WO2021039531A1 - 圧縮機、ガスタービン - Google Patents

圧縮機、ガスタービン Download PDF

Info

Publication number
WO2021039531A1
WO2021039531A1 PCT/JP2020/031259 JP2020031259W WO2021039531A1 WO 2021039531 A1 WO2021039531 A1 WO 2021039531A1 JP 2020031259 W JP2020031259 W JP 2020031259W WO 2021039531 A1 WO2021039531 A1 WO 2021039531A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
downstream side
compressor
casing
recess
Prior art date
Application number
PCT/JP2020/031259
Other languages
English (en)
French (fr)
Inventor
千尋 明連
良介 三戸
大輔 森田
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to DE112020004022.4T priority Critical patent/DE112020004022T5/de
Priority to US17/624,976 priority patent/US11746694B2/en
Priority to CN202080047745.7A priority patent/CN114080508A/zh
Publication of WO2021039531A1 publication Critical patent/WO2021039531A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present disclosure relates to compressors and gas turbines.
  • the present application claims priority with respect to Japanese Patent Application No. 2019-156981 filed in Japan on August 29, 2019, the contents of which are incorporated herein by reference.
  • the compressor of the gas turbine has a plurality of discs stacked in the axial direction, a rotor having a rotor blade row provided on the outer peripheral surface of these discs, and a rotor blade row provided on the inner peripheral surface while covering the rotor from the outer peripheral side. It is provided with a casing provided and a tubular diffuser provided on the downstream side of the casing (see Patent Document 1 below).
  • the diffuser is defined by an inner peripheral surface of the casing and a tubular inner casing arranged at intervals on the inner peripheral surface of the casing.
  • the diffuser is configured so that the flow path cross-sectional area increases toward the downstream side. As a result, the flow velocity of the high-pressure fluid flowing into the diffuser is reduced, and the static pressure is restored.
  • an outlet guide blade (Outlet Guide Vane: OGV) is provided in the flow path of the above diffuser.
  • OGV Outlet Guide Vane
  • a recess for accommodating the shroud is formed on the outer peripheral surface of the inner casing.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a compressor and a gas turbine in which the loss is further reduced by suppressing the leakage flow.
  • the compressor according to the present disclosure is fixed to a plurality of discs stacked in the axial direction, a shaft portion connected to the downstream side in the axial direction of the disc, and the plurality of discs.
  • a rotor having a plurality of blade rows, a compressor casing surrounding the rotor from the outer peripheral side, and a stator having a plurality of stationary blade rows fixed to the compressor casing and arranged between the moving blade trains.
  • the wing bodies arranged at intervals in the circumferential direction so as to protrude from the compressor casing on the axially downstream side of the disk on the most downstream side in the axial direction, and these wing bodies are radially inside.
  • An outlet guide blade having an inner shroud connected in the circumferential direction, and an inner that is arranged on the downstream side in the axial direction of the disk on the most downstream side in the axial direction through a gap with the disk and extends in a tubular shape in the axial direction.
  • the inner casing comprises a casing, the inner casing having a recess for accommodating the inner shroud of the outlet guide blade, and an outer peripheral wall surface forming a diffuser together with the inner peripheral surface of the compressor casing on the axially downstream side of the recess.
  • An inner peripheral wall surface forming an bleeding cavity into which a fluid is introduced through the gap is provided between the outer peripheral surface of the shaft portion and the portion on the downstream side in the axial direction in the recess.
  • An air extraction hole is formed that penetrates the inner casing in the radial direction.
  • the compressor according to the present disclosure is a rotor having a plurality of discs stacked in the axial direction, a shaft portion connected to the downstream side in the axial direction of the disc, and a plurality of blade rows fixed to the disc.
  • a compressor casing that surrounds the rotor from the outer peripheral side, a stator having a plurality of stationary blade rows fixed to the compressor casing and arranged between the moving blade rows, and the most downstream side in the axial direction.
  • a blade body arranged at intervals in the circumferential direction so as to protrude from the compressor casing on the downstream side in the axial direction of the disk, and an inner shroud connecting these blade bodies in the radial direction in the circumferential direction.
  • a rotor extension portion having an outlet guide blade, a rotor extension portion provided on the axial downstream side of the disk on the most downstream side in the axial direction and having a recess for accommodating an inner shroud of the outlet guide blade, and an axial downstream portion of the rotor extension portion.
  • An inner casing that is arranged on the side with the rotor extension portion via a gap and extends in a tubular shape in the axial direction is provided, and the inner casing is the inner circumference of the compressor casing on the downstream side in the axial direction of the recess.
  • It has an outer peripheral wall surface that forms a diffuser together with a surface and an inner peripheral wall surface that forms an bleeding cavity between the outer peripheral surface of the shaft portion, and a portion of the recess on the downstream side in the axial direction is downstream in the axial direction.
  • a communication portion communicating with the bleeding cavity is formed between the recess and the inner casing.
  • FIG. 1 It is a schematic diagram which shows the structure of the gas turbine which concerns on 1st Embodiment of this disclosure. It is sectional drawing which shows the structure of the compressor which concerns on 1st Embodiment of this disclosure. It is an enlarged sectional view of the main part of FIG. It is sectional drawing which shows the structure of the compressor which concerns on 2nd Embodiment of this disclosure. It is an enlarged sectional view of the main part of FIG.
  • the gas turbine 100 includes a compressor 1, a combustor 2, a turbine 3, and a rotor 4.
  • the compressor 1 compresses the air taken in from the outside to generate high-pressure air.
  • the combustor 2 produces high-temperature and high-pressure combustion gas by burning the mixture of high-pressure air and fuel.
  • the turbine 3 is driven by this combustion gas.
  • the compressor 1 and the turbine 3 are coaxially connected by a rotor 4. Therefore, the rotational driving force of the turbine 3 is transmitted to the compressor 1 via the rotor 4. As a result, the compressor 1 is driven.
  • the compressor 1 has the rotor 4, the stator 7, the outlet guide blade 8, and the inner casing 9 described above.
  • the rotor 4 has a columnar shape extending in the Ax direction of the axis.
  • the rotor 4 has a plurality of discs 4D stacked in the axis Ax direction, a shaft portion 4S, and an inducer 42.
  • FIG. 2 among a plurality of discs 4D stacked in the axis Ax direction, only the disc 4D located on the most downstream side (hereinafter referred to as the axial downstream side) in the axis Ax direction (air flow direction) is used. Shown.
  • the disc 4D has a disk shape centered on the axis Ax.
  • Each disc 4D is provided with a rotor blade row 5.
  • the rotor blade row 5 has a plurality of rotor blades extending radially outward from the outer peripheral surface (disk outer peripheral surface Ds) of the disk 4D. These plurality of blades are arranged in the circumferential direction with respect to the axis Ax.
  • the shaft portion 4S projects further toward the downstream side in the axial direction from the end face on the downstream side in the axial direction of the disc 4D located on the downstream side in the axial direction most in the Ax direction (air flow direction) of the plurality of discs 4D. ing.
  • the diameter dimension of the shaft portion 4S is smaller than the diameter dimension of the disc 4D.
  • the inducer 42 is an intake mechanism provided on the outer peripheral surface (shaft portion outer peripheral surface 41) of the shaft portion 4S. Although not shown in detail, the inducer 42 sucks in air in the vicinity of the outer peripheral surface 41 of the shaft portion as the shaft portion 4S (rotor 4) rotates. The sucked air is used, for example, for cooling the high temperature member of the turbine 3.
  • the stator 7 has a compressor casing 1C and a vane row 6.
  • the compressor casing 1C has a tubular shape centered on the axis Ax.
  • the compressor casing 1C covers the rotor 4 from the outer peripheral side.
  • a plurality of stationary blade rows 6 are provided on the portion of the inner peripheral surface of the compressor casing 1C facing the disk 4D (casing inner peripheral surface 11). In the example of FIG. 2, only one stationary blade row 6 is shown.
  • the vane row 6 has a plurality of vanes extending radially inward from the inner peripheral surface 11 of the casing. These plurality of stationary blades are arranged in the circumferential direction with respect to the axis Ax.
  • the stationary blade rows 6 are alternately arranged along the above-mentioned moving blade rows 5 and the axis Ax.
  • the space between the inner peripheral surface 11 of the casing and the outer peripheral surface Ds of the disk (that is, the space where the rotor blade row 5 and the stationary blade row 6 are provided) is a compression flow path Fc through which high-pressure air flows. ..
  • the portion downstream of the inner peripheral surface 11 of the casing in the axial direction is the enlarged diameter surface 12.
  • the enlarged diameter surface 12 extends outward in the radial direction toward the downstream side in the axial direction.
  • a plurality of outlet guide blades 8 are provided on the inner peripheral surface 11 of the casing on the downstream side in the axial direction from the moving blade row 5 on the downstream side in the axial direction.
  • the outlet guide blade 8 is provided to rectify the flow of high-pressure air flowing to the downstream side in the axial direction (reduce the turning component) through the moving blade row 5 on the downstream side in the axial direction.
  • a plurality of outlet guide blades 8 are arranged in the axial direction Ax direction on the axial downstream side of the disk 4D on the most downstream side in the axial direction.
  • the exit guide blades 8 are provided over three rows.
  • Each of the outlet guide blades 8 protrudes inward in the radial direction from the inner peripheral surface 11 of the casing, and has a plurality of blade main bodies 81 arranged at intervals in the circumferential direction, and an inner shroud connecting these blade main bodies 81 in the circumferential direction. It has 82 and.
  • the radial inner end of the blade body 81 is in the same position in the radial direction as the above-mentioned disk outer peripheral surface Ds.
  • the inner shroud 82 is provided at the radial inner end of the wing body 81.
  • the inner shroud 82 has an annular shape centered on the axis Ax. The dimension of the inner shroud 82 in the axis Ax direction is larger than the dimension of the blade body 81 in the axis Ax direction.
  • An inner casing 9 is provided on the downstream side of the disk 4D on the most downstream side in the axial direction via a gap G extending in the axial direction Ax direction.
  • the inner casing 9 has a tubular shape extending in the Ax direction of the axis.
  • the inner casing 9 has an inner casing upstream portion 9U located relatively upstream in the axial direction (hereinafter referred to as an axial upstream side) and an inner casing downstream portion 9D located on the axial downstream side. ing.
  • the inner casing upstream portion 9U is a portion of the inner casing 9 corresponding to the outlet guide blade 8 in the axis Ax direction.
  • the outer peripheral surface (first outer peripheral surface 91A) of the upstream portion 9U of the inner casing has the same outer diameter dimension as the outer diameter dimension of the disc 4D.
  • the first outer peripheral surface 91A has the same outer diameter dimension over the entire area in the Ax direction of the axis.
  • the inner peripheral surface (first inner peripheral surface 92A) of the upstream portion 9U of the inner casing also has the same inner diameter dimension over the entire area in the axis Ax direction.
  • a plurality of recesses R for accommodating the above-mentioned inner shroud 82 are formed on the first outer peripheral surface 91A.
  • Each recess R is recessed inward in the radial direction from the first outer peripheral surface 91A.
  • Each recess R has an annular shape centered on the axis Ax and has a rectangular shape in a cross-sectional view including the axis Ax. Further, a slight gap is formed between the recess R and the inner shroud 82. That is, the volume of the recess R is slightly larger than the volume of the inner shroud 82.
  • the outer peripheral surface of the inner shroud 82 is in the same position as the first outer peripheral surface 91A in the radial direction.
  • the inner casing downstream portion 9D is integrally provided on the axial downstream side of the inner casing upstream portion 9U.
  • the outer peripheral surface (second outer peripheral surface 91B) of the inner casing downstream portion 9D extends inward in the radial direction toward the downstream side in the axial direction.
  • the second outer peripheral surface 91B faces the enlarged diameter surface 12 of the compressor casing 1C described above.
  • the inner peripheral surface (second inner peripheral surface 92B) of the inner casing downstream portion 9D also extends inward in the radial direction toward the downstream side in the axial direction.
  • the first outer peripheral surface 91A and the second outer peripheral surface 91B described above form the outer peripheral wall surface 91 of the inner casing 9.
  • a diffuser space D (diffuser) is formed by the outer peripheral wall surface 91 and the inner peripheral surface of the compressor casing 1C.
  • the diffuser space D is provided to recover the static pressure by reducing the flow velocity of the high-pressure air flowing downstream in the axial direction through the compression flow path Fc.
  • first inner peripheral surface 92A and the second inner peripheral surface 92B form the inner peripheral wall surface 92 of the inner casing 9.
  • a space as an bleeding cavity Cs is formed between the inner peripheral wall surface 92 and the outer peripheral surface of the shaft portion 4S (shaft portion outer peripheral surface 41).
  • the bleeding cavities Cs communicate with the diffuser space D via a gap G formed between the inner casing 9 and the disk 4D on the most downstream side in the axial direction.
  • the air in the extraction cavity Cs is extracted by the inducer 42 described above. That is, in the bleed air cavity Cs, an air flow from the gap G toward the inducer 42 is formed.
  • an air extraction hole H is formed in the recess Rd located on the most downstream side in the axial direction.
  • the bleeding hole H extends radially inward from the bottom surface (inner peripheral side surface) of the recess Rd, thereby penetrating the inner casing 9 in the radial direction. That is, the diffuser space D and the bleeding cavity Cs are communicated with each other by the bleeding hole H.
  • the bleeding cavity Cs in addition to the air flow from the gap G described above toward the inducer 42, another air flow from the bleeding hole H toward the inducer 42 is formed. As shown in an enlarged manner in FIG.
  • the bleeding hole H is formed in a portion of the recess Rd that is biased toward the downstream side in the axial direction.
  • the end face on the downstream side of the extraction hole H in the axial direction is in contact with the end face on the downstream side in the axial direction of the recess Rd.
  • the operations of the gas turbine 100 and the compressor 1 according to the present embodiment will be described.
  • the rotor 4 is rotated by an external drive source (electric motor or the like).
  • the compressor 1 takes in external air and compresses it to generate high-pressure air.
  • the combustor 2 mixes fuel with the high-pressure air to generate an air-fuel mixture, and burns the air-fuel mixture to generate a high-temperature and high-pressure combustion gas.
  • the combustion gas is supplied to the turbine 3 to drive the turbine 3 (provides a rotational force to the rotor 4).
  • the rotational force of the rotor 4 is transmitted to the compressor 1.
  • the gas turbine 100 is operated by the continuous occurrence of such a cycle.
  • the leak flow that has flowed into the recess Rd on the most downstream side in the axial direction can be guided to the extraction cavity Cs through the extraction hole H.
  • the swirling component (flow component swirling in the rotation direction of the rotor 4) contained in the flow of the fluid flowing into the diffuser space D is suppressed to be smaller. be able to. As a result, the flow component in the axis Ax direction becomes large, and the performance of the compressor 1 can be further improved.
  • the extraction hole H since the extraction hole H is provided, it is possible to reduce the leakage flow and at the same time suppress the development of the boundary layer in the diffuser space D. Therefore, as described above, the diameter of the second outer peripheral surface 91B, which is a portion of the inner casing 9 on the downstream side in the axial direction of the outlet guide blade 8, can be reduced toward the downstream side in the axial direction. As a result, the cross-sectional area of the flow path of the diffuser space D can be further expanded. As a result, the static pressure recovery of the fluid by the diffuser space D can be further promoted.
  • the rotor 4b further has a rotor extension portion 4E integrally formed on the further downstream side in the axial direction of the disk 4D on the downstream side in the most axial direction.
  • the rotor extension portion 4E has a cylindrical shape centered on the axis Ax, and thus covers the above-mentioned shaft portion 4S from the outer peripheral side without a gap.
  • the outer peripheral surface of the rotor extension portion 4E is a first outer peripheral surface 91A'having the same diameter as the outer diameter of the disk outer peripheral surface Ds.
  • a plurality of recesses Rb for accommodating the inner shroud 82 of the outlet guide blade 8 are formed on the first outer peripheral surface 91A'.
  • a sealing portion S for sealing the flow of fluid between the recess Rb and the inner shroud 82 is provided on the inner peripheral surface of the inner shroud 82.
  • the seal portion S is a plurality of seal fins protruding inward in the radial direction from the inner peripheral surface of the inner shroud 82. It is also possible to apply another configuration such as a labyrinth seal as the seal portion S instead of the seal fin.
  • the recess Rd'located most downstream in the axial direction has a different shape from the other recesses Rb located upstream in the axial direction.
  • the portion of the recess Rd ′ on the downstream side in the axial direction is open toward the downstream side in the axial direction.
  • this recess Rd' is defined only by the end face and bottom surface on the upstream side in the axial direction.
  • An inner casing 9b is provided on the downstream side of the recess Rd'in the axial direction with an interval (communication portion Hc) in the axial direction Ax.
  • the inner casing 9b has a tubular shape that extends inward in the radial direction with respect to the axis Ax toward the downstream side in the axial direction.
  • the outer peripheral surface (second outer peripheral surface 91B) of the inner casing 9b forms an outer peripheral wall surface 91 together with the first outer peripheral surface 91A'.
  • the outer peripheral wall surface 91 defines the diffuser space D together with the inner peripheral surface of the compressor casing 1C, as in the first embodiment described above.
  • the inner peripheral surface of the inner casing 9b is the inner peripheral wall surface 92.
  • An air extraction cavity Cs' is formed between the inner peripheral wall surface 92 and the outer peripheral surface 41 of the shaft portion.
  • the end face (upstream end face 9T) on the upstream side in the axial direction of the inner casing 9b is the end face (extension end face Et) on the downstream side in the axial direction of the recess Rd'and the rotor extension portion 4E via the communication portion Hc. Facing.
  • a swirling component (flow component swirling in the rotation direction of the rotor 4) from the flow of air flowing into the diffuser space D on the downstream side in the axial direction thereof. Can be kept smaller. As a result, the flow component toward the axis Ax direction becomes large, and the performance of the compressor 1B can be further improved.
  • the communication portion Hc since the communication portion Hc is provided, it is possible to reduce the leakage flow and at the same time suppress the development of the boundary layer in the diffuser space D. Therefore, by reducing the diameter of the inner casing 9b toward the downstream side in the axial direction as described above, the cross-sectional area of the flow path of the diffuser can be increased. As a result, the static pressure recovery of the fluid by the diffuser space D can be further promoted.
  • the leakage flow toward the upstream side in the axial direction through the recess Rd' can be further reduced by the seal portion S.
  • the compressor 1 according to the first aspect is formed on a plurality of disks 4D stacked in the axis Ax direction, a shaft portion 4S connected to the downstream side of the disk 4D in the axis direction, and a plurality of the disks 4D.
  • a rotor 4 having a plurality of fixed moving blade rows 5, a compressor casing 1C that surrounds the rotor 4 from the outer peripheral side, and a compressor casing 1C fixed to the compressor casing 1C and arranged between the moving blade rows 5.
  • a stator 7 having a plurality of stationary blade rows 6 and blades arranged at intervals in the circumferential direction so as to protrude from the compressor casing 1C on the axially downstream side of the disk 4D on the most downstream side in the axial direction.
  • the inner casing 9 is provided with an inner casing 9 arranged via G and extending in a tubular shape in the Ax direction of the axis, and the inner casing 9 has a recess R for accommodating the inner shroud 82 of the outlet guide blade 8 and the recess.
  • a fluid is introduced through the gap G between the outer peripheral wall surface 91 forming the diffuser D together with the inner peripheral surface of the compressor casing 1C on the downstream side in the axial direction of R and the outer peripheral surface of the shaft portion 4S. It has an inner peripheral wall surface 92 forming the bleeding cavity Cs, and an bleeding hole H penetrating the inner casing 9 in the radial direction is formed in a portion of the recess R on the downstream side in the axial direction.
  • the extraction hole H is formed in the portion of the recess R on the downstream side in the axial direction. As a result, the leak flow that has flowed into the recess R can be guided to the extraction cavity Cs through the extraction hole H. As a result, it is possible to reduce the leakage flow toward the upstream side in the axial direction from the concave portion R.
  • a plurality of the outlet guide blades 8 are arranged at intervals in the axis Ax direction, and the recesses R are provided for each of the outlet guide blades 8. ing.
  • the swirling component (flow component swirling in the rotation direction of the rotor) contained in the flow of the fluid flowing into the diffuser D on the downstream side in the axial direction thereof is further increased. It can be kept small. As a result, the flow component toward the axis Ax direction becomes large, and the performance of the compressor 1 can be further improved.
  • the air extraction hole H is formed in the recess Rd on the most downstream side in the axial direction among the plurality of recesses R.
  • the portion of the inner casing 9 on the downstream side in the axial direction from the outlet guide blade 8 extends radially inward toward the downstream side in the axial direction.
  • the extraction hole H since the extraction hole H is provided, it is possible to reduce the leakage flow and at the same time suppress the development of the boundary layer in the diffuser D. Therefore, as described above, it is possible to reduce the diameter of the portion of the inner casing 9 on the downstream side in the axial direction from the outlet guide blade 8 toward the downstream side in the axial direction. As a result, the cross-sectional area of the flow path of the diffuser D can be increased. As a result, the static pressure recovery of the fluid by the diffuser D can be further promoted.
  • the plurality of disks 4D stacked in the axial direction Ax, the shaft portions 4S connected to the downstream side in the axial direction of the disk 4D, and the plurality of disks 4D.
  • a rotor 4 having a plurality of fixed moving blade rows 5, a compressor casing 1C that surrounds the rotor 4 from the outer peripheral side, and a compressor casing 1C fixed to the compressor casing 1C and arranged between the moving blade rows 5.
  • a stator 7 having a plurality of stationary blade rows 6 and blades arranged at intervals in the circumferential direction so as to protrude from the compressor casing 1C on the axially downstream side of the disk 4D on the most downstream side in the axial direction.
  • a rotor extension 4E having a recess Rb for accommodating the inner shroud 82 of the guide blade 8 and the rotor extension 4E are arranged on the downstream side in the axial direction of the rotor extension 4E via a gap with the rotor extension 4E in the Ax direction of the axis.
  • An inner casing 9b extending in a tubular shape is provided, and the inner casing 9b includes an outer peripheral wall surface 91 forming a diffuser D together with an inner peripheral surface of the compressor casing 1C on the downstream side in the axial direction of the recess Rb, and the shaft. It has an inner peripheral wall surface 92 that forms an bleeding cavity Cs'with the outer peripheral surface of the portion 4S, and the portion on the downstream side in the axial direction in the recess Rb opens toward the downstream side in the axial direction.
  • a communication portion Hc that communicates with the bleed air cavity Cs'is formed between the recess Rb and the inner casing 9b.
  • a plurality of the outlet guide blades 8 are arranged at intervals in the axis Ax direction, and the recesses Rb are provided for each of the outlet guide blades 8. ing.
  • the swirling component (flow component swirling in the rotation direction of the rotor) contained in the flow of the fluid flowing into the diffuser D on the downstream side in the axial direction thereof is further increased. It can be kept small. As a result, the flow component toward the axis Ax direction becomes large, and the performance of the compressor 1B can be further improved.
  • the recess Rd ′ on the most downstream side in the axial direction communicates with the communication portion Hc.
  • the leak flow can reach the upstream side in the axial direction from the recess Rd'on the most downstream side in the axial direction.
  • the sex can be reduced.
  • the inner casing 9b extends radially inward toward the downstream side in the axial direction.
  • the communication portion Hc since the communication portion Hc is provided, it is possible to reduce the leakage flow and at the same time suppress the development of the boundary layer in the diffuser D. Therefore, as described above, the diameter of the inner casing 9b can be reduced toward the downstream side in the axial direction. As a result, the cross-sectional area of the flow path of the diffuser D can be increased. As a result, the static pressure recovery of the fluid by the diffuser D can be further promoted.
  • the compressor 1B according to the ninth aspect further includes a seal portion S provided on the inner peripheral surface of the inner shroud 82 and sealing the flow of fluid between the inner peripheral surface and the recess Rb. ..
  • the leakage flow toward the upstream side in the axial direction through the recess Rb can be further reduced by the seal portion S.
  • the gas turbine 100 burns the compressor 1, 1B according to any one of the above aspects and the air-fuel mixture of the high-pressure fluid and fuel generated by the compressors 1, 1B.
  • a combustor 2 for generating combustion gas and a turbine 3 driven by the combustion gas are provided.
  • the leakage flow of the compressors 1, 1B is reduced, so that the loss of the compressors 1, 1B is reduced.
  • the efficiency of the gas turbine 100 can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

圧縮機は、複数のディスク、ディスクの下流側に接続された軸部、及び、複数のディスクに固定された動翼列を有するロータと、圧縮機ケーシング、及び動翼列の間にそれぞれ配置される複数の静翼列を有するステータと、最も下流側のディスクの下流側で周方向に間隔をあけて配置された翼本体、及び翼本体を径方向内側で周方向に接続する内側シュラウドを有する出口案内翼と、最も下流側のディスクの下流側にディスクと隙間を介して配置されたインナーケーシングと、を備え、インナーケーシングは内側シュラウドを収容する凹部を有するとともに凹部の下流側で圧縮機ケーシングの内周面とともにディフューザを形成する外周壁面と、抽気キャビティを形成する内周壁面と、を有し、凹部内における下流側の部分に抽気孔が形成されている。

Description

圧縮機、ガスタービン
 本開示は、圧縮機、ガスタービンに関する。
 本願は、2019年8月29日に日本に出願された特願2019-156981号について優先権を主張し、その内容をここに援用する。
 ガスタービンの圧縮機は、軸線方向に積層された複数のディスク及びこれらディスクの外周面に設けられた動翼列を有するロータと、ロータを外周側から覆うとともに内周面に静翼列が設けられたケーシングと、ケーシングの下流側に設けられた筒状のディフューザと、を備えている(下記特許文献1参照)。ディフューザは、ケーシングの内周面と、当該ケーシングの内周面に間隔をあけて配置された筒状のインナーケーシングとによって画定されている。ディフューザは、下流側に向かって流路断面積が拡大するように構成されている。これにより、当該ディフューザに流れ込んだ高圧の流体の流速が下がるとともに、静圧が回復する。
 ここで、上記のディフューザの流路中には、出口案内翼(Outlet Guide Vane:OGV)が設けられることが一般的である。出口案内翼を設けるに当たっては、軸線の径方向に延びる翼本体をケーシングの内周面上で片持ち支持する構成や、複数の翼本体の内周側にシュラウドを設ける構成が採られる。後者の場合、インナーケーシングの外周面には、シュラウドを収容するための凹部が形成される。
特開2012-62767号公報
 しかしながら、上述のようにディフューザ内では流体の静圧回復が生じることから、下流側になるほど流体の圧力が高くなっている。このため、上記の凹部を通じて下流側から上流側に向かう漏れ流れが生じることがある。このような漏れ流れが主流に合流することで損失が発生してしまう。
 本開示は上記課題を解決するためになされたものであって、漏れ流れを抑制することで、損失がより一層低減された圧縮機、及びガスタービンを提供することを目的とする。
 上記課題を解決するために、本開示に係る圧縮機は、軸線方向に積層された複数のディスク、該ディスクの軸線方向下流側に接続された軸部、及び、複数の前記ディスクに固定された複数の動翼列を有するロータと、前記ロータを外周側から囲う圧縮機ケーシング、及び、前記圧縮機ケーシングに固定されて前記動翼列の間にそれぞれ配置される複数の静翼列を有するステータと、最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側で前記圧縮機ケーシングから突出するように周方向に間隔をあけて配置された翼本体、及び、これら翼本体を径方向内側で周方向に接続する内側シュラウドを有する出口案内翼と、最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側に該ディスクと隙間を介して配置されて、前記軸線方向に筒状に延びるインナーケーシングと、を備え、該インナーケーシングは、前記出口案内翼の内側シュラウドを収容する凹部を有するとともに該凹部の前記軸線方向下流側で前記圧縮機ケーシングの内周面とともにディフューザを形成する外周壁面と、前記軸部の外周面との間に、前記隙間を介して流体が導入される抽気キャビティを形成する内周壁面と、を有し、前記凹部内における前記軸線方向下流側の部分に、前記インナーケーシングを径方向に貫通する抽気孔が形成されている。
 本開示に係る圧縮機は、軸線方向に積層された複数のディスク、該ディスクの軸線方向下流側に接続された軸部、及び、複数の前記ディスクに固定された複数の動翼列を有するロータと、前記ロータを外周側から囲う圧縮機ケーシング、及び、前記圧縮機ケーシングに固定されて前記動翼列の間にそれぞれ配置される複数の静翼列を有するステータと、最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側で前記圧縮機ケーシングから突出するように周方向に間隔をあけて配置された翼本体、及び、これら翼本体を径方向内側で周方向に接続する内側シュラウドを有する出口案内翼と、最も前記軸線方向下流側の前記ディスクの軸線方向下流側に設けられ、前記出口案内翼の内側シュラウドを収容する凹部を有するロータ延長部と、前記ロータ延長部の軸線方向下流側に該ロータ延長部と隙間を介して配置されて、前記軸線方向に筒状に延びるインナーケーシングと、を備え、該インナーケーシングは、前記凹部の軸線方向下流側で前記圧縮機ケーシングの内周面とともにディフューザを形成する外周壁面と、前記軸部の外周面との間に抽気キャビティを形成する内周壁面と、を有し、前記凹部内における前記軸線方向下流側の部分は、軸線方向下流側に向かって開口するとともに、該凹部と前記インナーケーシングとの間に前記抽気キャビティに連通する連通部が形成されている。
 本開示によれば、漏れ流れを抑制することで損失がより一層低減された圧縮機、及びガスタービンを提供することができる。
本開示の第一実施形態に係るガスタービンの構成を示す模式図である。 本開示の第一実施形態に係る圧縮機の構成を示す断面図である。 図2の要部拡大断面図である。 本開示の第二実施形態に係る圧縮機の構成を示す断面図である。 図4の要部拡大断面図である。
<第一実施形態>
(ガスタービンの構成)
 以下、本開示の第一実施形態に係るガスタービン100、及び圧縮機1について、図1から図3を参照して説明する。なお、以下の説明において、「同一」との表現は、寸法や形状が実質的な同一をなすことを意味し、設計上の公差や、製造上の誤差は許容されるものとする。図1に示すように、ガスタービン100は、圧縮機1と、燃焼器2と、タービン3と、ロータ4と、を備えている。圧縮機1は、外部から取り込んだ空気を圧縮して高圧空気を生成する。燃焼器2は、この高圧空気と燃料の混合気を燃焼させることで、高温高圧の燃焼ガスを生成する。タービン3は、この燃焼ガスによって駆動される。圧縮機1とタービン3とは、ロータ4によって同軸に接続されている。したがって、タービン3の回転駆動力は、ロータ4を介して圧縮機1に伝達される。これにより、圧縮機1が駆動される。
(圧縮機の構成)
 次いで、図2又は図3を参照して、圧縮機1の構成について説明する。圧縮機1は、上述のロータ4と、ステータ7と、出口案内翼8と、インナーケーシング9と、を有している。ロータ4は、軸線Ax方向に延びる円柱状をなしている。ロータ4は、軸線Ax方向に積層された複数のディスク4Dと、軸部4Sと、インデューサ42と、を有している。
 なお、図2においては、軸線Ax方向に積層された複数のディスク4Dのうち、軸線Ax方向(空気の流れ方向)における最も下流側(以下、軸線方向下流側という)に位置するディスク4Dのみを示している。
 ディスク4Dは、軸線Axを中心とする円盤状である。それぞれのディスク4Dには、動翼列5が設けられている。動翼列5は、ディスク4Dの外周面(ディスク外周面Ds)から径方向外側に向かって延びる複数の動翼を有している。これら複数の動翼は、軸線Axに対する周方向に配列されている。
 軸部4Sは、複数のディスク4Dのうち、軸線Ax方向(空気の流れ方向)における最も軸線方向下流側に位置するディスク4Dの軸線方向下流側の端面から、さらに軸線方向下流側に向かって突出している。軸部4Sの径寸法は、ディスク4Dの径寸法よりも小さい。
 インデューサ42は、軸部4Sの外周面(軸部外周面41)上に設けられた吸気機構である。詳しくは図示しないが、インデューサ42は、軸部4S(ロータ4)の回転にともなって、軸部外周面41近傍の空気を吸い込む。吸込まれた空気は、例えばタービン3の高温部材の冷却等に利用される。
 ステータ7は、圧縮機ケーシング1Cと、静翼列6と、を有している。圧縮機ケーシング1Cは、軸線Axを中心とする筒状をなしている。圧縮機ケーシング1Cはロータ4を外周側から覆っている。圧縮機ケーシング1Cの内周面のうち、上記のディスク4Dと対向する部分(ケーシング内周面11)には、複数の静翼列6が設けられている。なお、図2の例では、1つの静翼列6のみを図示している。静翼列6は、ケーシング内周面11から径方向内側に向かって延びる複数の静翼を有している。これら複数の静翼は、軸線Axに対する周方向に配列されている。また、静翼列6は、上述の動翼列5と軸線Axに沿って交互に配列されている。ケーシング内周面11とディスク外周面Dsとの間の空間(即ち、動翼列5及び静翼列6が設けられている空間)は、高圧の空気が流通する圧縮流路Fcとされている。
 圧縮機ケーシング1Cの内周面のうち、上記のケーシング内周面11よりも軸線方向下流側の部分は、拡径面12とされている。拡径面12は、軸線方向下流側に向かうに従って、径方向外側に向かって延びている。
 ケーシング内周面11における最も軸線方向下流側の動翼列5よりも軸線方向下流側には、複数の出口案内翼8が設けられている。出口案内翼8は、最も軸線方向下流側の動翼列5を経て軸線方向下流側に流れてきた高圧空気の流れを整流する(旋回成分を低減する)ために設けられている。出口案内翼8は、最も軸線方向下流側のディスク4Dの軸線方向下流側で、軸線Ax方向に複数配列されている。本実施形態では、一例として出口案内翼8が3列にわたって設けられている。それぞれの出口案内翼8は、ケーシング内周面11から径方向内側に突出するとともに周方向に間隔をあけて配置された複数の翼本体81と、これら翼本体81を周方向に接続する内側シュラウド82と、を有している。翼本体81の径方向内側の端部は、上述のディスク外周面Dsと径方向において同一の位置にある。内側シュラウド82は、翼本体81の径方向内側の端部に設けられている。内側シュラウド82は、軸線Axを中心とする円環状をなしている。内側シュラウド82の軸線Ax方向における寸法は、翼本体81の軸線Ax方向における寸法よりも大きい。
 最も軸線方向下流側のディスク4Dの軸線方向下流側には、軸線Ax方向に広がる隙間Gを介して、インナーケーシング9が設けられている。インナーケーシング9は、軸線Ax方向に延びる筒状をなしている。インナーケーシング9は、軸線Ax方向で相対的に上流側(以下、軸線方向上流側という)に位置するインナーケーシング上流部9Uと、軸線方向下流側に位置するインナーケーシング下流部9Dと、を有している。
 インナーケーシング上流部9Uは、インナーケーシング9のうち、軸線Ax方向において上記の出口案内翼8と対応する部分である。インナーケーシング上流部9Uの外周面(第一外周面91A)は、ディスク4Dの外径寸法と同一の外径寸法を有している。第一外周面91Aは、軸線Ax方向の全域にわたって同一の外径寸法を有している。同様に、インナーケーシング上流部9Uの内周面(第一内周面92A)も軸線Ax方向の全域にわたって同一の内径寸法を有している。
 第一外周面91A上には、上述の内側シュラウド82を収容する複数の凹部Rが形成されている。各凹部Rは、第一外周面91Aから径方向内側に凹んでいる。各凹部Rは、軸線Axを中心とする円環状をなすとともに、軸線Axを含む断面視で矩形状をなしている。また、この凹部Rと内側シュラウド82との間にはわずかな隙間が形成されている。つまり、凹部Rの容積は、内側シュラウド82の体積よりもわずかに大きい。内側シュラウド82の外周面は、径方向において第一外周面91Aと同一の位置にある。
 インナーケーシング下流部9Dは、インナーケーシング上流部9Uの軸線方向下流側に一体に設けられている。インナーケーシング下流部9Dの外周面(第二外周面91B)は、軸線方向下流側に向かうに従って、径方向内側に向かって延びている。第二外周面91Bは、上述した圧縮機ケーシング1Cの拡径面12に対向している。インナーケーシング下流部9Dの内周面(第二内周面92B)も、軸線方向下流側に向かうに従って、径方向内側に向かって延びている。
 上述した第一外周面91Aと、第二外周面91Bは、インナーケーシング9の外周壁面91を形成している。この外周壁面91と、圧縮機ケーシング1Cの内周面によって、ディフューザ空間D(ディフューザ)が形成される。ディフューザ空間Dは、上記の圧縮流路Fcを経て軸線方向下流側に流れてきた高圧空気の流速を下げることで、静圧を回復させるために設けられている。
 また、第一内周面92Aと、第二内周面92Bは、インナーケーシング9の内周壁面92を形成している。この内周壁面92と、軸部4Sの外周面(軸部外周面41)との間には、抽気キャビティCsとしての空間が形成されている。この抽気キャビティCsは、インナーケーシング9と最も軸線方向下流側のディスク4Dとの間に形成されている隙間Gを介してディフューザ空間Dと連通している。抽気キャビティCs内の空気は、上述のインデューサ42によって抽気される。つまり、抽気キャビティCs内では、隙間Gから当該インデューサ42に向かう空気の流れが形成されている。
 さらに、上述の複数の凹部Rのうち、最も軸線方向下流側に位置する凹部Rdには抽気孔Hが形成されている。この抽気孔Hは、凹部Rdの底面(内周側の面)から径方向内側に延びることで、インナーケーシング9を径方向に貫通している。つまり、この抽気孔Hによって、ディフューザ空間Dと抽気キャビティCsとが連通されている。これにより、抽気キャビティCs内では、上述の隙間Gから当該インデューサ42に向かう空気の流れに加えて、抽気孔Hからインデューサ42に向かう他の空気の流れが形成されている。なお、図3に拡大して示すように、抽気孔Hは、当該凹部Rdのうち、軸線方向下流側に偏った部分に形成されている。言い換えると、抽気孔Hの軸線方向下流側の端面は、凹部Rdの軸線方向下流側の端面に接している。
(作用効果)
 次に、本実施形態に係るガスタービン100、及び圧縮機1の動作について説明する。ガスタービン100を運転するに当たっては、まず外部の駆動源(電動機等)によって、ロータ4を回転させる。ロータ4の回転にともなって、圧縮機1は外部の空気を取り込んで圧縮し、高圧空気を生成する。燃焼器2は、この高圧空気に燃料を混合させて混合気を生成するとともに、当該混合気を燃焼させることで高温高圧の燃焼ガスを生成する。燃焼ガスはタービン3に供給され、当該タービン3を駆動させる(ロータ4に回転力を与える。)。ロータ4の回転力は圧縮機1に伝達される。このようなサイクルが連続的に生じることで、ガスタービン100が運転される。
 圧縮機1では、圧縮流路Fcを経て、高圧の空気がディフューザ空間Dに供給される。ここで、ディフューザ空間D内では空気の流れの静圧回復が生じることから、軸線方向下流側になるほど圧力が高くなっている。このため、例えば上述の抽気孔Hが形成されていない場合、凹部Rと内側シュラウド82との間の隙間を通じて軸線方向下流側から軸線方向上流側に向かう漏れ流れが生じることがある。このような漏れ流れが主流に合流することで損失が発生してしまう。そこで、本実施形態に係る圧縮機1では、最も軸線方向下流側の凹部Rdに、抽気キャビティCsとディフューザ空間Dとを連通する抽気孔Hが形成されている。これにより、最も軸線方向下流側の凹部Rd内に流れ込んだ漏れ流れを、抽気孔Hを通じて抽気キャビティCsに導くことができる。その結果、当該凹部Rdよりも軸線方向上流側に向かう漏れ流れを低減することができる。したがって、圧縮機1の内部で生じる損失を抑制することができる。
 さらに、上記構成によれば、出口案内翼8が複数設けられていることにより、ディフューザ空間Dに流れ込む流体の流れに含まれる旋回成分(ロータ4の回転方向に旋回する流れ成分)をより小さく抑えることができる。その結果、軸線Ax方向の流れ成分が大きくなり、圧縮機1の性能をさらに向上させることができる。
 また、上記構成によれば、抽気孔Hが設けられていることで、漏れ流れの低減と同時に、ディフューザ空間Dにおける境界層の発達も抑制することができる。したがって、上記のようにインナーケーシング9における出口案内翼8よりも軸線方向下流側の部分である第二外周面91Bを軸線方向下流側に向かうに従って縮径させることが可能となる。これにより、ディフューザ空間Dの流路断面積をさらに拡大させることができる。その結果、当該ディフューザ空間Dによる流体の静圧回復をさらに促進することができる。
<第二実施形態>
 続いて、本開示の第二実施形態について、図4と図5を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。本実施形態に係る圧縮機1Bでは、主にロータ4b、及びインナーケーシング9bの構成が第一実施形態とは異なっている。
 ロータ4bは、最も軸線方向下流側のディスク4Dのさらに軸線方向下流側に一体に形成されたロータ延長部4Eをさらに有している。ロータ延長部4Eは、軸線Axを中心とする円筒状をなすことで、上述の軸部4Sを外周側から隙間なく覆っている。ロータ延長部4Eの外周面は、ディスク外周面Dsの外径寸法と同一の径寸法を有する第一外周面91A´とされている。この第一外周面91A´には、出口案内翼8の内側シュラウド82を収容する複数の凹部Rbが形成されている。また、本実施形態では、内側シュラウド82の内周面に、凹部Rbと当該内側シュラウド82との間の流体の流れをシールするシール部Sが設けられている。具体的にはシール部Sは、内側シュラウド82の内周面から径方向内側に向かって突出する複数のシールフィンである。なお、シール部Sとして、シールフィンに代えて、ラビリンスシール等の他の構成を適用することも可能である。
 複数の凹部Rbのうち、最も軸線方向下流側に位置する凹部Rd´は、軸線方向上流側に位置する他の凹部Rbと形状が異なっている。具体的に、当該凹部Rd´の軸線方向下流側の部分は、軸線方向下流側に向かって開口している。言い換えれば、この凹部Rd´は、軸線方向上流側の端面と底面のみによって画定されている。
 この凹部Rd´の軸線方向下流側には、軸線Ax方向に間隔(連通部Hc)をあけて、インナーケーシング9bが設けられている。インナーケーシング9bは、軸線方向下流側に向かうに従って、軸線Axに対する径方向内側に向かって延びる筒状をなしている。インナーケーシング9bの外周面(第二外周面91B)は、上記の第一外周面91A´とともに、外周壁面91を形成している。外周壁面91は、上述の第一実施形態と同様に、圧縮機ケーシング1Cの内周面とともにディフューザ空間Dを画定している。
 インナーケーシング9bの内周面は、内周壁面92とされている。内周壁面92と軸部外周面41との間には、抽気キャビティCs´が形成されている。さらに、インナーケーシング9bの軸線方向上流側の端面(上流側端面9T)は、上記の連通部Hcを介して、凹部Rd´及びロータ延長部4Eの軸線方向下流側の端面(延長部端面Et)と対向している。
 ここで、ディフューザ空間D内では流体の静圧回復が生じることから、軸線方向下流側になるほど流体の圧力が高くなっている。このため、上記の凹部Rbを通じて軸線方向下流側から軸線方向上流側に向かう漏れ流れが生じることがある。このような漏れ流れが主流に合流することで損失が発生してしまう。しかしながら、上記構成では、凹部Rd´の軸線方向下流側の部分が軸線方向下流側に向かって開口している。さらに、この凹部Rd´とインナーケーシング9bとの間には、連通部Hcとしての間隙が形成されている。これにより、凹部Rd´内に流れ込んだ漏れ流れを、連通部Hcを通じて抽気キャビティCs´に導くことができる。その結果、凹部Rd´よりも軸線方向上流側に向かう漏れ流れを低減することができる。したがって、圧縮機1Bの性能をさらに向上させることができる。
 さらに、上記構成によれば、出口案内翼8が複数設けられていることにより、その軸線方向下流側のディフューザ空間Dに流れ込む空気の流れから旋回成分(ロータ4の回転方向に旋回する流れ成分)をより小さく抑えることができる。その結果、軸線Ax方向に向かう流れ成分が大きくなり、圧縮機1Bの性能をさらに向上させることができる。
 また、上記構成によれば、連通部Hcが設けられていることで、漏れ流れの低減と同時に、ディフューザ空間Dでの境界層の発達も抑制することができる。したがって、上記のようにインナーケーシング9bを軸線方向下流側に向かうに従って縮径させることで、ディフューザの流路断面積を拡大させることができる。その結果、当該ディフューザ空間Dによる流体の静圧回復をさらに促進することができる。
 加えて、上記構成によれば、凹部Rd´を通じて軸線方向上流側に向かう漏れ流れを、シール部Sによってさらに低減することができる。
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記第二実施形態で説明したシール部Sを、第一実施形態に適用することも可能である。また、出口案内翼8の数、及びこれに対応する凹部Rの数は、上記実施形態及び図面によって限定されるものではなく、設計や仕様に応じて適宜変更することが可能である。
<付記>
 各実施形態に記載の圧縮機1、及びガスタービン100は、例えば以下のように把握される。
(1)第1の態様に係る圧縮機1は、軸線Ax方向に積層された複数のディスク4D、該ディスク4Dの軸線方向下流側に接続された軸部4S、及び、複数の前記ディスク4Dに固定された複数の動翼列5を有するロータ4と、前記ロータ4を外周側から囲う圧縮機ケーシング1C、及び、前記圧縮機ケーシング1Cに固定されて前記動翼列5の間にそれぞれ配置される複数の静翼列6を有するステータ7と、最も軸線方向下流側の前記ディスク4Dの前記軸線方向下流側で前記圧縮機ケーシング1Cから突出するように周方向に間隔をあけて配置された翼本体81、及び、これら翼本体81を径方向内側で周方向に接続する内側シュラウド82を有する出口案内翼8と、最も軸線方向下流側の前記ディスク4Dの軸線方向下流側に該ディスク4Dと隙間Gを介して配置されて、前記軸線Ax方向に筒状に延びるインナーケーシング9と、を備え、該インナーケーシング9は、前記出口案内翼8の内側シュラウド82を収容する凹部Rを有するとともに該凹部Rの前記軸線方向下流側で前記圧縮機ケーシング1Cの内周面とともにディフューザDを形成する外周壁面91と、前記軸部4Sの外周面との間に、前記隙間Gを介して流体が導入される抽気キャビティCsを形成する内周壁面92と、を有し、前記凹部R内における前記軸線方向下流側の部分に、前記インナーケーシング9を径方向に貫通する抽気孔Hが形成されている。
 ここで、ディフューザD内では流体の静圧回復が生じることから、軸線方向下流側になるほど流体の圧力が高くなっている。このため、上記の凹部Rを通じて軸線方向下流側から軸線方向上流側に向かう漏れ流れが生じることがある。このような漏れ流れが主流に合流することで損失が発生してしまう。しかしながら、上記構成では、凹部Rの軸線方向下流側の部分に抽気孔Hが形成されている。これにより、凹部R内に流れ込んだ漏れ流れを、抽気孔Hを通じて抽気キャビティCsに導くことができる。その結果、凹部Rよりも軸線方向上流側に向かう漏れ流れを低減することができる。
(2)第2の態様に係る圧縮機1では、前記出口案内翼8は、前記軸線Ax方向に間隔をあけて複数配列され、前記凹部Rは、それぞれの前記出口案内翼8ごとに設けられている。
 上記構成によれば、出口案内翼8が複数設けられていることにより、その軸線方向下流側のディフューザDに流れ込む流体の流れに含まれる旋回成分(ロータの回転方向に旋回する流れ成分)をより小さく抑えることができる。その結果、軸線Ax方向に向かう流れ成分が大きくなり、圧縮機1の性能をさらに向上させることができる。
(3)第3の態様に係る圧縮機1では、前記複数の凹部Rのうち、最も軸線方向下流側の前記凹部Rdに前記抽気孔Hが形成されている。
 上記構成によれば、最も軸線方向下流側の凹部Rdに抽気孔Hが形成されていることから、当該最も軸線方向下流側の凹部Rdよりも軸線方向上流側に漏れ流れが到達する可能性を低減することができる。
(4)第4の態様に係る圧縮機1では、前記インナーケーシング9における前記出口案内翼8よりも軸線方向下流側の部分は、軸線方向下流側に向かうに従って径方向内側に延びている。
 上記構成によれば、抽気孔Hが設けられていることで、漏れ流れの低減と同時に、ディフューザDでの境界層の発達も抑制することができる。したがって、上記のようにインナーケーシング9における出口案内翼8よりも軸線方向下流側の部分を軸線方向下流側に向かうに従って縮径させることが可能となる。これにより、ディフューザDの流路断面積を拡大させることができる。その結果、当該ディフューザDによる流体の静圧回復をさらに促進することができる。
(5)第5の態様に係る圧縮機1Bでは、軸線Ax方向に積層された複数のディスク4D、該ディスク4Dの軸線方向下流側に接続された軸部4S、及び、複数の前記ディスク4Dに固定された複数の動翼列5を有するロータ4と、前記ロータ4を外周側から囲う圧縮機ケーシング1C、及び、前記圧縮機ケーシング1Cに固定されて前記動翼列5の間にそれぞれ配置される複数の静翼列6を有するステータ7と、最も軸線方向下流側の前記ディスク4Dの前記軸線方向下流側で前記圧縮機ケーシング1Cから突出するように周方向に間隔をあけて配置された翼本体81、及び、これら翼本体81を径方向内側で周方向に接続する内側シュラウド82を有する出口案内翼8と、最も軸線方向下流側の前記ディスク4Dの軸線方向下流側に設けられ、前記出口案内翼8の内側シュラウド82を収容する凹部Rbを有するロータ延長部4Eと、前記ロータ延長部4Eの軸線方向下流側に該ロータ延長部4Eと隙間を介して配置されて、前記軸線Ax方向に筒状に延びるインナーケーシング9bと、を備え、該インナーケーシング9bは、前記凹部Rbの前記軸線方向下流側で前記圧縮機ケーシング1Cの内周面とともにディフューザDを形成する外周壁面91と、前記軸部4Sの外周面との間に抽気キャビティCs´を形成する内周壁面92と、を有し、前記凹部Rb内における前記軸線方向下流側の部分は、軸線方向下流側に向かって開口するとともに、該凹部Rbと前記インナーケーシング9bとの間に前記抽気キャビティCs´に連通する連通部Hcが形成されている。
 ここで、ディフューザD内では流体の静圧回復が生じることから、軸線方向下流側になるほど流体の圧力が高くなっている。このため、上記の凹部Rbを通じて軸線方向下流側から軸線方向上流側に向かう漏れ流れが生じることがある。このような漏れ流れが主流に合流することで損失が発生してしまう。しかしながら、上記構成では、凹部Rbの軸線方向下流側の部分が軸線方向下流側に向かって開口している。さらに、この凹部Rbとインナーケーシング9bとの間には、連通部Hcとしての間隙が形成されている。これにより、凹部Rb内に流れ込んだ漏れ流れを、連通部Hcを通じて抽気キャビティCs´に導くことができる。その結果、凹部Rbよりも軸線方向上流側に向かう漏れ流れを低減することができる。
(6)第6の態様に係る圧縮機1Bでは、前記出口案内翼8は、前記軸線Ax方向に間隔をあけて複数配列され、前記凹部Rbは、それぞれの前記出口案内翼8ごとに設けられている。
 上記構成によれば、出口案内翼8が複数設けられていることにより、その軸線方向下流側のディフューザDに流れ込む流体の流れに含まれる旋回成分(ロータの回転方向に旋回する流れ成分)をより小さく抑えることができる。その結果、軸線Ax方向に向かう流れ成分が大きくなり、圧縮機1Bの性能をさらに向上させることができる。
(7)第7の態様に係る圧縮機1Bでは、前記複数の凹部Rbのうち、最も前記軸線方向下流側の前記凹部Rd´が前記連通部Hcと連通している。
 上記構成によれば、最も軸線方向下流側の凹部Rd´が連通部Hcと連通していることから、当該最も軸線方向下流側の凹部Rd´よりも軸線方向上流側に漏れ流れが到達する可能性を低減することができる。
(8)第8の態様に係る圧縮機1Bでは、前記インナーケーシング9bは、該軸線方向下流側に向かうに従って径方向内側に延びている。
 上記構成によれば、連通部Hcが設けられていることで、漏れ流れの低減と同時に、ディフューザDでの境界層の発達も抑制することができる。したがって、上記のようにインナーケーシング9bを軸線方向下流側に向かうに従って縮径させることが可能となる。これにより、ディフューザDの流路断面積を拡大させることができる。その結果、当該ディフューザDによる流体の静圧回復をさらに促進することができる。
(9)第9の態様に係る圧縮機1Bでは、前記内側シュラウド82の内周面に設けられ、該内周面と前記凹部Rbとの間の流体の流れをシールするシール部Sをさらに備える。
 上記構成によれば、凹部Rbを通じて軸線方向上流側に向かう漏れ流れを、シール部Sによってさらに低減することができる。
(10)第10の態様に係るガスタービン100は、上記いずれか一の態様に係る圧縮機1,1Bと、該圧縮機1,1Bによって生成された高圧流体と燃料の混合気を燃焼させることで燃焼ガスを生成する燃焼器2と、前記燃焼ガスによって駆動されるタービン3と、を備える。
 上記構成によれば、圧縮機1,1Bの漏れ流れが低減されることで、当該圧縮機1,1Bの損失が低減される。その結果、ガスタービン100としての効率をさらに向上させることができる。
 本開示によれば、漏れ流れを抑制することで損失がより一層低減された圧縮機、及びガスタービンを提供することができる。
100 ガスタービン
1,1B 圧縮機
1C 圧縮機ケーシング
11 ケーシング内周面
12 拡径面
2 燃焼器
3 タービン
4,4b ロータ
41 軸部外周面
42 インデューサ
4D ディスク
4E ロータ延長部
4S 軸部
5 動翼列
6 静翼列
7 ステータ
8 出口案内翼
81 翼本体
82 内側シュラウド
9,9b インナーケーシング
9D インナーケーシング下流部
9U インナーケーシング上流部
9T 上流側端面
91 外周壁面
92 内周壁面
91A,91A´ 第一外周面
91B 第二外周面
92A 第一内周面
92B 第二内周面
Ax 軸線
Cs,Cs´ 抽気キャビティ
D ディフューザ空間
Ds ディスク外周面
Et 延長部端面
Fc 圧縮流路
H 抽気孔
Hc 連通部
R,Rb,Rd,Rd´ 凹部

Claims (10)

  1.  軸線方向に積層された複数のディスク、該ディスクの軸線方向下流側に接続された軸部、及び、複数の前記ディスクに固定された複数の動翼列を有するロータと、
     前記ロータを外周側から囲う圧縮機ケーシング、及び、前記圧縮機ケーシングに固定されて前記動翼列の間にそれぞれ配置される複数の静翼列を有するステータと、
     最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側で前記圧縮機ケーシングから突出するように周方向に間隔をあけて配置された翼本体、及び、これら翼本体を径方向内側で周方向に接続する内側シュラウドを有する出口案内翼と、
     最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側に該ディスクと隙間を介して配置されて、前記軸線方向に筒状に延びるインナーケーシングと、
    を備え、
     該インナーケーシングは、
     前記出口案内翼の内側シュラウドを収容する凹部を有するとともに該凹部の前記軸線方向下流側で前記圧縮機ケーシングの内周面とともにディフューザを形成する外周壁面と、
     前記軸部の外周面との間に、前記隙間を介して流体が導入される抽気キャビティを形成する内周壁面と、を有し、
     前記凹部内における前記軸線方向下流側の部分に、前記インナーケーシングを径方向に貫通する抽気孔が形成されている圧縮機。
  2.  前記出口案内翼は、前記軸線方向に間隔をあけて複数配列され、前記凹部は、それぞれの前記出口案内翼ごとに設けられている請求項1に記載の圧縮機。
  3.  前記複数の凹部のうち、最も前記軸線方向下流側の前記凹部に前記抽気孔が形成されている請求項2に記載の圧縮機。
  4.  前記インナーケーシングにおける前記出口案内翼よりも前記軸線方向下流側の部分は、前記軸線方向下流側に向かうに従って径方向内側に延びている請求項1から3のいずれか一項に記載の圧縮機。
  5.  軸線方向に積層された複数のディスク、該ディスクの軸線方向下流側に接続された軸部、及び、複数の前記ディスクに固定された複数の動翼列を有するロータと、
     前記ロータを外周側から囲う圧縮機ケーシング、及び、前記圧縮機ケーシングに固定されて前記動翼列の間にそれぞれ配置される複数の静翼列を有するステータと、
     最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側で前記圧縮機ケーシングから突出するように周方向に間隔をあけて配置された翼本体、及び、これら翼本体を径方向内側で周方向に接続する内側シュラウドを有する出口案内翼と、
     最も前記軸線方向下流側の前記ディスクの前記軸線方向下流側に設けられ、前記出口案内翼の内側シュラウドを収容する凹部を有するロータ延長部と、
     前記ロータ延長部の軸線方向下流側に該ロータ延長部と隙間を介して配置されて、前記軸線方向に筒状に延びるインナーケーシングと、
    を備え、
     該インナーケーシングは、前記凹部の前記軸線方向下流側で前記圧縮機ケーシングの内周面とともにディフューザを形成する外周壁面と、
     前記軸部の外周面との間に抽気キャビティを形成する内周壁面と、を有し、
     前記凹部内における前記軸線方向下流側の部分は、該軸線方向下流側に向かって開口するとともに、該凹部と前記インナーケーシングとの間に前記抽気キャビティに連通する連通部が形成されている圧縮機。
  6.  前記出口案内翼は、前記軸線方向に間隔をあけて複数配列され、前記凹部は、それぞれの前記出口案内翼ごとに設けられている請求項5に記載の圧縮機。
  7.  前記複数の凹部のうち、最も前記軸線方向下流側の前記凹部が前記連通部と連通している請求項6に記載の圧縮機。
  8.  前記インナーケーシングは、前記軸線方向下流側に向かうに従って径方向内側に延びている請求項5から7のいずれか一項に記載の圧縮機。
  9.  前記内側シュラウドの内周面に設けられ、該内周面と前記凹部との間の流体の流れをシールするシール部をさらに備える請求項5から8のいずれか一項に記載の圧縮機。
  10.  請求項1から9のいずれか一項に記載の圧縮機と、
     該圧縮機によって生成された高圧流体と燃料の混合気を燃焼させることで燃焼ガスを生成する燃焼器と、
     前記燃焼ガスによって駆動されるタービンと、
    を備えるガスタービン。
PCT/JP2020/031259 2019-08-29 2020-08-19 圧縮機、ガスタービン WO2021039531A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020004022.4T DE112020004022T5 (de) 2019-08-29 2020-08-19 Kompressor und gasturbine
US17/624,976 US11746694B2 (en) 2019-08-29 2020-08-19 Compressor and gas turbine
CN202080047745.7A CN114080508A (zh) 2019-08-29 2020-08-19 压缩机、燃气轮机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156981A JP2021032224A (ja) 2019-08-29 2019-08-29 圧縮機、ガスタービン
JP2019-156981 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039531A1 true WO2021039531A1 (ja) 2021-03-04

Family

ID=74676317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031259 WO2021039531A1 (ja) 2019-08-29 2020-08-19 圧縮機、ガスタービン

Country Status (5)

Country Link
US (1) US11746694B2 (ja)
JP (1) JP2021032224A (ja)
CN (1) CN114080508A (ja)
DE (1) DE112020004022T5 (ja)
WO (1) WO2021039531A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024145076A1 (en) * 2022-12-28 2024-07-04 Ge Infrastructure Technology Llc Turbomachine compressor exit region seal flow circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518983A (ja) * 2008-04-24 2011-06-30 スネクマ 向心流空気収集手段を含むターボ機械の圧縮機ロータ
JP2011163184A (ja) * 2010-02-08 2011-08-25 Hitachi Ltd ガスタービン圧縮機の出口翼列
JP2012097748A (ja) * 2010-11-04 2012-05-24 Siemens Ag 軸流コンプレッサおよびそれに関連した作動方法
US20170023023A1 (en) * 2015-07-01 2017-01-26 Techspace Aero S.A. Perforated Drum of a Compressor of an Axial Turbine Engine
JP2017031847A (ja) * 2015-07-30 2017-02-09 三菱日立パワーシステムズ株式会社 軸流圧縮機、それを備えたガスタービン、及び軸流圧縮機の静翼
JP2017172374A (ja) * 2016-03-22 2017-09-28 三菱日立パワーシステムズ株式会社 軸流圧縮機及び軸流圧縮機を備えたガスタービン
JP2018155246A (ja) * 2017-03-17 2018-10-04 マン・エナジー・ソリューションズ・エスイー ガスタービン、ガスタービンの案内羽根リング、および案内羽根リングを製造するための方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655906B1 (en) 2002-05-30 2003-12-02 Mitsubishi Heavy Industries, Ltd. Axial compressor and gas bleeding method to thrust balance disk thereof
JP4412081B2 (ja) * 2004-07-07 2010-02-10 株式会社日立製作所 ガスタービンとガスタービンの冷却方法
JP5539131B2 (ja) 2010-09-14 2014-07-02 株式会社日立製作所 2軸式ガスタービンの内周抽気構造
KR101941810B1 (ko) * 2015-04-03 2019-01-23 미츠비시 쥬고교 가부시키가이샤 동익, 및 축류 회전 기계
US10125781B2 (en) * 2015-12-30 2018-11-13 General Electric Company Systems and methods for a compressor diffusion slot
JP2019156981A (ja) 2018-03-13 2019-09-19 帝人株式会社 プリプレグ、繊維強化複合材料、及びそれらの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518983A (ja) * 2008-04-24 2011-06-30 スネクマ 向心流空気収集手段を含むターボ機械の圧縮機ロータ
JP2011163184A (ja) * 2010-02-08 2011-08-25 Hitachi Ltd ガスタービン圧縮機の出口翼列
JP2012097748A (ja) * 2010-11-04 2012-05-24 Siemens Ag 軸流コンプレッサおよびそれに関連した作動方法
US20170023023A1 (en) * 2015-07-01 2017-01-26 Techspace Aero S.A. Perforated Drum of a Compressor of an Axial Turbine Engine
JP2017031847A (ja) * 2015-07-30 2017-02-09 三菱日立パワーシステムズ株式会社 軸流圧縮機、それを備えたガスタービン、及び軸流圧縮機の静翼
JP2017172374A (ja) * 2016-03-22 2017-09-28 三菱日立パワーシステムズ株式会社 軸流圧縮機及び軸流圧縮機を備えたガスタービン
JP2018155246A (ja) * 2017-03-17 2018-10-04 マン・エナジー・ソリューションズ・エスイー ガスタービン、ガスタービンの案内羽根リング、および案内羽根リングを製造するための方法

Also Published As

Publication number Publication date
US11746694B2 (en) 2023-09-05
DE112020004022T5 (de) 2022-07-21
CN114080508A (zh) 2022-02-22
US20220282666A1 (en) 2022-09-08
JP2021032224A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6476615B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6109961B2 (ja) ガスタービンエンジンの内側シュラウドに溝を含むシール組立体
JP6331736B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6163789B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6177421B2 (ja) シール構造及び該シール構造を備える過給機
WO2016039015A1 (ja) 可変ノズルユニット及び可変容量型過給機
JP6326912B2 (ja) 可変ノズルユニット及び可変容量型過給機
KR20100116619A (ko) 터빈 디스크 및 가스 터빈
JP5494248B2 (ja) 固定翼式ターボチャージャ
JP6152049B2 (ja) 可変ノズルユニット及び可変容量型過給機
WO2021039531A1 (ja) 圧縮機、ガスタービン
WO2019131011A1 (ja) 航空機用ガスタービン及び航空機用ガスタービンの動翼
JP6383088B2 (ja) ガスタービンのシール装置及びガスタービン、航空用エンジン
JP2015031237A (ja) 可変ノズルユニット及び可変容量型過給機
JP6638594B2 (ja) 過給機
JP5667039B2 (ja) 圧縮機及びこれに用いる可変静翼
JP6146507B2 (ja) 可変ノズルユニット及び可変容量型過給機
US9011083B2 (en) Seal arrangement for a gas turbine
JP6089791B2 (ja) 可変ノズルユニット及び可変容量型過給機
RU2795138C1 (ru) Компрессор и газовая турбина
WO2020188847A1 (ja) 可変容量型過給機
JP6782671B2 (ja) ターボ機械
JP7351784B2 (ja) 遠心回転機械
JP6912003B2 (ja) 遠心圧縮機
JP6149426B2 (ja) 可変容量型過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856663

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20856663

Country of ref document: EP

Kind code of ref document: A1