WO2021039535A1 - Electric booster device for vehicle - Google Patents

Electric booster device for vehicle Download PDF

Info

Publication number
WO2021039535A1
WO2021039535A1 PCT/JP2020/031283 JP2020031283W WO2021039535A1 WO 2021039535 A1 WO2021039535 A1 WO 2021039535A1 JP 2020031283 W JP2020031283 W JP 2020031283W WO 2021039535 A1 WO2021039535 A1 WO 2021039535A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement amount
relationship
operating
pressing force
decreasing
Prior art date
Application number
PCT/JP2020/031283
Other languages
French (fr)
Japanese (ja)
Inventor
健太 柿添
駿 塚本
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2021039535A1 publication Critical patent/WO2021039535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force

Definitions

  • This disclosure relates to an electric booster of a vehicle.
  • Patent Document 1 there is known an electric booster that assists and outputs a force based on an input from a braking operation member by driving a motor.
  • the force based on the output is increased when the force based on the input from the braking operation member is increased and when the force based on the input is decreased.
  • I try to make the size of. This hysteresis characteristic is determined by the size of the components of the electric booster and the positional relationship of the components adjacent to each other.
  • the hysteresis characteristic of the electric booster disclosed in Patent Document 1 is determined at the time of manufacturing the electric booster. Therefore, the hysteresis characteristic cannot be changed when the vehicle is running.
  • the electric booster of the vehicle for solving the above problems assists the input shaft into which the operating force is input via the braking operation member and the operating force input to the input shaft according to the driving amount of the motor.
  • a braking actuator having an assist mechanism, an output shaft connected to the assist mechanism and outputting an operating force assisted by the assist mechanism as a pressing force, and a control device for the braking actuator are provided.
  • the control device includes an operation displacement acquisition unit that acquires an operation displacement amount that is a displacement amount of the input shaft based on the operation of the braking operation member, and an assist mechanism control unit that drives the motor according to the operation displacement amount.
  • the assist mechanism control unit has a relationship between the operating displacement amount and the pressing force when the operating displacement amount is increasing, and the operating displacement when the operating displacement amount is decreasing.
  • the gist is to control the motor so that the relationship between the amount and the pressing force is different from each other.
  • the hysteresis characteristic of the electric booster can be changed by controlling the motor.
  • the hysteresis characteristic of the electric booster can be changed while the vehicle is traveling.
  • FIG. 1 shows a vehicle braking device including the electric booster 100.
  • the braking device includes a brake pedal 91 as a braking operation member, a master cylinder MC, a wheel cylinder WC, and a reservoir tank 99. Wheel cylinders WC are provided on each wheel 89 of the vehicle.
  • the brake pedal 91 When the brake pedal 91 is operated, the brake fluid supplied from the reservoir tank 99 to the master cylinder MC flows from the master cylinder MC into the wheel cylinder WC.
  • the inflow of the brake fluid into the wheel cylinder WC increases the hydraulic pressure in the wheel cylinder WC.
  • Braking force is applied to the wheels 89 by increasing the hydraulic pressure in the wheel cylinder WC.
  • the electric booster 100 includes a braking actuator 92.
  • the braking actuator 92 assists the force based on the input from the brake pedal 91 and transmits the force to the master cylinder MC.
  • the force assisted by the braking actuator 92 and output to the master cylinder MC is called "pushing pressure".
  • the braking actuator 92 includes an input shaft 93 that is displaced by transmitting a force from the brake pedal 91.
  • the braking actuator 92 includes an output shaft 97 for pressing the piston of the master cylinder MC.
  • the output shaft 97 is arranged on the axis on which the input shaft 93 is displaced.
  • An elastic body 94 and an assist mechanism 95 are interposed between the input shaft 93 and the output shaft 97 in this order.
  • the assist mechanism 95 has a motor 96. The position of the assist mechanism 95 is displaced relative to the input shaft 93 according to the driving amount of the motor 96.
  • the electric booster 100 includes a control device 10 that controls the braking actuator 92.
  • the control device 10 controls the motor 96 to control the braking actuator 92.
  • the displacement amount of the output shaft 97 with respect to the displacement amount of the input shaft 93 can be adjusted. That is, the magnitude of the output from the electric booster 100 can be changed with respect to the magnitude of the input to the electric booster 100 through the control of the motor 96. Details of the processing executed by the control device 10 will be described later.
  • the electric booster 100 includes a stroke sensor 81 that detects the position of the input shaft 93.
  • the electric booster 100 includes a rotation angle sensor 83 that detects the rotation angle of the motor 96.
  • the detection signals from the stroke sensor 81 and the rotation angle sensor 83 are input to the control device 10.
  • the vehicle is set with a plurality of driving modes having different control modes such as an engine as a power source and a braking device.
  • the vehicle is controlled based on the driving mode selected from the plurality of driving modes.
  • the vehicle includes a mode selection unit 88 for selecting a traveling mode.
  • the mode selection unit 88 selects the traveling mode of the vehicle based on, for example, a signal from a switch operated by the driver of the vehicle. Alternatively, the mode selection unit 88 selects the traveling mode of the vehicle according to the traveling state of the vehicle.
  • the travel mode information selected by the mode selection unit 88 is input to the control device 10.
  • the control device 10 can send and receive information to and from other control devices of the vehicle.
  • FIG. 2 shows a part of the electric booster 100. The details of the process executed by the control device 10 will be described with reference to FIG.
  • FIG. 2 shows a functional unit included in the control device 10.
  • the control device 10 includes an operation displacement acquisition unit 11, a target rotation angle calculation unit 12, an assist mechanism control unit 13, and a rotation angle acquisition unit 14 as functional units. Further, the control device 10 includes a vehicle speed acquisition unit 15 which is a traveling state acquisition unit. The vehicle speed acquisition unit 15 acquires the vehicle speed VS of the vehicle.
  • the operation displacement acquisition unit 11 acquires the operation displacement amount Sp of the brake pedal 91 based on the signal from the stroke sensor 81.
  • the rotation angle acquisition unit 14 acquires the rotation angle Ma of the motor 96 based on the signal from the rotation angle sensor 83.
  • the target rotation angle calculation unit 12 calculates the target rotation angle Mt, which is the target value of the rotation angle Ma of the motor 96, based on the operation displacement amount Sp and the vehicle speed VS.
  • the assist mechanism control unit 13 controls the motor 96 based on the target rotation angle Mt. As a result, the input is assisted, and the pressing force is output from the output shaft 97 to the master cylinder MC.
  • the assist mechanism control unit 13 performs feedback control based on the target rotation angle Mt and the rotation angle Ma so that the rotation angle Ma follows the target rotation angle Mt.
  • the target rotation angle calculation unit 12 will be described in detail with reference to FIG.
  • the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt.
  • the target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp so as to satisfy the relationship.
  • the relationship between the operation displacement amount Sp and the target rotation angle Mt included in the target rotation angle calculation unit 12 is the relationship when the operation displacement amount Sp is increasing and the relationship when the operation displacement amount Sp is decreasing.
  • the increasing relationship is shown as the working stroke line StI.
  • the relationship at the time of decrease is shown as the release stroke line StD.
  • the increasing relationship and the decreasing relationship are such that the target rotation angle Mt increases as the operating displacement amount Sp increases.
  • the relationship at the time of decrease is a relationship in which the ratio of the target rotation angle Mt to the operating displacement amount Sp increasing is larger than the relationship at the time of increase.
  • the target rotation angle calculation unit 12 calculates the target rotation angle Mt according to the increasing relationship indicated by the operating stroke line StI.
  • the target rotation angle calculation unit 12 calculates the target rotation angle Mt according to the release stroke line StD indicated by the decrease relationship.
  • the target rotation angle Mt is calculated according to the operating stroke line StI while the amount of depression of the brake pedal 91 is increasing. While the amount of depression of the brake pedal 91 is decreasing in order to release the applied braking force, the target rotation angle Mt is calculated according to the release stroke line StD.
  • the target rotation angle Mt calculated by the target rotation angle calculation unit 12 is between the time when the operation displacement amount Sp is increasing and the time when the operation displacement amount Sp is decreasing.
  • the value of is different.
  • the target rotation angle Mt calculated according to the release stroke line StD increases as compared with the target rotation angle Mt calculated according to the operation stroke line StI. ..
  • the electric booster 100 has a larger target rotation angle Mt with respect to the operating displacement amount Sp when the braking force is reduced than when the braking force is increased.
  • the operation displacement amount Sp required for the release stroke line StD is smaller than the operation displacement amount Sp required for the operation stroke line StI. ..
  • the target rotation angle Mt is maintained until the operation displacement amount Sp decreases by a specified amount.
  • the holding of the target rotation angle Mt is continued until the straight line indicating the constant target rotation angle Mt intersects the release stroke line StD.
  • the difference between the point on the operating stroke line StI and the point on the release stroke line StD according to the magnitude of the target rotation angle Mt when the target rotation angle Mt is held is the specified amount of the operating displacement amount Sp.
  • the difference between the operating stroke line StI and the release stroke line StD in the horizontal axis direction is the hysteresis width.
  • the specified amount of the operation displacement amount Sp at the time of switching the pedal operation is equal to the hysteresis width at the time of switching the pedal operation.
  • the hysteresis width is proportional to the operating displacement amount Sp. Therefore, as the operation displacement amount Sp when the depression amount of the brake pedal 91 is switched from the increase to the decrease increases, the hysteresis width at the time of switching the pedal operation increases.
  • the hysteresis width is also referred to as "the difference between the operating displacement amount corresponding to the specified pressing force determined from the increasing relationship and the operating displacement amount corresponding to the specified pressing force determined from the decreasing relationship". I can say.
  • the electric booster 100 calculates the target rotation angle Mt based on the operating displacement amount Sp. At this time, the electric booster 100 calculates the target rotation angle Mt so that the operation displacement amount Sp and the target rotation angle Mt satisfy the relationship indicated by the operating stroke line StI or the release stroke line StD. The electric booster 100 controls the drive of the motor 96 using the target rotation angle Mt, and outputs a pressing force to the master cylinder MC.
  • the target rotation angle calculation unit 12 stores the release stroke line StD indicated by the reduction relationship. As shown in FIG. 2, in this release stroke line StD, as the vehicle speed VS increases, the target rotation angle Mt with respect to the operating displacement amount Sp increases. That is, the electric booster 100 adjusts the release stroke line StD as a relation at the time of decrease so that the hysteresis width increases as the vehicle speed VS as the traveling state of the vehicle increases. The electric booster 100 controls the motor 96 based on the release stroke line StD adjusted according to the vehicle speed VS.
  • the target rotation angle calculation unit 12 may change the release stroke line StD indicating the relationship at the time of decrease according to the vehicle speed VS when the operation of the brake pedal 91 is started by the driver. Further, the target rotation angle calculation unit 12 may change the release stroke line StD according to the vehicle speed VS at the time when the increase of the operation displacement amount Sp ends.
  • the hysteresis width changes according to the traveling state. This is because the target rotation angle calculation unit 12 functions as an adjustment unit that adjusts at least one of the increase time relationship and the decrease time relationship. Further, the target rotation angle calculation unit 12 also functions as a storage unit in which the hysteresis characteristic for adjusting the output pressing force is stored.
  • FIG. 3 shows the first release stroke line StD1 when the vehicle speed VS is the first vehicle speed VS1 as the release stroke line StD.
  • the second release stroke line StD2 when the vehicle speed VS is the second vehicle speed VS2 which is larger than the first vehicle speed VS1 is shown.
  • the target rotation angle Mt with respect to the operation displacement amount Sp increases as compared with the first release stroke line StD1.
  • the switching hiss width HS shown in FIG. 3 is the hysteresis width at the time of switching the pedal operation in the case of the second vehicle speed VS2.
  • the hysteresis width at the time of switching the pedal operation in the case of the first vehicle speed VS1 is smaller than the hysteresis width HS at the time of switching in the case of the second vehicle speed VS2.
  • the operating stroke line StI is different from the first release stroke line StD1.
  • the operating stroke line StI is also different from the second release stroke line StD2.
  • the target rotation angle Mt is calculated using the operating stroke line StI and the release stroke line StD.
  • the electric booster 100 controls the drive of the motor 96 by using the target rotation angle Mt. According to this, the hysteresis characteristic of the electric booster 100 can be changed by controlling the motor 96. Thereby, the hysteresis characteristic of the electric booster 100 can be changed while the vehicle is running.
  • the electric booster 100 adjusts the release stroke line StD as a relation at the time of decrease so that the hysteresis width increases as the vehicle speed VS increases.
  • the larger the vehicle speed VS the easier it is for the target rotation angle Mt to decrease with respect to the decrease in the operating displacement amount Sp. Therefore, when the operating displacement amount Sp is reduced, the amount of restoration of the deformation of the elastic body 94 sandwiched between the input shaft 93 and the output shaft 97 tends to increase. This makes it easier for the brake pedal 91 to be pushed back toward the driver.
  • the braking device provided with the electric booster 100, when the operating displacement amount Sp is decreasing, if the amount of change in the operating displacement amount Sp is the same, the driver presses the brake pedal 91 to increase the vehicle speed VS. Shows an increase in operating force.
  • the vehicle speed VS is high, the sensitivity of the braking force to changes in the operation by the driver can be lowered, and when the vehicle speed VS is high, the driver can easily operate the vehicle.
  • the target rotation angle calculation unit 12 changes the deceleration relationship so that the hysteresis width changes according to the vehicle speed VS as the running state of the vehicle.
  • the running state of the vehicle is not limited to the vehicle speed VS.
  • the deceleration relationship can be changed according to the road surface condition on which the vehicle travels.
  • the control device includes a road surface information acquisition unit 16 which is a traveling state acquisition unit.
  • the road surface information acquisition unit 16 acquires the friction coefficient ⁇ of the road surface on which the vehicle is traveling.
  • the friction coefficient ⁇ is input to the target rotation angle calculation unit 12.
  • the example shown in FIG. 4 differs from the first embodiment in that the target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp and the friction coefficient ⁇ .
  • Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
  • the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt.
  • the increasing relationship is shown as the working stroke line StI.
  • An example of the relationship at the time of decrease when the friction coefficient ⁇ is large is shown by a solid line as the first release stroke line StD11.
  • the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the first release stroke line StD11 is displayed as the hiss width HS at the time of switching.
  • an example of the relationship at the time of decrease when the friction coefficient ⁇ is small is shown by a alternate long and short dash line as the second release stroke line StD12.
  • the hysteresis width at the time of switching the pedal operation when the reduction relation is shown as the second release stroke line StD12 is smaller than the switching hiss width HS when the reduction relation is shown as the first release stroke line StD11.
  • the target rotation angle calculation unit 12 adjusts the relationship at the time of decrease so that the hysteresis width decreases as the friction coefficient ⁇ decreases.
  • the pressing force with respect to the operating displacement amount Sp decreases as the friction coefficient ⁇ decreases. That is, when the vehicle is traveling on a road surface having a small friction coefficient ⁇ , when the force for operating the brake pedal 91 is reduced, it is possible to start the reduction of the braking force of the vehicle at an early stage. This makes it easier for the driver to operate when traveling on a road surface having a small friction coefficient ⁇ .
  • the target rotation angle calculation unit 12 changes the deceleration relationship so that the hysteresis width changes according to the vehicle speed VS during traveling.
  • the running state of the vehicle is not limited to the vehicle speed VS.
  • the deceleration relationship can be changed according to the turning state of the vehicle.
  • the steering angle ⁇ s is input to the target rotation angle calculation unit 12 from the steering control unit 70 of the vehicle.
  • the steering control unit 70 is a control unit having a function of controlling the steering device of the vehicle.
  • the steering angle ⁇ s is an operating angle of the steering wheel constituting the steering device.
  • the example shown in FIG. 5 differs from the first embodiment in that the target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp and the steer angle ⁇ s.
  • Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
  • the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt.
  • the increasing relationship is shown as the working stroke line StI.
  • An example of the relationship at the time of decrease when the steering angle ⁇ s is small is shown by a solid line as the first release stroke line StD21.
  • the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the first release stroke line StD21 is displayed as the hiss width HS at the time of switching.
  • an example of the relationship at the time of decrease when the steering angle ⁇ s is large is shown by a alternate long and short dash line as the second release stroke line StD22.
  • the hysteresis width at the time of switching the pedal operation when the reduction relation is shown as the second release stroke line StD22 is smaller than the switching hiss width HS when the reduction relation is shown as the first release stroke line StD21.
  • the target rotation angle calculation unit 12 adjusts the relationship at the time of decrease so that the hysteresis width in which the steering angle ⁇ s increases decreases.
  • the pressing force with respect to the operating displacement amount Sp decreases as the steering angle ⁇ s increases. That is, when the steering angle ⁇ s is large, when the force for operating the brake pedal 91 by the driver is reduced, it is possible to start the reduction of the braking force at an early stage. This makes it easier for the driver to operate the vehicle when the steering angle of the vehicle is large.
  • the steering angle ⁇ s, the lateral acceleration of the vehicle, or the yaw rate of the vehicle can be used as the turning state used as the running state of the vehicle. Even when the lateral acceleration or yaw rate is used, it is preferable to adjust the relationship at the time of decrease so that the hysteresis width decreases as the lateral acceleration or yaw rate increases, as in the case of the steering angle ⁇ s.
  • the electric booster of the second embodiment will be described with reference to FIG.
  • the electric booster of the second embodiment is different from the electric booster 100 of the first embodiment in that the target rotation angle Mt is calculated so as to show the hysteresis characteristic corresponding to the traveling mode of the vehicle.
  • Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
  • the first mode MD1 and the second mode MD2 are set as the traveling modes in the vehicle.
  • the mode selection unit 88 selects the first mode MD1 or the second mode MD2.
  • Information indicating a traveling mode selected by the mode selection unit 88 is input to the target rotation angle calculation unit 12.
  • the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt.
  • the increasing relationship is shown as the operating stroke line StI.
  • the decreasing relationship corresponding to the first mode MD1 is shown by a solid line as the first release stroke line StD31.
  • the decreasing relationship corresponding to the second mode MD2 is indicated by a alternate long and short dash line as the second release stroke line StD32.
  • the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the second release stroke line StD32 is displayed as the hiss width HS at the time of switching.
  • the hysteresis width when the decreasing relationship is shown as the first release stroke line StD31 is smaller than the switching hiss width HS when the decreasing relationship is shown as the second release stroke line StD32.
  • the target rotation angle calculation unit 12 calculates the target rotation angle Mt so as to satisfy the decreasing relationship according to the selected traveling mode.
  • the target rotation angle calculation unit 12 is a "adjusting unit that adjusts at least one of the increasing relationship and the decreasing relationship so that the hysteresis width becomes a size corresponding to the selected traveling mode". is there.
  • the target rotation angle calculation unit 12 is a “storage unit that stores the hysteresis characteristics of the electric booster for each traveling mode”.
  • the target rotation angle Mt is calculated so as to satisfy the decreasing relationship corresponding to each traveling mode, and the motor 96 is controlled.
  • the hysteresis characteristic can be changed by controlling the motor 96, as in the electric booster 100 of the first embodiment. It is also possible to change the hysteresis characteristic when the traveling mode is switched.
  • This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the target rotation angle calculation unit 12 stores the same number of reduction relationships as the traveling modes set in the vehicle. That is, when three or more traveling modes are set, it is preferable that three or more reduction relationships are similarly stored.
  • the electric booster of the third embodiment will be described with reference to FIG. 7.
  • the target rotation angle Mt is calculated so as to show the hysteresis characteristic corresponding to the traveling mode of the vehicle, as in the second embodiment.
  • the electric booster of the third embodiment is different from the second embodiment in that the hysteresis width is adjusted not only when the pedal operation is switched but also according to the characteristics of the traveling mode of the vehicle.
  • Other configurations are the same as those of the second embodiment. The description of the configuration common to the first embodiment and the second embodiment will be omitted.
  • the vehicle has a third mode MD3 and a fourth mode MD4 set as traveling modes.
  • the third mode MD3 is a sporty mode suitable for traveling in which sudden acceleration and sudden deceleration are repeated.
  • the fourth mode MD4 is a luxury mode suitable for traveling that reduces vibration given to passengers.
  • the mode selection unit 88 selects the third mode MD3 or the fourth mode MD4. Information indicating a traveling mode selected by the mode selection unit 88 is input to the target rotation angle calculation unit 12.
  • the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt.
  • the increasing relationship is shown as the working stroke line StI.
  • the decreasing relationship corresponding to the third mode MD3 is shown by a solid line as the first release stroke line StD41.
  • the decreasing relationship corresponding to the fourth mode MD4 is indicated by a alternate long and short dash line as the second release stroke line StD42.
  • the hysteresis width at the time of switching the pedal operation when the decreasing relation is shown as the first release stroke line StD41 is equal to the hysteresis width at the time of switching the pedal operation when the decreasing relation is shown as the second release stroke line StD42. ..
  • the target rotation angle Mt decreases as the operating displacement amount Sp decreases. Further, in the region where the operation displacement amount Sp is reduced and the operation displacement amount Sp is small, the decrease gradient of the target rotation angle Mt with respect to the decrease in the operation displacement amount Sp is smaller than when the operation displacement amount Sp starts to decrease.
  • the target rotation angle Mt decreases as the operating displacement amount Sp decreases, as in the decreasing relationship indicated by the first release stroke line StD41.
  • the decrease gradient of the target rotation angle Mt with respect to the decrease in the operation displacement amount Sp becomes larger than when the operation displacement amount Sp starts to decrease.
  • the decreasing gradient of the target rotation angle Mt when the operation displacement amount Sp starts to decrease is smaller than that in the case of the first release stroke line StD41.
  • the second release stroke line StD42 shows a relationship in which the hysteresis width is larger than that of the case of the first release stroke line StD41.
  • the target rotation angle Mt is calculated so as to satisfy the reduction time relationship corresponding to the selected traveling mode, and the motor 96 is controlled.
  • the operation displacement amount when the operation displacement amount Sp starts to decrease as shown as the first release stroke line StD41.
  • the decrease gradient in which the target rotation angle Mt decreases is large with respect to the decrease in Sp.
  • the hysteresis width decreases in both the region where the operating displacement amount Sp is small and the region where the operating displacement amount Sp is large. Therefore, even when sudden acceleration or sudden deceleration is repeated, the driver's operation is easily reflected in the pressing force.
  • the operation displacement when the operation displacement amount Sp starts to decrease The decrease gradient in which the target rotation angle Mt decreases with respect to the decrease in the amount Sp is small.
  • the hysteresis width increases regardless of the operating displacement amount Sp. For this reason, the driver's operation is less likely to be reflected in the pressing force, and the sudden change in the behavior of the vehicle is suppressed.
  • the hysteresis characteristic can be changed according to the characteristic of the selected traveling mode.
  • This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • the hysteresis width at the time of switching the pedal operation of the third mode MD3 and the hysteresis width at the time of switching the pedal operation of the fourth mode MD4 are equal. Similar to the second embodiment, the hysteresis width at the time of switching the pedal operation may be changed according to the traveling mode.
  • the relationship between the operation displacement amount Sp and the target rotation angle Mt as shown in FIG. 8 may be stored in the target rotation angle calculation unit 12.
  • the relationship at the time of decrease corresponding to the third mode MD3 is the first release stroke line StD51 shown by the solid line.
  • the decreasing relationship corresponding to the fourth mode MD4 is the second release stroke line StD52 shown by the alternate long and short dash line.
  • the hysteresis width at the time of switching the pedal operation when the decreasing relationship is indicated by the first release stroke line StD51 is larger than the hysteresis width at the time of switching the pedal operation when the decreasing relationship is indicated by the second release stroke line StD52. large.
  • the decrease gradient is large in the case of the first release stroke line StD51. Further, when the operation displacement amount Sp starts to decrease, the decrease gradient is small in the case of the second release stroke line StD52.
  • the hysteresis characteristic can be changed according to the characteristic of the selected traveling mode as in the third embodiment.
  • the operation displacement amount Sp is acquired by the detection signal from the stroke sensor 81.
  • the configuration for acquiring the operating displacement amount Sp is not limited to this.
  • the electric booster may include a relative displacement sensor capable of detecting the position of the input shaft 93 relative to the position of the assist mechanism 95.
  • the rotation angle sensor 83 acquires the position of the assist mechanism 95.
  • the relative displacement sensor acquires the relative position of the input shaft 93 with respect to the assist mechanism 95. Based on these acquired position information, the operating displacement amount Sp can be obtained. In this case, the operation displacement amount Sp can be obtained even if the electric booster does not include the stroke sensor 81.
  • the electric booster 100 including the braking actuator 92 has been exemplified.
  • the braking actuator is not limited to the configuration shown in FIG. 1, and includes an assist mechanism that assists the input operating force according to the driving amount of the motor.
  • the configuration may be such that the operating force assisted by the assist mechanism is output as a pressing force.
  • the assist mechanism driven by the motor and the input shaft may each press the elastic body.
  • the brake pedal 91 is exemplified as the braking operation member.
  • the braking operation member is not limited to the brake pedal 91.
  • it may be a lever or the like for performing a braking operation.

Abstract

This electric booster device is provided with a brake actuator and a brake actuator control device. The brake actuator outputs, as pressing force, input based on operation of a brake operation member, the output assisted by drive from a motor 96. The control device is provided with an operation displacement acquisition unit 11 that acquires an operation displacement quantity Sp based on the operation of the brake operation member. The control device is provided with a target rotational angle calculation unit 12 that calculates a target rotational angle Mt. The control device is provided with an assist mechanism control unit 13 that causes the motor 96 to drive on the basis of the target rotational angle Mt. The target rotational angle calculation unit 12 calculates the target rotational angle Mt so that the relationship between the operation displacement quantity Sp and the pressing force when the operation displacement quantity Sp is increasing and the relationship between the operation displacement quantity Sp and the pressing force when the operation displacement quantity Sp is decreasing differ from one another.

Description

車両の電動倍力装置Vehicle electric booster
 本開示は、車両の電動倍力装置に関する。 This disclosure relates to an electric booster of a vehicle.
 特許文献1に開示されているように、制動操作部材からの入力に基づいた力をモータの駆動によって助勢して出力する電動倍力装置が知られている。特許文献1に開示されている電動倍力装置では、制動操作部材からの入力に基づいた力を増大させているときと入力に基づいた力を減少させているときとで、出力に基づいた力の大きさを異ならせるようにしている。このヒステリシス特性は、電動倍力装置の構成部品の大きさ、および互いに隣り合う各構成部品の位置関係などによって、決まる。 As disclosed in Patent Document 1, there is known an electric booster that assists and outputs a force based on an input from a braking operation member by driving a motor. In the electric booster disclosed in Patent Document 1, the force based on the output is increased when the force based on the input from the braking operation member is increased and when the force based on the input is decreased. I try to make the size of. This hysteresis characteristic is determined by the size of the components of the electric booster and the positional relationship of the components adjacent to each other.
国際公開第2011/099277号International Publication No. 2011/099277
 特許文献1に開示されている電動倍力装置のヒステリシス特性は、電動倍力装置の製造時に決定される。このため、車両の走行時にヒステリシス特性を変更することができない。 The hysteresis characteristic of the electric booster disclosed in Patent Document 1 is determined at the time of manufacturing the electric booster. Therefore, the hysteresis characteristic cannot be changed when the vehicle is running.
 上記課題を解決するための車両の電動倍力装置は、制動操作部材を介して操作力が入力される入力軸と、該入力軸に入力された操作力をモータの駆動量に応じて助勢するアシスト機構と、該アシスト機構に連結されているとともに当該アシスト機構によって助勢された操作力を押圧力として出力する出力軸と、を有する制動アクチュエータと、前記制動アクチュエータの制御装置と、を備え、前記制御装置は、前記制動操作部材の操作に基づいた前記入力軸の変位量である操作変位量を取得する操作変位取得部と、前記操作変位量に応じて前記モータを駆動させるアシスト機構制御部と、を有し、前記アシスト機構制御部は、前記操作変位量が増大しているときにおける当該操作変位量と前記押圧力との関係と、前記操作変位量が減少しているときにおける当該操作変位量と前記押圧力との関係と、を互いに異ならせるように、前記モータを制御することをその要旨とする。 The electric booster of the vehicle for solving the above problems assists the input shaft into which the operating force is input via the braking operation member and the operating force input to the input shaft according to the driving amount of the motor. A braking actuator having an assist mechanism, an output shaft connected to the assist mechanism and outputting an operating force assisted by the assist mechanism as a pressing force, and a control device for the braking actuator are provided. The control device includes an operation displacement acquisition unit that acquires an operation displacement amount that is a displacement amount of the input shaft based on the operation of the braking operation member, and an assist mechanism control unit that drives the motor according to the operation displacement amount. The assist mechanism control unit has a relationship between the operating displacement amount and the pressing force when the operating displacement amount is increasing, and the operating displacement when the operating displacement amount is decreasing. The gist is to control the motor so that the relationship between the amount and the pressing force is different from each other.
 上記構成によれば、モータの制御によって電動倍力装置のヒステリシス特性を変更できる。これによって、たとえば、車両が走行中に電動倍力装置のヒステリシス特性を変更することができる。 According to the above configuration, the hysteresis characteristic of the electric booster can be changed by controlling the motor. Thereby, for example, the hysteresis characteristic of the electric booster can be changed while the vehicle is traveling.
第1実施形態の車両の電動倍力装置を備える制動装置を示す模式図。The schematic diagram which shows the braking device which includes the electric booster of the vehicle of 1st Embodiment. 第1実施形態の車両の電動倍力装置と、同電動倍力装置が備える制御装置を示すブロック図。The block diagram which shows the electric booster of the vehicle of 1st Embodiment, and the control device provided in the electric booster. 第1実施形態の車両の電動倍力装置における調整部による作用を説明する図。The figure explaining the operation by the adjustment part in the electric booster of the vehicle of 1st Embodiment. 車両の電動倍力装置の変更例を示すブロック図。The block diagram which shows the modification example of the electric booster of a vehicle. 車両の電動倍力装置の他の変更例を示すブロック図。The block diagram which shows the other modification example of the electric booster of a vehicle. 第2実施形態の車両の電動倍力装置を示すブロック図。The block diagram which shows the electric booster of the vehicle of 2nd Embodiment. 第3実施形態の車両の電動倍力装置を示すブロック図。The block diagram which shows the electric booster of the vehicle of 3rd Embodiment. 車両の電動倍力装置の変更例を示すブロック図。The block diagram which shows the modification example of the electric booster of a vehicle.
 (第1実施形態)
 以下、第1実施形態の車両の電動倍力装置について、図1~図3を参照して説明する。
 図1は、電動倍力装置100を備える車両の制動装置を示している。制動装置は、制動操作部材としてのブレーキペダル91と、マスタシリンダMCと、ホイールシリンダWCと、リザーバタンク99と、を備えている。ホイールシリンダWCは、車両の各車輪89に設けられている。ブレーキペダル91が操作されると、リザーバタンク99からマスタシリンダMCに供給されるブレーキ液がマスタシリンダMCから、ホイールシリンダWCに流入する。このホイールシリンダWCへのブレーキ液の流入により、ホイールシリンダWC内の液圧が増加する。ホイールシリンダWC内の液圧が増加することによって、制動力が車輪89に付与される。
(First Embodiment)
Hereinafter, the electric booster of the vehicle of the first embodiment will be described with reference to FIGS. 1 to 3.
FIG. 1 shows a vehicle braking device including the electric booster 100. The braking device includes a brake pedal 91 as a braking operation member, a master cylinder MC, a wheel cylinder WC, and a reservoir tank 99. Wheel cylinders WC are provided on each wheel 89 of the vehicle. When the brake pedal 91 is operated, the brake fluid supplied from the reservoir tank 99 to the master cylinder MC flows from the master cylinder MC into the wheel cylinder WC. The inflow of the brake fluid into the wheel cylinder WC increases the hydraulic pressure in the wheel cylinder WC. Braking force is applied to the wheels 89 by increasing the hydraulic pressure in the wheel cylinder WC.
 電動倍力装置100は、制動アクチュエータ92を備えている。制動アクチュエータ92は、ブレーキペダル91からの入力に基づいた力を助勢してマスタシリンダMCに伝達する。制動アクチュエータ92によって助勢されてマスタシリンダMCに出力される力のことを「押圧力」という。制動アクチュエータ92は、ブレーキペダル91からの力が伝達されることによって変位する入力軸93を備えている。制動アクチュエータ92は、マスタシリンダMCのピストンを押圧するための出力軸97を備えている。出力軸97は、入力軸93が変位する軸線上に配置されている。入力軸93と出力軸97との間には、弾性体94とアシスト機構95とが順に介在している。アシスト機構95は、モータ96を有している。アシスト機構95は、モータ96の駆動量に応じて入力軸93に対する相対位置が変位する。 The electric booster 100 includes a braking actuator 92. The braking actuator 92 assists the force based on the input from the brake pedal 91 and transmits the force to the master cylinder MC. The force assisted by the braking actuator 92 and output to the master cylinder MC is called "pushing pressure". The braking actuator 92 includes an input shaft 93 that is displaced by transmitting a force from the brake pedal 91. The braking actuator 92 includes an output shaft 97 for pressing the piston of the master cylinder MC. The output shaft 97 is arranged on the axis on which the input shaft 93 is displaced. An elastic body 94 and an assist mechanism 95 are interposed between the input shaft 93 and the output shaft 97 in this order. The assist mechanism 95 has a motor 96. The position of the assist mechanism 95 is displaced relative to the input shaft 93 according to the driving amount of the motor 96.
 電動倍力装置100は、制動アクチュエータ92を制御する制御装置10を備えている。制御装置10は、モータ96を制御して制動アクチュエータ92を制御する。これによって、入力軸93の変位量に対する出力軸97の変位量を調整することができる。すなわち、モータ96の制御を介して、電動倍力装置100への入力の大きさに対する電動倍力装置100からの出力の大きさを変更することができる。制御装置10が実行する処理の詳細は後述する。 The electric booster 100 includes a control device 10 that controls the braking actuator 92. The control device 10 controls the motor 96 to control the braking actuator 92. Thereby, the displacement amount of the output shaft 97 with respect to the displacement amount of the input shaft 93 can be adjusted. That is, the magnitude of the output from the electric booster 100 can be changed with respect to the magnitude of the input to the electric booster 100 through the control of the motor 96. Details of the processing executed by the control device 10 will be described later.
 電動倍力装置100は、入力軸93の位置を検出するストロークセンサ81を備えている。電動倍力装置100は、モータ96の回転角を検出する回転角センサ83を備えている。ストロークセンサ81および回転角センサ83からの検出信号は、制御装置10に入力される。 The electric booster 100 includes a stroke sensor 81 that detects the position of the input shaft 93. The electric booster 100 includes a rotation angle sensor 83 that detects the rotation angle of the motor 96. The detection signals from the stroke sensor 81 and the rotation angle sensor 83 are input to the control device 10.
 車両には、動力源である機関および制動装置等の制御態様が異なる複数の走行モードが設定されている。車両は、複数の走行モードのうち選択されている走行モードに基づいて制御される。車両は、走行モードを選択するモード選択部88を備えている。モード選択部88は、たとえば、車両の運転者が操作するスイッチからの信号に基づいて車両の走行モードを選択する。または、モード選択部88は、車両の走行状態に応じて車両の走行モードを選択する。モード選択部88によって選択されている走行モードの情報は、制御装置10に入力される。 The vehicle is set with a plurality of driving modes having different control modes such as an engine as a power source and a braking device. The vehicle is controlled based on the driving mode selected from the plurality of driving modes. The vehicle includes a mode selection unit 88 for selecting a traveling mode. The mode selection unit 88 selects the traveling mode of the vehicle based on, for example, a signal from a switch operated by the driver of the vehicle. Alternatively, the mode selection unit 88 selects the traveling mode of the vehicle according to the traveling state of the vehicle. The travel mode information selected by the mode selection unit 88 is input to the control device 10.
 制御装置10は、車両が有する他の制御装置との間で情報の送受信が可能である。
 図2は、電動倍力装置100の一部を示している。図2を用いて制御装置10が実行する処理の詳細について説明する。
The control device 10 can send and receive information to and from other control devices of the vehicle.
FIG. 2 shows a part of the electric booster 100. The details of the process executed by the control device 10 will be described with reference to FIG.
 図2には、制御装置10が備える機能部を示している。制御装置10は、機能部として、操作変位取得部11と、目標回転角算出部12と、アシスト機構制御部13と、回転角取得部14と、を備えている。さらに、制御装置10は、走行状態取得部である車速取得部15を備えている。車速取得部15は、車両の車速VSを取得する。 FIG. 2 shows a functional unit included in the control device 10. The control device 10 includes an operation displacement acquisition unit 11, a target rotation angle calculation unit 12, an assist mechanism control unit 13, and a rotation angle acquisition unit 14 as functional units. Further, the control device 10 includes a vehicle speed acquisition unit 15 which is a traveling state acquisition unit. The vehicle speed acquisition unit 15 acquires the vehicle speed VS of the vehicle.
 操作変位取得部11は、ブレーキペダル91の操作変位量Spをストロークセンサ81からの信号に基づいて取得する。
 回転角取得部14は、モータ96の回転角Maを回転角センサ83からの信号に基づいて取得する。
The operation displacement acquisition unit 11 acquires the operation displacement amount Sp of the brake pedal 91 based on the signal from the stroke sensor 81.
The rotation angle acquisition unit 14 acquires the rotation angle Ma of the motor 96 based on the signal from the rotation angle sensor 83.
 目標回転角算出部12は、操作変位量Spと車速VSとに基づいて、モータ96の回転角Maの目標値である目標回転角Mtを算出する。
 アシスト機構制御部13は、目標回転角Mtに基づいてモータ96の制御を行う。これにより、入力が助勢され、押圧力が出力軸97からマスタシリンダMCに出力される。アシスト機構制御部13は、目標回転角Mtと回転角Maとに基づいて、回転角Maが目標回転角Mtに追従するようにフィードバック制御を行う。
The target rotation angle calculation unit 12 calculates the target rotation angle Mt, which is the target value of the rotation angle Ma of the motor 96, based on the operation displacement amount Sp and the vehicle speed VS.
The assist mechanism control unit 13 controls the motor 96 based on the target rotation angle Mt. As a result, the input is assisted, and the pressing force is output from the output shaft 97 to the master cylinder MC. The assist mechanism control unit 13 performs feedback control based on the target rotation angle Mt and the rotation angle Ma so that the rotation angle Ma follows the target rotation angle Mt.
 図2を用いて目標回転角算出部12について詳述する。目標回転角算出部12には、操作変位量Spと目標回転角Mtとの関係が記憶されている。目標回転角算出部12は、当該関係を満たすように操作変位量Spに基づいて目標回転角Mtを算出する。 The target rotation angle calculation unit 12 will be described in detail with reference to FIG. The target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt. The target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp so as to satisfy the relationship.
 目標回転角算出部12が備える操作変位量Spと目標回転角Mtとの関係には、操作変位量Spが増大しているときにおける増大時関係と、操作変位量Spが減少しているときにおける減少時関係と、が含まれている。図2では、増大時関係は、作動ストローク線StIとして示している。減少時関係は、解除ストローク線StDとして示している。作動ストローク線StIおよび解除ストローク線StDが示すように、増大時関係および減少時関係は、操作変位量Spが増加するほど目標回転角Mtが増加する関係である。さらに、減少時関係は、増大時関係と比較して、操作変位量Spに対する目標回転角Mtが増加する割合が大きい関係である。 The relationship between the operation displacement amount Sp and the target rotation angle Mt included in the target rotation angle calculation unit 12 is the relationship when the operation displacement amount Sp is increasing and the relationship when the operation displacement amount Sp is decreasing. The relationship at the time of decrease and is included. In FIG. 2, the increasing relationship is shown as the working stroke line StI. The relationship at the time of decrease is shown as the release stroke line StD. As shown by the operating stroke line StI and the release stroke line StD, the increasing relationship and the decreasing relationship are such that the target rotation angle Mt increases as the operating displacement amount Sp increases. Further, the relationship at the time of decrease is a relationship in which the ratio of the target rotation angle Mt to the operating displacement amount Sp increasing is larger than the relationship at the time of increase.
 目標回転角算出部12は、操作変位量Spが増大しているときは、作動ストローク線StIが示す増大時関係にしたがって、目標回転角Mtを算出する。目標回転角算出部12は、操作変位量Spが減少しているときは、減少時関係が示す解除ストローク線StDにしたがって、目標回転角Mtを算出する。 When the operating displacement amount Sp is increasing, the target rotation angle calculation unit 12 calculates the target rotation angle Mt according to the increasing relationship indicated by the operating stroke line StI. When the operation displacement amount Sp is decreasing, the target rotation angle calculation unit 12 calculates the target rotation angle Mt according to the release stroke line StD indicated by the decrease relationship.
 換言すれば、ブレーキペダル91の踏み込み量が増大している間では、作動ストローク線StIにしたがって目標回転角Mtが算出される。付与された制動力を解除するためにブレーキペダル91の踏み込み量が減少している間では、解除ストローク線StDにしたがって目標回転角Mtが算出される。 In other words, the target rotation angle Mt is calculated according to the operating stroke line StI while the amount of depression of the brake pedal 91 is increasing. While the amount of depression of the brake pedal 91 is decreasing in order to release the applied braking force, the target rotation angle Mt is calculated according to the release stroke line StD.
 操作変位量Spが同じ値である場合でも、操作変位量Spが増大している間と操作変位量Spが減少している間とでは、目標回転角算出部12により算出される目標回転角Mtの値が異なる。具体的には、操作変位量Spが同じ値であるとき、解除ストローク線StDにしたがって算出される目標回転角Mtは、作動ストローク線StIにしたがって算出される目標回転角Mtと比較して増加する。電動倍力装置100は、ヒステリシス特性として、制動力を減少させる場合の方が制動力を増大させる場合よりも操作変位量Spに対する目標回転角Mtが大きい。換言すれば、目標回転角Mtとしてある値を算出する場合に、解除ストローク線StDにおいて必要とされる操作変位量Spは、作動ストローク線StIにおいて必要とされる操作変位量Spと比較して小さい。 Even if the operation displacement amount Sp is the same value, the target rotation angle Mt calculated by the target rotation angle calculation unit 12 is between the time when the operation displacement amount Sp is increasing and the time when the operation displacement amount Sp is decreasing. The value of is different. Specifically, when the operation displacement amount Sp is the same value, the target rotation angle Mt calculated according to the release stroke line StD increases as compared with the target rotation angle Mt calculated according to the operation stroke line StI. .. As a hysteresis characteristic, the electric booster 100 has a larger target rotation angle Mt with respect to the operating displacement amount Sp when the braking force is reduced than when the braking force is increased. In other words, when calculating a certain value as the target rotation angle Mt, the operation displacement amount Sp required for the release stroke line StD is smaller than the operation displacement amount Sp required for the operation stroke line StI. ..
 ブレーキペダル91の踏み込み量が増大から減少に切り換えられる時、操作変位量Spが規定量減少するまで目標回転角Mtが保持される。一定の目標回転角Mtを示す直線が解除ストローク線StDと交差するまで、目標回転角Mtの保持は継続される。目標回転角Mtが保持されるときの目標回転角Mtの大きさに応じた作動ストローク線StI上の点と解除ストローク線StD上の点との差が操作変位量Spの規定量である。 When the depression amount of the brake pedal 91 is switched from increase to decrease, the target rotation angle Mt is maintained until the operation displacement amount Sp decreases by a specified amount. The holding of the target rotation angle Mt is continued until the straight line indicating the constant target rotation angle Mt intersects the release stroke line StD. The difference between the point on the operating stroke line StI and the point on the release stroke line StD according to the magnitude of the target rotation angle Mt when the target rotation angle Mt is held is the specified amount of the operating displacement amount Sp.
 以下では、図2に示す操作変位量Spと目標回転角Mtとの関係において、横軸方向における作動ストローク線StIと解除ストローク線StDとの差がヒステリシス幅である。また、ブレーキペダル91の踏み込み量が増大から減少に切り換えられる時のことを、ペダル操作の切換時という場合もある。ペダル操作の切換時における操作変位量Spの規定量は、ペダル操作の切換時におけるヒステリシス幅に等しい。ヒステリシス幅は、操作変位量Spと比例する。このため、ブレーキペダル91の踏み込み量が増大から減少に切り換えられる時における操作変位量Spが増加するほど、ペダル操作の切換時におけるヒステリシス幅は増加する。 In the following, in the relationship between the operating displacement amount Sp and the target rotation angle Mt shown in FIG. 2, the difference between the operating stroke line StI and the release stroke line StD in the horizontal axis direction is the hysteresis width. Further, when the amount of depression of the brake pedal 91 is switched from increasing to decreasing, it may be referred to as switching the pedal operation. The specified amount of the operation displacement amount Sp at the time of switching the pedal operation is equal to the hysteresis width at the time of switching the pedal operation. The hysteresis width is proportional to the operating displacement amount Sp. Therefore, as the operation displacement amount Sp when the depression amount of the brake pedal 91 is switched from the increase to the decrease increases, the hysteresis width at the time of switching the pedal operation increases.
 電動倍力装置100によれば、出力軸97がマスタシリンダMCを押圧する方向への出力軸97の変位量は、目標回転角Mtが増加するほど増加する。すなわち、目標回転角Mtが増加するほど押圧力が増加する。このため、ヒステリシス幅は、「前記増大時関係から定まる規定の押圧力に対応する前記操作変位量と、前記減少時関係から定まる前記規定の押圧力に対応する前記操作変位量との差分」ともいえる。 According to the electric booster 100, the amount of displacement of the output shaft 97 in the direction in which the output shaft 97 presses the master cylinder MC increases as the target rotation angle Mt increases. That is, the pressing force increases as the target rotation angle Mt increases. Therefore, the hysteresis width is also referred to as "the difference between the operating displacement amount corresponding to the specified pressing force determined from the increasing relationship and the operating displacement amount corresponding to the specified pressing force determined from the decreasing relationship". I can say.
 以上のように、電動倍力装置100は、操作変位量Spに基づいて目標回転角Mtを算出する。このとき電動倍力装置100は、操作変位量Spと目標回転角Mtとが作動ストローク線StIまたは解除ストローク線StDが示す関係を満たすように、目標回転角Mtを算出する。電動倍力装置100は、目標回転角Mtを用いてモータ96の駆動制御を行い、マスタシリンダMCに対して押圧力を出力する。 As described above, the electric booster 100 calculates the target rotation angle Mt based on the operating displacement amount Sp. At this time, the electric booster 100 calculates the target rotation angle Mt so that the operation displacement amount Sp and the target rotation angle Mt satisfy the relationship indicated by the operating stroke line StI or the release stroke line StD. The electric booster 100 controls the drive of the motor 96 using the target rotation angle Mt, and outputs a pressing force to the master cylinder MC.
 目標回転角算出部12は、減少時関係が示す解除ストローク線StDを記憶している。図2に示すように、この解除ストローク線StDは、車速VSが増加するほど、操作変位量Spに対する目標回転角Mtが増加する。すなわち、電動倍力装置100は、車両の走行状態としての車速VSが増加するほどヒステリシス幅が増加するように、減少時関係としての解除ストローク線StDを調整する。電動倍力装置100は、車速VSに応じて調整された解除ストローク線StDに基づいて、モータ96を制御する。 The target rotation angle calculation unit 12 stores the release stroke line StD indicated by the reduction relationship. As shown in FIG. 2, in this release stroke line StD, as the vehicle speed VS increases, the target rotation angle Mt with respect to the operating displacement amount Sp increases. That is, the electric booster 100 adjusts the release stroke line StD as a relation at the time of decrease so that the hysteresis width increases as the vehicle speed VS as the traveling state of the vehicle increases. The electric booster 100 controls the motor 96 based on the release stroke line StD adjusted according to the vehicle speed VS.
 なお、目標回転角算出部12は、運転者によってブレーキペダル91の操作が開始される時の車速VSに応じて、減少時関係を示す解除ストローク線StDを可変させるようにしてもよい。また、目標回転角算出部12は、操作変位量Spの増大が終了する時点の車速VSに応じて、解除ストローク線StDを可変させるようにしてもよい。 Note that the target rotation angle calculation unit 12 may change the release stroke line StD indicating the relationship at the time of decrease according to the vehicle speed VS when the operation of the brake pedal 91 is started by the driver. Further, the target rotation angle calculation unit 12 may change the release stroke line StD according to the vehicle speed VS at the time when the increase of the operation displacement amount Sp ends.
 本実施形態では、前記走行状態に応じて前記ヒステリシス幅が変わる。これは、目標回転角算出部12が、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する調整部として機能するためである。また、目標回転角算出部12は、出力される押圧力を調整するためのヒステリシス特性が記憶されている記憶部としても機能する。 In the present embodiment, the hysteresis width changes according to the traveling state. This is because the target rotation angle calculation unit 12 functions as an adjustment unit that adjusts at least one of the increase time relationship and the decrease time relationship. Further, the target rotation angle calculation unit 12 also functions as a storage unit in which the hysteresis characteristic for adjusting the output pressing force is stored.
 本実施形態の作用及び効果について説明する。
 図3には、解除ストローク線StDとして、車速VSが第1車速VS1であるときの第1解除ストローク線StD1を示している。車速VSが第1車速VS1よりも大きい第2車速VS2であるときの第2解除ストローク線StD2を示している。第2解除ストローク線StD2では、第1解除ストローク線StD1と比較して、操作変位量Spに対する目標回転角Mtが増加する。また、図3に示す切換時ヒス幅HSは、第2車速VS2の場合におけるペダル操作の切換時のヒステリシス幅である。第1車速VS1の場合におけるペダル操作の切換時のヒステリシス幅は、第2車速VS2の場合の切換時ヒステリシス幅HSよりも小さい。
The operation and effect of this embodiment will be described.
FIG. 3 shows the first release stroke line StD1 when the vehicle speed VS is the first vehicle speed VS1 as the release stroke line StD. The second release stroke line StD2 when the vehicle speed VS is the second vehicle speed VS2 which is larger than the first vehicle speed VS1 is shown. In the second release stroke line StD2, the target rotation angle Mt with respect to the operation displacement amount Sp increases as compared with the first release stroke line StD1. Further, the switching hiss width HS shown in FIG. 3 is the hysteresis width at the time of switching the pedal operation in the case of the second vehicle speed VS2. The hysteresis width at the time of switching the pedal operation in the case of the first vehicle speed VS1 is smaller than the hysteresis width HS at the time of switching in the case of the second vehicle speed VS2.
 図3に示すように、作動ストローク線StIは、第1解除ストローク線StD1とは異なる。作動ストローク線StIは、第2解除ストローク線StD2とも異なる。作動ストローク線StIおよび解除ストローク線StDを使って、目標回転角Mtが算出する。電動倍力装置100は、この目標回転角Mtを用いてモータ96の駆動を制御する。これによれば、モータ96の制御によって電動倍力装置100のヒステリシス特性を変更できる。これによって、車両の走行中に電動倍力装置100のヒステリシス特性を変更することができる。 As shown in FIG. 3, the operating stroke line StI is different from the first release stroke line StD1. The operating stroke line StI is also different from the second release stroke line StD2. The target rotation angle Mt is calculated using the operating stroke line StI and the release stroke line StD. The electric booster 100 controls the drive of the motor 96 by using the target rotation angle Mt. According to this, the hysteresis characteristic of the electric booster 100 can be changed by controlling the motor 96. Thereby, the hysteresis characteristic of the electric booster 100 can be changed while the vehicle is running.
 さらに、電動倍力装置100は、車速VSが増加するほどヒステリシス幅が増加するように、減少時関係としての解除ストローク線StDを調整する。これによって、操作変位量Spを減少させているときには、車速VSが大きいほど、操作変位量Spの減少に対して目標回転角Mtが減少しやすい。このため、操作変位量Spを減少させているときに、入力軸93と出力軸97とに挟まれた弾性体94の変形が復元する量が大きくなりやすい。これにより、ブレーキペダル91が運転者側に押し戻されやすくなる。すなわち、電動倍力装置100を備える制動装置によれば、操作変位量Spを減少させているときには、操作変位量Spの変化量が同じ場合、車速VSの増加は、運転者がブレーキペダル91を操作する力の増加を示す。車速VSが大きいときには運転者による操作の変化に対する制動力の感度を下げることができ、車速VSが大きいときに運転者が車両を操作しやすくなる。 Further, the electric booster 100 adjusts the release stroke line StD as a relation at the time of decrease so that the hysteresis width increases as the vehicle speed VS increases. As a result, when the operating displacement amount Sp is reduced, the larger the vehicle speed VS, the easier it is for the target rotation angle Mt to decrease with respect to the decrease in the operating displacement amount Sp. Therefore, when the operating displacement amount Sp is reduced, the amount of restoration of the deformation of the elastic body 94 sandwiched between the input shaft 93 and the output shaft 97 tends to increase. This makes it easier for the brake pedal 91 to be pushed back toward the driver. That is, according to the braking device provided with the electric booster 100, when the operating displacement amount Sp is decreasing, if the amount of change in the operating displacement amount Sp is the same, the driver presses the brake pedal 91 to increase the vehicle speed VS. Shows an increase in operating force. When the vehicle speed VS is high, the sensitivity of the braking force to changes in the operation by the driver can be lowered, and when the vehicle speed VS is high, the driver can easily operate the vehicle.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 上記第1実施形態では、目標回転角算出部12は、車両の走行状態としての車速VSに応じてヒステリシス幅が変わるように減速時関係を変更した。車両の走行状態は、車速VSに限らない。たとえば、車両が走行する路面状態に応じて減速時関係を変更することもできる。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
In the first embodiment, the target rotation angle calculation unit 12 changes the deceleration relationship so that the hysteresis width changes according to the vehicle speed VS as the running state of the vehicle. The running state of the vehicle is not limited to the vehicle speed VS. For example, the deceleration relationship can be changed according to the road surface condition on which the vehicle travels.
 図4に示す電動倍力装置では、制御装置は、走行状態取得部である路面情報取得部16を備えている。路面情報取得部16は、車両が走行している路面の摩擦係数μを取得する。摩擦係数μは、目標回転角算出部12に入力される。図4に示す例では、操作変位量Spと摩擦係数μとに基づいて目標回転角算出部12が目標回転角Mtを算出する点が第1実施形態と異なる。その他の構成は、第1実施形態と共通である。第1実施形態と共通の構成については説明を省略する。 In the electric booster shown in FIG. 4, the control device includes a road surface information acquisition unit 16 which is a traveling state acquisition unit. The road surface information acquisition unit 16 acquires the friction coefficient μ of the road surface on which the vehicle is traveling. The friction coefficient μ is input to the target rotation angle calculation unit 12. The example shown in FIG. 4 differs from the first embodiment in that the target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp and the friction coefficient μ. Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
 図4に示すように、目標回転角算出部12には、操作変位量Spと目標回転角Mtとの関係が記憶されている。図4では、増大時関係を作動ストローク線StIとして示している。摩擦係数μが大きい場合の減少時関係の一例を第1解除ストローク線StD11として実線で示している。さらに、減少時関係が第1解除ストローク線StD11として示される際のペダル操作の切換時におけるヒステリシス幅を切換時ヒス幅HSとして表示している。また、摩擦係数μが小さい場合の減少時関係の一例を第2解除ストローク線StD12として一点鎖線で示している。減少時関係が第2解除ストローク線StD12として示される際のペダル操作の切換時におけるヒステリシス幅は、減少時関係が第1解除ストローク線StD11として示される際の切換時ヒス幅HSよりも小さい。目標回転角算出部12は、摩擦係数μが減少するほどヒステリシス幅が減少するように減少時関係を調整する。 As shown in FIG. 4, the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt. In FIG. 4, the increasing relationship is shown as the working stroke line StI. An example of the relationship at the time of decrease when the friction coefficient μ is large is shown by a solid line as the first release stroke line StD11. Further, the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the first release stroke line StD11 is displayed as the hiss width HS at the time of switching. Further, an example of the relationship at the time of decrease when the friction coefficient μ is small is shown by a alternate long and short dash line as the second release stroke line StD12. The hysteresis width at the time of switching the pedal operation when the reduction relation is shown as the second release stroke line StD12 is smaller than the switching hiss width HS when the reduction relation is shown as the first release stroke line StD11. The target rotation angle calculation unit 12 adjusts the relationship at the time of decrease so that the hysteresis width decreases as the friction coefficient μ decreases.
 上記変更例によれば、操作変位量Spを減少させている間は、摩擦係数μが減少するほど、操作変位量Spに対する押圧力が減少する。すなわち、摩擦係数μが小さい路面を車両が走行している場合では、ブレーキペダル91を操作する力が減少すると、車両の制動力の減少を早期に開始させることが可能となる。これによって、摩擦係数μが小さい路面を走行しているとき、運転者が操作しやすくなる。 According to the above modification example, while the operating displacement amount Sp is decreasing, the pressing force with respect to the operating displacement amount Sp decreases as the friction coefficient μ decreases. That is, when the vehicle is traveling on a road surface having a small friction coefficient μ, when the force for operating the brake pedal 91 is reduced, it is possible to start the reduction of the braking force of the vehicle at an early stage. This makes it easier for the driver to operate when traveling on a road surface having a small friction coefficient μ.
 上記第1実施形態では、目標回転角算出部12は、走行時の車速VSに応じてヒステリシス幅が変わるように減速時関係を変更した。車両の走行状態は、車速VSに限らない。たとえば、車両の旋回状態に応じて減速時関係を変更することもできる。 In the first embodiment, the target rotation angle calculation unit 12 changes the deceleration relationship so that the hysteresis width changes according to the vehicle speed VS during traveling. The running state of the vehicle is not limited to the vehicle speed VS. For example, the deceleration relationship can be changed according to the turning state of the vehicle.
 図5に示す電動倍力装置では、車両の操舵制御部70からステア角θsが目標回転角算出部12に入力される。操舵制御部70は、車両の操舵装置を制御する機能を有する制御部である。ステア角θsは、操舵装置を構成するステアリングホイールの操作角度である。図5に示す例では、操作変位量Spとステア角θsとに基づいて目標回転角算出部12が目標回転角Mtを算出する点が第1実施形態と異なる。その他の構成は、第1実施形態と共通である。第1実施形態と共通の構成については説明を省略する。 In the electric booster shown in FIG. 5, the steering angle θs is input to the target rotation angle calculation unit 12 from the steering control unit 70 of the vehicle. The steering control unit 70 is a control unit having a function of controlling the steering device of the vehicle. The steering angle θs is an operating angle of the steering wheel constituting the steering device. The example shown in FIG. 5 differs from the first embodiment in that the target rotation angle calculation unit 12 calculates the target rotation angle Mt based on the operation displacement amount Sp and the steer angle θs. Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
 図5に示すように、目標回転角算出部12には、操作変位量Spと目標回転角Mtとの関係が記憶されている。図5では、増大時関係を作動ストローク線StIとして示している。ステア角θsが小さい場合の減少時関係の一例を第1解除ストローク線StD21として実線で示している。さらに、減少時関係が第1解除ストローク線StD21として示される際のペダル操作の切換時におけるヒステリシス幅を切換時ヒス幅HSとして表示している。また、ステア角θsが大きい場合の減少時関係の一例を第2解除ストローク線StD22として一点鎖線で示している。減少時関係が第2解除ストローク線StD22として示される際のペダル操作の切換時におけるヒステリシス幅は、減少時関係が第1解除ストローク線StD21として示される際の切換時ヒス幅HSよりも小さい。目標回転角算出部12は、ステア角θsが増加するヒステリシス幅が減少するように減少時関係を調整する。 As shown in FIG. 5, the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt. In FIG. 5, the increasing relationship is shown as the working stroke line StI. An example of the relationship at the time of decrease when the steering angle θs is small is shown by a solid line as the first release stroke line StD21. Further, the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the first release stroke line StD21 is displayed as the hiss width HS at the time of switching. Further, an example of the relationship at the time of decrease when the steering angle θs is large is shown by a alternate long and short dash line as the second release stroke line StD22. The hysteresis width at the time of switching the pedal operation when the reduction relation is shown as the second release stroke line StD22 is smaller than the switching hiss width HS when the reduction relation is shown as the first release stroke line StD21. The target rotation angle calculation unit 12 adjusts the relationship at the time of decrease so that the hysteresis width in which the steering angle θs increases decreases.
 上記変更例によれば、操作変位量Spを減少させているときには、ステア角θsが増加するほど、操作変位量Spに対する押圧力が減少する。すなわち、ステア角θsが大きい場合では、運転者によりブレーキペダル91を操作する力が減少すると、制動力の減少を早期に開始させることが可能となる。これによって、車両の舵角が大きい場合に、運転者が車両を操作しやすくなる。 According to the above modification example, when the operating displacement amount Sp is decreasing, the pressing force with respect to the operating displacement amount Sp decreases as the steering angle θs increases. That is, when the steering angle θs is large, when the force for operating the brake pedal 91 by the driver is reduced, it is possible to start the reduction of the braking force at an early stage. This makes it easier for the driver to operate the vehicle when the steering angle of the vehicle is large.
 なお、車両の走行状態として用いる旋回状態は、ステア角θs、車両の横加速度、または車両のヨーレートを用いることもできる。横加速度またはヨーレートを利用する場合でも、ステア角θsの場合と同様に、横加速度またはヨーレートが増加するほどヒステリシス幅が減少するように減少時関係を調整するとよい。 Note that the steering angle θs, the lateral acceleration of the vehicle, or the yaw rate of the vehicle can be used as the turning state used as the running state of the vehicle. Even when the lateral acceleration or yaw rate is used, it is preferable to adjust the relationship at the time of decrease so that the hysteresis width decreases as the lateral acceleration or yaw rate increases, as in the case of the steering angle θs.
 (第2実施形態)
 図6を用いて第2実施形態の電動倍力装置について説明する。第2実施形態の電動倍力装置は、車両の走行モードに対応したヒステリシス特性を示すように目標回転角Mtが算出される点で第1実施形態の電動倍力装置100と異なる。その他の構成は、第1実施形態と共通である。第1実施形態と共通の構成については、説明を省略する。
(Second Embodiment)
The electric booster of the second embodiment will be described with reference to FIG. The electric booster of the second embodiment is different from the electric booster 100 of the first embodiment in that the target rotation angle Mt is calculated so as to show the hysteresis characteristic corresponding to the traveling mode of the vehicle. Other configurations are the same as those of the first embodiment. The description of the configuration common to the first embodiment will be omitted.
 車両には、走行モードとして、第1モードMD1と第2モードMD2が設定されている。モード選択部88は、第1モードMD1または第2モードMD2を選択する。目標回転角算出部12には、モード選択部88が選択する走行モードを示す情報が入力される。 The first mode MD1 and the second mode MD2 are set as the traveling modes in the vehicle. The mode selection unit 88 selects the first mode MD1 or the second mode MD2. Information indicating a traveling mode selected by the mode selection unit 88 is input to the target rotation angle calculation unit 12.
 図6に示すように、目標回転角算出部12には、操作変位量Spと目標回転角Mtとの関係が記憶されている。図6では、増大時関係を作動ストローク線StIとして示している。第1モードMD1に対応する減少時関係を第1解除ストローク線StD31として実線で示している。また、第2モードMD2に対応する減少時関係を第2解除ストローク線StD32として一点鎖線で示している。さらに、減少時関係が第2解除ストローク線StD32として示される際のペダル操作の切換時におけるヒステリシス幅を切換時ヒス幅HSとして表示している。減少時関係が第1解除ストローク線StD31として示される際のヒステリシス幅は、減少時関係が第2解除ストローク線StD32として示される際の切換時ヒス幅HSよりも小さい。 As shown in FIG. 6, the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt. In FIG. 6, the increasing relationship is shown as the operating stroke line StI. The decreasing relationship corresponding to the first mode MD1 is shown by a solid line as the first release stroke line StD31. Further, the decreasing relationship corresponding to the second mode MD2 is indicated by a alternate long and short dash line as the second release stroke line StD32. Further, the hysteresis width at the time of switching the pedal operation when the relation at the time of decrease is shown as the second release stroke line StD32 is displayed as the hiss width HS at the time of switching. The hysteresis width when the decreasing relationship is shown as the first release stroke line StD31 is smaller than the switching hiss width HS when the decreasing relationship is shown as the second release stroke line StD32.
 目標回転角算出部12は、選択されている走行モードに応じた減少時関係を満たすように目標回転角Mtを算出する。目標回転角算出部12は、「前記ヒステリシス幅が、選択されている前記走行モードに応じた大きさとなるように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する調整部」である。目標回転角算出部12は、「前記電動倍力装置のヒステリシス特性を前記走行モード毎に記憶する記憶部」である。 The target rotation angle calculation unit 12 calculates the target rotation angle Mt so as to satisfy the decreasing relationship according to the selected traveling mode. The target rotation angle calculation unit 12 is a "adjusting unit that adjusts at least one of the increasing relationship and the decreasing relationship so that the hysteresis width becomes a size corresponding to the selected traveling mode". is there. The target rotation angle calculation unit 12 is a “storage unit that stores the hysteresis characteristics of the electric booster for each traveling mode”.
 本実施形態の作用及び効果について説明する。
 第2実施形態の電動倍力装置によれば、走行モード毎に対応する減少時関係を満たすように目標回転角Mtが算出され、モータ96が制御される。第2実施形態の電動倍力装置では、第1実施形態の電動倍力装置100と同様に、モータ96の制御によってヒステリシス特性を変更できる。走行モードが切り換えられた場合に、ヒステリシス特性を変更することもできる。
The operation and effect of this embodiment will be described.
According to the electric booster of the second embodiment, the target rotation angle Mt is calculated so as to satisfy the decreasing relationship corresponding to each traveling mode, and the motor 96 is controlled. In the electric booster of the second embodiment, the hysteresis characteristic can be changed by controlling the motor 96, as in the electric booster 100 of the first embodiment. It is also possible to change the hysteresis characteristic when the traveling mode is switched.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 上記第2実施形態では、第1モードMD1に対応する減少時関係と第2モードMD2に対応する減少時関係とを例示した。走行モードに対応する減少時関係は、車両に設定されている走行モードと同数が目標回転角算出部12に記憶されていることが好ましい。すなわち、走行モードが三つ以上設定されている場合には、減少時関係が同様に三つ以上記憶されているとよい。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
In the second embodiment, the decrease time relationship corresponding to the first mode MD1 and the decrease time relationship corresponding to the second mode MD2 are illustrated. It is preferable that the target rotation angle calculation unit 12 stores the same number of reduction relationships as the traveling modes set in the vehicle. That is, when three or more traveling modes are set, it is preferable that three or more reduction relationships are similarly stored.
 (第3実施形態)
 図7を用いて第3実施形態の電動倍力装置について説明する。第3実施形態の電動倍力装置は、第2実施形態と同様に、車両の走行モードに対応したヒステリシス特性を示すように目標回転角Mtが算出される。第3実施形態の電動倍力装置は、車両の走行モードの特性に応じて、ペダル操作の切換時に限らずヒステリシス幅を調整している点で第2実施形態と異なる。その他の構成は、第2実施形態と共通である。第1実施形態および第2実施形態と共通の構成については、説明を省略する。
(Third Embodiment)
The electric booster of the third embodiment will be described with reference to FIG. 7. In the electric booster of the third embodiment, the target rotation angle Mt is calculated so as to show the hysteresis characteristic corresponding to the traveling mode of the vehicle, as in the second embodiment. The electric booster of the third embodiment is different from the second embodiment in that the hysteresis width is adjusted not only when the pedal operation is switched but also according to the characteristics of the traveling mode of the vehicle. Other configurations are the same as those of the second embodiment. The description of the configuration common to the first embodiment and the second embodiment will be omitted.
 車両には、走行モードとして、第3モードMD3と第4モードMD4が設定されている。たとえば、第3モードMD3は、急な加速や急な減速を繰り返す走行に適したスポーティモードである。たとえば、第4モードMD4は、搭乗者に与える振動を軽減する走行に適したラグジュアリーモードである。モード選択部88は、第3モードMD3または第4モードMD4を選択する。目標回転角算出部12には、モード選択部88が選択する走行モードを示す情報が入力される。 The vehicle has a third mode MD3 and a fourth mode MD4 set as traveling modes. For example, the third mode MD3 is a sporty mode suitable for traveling in which sudden acceleration and sudden deceleration are repeated. For example, the fourth mode MD4 is a luxury mode suitable for traveling that reduces vibration given to passengers. The mode selection unit 88 selects the third mode MD3 or the fourth mode MD4. Information indicating a traveling mode selected by the mode selection unit 88 is input to the target rotation angle calculation unit 12.
 図7に示すように、目標回転角算出部12には、操作変位量Spと目標回転角Mtとの関係が記憶されている。図7では、増大時関係を作動ストローク線StIとして示している。第3モードMD3に対応する減少時関係を第1解除ストローク線StD41として実線で示している。また、第4モードMD4に対応する減少時関係を第2解除ストローク線StD42として一点鎖線で示している。減少時関係が第1解除ストローク線StD41として示される際のペダル操作の切換時におけるヒステリシス幅は、減少時関係が第2解除ストローク線StD42として示される際のペダル操作の切換時におけるヒステリシス幅と等しい。 As shown in FIG. 7, the target rotation angle calculation unit 12 stores the relationship between the operation displacement amount Sp and the target rotation angle Mt. In FIG. 7, the increasing relationship is shown as the working stroke line StI. The decreasing relationship corresponding to the third mode MD3 is shown by a solid line as the first release stroke line StD41. Further, the decreasing relationship corresponding to the fourth mode MD4 is indicated by a alternate long and short dash line as the second release stroke line StD42. The hysteresis width at the time of switching the pedal operation when the decreasing relation is shown as the first release stroke line StD41 is equal to the hysteresis width at the time of switching the pedal operation when the decreasing relation is shown as the second release stroke line StD42. ..
 第1解除ストローク線StD41が示す減少時関係では、操作変位量Spが減少し始めたとき、操作変位量Spが減少するほど目標回転角Mtが減少する。さらに操作変位量Spが減少した操作変位量Spが小さい領域は、操作変位量Spが減少し始めたときより、操作変位量Spの減少に対する目標回転角Mtの減少勾配が小さい。 In the decreasing relationship indicated by the first release stroke line StD41, when the operating displacement amount Sp starts to decrease, the target rotation angle Mt decreases as the operating displacement amount Sp decreases. Further, in the region where the operation displacement amount Sp is reduced and the operation displacement amount Sp is small, the decrease gradient of the target rotation angle Mt with respect to the decrease in the operation displacement amount Sp is smaller than when the operation displacement amount Sp starts to decrease.
 第2解除ストローク線StD42が示す減少時関係では、第1解除ストローク線StD41が示す減少時関係と同様に、操作変位量Spが減少するほど目標回転角Mtが減少する。第2解除ストローク線StD42では、操作変位量Spが小さい領域では、操作変位量Spが減少し始めたときと比較して、操作変位量Spの減少に対する目標回転角Mtの減少勾配が大きくなっている。さらに、第2解除ストローク線StD42では、操作変位量Spが減少し始めたときの目標回転角Mtの減少勾配は、第1解除ストローク線StD41の場合と比較して、小さくなっている。第2解除ストローク線StD42では、操作変位量Spが小さい領域における目標回転角Mtの減少勾配は、第1解除ストローク線StD41の場合と比較して、大きくなっている。このため、第2解除ストローク線StD42の場合、第1解除ストローク線StD41の場合と比較して、ヒステリシス幅が大きい関係を示す。 In the decreasing relationship indicated by the second release stroke line StD42, the target rotation angle Mt decreases as the operating displacement amount Sp decreases, as in the decreasing relationship indicated by the first release stroke line StD41. In the second release stroke line StD42, in the region where the operation displacement amount Sp is small, the decrease gradient of the target rotation angle Mt with respect to the decrease in the operation displacement amount Sp becomes larger than when the operation displacement amount Sp starts to decrease. There is. Further, in the second release stroke line StD42, the decreasing gradient of the target rotation angle Mt when the operation displacement amount Sp starts to decrease is smaller than that in the case of the first release stroke line StD41. In the second release stroke line StD42, the decreasing gradient of the target rotation angle Mt in the region where the operation displacement amount Sp is small is larger than that in the case of the first release stroke line StD41. Therefore, the case of the second release stroke line StD42 shows a relationship in which the hysteresis width is larger than that of the case of the first release stroke line StD41.
 本実施形態の作用及び効果について説明する。
 第3実施形態の電動倍力装置によれば、選択されている走行モードに対応する減少時関係を満たすように目標回転角Mtが算出され、モータ96が制御される。
The operation and effect of this embodiment will be described.
According to the electric booster of the third embodiment, the target rotation angle Mt is calculated so as to satisfy the reduction time relationship corresponding to the selected traveling mode, and the motor 96 is controlled.
 さらに第3実施形態の電動倍力装置では、第3モードMD3が選択されている場合には、第1解除ストローク線StD41として示したように、操作変位量Spが減少し始めるときの操作変位量Spの減少に対して目標回転角Mtが減少する減少勾配が大きい。これによって、第1解除ストローク線StD41が示す減少時関係では、操作変位量Spが小さい領域でも大きい領域でも、ヒステリシス幅が減少する。このため、急な加速や急な減速を繰り返す場合でも、運転者の操作が押圧力に反映されやすくなる。 Further, in the electric booster of the third embodiment, when the third mode MD3 is selected, the operation displacement amount when the operation displacement amount Sp starts to decrease, as shown as the first release stroke line StD41. The decrease gradient in which the target rotation angle Mt decreases is large with respect to the decrease in Sp. As a result, in the decreasing relationship indicated by the first release stroke line StD41, the hysteresis width decreases in both the region where the operating displacement amount Sp is small and the region where the operating displacement amount Sp is large. Therefore, even when sudden acceleration or sudden deceleration is repeated, the driver's operation is easily reflected in the pressing force.
 また、第3実施形態の電動倍力装置では、第4モードMD4が選択されている場合には、第2解除ストローク線StD42に示したように、操作変位量Spが減少し始めるときの操作変位量Spの減少に対して目標回転角Mtが減少する減少勾配が小さい。これによって、第2解除ストローク線StD42が示す減少時関係では、操作変位量Spに関係なく、ヒステリシス幅が増加する。このため、運転者の操作が押圧力に反映されにくくなり、車両の挙動が急激に変化することが抑制される。 Further, in the electric booster of the third embodiment, when the fourth mode MD4 is selected, as shown in the second release stroke line StD42, the operation displacement when the operation displacement amount Sp starts to decrease The decrease gradient in which the target rotation angle Mt decreases with respect to the decrease in the amount Sp is small. As a result, in the decreasing relationship indicated by the second release stroke line StD42, the hysteresis width increases regardless of the operating displacement amount Sp. For this reason, the driver's operation is less likely to be reflected in the pressing force, and the sudden change in the behavior of the vehicle is suppressed.
 すなわち、第3実施形態の電動倍力装置では、選択した走行モードの特性に応じて、ヒステリシス特性を変更することができる。
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
That is, in the electric booster of the third embodiment, the hysteresis characteristic can be changed according to the characteristic of the selected traveling mode.
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 上記第3実施形態では、第3モードMD3のペダル操作の切換時におけるヒステリシス幅と第4モードMD4のペダル操作の切換時におけるヒステリシス幅は、等しい。第2実施形態と同様に、ペダル操作の切換時におけるヒステリシス幅を走行モードに応じて変更してもよい。図8に示すような操作変位量Spと目標回転角Mtとの関係が目標回転角算出部12に記憶されていてもよい。 In the third embodiment, the hysteresis width at the time of switching the pedal operation of the third mode MD3 and the hysteresis width at the time of switching the pedal operation of the fourth mode MD4 are equal. Similar to the second embodiment, the hysteresis width at the time of switching the pedal operation may be changed according to the traveling mode. The relationship between the operation displacement amount Sp and the target rotation angle Mt as shown in FIG. 8 may be stored in the target rotation angle calculation unit 12.
 図8には、第3モードMD3に対応する減少時関係は、実線で示した第1解除ストローク線StD51である。また、第4モードMD4に対応する減少時関係は、一点鎖線で示した第2解除ストローク線StD52である。減少時関係が第1解除ストローク線StD51で示される際のペダル操作の切換時におけるヒステリシス幅は、減少時関係が第2解除ストローク線StD52で示される際のペダル操作の切換時におけるヒステリシス幅よりも大きい。 In FIG. 8, the relationship at the time of decrease corresponding to the third mode MD3 is the first release stroke line StD51 shown by the solid line. Further, the decreasing relationship corresponding to the fourth mode MD4 is the second release stroke line StD52 shown by the alternate long and short dash line. The hysteresis width at the time of switching the pedal operation when the decreasing relationship is indicated by the first release stroke line StD51 is larger than the hysteresis width at the time of switching the pedal operation when the decreasing relationship is indicated by the second release stroke line StD52. large.
 図8に示す例では、操作変位量Spが減少し始めたとき、第1解除ストローク線StD51の場合には減少勾配が大きい。また、操作変位量Spが減少し始めたときには、第2解除ストローク線StD52の場合には減少勾配が小さい。これは、第3実施形態と同じである。操作変位量Spが小さい領域では、第1解除ストローク線StD51の減少勾配は、第2解除ストローク線StD52の減少勾配よりも小さい。図8に示す変更例においても、上記第3実施形態と同様に、選択されている走行モードの特性に応じて、ヒステリシス特性を変更することができる。 In the example shown in FIG. 8, when the operation displacement amount Sp starts to decrease, the decrease gradient is large in the case of the first release stroke line StD51. Further, when the operation displacement amount Sp starts to decrease, the decrease gradient is small in the case of the second release stroke line StD52. This is the same as the third embodiment. In the region where the operating displacement amount Sp is small, the decreasing gradient of the first release stroke line StD51 is smaller than the decreasing gradient of the second release stroke line StD52. Also in the modification shown in FIG. 8, the hysteresis characteristic can be changed according to the characteristic of the selected traveling mode as in the third embodiment.
 その他、上記各実施形態に共通して変更可能な要素としては次のようなものがある。
 上記各実施形態では、解除ストローク線StDを調整することによって増大時関係と減少時関係とが異なるようにモータ96を制御する例を示した。解除ストローク線StDを調整することに替えて、作動ストローク線StIを調整することによって増大時関係と減少時関係とを異ならせることもできる。また、作動ストローク線StIおよび解除ストローク線StDのを調整することもできる。
In addition, there are the following elements that can be changed in common with each of the above embodiments.
In each of the above embodiments, an example is shown in which the motor 96 is controlled so that the increasing relationship and the decreasing relationship are different by adjusting the release stroke line StD. Instead of adjusting the release stroke line StD, the increase time relationship and the decrease time relationship can be made different by adjusting the operation stroke line StI. It is also possible to adjust the operating stroke line StI and the release stroke line StD.
 上記各実施形態では、ストロークセンサ81からの検出信号によって操作変位量Spを取得する構成とした。操作変位量Spを取得する構成は、これに限らない。たとえば、アシスト機構95の位置に対する相対的な入力軸93の位置を検出可能な相対変位センサを電動倍力装置が備えている場合がある。この場合は、回転角センサ83は、アシスト機構95の位置を取得する。相対変位センサは、アシスト機構95に対する入力軸93の相対的な位置を取得する。これらの取得された位置情報にもとづき、操作変位量Spを得ることができる。この場合には、電動倍力装置がストロークセンサ81を備えていなくても操作変位量Spを得ることができる。 In each of the above embodiments, the operation displacement amount Sp is acquired by the detection signal from the stroke sensor 81. The configuration for acquiring the operating displacement amount Sp is not limited to this. For example, the electric booster may include a relative displacement sensor capable of detecting the position of the input shaft 93 relative to the position of the assist mechanism 95. In this case, the rotation angle sensor 83 acquires the position of the assist mechanism 95. The relative displacement sensor acquires the relative position of the input shaft 93 with respect to the assist mechanism 95. Based on these acquired position information, the operating displacement amount Sp can be obtained. In this case, the operation displacement amount Sp can be obtained even if the electric booster does not include the stroke sensor 81.
 上記各実施形態では、制動アクチュエータ92を備える電動倍力装置100を例示した。制動アクチュエータは、図1に示した構成に限らず、入力された操作力をモータの駆動量に応じて助勢するアシスト機構を備える。アシスト機構によって助勢された操作力を押圧力として出力する構成であればよい。たとえば、国際公開第2011/099277号に示すような、モータによって駆動されるアシスト機構と入力軸とがそれぞれ弾性体を押圧する構成でもよい。 In each of the above embodiments, the electric booster 100 including the braking actuator 92 has been exemplified. The braking actuator is not limited to the configuration shown in FIG. 1, and includes an assist mechanism that assists the input operating force according to the driving amount of the motor. The configuration may be such that the operating force assisted by the assist mechanism is output as a pressing force. For example, as shown in International Publication No. 2011/099277, the assist mechanism driven by the motor and the input shaft may each press the elastic body.
 上記各実施形態では、制動操作部材としてブレーキペダル91を例示した。制動操作部材は、ブレーキペダル91に限らない。たとえば、制動操作を行うためのレバー等でもよい。 In each of the above embodiments, the brake pedal 91 is exemplified as the braking operation member. The braking operation member is not limited to the brake pedal 91. For example, it may be a lever or the like for performing a braking operation.

Claims (6)

  1.  制動操作部材を介して操作力が入力される入力軸と、該入力軸に入力された操作力をモータの駆動量に応じて助勢するアシスト機構と、該アシスト機構に連結されているとともに当該アシスト機構によって助勢された操作力を押圧力として出力する出力軸と、を有する制動アクチュエータと、
     前記制動アクチュエータの制御装置と、を備え、
     前記制御装置は、
     前記制動操作部材の操作に基づいた前記入力軸の変位量である操作変位量を取得する操作変位取得部と、
     前記操作変位量に応じて前記モータを駆動させるアシスト機構制御部と、を有し、
     前記アシスト機構制御部は、前記操作変位量が増大しているときにおける当該操作変位量と前記押圧力との関係と、前記操作変位量が減少しているときにおける当該操作変位量と前記押圧力との関係と、が異なるように、前記モータを制御する
     車両の電動倍力装置。
    An input shaft to which an operating force is input via a braking operation member, an assist mechanism for assisting the operating force input to the input shaft according to the driving amount of the motor, and an assist mechanism connected to the assist mechanism and the assist A braking actuator having an output shaft that outputs an operating force assisted by the mechanism as a pressing force, and
    A control device for the braking actuator is provided.
    The control device is
    An operation displacement acquisition unit that acquires an operation displacement amount that is a displacement amount of the input shaft based on the operation of the braking operation member.
    It has an assist mechanism control unit that drives the motor according to the operation displacement amount.
    The assist mechanism control unit has a relationship between the operating displacement amount and the pressing force when the operating displacement amount is increasing, and the operating displacement amount and the pressing force when the operating displacement amount is decreasing. An electric booster of a vehicle that controls the motor so that the relationship with the above is different.
  2.  前記制御装置は、車両の走行状態を取得する走行状態取得部を有し、
     前記アシスト機構制御部は、
     前記操作変位量が増大しているときには、前記操作変位量が増大しているときにおける当該操作変位量と前記押圧力との関係である増大時関係に基づいた前記押圧力が前記出力軸から出力されるように、前記モータを制御し、
     前記操作変位量が減少しているときには、前記操作変位量が減少しているときにおける当該操作変位量と前記押圧力との関係である減少時関係に基づいた前記押圧力が前記出力軸から出力されるように、前記モータを制御するものであり、
     前記制御装置は、前記走行状態に応じて、前記増大時関係に基づいて決定する規定の押圧力に対応する前記操作変位量と、前記減少時関係に基づいて決定する前記規定の押圧力に対応する前記操作変位量との差分であるヒステリシス幅が変わるように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する調整部をさらに有する
     請求項1に記載の車両の電動倍力装置。
    The control device has a traveling state acquisition unit that acquires the traveling state of the vehicle.
    The assist mechanism control unit
    When the operating displacement amount is increasing, the pressing force based on the increasing relationship, which is the relationship between the operating displacement amount and the pressing force when the operating displacement amount is increasing, is output from the output shaft. Control the motor so that
    When the operating displacement amount is decreasing, the pressing force based on the decreasing relationship between the operating displacement amount and the pressing force when the operating displacement amount is decreasing is output from the output shaft. It controls the motor so as to be
    The control device corresponds to the operating displacement amount corresponding to the specified pressing force determined based on the increasing relationship and the specified pressing force determined based on the decreasing relationship according to the traveling state. The electric booster for a vehicle according to claim 1, further comprising an adjusting unit for adjusting at least one of the increasing relationship and the decreasing relationship so that the hysteresis width, which is the difference from the operating displacement amount, is changed. ..
  3.  前記走行状態取得部は、車速を前記走行状態として取得して、
     前記調整部は、前記車速が増加すると前記ヒステリシス幅が増加するように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する
     請求項2に記載の車両の電動倍力装置。
    The traveling state acquisition unit acquires the vehicle speed as the traveling state and obtains the vehicle speed.
    The electric booster for a vehicle according to claim 2, wherein the adjusting unit adjusts at least one of the increasing relationship and the decreasing relationship so that the hysteresis width increases as the vehicle speed increases.
  4.  前記走行状態取得部は、車両が走行する路面の摩擦係数を前記走行状態として取得して、
     前記調整部は、前記摩擦係数が減少するほど前記ヒステリシス幅が減少するように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する
     請求項2に記載の車両の電動倍力装置。
    The traveling state acquisition unit acquires the friction coefficient of the road surface on which the vehicle travels as the traveling state, and obtains the driving state.
    The electric booster for a vehicle according to claim 2, wherein the adjusting unit adjusts at least one of the increasing relationship and the decreasing relationship so that the hysteresis width decreases as the friction coefficient decreases.
  5.  複数の設定された走行モードから選択された走行モードに応じた車両の制御を行う機能を有する車両に適用され、
     前記制御装置は、前記操作変位量が増大しているときにおける当該操作変位量と前記押圧力との関係を増大時関係として、前記操作変位量が減少しているときにおける当該操作変位量と前記押圧力との関係を減少時関係として、前記増大時関係から定まる規定の前記押圧力に対応する前記操作変位量と、前記増大時関係から定まる前記規定の押圧力に対応する前記操作変位量との差分であるヒステリシス幅が、選択された前記走行モードに応じた大きさとなるように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する調整部をさらに有する
     請求項1に記載の車両の電動倍力装置。
    It is applied to vehicles that have a function to control the vehicle according to the driving mode selected from a plurality of set driving modes.
    The control device regards the relationship between the operating displacement amount and the pressing force when the operating displacement amount is increasing as an increasing relationship, and the operating displacement amount and the operating displacement amount when the operating displacement amount is decreasing. Taking the relationship with the pressing force as the relationship at the time of decrease, the operating displacement amount corresponding to the specified pressing force determined from the increasing relationship and the operating displacement amount corresponding to the specified pressing force determined from the increasing relationship. The first aspect of claim 1, further comprising an adjusting unit that adjusts at least one of the increasing relationship and the decreasing relationship so that the hysteresis width, which is the difference between the two, is large according to the selected traveling mode. Electric booster for vehicles.
  6.  前記電動倍力装置のヒステリシス特性を前記走行モード毎に記憶する記憶部を備え、
     前記調整部は、選択された前記走行モードに対応する前記ヒステリシス特性に基づいて、前記ヒステリシス幅が、当該ヒステリシス特性に応じた大きさとなるように、前記増大時関係および前記減少時関係のうち少なくとも一方を調整する
     請求項5に記載の車両の電動倍力装置。
    A storage unit for storing the hysteresis characteristics of the electric booster for each traveling mode is provided.
    The adjusting unit has at least one of the increasing relationship and the decreasing relationship so that the hysteresis width becomes a magnitude corresponding to the hysteresis characteristic based on the hysteresis characteristic corresponding to the selected traveling mode. The vehicle electric booster according to claim 5, wherein one of them is adjusted.
PCT/JP2020/031283 2019-08-23 2020-08-19 Electric booster device for vehicle WO2021039535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152867A JP2021030876A (en) 2019-08-23 2019-08-23 Vehicle electric booster
JP2019-152867 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039535A1 true WO2021039535A1 (en) 2021-03-04

Family

ID=74674929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031283 WO2021039535A1 (en) 2019-08-23 2020-08-19 Electric booster device for vehicle

Country Status (2)

Country Link
JP (1) JP2021030876A (en)
WO (1) WO2021039535A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085564A (en) * 1998-09-14 2000-03-28 Akebono Brake Ind Co Ltd Braking force control device
JP2005306172A (en) * 2004-04-20 2005-11-04 Nissan Motor Co Ltd Brake control device for vehicle
JP2008222030A (en) * 2007-03-13 2008-09-25 Honda Motor Co Ltd Brake control system
JP2012106556A (en) * 2010-11-16 2012-06-07 Hitachi Automotive Systems Ltd Brake control device
JP2014061833A (en) * 2012-09-24 2014-04-10 Advics Co Ltd Damping control device for vehicle
JP2015145136A (en) * 2014-01-31 2015-08-13 日立オートモティブシステムズ株式会社 brake system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085564A (en) * 1998-09-14 2000-03-28 Akebono Brake Ind Co Ltd Braking force control device
JP2005306172A (en) * 2004-04-20 2005-11-04 Nissan Motor Co Ltd Brake control device for vehicle
JP2008222030A (en) * 2007-03-13 2008-09-25 Honda Motor Co Ltd Brake control system
JP2012106556A (en) * 2010-11-16 2012-06-07 Hitachi Automotive Systems Ltd Brake control device
JP2014061833A (en) * 2012-09-24 2014-04-10 Advics Co Ltd Damping control device for vehicle
JP2015145136A (en) * 2014-01-31 2015-08-13 日立オートモティブシステムズ株式会社 brake system

Also Published As

Publication number Publication date
JP2021030876A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6588981B2 (en) Acceleration / deceleration control device
JP6272558B2 (en) Brake control device
WO2019138962A1 (en) Control apparatus for electric vehicle, control system for electric vehicle, and control method for electric vehicle
JP4700010B2 (en) BRAKE DEVICE AND ITS CONTROL DEVICE
US20090115242A1 (en) Electrically Actuated Booster
JP4377838B2 (en) Pedal device and automobile equipped with the same
KR101926888B1 (en) Method and device for controlling an electrohydraulic brake system
JPH08216909A (en) Vehicle behavior controller
CN101519064A (en) Braking device
JP5974118B2 (en) Method for driving a vehicle brake booster and control device for a vehicle brake booster
CN102256839A (en) Brake system for a motor vehicle and method for controlling said brake system
US10773706B2 (en) Apparatus for controlling four-wheel drive vehicle
CN110520338B (en) Vehicle brake control device
JP3849583B2 (en) Electric brake device
US7628241B2 (en) Turning control apparatus for vehicle
WO2021039535A1 (en) Electric booster device for vehicle
WO2021166596A1 (en) Vehicle control device, vehicle control method, and vehicle control system
EP1101676B1 (en) Vehicle deceleration force control device and control method thereof
US11975698B2 (en) Method for controlling an electronically slip-controllable externally powered brake system, in particular for a motor vehicle, and electronically slip-controllable externally powered brake system, in particular for a motor vehicle
JP3704985B2 (en) 4-wheel independent brake force control device
CN110319187B (en) Vehicle control device
JP3842654B2 (en) Braking control device
JP2979705B2 (en) Braking force control device
JP7352444B2 (en) Vehicle control device
JP2003063367A (en) Dynamo electric brake device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857318

Country of ref document: EP

Kind code of ref document: A1