WO2021042647A1 - 单工质蒸汽联合循环 - Google Patents

单工质蒸汽联合循环 Download PDF

Info

Publication number
WO2021042647A1
WO2021042647A1 PCT/CN2020/000202 CN2020000202W WO2021042647A1 WO 2021042647 A1 WO2021042647 A1 WO 2021042647A1 CN 2020000202 W CN2020000202 W CN 2020000202W WO 2021042647 A1 WO2021042647 A1 WO 2021042647A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
kilogram
endothermic
exothermic
boosting
Prior art date
Application number
PCT/CN2020/000202
Other languages
English (en)
French (fr)
Inventor
李华玉
李鸿瑞
Original Assignee
李华玉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李华玉 filed Critical 李华玉
Publication of WO2021042647A1 publication Critical patent/WO2021042647A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Definitions

  • the invention belongs to the field of energy and power technology.
  • the heat source is high temperature and variable temperature heat source; when the Rankine cycle is used as the theoretical basis and steam is used as the circulating working fluid to achieve thermal variable work, it is affected by the temperature and pressure resistance of the material. And safety restrictions, no matter what parameters are used for operation, there is a large temperature difference between the circulating working fluid and the heat source, and the irreversible loss is large, resulting in low thermal efficiency.
  • thermal cycle is The theoretical basis of thermal energy utilization devices and the core of energy utilization systems; the creation and development and application of thermal cycles will play a major role in the leap of energy utilization and will actively promote social progress and productivity development.
  • the present invention proposes a single working substance steam combination cycle.
  • the main purpose of the present invention is to provide a single working fluid steam combined cycle, and the specific content of the invention is described as follows:
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kg, M 2 kg and H kg, and twelve processes that are carried out separately or jointly-M 1 kg working fluid boosting process 12, M 1 Kilogram working fluid endothermic vaporization process 23, M 1 kilogram working fluid depressurization process 3g, H kilogram working fluid boosting process 1e, H kilogram working fluid endothermic process e7, M 2 kilogram working fluid boosting process 74, M 2 kg Working fluid endothermic process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, (M 1 +M 2 ) kg working fluid depressurization process 56, (M 1 +M 2 ) kg working fluid and H kg Working fluid mixing and exothermic process 67, (M 1 +H) kg working fluid depressurization process 78, (M 1 +H) kg working fluid exothermic condensation process 81-a closed process of composition.
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram, M 2 kilogram and H kilogram, respectively or together fifteen processes-M 1 kilogram working fluid boosting process 12, M 1 Kilogram refrigerant endothermic vaporization process 23, M 1 kg refrigerant pressure reduction process 3g, H kg refrigerant pressure increase process 1e, H kg refrigerant heat absorption process e9, M 2 kg refrigerant pressure increase process 94, M 2 kg Working fluid endothermic process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, X kg working fluid depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) Kilogram working fluid pressure reduction process 67, (M 1 +M 2 -X) Kilogram working fluid and H kilogram working fluid mixing exothermic process 78, (M 1 +M 2 ) Kilogram working fluid and H Kilogram working fluid mixing exothermic process 89, (M 1 +H) kilogram working fluid depress
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kilogram, M 2 kilogram and H kilogram, respectively or together fifteen processes-M 1 kilogram working fluid boosting process 12, M 1 Kilogram working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram working fluid pressure reduction process 3g, H kilogram working fluid pressure increase process 1e, H kilogram working fluid Endothermic process e7, M 2 kg working fluid boosting process 7a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic Process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, (M 1 +M 2 ) kg working fluid depressurization process 56, (M 1 +M 2 ) kg working fluid mixed with H kg working fluid Thermal process 67, (M 1 +H) kg working fluid depressurization process 78, (M 1 +H) kg working fluid exothermic condensation process
  • Single working fluid steam combined cycle refers to the working fluid composed of M 1 kg, M 2 kg and H kg, and 18 processes carried out separately or jointly-M 1 kg working fluid boosting process 12, M 1 Kilogram working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram working fluid pressure reduction process 3g, H kilogram working fluid pressure increase process 1e, H kilogram working fluid Endothermic process e9, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic Process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, X kg working fluid depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) Kilogram working fluid depressurization process 67, (M 1 +M 2 -X) kilogram working fluid and H
  • Single working fluid steam combined cycle refers to the working fluids consisting of M 1 kg, M 2 kg and H kg, which are carried out separately or jointly in thirteen processes-M 1 kg working fluid boosting process 12, M 1 Kilogram working fluid endothermic vaporization process 23, M 1 kilogram working fluid depressurization process 3g, H kilogram working fluid boosting process 1e, H kilogram working fluid endothermic process e7, M 2 kilogram working fluid boosting process 74, M 2 kg Working fluid endothermic process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, (M 1 +M 2 ) kg working fluid depressurization process 56, (M 1 +M 2 ) kg working fluid exothermic process 6f, (M 1 +M 2 ) kg working fluid and H kg working fluid mixing exothermic process f7, (M 1 +H) kg working fluid depressurization process 78, (M 1 +H) kg working fluid exothermic condensation process 81-The closing process of composition.
  • Single working fluid steam combined cycle refers to the sixteen processes that are composed of M 1 kg, M 2 kg and H kg working fluid separately or together-M 1 kg working fluid boosting process 12, M 1 Kilogram refrigerant endothermic vaporization process 23, M 1 kg refrigerant pressure reduction process 3g, H kg refrigerant pressure increase process 1e, H kg refrigerant heat absorption process e9, M 2 kg refrigerant pressure increase process 94, M 2 kg Working fluid endothermic process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, X kg working fluid depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) Kilogram working fluid depressurization process 67, (M 1 +M 2 -X) kilogram working fluid heat release process 7f, (M 1 +M 2 -X) kilogram working fluid mixed with H kilogram working fluid Heat release process f8, (M 1 +M 2 ) kg working fluid mixed with H kg working fluid
  • Single-working-substance steam combined cycle refers to sixteen processes that are composed of M 1 kg, M 2 kg and H kg, which are carried out separately or jointly-M 1 kg working medium boost process 12, M 1 Kilogram working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram working fluid pressure reduction process 3g, H kilogram working fluid pressure increase process 1e, H kilogram working fluid Endothermic process e7, M 2 kg working fluid boosting process 7a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic Process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, (M 1 +M 2 ) kg working fluid depressurization process 56, (M 1 +M 2 ) kg working fluid heat release process 6f, (M 1 +M 2 ) Kilogram working fluid and H kilogram working fluid mixing exothermic process f7, (M 1 +H)
  • Single working fluid steam combined cycle refers to the nineteen processes that are composed of M 1 kilogram, M 2 kilogram and H kilogram, respectively or jointly-M 1 kilogram working medium boost process 12, M 1 Kilogram working fluid endothermic process 2b, (M 1 +M) kilogram working fluid endothermic vaporization process b3, (M 1 +M) kilogram working fluid pressure reduction process 3g, H kilogram working fluid pressure increase process 1e, H kilogram working fluid Endothermic process e9, M 2 kg working fluid boosting process 9a, M kg working fluid exothermic condensation process ab, (M 2 -M) kg working fluid boosting process a4, (M 2 -M) kg working fluid endothermic Process 4g, (M 1 +M 2 ) kg working fluid endothermic process g5, X kg working fluid depressurization process 58, (M 1 +M 2 -X) kg working fluid endothermic process 56, (M 1 +M 2 -X) Pressure reduction process of kilogram working fluid 67, (M 1 +M 2 -X) kilogram working fluid exothermic process 7f,
  • Figure 1/8 is an example diagram of the first principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 2/8 is an example diagram of the second principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 3/8 is an example diagram of the third principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 4/8 is an example diagram of the fourth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Figure 5/8 is an example diagram of the fifth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 6/8 is an example diagram of the sixth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 7/8 is an example diagram of the seventh principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • Fig. 8/8 is an example diagram of the eighth principle flow chart of the single working fluid steam combined cycle provided by the present invention.
  • M 1 kg working medium condensed liquid refrigerant boosting process 12 M 1 kg refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kg refrigerant expansion process down 3g, H refrigerant condensate liters kg Pressure process 1e, H kg working fluid endothermic heating, vaporization and overheating process e7, M 2 kg working fluid pressure rising process 74, M 2 kg working fluid endothermic heating process 4g, (M 1 +M 2 ) kg working fluid Endothermic heating process g5, (M 1 +M 2 ) kg working fluid depressurization expansion process 56, (M 1 +M 2 ) kg working fluid mixed with H kg working fluid, exothermic cooling process 67, (M 1 +H) The pressure-reducing expansion process of kilogram working fluid 78, (M 1 +H) the exothermic condensation process of kilogram working fluid 81-a total of 12 processes.
  • 3Energy conversion process -the boosting process 12 of M 1 kg working fluid and the boosting process 1e of H kg working fluid are generally completed by a circulating pump, and the boosting process 74 of M 2 kg working fluid is generally completed by a compressor;
  • the pressure-reducing expansion process of M 1 kilogram working fluid is 3g
  • the pressure-reducing expansion process of (M 1 +M 2 ) kilogram working fluid 56 and the pressure-reducing expansion process of (M 1 +H) kilogram working fluid 78 are generally performed by an expander.
  • the expansion work is greater than the boosting work consumption, the thermal conversion work is completed and the net cycle power is provided to the outside, forming a single working substance steam combined cycle.
  • M 1 kg working medium condensed liquid refrigerant boosting process 12 M 1 kg refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kg refrigerant expansion process down 3g, H refrigerant condensate liters kg Pressure process 1e, H kg working fluid endothermic heating, vaporization and overheating process e9, M 2 kg working fluid pressure rising process 94, M 2 kg working fluid endothermic heating process 4g, (M 1 +M 2 ) kg working fluid Endothermic heating process g5, X kg working fluid depressurizing expansion process 58, (M 1 +M 2 -X) kg working fluid endothermic heating process 56, (M 1 +M 2 -X) kg working fluid depressurizing expansion process 67, (M 1 +M 2 -X) kg working fluid and H kg working fluid mixed exothermic cooling process 78, (M 1 +M 2 ) kg working fluid and H kg working fluid mixed exothermic cooling process 89, (M 1 +H) the pressure-reducing expansion process of
  • 3Energy conversion process -the boosting process 12 of M 1 kg working fluid and the boosting process 1e of H kg working fluid are generally completed by a circulating pump, and the boosting process 94 of M 2 kg working fluid is generally completed by a compressor;
  • the pressure-reducing expansion process of M 1 kilogram working fluid is 3g
  • the pressure-reducing expansion process of X kilogram working fluid is 58
  • the pressure reduction expansion process 9c of the kilogram working fluid is generally completed by an expander; the expansion work is greater than the pressure boosting power consumption, and the thermal conversion work is completed and the net cycle power is provided to the outside to form a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 + M) kg refrigerant expansion process down 3g, H kg refrigerant condensate boosting process 1e, H kg refrigerant absorbs heat heating, vaporization and superheating process e7, M 2 kg refrigerant boost heating process 7a, M kg
  • Endothermic process The endothermic heat of the e7 process of H kg of working fluid is provided by the exothermic heat of (M 1 +M 2 ) kg of working fluid 67, or an external heat source is provided at the same time; M 1 kg of working fluid is used for 2b The heat absorption of the process comes from the mixed exothermic heat of M kg of superheated steam, or an external heat source is provided at the same time; (M 1 +M) kg of working fluid is used for the b3 process, (M 2 -M) kg of working fluid is used for the 4g process, and ( M 1 + M 2 ) kg of working fluid is used to perform the g5 process, and the required heat load is provided by an external heat source.
  • 3Energy conversion process-M 1 kg of working fluid boosting process 12 and H kg of working fluid boosting process 1e are generally completed by a circulating pump, M 2 kg of working fluid boosting process 7a and (M 2 -M)
  • the pressure increase process a4 of the kilogram working fluid is generally completed by the compressor; (M 1 +M) the pressure-reducing expansion process of the kilogram working fluid 3g, the (M 1 +M 2 ) the pressure-reducing expansion process of the kilogram working fluid 56, and (M 1 +H)
  • the pressure-reducing expansion process 78 of the kilogram working fluid is generally completed by an expander; the expansion work is greater than the pressure boosting power consumption, and the thermal conversion work is completed and the net work is provided to the outside to form a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3g, H kilogram working fluid condensate pressure rise process 1e, H kilogram working fluid endothermic heating, vaporization and overheating process e9, M 2 kilogram working fluid pressure rise and heating process 9a, M kilogram The mixing exothermic condensation process of working fluid and M 1 kg of working fluid ab, (M 2 -M) pressure rise and heating process of kilogram working fluid a4, (M 2 -M) endothermic heating process of kilograms of working fluid 4g, (M 1 + M 2 ) Kilogram working fluid endothermic heating process g5, X kilogram working fluid depressurization expansion process 58, (M 1 +M 2 -X) kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) kg Working fluid
  • 3Energy conversion process-M 1 kg of working fluid boosting process 12 and H kg of working fluid boosting process 1e are generally completed by a circulating pump, M 2 kg of working fluid boosting process 9a and (M 2 -M)
  • the pressure increase process a4 of the kilogram working fluid is generally completed by the compressor; (M 1 +M) the pressure reduction and expansion process of the kilogram working fluid 3g, the pressure reduction process of the X kilogram working fluid 58, (M 1 +M 2 -X)
  • the pressure reduction process of kilogram working fluid 67, and the (M 1 +H) kilogram working fluid pressure-reducing expansion process 9c which are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the thermal transformation is completed and the external circulation is provided. Net work, forming a single working substance steam combined cycle.
  • M 1 kg working medium condensed liquid refrigerant boosting process 12 M 1 kg refrigerant absorbs heat heating, vaporization and superheating process 23, M 1 kg refrigerant expansion process down 3g, H refrigerant condensate liters kg Pressure process 1e, H kg working fluid endothermic heating, vaporization and overheating process e7, M 2 kg working fluid pressure rising process 74, M 2 kg working fluid endothermic heating process 4g, (M 1 +M 2 ) kg working fluid Endothermic heating process g5, (M 1 +M 2 ) kg working fluid depressurization expansion process 56, (M 1 +M 2 ) kg working fluid exothermic cooling process 6f, (M 1 +M 2 ) kg working fluid and H Kilogram working fluid mixed exothermic cooling process f7, (M 1 +H) kilogram working fluid pressure reduction expansion process 78, (M 1 +H) kilogram working fluid exothermic condensation process 81-a total of 13 processes.
  • the heat release process-(M 1 +M 2 ) the heat release of the kilogram working fluid 6f process can be provided externally or to other parts of the cycle to meet the corresponding heat demand; (M 1 +M 2 ) kilogram working fluid is released in a mixed manner It is hotter than H kilogram working fluid, and the temperature is reduced to 7 o'clock to complete the heat release process of f7; (M 1 +H) kilogram working fluid carries out the heat release of the 81 process, which is generally released to the low temperature heat source and provided to the heat user in the case of combined heat and power supply.
  • 3Energy conversion process -the boosting process 12 of M 1 kg working fluid and the boosting process 1e of H kg working fluid are generally completed by a circulating pump, and the boosting process 74 of M 2 kg working fluid is generally completed by a compressor;
  • the pressure-reducing expansion process of M 1 kilogram working fluid is 3g
  • the pressure-reducing expansion process of (M 1 +M 2 ) kilogram working fluid 56 and the pressure-reducing expansion process of (M 1 +H) kilogram working fluid 78 are generally performed by an expander.
  • the expansion work is greater than the boosting work consumption, the thermal conversion work is completed and the net cycle power is provided to the outside, forming a single working substance steam combined cycle.
  • 3Energy conversion process -the boosting process 12 of M 1 kg working fluid and the boosting process 1e of H kg working fluid are generally completed by a circulating pump, and the boosting process 94 of M 2 kg working fluid is generally completed by a compressor;
  • the pressure-reducing expansion process of M 1 kilogram working fluid is 3g
  • the pressure-reducing expansion process of X kilogram working fluid is 58
  • the pressure reduction expansion process 9c of the kilogram working fluid is generally completed by an expander; the expansion work is greater than the pressure boosting power consumption, and the thermal conversion work is completed and the net cycle power is provided to the outside to form a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 + M) kg refrigerant expansion process down 3g, H kg refrigerant condensate boosting process 1e, H kg refrigerant absorbs heat heating, vaporization and superheating process e7, M 2 kg refrigerant boost heating process 7a, M kg
  • Endothermic process The endothermic heat of the e7 process of the H kg working fluid is provided by the heat release of the (M 1 +M 2 ) kg working fluid f7 process, or an external heat source is provided at the same time; M 1 kg working fluid is used for 2b The endothermic heat of the process comes from the mixed exothermic heat of M kg of superheated steam, or an external heat source is provided at the same time; (M 1 +M) kg of working fluid is used for the b3 process, (M 2 -M) kg of working fluid is used for the 4g process and (M) 1 + M 2 )
  • the heat load required by the kilogram working fluid for the g5 process is provided by an external heat source, or provided by the external heat source and (M 1 +M 2 ) the heat release (regeneration) of the kilogram working fluid 6f process.
  • the heat release process-(M 1 +M 2 ) the heat release of the kilogram working fluid 6f process can be provided externally or to other parts of the cycle to meet the corresponding heat demand; (M 1 +M 2 ) kilogram working fluid is released in a mixed manner It is hotter than H kilogram working fluid, and the temperature is reduced to 7 o'clock to complete the heat release process of f7; (M 1 +H) kilogram working fluid carries out the heat release of the 81 process, which is generally released to the low temperature heat source and provided to the heat user in the case of combined heat and power supply.
  • 3Energy conversion process-M 1 kg of working fluid boosting process 12 and H kg of working fluid boosting process 1e are generally completed by a circulating pump, M 2 kg of working fluid boosting process 7a and (M 2 -M)
  • the pressure increase process a4 of the kilogram working fluid is generally completed by the compressor; (M 1 +M) the pressure-reducing expansion process of the kilogram working fluid 3g, the (M 1 +M 2 ) the pressure-reducing expansion process of the kilogram working fluid 56, and (M 1 +H)
  • the pressure-reducing expansion process 78 of the kilogram working fluid is generally completed by an expander; the expansion work is greater than the pressure boosting power consumption, and the thermal conversion work is completed and the net work is provided to the outside to form a single working fluid steam combined cycle.
  • Working medium is carried out-M 1 kg of working fluid condensate pressure boost process 12, M 1 kg of working fluid endothermic heating process 2b, (M 1 +M) kg of working fluid endothermic heating, vaporization and overheating process b3, (M 1 +M) Pressure reduction and expansion process of kilogram working fluid 3g, H kilogram working fluid condensate pressure rise process 1e, H kilogram working fluid endothermic heating, vaporization and overheating process e9, M 2 kilogram working fluid pressure rise and heating process 9a, M kilogram The mixing exothermic condensation process of working fluid and M 1 kg of working fluid ab, (M 2 -M) pressure rise and heating process of kilogram working fluid a4, (M 2 -M) endothermic heating process of kilograms of working fluid 4g, (M 1 + M 2 ) Kilogram working fluid endothermic heating process g5, X kilogram working fluid depressurization expansion process 58, (M 1 +M 2 -X) kilogram working fluid endothermic heating process 56, (M 1 +M 2 -X) kg Working fluid
  • 3Energy conversion process-M 1 kg of working fluid boosting process 12 and H kg of working fluid boosting process 1e are generally completed by a circulating pump, M 2 kg of working fluid boosting process 9a and (M 2 -M)
  • the pressure increase process a4 of the kilogram working fluid is generally completed by the compressor; (M 1 +M) the pressure reduction and expansion process of the kilogram working fluid 3g, the pressure reduction process of the X kilogram working fluid 58, (M 1 +M 2 -X)
  • the pressure reduction process of kilogram working fluid 67, and the (M 1 +H) kilogram working fluid pressure-reducing expansion process 9c which are generally completed by the expander; the expansion work is greater than the pressure boosting work, and the thermal transformation is completed and the external circulation is provided. Net work, forming a single working substance steam combined cycle.
  • a single working fluid is conducive to production and storage; reduces operating costs and improves the flexibility of cycle adjustment
  • the circulating medium and the heat source medium are the same gas, and the circulating working fluid from the heat source absorbs heat to reduce the temperature difference heat transfer loss and improve the thermal efficiency.
  • the low-pressure and high-temperature operation mode is adopted in the high-temperature zone to solve the difficult to reconcile contradictions between thermal efficiency, circulating medium parameters and pipe pressure and temperature resistance in traditional steam power plants.
  • low-pressure operation can be selected to provide theoretical support for improving the safety of device operation.
  • the working medium has a wide application range, can well adapt to the energy supply demand, and the working medium and working parameters are matched flexibly.
  • thermodynamic cycle range for realizing the utilization of temperature difference is expanded, which is beneficial to better realize the high-efficiency power utilization of high-temperature heat source and variable-temperature heat source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

单工质蒸汽联合循环,属于能源与动力技术领域。是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程74,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质与H千克工质混和放热过程67,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。

Description

单工质蒸汽联合循环 技术领域:
本发明属于能源与动力技术领域。
背景技术:
冷需求、热需求和动力需求,为人类生活与生产当中所常见;其中,利用热能转换为机械能是获得和提供动力的重要方式。一般情况下,热源的温度随着热的释放而降低,热源是变温的;在以化石燃料为源头能源时,热源同时具有高温和变温的双重特点,这使得采用单一热力循环理论实现制冷、供热或转化为动时能源利用率不理想。
以外燃式蒸汽动力装置为例,其热源属于高温且为变温热源;当以朗肯循环为理论基础,采用水蒸气为循环工质实现热变功时,由于受到材料耐温耐压性能和安全性方面的限制,无论采用何种参数运行,循环工质与热源之间都存在较大的温差损失,不可逆损失大,导致热效率较低。
现实中,人们需要简单、主动、高效地利用燃料生成或其它的高温热能来实现制冷、供热或转化为动力,这需要热科学基础理论的支撑;在热科学基础理论体系中,热力循环是热能利用装置的理论基础和能源利用***的核心;热力循环的创建及发展应用将对能源利用的飞跃起到重大作用,将积极推动社会进步和生产力发展。
从简单、主动和高效地实现温差利用的原则出发,针对高温热源或变温热源的动力应用,力求为热动***的简单化和高效化提供理论支撑,本发明提出了单工质蒸汽联合循环。
发明内容:
本发明主要目的是要提供单工质蒸汽联合循环,具体发明内容分项阐述如下:
1.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程74,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质与H千克工质混和放热过程67,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
2.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程94,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质与H千克工质混合放热过程78,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
3.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千 克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质与H千克工质混合放热过程67,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
4.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十八个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质与H千克工质混合放热过程78,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
5.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程74,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程6f,(M 1+M 2)千克工质与H千克工质混和放热过程f7,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
6.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程94,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热过程f8,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
7.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程6f,(M 1+M 2)千克工质与H千克工质混合放热过程f7,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
8.单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十九个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热过程f8,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
附图说明:
图1/8是依据本发明所提供的单工质蒸汽联合循环第1种原则性流程示例图。
图2/8是依据本发明所提供的单工质蒸汽联合循环第2种原则性流程示例图。
图3/8是依据本发明所提供的单工质蒸汽联合循环第3种原则性流程示例图。
图4/8是依据本发明所提供的单工质蒸汽联合循环第4种原则性流程示例图。
图5/8是依据本发明所提供的单工质蒸汽联合循环第5种原则性流程示例图。
图6/8是依据本发明所提供的单工质蒸汽联合循环第6种原则性流程示例图。
图7/8是依据本发明所提供的单工质蒸汽联合循环第7种原则性流程示例图。
图8/8是依据本发明所提供的单工质蒸汽联合循环第8种原则性流程示例图。
具体实施方式:
首先要说明的是,在结构和流程的表述上,非必要情况下不重复进行;对显而易见的流程不作表述。下面结合附图和实例来详细描述本发明。
图1/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e7,M 2千克工质升压升温过程74,M 2千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质与H千克工质混和放热降温过程67,(M 1+H)千克工质降压膨胀过程78,(M 1+H)千克工质放热冷凝过程81——共12个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e7过程的吸热由(M 1+M 2)千克工质67过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行23过程,M 2千克工质进行4g过程,以及(M 1+M 2)千克工质进行g5过程,需要的热负荷由外部热源来提供。
②放热过程——(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至7点,完成67放热过程;(M 1+H)千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程74一般由压缩机来完成;M 1千克工质的降压膨胀过 程3g,(M 1+M 2)千克工质的降压膨胀过程56,还有(M 1+H)千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图2/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e9,M 2千克工质升压升温过程94,M 2千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质与H千克工质混合放热降温过程78,(M 1+M 2)千克工质与H千克工质混合放热降温过程89,(M 1+H)千克工质降压膨胀过程9c,(M 1+H)千克工质放热冷凝过程c1——共15个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e9过程的吸热由(M 1+M 2-X)千克工质78过程和(M 1+M 2)千克工质89过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行23过程,M 2千克工质进行4g过程,(M 1+M 2)千克工质进行g5过程,以及(M 1+M 2-X)千克进行56过程,需要的热负荷由外部热源来提供。
②放热过程——(M 1+M 2-X)千克工质以混合方式放热于H千克工质,降温至8点,完成78放热过程;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至9点,完成89放热过程;(M 1+H)千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程94一般由压缩机来完成;M 1千克工质的降压膨胀过程3g,X千克工质的降压膨胀过程58,(M 1+M 2-X)千克工质的降压膨胀过程67,还有(M 1+H)千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图3/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e7,M 2千克工质升压升温过程7a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质与H千克工质混合放热降温过程67,(M 1+H)千克工质降压膨胀过程78,(M 1+H)千克工质放热冷凝过程81——共15个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e7过程的吸热由(M 1+M 2)千克工质67过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,或还有外部热源同时提供;(M 1+M)千克工质进行b3过程,(M 2-M)千克工质进行4g过程,以及(M 1+M 2)千克工质进行g5过程,需要的热负荷由外部热源来提供。
②放热过程——(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至7点,完成67放热过程;(M 1+H)千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程7a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3g,(M 1+M 2)千克工质的降压膨胀过程56,还有(M 1+H)千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图4/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e9,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质与H千克工质混合放热降温过程78,(M 1+M 2)千克工质与H千克工质混合放热降温过程89,(M 1+H)千克工质降压膨胀过程9c,(M 1+H)千克工质放热冷凝过程c1——共计18个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e9过程的吸热由(M 1+M 2-X)千克工质78过程和(M 1+M 2)千克工质89过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,或还有外部热源同时提供;(M 1+M)千克工质进行b3过程,(M 2-M)千克工质进行4g过程,(M 1+M 2)千克工质进行g5过程,以及(M 1+M 2-X)千克进行56过程,需要的热负荷由外部热源来提供。
②放热过程——(M 1+M 2-X)千克工质以混合方式放热于H千克工质,降温至8点,完成78放热过程;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至9点,完成89放热过程;(M 1+H)千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3g,X千克工质的降压过程58,(M 1+M 2-X)千克工质的降压过程67,还有(M 1+H)千克工质降压膨胀过程9c,一 般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图5/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e7,M 2千克工质升压升温过程74,M 2千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程6f,(M 1+M 2)千克工质与H千克工质混和放热降温过程f7,(M 1+H)千克工质降压膨胀过程78,(M 1+H)千克工质放热冷凝过程81——共13个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e7过程的吸热由(M 1+M 2)千克工质f7过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行23过程,M 2千克工质进行4g过程,以及(M 1+M 2)千克工质进行g5过程,需要的热负荷由外部热源来提供,或由外部热源和(M 1+M 2)千克工质6f过程的放热(回热)来提供。
②放热过程——(M 1+M 2)千克工质6f过程的放热,可对外或对循环其它环节提供以满足相应热需求;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至7点,完成f7放热过程;(M 1+H)千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程74一般由压缩机来完成;M 1千克工质的降压膨胀过程3g,(M 1+M 2)千克工质的降压膨胀过程56,还有(M 1+H)千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图6/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温、汽化和过热过程23,M 1千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e9,M 2千克工质升压升温过程94,M 2千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质放热降温过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热降温过程f8,(M 1+M 2)千克工质与H千克工质混合放热降温过程89,(M 1+H)千克工质降压膨胀过程9c,(M 1+H)千克工质放热冷凝过程c1——共16个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e9过程的吸热由(M 1+M 2-X)千克工质f8过程和(M 1+M 2)千克工质89过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行 23过程,M 2千克工质进行4g过程,(M 1+M 2)千克工质进行g5过程,以及(M 1+M 2-X)千克进行56过程,需要的热负荷由外部热源来提供;或由外部热源和(M 1+M 2-X)千克工质7f过程的放热(回热)来提供。
②放热过程——(M 1+M 2-X)千克工质7f过程的放热,可对外或对循环其它环节提供以满足相应热需求;(M 1+M 2-X)千克工质以混合方式放热于H千克工质,降温至8点,完成f8放热过程;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至9点,完成89放热过程;(M 1+H)千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程94一般由压缩机来完成;M 1千克工质的降压膨胀过程3g,X千克工质的降压膨胀过程58,(M 1+M 2-X)千克工质的降压膨胀过程67,还有(M 1+H)千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图7/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e7,M 2千克工质升压升温过程7a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,(M 1+M 2)千克工质降压膨胀过程56,(M 1+M 2)千克工质放热降温过程6f,(M 1+M 2)千克工质与H千克工质混合放热降温过程f7,(M 1+H)千克工质降压膨胀过程78,(M 1+H)千克工质放热冷凝过程81——共16个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e7过程的吸热由(M 1+M 2)千克工质f7过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,或还有外部热源同时提供;(M 1+M)千克工质进行b3过程、(M 2-M)千克工质进行4g过程和(M 1+M 2)千克工质进行g5过程需要的热负荷,由外部热源来提供,或由外部热源和(M 1+M 2)千克工质6f过程的放热(回热)来提供。
②放热过程——(M 1+M 2)千克工质6f过程的放热,可对外或对循环其它环节提供以满足相应热需求;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至7点,完成f7放热过程;(M 1+H)千克工质进行81过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程7a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3g,(M 1+M 2)千克工质的降压膨胀过程56,还有(M 1+H)千克工质降压膨胀过程78,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
图8/8所示T-s图中的单工质蒸汽联合循环示例是这样进行的:
(1)从循环过程上看:
工作介质进行——M 1千克工质冷凝液升压过程12,M 1千克工质吸热升温过程2b,(M 1+M)千克工质吸热升温、汽化和过热过程b3,(M 1+M)千克工质降压膨胀过程3g,H千克工质冷凝液升压过程1e,H千克工质吸热升温、汽化和过热过程e9,M 2千克工质升压升温过程9a,M千克工质与M 1千克工质的混合放热冷凝过程ab,(M 2-M)千克工质升压升温过程a4,(M 2-M)千克工质吸热升温过程4g,(M 1+M 2)千克工质吸热升温过程g5,X千克工质降压膨胀过程58,(M 1+M 2-X)千克工质吸热升温过程56,(M 1+M 2-X)千克工质降压膨胀过程67,(M 1+M 2-X)千克工质放热降温过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热降温过程f8,(M 1+M 2)千克工质与H千克工质混合放热降温过程89,(M 1+H)千克工质降压膨胀过程9c,(M 1+H)千克工质放热冷凝过程c1——共计19个过程。
(2)从能量转换上看:
①吸热过程——H千克工质进行e9过程的吸热由(M 1+M 2-X)千克工质f8过程和(M 1+M 2)千克工质89过程的放热来提供,或还有外部热源同时提供;M 1千克工质进行2b过程的吸热来自M千克过热蒸汽的混合放热,或还有外部热源同时提供;(M 1+M)千克工质进行b3过程,(M 2-M)千克工质进行4g过程,(M 1+M 2)千克工质进行g5过程,以及(M 1+M 2-X)千克进行56过程,需要的热负荷由外部热源来提供,或由外部热源和(M 1+M 2-X)千克工质7f过程的放热(回热)来提供。
②放热过程——(M 1+M 2-X)千克工质7f过程的放热,可对外或对循环其它环节提供以满足相应热需求;(M 1+M 2-X)千克工质以混合方式放热于H千克工质,降温至8点,完成f8放热过程;(M 1+M 2)千克工质以混合方式放热于H千克工质,降温至9点,完成89放热过程;(M 1+H)千克工质进行c1过程的放热,一般向低温热源释放,热动联供时向热用户提供。
③能量转换过程——M 1千克工质的升压过程12和H千克工质的升压过程1e一般由循环泵来完成,M 2千克工质的升压过程9a和(M 2-M)千克工质的升压过程a4一般由压缩机来完成;(M 1+M)千克工质的降压膨胀过程3g,X千克工质的降压过程58,(M 1+M 2-X)千克工质的降压过程67,还有(M 1+H)千克工质降压膨胀过程9c,一般由膨胀机来完成;膨胀作功大于升压耗功,完成热变功并对外提供循环净功,形成单工质蒸汽联合循环。
本发明技术可以实现的效果——本发明所提出的单工质蒸汽联合循环,具有如下效果和优势:
(1)创建热能(温差)利用基础理论。
(2)较大幅度减少相变吸热过程的热负荷,相对增加高温段吸热负荷,热效率高。
(3)方法简单,流程合理,适用性好,是实现温差有效利用的共性技术。
(4)单一工质,有利于生产和储存;降低运行成本,提高循环调节的灵活性
(5)过程共用,提高热效率,并为减少设备投资提供理论基础。
(6)在高温区或变温区阶段,循环介质与热源介质同为气体,循环工质自热源吸热环节 有利于降低温差传热损失,提高热效率。
(7)在高温区采取低压高温运行方式,解决传统蒸汽动力装置中热效率、循环介质参数与管材耐压耐温性能之间难以调和的矛盾。
(8)在实现高热效率前提下,可选择低压运行,为提高装置运行的安全性提供理论支撑。
(9)工质适用范围广,能够很好地适应供能需求,工质与工作参数之间匹配灵活。
(10)扩展了实现温差利用的热力循环范围,有利于更好地实现高温热源和变温热源的高效动力利用。

Claims (8)

  1. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十二个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程74,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质与H千克工质混和放热过程67,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
  2. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程94,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质与H千克工质混合放热过程78,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
  3. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十五个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质与H千克工质混合放热过程67,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
  4. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十八个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质与H千克工质混合放热过程78,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
  5. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十三个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程74,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程6f,(M 1+M 2)千克工质与H千克工质混和放热过程f7,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
  6. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热汽化过程23,M 1千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程94,M 2千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热过程f8,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
  7. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十六个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e7,M 2千克工质升压过程7a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,(M 1+M 2)千克工质降压过程56,(M 1+M 2)千克工质放热过程6f,(M 1+M 2)千克工质与H千克工质混合放热过程f7,(M 1+H)千克工质降压过程78,(M 1+H)千克工质放热冷凝过程81——组成的闭合过程。
  8. 单工质蒸汽联合循环,是指由M 1千克、M 2千克和H千克组成的工质,分别或共同进行的十九个过程——M 1千克工质升压过程12,M 1千克工质吸热过程2b,(M 1+M)千克工质吸热汽化过程b3,(M 1+M)千克工质降压过程3g,H千克工质升压过程1e,H千克工质吸热过程e9,M 2千克工质升压过程9a,M千克工质放热冷凝过程ab,(M 2-M)千克工质升压过程a4,(M 2-M)千克工质吸热过程4g,(M 1+M 2)千克工质吸热过程g5,X千克工质降压过程58,(M 1+M 2-X)千克工质吸热过程56,(M 1+M 2-X)千克工质降压过程67,(M 1+M 2-X)千克工质放热过程7f,(M 1+M 2-X)千克工质与H千克工质混合放热过程f8,(M 1+M 2)千克工质与H千克工质混合放热过程89,(M 1+H)千克工质降压过程9c,(M 1+H)千克工质放热冷凝过程c1——组成的闭合过程。
PCT/CN2020/000202 2019-09-02 2020-08-31 单工质蒸汽联合循环 WO2021042647A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910878444 2019-09-02
CN201910878444.8 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021042647A1 true WO2021042647A1 (zh) 2021-03-11

Family

ID=74852045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/000202 WO2021042647A1 (zh) 2019-09-02 2020-08-31 单工质蒸汽联合循环

Country Status (2)

Country Link
CN (1) CN115263473A (zh)
WO (1) WO2021042647A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2178386A5 (en) * 1972-03-30 1973-11-09 Babcock Atlantique Sa Carbon dioxide heat engine - with compounded thermal cycle for optimized efficiency
DE102004041108B3 (de) * 2004-08-24 2006-07-06 Adoratec Gmbh Vorrichtung und Verfahren zum Ausführen eines verbesserten ORC-Prozesses
CN102317595A (zh) * 2007-10-12 2012-01-11 多蒂科技有限公司 带有气体分离的高温双源有机朗肯循环
CN103195530A (zh) * 2013-03-29 2013-07-10 中国科学院理化技术研究所 带有分离膨胀装置的有机朗肯循环余热回收发电***
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108119196A (zh) * 2017-12-07 2018-06-05 李华玉 联合循环动力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2178386A5 (en) * 1972-03-30 1973-11-09 Babcock Atlantique Sa Carbon dioxide heat engine - with compounded thermal cycle for optimized efficiency
DE102004041108B3 (de) * 2004-08-24 2006-07-06 Adoratec Gmbh Vorrichtung und Verfahren zum Ausführen eines verbesserten ORC-Prozesses
CN102317595A (zh) * 2007-10-12 2012-01-11 多蒂科技有限公司 带有气体分离的高温双源有机朗肯循环
CN103195530A (zh) * 2013-03-29 2013-07-10 中国科学院理化技术研究所 带有分离膨胀装置的有机朗肯循环余热回收发电***
CN107893685A (zh) * 2016-10-12 2018-04-10 李华玉 单工质蒸汽联合循环与联合循环蒸汽动力装置
CN108119196A (zh) * 2017-12-07 2018-06-05 李华玉 联合循环动力装置

Also Published As

Publication number Publication date
CN115263473A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2020220727A1 (zh) 联合循环动力装置
WO2020215814A1 (zh) 单工质蒸汽联合循环
WO2020211472A1 (zh) 单工质蒸汽联合循环
WO2021042647A1 (zh) 单工质蒸汽联合循环
WO2020215816A1 (zh) 单工质蒸汽联合循环
WO2020215813A1 (zh) 单工质蒸汽联合循环
WO2021042646A1 (zh) 单工质蒸汽联合循环
WO2021042648A1 (zh) 单工质蒸汽联合循环
WO2020215817A1 (zh) 单工质蒸汽联合循环
WO2020211475A1 (zh) 单工质蒸汽联合循环
WO2021036153A1 (zh) 单工质蒸汽联合循环
WO2021042649A1 (zh) 单工质蒸汽联合循环
WO2020211471A1 (zh) 单工质蒸汽联合循环
WO2021036152A1 (zh) 单工质蒸汽联合循环
WO2020211473A1 (zh) 单工质蒸汽联合循环
WO2020215815A1 (zh) 单工质蒸汽联合循环
WO2020211474A1 (zh) 单工质蒸汽联合循环
WO2021047125A1 (zh) 逆向单工质蒸汽联合循环
WO2020248588A1 (zh) 逆向单工质蒸汽联合循环
WO2021047126A1 (zh) 逆向单工质蒸汽联合循环
WO2020248589A1 (zh) 逆向单工质蒸汽联合循环
WO2021047127A1 (zh) 逆向单工质蒸汽联合循环
WO2020248592A1 (zh) 逆向单工质蒸汽联合循环
WO2021258718A1 (zh) 第二类单工质联合循环
WO2020248591A1 (zh) 逆向单工质蒸汽联合循环

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860536

Country of ref document: EP

Kind code of ref document: A1