比较轻。由此解决了热压成型过程中玻璃温度过高会造成严重模具印难以抛光去除的难题。
第八步:对玻璃片300打磨、抛光、化学强化。
第九步:对玻璃片300镀膜。
第十步:对玻璃片300印制图文信息。
第十一步:对玻璃片300喷涂油墨。此时,玻璃片300加工形成电池盖110。
另外,为了满足电池盖110的纹理301需求,可以利用模具在玻璃片300上加工出纹理301。例如,凸起221的外表面和凹槽211内壁面具有纹理301,在对密封腔201进行抽真空时,玻璃片300上与凸起221外表面、所述凹槽211的内壁面贴合的表面形成纹理301。由于此时玻璃片300处于被加热的状态,其具有一定的流动性,凸起221和凹槽211上的纹理301可以印制到玻璃片300的表面。由此,在对玻璃片300进行加 热成型的同时,可以形成纹理301,从而不但可以省略加工纹理301的工艺步骤,还可以避免车削纹理301的工艺中对玻璃片300的损坏,进而可以提升加工效率和良品率。
为了提升纹理301的效果,对第一模具210、第二模具220以及玻璃片300进行冷却后,可以对纹理301进行修整,由此可以提升纹理301的外形美观性。进一步地,在对纹理301修整时,去除的玻璃的厚度比纹理301的深度大0.01-0.02mm。如图6所示,此时玻璃片300上的纹理301并未被修整,如图7所示,此时玻璃片300上的纹理301已被修整。
根据本申请实施例的电子设备100,包括电池盖110。该电池盖110可以根据如上所述的制造方法制造而成。
根据本申请实施例的电子设备100,利用玻璃具有受热软化的特性,通过利用加热、抽真空的工艺方法,可以将玻璃片300加工成预定形状,由此可以简化电池盖110的工艺,提升良品率,进而可以缩减电子设备100的生产周期,节约电子设备100的生产成本。
下面参考图1-图10描述根据本申请实施例的电子设备的电池盖110的制造方法及电子设备100。需要说明的是,电子设备100可以为手机、平板电脑、笔记本电脑或可穿戴设备。电子设备的电池盖110可以限定出电池仓,用于盛放电池或电路板等部件。
在加工制造电池盖110时,制造模具200可以包括第一模具210和第二模具220,第一模具210具有凹槽211,第二模具220具有凸起221。需要说明的是,第一模具210可以第二模具220可以进行合模操作,当第一模具210和第二模具220合模时,凸起221可以伸入到凹槽211内,且凸起221与凹槽211限定出收容玻璃片300的空间。
需要说明的是,第一模具210和第二模具220中的至少一个气孔率可以为12%-18%。为了方便第一模具210和第二模具220吸热,第一模具210和第二模具220中的至少一个为吸热模具。可以理解的是,第一模具210和第二模具220中的至少一个可以由吸热材料制成。
如图9所示,根据本申请实施例的电子设备的电池盖110的制造方法包括如下步骤:
选取玻璃片300。
如图2所示,将玻璃片300盖设于第一模具210上,玻璃片300与凹槽211限定出密封腔201。
如图2、图4所示,将第二模具220盖设于玻璃片300,凸起221朝向凹槽211,且凸起221与玻璃片300接触。此时,玻璃片300夹设于第一模具210和第二模具220之间。
如图3所示,对第一模具210、第二模具220、玻璃片300进行加热。由于玻璃片300受热具有软化的特性,在加热过程中,玻璃片300逐渐发生形变,并朝向凹槽211的内壁面贴合,由于第二模具220的凸起221止抵在玻璃片300上,第二模具220可以加速玻璃片300发生形变。
如图3所示,为进一步地加速玻璃片300产生形变,对密封腔201进行抽真空,随着密封腔201内的气压降低,玻璃片300进一步变形,凸起221逐渐移动至凹槽211内。
如图3所示,玻璃片300变形至预定形状,玻璃片300包括本体111和翻边112,翻边112与本体111连接以限定出电池仓。此时,电池仓内可以收容电池或电路板,凸起221与凹槽211限定出收容玻璃片300的空间,凸起221的外表面与玻璃片300的一侧表面贴合,凹槽211的内表面与玻璃片300的另一侧表面贴合。
对第一模具210、所述第二模具220、玻璃片300进行冷却。
对本体111进行加工,以使本体111的厚度小于翻边112的厚度。由此所得到电池盖110具有不同厚度,从而可以满足电子设备的使用需求。
根据本申请实施例的电子设备的电池盖110的制造方法,利用玻璃具有受热软化的特性,通过利用加热、抽真空的工艺方法,可以将玻璃片300加工成预定形状,再通过后续加工可以使电池盖110具有不同的厚度,由此不但可以简化电池盖110的工艺,还可以使其满足不同的使用需求,从而可以提升良品率,缩减生产周期,节约生产成本。
如图10所示,为了方便描述电池盖110的制造方法的步骤,给各个步骤编辑了序号,需要说明的是,该序号并不是对制造方法中的顺序进行的限制。根据本申请实施例的电子设备的电池盖110的制造方法包括如下步骤:
第一步:选取玻璃片300,玻璃片300的厚度可以为1.0-1.5mm,玻璃片300的软化点温度可以为700℃-850℃。
第二步:如图2所示,将玻璃片300盖设于第一模具210上,玻璃片300与凹槽211限定出密封腔201。
第三步:如图2、图4所示,将第二模具220盖设于玻璃片300,凸起221朝向凹槽211,且凸起221与玻璃片300接触。此时,玻璃片300夹设于第一模具210和第二模具220之间。
第四步:如图3所示,对第一模具210、第二模具220、玻璃片300进行加热,加热温度为800℃-850℃。由于玻璃片300受热具有软化的特性,在加热过程中,玻璃片300逐渐发生形变,并朝向凹槽211的内壁面贴合,由于第二模具220的凸起221止抵在玻璃片300上,第二模具220可以加速玻璃片300发生形变。为了方便流水作业、提升加热效率,第一模具210、第二模具220以及玻璃片300整体移动3-4个工位。
需要说明的是,在对第一模具210、第二模具220、玻璃片300进行加热时,采用非接触式加热方式对第一模具210或第二模具220加热。这里的“非接触式加热方式”可以理解为热源不会与玻璃片300直接接触,也即第一模具210或第二模具220通过吸热的方式加热,并通过热传递的方式将热量传递到玻璃片300或相应的第二模具220或第一模具210。例如,当利用非接触式加热方式对第一模具210加热时,热量通过第一模具210传递至玻璃片300、第二模具220;当利用非接触式加热方式对第二模具220加热时,热量通过第二模具220传递至玻璃片300、第一模具210。
由于对玻璃外表面进行吸压成型,模印集中在产品外表面,成型后玻璃内表面的粗糙度在0.1-1um之间,内表面只需要轻轻抛光即可得到镜面效果,解决了现有热压成型技术中,玻璃弯折处内角存在模印的问题。且先将玻璃预加工成所需形状,只需要对玻璃的表面进行CNC加工,由此可以减少加工时间,且玻璃不易碎,玻璃表面的刀纹也容易去除。
第五步:如图3所示,为进一步地加速玻璃片300产生形变,对密封腔201进行抽真空,抽真空时间为60-90s,真空度为0.1-1×10 -8MPa。随着密封腔201内的气压降低,玻璃片300进一步变形,凸起221逐渐移动至凹槽211内。为了方便流水作业、提升加热效率,第一模具210、第二模具220以及玻璃片300整体移动2-3个工位。
第六步:如图3所示,玻璃片300变形至预定形状,玻璃片300包括本体111和翻边112,翻边112与本体111连接以限定出电池仓。此时,电池仓内可以收容电池或电路板,凸起221与凹槽211限定出收容玻璃片300的空间,凸起221的外表面与玻璃片300的一侧表面贴合,凹槽211的内表面与玻璃片300的另一侧表面贴合。由此可以将玻璃片300加工形成电池盖110。为了提升电池盖110的外形美观性,本体111与翻边112之间具有圆角113。圆角半径为0.5-3mm。
由于温度低时,玻璃流动性不够,且热压成型仅对玻璃局部加压,玻璃很难完全顺应模具的形状,因此热压成型很难将圆角小于3mm的曲面成型出来。通过采用吸热的方式使玻璃片成型,可以减小圆角半径。
第七步:对第一模具210、第二模具220以及玻璃片300进行冷却。在冷却时,第一模具210、第二模具220以及玻璃片300整体可以先经过慢冷阶段,再经过快冷阶段。需要说明的是,在冷却时,第一模具210、第二模具220以及玻璃片300构造出的整体结构在快冷阶段的冷却速度为V 1(即单位时间温度下降的数值),第一模具210、第二模具220以及玻璃片300构造出的整体结构在慢冷阶段的冷却速度为V 2(即单位时间温度下降的数值),其中V 1>V 2
进一步地,在快冷阶段,第一模具210、第二模具220以及玻璃片300整体移动1-2个工位。将形变后的玻璃片从模具中取出,由于成型过程中没有对第二模具220施加压力,因此成型过程中由于第一模具210和第二模具220压合造成的模具印会比较轻。由此解决了热压成型过程中玻璃温度过高会造成严重模具印难以抛光去除的难题。
第八步:对本体111进行加工,以使本体111的厚度小于翻边112的厚度,本体111的厚度可以为0.5-0.8mm。
第九步:对玻璃片300打磨、抛光、化学强化。
第十步:对玻璃片300镀膜。
第十一步:对玻璃片300印制图文信息。
第十二步:对玻璃片300喷涂油墨。此时,玻璃片300加工形成电池盖110。由此所得到电池盖110具有不同厚度,从而可以满足电子设备100的使用需求。
另外,为了满足电池盖110的纹理301需求,可以利用模具在玻璃片300上加工出纹理301。例如,凸起221和凹槽211内壁面具有纹理301,在对密封腔201进行抽真空时,玻璃片300上与凸起221外表面、所述凹槽211的内壁面贴合的表面形成纹理301。由于此时玻璃片300处于被加热的状态,其具有一定的流动性,凸起221和凹槽211上的纹理301可以印制到玻璃片300的表面。由此,在对玻璃片300进行加热成型的同时,可以形成纹理301,从而不但可以省略加工纹理301的工艺步骤,还可以避免车削纹理301的工艺中对玻璃片300的损坏,进而可以提升加工效率和良品率。
为了提升纹理301的效果,对第一模具210、第二模具220以及玻璃片300进行冷却后,可以对纹理301进行修整,由此可以提升纹理301的外形美观性。进一步地,在对纹理301修整时,去除的玻璃的厚度比纹理301的深度大0.01-0.02mm。如图6所示,此时玻璃片300上的纹理301并未被修整,如图7所示,此时玻璃片300上的纹理301已被修整。
根据本申请实施例的电子设备100,包括电池盖110。该电池盖110可以根据如上所述的制造方法制造而成。
根据本申请实施例的电子设备100,利用玻璃具有受热软化的特性,通过利用加热、抽真空的工艺方法,可以将玻璃片300加工成预定形状,由此可以简化电池盖110的工艺,提升良品率,进而可以缩减电子设备100的生产周期,节约电子设备100的生产成本。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (17)

  1. 一种电子设备的电池盖的制造方法,其中,在所述制造方法中,制造模具包括第一模具和第二模具,所述第一模具具有凹槽,所述第二模具具有凸起,
    所述制造方法包括:
    选取玻璃片;
    将所述玻璃片放置于所述第一模具,所述玻璃片与所述凹槽限定出密封腔;
    将所述第二模具盖设于所述玻璃片,所述凸起朝向所述凹槽,且所述凸起与所述玻璃片接触;
    对所述第一模具、所述第二模具、所述玻璃片进行加热;
    对所述密封腔进行抽真空,使所述玻璃片变形至预定形状。
  2. 根据权利要求1所述的电子设备的电池盖的制造方法,其中,在对所述第一模具、所述第二模具以及所述玻璃片加热时,加热温度为800℃-850℃。
  3. 根据权利要求1或2所述的电子设备的电池盖的制造方法,其中,在对所述密封腔进行抽真空时,抽真空时间为60-90s。
  4. 根据权利要求1-3中任一项所述的电子设备的电池盖的制造方法,其中,在对所述密封腔进行抽真空时,真空度为0.1-1×10 -8MPa。
  5. 根据权利要求1-4中任一项所述的电子设备的电池盖的制造方法,其中,所述第一模具和所述第二模具中的至少一个为吸热模具。
  6. 根据权利要求1-5中任一项所述的电子设备的电池盖的制造方法,其中,将所述玻璃片变形至预定形状后,对所述第一模具、所述第二模具以及所述玻璃片进行冷却,对所述第一模具、所述第二模具以及所述玻璃片进行冷却时,先经过慢冷阶段,再经过快冷阶段。
  7. 根据权利要求6所述的电子设备的电池盖的制造方法,其中,所述凸起和所述凹槽内壁面具有纹理,
    在对所述密封腔进行抽真空时,所述玻璃片上与所述凸起外表面、所述凹槽的内壁面贴合的表面形成纹理;
    对所述第一模具、所述第二模具以及所述玻璃片进行冷却后,对所述纹理修整,在对所述纹理修整时,去除的玻璃的厚度比所述纹理的深度大0.01-0.02mm。
  8. 根据权利要求6或7所述的电子设备的电池盖的制造方法,其中,对所述第一模具、所述第二模具以及所述玻璃片进行冷却后,对所述玻璃片打磨、抛光、化学强化、镀膜、印制图文信息、喷涂油墨。
  9. 根据权利要求1-8中任一项所述的电子设备的电池盖的制造方法,其中,在对所述第一模具、所述第二模具、所述玻璃片进行加热时,采用非接触式加热方式对所述第一模具或所述第二模具加热。
  10. 一种电子设备,其中,包括电池盖,所述电池盖根据权利要求1-9中任一项所 述的电子设备的电池盖的制造方法制成。
  11. 一种电池盖,用于电子设备,其中,所述电池盖包括本体和翻边,所述本体与所述翻边连接且限定出电池仓,所述电池仓的内壁面具有纹理。
  12. 根据权利要求11所述的电池盖,其中,所述本体和所述翻边一体成型。
  13. 根据权利要求12所述的电池盖,其中,所述本体与所述翻边之间的圆角半径为0.5-3mm。
  14. 根据权利要求12或13所述的电池盖,其中,所述本体的厚度为0.5-0.8mm,所述翻边厚度为1.0-1.5mm。
  15. 根据权利要求12-14中任一项所述的电池盖,其中,所述本体的内表面具有镀膜层或喷涂层。
  16. 根据权利要求12-15中任一项所述的电池盖,其中,所述翻边为所述电子设备的中框。
  17. 根据权利要求11-16中任一项所述的电池盖,其中,所述电池盖的材质为玻璃、塑料、复合板材等至少一种。
PCT/CN2020/107928 2019-09-03 2020-08-07 电子设备、电池盖、及其制造方法 WO2021042939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910829327.2A CN112448072A (zh) 2019-09-03 2019-09-03 电子设备、电池盖、及其制造方法
CN201910829327.2 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021042939A1 true WO2021042939A1 (zh) 2021-03-11

Family

ID=74734063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107928 WO2021042939A1 (zh) 2019-09-03 2020-08-07 电子设备、电池盖、及其制造方法

Country Status (2)

Country Link
CN (1) CN112448072A (zh)
WO (1) WO2021042939A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848407A2 (en) * 1996-12-04 1998-06-17 Matsushita Electric Works, Ltd. Integrally molded flat compact fluorescent lamp
CN106231829A (zh) * 2016-08-03 2016-12-14 南昌欧菲光学技术有限公司 电子产品、玻璃外壳及其制造设备和方法
CN108401044A (zh) * 2016-01-04 2018-08-14 广东欧珀移动通信有限公司 手机后盖
CN108437344A (zh) * 2018-04-24 2018-08-24 东莞市裕鼎纳米科技有限公司 一种具有纳米纹理的塑胶外壳及其制造方法
CN208539941U (zh) * 2018-05-25 2019-02-22 Oppo广东移动通信有限公司 壳体和电子装置
CN110040945A (zh) * 2019-03-13 2019-07-23 深圳市东方碳素实业有限公司 一种热弯手机玻璃盖板的制作方法
CN110040946A (zh) * 2019-03-13 2019-07-23 深圳市东方碳素实业有限公司 一种热弯手机玻璃盖板的成型工艺
CN110191604A (zh) * 2019-06-27 2019-08-30 Oppo广东移动通信有限公司 壳体组件及其制备方法、电子设备
CN110255870A (zh) * 2019-06-27 2019-09-20 Oppo广东移动通信有限公司 热弯设备及壳体的热弯成型方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009036164B4 (de) * 2009-05-28 2011-06-09 Schott Ag Verfahren zum Biegen und thermischen Vorspannen von Strahlenschutzglas
TW201806890A (zh) * 2016-08-26 2018-03-01 關鍵應用科技股份有限公司 3d玻璃製造方法
CN107867793A (zh) * 2017-10-31 2018-04-03 广东欧珀移动通信有限公司 曲面玻璃盖板、曲面玻璃盖板的制备方法及移动终端
CN207685130U (zh) * 2017-12-06 2018-08-03 李宝轮 一种曲面玻璃成型装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848407A2 (en) * 1996-12-04 1998-06-17 Matsushita Electric Works, Ltd. Integrally molded flat compact fluorescent lamp
CN108401044A (zh) * 2016-01-04 2018-08-14 广东欧珀移动通信有限公司 手机后盖
CN106231829A (zh) * 2016-08-03 2016-12-14 南昌欧菲光学技术有限公司 电子产品、玻璃外壳及其制造设备和方法
CN108437344A (zh) * 2018-04-24 2018-08-24 东莞市裕鼎纳米科技有限公司 一种具有纳米纹理的塑胶外壳及其制造方法
CN208539941U (zh) * 2018-05-25 2019-02-22 Oppo广东移动通信有限公司 壳体和电子装置
CN110040945A (zh) * 2019-03-13 2019-07-23 深圳市东方碳素实业有限公司 一种热弯手机玻璃盖板的制作方法
CN110040946A (zh) * 2019-03-13 2019-07-23 深圳市东方碳素实业有限公司 一种热弯手机玻璃盖板的成型工艺
CN110191604A (zh) * 2019-06-27 2019-08-30 Oppo广东移动通信有限公司 壳体组件及其制备方法、电子设备
CN110255870A (zh) * 2019-06-27 2019-09-20 Oppo广东移动通信有限公司 热弯设备及壳体的热弯成型方法

Also Published As

Publication number Publication date
CN112448072A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN107197063A (zh) 一种手机盖板及其制备方法和移动终端
US10035723B2 (en) Glass housing, manufacturing equipment and method thereof
WO2020199438A1 (zh) 3d玻璃及其制作方法、模具以及3d玻璃坯料
WO2020200174A1 (zh) 制备曲面玻璃板材的方法及***、玻璃盖板和电子设备
CN106541669A (zh) 3d玻璃装饰膜加工设备及方法
CN111377616A (zh) 具有纹理的3d曲面玻璃的制造方法及终端设备壳体
WO2021042940A1 (zh) 电子设备、电池盖、及其制造方法
CN110255870A (zh) 热弯设备及壳体的热弯成型方法
CN112092407A (zh) 一种贴膜方法及贴膜装置
CN112265350A (zh) 一种膜片贴合工艺
WO2021042939A1 (zh) 电子设备、电池盖、及其制造方法
CN104889874A (zh) 一种蓝宝石抛光用吸附垫及其制备方法
CN112976551B (zh) 壳体基体母板、壳体基体及制备方法、壳体、模具、电子设备
TWI529061B (zh) 複合材料的製造方法
KR101932258B1 (ko) 모바일기기의 곡면형 디스플레이 패널 화면 보호필름 및 그 제조방법
WO2018166063A1 (zh) 一种终端外壳及终端
CN111355832A (zh) 不等厚壳体、其加工方法及终端设备
KR102068069B1 (ko) 장식시트를 가지는 곡면 글라스 성형방법
CN112944786B (zh) 一种表面触感曲面玻璃门体及其制作工艺
KR102005919B1 (ko) 곡면글라스 성형지그 및 이를 포함하는 곡면글라스 제조장치
US20180037486A1 (en) Glass housing, electronic device having the same, manufacturing apparatus and method thereof
US20200017391A1 (en) Protection film for a terminal curved surface and manufacture method thereof
CN111825314A (zh) 玻璃弯曲方法及模具
CN212581753U (zh) 负压成型设备
CN212581749U (zh) 负压成型装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861749

Country of ref document: EP

Kind code of ref document: A1