WO2021039476A1 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
WO2021039476A1
WO2021039476A1 PCT/JP2020/031030 JP2020031030W WO2021039476A1 WO 2021039476 A1 WO2021039476 A1 WO 2021039476A1 JP 2020031030 W JP2020031030 W JP 2020031030W WO 2021039476 A1 WO2021039476 A1 WO 2021039476A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
storage device
electrolytic solution
copper
power storage
Prior art date
Application number
PCT/JP2020/031030
Other languages
French (fr)
Japanese (ja)
Inventor
星野 勝義
あおい 馬郡
長谷川 雅人
雄也 清村
大輔 村松
Original Assignee
国立大学法人千葉大学
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人千葉大学, 株式会社巴川製紙所 filed Critical 国立大学法人千葉大学
Publication of WO2021039476A1 publication Critical patent/WO2021039476A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device.
  • Power storage devices are roughly classified into secondary batteries that use a chemical reaction that involves a large amount of material conversion, and capacitors that do not use a chemical reaction or use a chemical reaction that involves a slight amount of material conversion on the material surface.
  • capacitors are divided into electric double layer capacitors (EDLC) and redox capacitors.
  • EDLC electric double layer capacitors
  • secondary batteries and EDLCs are already on the market, but redox capacitors are still in the research stage.
  • EDLC is used as a power storage device for renewable energy (wind power generation, solar power generation), and as an auxiliary power source for hybrid vehicles and electric vehicles.
  • the secondary battery has a large discharge capacity, it has problems in output, repeatability and charge / discharge time, and the EDLC has excellent output, repeatability and charge / discharge time, but has a small discharge capacity. There is a relationship of. Redox capacitors are being actively researched as being able to secure the characteristics of EDLC output, repeatability, and charge / discharge time, and to improve the discharge capacity, which is a disadvantage.
  • ruthenium oxide, iridium oxide, manganese oxide, nickel oxide, nickel hydroxide, cobalt oxide, cobalt hydroxide, cobalt oxyhydroxide and the like have been used as electrode materials for redox capacitors. Although ruthenium oxide and iridium oxide have sufficient capacity, they are expensive and have not been put on the market. Manganese oxide, nickel oxide, nickel hydroxide, cobalt oxide, cobalt hydroxide, cobalt oxyhydroxide, etc. have a discharge capacity. Low.
  • Patent Document 1 proposes the use of metal nanowires as capacitor electrodes.
  • the present invention provides a power storage device capable of maintaining a large electric capacity and a charge / discharge capacity while using a ubiquitous element typified by copper, which is easily available as a resource, as a main component of the electrode. Is the subject.
  • the present invention is as follows.
  • the present invention (1) Insulating outer body and It has a first electrode, a second electrode, and an electrolytic solution that are hermetically held in the outer shell.
  • a power storage device in which the first electrode and the second electrode are held in a state of being isolated via the electrolytic solution.
  • the electrolytic solution is an alkaline electrolytic solution.
  • At least one or both of the first electrode and the second electrode are porous conductors.
  • the porous conductor is a power storage device characterized by containing iron and / or copper as a main component.
  • the present invention (2) The power storage device according to the invention (1), wherein the porous conductor contains iron as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 5 mol / L.
  • the present invention (3) The power storage device according to the invention (1), wherein the porous conductor contains copper as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 1 mol / L.
  • the present invention (4) The power storage device according to any one of the inventions (1) to (3), wherein the porous conductor includes a metal fiber sheet.
  • the present invention (5) The power storage device according to any one of the inventions (1) to (4), which is a redox capacitor.
  • the power storage device according to the present invention is usually used as a capacitor (preferably a redox capacitor), but as long as it has the configuration of the present invention, it can also be used for other power storage devices (for example, a secondary battery).
  • a capacitor preferably a redox capacitor
  • the power storage device 100 includes an outer shell 110, an electrode pair 120 (first electrode 121, second electrode 122) and electrolysis held tightly inside the outer shell 110. It has a liquid 130 and. The first electrode 121 and the second electrode 122 are immersed in the electrolytic solution 130. The first electrode 121 and the second electrode 122 are held in a separated state via the electrolytic solution 130.
  • the power storage device 100 usually has a terminal 140 for electrically connecting an external circuit, an external power source, or the like (not shown) and a first electrode 121 (second electrode 122). ..
  • the material and shape of the terminal 140 is not limited as long as it is made conductive.
  • the terminal 140 may be formed integrally with the first electrode 121 (second electrode 122), or may be formed separately from the first electrode 121 (second electrode 122).
  • the terminal 140 and the first electrode 121 (second electrode 122) may be electrically connected.
  • the power storage device 100 further separates the separator 150 between the first electrode 121 and the second electrode 122 for the purpose of preventing electrical contact between the first electrode 121 and the second electrode 122 and the like. May include.
  • a separator usually used for a power storage device for example, a non-woven fabric having an insulating property, a porous membrane having an insulating property and an ion permeability, etc.
  • the material, thickness, size, etc. of the separator 150 can be appropriately adjusted according to the electrical configuration of the power storage device 100.
  • the power storage device 100 may be composed of a plurality of units, with the electrical configuration including the first electrode 121, the second electrode 122, and the electrolytic solution 130 as one unit.
  • the first electrode 121 and the second electrode 122 are formed into a sheet, and the first electrode 121 and the second electrode 122 are wound up via a separator 150 having an insulating property to electrolyze. It is also possible to have a structure in which the liquid 130 is housed in the outer shell 110 together with the liquid 130. With this configuration, it is possible to improve the electric capacity per unit volume.
  • the outer shell 110 has an insulating property, makes it impossible to conduct the inside of the outer shell 110 and the outside of the outer shell 110 except for the terminal 140, and connects the first electrode 121, the second electrode 122, and the electrolytic solution 130. It is configured to be held in a sealed state.
  • the shape and size of the outer shell 110 are not particularly limited as long as the first electrode 121, the second electrode 122 and the electrolytic solution 130 can be held in a sealed state.
  • the outer shell 110 is a case type, but the outer shell 110 may be a cylindrical shape or a thin plate shape, or the outer shell 110 may be a film shape and the whole may be laminated.
  • the “sealed state” shown here means watertightness that prevents leakage of the electrolytic solution 130 and airtightness that prevents external gas (particularly carbon dioxide in the atmosphere) from actively contacting the electrolytic solution. Indicates that it has. With such a configuration, it is possible to prevent deterioration of the electrolytic solution 130, which will be described later. Further, “having an insulating property” means that the outer shell 110 cannot conduct (or is difficult to conduct) to the extent required for the outer shell used for each power storage device (capacitor, secondary battery, etc.). Shown.
  • the material of the outer shell 110 is not particularly limited as long as it has insulating properties and can sufficiently maintain the sealed state inside the outer shell 110, but it is preferably a material that is not easily altered by the electrolytic solution 130.
  • the outer shell 110 has properties required for the outer body 110 as a whole (for example, airtightness and insulation) and properties required for the internal configuration of the outer body 110 (for example, it is difficult to be altered by the electrolytic solution 130). And, in order to achieve both, it may have a layered structure composed of a plurality of layers. In such a case, a conductive material may be included as a material forming a part of the outer shell 110.
  • Electrode pair 120 At least one or both of the first electrode 121 and the second electrode 122 are porous conductors. It is preferable that both the first electrode 121 and the second electrode 122 are porous conductors, but only one of them may be an electrode structure other than the porous conductor.
  • porous conductor and the electrode structure other than the porous conductor will be described.
  • the porous conductor has conductivity, and the surface or the entire porous conductor including the surface and the inside is porous, and the specific structure thereof is not particularly limited.
  • the structure may be porous as an aggregate of powder, fibers, or the like.
  • the composition itself such as powder or fiber may or may not be porous.
  • An example is a fabric woven with fibers, and even if the fibers themselves are not porous, it is possible to have a structure having holes or gaps on the surface or the entire surface of the fabric.
  • the surface as the base material, the surface inside the holes provided in the base material, the surface of the constituent members themselves constituting the base material, and the base material Includes the surface such as the inside of a hole that communicates with the external environment formed inside.
  • the surface of the metal fiber sheet, the surface of the metal fiber as a component, and the surface inside the hole formed inside the metal fiber sheet and communicating with the external environment are used. It shall mean.
  • the conductive or conductive material means a material having an electrical resistivity of 1 ⁇ 10 10 ⁇ ⁇ m or less.
  • the conductivity can be measured by a known method, and can be measured according to, for example, the method of JIS C2139: 2008.
  • the material of the porous conductor is mainly iron and / or copper.
  • the material of the porous conductor may be in any form of the case where only iron element is the main component, the case where only copper element is the main component, and the case where the total of iron element and copper element is the main component. ..
  • the iron or copper contained in the porous conductor may be in the form of elemental iron, iron alloy, elemental copper, copper alloy, or a mixture thereof. In the iron alloy or the copper alloy, the metal element to be added is not particularly limited, and may be appropriately selected according to the desired properties.
  • the material of the porous conductor is preferably stainless steel and / or copper.
  • porous conductor can be combined with a non-conductive material as long as it has conductivity as a whole.
  • the mass of the certain substance is 50 mass with respect to the total amount of the porous conductor. % Or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, or 100% by mass.
  • the porous conductor may be a porous body in which a large number of powders, fibers and the like are aggregated as a constituent, but it is preferable to include a metal fiber sheet containing a metal fiber made of iron and / or copper as a main component.
  • the metal fiber composed of iron and / or copper is, for example, an iron fiber, an iron alloy fiber, a copper fiber, a copper alloy fiber, or a mixture of these fibers.
  • As the metal fiber sheet a stainless steel fiber sheet and / or a copper fiber sheet is more preferable.
  • the porous conductor is a metal fiber sheet, the electric capacity is greatly increased, far exceeding the effect of increasing the actual surface area of the sheet.
  • the metal fiber sheet may contain components other than metal as long as the effects of the present invention are not impaired.
  • the fiber diameter, density (basis weight), thickness, etc. of this metal fiber sheet can be appropriately changed in consideration of rigidity, conductivity, electric capacity, and the like.
  • the fiber diameter is, for example, preferably 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, and preferably 100 ⁇ m or less, 50 ⁇ m or less, 30 ⁇ m or less, 25 ⁇ m or less.
  • the basis weight is preferably, for example, 10 g / m 2 or more, 50 g / m 2 or more, 100 g / m 2 or more, 200 g / m 2 or more, 1000 g / m 2 or less, 700 g / m 2 or less, 500 g / m. It is preferably 2 or less.
  • the porous conductor may be processed with mounting holes, cuts, etc., depending on its performance and application.
  • the porous conductor is a metal fiber sheet
  • it can be manufactured, for example, by wet-making metal fibers.
  • the sheet obtained by wet-making the metal fiber include a metal fiber sintered sheet produced by the method disclosed in Japanese Patent Application Laid-Open No. 07-258706.
  • This metal sintered sheet can be produced by using suitable stainless steel fibers or copper fibers, the size and distribution of holes and gaps can be adjusted, and processing after sheet formation is possible. It is suitable for a wide range of applications in that it can be secondary processed into a shape.
  • the shape, size, spacing, etc. of the pores of the porous conductor are not particularly limited.
  • the size of the holes can be, for example, 0.01 ⁇ m to 1000 ⁇ m, preferably 0.1 ⁇ m to 500 ⁇ m, and more preferably 1 ⁇ m to 300 ⁇ m. By setting it in such a range, the discharge capacity can be expected to be improved.
  • the size of the hole can be measured using a scanning electron microscope (hereinafter abbreviated as SEM: for example, based on JIS K0132: 1997). Further, the size of the holes can be the longest diameter (longest side) of the holes or the like, and 50 randomly selected holes are imaged using SEM, and the longest diameter of the obtained holes is obtained. The length of (longest side) can be measured and averaged.
  • porous conductor having a conductive nanostructure which is a particularly preferable form of the porous conductor, will be described.
  • porous conductor with conductive nanostructure In the porous conductor having a conductive nanostructure, the above-mentioned porous conductor is used as a base material (for example, a metal fiber sheet), and the conductive nanostructure is formed on the surface of the base material (for example, a metal fiber sheet). It is a thing. In other words, the porous conductor having a conductive nanostructure is formed on the surface of the porous substrate (simply a replacement of the above-mentioned porous conductor, for example, a metal fiber sheet) and the surface of the porous substrate. It includes the formed conductive nanostructures.
  • the material of the conductive nanostructure is not particularly limited as long as it is a material having conductivity that can be formed on the porous conductor.
  • metals, ceramics, resins, glass, graphite, etc. may be mentioned, and at least one of these materials may be used.
  • the material of the non-conductive material can be made conductive by a known method. Examples thereof include silicon and diamond ion-implanted with Group 13 elements such as boron and Group 15 elements such as phosphorus.
  • the non-conductive nanostructure is formed on the surface of the substrate and then ion-implanted to make it conductive. It can be a sex nanostructure.
  • the material of the conductive nanostructure is preferably metal from the viewpoint of electrical characteristics such as electrical conductivity, more preferably gold, platinum, silver, copper and cobalt, and silver, copper and cobalt from the characteristics of exhibiting a reversible electrochemical reaction. Is more preferable, and copper is particularly preferable.
  • the shape of the conductive nanostructure is not particularly limited, but is granular such as polygonal shape, circular shape, and elliptical shape; plate shape such as polygonal shape, circular shape, and elliptical shape; needle shape; polygonal shape, circular shape, elliptical shape, and the like.
  • Columnar shape; fibrous shape; dendritic shape; skeleton shape in crystal growth; etc., and a shape in which a plurality of these are combined (composite structure) may be used.
  • An example of a complex structure is a dendritic structure, for example, a structure in which a fibrous structure is branched from a fibrous structure to grow a fibrous structure, and then the fibrous structure is repeatedly grown from the fibrous structure.
  • a dendritic structure for example, a structure in which a fibrous structure is branched from a fibrous structure to grow a fibrous structure, and then the fibrous structure is repeatedly grown from the fibrous structure.
  • Such a complicated repeating structure can remarkably increase the surface area of the conductive nanostructure formed on the porous conductor, and can improve the discharge capacity and the repeating durability.
  • the nano-sized structure is a structure in which the length of at least one side (diameter or minor axis in the cross section) constituting the conductive nanostructure is less than 1 ⁇ m.
  • the micron-sized structure is a structure in which the length of one side (diameter or minor axis in the cross section) constituting the structure is 0.001 to 1 mm.
  • the size of the conductive nanostructure is not particularly limited.
  • the dendritic structure as a whole may be micron-sized, and at least the portion corresponding to the branch of the dendritic branch may be nano-sized. That is, the size of the conductive nanostructure itself is not limited, and any structure may have a nano-sized structural portion at least in part.
  • the conductive nanostructure when the conductive nanostructure is fibrous, at least the minor axis (or minor axis) of the cross section may be nano-sized, and in that case, the length of the fiber is the present invention. It is not limited as long as it does not interfere with the effect.
  • the size of the entire conductive nanostructure, that is, the longest length of the conductive nanostructure from the surface of the porous conductor can be 0.001 to 1000 ⁇ m, preferably 0.01 to 500 ⁇ m. is there.
  • the size of the nano-sized structural portion constituting the conductive nanostructure is the length of at least one side (diameter in the cross section) constituting the nano-sized structure.
  • the minor axis can be less than 1 ⁇ m, preferably 1 to 500 nm, and more preferably 5 to 300 nm.
  • the measurement of the size of the conductive nanostructure differs depending on the size of the conductive nanostructure, but using an SEM (for example, based on JIS K0132: 1997) or a transmission electron microscope (based on TEM: JIS H7804: 2004), etc. Can be measured. It is also possible to combine a plurality of measurement methods.
  • Method for manufacturing a porous conductor having a conductive nanostructure As a method for producing a porous conductor having a conductive nanostructure, a known method can be used. For example, a vapor phase reaction vapor deposition method, a self-assembly method, a method using lithography, an electron beam processing, a FIB processing, an electrochemical method and the like can be mentioned. Of these, the electrochemical method, in which the manufacturing cost itself is low and the equipment is simple and inexpensive, is more preferable, and the method for manufacturing a copper nanostructure according to Japanese Patent No. 5574158 is more preferable. Similarly, the methods disclosed in International Publication No. 2019/059238 also preferably apply.
  • a three-electrode cell device including a power supply, a main chamber provided with an operating electrode and a counter electrode, a sub chamber, a salt bridge, and a reference electrode is used.
  • the power supply is not particularly limited, but a potentiostat is preferable.
  • the potentiostat is a device that makes the potential of the operating electrode constant with respect to the reference electrode, and is a mechanism that accurately measures the potential between the operating electrode and the counter electrode so that almost no current flows through the reference electrode. If the potentiostat is not used, the same adjustment must be made separately.
  • a porous conductor is used as the operating electrode.
  • the counter electrode is not particularly limited, and a known material can be used. For example, platinum and the like can be mentioned.
  • the reference electrode is not particularly limited as long as it is a known reference electrode, and examples thereof include a saturated calomel electrode.
  • an electrolytic solution prepared of tetraamminecopper sulfate (II) or copper (II) sulfate, which is a copper complex, lithium sulfate, and aqueous ammonia is placed in distilled water, and in the sub chamber, distilled water is charged with lithium sulfate. Add the electrolytic solution prepared with aqueous ammonia.
  • Tetraamminecopper sulfate (II) or copper (II) sulfate is reduced by two electrons by applying -1.0 V to -2.0 V to the reference electrode and energizing an electric amount of 0.10 to 20 C / cm 2. Then, copper is deposited on the porous conductor which is the operating electrode, and a nanostructure is formed. At this time, energization is carried out for 0.1 to 120 minutes to obtain a porous conductor having a conductive nanostructure on the surface and inside.
  • Electrode structure other than porous conductor As the electrode structure other than the porous conductor, a conventional conductive plate for a power storage device or the like can be used.
  • these electrode materials may be metal materials containing iron or copper as a main component, but in addition, aluminum, nickel, titanium, gold, silver, platinum, cobalt, lead, etc. And metal materials such as zinc or alloys containing them, carbon materials such as activated carbon, and the like can be used.
  • the shape and size (area and thickness) of the first electrode 121 and the second electrode 122, the isolation distance between the first electrode 121 and the second electrode 122, and the like are determined in the electrical configuration of the power storage device 100. It can be adjusted as appropriate.
  • the electrolytic solution 130 is typically an alkaline electrolytic solution containing an alkali metal hydroxide such as an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution as a solute, but ammonium hydroxide and tetra hydroxide. It may be an aqueous solution of alkylammonium, an aqueous solution of hydroxide of an alkaline earth metal, or the like.
  • an alkali metal hydroxide such as an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution as a solute, but ammonium hydroxide and tetra hydroxide. It may be an aqueous solution of alkylammonium, an aqueous solution of hydroxide of an alkaline earth metal, or the like.
  • the electrolytic solution is a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, or a lithium hydroxide aqueous solution
  • the molar concentration of alkali metal ions in the electrolytic solution 130 varies depending on the material of the electrode, but is preferably 0.1 to 1. It is 5 mol / L, more preferably 0.1 to 1 mol / L, and even more preferably 0.2 to 1 mol / L.
  • the molar concentration of alkali metal ions in the electrolytic solution 130 is preferably 0.1 to 5 mol / L.
  • the molar concentration of alkali metal ions in the electrolytic solution 130 is preferably 0.1 to 1 mol / L.
  • the pH of the electrolytic solution 130 is preferably 12 or more, more preferably 13 or more.
  • Iron, copper, and the like are inexpensive and easily available, but are unsuitable as electrode materials for power storage devices because they react easily and it is difficult to control the reaction. It is conceivable to control the reaction by using an alkaline electrolyte as the electrolytic solution of the power storage device, but in that case, the power storage device is rapidly deteriorated, resulting in poor durability over and over again.
  • the electrode material is a porous material, it contributes to the improvement of the initial discharge capacity, but sudden deterioration is unavoidable.
  • the present inventors have found that if the electrolytic solution is insufficiently sealed when configuring the power storage device, the electrolytic solution 130 can adsorb carbon dioxide and the like in the air. It was suggested that the electrolytic solution 130 was altered (the pH of the electrolytic solution 130 was lowered), the action on iron and copper was changed, and the electrode was rapidly deteriorated.
  • the present invention was constructed. For the first time, while using iron or copper (or iron alloy or copper alloy), copper, iron, etc., which are the key to the redox reaction, were retained in the electrodes. It has become possible to carry out repeated redox reactions (charge / discharge reactions), making it possible to apply it to power storage devices such as copper and iron. As a result, it has become possible to provide a power storage device 100 that is inexpensive but has stable and excellent electrical characteristics (high discharge capacity and repeatability).
  • Stainless Steel Fiber Sheet >> In Examples 1 to 4 and Comparative Example 1, a stainless steel fiber sheet made and sintered was used as the porous conductor. This stainless steel fiber sheet has a fiber diameter of 8 ⁇ m, a thickness of 100 ⁇ m, a basis weight of 300 g / m 2 , and a space factor of 33%. Basis weight means the weight of a metal fiber sheet per square meter. The space factor is the ratio of the metal fiber to the volume of the metal fiber sheet, and the smaller the value, the more voids the metal fiber sheet has.
  • Copper fiber sheet >> In Examples 5 to 9 and Comparative Examples 2 and 3, a copper fiber sheet made and sintered was used as the porous conductor. As this copper fiber sheet, a fiber diameter: 18.5 ⁇ m, a thickness: 100 ⁇ m, a basis weight: 300 g / m 2 , and a space factor: 33% was used.
  • Porous conductor with copper-based conductive nanostructures >> Based on the following procedure, a porous conductor having a copper-based conductive nanostructure was produced.
  • An evaluation sample having a conductive nanostructure was prepared by using the three-electrode method shown in FIG. A potentiostat (manufactured by Hokuto Denko Co., Ltd., model HAB-151) was used as the power source, and a 3-pole cell was connected as shown in FIG. The prepared electrolytic solution was placed in the main chamber of the electrolytic cell. An electrolytic solution obtained by removing only tetraamminecopper sulfate (II) from the prepared electrolytic solution was prepared and placed in a sub-chamber.
  • II tetraamminecopper sulfate
  • a copper fiber sheet base material made and sintered as a porous base material is used for the terminal of the operating electrode of the potentiostat, a platinum plate is used for the counter electrode terminal, and a saturated calomel electrode (Toa Electronics Co., Ltd.) is used for the terminal of the reference electrode.
  • SCE Model HC-205C, hereinafter abbreviated as SCE
  • Porous conductor with cobalt-based conductive nanostructures Based on the following procedure, a porous conductor having a cobalt-based conductive nanostructure was produced.
  • Hexamminecobalt (III) chloride electrolyte Hexamminecobalt (III) chloride (manufactured by Aldrich, purity 99% or higher) is 0.508 g, and lithium sulfate (made by Wako Pure Chemical Industries, Ltd., purity 99.0%), which is a supporting electrolyte, is 1.28 g. It was dissolved in 100 mL of distilled water and stirred with a magnetic stirrer for 30 minutes to prepare an electrolytic solution having a hexaamminecobal concentration of 19 mM (lithium sulfate concentration was 0.1 M).
  • An evaluation sample having a conductive nanostructure was prepared by using the three-electrode method shown in FIG.
  • a potentiostat manufactured by Hokuto Denko Co., Ltd., model HAB-151
  • the prepared electrolytic solution was placed in the main chamber of the electrolytic cell.
  • An aqueous electrolyte solution in which 0.1 M lithium sulfate was dissolved was placed in the sub-chamber.
  • the reference electrode was immersed in the sub-chamber.
  • the main room and the sub room are electrically connected by a salt bridge.
  • a copper fiber sheet base material made and sintered as a porous base material was connected to the terminal of the operating electrode of the potentiostat, a platinum plate was connected to the counter electrode terminal, and a saturated calomel electrode SCE was connected to the terminal of the reference electrode. ..
  • a charge / discharge resistance evaluation test was conducted using the apparatus shown in FIG.
  • a charge / discharge unit manufactured by Hokuto Denko, model HJ1010mSM8A
  • the operating electrodes are the electrodes of Examples 1 to 10 and Comparative Examples 1 to 3
  • the counter electrode terminal is a platinum plate
  • the reference electrode terminal is used.
  • SCE was connected.
  • the current density, in Examples 1 to 4, 11 and Comparative Example 1 as 3mA / cm 2, Examples 5 to 10 and 12 and Comparative Examples 2 and 3 was measured as 10 mA / cm 2. The results are shown in Table 1.
  • the outer container was made of polystyrene, and the charge / discharge test was performed with the polystyrene container covered with a silicon stopper in the closed state and without the silicon stopper in the open state.
  • the electrolytic solution was the electrolytic solution shown in the table.
  • ⁇ Size of electric capacity> The size of the electric capacity was calculated from each charge / discharge curve from the first charge / discharge to the 100th time, and the maximum capacity obtained by the 100th time was taken as the size of the capacity.
  • the change in electric capacity was measured as a change in electric capacity from the maximum capacity obtained from the first charge / discharge to the 100th time to the 1000th time.
  • Comparative Example 4 a 1 cm ⁇ 1 cm copper plate was prepared as the operating electrode.
  • the electrolytic solution was a 0.1 mol / L KOH aqueous solution.
  • the electric capacity was 0.039 mAh.
  • the electric capacity per actual surface area in Comparative Example 4 is 0.02 mAh / cm 2 obtained by dividing the electric capacity by 2 cm 2 in consideration of the front and back surfaces of the electrodes.
  • the electric capacity per actual surface area in the seventh embodiment since the actual surface area is calculated from the basis weight of 7.59Cm 2, by dividing the capacitance 1.9mAh In this actual surface area 0.25 mAh / cm It is 2.
  • the electric capacity per unit area in consideration of the actual surface area is much larger than that when the metal plate is used as the electrode (Comparative Example 4). It was confirmed that it would be higher.
  • Three-electrode device Charging / discharging device 10
  • Power supply potentiometer, etc.
  • Main chamber Operating electrode 22
  • Counter electrode 30
  • Sub chamber 31
  • Reference electrode 40
  • Salt bridge 50
  • Electrolytic solution 70
  • Glass filter 80

Abstract

The present invention provides an electricity storage device which uses a ubiquitous element as a main component of an electrode, said ubiquitous element being typified by copper and the like and being easily available as a resource, and which is still capable of maintaining large electrical capacity and charge/discharge capacity. An electricity storage device that comprises an insulating outer case, and a first electrode, a second electrode and an electrolyte solution, which are sealed and held in the outer case, wherein the first electrode and the second electrode are held at a distance from each other, with the electrolyte solution being interposed therebetween. This electricity storage device is characterized in that: the electrolyte solution is an alkaline electrolyte solution; at least one or both of the first electrode and the second electrode are composed of a porous conductor; and the porous conductor contains iron or copper as a main component.

Description

蓄電デバイスPower storage device
 本発明は、蓄電デバイスに関する。 The present invention relates to a power storage device.
 蓄電デバイスは、大きな物質変換を伴う化学反応を利用した二次電池と、化学反応を利用しないか、又は、材料表面の物質変換をわずかに伴う化学反応を利用したキャパシタに大別される。 Power storage devices are roughly classified into secondary batteries that use a chemical reaction that involves a large amount of material conversion, and capacitors that do not use a chemical reaction or use a chemical reaction that involves a slight amount of material conversion on the material surface.
 さらに、キャパシタは電気二重層キャパシタ(EDLC)とレドックスキャパシタとに区別される。これらのうち二次電池とEDLCは既に市販に至っているが、レドックスキャパシタは、いまだに研究段階に留まっている。EDLCは、再生可能エネルギー(風力発電、太陽光発電)の蓄電デバイスとして、また、ハイブリッド自動車や電気自動車の補助電源として利用されている。 Furthermore, capacitors are divided into electric double layer capacitors (EDLC) and redox capacitors. Of these, secondary batteries and EDLCs are already on the market, but redox capacitors are still in the research stage. EDLC is used as a power storage device for renewable energy (wind power generation, solar power generation), and as an auxiliary power source for hybrid vehicles and electric vehicles.
 二次電池は、放電容量が大きい反面、出力、繰返し耐久性、充放電時間に課題があり、また、EDLCは、出力、繰返し耐久性、充放電時間に優れるが、放電容量が小さいというトレードオフの関係にある。レドックスキャパシタは、EDLCの出力、繰り返し耐久性、充放電時間の特徴を担保し、さらに短所である放電容量が改善できるとして盛んに研究されている。 Although the secondary battery has a large discharge capacity, it has problems in output, repeatability and charge / discharge time, and the EDLC has excellent output, repeatability and charge / discharge time, but has a small discharge capacity. There is a relationship of. Redox capacitors are being actively researched as being able to secure the characteristics of EDLC output, repeatability, and charge / discharge time, and to improve the discharge capacity, which is a disadvantage.
 従来、レドックスキャパシタの電極材料は、酸化ルテニウム、酸化イリジウム、酸化マンガン、酸化ニッケル、水酸化ニッケル、酸化コバルト、水酸化コバルト、オキシ水酸化コバルト等が利用されてきた。酸化ルテニウム及び酸化イリジウムは、能力は十分であるものの高価であるため市販には至らず、酸化マンガン、酸化ニッケル、水酸化ニッケル、酸化コバルト、水酸化コバルト及びオキシ水酸化コバルト等は、放電容量が低い。 Conventionally, ruthenium oxide, iridium oxide, manganese oxide, nickel oxide, nickel hydroxide, cobalt oxide, cobalt hydroxide, cobalt oxyhydroxide and the like have been used as electrode materials for redox capacitors. Although ruthenium oxide and iridium oxide have sufficient capacity, they are expensive and have not been put on the market. Manganese oxide, nickel oxide, nickel hydroxide, cobalt oxide, cobalt hydroxide, cobalt oxyhydroxide, etc. have a discharge capacity. Low.
 特許文献1には、キャパシタ電極として金属ナノワイヤーを用いることが提案されている。 Patent Document 1 proposes the use of metal nanowires as capacitor electrodes.
特開2011-195865号公報Japanese Unexamined Patent Publication No. 2011-195865
 従来、銅、又は鉄を主成分とする合金をアルカリ電解液下で電極とした際のキャパシタ特性は、電気容量の大きさ、又は充放電容量の維持のいずれかが不足していたため、アルカリ電解液中で用いられる電極活物質としては不適であると考えられていた。 Conventionally, when an alloy containing copper or iron as a main component is used as an electrode under an alkaline electrolytic solution, the capacitor characteristics are insufficient for either the size of the electric capacity or the maintenance of the charge / discharge capacity. It was considered unsuitable as an electrode active material used in liquids.
 そこで、本発明は資源的に入手しやすい銅などに代表されるユビキタス元素を電極の主成分としつつも、電気容量の大きさ、及び、充放電容量の維持が可能な蓄電デバイスを提供することを課題とする。 Therefore, the present invention provides a power storage device capable of maintaining a large electric capacity and a charge / discharge capacity while using a ubiquitous element typified by copper, which is easily available as a resource, as a main component of the electrode. Is the subject.
 上記課題について、本発明者らが鋭意検討を行ったところ、特定の電解液及び電極を使用した、特定の構造を有する蓄電デバイスとすることで、高い放電容量及び繰返し耐久性を発揮することが可能であることを発見し、本発明を完成するに至った。即ち、本発明は以下の通りである。 As a result of diligent studies by the present inventors on the above problems, it is possible to exhibit high discharge capacity and repeatability by using a power storage device having a specific structure using a specific electrolytic solution and electrodes. It was discovered that it was possible, and the present invention was completed. That is, the present invention is as follows.
 本発明(1)は、
 絶縁性の外郭体と、
 前記外郭体内で密閉保持された、第1の電極、第2の電極及び電解液と
を有し、
 前記第1の電極と前記第2の電極とが、前記電解液を介して隔離された状態で保持されている蓄電デバイスであって、
 前記電解液はアルカリ電解液であり、
 前記第1の電極及び前記第2の電極の少なくとも一方又は両方が多孔質導電体であり、
 前記多孔質導電体は、鉄及び/又は銅を主成分として含む
ことを特徴とする、蓄電デバイスである。
 本発明(2)は、
 前記多孔質導電体が鉄を主成分とし、前記アルカリ電解液のモル濃度が0.1~5mol/Lであることを特徴とする、前記発明(1)の蓄電デバイスである。
 本発明(3)は、
 前記多孔質導電体が銅を主成分とし、前記アルカリ電解液のモル濃度が0.1~1mol/Lであることを特徴とする、前記発明(1)の蓄電デバイスである。
 本発明(4)は、
 前記多孔質導電体が金属繊維シートを含む、前記発明(1)~(3)いずれかの蓄電デバイスである。
 本発明(5)は、
 レドックスキャパシタである、前記発明(1)~(4)のいずれかの蓄電デバイスである。
The present invention (1)
Insulating outer body and
It has a first electrode, a second electrode, and an electrolytic solution that are hermetically held in the outer shell.
A power storage device in which the first electrode and the second electrode are held in a state of being isolated via the electrolytic solution.
The electrolytic solution is an alkaline electrolytic solution.
At least one or both of the first electrode and the second electrode are porous conductors.
The porous conductor is a power storage device characterized by containing iron and / or copper as a main component.
The present invention (2)
The power storage device according to the invention (1), wherein the porous conductor contains iron as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 5 mol / L.
The present invention (3)
The power storage device according to the invention (1), wherein the porous conductor contains copper as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 1 mol / L.
The present invention (4)
The power storage device according to any one of the inventions (1) to (3), wherein the porous conductor includes a metal fiber sheet.
The present invention (5)
The power storage device according to any one of the inventions (1) to (4), which is a redox capacitor.
 本発明によれば、安価で、高い放電容量と繰返し耐久性を有する蓄電デバイスを提供することが可能である。 According to the present invention, it is possible to provide an inexpensive power storage device having a high discharge capacity and repeatability.
本発明に係る蓄電デバイス100の概念図である。It is a conceptual diagram of the power storage device 100 which concerns on this invention. 導電性ナノ構造を形成するための三電極方式の装置の模式図である。It is a schematic diagram of the three-electrode type apparatus for forming a conductive nanostructure. 充放電装置の模式図である。It is a schematic diagram of a charge / discharge device.
 以下、本発明に係る蓄電デバイスについて詳述するが、本発明はこれらには何ら限定されない。 Hereinafter, the power storage device according to the present invention will be described in detail, but the present invention is not limited thereto.
 本発明に係る蓄電デバイスは、通常、キャパシタ(好ましくはレドックスキャパシタ)として使用されるが、本発明の構成を有する限りにおいて、その他の蓄電デバイス(例えば、2次電池等)にも使用できる。 The power storage device according to the present invention is usually used as a capacitor (preferably a redox capacitor), but as long as it has the configuration of the present invention, it can also be used for other power storage devices (for example, a secondary battery).
 なお、以下に示された各種物性は、特に断らない限り25℃において測定されたものとする。 The various physical properties shown below shall be measured at 25 ° C unless otherwise specified.
<<<蓄電デバイス>>>
<<全体構成>>
 本発明に係る蓄電デバイス100は、図1に示されるように、外郭体110と、外郭体110内で密閉保持された、電極対120(第1の電極121、第2の電極122)及び電解液130と、を有する。第1の電極121及び第2の電極122は、電解液130に浸漬されている。第1の電極121と第2の電極122とは、電解液130を介して隔離された状態で保持されている。
<<< Power storage device >>
<< Overall configuration >>
As shown in FIG. 1, the power storage device 100 according to the present invention includes an outer shell 110, an electrode pair 120 (first electrode 121, second electrode 122) and electrolysis held tightly inside the outer shell 110. It has a liquid 130 and. The first electrode 121 and the second electrode 122 are immersed in the electrolytic solution 130. The first electrode 121 and the second electrode 122 are held in a separated state via the electrolytic solution 130.
 蓄電デバイス100は、通常、外部回路や外部電源等(図示せず。)と、第1の電極121(第2の電極122)と、を電気的に接続するための端子140を有している。 The power storage device 100 usually has a terminal 140 for electrically connecting an external circuit, an external power source, or the like (not shown) and a first electrode 121 (second electrode 122). ..
 端子140は、導電可能に構成されていればその材質及び形状は何ら限定されない。端子140は、第1の電極121(第2の電極122)と一体に形成されていてもよいし、第1の電極121(第2の電極122)とは別体に形成された上で、端子140と第1の電極121(第2の電極122)とが電気的に接続されていてもよい。 The material and shape of the terminal 140 is not limited as long as it is made conductive. The terminal 140 may be formed integrally with the first electrode 121 (second electrode 122), or may be formed separately from the first electrode 121 (second electrode 122). The terminal 140 and the first electrode 121 (second electrode 122) may be electrically connected.
 蓄電デバイス100は、第1の電極121と第2の電極122との電気的な接触を防止すること等を目的として、第1の電極121と第2の電極122との間に、更にセパレーター150を含んでいてもよい。 The power storage device 100 further separates the separator 150 between the first electrode 121 and the second electrode 122 for the purpose of preventing electrical contact between the first electrode 121 and the second electrode 122 and the like. May include.
 このようなセパレーター150としては、蓄電デバイスに通常使用されるセパレーター(例えば、絶縁性を有する不織布や、絶縁性及びイオン透過性を有する多孔膜等)を使用可能である。セパレーター150の材料、厚み、大きさ等は、蓄電デバイス100の電気的構成に応じて適宜調整可能である。 As such a separator 150, a separator usually used for a power storage device (for example, a non-woven fabric having an insulating property, a porous membrane having an insulating property and an ion permeability, etc.) can be used. The material, thickness, size, etc. of the separator 150 can be appropriately adjusted according to the electrical configuration of the power storage device 100.
 蓄電デバイス100は、第1の電極121、第2の電極122及び電解液130を含む電気的構成を1ユニットとして、複数のユニットからなるものであってもよい。 The power storage device 100 may be composed of a plurality of units, with the electrical configuration including the first electrode 121, the second electrode 122, and the electrolytic solution 130 as one unit.
 図示しないが、蓄電デバイス100は、第1の電極121及び第2の電極122をシート状とし、絶縁性を有するセパレーター150を介して第1の電極121及び第2の電極122を巻き取り、電解液130と共に外郭体110内に収容した構造とすることも可能である。このように構成することで、単位体積あたりの電気容量を向上させることが可能である。 Although not shown, in the power storage device 100, the first electrode 121 and the second electrode 122 are formed into a sheet, and the first electrode 121 and the second electrode 122 are wound up via a separator 150 having an insulating property to electrolyze. It is also possible to have a structure in which the liquid 130 is housed in the outer shell 110 together with the liquid 130. With this configuration, it is possible to improve the electric capacity per unit volume.
 その他の電気的構成等は、特に限定されず、通常の蓄電デバイスで設定される条件等を適用可能である。 Other electrical configurations, etc. are not particularly limited, and conditions, etc. set by a normal power storage device can be applied.
 次に、本発明の特徴部分である、外郭体110、電極対120及び電解液130について詳述する。 Next, the outer body 110, the electrode pair 120, and the electrolytic solution 130, which are the characteristic parts of the present invention, will be described in detail.
<<外郭体110>>
 外郭体110は、絶縁性を有し、端子140を除いて外郭体110内部と外郭体110外部とを導通不可能とし、且つ、第1の電極121、第2の電極122及び電解液130を密閉状態にて保持するよう構成されている。
<< Outer body 110 >>
The outer shell 110 has an insulating property, makes it impossible to conduct the inside of the outer shell 110 and the outside of the outer shell 110 except for the terminal 140, and connects the first electrode 121, the second electrode 122, and the electrolytic solution 130. It is configured to be held in a sealed state.
 外郭体110の形状及び大きさは、その内部に、第1の電極121、第2の電極122及び電解液130を密閉状態にて保持可能な限りにおいて特に限定されない。図1では外郭体110をケース型としているが、外郭体110を円筒状又は薄板状としてもよいし、外郭体110をフィルム状として、全体をラミネートする構成としてもよい。 The shape and size of the outer shell 110 are not particularly limited as long as the first electrode 121, the second electrode 122 and the electrolytic solution 130 can be held in a sealed state. In FIG. 1, the outer shell 110 is a case type, but the outer shell 110 may be a cylindrical shape or a thin plate shape, or the outer shell 110 may be a film shape and the whole may be laminated.
 なお、ここで示す「密閉状態」とは、電解液130の漏れを防止する水密性、及び、外部の気体(特に、大気中の二酸化炭素)が積極的に電解液に触れないような気密性、を有することを示す。このような構成とすることで、後述する電解液130の変質を防止することが可能となる。また、外郭体110が「絶縁性を有する」とは、各蓄電デバイス(キャパシタや2次電池等)に使用される外郭体に求められる程度に導通不可能(乃至は導通困難)であることを示す。 The "sealed state" shown here means watertightness that prevents leakage of the electrolytic solution 130 and airtightness that prevents external gas (particularly carbon dioxide in the atmosphere) from actively contacting the electrolytic solution. Indicates that it has. With such a configuration, it is possible to prevent deterioration of the electrolytic solution 130, which will be described later. Further, "having an insulating property" means that the outer shell 110 cannot conduct (or is difficult to conduct) to the extent required for the outer shell used for each power storage device (capacitor, secondary battery, etc.). Shown.
 外郭体110の材料としては、絶縁性を有し、且つ、外郭体110内部の密閉状態を十分に保持可能であれば特に限定されないが、電解液130により変質し難い材料であることが好ましい。 The material of the outer shell 110 is not particularly limited as long as it has insulating properties and can sufficiently maintain the sealed state inside the outer shell 110, but it is preferably a material that is not easily altered by the electrolytic solution 130.
 また、外郭体110は、外郭体110全体として求められる性質(例えば、気密性や絶縁性)と、外郭体110の内部構成に対して求められる性質(例えば、電解液130により変質し難いこと)と、を共に達成するために、複数の層からなる層構造を有していてもよい。そのような場合、外郭体110の一部を構成する材料として、導電性を有する材料が含まれていてもよい。 Further, the outer shell 110 has properties required for the outer body 110 as a whole (for example, airtightness and insulation) and properties required for the internal configuration of the outer body 110 (for example, it is difficult to be altered by the electrolytic solution 130). And, in order to achieve both, it may have a layered structure composed of a plurality of layers. In such a case, a conductive material may be included as a material forming a part of the outer shell 110.
<<電極対120>>
 第1の電極121及び第2の電極122の少なくとも一方又は両方は、多孔質導電体である。第1の電極121及び第2の電極122が、共に多孔質導電体であることが好ましいが、どちらか一方のみが多孔質導電体以外の電極構造体であってもよい。
<< Electrode pair 120 >>
At least one or both of the first electrode 121 and the second electrode 122 are porous conductors. It is preferable that both the first electrode 121 and the second electrode 122 are porous conductors, but only one of them may be an electrode structure other than the porous conductor.
 以下、多孔質導電体及び多孔質導電体以外の電極構造体について説明する。 Hereinafter, the porous conductor and the electrode structure other than the porous conductor will be described.
<多孔質導電体>
 多孔質導電体は、導電性を有し、その表面、又は、表面及び内部を含む多孔質導電体全体が多孔質であるものをいい、その具体的な構造は特に限定されない。
<Porous conductor>
The porous conductor has conductivity, and the surface or the entire porous conductor including the surface and the inside is porous, and the specific structure thereof is not particularly limited.
 例えば、粉体や繊維等の集合体として、多孔質である構造であればよい。この場合に、粉体や繊維等の構成物自体は、多孔質であってもよいし、多孔質でなくてもよい。例として、繊維で織った生地等が挙げられ、繊維自体が多孔質でない場合でも、生地の表面又は全体に孔や隙間を有するような構造とすることが可能である。 For example, the structure may be porous as an aggregate of powder, fibers, or the like. In this case, the composition itself such as powder or fiber may or may not be porous. An example is a fabric woven with fibers, and even if the fibers themselves are not porous, it is possible to have a structure having holes or gaps on the surface or the entire surface of the fabric.
 なお、本明細書において、単に「表面」と記載した場合には、基材としての表面、基材に設けられた孔内部の表面と、基材を構成する構成部材自体の表面と、基材内部に形成された外部環境と連通した孔内部等の表面とを含む。例えば、金属繊維シートを基材とした場合には、金属繊維シートの表面と、構成物である金属繊維の表面と、金属繊維シート内部に形成された、外部環境と連通した孔内部の表面を意味するものとする。 In the present specification, when the term "surface" is simply used, the surface as the base material, the surface inside the holes provided in the base material, the surface of the constituent members themselves constituting the base material, and the base material Includes the surface such as the inside of a hole that communicates with the external environment formed inside. For example, when a metal fiber sheet is used as a base material, the surface of the metal fiber sheet, the surface of the metal fiber as a component, and the surface inside the hole formed inside the metal fiber sheet and communicating with the external environment are used. It shall mean.
 ここで導電性を有する、又は、導電性の材質とは、電気抵抗率が1×1010Ω・m以下のものをいう。導電性の測定方法は、公知の方法で測定ができるが、例えば、JIS C2139:2008の方法に準拠して測定できる。 Here, the conductive or conductive material means a material having an electrical resistivity of 1 × 10 10 Ω · m or less. The conductivity can be measured by a known method, and can be measured according to, for example, the method of JIS C2139: 2008.
 多孔質導電体の材質は、鉄及び/又は銅を主成分とする。多孔質導電体の材質は、鉄元素のみが主成分となる場合、銅元素のみが主成分となる場合、鉄元素及び銅元素の合計が主成分となる場合のいずれの形態であってもよい。多孔質導電体に含まれる鉄や銅は、鉄単体、鉄合金、銅単体、もしくは銅合金、又はこれらの混合物のいずれの形態であってもよい。なお、鉄合金又は銅合金において、添加される金属元素は特に限定されず、所望の性質にあわせて適宜選択すればよい。多孔質導電体の材質は、ステンレス鋼及び/又は銅であることが好ましい。 The material of the porous conductor is mainly iron and / or copper. The material of the porous conductor may be in any form of the case where only iron element is the main component, the case where only copper element is the main component, and the case where the total of iron element and copper element is the main component. .. The iron or copper contained in the porous conductor may be in the form of elemental iron, iron alloy, elemental copper, copper alloy, or a mixture thereof. In the iron alloy or the copper alloy, the metal element to be added is not particularly limited, and may be appropriately selected according to the desired properties. The material of the porous conductor is preferably stainless steel and / or copper.
 また、多孔質導電体は、全体として導電性を有する限りにおいて、非導電性の材質と組み合わせることもできる。 Further, the porous conductor can be combined with a non-conductive material as long as it has conductivity as a whole.
 多孔質導電体の材質が、ある物質(鉄及び/又は銅)を主成分とするとは、多孔質導電体の全量に対して、当該ある物質(鉄元素及び銅元素の合計)が、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、99質量%以上、又は100質量%であることを示す。 When the material of the porous conductor is mainly composed of a certain substance (iron and / or copper), the mass of the certain substance (total of iron element and copper element) is 50 mass with respect to the total amount of the porous conductor. % Or more, 60% by mass or more, 70% by mass or more, 80% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, or 100% by mass.
 多孔質導電体は、多数の粉体や繊維等を構成物として集合させた多孔質体でもよいが、鉄及び/又は銅からなる金属繊維を主成分として含む金属繊維シートを含むことが好ましい。鉄及び/又は銅からなる金属繊維とは、例えば、鉄繊維、鉄合金繊維、銅繊維、銅合金繊維並びにこれらの繊維の混合物である。金属繊維シートとしては、ステンレス鋼繊維シート及び/又は銅繊維シートがより好ましい。密閉された状況下、アルカリ電解液を用いた蓄電デバイスにおいて、多孔質導電体を金属繊維シートとした場合、シートの実表面積の増加に伴う効果を遥かに超えて、電気容量が非常に高まることが確かめられた。詳細な理由については不明であるが、金属繊維を使用することで、微視的に、充放電時に各金属繊維の長軸に沿って形成される磁場がアルカリ電解液中のイオン(水酸化物イオンを含む)の物質移動等に作用することで、電気容量の向上に寄与する可能性が示唆された。 The porous conductor may be a porous body in which a large number of powders, fibers and the like are aggregated as a constituent, but it is preferable to include a metal fiber sheet containing a metal fiber made of iron and / or copper as a main component. The metal fiber composed of iron and / or copper is, for example, an iron fiber, an iron alloy fiber, a copper fiber, a copper alloy fiber, or a mixture of these fibers. As the metal fiber sheet, a stainless steel fiber sheet and / or a copper fiber sheet is more preferable. In a power storage device using an alkaline electrolytic solution under a closed condition, when the porous conductor is a metal fiber sheet, the electric capacity is greatly increased, far exceeding the effect of increasing the actual surface area of the sheet. Was confirmed. Although the detailed reason is unknown, by using metal fibers, the magnetic field formed along the long axis of each metal fiber during charging and discharging is microscopically generated as ions (hydroxides) in the alkaline electrolyte. It was suggested that it may contribute to the improvement of electric capacity by acting on the movement of substances (including ions).
 なお、金属繊維シートには、本発明の効果を阻害しない限りにおいて金属以外の成分を含んでいてもよい。 The metal fiber sheet may contain components other than metal as long as the effects of the present invention are not impaired.
 この金属繊維シートの繊維径、密度(坪量)、厚み等は、剛直性や導電性、電気容量等を考慮して適宜変更可能である。繊維径は、例えば、1μm以上、2μm以上、3μm以上、4μm以上、5μm以上であること好ましく、100μm以下、50μm以下、30μm以下、25μm以下であることが好ましい。坪量は、例えば、10g/m以上、50g/m以上、100g/m以上、200g/m以上であることが好ましく、1000g/m以下、700g/m以下、500g/m以下であることが好ましい。 The fiber diameter, density (basis weight), thickness, etc. of this metal fiber sheet can be appropriately changed in consideration of rigidity, conductivity, electric capacity, and the like. The fiber diameter is, for example, preferably 1 μm or more, 2 μm or more, 3 μm or more, 4 μm or more, 5 μm or more, and preferably 100 μm or less, 50 μm or less, 30 μm or less, 25 μm or less. The basis weight is preferably, for example, 10 g / m 2 or more, 50 g / m 2 or more, 100 g / m 2 or more, 200 g / m 2 or more, 1000 g / m 2 or less, 700 g / m 2 or less, 500 g / m. It is preferably 2 or less.
 多孔質導電体は、性能や用途に応じて、取付用の穴や切込み等の加工が施されていてもよい。 The porous conductor may be processed with mounting holes, cuts, etc., depending on its performance and application.
 多孔質導電体が金属繊維シートである場合、例えば、金属繊維を湿式抄造することにより製造可能である。金属繊維を湿式抄造したシートの例としては、特開平07-258706号公報に開示された方法によって作製された金属繊維焼結シート等が挙げられる。 When the porous conductor is a metal fiber sheet, it can be manufactured, for example, by wet-making metal fibers. Examples of the sheet obtained by wet-making the metal fiber include a metal fiber sintered sheet produced by the method disclosed in Japanese Patent Application Laid-Open No. 07-258706.
 この金属焼結シートは、好適なステンレス鋼繊維や銅繊維を用いて作製可能であり、孔や隙間の大きさ及び分布などを調整でき、さらにはシート形成後の加工が可能であり、様々な形状に二次加工できる点で用途範囲が広く好適である。 This metal sintered sheet can be produced by using suitable stainless steel fibers or copper fibers, the size and distribution of holes and gaps can be adjusted, and processing after sheet formation is possible. It is suitable for a wide range of applications in that it can be secondary processed into a shape.
 多孔質導電体の孔の形状、大きさ、間隔などは特に限定されない。なお、孔の大きさは、例えば、0.01μm~1000μmとすることができるが、好ましくは0.1μm~500μm、さらに好ましくは1μm~300μmである。このような範囲とすることで、放電容量の向上が見込める。孔の大きさの測定は、走査型電子顕微鏡(以降SEMと略す:例えばJIS K0132:1997に準拠)を用いて測定することができる。また、この孔の大きさは、孔等が有する最長径(最長辺)とすることができ、無作為に選んだ50個の孔を、SEMを用いて撮像し、得られた孔の最長径(最長辺)の長さを測定し、その平均とすることができる。 The shape, size, spacing, etc. of the pores of the porous conductor are not particularly limited. The size of the holes can be, for example, 0.01 μm to 1000 μm, preferably 0.1 μm to 500 μm, and more preferably 1 μm to 300 μm. By setting it in such a range, the discharge capacity can be expected to be improved. The size of the hole can be measured using a scanning electron microscope (hereinafter abbreviated as SEM: for example, based on JIS K0132: 1997). Further, the size of the holes can be the longest diameter (longest side) of the holes or the like, and 50 randomly selected holes are imaged using SEM, and the longest diameter of the obtained holes is obtained. The length of (longest side) can be measured and averaged.
 次に、多孔質導電体の特に好ましい形態である、導電性ナノ構造を有する多孔質導電体について説明する。 Next, a porous conductor having a conductive nanostructure, which is a particularly preferable form of the porous conductor, will be described.
(導電性ナノ構造を有する多孔質導電体)
 導電性ナノ構造を有する多孔質導電体は、上述した多孔質導電体を基材(例えば、金属繊維シート)として、その基材(例えば、金属繊維シート)の表面に導電性ナノ構造を形成させたものである。換言すれば、導電性ナノ構造を有する多孔質導電体は、多孔質基材(単に上述した多孔質導電体を読み替えたものであり、例えば、金属繊維シート)と、多孔質基材の表面に形成された導電性ナノ構造と、を含むものである。
(Porous conductor with conductive nanostructure)
In the porous conductor having a conductive nanostructure, the above-mentioned porous conductor is used as a base material (for example, a metal fiber sheet), and the conductive nanostructure is formed on the surface of the base material (for example, a metal fiber sheet). It is a thing. In other words, the porous conductor having a conductive nanostructure is formed on the surface of the porous substrate (simply a replacement of the above-mentioned porous conductor, for example, a metal fiber sheet) and the surface of the porous substrate. It includes the formed conductive nanostructures.
 導電性ナノ構造の材質は、多孔質導電体上に形成することができる導電性を有する材質であれば、特に限定されない。例えば、金属、セラミックス、樹脂、ガラス、グラファイト、などが挙げられ、これらのうち、少なくとも1つの材質が用いられていればよい。 The material of the conductive nanostructure is not particularly limited as long as it is a material having conductivity that can be formed on the porous conductor. For example, metals, ceramics, resins, glass, graphite, etc. may be mentioned, and at least one of these materials may be used.
 また非導電体の材質を公知の方法によって、導電性とした材質とすることができる。例えば、ホウ素のような第13族元素やリンなど第15族元素をイオン注入したシリコンやダイヤモンドなどが挙げられる。またイオン注入による導電性の付加方法の場合など、ナノ構造形成後に実施が可能な方法の場合には、非導電性のナノ構造を基材表面に形成したのち、イオン注入等を行うことで導電性ナノ構造とすることができる。 Further, the material of the non-conductive material can be made conductive by a known method. Examples thereof include silicon and diamond ion-implanted with Group 13 elements such as boron and Group 15 elements such as phosphorus. In the case of a method that can be implemented after nanostructure formation, such as in the case of a method of adding conductivity by ion implantation, the non-conductive nanostructure is formed on the surface of the substrate and then ion-implanted to make it conductive. It can be a sex nanostructure.
 導電性ナノ構造の材質は、電気伝導度等の電気特性から金属が好ましく、金、白金、銀、銅、コバルトがより好ましく、可逆的な電気化学反応を発現する特性から、銀、銅、コバルトがさらに好ましく、銅が特に好ましい。 The material of the conductive nanostructure is preferably metal from the viewpoint of electrical characteristics such as electrical conductivity, more preferably gold, platinum, silver, copper and cobalt, and silver, copper and cobalt from the characteristics of exhibiting a reversible electrochemical reaction. Is more preferable, and copper is particularly preferable.
 導電性ナノ構造の形状は特に限定されないが、多角形状、円形状、楕円形状等の粒状;多角形状、円形状、楕円形状等の板状;針状;多角形状、円形状、楕円形状等の柱状;繊維状;樹枝状;結晶成長における骸晶形状;等が挙げられ、これらが複数組み合わさった形状(複合的な構造)でもよい。 The shape of the conductive nanostructure is not particularly limited, but is granular such as polygonal shape, circular shape, and elliptical shape; plate shape such as polygonal shape, circular shape, and elliptical shape; needle shape; polygonal shape, circular shape, elliptical shape, and the like. Columnar shape; fibrous shape; dendritic shape; skeleton shape in crystal growth; etc., and a shape in which a plurality of these are combined (composite structure) may be used.
 複合的な構造の例としては、樹枝状が挙げられ、例えば、繊維状の構造から枝分かれして、繊維状の構造が成長し、さらにその繊維状の構造から繊維状の構造が繰返し成長した構造とすることができる。このような複雑な繰返し構造は、多孔質導電体に形成された導電性ナノ構造の表面積を著しく大きくすることが可能であり、放電容量や繰返し耐久性を向上させることができる。 An example of a complex structure is a dendritic structure, for example, a structure in which a fibrous structure is branched from a fibrous structure to grow a fibrous structure, and then the fibrous structure is repeatedly grown from the fibrous structure. Can be. Such a complicated repeating structure can remarkably increase the surface area of the conductive nanostructure formed on the porous conductor, and can improve the discharge capacity and the repeating durability.
 ナノサイズの構造とは、導電性ナノ構造を構成する少なくとも一辺の長さ(断面における直径や短軸)が、1μm未満である構造とする。また同様にミクロンサイズの構造とは、構造を構成する一辺の長さ(断面における直径や短軸)が、0.001~1mmである構造とする。 The nano-sized structure is a structure in which the length of at least one side (diameter or minor axis in the cross section) constituting the conductive nanostructure is less than 1 μm. Similarly, the micron-sized structure is a structure in which the length of one side (diameter or minor axis in the cross section) constituting the structure is 0.001 to 1 mm.
 導電性ナノ構造の大きさは、特に限定されない。例えば、樹枝状の導電性ナノ構造の場合には、樹枝状構造全体としてはミクロンサイズであってもよく、少なくとも樹枝の枝にあたる部分がナノサイズであればよい。即ち、導電性ナノ構造自体の大きさは限定されず、少なくとも一部にナノサイズの構造部分を有する構造であればよい。 The size of the conductive nanostructure is not particularly limited. For example, in the case of a dendritic conductive nanostructure, the dendritic structure as a whole may be micron-sized, and at least the portion corresponding to the branch of the dendritic branch may be nano-sized. That is, the size of the conductive nanostructure itself is not limited, and any structure may have a nano-sized structural portion at least in part.
 また、別の例として、導電性ナノ構造が繊維状である場合に、少なくとも、その断面の短径(又は短軸)がナノサイズであればよく、その場合に繊維の長さは本発明の効果を妨げない限り限定されない。例えば、導電性ナノ構造全体の大きさ、即ち、多孔質導電体表面からの導電性ナノ構造の最長の長さは、0.001~1000μmとすることができ、0.01~500μmが好適である。 Further, as another example, when the conductive nanostructure is fibrous, at least the minor axis (or minor axis) of the cross section may be nano-sized, and in that case, the length of the fiber is the present invention. It is not limited as long as it does not interfere with the effect. For example, the size of the entire conductive nanostructure, that is, the longest length of the conductive nanostructure from the surface of the porous conductor can be 0.001 to 1000 μm, preferably 0.01 to 500 μm. is there.
 また、導電性ナノ構造が複合的な構造である場合には、導電性ナノ構造を構成するナノサイズの構造部分の大きさは、ナノサイズの構造を構成する少なくとも一辺の長さ(断面における直径や短軸)が、1μm未満とすることができ、1~500nmが好適であり、5~300nmがより好適である。 When the conductive nanostructure is a complex structure, the size of the nano-sized structural portion constituting the conductive nanostructure is the length of at least one side (diameter in the cross section) constituting the nano-sized structure. And the minor axis) can be less than 1 μm, preferably 1 to 500 nm, and more preferably 5 to 300 nm.
 導電性ナノ構造の大きさの測定は、導電性ナノ構造の大きさによって異なるが、SEM(例えばJIS K0132:1997に準拠)や透過型電子顕微鏡(TEM:JIS H7804:2004に準拠)等を用いて測定することができる。また複数の測定方法を組み合せることもできる。 The measurement of the size of the conductive nanostructure differs depending on the size of the conductive nanostructure, but using an SEM (for example, based on JIS K0132: 1997) or a transmission electron microscope (based on TEM: JIS H7804: 2004), etc. Can be measured. It is also possible to combine a plurality of measurement methods.
(導電性ナノ構造を有する多孔質導電体の製造方法)
 導電性ナノ構造を有する多孔質導電体の製造方法は、公知の方法を用いることができる。例えば、気相反応蒸着法、セルフアッセンブリー法、リソグラフィーを用いる方法、電子線ビーム加工、FIB加工、電気化学的な方法等が挙げられる。このうち、製造費用自体が安価であり、また、設備も簡便かつ安価である電気化学的な方法がより好適であり、特許第5574158号による銅ナノ構造体の製造方法などがさらに好適である。同様に、国際公開第2019/059238号に開示された方法も好適に適用される。
(Method for manufacturing a porous conductor having a conductive nanostructure)
As a method for producing a porous conductor having a conductive nanostructure, a known method can be used. For example, a vapor phase reaction vapor deposition method, a self-assembly method, a method using lithography, an electron beam processing, a FIB processing, an electrochemical method and the like can be mentioned. Of these, the electrochemical method, in which the manufacturing cost itself is low and the equipment is simple and inexpensive, is more preferable, and the method for manufacturing a copper nanostructure according to Japanese Patent No. 5574158 is more preferable. Similarly, the methods disclosed in International Publication No. 2019/059238 also preferably apply.
 以下に、好適例である三電極法による銅のナノ構造物の形成方法について述べる。 The method for forming copper nanostructures by the three-electrode method, which is a preferable example, will be described below.
 図2に示したように、電源と、動作電極と対向電極が備えられた主室と、副室、塩橋及び参照電極からなる三電極式セル装置を用いる。 As shown in FIG. 2, a three-electrode cell device including a power supply, a main chamber provided with an operating electrode and a counter electrode, a sub chamber, a salt bridge, and a reference electrode is used.
 電源は特に限定されないが、ポテンショスタットが好ましい。ポテンショスタットは動作電極の電位を参照電極に対して一定にする装置であり、動作電極と対向電極間の電位を正確に測り、参照電極には電流をほとんど流さないようにする仕組みである。ポテンショスタットを使用しない場合には、別途同様の調整を行う必要がある。 The power supply is not particularly limited, but a potentiostat is preferable. The potentiostat is a device that makes the potential of the operating electrode constant with respect to the reference electrode, and is a mechanism that accurately measures the potential between the operating electrode and the counter electrode so that almost no current flows through the reference electrode. If the potentiostat is not used, the same adjustment must be made separately.
 多孔質導電体を動作電極とする。対向電極は特に限定されず、公知の材質を用いることができる。例えば、白金などが挙げられる。参照電極は、公知の参照電極であれば特に限定されず、例えば飽和カロメル電極が挙げられる。 A porous conductor is used as the operating electrode. The counter electrode is not particularly limited, and a known material can be used. For example, platinum and the like can be mentioned. The reference electrode is not particularly limited as long as it is a known reference electrode, and examples thereof include a saturated calomel electrode.
 主室には蒸留水に銅錯体である硫酸テトラアンミン銅(II)又は硫酸銅(II)と、硫酸リチウムと、アンモニア水とで調製した電解液を入れ、副室には蒸留水に硫酸リチウムとアンモニア水で調製した電解液を入れる。 In the main chamber, an electrolytic solution prepared of tetraamminecopper sulfate (II) or copper (II) sulfate, which is a copper complex, lithium sulfate, and aqueous ammonia is placed in distilled water, and in the sub chamber, distilled water is charged with lithium sulfate. Add the electrolytic solution prepared with aqueous ammonia.
 参照電極に対し、-1.0V~-2.0V印加し、0.10~20C/cmの電気量を通電することで、硫酸テトラアンミン銅(II)あるいは硫酸銅(II)が二電子還元され、動作電極である前記多孔質導電体に、銅が析出し、ナノ構造が形成される。このとき、0.1~120分通電を行い、表面及び内部に導電性ナノ構造を有する多孔質導電体を得ることができる。 Tetraamminecopper sulfate (II) or copper (II) sulfate is reduced by two electrons by applying -1.0 V to -2.0 V to the reference electrode and energizing an electric amount of 0.10 to 20 C / cm 2. Then, copper is deposited on the porous conductor which is the operating electrode, and a nanostructure is formed. At this time, energization is carried out for 0.1 to 120 minutes to obtain a porous conductor having a conductive nanostructure on the surface and inside.
<多孔質導電体以外の電極構造体>
 多孔質導電体以外の電極構造体としては、従来の蓄電デバイス用の導電板等を使用可能である。
<Electrode structure other than porous conductor>
As the electrode structure other than the porous conductor, a conventional conductive plate for a power storage device or the like can be used.
 これらの電極材料としては、多孔質導電体と同様に、鉄又は銅を主成分とする金属材料としてもよいが、その他にも、アルミニウム、ニッケル、チタン、金、銀、白金、コバルト、鉛、及び亜鉛又はこれらを含む合金等の金属材料、若しくは、活性炭等の炭素材料、等を使用可能である。 Similar to the porous conductor, these electrode materials may be metal materials containing iron or copper as a main component, but in addition, aluminum, nickel, titanium, gold, silver, platinum, cobalt, lead, etc. And metal materials such as zinc or alloys containing them, carbon materials such as activated carbon, and the like can be used.
 なお、第1の電極121及び第2の電極122の形状及び大きさ(面積及び厚さ)、第1の電極121及び第2の電極122の隔離距離等は、蓄電デバイス100の電気的構成に応じて適宜調整可能である。 The shape and size (area and thickness) of the first electrode 121 and the second electrode 122, the isolation distance between the first electrode 121 and the second electrode 122, and the like are determined in the electrical configuration of the power storage device 100. It can be adjusted as appropriate.
<<電解液130>>
 電解液130は、典型的には、水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液等のアルカリ金属の水酸化物を溶質として含むアルカリ電解液であるが、水酸化アンモニウム、水酸化テトラアルキルアンモニウムの水溶液、アルカリ土類金属の水酸化物の水溶液等であってもよい。
<< Electrolyte 130 >>
The electrolytic solution 130 is typically an alkaline electrolytic solution containing an alkali metal hydroxide such as an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution as a solute, but ammonium hydroxide and tetra hydroxide. It may be an aqueous solution of alkylammonium, an aqueous solution of hydroxide of an alkaline earth metal, or the like.
 電解液が水酸化カリウム水溶液、水酸化ナトリウム水溶液、水酸化リチウム水溶液である場合、電解液130中のアルカリ金属イオンのモル濃度は、電極の材質により好適範囲が変わるが、好ましくは0.1~5mol/L、より好ましくは0.1~1mol/L、更に好ましくは0.2~1mol/Lである。 When the electrolytic solution is a potassium hydroxide aqueous solution, a sodium hydroxide aqueous solution, or a lithium hydroxide aqueous solution, the molar concentration of alkali metal ions in the electrolytic solution 130 varies depending on the material of the electrode, but is preferably 0.1 to 1. It is 5 mol / L, more preferably 0.1 to 1 mol / L, and even more preferably 0.2 to 1 mol / L.
 より詳細には、多孔質導電体が鉄を主成分とする場合には、電解液130のアルカリ金属イオンのモル濃度が0.1~5mol/Lであることが好ましい。また、多孔質導電体が銅を主成分とする場合には、電解液130のアルカリ金属イオンのモル濃度が0.1~1mol/Lであることが好ましい。 More specifically, when the porous conductor contains iron as a main component, the molar concentration of alkali metal ions in the electrolytic solution 130 is preferably 0.1 to 5 mol / L. When the porous conductor contains copper as a main component, the molar concentration of alkali metal ions in the electrolytic solution 130 is preferably 0.1 to 1 mol / L.
 電解液130のpHは、好ましくは12以上、より好ましくは13以上である。 The pH of the electrolytic solution 130 is preferably 12 or more, more preferably 13 or more.
<<<発明の効果>>>
 鉄や銅等は、安価且つ入手しやすい一方で、容易に反応するため反応の制御が困難なことから蓄電デバイスの電極材料としては不向きな材料である。蓄電デバイスの電解液をアルカリ電解質とすることで、反応を制御することは考えられるが、その場合、蓄電デバイスの急激な劣化が生じ、繰り返し耐久性に劣る結果となった。特に、電極材料を多孔質材料とした場合、初期放電容量の向上には寄与する一方で、急激な劣化が避けられないものであった。
<<< Effect of the invention >>
Iron, copper, and the like are inexpensive and easily available, but are unsuitable as electrode materials for power storage devices because they react easily and it is difficult to control the reaction. It is conceivable to control the reaction by using an alkaline electrolyte as the electrolytic solution of the power storage device, but in that case, the power storage device is rapidly deteriorated, resulting in poor durability over and over again. In particular, when the electrode material is a porous material, it contributes to the improvement of the initial discharge capacity, but sudden deterioration is unavoidable.
 本発明者らは、実験結果を詳細に検討したところ、蓄電デバイスを構成する際に、電解液の密封が不足していると、電解液130が気中の二酸化炭素等を吸着し得る結果、電解液130が変質し(電解液130のpHが低下し)、鉄及び銅への作用が変化し、急激な電極の劣化が生じる可能性が示唆された。 As a result of examining the experimental results in detail, the present inventors have found that if the electrolytic solution is insufficiently sealed when configuring the power storage device, the electrolytic solution 130 can adsorb carbon dioxide and the like in the air. It was suggested that the electrolytic solution 130 was altered (the pH of the electrolytic solution 130 was lowered), the action on iron and copper was changed, and the electrode was rapidly deteriorated.
 このような知見に基づき本発明の構成としたところ、初めて、鉄や銅(又は鉄合金、銅合金)を使用しながらも、酸化還元反応の要になる銅、鉄等を電極に留めつつ、くり返し酸化還元反応(充放電反応)を可能とすることができるようになり、銅、鉄等の蓄電デバイスへの応用を可能とした。その結果、安価でありながらも、安定的且つ優れた電気的特性(高い放電容量と繰返し耐久性)を有する蓄電デバイス100を提供することが可能となったのである。 Based on these findings, the present invention was constructed. For the first time, while using iron or copper (or iron alloy or copper alloy), copper, iron, etc., which are the key to the redox reaction, were retained in the electrodes. It has become possible to carry out repeated redox reactions (charge / discharge reactions), making it possible to apply it to power storage devices such as copper and iron. As a result, it has become possible to provide a power storage device 100 that is inexpensive but has stable and excellent electrical characteristics (high discharge capacity and repeatability).
 次に、実施例及び比較例により、本発明の効果を詳細に説明する。なお、本発明はこれらの実施例には何ら限定されない。 Next, the effects of the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to these examples.
<<<実施例及び比較例>>>
 全ての電極は、平面寸法を1cm×2cmに成形し、1cm×1cmを電解液に浸漬して用いた。用いた電極の材質を下記に示す。
<<< Examples and Comparative Examples >>>
All electrodes were molded into a plane size of 1 cm × 2 cm, and 1 cm × 1 cm was immersed in an electrolytic solution for use. The material of the electrode used is shown below.
<<ステンレス鋼繊維シート>>
 実施例1~4及び、比較例1は、多孔質導電体として抄造・焼結したステンレス鋼繊維シートを使用した。
 このステンレス鋼繊維シートは、繊維径:8μm、厚み:100μm、坪量:300g/m、占積率:33%である。坪量は、金属繊維シートの1平方メートルあたりのシートの重さを意味している。占積率は、金属繊維シートの体積当たりの金属繊維の占める割合であり、数値が少ないほど、金属繊維シートに空隙が多いことを示している。
<< Stainless Steel Fiber Sheet >>
In Examples 1 to 4 and Comparative Example 1, a stainless steel fiber sheet made and sintered was used as the porous conductor.
This stainless steel fiber sheet has a fiber diameter of 8 μm, a thickness of 100 μm, a basis weight of 300 g / m 2 , and a space factor of 33%. Basis weight means the weight of a metal fiber sheet per square meter. The space factor is the ratio of the metal fiber to the volume of the metal fiber sheet, and the smaller the value, the more voids the metal fiber sheet has.
<<銅繊維シート>>
 実施例5~9及び比較例2、3は、多孔質導電体として抄造・焼結した銅繊維シートを使用した。この銅繊維シートは、繊維径:18.5μm、厚み:100μm、坪量:300g/m、占積率:33%のものを使用した。
<< Copper fiber sheet >>
In Examples 5 to 9 and Comparative Examples 2 and 3, a copper fiber sheet made and sintered was used as the porous conductor. As this copper fiber sheet, a fiber diameter: 18.5 μm, a thickness: 100 μm, a basis weight: 300 g / m 2 , and a space factor: 33% was used.
<<銅系の導電性ナノ構造を有する多孔質導電体>>
 以下の手順に基づき、銅系の導電性ナノ構造を有する多孔質導電体を製造した。
<< Porous conductor with copper-based conductive nanostructures >>
Based on the following procedure, a porous conductor having a copper-based conductive nanostructure was produced.
<導電性ナノ構造体作成用電解液の調製>
(硫酸テトラアンミン銅(II)電解液)
 硫酸テトラアンミン銅(II)(アルドリッチ社製、純度98%)を0.31gと、支持電解質である硫酸リチウム(和光純薬社製、純度99.0%)を0.64gとを、蒸留水40.2mLに溶解させた。この溶液にNH水(関東化学社製、アンモニア含有量29%水溶液)を9.8mL添加し、マグネティックスターラーで30分間攪拌し、硫酸テトラアンミン銅(II)の濃度が25mMの導電性ナノ構造体作成用電解液とした。
<Preparation of electrolytic solution for creating conductive nanostructures>
(Tetraamminecopper sulfate copper (II) electrolyte)
Tetraamminecopper sulfate (II) (manufactured by Aldrich, purity 98%) is 0.31 g, lithium sulfate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0%) is 0.64 g, and distilled water 40. Dissolved in 2 mL. NH 3 water to the solution (manufactured by Kanto Chemical Co., Inc., ammonia content 29% aqueous solution) was added 9.8 mL, and stirred for 30 minutes with a magnetic stirrer, conductive nanostructures concentration of 25mM sulfate tetraamine copper (II) It was used as an electrolytic solution for preparation.
<導電性ナノ構造を有する多孔質導電体の製造装置>
 図2の三電極法を用いて導電性ナノ構造を有する評価試料を作製した。電源はポテンショスタット(北斗電工社製、モデルHAB-151)を使用し、図2に示すように3極式セルを接続した。前記調製された電解液を電解セルの主室に入れた。前記調製された電解液から硫酸テトラアンミン銅(II)のみを除いた電解液を作製し、それを副室に入れた。
 そしてポテンショスタットの動作電極の端子に、多孔質基材として抄造・焼結した銅繊維シート基材を使用し、対向電極端子に白金板、及び、参照電極の端子に飽和カロメル電極(東亜エレクトロニクス社製、モデルHC-205C、以降SCEと略記する)を接続した。
<Manufacturing equipment for porous conductors with conductive nanostructures>
An evaluation sample having a conductive nanostructure was prepared by using the three-electrode method shown in FIG. A potentiostat (manufactured by Hokuto Denko Co., Ltd., model HAB-151) was used as the power source, and a 3-pole cell was connected as shown in FIG. The prepared electrolytic solution was placed in the main chamber of the electrolytic cell. An electrolytic solution obtained by removing only tetraamminecopper sulfate (II) from the prepared electrolytic solution was prepared and placed in a sub-chamber.
A copper fiber sheet base material made and sintered as a porous base material is used for the terminal of the operating electrode of the potentiostat, a platinum plate is used for the counter electrode terminal, and a saturated calomel electrode (Toa Electronics Co., Ltd.) is used for the terminal of the reference electrode. , Model HC-205C, hereinafter abbreviated as SCE) was connected.
<導電性ナノ構造を有する多孔質導電体の製造>
 動作電極に-1.45Vの電位を印加し、3.0C/cmの電気量を通電した。実施主室では、このとき硫酸テトラアンミン銅(II)が2電子還元され、銅が析出する。同時にアンモニアが形態制御剤として作用するため、銅は単なる膜の形態ではなく、デンドライト状、繊維状、棒状、針状等の様々な形状のナノワイヤーとして析出する。電解終了後、銅ナノワイヤーが形成された基材を電解液から取り出し、蒸留水でくり返し洗浄することにより実施例10の電極を得た。
<Manufacturing of porous conductors with conductive nanostructures>
A potential of −1.45 V was applied to the operating electrode, and an electric amount of 3.0 C / cm 2 was applied. At this time, tetraamminecopper sulfate (II) is reduced by two electrons in the main chamber, and copper is precipitated. At the same time, since ammonia acts as a morphological control agent, copper is not merely in the form of a film, but is precipitated as nanowires having various shapes such as dendrite-like, fibrous, rod-like, and needle-like. After the electrolysis was completed, the base material on which the copper nanowires were formed was taken out from the electrolytic solution and washed repeatedly with distilled water to obtain the electrode of Example 10.
<<コバルト系の導電性ナノ構造を有する多孔質導電体>>
 以下の手順に基づき、コバルト系の導電性ナノ構造を有する多孔質導電体を製造した。
<< Porous conductor with cobalt-based conductive nanostructures >>
Based on the following procedure, a porous conductor having a cobalt-based conductive nanostructure was produced.
<導電性ナノ構造体作成用電解液の調製>
(ヘキサアンミンコバルト(III)塩化物電解液)
 ヘキサアンミンコバルト(III)塩化物(アルドリッチ社製、純度99%以上)を0.508gと、支持電解質である硫酸リチウム(和光純薬社製、純度99.0%)を1.28gとを、蒸留水100mLに溶解させ、マグネティックスターラーで30分間攪拌し、ヘキサアンミンコバルト濃度が19mMの電解液とした(硫酸リチウムの濃度は0.1M)。
<Preparation of electrolytic solution for creating conductive nanostructures>
(Hexamminecobalt (III) chloride electrolyte)
Hexamminecobalt (III) chloride (manufactured by Aldrich, purity 99% or higher) is 0.508 g, and lithium sulfate (made by Wako Pure Chemical Industries, Ltd., purity 99.0%), which is a supporting electrolyte, is 1.28 g. It was dissolved in 100 mL of distilled water and stirred with a magnetic stirrer for 30 minutes to prepare an electrolytic solution having a hexaamminecobal concentration of 19 mM (lithium sulfate concentration was 0.1 M).
(導電性ナノ構造を有する多孔質導電体の製造装置)
 図2の三電極法を用いて導電性ナノ構造を有する評価試料を作製した。電源はポテンショスタット(北斗電工社製、モデルHAB-151)を使用し、図2に示すように3極式セルを接続した。前記調製された電解液を電解セルの主室に入れた。副室には、0.1Mの硫酸リチウムを溶解した電解質水溶液を入れた。また副室には、参照電極を浸漬した。主室と副室は塩橋によって電気的に接続されている。
 そしてポテンショスタットの動作電極の端子には、多孔質基材として抄造・焼結した銅繊維シート基材、対向電極端子に白金板、及び、参照電極の端子には、飽和カロメル電極SCEを接続した。
(Manufacturing equipment for porous conductors with conductive nanostructures)
An evaluation sample having a conductive nanostructure was prepared by using the three-electrode method shown in FIG. A potentiostat (manufactured by Hokuto Denko Co., Ltd., model HAB-151) was used as the power source, and a 3-pole cell was connected as shown in FIG. The prepared electrolytic solution was placed in the main chamber of the electrolytic cell. An aqueous electrolyte solution in which 0.1 M lithium sulfate was dissolved was placed in the sub-chamber. The reference electrode was immersed in the sub-chamber. The main room and the sub room are electrically connected by a salt bridge.
A copper fiber sheet base material made and sintered as a porous base material was connected to the terminal of the operating electrode of the potentiostat, a platinum plate was connected to the counter electrode terminal, and a saturated calomel electrode SCE was connected to the terminal of the reference electrode. ..
<導電性ナノ構造を有する多孔質導電体の製造>
 動作電極に-1.07Vの電位を印加し3.0C/cmの電気量を通電した。このときヘキサアンミンコバルト(III)イオンが3電子還元され、コバルトが析出する。同時にアンモニアが形態制御剤として作用するため、コバルトは単なる膜の形態ではなく、デンドライト状、繊維状、棒状、針状等の様々な形状のナノワイヤーとして析出する。電解終了後、コバルトナノワイヤーが形成された基材を電解液から取り出し、蒸留水でくり返し洗浄することにより実施例11-12のキャパシタ電極を得た。
<Manufacturing of porous conductors with conductive nanostructures>
A potential of −1.07 V was applied to the operating electrode, and an electric amount of 3.0 C / cm 2 was applied. At this time, hexaamminecobalt (III) ions are reduced by 3 electrons, and cobalt is precipitated. At the same time, since ammonia acts as a morphological control agent, cobalt is not merely in the form of a film, but is precipitated as nanowires having various shapes such as dendrite-like, fibrous, rod-like, and needle-like. After the completion of electrolysis, the substrate on which the cobalt nanowires were formed was taken out from the electrolytic solution and washed repeatedly with distilled water to obtain a capacitor electrode of Example 11-12.
<<<評価試験>>>
 以下の手順に基づき、上記した多孔質導電体を含む畜電デバイスの評価試験を実施した。
<<< Evaluation test >>
Based on the following procedure, an evaluation test of the power storage device containing the above-mentioned porous conductor was carried out.
<<充放電耐性評価試験>>
 図3に示した装置を用いて、充放電耐性評価試験を行った。電源は充放電ユニット(北斗電工社製、モデルHJ1010mSM8A)を使用し、動作電極には実施例1~10及び比較例1~3の電極、対向電極端子に白金板、及び、参照電極の端子にSCEを接続した。また、電流密度は、実施例1~4、11及び比較例1は3mA/cmとして、実施例5~10、12及び比較例2、3は10mA/cmとして測定した。結果を表1に示した。外郭容器はポリスチレン製を使用し、密閉状態はポリスチレン容器にシリコン栓で蓋をした状態で、開放状態はシリコン栓をしない状態で充放電試験を行った。電解液は表に示す電解液とした。
<< Charge / discharge resistance evaluation test >>
A charge / discharge resistance evaluation test was conducted using the apparatus shown in FIG. A charge / discharge unit (manufactured by Hokuto Denko, model HJ1010mSM8A) is used as the power supply, and the operating electrodes are the electrodes of Examples 1 to 10 and Comparative Examples 1 to 3, the counter electrode terminal is a platinum plate, and the reference electrode terminal is used. SCE was connected. The current density, in Examples 1 to 4, 11 and Comparative Example 1 as 3mA / cm 2, Examples 5 to 10 and 12 and Comparative Examples 2 and 3 was measured as 10 mA / cm 2. The results are shown in Table 1. The outer container was made of polystyrene, and the charge / discharge test was performed with the polystyrene container covered with a silicon stopper in the closed state and without the silicon stopper in the open state. The electrolytic solution was the electrolytic solution shown in the table.
<電気容量の大きさ>
 電気容量の大きさは、充放電1回目から100回目までの各充放電カーブから算出され、100回目までに得られた最大容量を容量の大きさとした。
<Size of electric capacity>
The size of the electric capacity was calculated from each charge / discharge curve from the first charge / discharge to the 100th time, and the maximum capacity obtained by the 100th time was taken as the size of the capacity.
<電気容量の変化>
 電気容量の変化は、充放電1回目から100回目までに得られた最大容量から、1000回目までの電気容量の変化として測定を行った。
<Change in electrical capacity>
The change in electric capacity was measured as a change in electric capacity from the maximum capacity obtained from the first charge / discharge to the 100th time to the 1000th time.
 1000回充放電後の電気容量が、充放電100回までに得られた最大容量の80%を下回る場合には「×」、80%以上の場合には「〇」とした。 When the electric capacity after 1000 charge / discharge is less than 80% of the maximum capacity obtained by 100 charge / discharge times, it is evaluated as "x", and when it is 80% or more, it is evaluated as "○".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここで、更なる比較例(比較例4)として、動作電極として、1cm×1cmの銅板を使用したものを準備した。電解液としては、0.1mol/LのKOH水溶液とした。上記と同様の充放電試験を行ったところ、電気容量は0.039mAhであった。 Here, as a further comparative example (Comparative Example 4), a 1 cm × 1 cm copper plate was prepared as the operating electrode. The electrolytic solution was a 0.1 mol / L KOH aqueous solution. When the same charge / discharge test as above was performed, the electric capacity was 0.039 mAh.
 なお、上記比較例4における実表面積あたりの電気容量は、電極の表裏を考慮した2cmで上記電気容量を除した0.02mAh/cmである。一方、実施例7における実表面積あたりの電気容量は、坪量から算出される実表面積が7.59cmであることから、電気容量1.9mAhをこの実表面積で除して0.25mAh/cmである。 The electric capacity per actual surface area in Comparative Example 4 is 0.02 mAh / cm 2 obtained by dividing the electric capacity by 2 cm 2 in consideration of the front and back surfaces of the electrodes. On the other hand, the electric capacity per actual surface area in the seventh embodiment, since the actual surface area is calculated from the basis weight of 7.59Cm 2, by dividing the capacitance 1.9mAh In this actual surface area 0.25 mAh / cm It is 2.
 このように、本発明の構成において電極として金属繊維シートを使用した場合、電極として金属板を使用した場合(比較例4)に比して、実表面積を考慮した単位面積当りの電気容量が非常に高くなることが確認された。 As described above, when the metal fiber sheet is used as the electrode in the configuration of the present invention, the electric capacity per unit area in consideration of the actual surface area is much larger than that when the metal plate is used as the electrode (Comparative Example 4). It was confirmed that it would be higher.
100   三電極装置
200   充放電装置
10    電源(ポテンショスタット等)
20    主室
21    動作電極
22    対向電極
30    副室
31    参照電極
40    塩橋
50,60 電解液
70    ガラスフィルター
80    充放電ユニット

 
100 Three-electrode device 200 Charging / discharging device 10 Power supply (potentiometer, etc.)
20 Main chamber 21 Operating electrode 22 Counter electrode 30 Sub chamber 31 Reference electrode 40 Salt bridge 50, 60 Electrolytic solution 70 Glass filter 80 Charging / discharging unit

Claims (5)

  1.  絶縁性の外郭体と、
     前記外郭体内で密閉保持された、第1の電極、第2の電極及び電解液と
    を有し、
     前記第1の電極と前記第2の電極とが、前記電解液を介して隔離された状態で保持されている蓄電デバイスであって、
     前記電解液はアルカリ電解液であり、
     前記第1の電極及び前記第2の電極の少なくとも一方又は両方が多孔質導電体であり、
     前記多孔質導電体は、鉄及び/又は銅を主成分として含む
    ことを特徴とする、蓄電デバイス。
    Insulating outer body and
    It has a first electrode, a second electrode, and an electrolytic solution that are hermetically held in the outer shell.
    A power storage device in which the first electrode and the second electrode are held in a state of being isolated via the electrolytic solution.
    The electrolytic solution is an alkaline electrolytic solution.
    At least one or both of the first electrode and the second electrode are porous conductors.
    A power storage device, characterized in that the porous conductor contains iron and / or copper as a main component.
  2.  前記多孔質導電体が鉄を主成分とし、前記アルカリ電解液のモル濃度が0.1~5mol/Lである、請求項1記載の蓄電デバイス。 The power storage device according to claim 1, wherein the porous conductor contains iron as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 5 mol / L.
  3.  前記多孔質導電体が銅を主成分とし、前記アルカリ電解液のモル濃度が0.1~1mol/Lである、請求項1記載の蓄電デバイス。 The power storage device according to claim 1, wherein the porous conductor contains copper as a main component and the molar concentration of the alkaline electrolytic solution is 0.1 to 1 mol / L.
  4.  前記多孔質導電体が金属繊維シートを含む、請求項1~3いずれかに記載の蓄電デバイス。 The power storage device according to any one of claims 1 to 3, wherein the porous conductor includes a metal fiber sheet.
  5.  レドックスキャパシタである、請求項1~4のいずれかに記載の蓄電デバイス。

     
    The power storage device according to any one of claims 1 to 4, which is a redox capacitor.

PCT/JP2020/031030 2019-08-26 2020-08-17 Electricity storage device WO2021039476A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019153642 2019-08-26
JP2019-153642 2019-08-26
JP2020-063170 2020-03-31
JP2020063170 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021039476A1 true WO2021039476A1 (en) 2021-03-04

Family

ID=74685097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031030 WO2021039476A1 (en) 2019-08-26 2020-08-17 Electricity storage device

Country Status (2)

Country Link
TW (1) TW202114281A (en)
WO (1) WO2021039476A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059558A (en) * 2004-08-17 2006-03-02 Shin Etsu Chem Co Ltd Electrochemical electric energy storage device and its manufacturing method
JP2011195865A (en) * 2010-03-18 2011-10-06 Chiba Univ Method for producing copper nanostructure
JP2012226961A (en) * 2011-04-19 2012-11-15 Eamex Co Conductive polymer composite and method for manufacturing the same
WO2019059238A1 (en) * 2017-09-25 2019-03-28 国立大学法人千葉大学 Porous conductor having conductive nanostructure and electricity storage device using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059558A (en) * 2004-08-17 2006-03-02 Shin Etsu Chem Co Ltd Electrochemical electric energy storage device and its manufacturing method
JP2011195865A (en) * 2010-03-18 2011-10-06 Chiba Univ Method for producing copper nanostructure
JP2012226961A (en) * 2011-04-19 2012-11-15 Eamex Co Conductive polymer composite and method for manufacturing the same
WO2019059238A1 (en) * 2017-09-25 2019-03-28 国立大学法人千葉大学 Porous conductor having conductive nanostructure and electricity storage device using same

Also Published As

Publication number Publication date
TW202114281A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
Hosseini et al. Self-supported nanoporous Zn–Ni–Co/Cu selenides microball arrays for hybrid energy storage and electrocatalytic water/urea splitting
Ouyang et al. Hierarchical electrodes of NiCo 2 S 4 nanosheets-anchored sulfur-doped Co 3 O 4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices
Acharya et al. Engineering the hierarchical heterostructures of Zn–Ni–Co nanoneedles arrays@ Co–Ni-LDH nanosheets core–sheath electrodes for a hybrid asymmetric supercapacitor with high energy density and excellent cyclic stability
US10236135B2 (en) Ni(OH)2 nanoporous films as electrodes
Li et al. Hierarchical CoMoO 4@ Co 3 O 4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors
Hussain et al. Preserved crystal phase and morphology: electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications
Fu et al. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors
Yang et al. Ni–Co oxides nanowire arrays grown on ordered TiO 2 nanotubes with high performance in supercapacitors
US7828619B1 (en) Method for preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
CN103270565B (en) Nanoporous/ceramic-metal composite
Singh et al. Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors
KR101763516B1 (en) Hierarchical mesoporous NiCo2S4/MnO2 core-shell array on 3-dimensional nickel foam composite and preparation method thereof
Leng et al. Pd nanoparticles decorating flower-like Co 3 O 4 nanowire clusters to form an efficient, carbon/binder-free cathode for Li–O 2 batteries
US20150349325A1 (en) Bi-functional electrode for metal-air batteries and method for producing same
TWI619293B (en) Batteries
US20100273053A1 (en) Electrochemical Cell
Cheng et al. Pd nanoparticles support on rGO-C@ TiC coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation
Wan et al. Three-dimensional cotton-like nickel nanowire@ Ni–Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor
Geuli et al. One-step fabrication of NiOx-decorated carbon nanotubes-NiCo2O4 as an advanced electroactive composite for supercapacitors
Tian et al. Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors
Adil et al. High-performance aqueous asymmetric supercapacitors based on the cathode of one-step electrodeposited cracked bark-shaped nickel manganese sulfides on activated carbon cloth
CN111033659B (en) Porous conductor having conductive nanostructure, and electricity storage device using same
Xie et al. Oxygen functionalized CoP nanowires as high-efficient and stable electrocatalyst for oxygen evolution reaction and full water splitting
WO2021039476A1 (en) Electricity storage device
Nallapureddy et al. Capsule‐shaped calcium and cobalt‐doped ZnO electrodes for high electrochemical supercapacitor performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP