WO2021042252A1 - 一种监控燃气品质的方法及装置 - Google Patents

一种监控燃气品质的方法及装置 Download PDF

Info

Publication number
WO2021042252A1
WO2021042252A1 PCT/CN2019/104109 CN2019104109W WO2021042252A1 WO 2021042252 A1 WO2021042252 A1 WO 2021042252A1 CN 2019104109 W CN2019104109 W CN 2019104109W WO 2021042252 A1 WO2021042252 A1 WO 2021042252A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
volume flow
flow rate
ratio
quality
Prior art date
Application number
PCT/CN2019/104109
Other languages
English (en)
French (fr)
Inventor
肖福明
曾频
印志强
方晓鹏
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to PCT/CN2019/104109 priority Critical patent/WO2021042252A1/zh
Publication of WO2021042252A1 publication Critical patent/WO2021042252A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents

Definitions

  • the invention relates to the technical field of safety monitoring, and more specifically, to a method and device for monitoring the quality of gas.
  • the present invention provides a method and device for monitoring the quality of gas.
  • the technical solution is as follows:
  • a method for monitoring the quality of gas comprising:
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas usage conditions.
  • the method further includes:
  • the method further includes:
  • the knock suppression operation is performed.
  • a device for monitoring the quality of gas comprising:
  • An obtaining module which is used to obtain air volume flow and gas volume flow
  • a judging module the judging module is used to judge whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold
  • the determining module is configured to determine that when the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold, the gas quality has changed and the gas has a tendency to knock.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • the device further includes:
  • the execution module is configured to trigger the acquisition module when the ratio of the air volume flow rate to the gas volume flow rate is less than or equal to a preset threshold.
  • the device further includes:
  • the control module is configured to perform knock suppression operations when it is determined that there is a tendency to knock.
  • This method of monitoring gas quality monitors the air volume flow and the gas volume flow in real time, and compares the ratio of the two with the safety threshold to determine whether there is a tendency to knock, and then the corresponding explosion suppression can be quickly adopted. Shock operation to suppress the occurrence of knocking.
  • this method of monitoring gas quality predicts knocking by monitoring the quality of the gas source, even without installing knock sensors and other components, which greatly reduces development costs.
  • FIG. 1 is a schematic flowchart of a method for monitoring gas quality according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a device for monitoring gas quality provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another device for monitoring gas quality provided by an embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for monitoring gas quality according to an embodiment of the present invention, and the method includes:
  • S102 Determine whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • gas with high calorific value is prone to knocking.
  • propane is prone to knocking compared to methane.
  • the ratio of the real-time air volume flow rate to the gas volume flow rate will change significantly.
  • the gas composition In different gas usage conditions, the gas composition will be different. In order to prevent normal operation under any gas composition, the monitoring of its gas quality is extremely important.
  • the gas source of pipeline gas or gas filling station is mainly a mixture of methane and air.
  • the composition of the gas source in the mine is more complex, belonging to a variety of mixed gas, which contains methane, ethane and propane and other high-calorific value gases.
  • methane the chemical formula is CH 4 , the calorific value per unit volume: 35.3882 [MJ/m 3 ], is the simplest hydrocarbon, composed of one carbon and four hydrogen atoms through SP 3 hybridization, therefore, the methane molecule
  • the structure is a regular tetrahedron structure, and the bond lengths of the four bonds are the same and the bond angles are the same.
  • methane is a colorless and odorless gas. In theory, 9.7 volumes of air are required to completely burn 1 volume of methane.
  • Propane The chemical formula is C 3 H 8 , the calorific value per unit volume: 93.207 [MJ/m 3 ], and the structural formula is CH 3 CH 2 CH 3 . It is usually in a gaseous state, but it is generally transported after being compressed into a liquid state. After crude oil or natural gas is processed, propane can be obtained from the refined oil.
  • the method for monitoring gas quality monitors the air volume flow and the gas volume flow in real time, and compares the ratio of the two with the safety threshold to easily and quickly determine whether there is a tendency to knock, and then can quickly adopt the corresponding Suppress knocking operation and suppress the occurrence of knocking.
  • this method of monitoring gas quality predicts knocking by monitoring the quality of the gas source, even without the installation of knock sensors and other components, which greatly reduces the development cost and can ensure that no matter what mixed gas composition is Both can effectively suppress knocking, thereby improving working stability.
  • the preset threshold may be the value range of the safety threshold to be reduced again in the case of the safety threshold to prevent knocking to a great extent.
  • this method of monitoring gas quality can also assist customers in troubleshooting the cause of knocking. For example, if there is a problem with the command or measure to control knock or suppress knock, but the engine is damaged for unknown reasons during use, it is suspected that the damage is caused by engine knock. You can call the engine stored in the ECU.
  • the volume ratio of air and gas before the damage occurs analyze whether this volume ratio is greater than the threshold of knock based on the quality of gas, if it exceeds this threshold, you can assist the customer service staff to determine that the user is using high calorific value gas
  • the resulting knock caused damage to the engine and better deal with after-sales claims and other issues.
  • FIG. 2 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention, and the method further includes:
  • the target of predicting knocking continues to work, and returns to continue to obtain the air volume flow rate and the gas volume flow rate, To ensure the purpose of real-time monitoring, the timeliness of suppressing knocking can be further improved.
  • FIG. 3 is a schematic flowchart of another method for monitoring gas quality according to an embodiment of the present invention, and the method further includes:
  • the knock suppression operation when the target for predicting knock is different, the knock suppression operation is different.
  • the knock suppression operation when the knock suppression operation is performed on the engine, it includes but is not limited to the operation of retarding the ignition advance angle.
  • the method of monitoring gas quality tends to occurrence of knocking in accordance with the physical characteristics of high BTU gas, e.g., with respect to methane, a high-calorific gas belonging propane, propane combustion 1m 3 needs to 24.7m 3 Air, burning 1m 3 of methane requires 9.7m 3 of air.
  • the ratio of 24.7:9.7 belongs to a relatively high signal-to-noise ratio. That is to say, a clear distinction can generally eliminate interference errors caused by other factors.
  • the ratio of the air volume flow rate to the gas volume flow rate has a larger signal-to-noise ratio and a stronger anti-interference ability.
  • FIG. 4 is a schematic structural diagram of a device for monitoring gas quality according to an embodiment of the present invention.
  • the device includes:
  • An obtaining module 41 which is used to obtain air volume flow and gas volume flow
  • a judging module 42 for judging whether the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold
  • the determining module 43 is configured to determine that when the ratio of the air volume flow rate to the gas volume flow rate is greater than a preset threshold, the gas quality has changed and the gas has a tendency to knock.
  • the preset threshold value is a ratio of the air volume flow rate to the gas volume flow rate under normal gas use conditions.
  • Fig. 5 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention, and the device further includes:
  • the execution module 44 is configured to trigger the acquisition module when the ratio of the air volume flow rate to the gas volume flow rate is less than or equal to a preset threshold.
  • FIG. 6 is a schematic structural diagram of another device for monitoring gas quality according to an embodiment of the present invention, and the device further includes:
  • the control module 45 is configured to perform a knock suppression operation when it is determined that there is a tendency to knock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

一种监控燃气品质的方法及装置,该方法包括获取空气体积流量和燃气体积流量(S101);判断空气体积流量和燃气体积流量的比值是否大于预设阈值(S102);若是,则确定燃气品质发生变化,且具有爆震倾向(S103)。该方法通过实时监测空气体积流量和燃气体积流量,通过计算出二者的比值与安全阈值相比较,以方便快捷地判断出是否具有爆震倾向,进而可快速采用相应的抑制爆震操作,抑制爆震的产生。该监控燃气品质的方法通过监测气源品质进行预测爆震,甚至不用安装爆震传感器等部件,也极大程度地降低了开发成本。

Description

一种监控燃气品质的方法及装置 技术领域
本发明涉及安全性监测技术领域,更具体地说,涉及一种监控燃气品质的方法及装置。
背景技术
发动机火花塞点火后,气缸内未燃尽的部分燃料产生不受控制的自燃或爆燃,定义为爆震。
研究表明在发动机的正常燃烧过程中,气体燃料与空气混合物的燃烧反应以火花塞为中心迅速向外连续扩散,这种扩散直至气缸端壁。爆震是一种非正常的燃烧过程,在被压缩但不正常的火焰扩散点燃过程中,被燃烧消耗的空气和燃气混合物构成爆震焰前气体,并在火花塞点火后形成自燃或爆燃,爆燃点的火焰扩散和焰前气体的压缩使得爆燃点的温度和压力上升;如果爆燃速度较快,并且有足够多的焰前气体产生爆燃时,就可以听到发动机运行的爆震声音,数个爆燃点汇集产生强烈的高压震动脉冲会使得发动机部分元件或整体发生震动。
爆震累积或严重爆震可以造成发动机活塞、缸盖、气门和活塞环等部件损坏的严重事故。
因此,如何预测爆震是本领域技术人员亟待解决的问题。
发明内容
有鉴于此,为解决上述问题,本发明提供一种监控燃气品质的方法及装置,技术方案如下:
一种监控燃气品质的方法,所述方法包括:
获取空气体积流量和燃气体积流量;
判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值;
若是,则确定燃气品质发生变化,且具有爆震倾向。
优选的,在上述方法中,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
优选的,在上述方法中,所述方法还包括:
若否,则返回获取空气体积流量和燃气体积流量这一步骤。
优选的,在上述方法中,所述方法还包括:
当确定具有爆震倾向时,执行抑制爆震操作。
一种监控燃气品质的装置,所述装置包括:
获取模块,所述获取模块用于获取空气体积流量和燃气体积流量;
判断模块,所述判断模块用于判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值;
确定模块,所述确定模块用于当所述空气体积流量和所述燃气体积流量的比值大于预设阈值时,确定燃气品质发生变化,且具有爆震倾向。
优选的,在上述装置中,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
优选的,在上述装置中,所述装置还包括:
执行模块,所述执行模块用于当所述空气体积流量和所述燃气体积流量的比值小于或等于预设阈值时,触发所述获取模块。
优选的,在上述装置中,所述装置还包括:
控制模块,所述控制模块用于当确定具有爆震倾向时,执行抑制爆震操作。
相较于现有技术,本发明实现的有益效果为:
该监控燃气品质的方法通过实时监测空气体积流量和燃气体积流量,通过计算出二者的比值与安全阈值相比较,以方便快捷的判断出是否具有爆震倾向,进而可快速采用相应的抑制爆震操作,抑制爆震的产生。
也就是说,该监控燃气品质的方法通过监测气源品质进行预测爆震,甚至不用安装爆震传感器等部件,也极大程度的降低了开发成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种监控燃气品质的方法的流程示意图;
图2为本发明实施例提供的另一种监控燃气品质的方法的流程示意图;
图3为本发明实施例提供的又一种监控燃气品质的方法的流程示意图;
图4为本发明实施例提供的一种监控燃气品质的装置的结构示意图;
图5为本发明实施例提供的另一种监控燃气品质的装置的结构示意图;
图6为本发明实施例提供的又一种监控燃气品质的装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1,图1为本发明实施例提供的一种监控燃气品质的方法的流程示意图,所述方法包括:
S101:获取空气体积流量和燃气体积流量。
S102:判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值。
其中,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
S103:若是,则确定燃气品质发生变化,且具有爆震倾向。
在该实施例中,基于高热值燃气(单位体积热值)易于爆震,例如, 丙烷相对于甲烷而言,具有易爆震的倾向,例如,当燃气成分中丙烷成分增多时,相同工况下,实时的所述空气体积流量和所述燃气体积流量的比值会有明显的变化。
在不同的燃气使用情况下,燃气的成分会不同,为了防止无论在哪种燃气成分下均可以正常工作,对其燃气品质的监控极为重要。
例如,管道燃气或者加气站的气源主要是甲烷和空气的混合气体。
例如,矿井中的燃气气源成分比较复杂,属于多种混合燃气,其含有甲烷、乙烷和丙烷等高热值气体。
其中,甲烷:化学式为CH 4,单位体积热值:35.3882[MJ/m 3],是最简单的烃,由一个碳和四个氢原子通过SP 3杂化的方式组成,因此,甲烷分子的结构为正四面体结构,四个键的键长相同键角相等。
在标准状态下甲烷是无色无味气体,理论上完全燃烧1体积的甲烷需要9.7体积的空气。
丙烷:化学式为C 3H 8,单位体积热值:93.207[MJ/m 3],结构简式为CH 3CH 2CH 3。通常为气态,但一般经过压缩成液态后运输。原油或天然气处理后,可以从成品油中得到丙烷。
理论上完全燃烧1体积的丙烷需要24.7体积的空气。
并且,在大量的实验研究过程中也发现,燃气成分中丙烷成分增加后,极大程度上会有爆震倾向。
因此,该监控燃气品质的方法通过实时监测空气体积流量和燃气体积流量,通过计算出二者的比值与安全阈值相比较,以方便快捷的判断出是否具有爆震倾向,进而可快速采用相应的抑制爆震操作,抑制爆震的产生。
也就是说,该监控燃气品质的方法通过监测气源品质进行预测爆震,甚至不用安装爆震传感器等部件,也极大程度的降低了开发成本,并且可以保证无论在哪种混合燃气成分下均能有效抑制爆震,进而提高工作稳定性。
需要说明的是,所述预设阈值可以是在安全阈值的情况下,再次降低安全阈值的数值范围,以极大程度的预防爆震。
并且,引起爆震的原因有很多,比如,发动机进气温度过高、活塞积碳、燃烧室内烧机油和活塞压缩比高等,所以该监控燃气品质的方法也可以协助客户排查产生爆震的原因,比如,控制爆震或者抑制爆震的指令或者措施出了问题,但是在使用过程中发动机不明原因的损坏了,怀疑是发动机爆震引起的损坏,可以通过调出存储在ECU内的在发动机发生损坏前的空气和燃气的体积比,对这个体积比进行分析,是否大于基于燃气品质的爆震的判断阈值,如果超过了这个阈值,那么可以协助客服人员判断是因为用户使用了高热值燃气导致的爆震造成发动机的损坏,更好的处理售后索赔等问题。
进一步的,基于本发明上述实施例,参考图2,图2为本发明实施例提供的另一种监控燃气品质的方法的流程示意图,所述方法还包括:
若否,则返回获取空气体积流量和燃气体积流量这一步骤。
在该实施例中,当所述空气体积流量和所述燃气体积流量的比值是小于或等于预设阈值时,预测爆震的目标持续进行工作,并返回继续获取空气体积流量和燃气体积流量,保证实时监测的目的,可进一步提高抑制爆震的时效性。
需要说明的是,在本发明实施例中,在可以提高抑制爆震的时效性的情况下,当所述空气体积流量和所述燃气体积流量的比值是小于或等于预设阈值时,还可以设置固定的周期,返回执行获取空气体积流量和燃气体积流量这一步骤。
进一步的,基于本发明上述实施例,参考图3,图3为本发明实施例提供的又一种监控燃气品质的方法的流程示意图,所述方法还包括:
S104:当确定具有爆震倾向时,执行抑制爆震操作。
在该实施例中,在进行预测爆震的目标不同时,其抑制爆震操作不同,例如,在对发动机进行抑制爆震操作时,包括但不限定于推迟点火提前角的操作。
基于本发明上述全部实施例,该监控燃气品质的方法根据高热值燃气倾向于发生爆震的物理特性,例如,相对于甲烷来说,丙烷属于高热值气体,燃烧1m 3丙烷需要24.7m 3的空气,燃烧1m 3甲烷需要9.7m 3的空气,24.7:9.7这种比例,属于比较高的信噪比,也就是说,比较明显的区分,一般可以排除其他因素导致的干扰误差,当实时监测的空气体积流量和燃气体积流量比例超过一定安全阈值后,说明燃气品质往高热值,且易于爆震的燃气方向变化,此时需要采取措施,及时抑制爆震的发生。
需要说明的是,所述空气体积流量和所述燃气体积流量的比值,相比较质量之比,其体积之比的信噪比更大,抗干扰能力更强。
基于本发明上述全部实施例,在本发明另一实施例中还提供了一种监控燃气品质的装置,参考图4,图4为本发明实施例提供的一种监控燃气品质的装置的结构示意图,所述装置包括:
获取模块41,所述获取模块41用于获取空气体积流量和燃气体积流量;
判断模块42,所述判断模块42用于判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值;
确定模块43,所述确定模块43用于当所述空气体积流量和所述燃气体积流量的比值大于预设阈值时,确定燃气品质发生变化,且具有爆震倾向。
进一步的,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
进一步的,参考图5,图5为本发明实施例提供的另一种监控燃气品质的装置的结构示意图,所述装置还包括:
执行模块44,所述执行模块44用于当所述空气体积流量和所述燃气体积流量的比值小于或等于预设阈值时,触发所述获取模块。
进一步的,参考图6,图6为本发明实施例提供的又一种监控燃气品质的装置的结构示意图,所述装置还包括:
控制模块45,所述控制模块45用于当确定具有爆震倾向时,执行抑制爆震操作。
需要说明的是,该监控燃气品质的装置和上述实施例提供的监控燃气品质的方法的原理相同,在此不再赘述。
以上对本发明所提供的一种监控燃气品质的方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显 而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种监控燃气品质的方法,其特征在于,所述方法包括:
    获取空气体积流量和燃气体积流量;
    判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值;
    若是,则确定燃气品质发生变化,且具有爆震倾向。
  2. 根据权利要求1所述的方法,其特征在于,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若否,则返回获取空气体积流量和燃气体积流量这一步骤。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当确定具有爆震倾向时,执行抑制爆震操作。
  5. 一种监控燃气品质的装置,其特征在于,所述装置包括:
    获取模块,所述获取模块用于获取空气体积流量和燃气体积流量;
    判断模块,所述判断模块用于判断所述空气体积流量和所述燃气体积流量的比值是否大于预设阈值;
    确定模块,所述确定模块用于当所述空气体积流量和所述燃气体积流量的比值大于预设阈值时,确定燃气品质发生变化,且具有爆震倾向。
  6. 根据权利要求5所述的装置,其特征在于,所述预设阈值为正常燃气使用工况下,所述空气体积流量和所述燃气体积流量的比值。
  7. 根据权利要求5所述的装置,其特征在于,所述装置还包括:
    执行模块,所述执行模块用于当所述空气体积流量和所述燃气体积流量的比值小于或等于预设阈值时,触发所述获取模块。
  8. 根据权利要求5所述的装置,其特征在于,所述装置还包括:
    控制模块,所述控制模块用于当确定具有爆震倾向时,执行抑制爆震操作。
PCT/CN2019/104109 2019-09-03 2019-09-03 一种监控燃气品质的方法及装置 WO2021042252A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104109 WO2021042252A1 (zh) 2019-09-03 2019-09-03 一种监控燃气品质的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104109 WO2021042252A1 (zh) 2019-09-03 2019-09-03 一种监控燃气品质的方法及装置

Publications (1)

Publication Number Publication Date
WO2021042252A1 true WO2021042252A1 (zh) 2021-03-11

Family

ID=74851974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104109 WO2021042252A1 (zh) 2019-09-03 2019-09-03 一种监控燃气品质的方法及装置

Country Status (1)

Country Link
WO (1) WO2021042252A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791145A (en) * 1994-09-30 1998-08-11 Cooper Cameron Corporation Natural gas engine control system
CN1690391A (zh) * 2004-04-27 2005-11-02 株式会社丰田自动织机 均质充气压燃式发动机及运行均质充气压燃发动机的方法
EP1707791A2 (en) * 2005-03-31 2006-10-04 Mazda Motor Corporation Control system for spark-ignition type engine
US20070251509A1 (en) * 2006-04-26 2007-11-01 Denso Corporation Air-fuel ratio control apparatus of internal combustion engine
US20090283080A1 (en) * 2008-05-15 2009-11-19 Lycoming Engines, A Division Of Avco Corporation Method and apparatus for providing fuel to an aircraft engine
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置
WO2017135957A1 (en) * 2016-02-04 2017-08-10 Cummins Inc. System and method for self-adjusting engine performance parameters during fuel quality variation
CN109209660A (zh) * 2018-09-13 2019-01-15 湖北谊立舜达动力科技有限公司 一种天然气发动机空燃比控制***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791145A (en) * 1994-09-30 1998-08-11 Cooper Cameron Corporation Natural gas engine control system
CN1690391A (zh) * 2004-04-27 2005-11-02 株式会社丰田自动织机 均质充气压燃式发动机及运行均质充气压燃发动机的方法
EP1707791A2 (en) * 2005-03-31 2006-10-04 Mazda Motor Corporation Control system for spark-ignition type engine
US20070251509A1 (en) * 2006-04-26 2007-11-01 Denso Corporation Air-fuel ratio control apparatus of internal combustion engine
US20090283080A1 (en) * 2008-05-15 2009-11-19 Lycoming Engines, A Division Of Avco Corporation Method and apparatus for providing fuel to an aircraft engine
JP2016006305A (ja) * 2014-06-20 2016-01-14 本田技研工業株式会社 内燃機関の制御装置
WO2017135957A1 (en) * 2016-02-04 2017-08-10 Cummins Inc. System and method for self-adjusting engine performance parameters during fuel quality variation
CN109209660A (zh) * 2018-09-13 2019-01-15 湖北谊立舜达动力科技有限公司 一种天然气发动机空燃比控制***

Similar Documents

Publication Publication Date Title
Yousefi et al. Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions
Quader What limits lean operation in spark ignition engines—flame initiation or propagation?
EP2700804B1 (en) Gas engine, gas engine control apparatus, and gas engine control method
Kim et al. An investigation on the causes of cycle variation in direct injection hydrogen fueled engines
GB2585504A (en) Apparatus and system for dual ignition sources for a vehicle
Yamanaka et al. Development of pre-chamber sparkplug for gas engine
Chen et al. Quantitative evaluation of n-butane concentration on knock severity of a natural gas heavy-duty SI engine
Singh et al. Effectiveness of fuel enrichment on knock suppression in a gasoline spark-ignited engine
WO2021042252A1 (zh) 一种监控燃气品质的方法及装置
Brecq et al. Knock prevention of CHP engines by addition of N2 and CO2 to the natural gas fuel
KR20160149575A (ko) 노킹 제어 시스템이 구비된 엔진 및 엔진의 노킹 제어 방법
JP2010209892A (ja) エンジン失火判定システム及び方法
WO2015033371A1 (ja) エンジンの異常燃焼検出装置及びエンジンの異常燃焼検出方法
JPWO2012114500A1 (ja) 多種燃料内燃機関の制御装置
Wise et al. Development of a lean burn methane number measurement technique for alternative gaseous fuel evaluation
JP5466098B2 (ja) 内燃機関の燃焼状態検出システム
Maurya et al. Knocking and combustion noise analysis
Badr et al. An investigation of the lean operational limits of gas-fueled spark ignition engines
van Essen et al. The effect of humidity on the knock behavior in a medium BMEP lean-burn high-speed gas engine
WO2019082384A1 (ja) ノッキング検出方法及びノッキング検出装置
Ghanaati et al. A comparative study on knock occurrence for different fuel octane number
Ladd et al. Evaluation of operating parameters and fuel composition on knock in large bore two-stroke pipeline engines
Bade Shrestha et al. Effects of diluents on knock rating of gaseous fuels
Smolenskaya et al. Influence of the Thermodynamic Characteristics of the Combustion Process on Vehicle Emissions in Spark-Ignition Engines
JP5984719B2 (ja) 火花点火式エンジン及びその運転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944380

Country of ref document: EP

Kind code of ref document: A1