WO2021038864A1 - Electric motor driving device, air-conditioner, and refrigeration cycle apparatus - Google Patents

Electric motor driving device, air-conditioner, and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2021038864A1
WO2021038864A1 PCT/JP2019/034258 JP2019034258W WO2021038864A1 WO 2021038864 A1 WO2021038864 A1 WO 2021038864A1 JP 2019034258 W JP2019034258 W JP 2019034258W WO 2021038864 A1 WO2021038864 A1 WO 2021038864A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
connection
power supply
unit
feedback current
Prior art date
Application number
PCT/JP2019/034258
Other languages
French (fr)
Japanese (ja)
Inventor
有澤 浩一
啓介 植村
智 一木
和徳 畠山
厚司 土谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021541948A priority Critical patent/JP7221400B2/en
Priority to PCT/JP2019/034258 priority patent/WO2021038864A1/en
Publication of WO2021038864A1 publication Critical patent/WO2021038864A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays

Definitions

  • the present invention relates to an electric motor drive device for driving an electric motor, and an air conditioner and a refrigeration cycle device provided with the electric motor drive device.
  • Patent Document 1 the rotation speed of the motor is changed by using an inverter having a variable frequency and a variable voltage, and the connection state of the stator winding is switched between the star connection and the delta connection according to the load. , Electric motor drive devices with reduced power consumption and increased efficiency are described.
  • connection switching motor that performs such connection switching is used as a compressor for an air conditioner
  • star connection under intermediate conditions (also called “low load conditions") that contribute to annual power consumption, resulting in a high load.
  • intermediate conditions also called “low load conditions”
  • the inverter output current and winding current have the same magnitude in star connection, but in delta connection, the inverter output current is ⁇ 3 times the winding current. Therefore, in the connection switching motor, the winding impedance differs depending on the connection specifications and needs to be taken into consideration in driving the motor.
  • a weak current leaks to the ground via the floating capacitance between the electric motor and the ground.
  • the weak current may go further to the power source via the ground.
  • the magnitude varies depending on the environment, it is known that a weak current passing through the ground flows out to the outside of the device as common mode noise.
  • the present invention has been made in view of the above, and when the connection switching motor is driven by any connection specification of star connection or delta connection, the outflow of common mode noise can be prevented by a relatively simple and inexpensive means.
  • the purpose is to obtain an electric motor drive device that can be suppressed.
  • the present invention is an electric motor drive device for driving an electric motor having a total of 6 lead wires drawn out with the neutral point separated.
  • the electric motor drive device includes a connection switching unit that switches each phase winding of the electric motor to either star connection or delta connection, and a power supply unit that generates electric power to be supplied to the electric motor.
  • the electric motor drive device has a power conversion unit that converts the voltage of DC power supplied from the power supply unit into AC power of a voltage of an arbitrary AC frequency, and a common mode in which the power conversion unit returns to the power supply unit via the electric motor.
  • a feedback current adjusting unit for adjusting a feedback current including a current is provided.
  • the electric motor drive device According to the electric motor drive device according to the present invention, it is possible to suppress the outflow of common mode noise by a relatively simple and inexpensive means regardless of whether the connection switching electric motor is driven by the connection specifications of star connection and delta connection. It has the effect of being able to do it.
  • the figure which shows the structural example of the feedback current adjustment part shown in FIG. The figure which shows the configuration example when the AC / DC converter is included in the power-source part shown in FIGS. 1 and 6.
  • FIG. 8 The figure which shows the configuration example different from FIG. 8 when the AC / DC converter is included in the power-source part.
  • the figure which shows the configuration example which is different from FIG. 8 and FIG. A block diagram showing an example of a hardware configuration that realizes the function of the control unit according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of an electric motor drive device 100 according to a first embodiment.
  • FIG. 2 is a diagram showing a configuration of a DC / AC converter as an example of the power conversion unit 4 in the first embodiment.
  • FIG. 3 is a diagram showing a configuration example of the connection switching unit 3 and the first connection state in the first embodiment.
  • FIG. 4 is a diagram showing a configuration example of the connection switching unit 3 and the second connection state in the first embodiment.
  • FIG. 5 is a diagram showing a configuration example of the feedback current adjusting unit 5 according to the first embodiment.
  • the electric motor drive device 100 includes a power supply unit 110, a control unit 200, a connection switching signal transmission unit 210, a drive signal transmission unit 220, and a feedback selection signal transmission unit 230.
  • the power supply unit 110 includes a power supply unit 1, a feedback current adjusting unit 5, a power conversion unit 4, and a connection switching unit 3.
  • the connection switching unit 3 switches each phase winding of the motor 2 to either star connection or delta connection.
  • the power supply unit 1 generates electric power to be supplied to the electric motor 2.
  • the power conversion unit 4 converts the voltage of the DC power supplied from the power supply unit 1 into AC power having a voltage of an arbitrary AC frequency, and supplies the converted power to the electric motor 2.
  • the feedback current adjusting unit 5 performs an operation of adjusting the feedback current including the common mode current that returns from the power conversion unit 4 to the power supply unit 1 via the electric motor 2.
  • the power supply unit 1 is a DC power supply that outputs a DC voltage, but the present invention is not limited to this.
  • the power supply unit 1 may be a power supply device that generates a DC voltage based on the output of an AC power supply that outputs an AC voltage. In this case, the AC power supply is not included in the components of the power supply unit 1.
  • the DC power supply or the AC power supply can be used properly by changing the configuration of the power supply unit 110.
  • the electric motor 2 is a connection switching motor in which the connection state of each phase winding can be switched to either star connection or delta connection. Since the electric motor 2 is a connection switching electric motor, the neutral point is separated as shown in the figure. With this configuration, a total of six lead wires 50u_1,50u_2,50v_1,50v_2,50w_1,50w_2 are drawn from the motor 2. Leader wires 50u_1 and 50u_2 are U-phase AC wirings. Leader wires 50v_1, 50v_2 are V-phase AC wirings. The leader wires 50w_1 and 50w_2 are W-phase AC wirings.
  • the electric motor 2 and the power supply unit 110 are electrically connected by lead wires 50u_1,50u_2,50v_1,50v_2,50w_1,50w_2.
  • the operating power to the electric motor 2 is supplied from the power supply unit 110 through the three lead wires 50u_1, 50v_1, 50w_1 under the control of the control unit 200.
  • the electric motor 2 includes a U-phase winding 21, a V-phase winding 22, and a W-phase winding 23. Further, the electric motor 2 has terminals 2u_1, 2, u_2, 2v_1, 2, v_2, 2w_1, 2w_2.
  • one end of the U-phase winding 21 is connected to the terminal 2u_1, and the other end of the U-phase winding 21 is connected to the terminal 2u_1.
  • One end of the V-phase winding 22 is connected to the terminal 2v_1, and the other end of the V-phase winding 22 is connected to the terminal 2v_1.
  • One end of the W-phase winding 23 is connected to the terminal 2w_1, and the other end of the W-phase winding 23 is connected to the terminal 2w_1.
  • connection switching unit 3 has a function of switching the connection state of each phase winding of the motor 2 from star connection to delta connection, or from delta connection to star connection.
  • the connection switching unit 3 includes a switching device 31, a switching device 32, and a switching device 33, as shown in FIGS. 3 and 4. Further, the connection switching unit 3 has terminals 3u, 3v, 3w, 3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,3N and connection wirings 3u_3,3v_3,3w_3.
  • An example of the switch 31, the switch 32, and the switch 33 is a c-contact type switch having contacts d, e, and f, as shown in FIGS. 3 and 4.
  • the contact f is connected to the contact d when the power is on, and is connected to the contact e when the power is off.
  • the contact f is connected to the contact e when energized and is connected to the contact d when not energized.
  • each switch is described as a c-contact type switch, but the present invention is not limited to these examples.
  • Each switch may be a switch that can be opened and closed in both directions.
  • each switch may be configured by a contact type switch, a b contact type switch, or a combination of both switches.
  • each switch may be a semiconductor switch.
  • the switch 31, the switch 32, and the switch 33 are driven by the drive signals S11, S21, and S31 output from the connection switching signal transmission unit 210.
  • the drive signals S11, S21, and S31 are generated based on the control signals S1, S2, and S3 output from the control unit 200.
  • each switch has a small conduction loss when it is turned on, and a mechanical switch such as a relay or a contactor can be used.
  • a switching element formed of a wide bandgap semiconductor may be used instead of the mechanical switch.
  • the contact d of the switch 31 is connected to the connection wiring 3v_3.
  • the connection wiring 3v_3 is a connection wiring for electrically connecting the terminal 3v and the terminal 3v_1 inside the connection switching unit 3.
  • the terminal 3v_1 is a terminal connected to the lead wire 50v_1.
  • the contact d of the switch 32 is connected to the connection wiring 3w_3.
  • the connection wiring 3w_3 is a connection wiring for electrically connecting the terminal 3w and the terminal 3w_1 inside the connection switching unit 3.
  • the terminal 3w_1 is a terminal connected to the lead wire 50w_1.
  • the contact d of the switch 33 is connected to the connection wiring 3u_3.
  • the connection wiring 3u_3 is a connection wiring for electrically connecting the terminal 3u and the terminal 3u_1 inside the connection switching unit 3.
  • the terminal 3u_1 is a terminal connected to the lead wire 50u_1.
  • Each contact e of the switches 31, 32, 33 is connected to the terminal 3N.
  • the contact f of the switch 31 is connected to the terminal 3u_2.
  • the terminal 3u_2 is a terminal connected to the lead wire 50u_2. Therefore, the terminal 3u_2 and the terminal 2u_2 of the electric motor 2 are electrically connected by the lead wire 50u_2.
  • the contact f of the switch 32 is connected to the terminal 3v_2.
  • the terminal 3v_2 is a terminal connected to the lead wire 50v_2. Therefore, the terminal 3v_2 and the terminal 2v_2 of the electric motor 2 are electrically connected by the lead wire 50v_2.
  • the contact f of the switch 33 is connected to the terminal 3w_2.
  • the terminal 3w_2 is a terminal connected to the lead wire 50w_2. Therefore, the terminal 3w_2 and the terminal 2w_2 of the electric motor 2 are electrically connected by the lead wire 50w_2.
  • the contact f of each switch is connected to the contact e. Therefore, the connection state of FIG. 3 in the motor 2 is a star connection. Further, in FIG. 4, the contact f of each switch is connected to the contact d. Therefore, the connection state of FIG. 4 in the motor 2 is a delta connection.
  • the power conversion unit 4 has a leg 40u in which the upper arm element 41 and the lower arm element 42 are connected in series, and the upper arm element 43 and the lower arm element 44 are connected in series. It includes a leg 40v and a leg 40w in which an upper arm element 45 and a lower arm element 46 are connected in series.
  • the legs 40u, 40v and 40w are connected in parallel to each other.
  • the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 exemplify a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET). Not limited. Insulated gate bipolar transistors (Insulated Gate Bipolar Transistors: IGBTs) may be used instead of the MOSFETs.
  • the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 are driven by the drive signals Sup1, Sun1, Sbp1, Svn1, Swp1, Swn1 output from the drive signal transmission unit 220.
  • the drive signals Sup1, Sun1, Subp1, Svn1, Swp1, Swn1 are generated based on the control signals Sup, Sun, Spp, Swn, Swp, Swn output from the control unit 200.
  • the upper arm element 41 includes a transistor 40a and a diode 40b connected to the transistor 40a in antiparallel.
  • the other upper arm elements 43, 45 and lower arm elements 42, 44, 46 have the same configuration.
  • Opposite parallel means that the anode of the diode is connected to the source of the MOSFET and the cathode of the diode is connected to the collector of the MOSFET.
  • FIG. 2 has a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but the configuration is not limited to this configuration. The number of legs may be four or more.
  • the transistor 40a of the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 is a MOSFET
  • at least one of the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 is , Silicon carbide, gallium nitride, gallium oxide or diamond may be formed of a wide bandgap semiconductor. If a MOSFET formed of a wide bandgap semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
  • the power conversion unit 4 has terminals 4a, 4b, 4u, 4v, 4w.
  • the connection point 48u between the upper arm element 41 and the lower arm element 42 is connected to the terminal 4u.
  • the connection point 48v between the upper arm element 43 and the lower arm element 44 is connected to the terminal 4v.
  • the connection point 48w between the upper arm element 45 and the lower arm element 46 is connected to the terminal 4w.
  • the terminal 4u and the terminal 3u of the connection switching unit 3 are electrically connected by the connection line 30u.
  • the terminal 4v and the terminal 3v of the connection switching unit 3 are electrically connected by the connection line 30v.
  • the terminal 4w and the terminal 3w of the connection switching unit 3 are electrically connected by the connection line 30w.
  • connection points of the upper arm elements 41, 43, 45 are connected to the terminal 4a.
  • a power line 50a on the high potential side is connected to the terminal 4a.
  • the connection points of the lower arm elements 42, 44, 46 are connected to the terminal 4b.
  • a power line 50b on the low potential side is connected to the terminal 4b.
  • the power supply line 50a on the high potential side may be referred to as a "first power supply line”
  • the power supply line 50b on the low potential side may be referred to as a "second power supply line”.
  • the feedback current adjusting unit 5 includes bypass capacitors 51 and 52, open / close switches 53 and 55, and coupling capacitors 54, 56, 57, 58 and 59.
  • the bypass capacitors 51 and 52 operate as so-called Y capacitors.
  • the feedback current adjusting unit 5 has terminals 5u, 5v, 5w, 5N.
  • the terminal 5u and the terminal 3u of the connection switching unit 3 are electrically connected by the connection line 32u.
  • the terminal 5v and the terminal 3v of the connection switching unit 3 are electrically connected by the connection line 32v.
  • the terminal 5w and the terminal 3w of the connection switching unit 3 are electrically connected by the connection line 32w.
  • the terminal 5N and the terminal 3N of the connection switching unit 3 are electrically connected by the connection line 32N.
  • the open / close switches 53 and 55 are driven by the selection signals Sa1 and Sb1 output from the feedback selection signal transmission unit 230.
  • the selection signals Sa1 and Sb1 are generated based on the control signals Sa and Sb output from the control unit 200.
  • Power lines 50a and 50b are routed inside the feedback current adjusting unit 5.
  • One end of the power supply line 50a is connected to the terminal 4a of the power conversion unit 4 (FIG. 2), and the other end of the power supply line 50a is connected to the terminal 1a of the power supply unit 1 (FIG. 1).
  • One end of the power supply line 50b is connected to the terminal 4b of the power conversion unit 4 (FIG. 2), and the other end of the power supply line 50b is connected to the terminal 1b of the power supply unit 1 (FIG. 1).
  • the terminal 1a is a high potential side terminal and the terminal 1b is a low potential side terminal.
  • the bypass capacitors 51 and 52 are connected in series and arranged between the power supply lines 50a and 50b.
  • the bypass capacitor 51 is connected to the power supply line 50a, and the bypass capacitor 52 is connected to the power supply line 50b.
  • One end of the coupling capacitor 54 is connected to the midpoint 50c, which is the connection point of the bypass capacitors 51 and 52, via the open / close switch 53.
  • the other end of the coupling capacitor 54 is connected to the terminal 5N.
  • One end of the coupling capacitor 56 is connected to the midpoint 50c via the open / close switch 55.
  • the other end of the coupling capacitor 56 is connected to a connection point 50d between one ends of the coupling capacitors 57, 58, 59.
  • the other end of the coupling capacitor 57 is connected to the terminal 5u
  • the other end of the coupling capacitor 58 is connected to the terminal 5v
  • the other end of the coupling capacitor 59 is connected to the terminal 5w.
  • a DC voltage output from the power supply unit 1 is applied to the power conversion unit 4 via the feedback current adjustment unit 5.
  • the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 in the power conversion unit 4 apply an AC voltage to the electric motor 2 while the upper and lower arm elements operate in a complementary manner.
  • the electric motor 2 is driven by applying a rotating magnetic field by the applied AC voltage.
  • connection state of the motor 2 is a star connection
  • the contact f of each switch is connected to the contact e.
  • the lead wire 50u_2, 50v_2, 50w_2 drawn out from the electric motor 2 is electrically connected to the terminal 3N of the connection switching unit 3 via each switch.
  • the upper and lower arm elements of the power conversion unit 4 often perform complementary switching operations.
  • the potential of the power supply line 50a on the high potential side and the potential of the power supply line 50b on the low potential side are alternately generated at the connection points 48u, 48v, 48w in the power conversion unit 4.
  • the potentials of the connection points 48u, 48v, and 48w fluctuate greatly.
  • the neutral point potential of the electric motor 2 also momentarily fluctuates greatly.
  • the motor 2 Since the motor 2 is usually surrounded by a frame or the like, it has a stray capacitance between the motor winding and the frame. For example, in the case of an electric motor used in a compressor of an air conditioner, there is a stray capacitance between the electric motor winding and the compressor shell. When the neutral point potential of the motor 2 fluctuates momentarily through this kind of stray capacitance, a common mode current flows to the outside of the motor 2. This common mode current may pass through the ground to the power supply unit 1 and be conducted as common mode noise, which may adversely affect other devices.
  • the power supply unit excluding the power supply unit 1 applies the common mode current that flows due to the momentary fluctuation of the neutral point potential of the electric motor 2.
  • a current path that is, a circuit loop, is formed between the 110 and the electric motor 2.
  • the open / close switch 53 is controlled to be turned on.
  • the above-mentioned common mode current can be reduced to the terminal 3N, connection line 32N, terminal 5N, coupling capacitor 54, open / close switch 53, midpoint 50c, bypass capacitor 51 or bypass of the connection switching unit 3. It returns to the power conversion unit 4 via the capacitor 52. That is, the common mode current is fed back via the coupling capacitor 54 and the open / close switch 53 in the feedback current adjusting unit 5. Therefore, the common mode current from the electric motor 2 to the power supply unit 1 via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit 1 side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
  • the state of the open / close switch 55 which is the other open / close switch, may be either on or off.
  • the common mode current is affected by the presence of the coupling capacitors 56, 57, 58, 59, it is desirable that the open / close switch 55 is controlled to be off.
  • connection state of the motor 2 is a delta connection
  • the contact f of each switch is connected to the contact d.
  • the lead wire 50u_2 drawn out from the electric motor 2 is electrically connected to the terminal 5v of the feedback current adjusting unit 5 via the switch 31, the connecting wiring 3v_3, the terminal 3v, and the connecting wire 32v.
  • the lead wire 50v_2 drawn out from the electric motor 2 is electrically connected to the terminal 5w of the feedback current adjusting unit 5 via the switch 32, the connecting wiring 3w_3, the terminal 3w, and the connecting wire 32w.
  • the lead wire 50w_2 drawn out from the electric motor 2 is electrically connected to the terminal 5u of the feedback current adjusting unit 5 via the switch 33, the connection wiring 3u_3, the terminal 3u, and the connection line 32u.
  • the above-mentioned common mode current is generated even when the connection state of the motor 2 is delta connection. Therefore, as in the case of star connection, control is performed to form a circuit loop for circulating a part of the common mode current toward the power supply unit 1 between the power supply unit 110 excluding the power supply unit 1 and the motor 2. Do.
  • the open / close switch 55 is controlled to be turned on.
  • the above-mentioned common mode current can be reduced to the terminal 3u, the connection line 32u, the terminal 5u, the coupling capacitor 57, the coupling capacitor 56, the open / close switch 55, and the midpoint 50c of the connection switching unit 3. It returns to the power conversion unit 4 via the bypass capacitor 51 or the bypass capacitor 52. Further, the common mode current passes through the terminal 3v, the connection line 32v, the terminal 5v, the coupling capacitor 58, the coupling capacitor 56, the open / close switch 55, the middle point 50c, the bypass capacitor 51 or the bypass capacitor 52 of the connection switching unit 3.
  • the common mode current passes through the terminal 3w, the connection line 32w, the terminal 5w, the coupling capacitor 59, the coupling capacitor 56, the open / close switch 55, the midpoint 50c, the bypass capacitor 51 or the bypass capacitor 52 of the connection switching unit 3.
  • the common mode current is fed back via the coupling capacitors 56, 57, 58, 59 and the open / close switch 55 in the feedback current adjusting unit 5. Therefore, the common mode current from the electric motor 2 to the power supply unit 1 via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit 1 side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
  • the terminals 5u, 5v, 5w, the coupling capacitors 56, 57, 58, 59 and the open / close switch 55 feed back the feedback current including the common mode current when the connection state of the motor 2 is delta connection. It operates as a first pull-in unit that draws into the current adjusting unit 5.
  • the terminal 5N, the coupling capacitor 54, and the open / close switch 53 draw a feedback current including a common mode current into the feedback current adjusting unit 5 when the connection state of the motor 2 is a star connection. Operates as a pull-in part of.
  • the winding resistance and inductance in the case of star connection are equivalently three times the winding resistance and inductance in the case of delta connection. Therefore, the impedance of the delta connection is lower than that of the star connection, and the common mode current easily flows. As a result, the common mode noise may be larger in the delta connection than in the star connection. Therefore, in the first embodiment, when the connection state of the motor 2 is a delta connection, the path of the common mode current circulating in the device via the feedback current adjusting unit 5 is tripled as in the case of the star connection. There is. As a result, in the case of delta connection, the amount of common mode current circulating in the device can be increased, and the amount of common mode current flowing out to the power supply unit 1 side can be made equal between the delta connection and the star connection. ..
  • the state of the open / close switch 53 which is the other open / close switch, may be either on or off.
  • the open / close switch 53 is controlled to be off.
  • the capacitance of at least one of the coupling capacitors 54, 56, 57, 58, 59 can be adjusted. Something is desirable.
  • the coupling capacitors 54 or the coupling capacitors 56, 57, 58, 59 are arranged in both paths so that the connection state of the motor 2 can correspond to both the case of the delta connection and the case of the star connection.
  • the configuration is not limited to that shown in FIG. As mentioned above, the influence of the common mode current is considered to be greater in the delta connection. Therefore, from the configuration of FIG. 1, the open / close switch 53 and the coupling capacitor 54 may be omitted, and a configuration that can handle only the case of delta connection may be used.
  • the open / close switch 55 is omitted, and a circuit loop for returning the common mode current is always formed through the coupling capacitors 56, 57, 58, 59.
  • the feedback current adjusting unit 5 may be configured.
  • the open / close switch 53 and the coupling capacitor 54 may be mounted or not mounted according to the motor type or the device configuration.
  • a capacitor is illustrated as an example of an element for adjusting the common mode current, but the present invention is not limited to this. Any element may be used as long as it can adjust the common mode current.
  • each of the coupling capacitors 54, 56, 57, 58, 59 may be replaced with a resistance element.
  • the power supply unit 110 at least two components of the connection switching unit 3, the power conversion unit 4, and the feedback current adjusting unit 5 may be mounted on the same substrate.
  • the connection switching unit 3 since the electric neutral point is inside the electric motor, the distance between the electric neutral point and the power conversion unit 4 becomes long. Therefore, the adjustment of the common mode current is easily affected by the AC wiring.
  • the electrical neutral point is inside the connection switching unit 3. Therefore, if the connection switching unit 3 and the power conversion unit 4 are mounted on the same substrate, the distance between the electrical neutral point of the connection switching unit 3 and the power conversion unit 4 can be shortened. As a result, the influence of the AC wiring can be reduced when adjusting the common mode current. Further, since the distance between the electrical neutral point of the connection switching unit 3 and the power conversion unit 4 can be shortened, the stray capacitance existing between the wiring path and the ground can be reduced. Therefore, the magnitude of the common mode current itself that can flow from the electric motor 2 via the ground via the stray capacitance can be reduced. Thereby, the generation of common mode noise can be reduced.
  • connection switching unit 3 and the feedback current adjusting unit 5 are mounted on the same substrate, the distance between the electrical neutral point of the wiring switching unit 3 and the feedback current adjusting unit 5 can be shortened. As a result, the influence of the AC wiring can be reduced when adjusting the common mode current.
  • connection switching unit 3 the power conversion unit 4, and the feedback current adjusting unit 5 are mounted on the same board, the above-mentioned terminals can be provided on the board. With this configuration, the connection between the various lead wires drawn from the electric motor 2 and the various power supply lines drawn from the power supply unit 1 becomes easier than in the case of a general electric motor.
  • FIG. 6 is a diagram showing a configuration of a modified example of the electric motor drive device 100A according to the first embodiment.
  • the power supply unit 110 is replaced with the power supply unit 110A in the configuration of the electric motor drive device 100 shown in FIG.
  • the feedback current adjusting unit 5 is replaced with the feedback current adjusting unit 5A.
  • a terminal 5N_2 to be further grounded is provided in the feedback current adjusting unit 5A.
  • the other configurations are the same as or equivalent to the configurations shown in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and redundant description will be omitted.
  • FIG. 7 is a diagram showing a configuration example of the feedback current adjusting unit 5A shown in FIG.
  • the midpoint 50c is electrically connected to the terminal 5N_2.
  • the potential at the midpoint 50c is set to the same potential as the ground (GND). That is, the potential at the midpoint 50c is the ground potential.
  • the other configurations are the same as or equivalent to the configuration shown in FIG. 5, and the same or equivalent components are designated by the same reference numerals, and redundant description will be omitted.
  • the potential at the midpoint 50c is set as the ground potential via the terminal 5N_2 provided in the feedback current adjusting unit 5A, but the configuration is not limited to this.
  • the equivalent terminal and the midpoint 50c may be electrically connected.
  • FIG. 8 is a diagram showing a configuration example when the AC / DC converter is included in the power supply unit 1 shown in FIGS. 1 and 6.
  • the power supply unit 1 includes an AC / DC converter 8 connected to the AC power supply 10.
  • the AC / DC converter 8 includes four switching elements 11, 12, 13, and 14 that are bridge-connected.
  • the AC voltage output from the AC power supply 10 is applied between the connection points of the switching elements 11 and 12 and the connection points of the switching elements 13 and 14 via the reactor 15.
  • the switching elements 11, 12, 13, and 14 are switched and controlled by the control unit 200, generate a boosted voltage, and output the boosted voltage from the terminals 1a and 1b.
  • the power supply unit 1 includes the AC / DC converter 8 having the configuration shown in FIG. 8, a common mode current is generated due to the switching operation of the switching elements 11, 12, 13, and 14. A part of this common mode current may be suppressed by the feedback current adjusting units 5 and 5A in the first embodiment. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current when the power supply unit 1 has the configuration shown in FIG.
  • FIG. 9 is a diagram showing a configuration example different from that of FIG. 8 when the power supply unit 1A includes an AC / DC converter.
  • the AC / DC converter 8A in which the switching element 11 is replaced with the diode 11a and the switching element 13 is replaced with the diode 13a is shown.
  • a common mode current is generated by the switching operation of the switching elements 12 and 14. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current even when the power supply unit 1A includes the AC / DC converter 8A shown in FIG.
  • FIG. 10 is a diagram showing a configuration example different from that of FIGS. 8 and 9 when the power supply unit 1B includes an AC / DC converter.
  • the power supply unit 1B shown in FIG. 10 in the configuration of the power supply unit 1 shown in FIG. 8, the AC / DC converter 8B in which the switching element 13 is replaced with the diode 13b and the switching element 14 is replaced with the diode 14b is shown. ing. Also in the configuration shown in FIG. 10, a common mode current is generated by the switching operation of the switching elements 11 and 12. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current even when the power supply unit 1B includes the AC / DC converter 8B shown in FIG.
  • the electric motor drive device for driving the electric motor configured so that the connection state of each phase winding can be switched to either star connection or delta connection is from the power conversion unit. It is provided with a feedback current adjusting unit that adjusts a feedback current including a common mode current that returns to the power supply unit via an electric motor. According to this feedback current adjusting unit, the common mode current from the electric motor to the power supply unit via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
  • the feedback current adjusting unit includes a first lead-in unit that draws in the feedback current when the connection state of the motor is delta connection via the connection switching unit.
  • the feedback current adjusting unit includes a second lead-in portion that draws in the feedback current when the connection state of the motor is star connection through the connection switching unit.
  • the feedback current adjusting unit is configured to be able to select whether or not to draw in the feedback current. Thereby, it is possible to decide whether to mount or not to mount the motor according to the motor type or the device configuration.
  • the power conversion unit the connection switching unit, and the feedback current adjusting unit, which are the components of the electric motor drive device, may be mounted on the same substrate.
  • the influence of the AC wiring can be reduced when adjusting the common mode current.
  • the connection between the various lead wires drawn from the electric motor and the various power supply lines drawn from the power supply unit becomes easier than in the case of a general electric motor.
  • connection switching unit and the power conversion unit are mounted on the same board, the stray capacitance existing between the wiring path and the ground can be reduced. Thereby, the generation of common mode noise can be reduced.
  • FIG. 11 is a block diagram showing an example of a hardware configuration that realizes the function of the control unit 200 according to the first embodiment.
  • FIG. 12 is a block diagram showing another example of the hardware configuration that realizes the function of the control unit 200 according to the first embodiment.
  • the processor 300 that performs the calculation
  • the memory 302 that stores the program read by the processor 300
  • the input / output of the signal are input / output. It can be configured to include the interface 304 to be performed.
  • the processor 300 may be an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital entirely Disc).
  • the memory 302 stores a program that executes the function of the control unit 200 according to the first embodiment.
  • the processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out.
  • the calculation result by the processor 300 can be stored in the memory 302.
  • the processing circuit 305 shown in FIG. 12 can also be used.
  • the processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 304. Even in the configuration using the processing circuit 305, some processing in the control unit 200 may be performed by the processor 300 having the configuration shown in FIG.
  • FIG. 13 is a diagram showing a configuration example of the air conditioner 240 according to the second embodiment.
  • the air conditioner 240 according to the second embodiment includes the electric motor driving device 100 described in the first embodiment.
  • the compressor 251 incorporating the electric motor 2 in the first embodiment, the four-way valve 259, the outdoor heat exchanger 252, the expansion valve 261 and the indoor heat exchanger 257 are connected via a refrigerant pipe 262. It is equipped with a refrigeration cycle installed in the air conditioner to form a separate air conditioner.
  • the components having the same or equivalent functions as those of the first embodiment are designated by the same reference numerals as those of the first embodiment.
  • a refrigeration cycle is configured in which the refrigerant circulates between the compressor 251 and the outdoor heat exchanger 252 and between the compressor 251 and the indoor heat exchanger 257 to perform heating and cooling.
  • the configuration shown in FIG. 13 can be applied not only to an air conditioner but also to a refrigerating cycle apparatus including a refrigerating cycle such as a refrigerator and a freezer.
  • 1,1A, 1B Power supply unit 1a, 1b, 2u_1,2u_2,2v_1,2v_2,2w_1,2w_2,3N, 3u, 3v, 3w, 3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,4a, 4b, 4u, 4v, 4w, 5N, 5u, 5v, 5w terminal, 2 electric motor, 3 connection switching part, 3u_3, 3v_3, 3w_3 connection wiring, 4 power conversion part, 5,5A feedback current adjustment part, 8,8A, 8B AC / DC conversion Instrument, 10 AC power supply, 11, 12, 13, 14 switching element, 11a, 13a, 13b, 14b, 40b diode, 21 U-phase winding, 22 V-phase winding, 23 W-phase winding, 30u, 30v, 30w , 32N, 32u, 32v, 32w connection line, 31, 32, 33 switch, 40a transistor, 40u, 40v, 40w leg, 41, 43, 45 upper

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

An electric motor driving device (100) is provided with: a connection switching unit (3) that switches, to either star connection or delta connection, respective phases of winding wires of an electric motor (2) including a total of six leader lines separated at the neutral points and led out; a power source (1) that generates power to be supplied to the electric motor (2); a power conversion unit (4) that converts a voltage of DC power supplied from the power source (1) into AC power of a voltage of a given AC frequency; and a feedback current adjustment unit (5) that adjusts a feedback current including a common-mode current fed back to the power source (1) from the power conversion unit (4) via the electric motor (2).

Description

電動機駆動装置、空気調和機及び冷凍サイクル装置Electric motor drive, air conditioner and refrigeration cycle device
 本発明は、電動機を駆動する電動機駆動装置、並びに電動機駆動装置を備えた空気調和機及び冷凍サイクル装置に関する。 The present invention relates to an electric motor drive device for driving an electric motor, and an air conditioner and a refrigeration cycle device provided with the electric motor drive device.
 下記特許文献1には、周波数可変且つ電圧可変のインバータを用いて電動機の回転数を変えると共に、負荷に応じて固定子巻線の結線状態を、スター結線とデルタ結線との間で切り替えることで、電力消費を少なくし、効率を高めた電動機駆動装置が記載されている。 In Patent Document 1 below, the rotation speed of the motor is changed by using an inverter having a variable frequency and a variable voltage, and the connection state of the stator winding is switched between the star connection and the delta connection according to the load. , Electric motor drive devices with reduced power consumption and increased efficiency are described.
 このような結線切り替えが行われる結線切替電動機を空気調和機の圧縮機に用いる場合、年間消費電力に対する寄与度が高い中間条件(「低負荷条件」とも呼ばれる)ではスター結線で駆動し、高負荷である定格条件ではデルタ結線で駆動することが考えられる。このようにすることで、中間条件における効率を向上させ、定格条件での高出力化も可能となる。 When a connection switching motor that performs such connection switching is used as a compressor for an air conditioner, it is driven by star connection under intermediate conditions (also called "low load conditions") that contribute to annual power consumption, resulting in a high load. Under the rated conditions of, it is conceivable to drive with a delta connection. By doing so, the efficiency under the intermediate conditions can be improved, and the output can be increased under the rated conditions.
 結線切替電動機の場合、スター結線においては、インバータ出力電流と巻線電流とは大きさが同じになるが、デルタ結線においては、インバータ出力電流は巻線電流の√3倍になる。従って、結線切替電動機において、巻線インピーダンスは、結線仕様により異なり、電動機駆動において考慮する必要がある。 In the case of a connection switching motor, the inverter output current and winding current have the same magnitude in star connection, but in delta connection, the inverter output current is √3 times the winding current. Therefore, in the connection switching motor, the winding impedance differs depending on the connection specifications and needs to be taken into consideration in driving the motor.
 また、インバータのスイッチング動作時においては、電動機と大地との間の浮遊静電容量を介して微弱電流が大地に漏れる。微弱電流は、更に大地を経由して電源に向かうことがある。環境によって大きさも異なるが、大地を経由する微弱電流は、コモンモードノイズとして装置の外部に流出していくことが知られている。 Also, during the switching operation of the inverter, a weak current leaks to the ground via the floating capacitance between the electric motor and the ground. The weak current may go further to the power source via the ground. Although the magnitude varies depending on the environment, it is known that a weak current passing through the ground flows out to the outside of the device as common mode noise.
国際公開第2018/078837号International Publication No. 2018/078837
 コモンモードノイズの外部流出を抑制するために、各種ノイズフィルタが用いられている。しかしながら、結線切替電動機の場合、前述したように、結線仕様に応じて巻線インピーダンスが異なるため、双方の結線仕様に効果的なフィルタを構成するのが難しいという課題がある。 Various noise filters are used to suppress the outflow of common mode noise. However, in the case of a connection switching motor, as described above, since the winding impedance differs depending on the connection specifications, there is a problem that it is difficult to configure an effective filter for both connection specifications.
 本発明は、上記に鑑みてなされたものであって、結線切替電動機をスター結線及びデルタ結線の何れの結線仕様で駆動する場合においても、比較的簡易且つ安価な手段でコモンモードノイズの流出を抑制することができる電動機駆動装置を得ることを目的とする。 The present invention has been made in view of the above, and when the connection switching motor is driven by any connection specification of star connection or delta connection, the outflow of common mode noise can be prevented by a relatively simple and inexpensive means. The purpose is to obtain an electric motor drive device that can be suppressed.
 上述した課題を解決し、目的を達成するために、本発明は、中性点が切り離されて引き出された合計6本の引き出し線を有する電動機を駆動する電動機駆動装置である。電動機駆動装置は、電動機の各相巻線をスター結線又はデルタ結線の何れかに切り替える結線切替部と、電動機に供給する電力を生成する電源部と、を備える。また、電動機駆動装置は、電源部から供給される直流電力の電圧を任意の交流周波数の電圧の交流電力に変換する電力変換部と、電力変換部から電動機を介して電源部に帰還するコモンモード電流を含む帰還電流を調整する帰還電流調整部と、を備える。 In order to solve the above-mentioned problems and achieve the object, the present invention is an electric motor drive device for driving an electric motor having a total of 6 lead wires drawn out with the neutral point separated. The electric motor drive device includes a connection switching unit that switches each phase winding of the electric motor to either star connection or delta connection, and a power supply unit that generates electric power to be supplied to the electric motor. Further, the electric motor drive device has a power conversion unit that converts the voltage of DC power supplied from the power supply unit into AC power of a voltage of an arbitrary AC frequency, and a common mode in which the power conversion unit returns to the power supply unit via the electric motor. A feedback current adjusting unit for adjusting a feedback current including a current is provided.
 本発明に係る電動機駆動装置によれば、結線切替電動機をスター結線及びデルタ結線の何れの結線仕様で駆動する場合においても、比較的簡易且つ安価な手段でコモンモードノイズの流出を抑制することができるという効果を奏する。 According to the electric motor drive device according to the present invention, it is possible to suppress the outflow of common mode noise by a relatively simple and inexpensive means regardless of whether the connection switching electric motor is driven by the connection specifications of star connection and delta connection. It has the effect of being able to do it.
実施の形態1に係る電動機駆動装置の構成を示す図The figure which shows the structure of the electric motor drive device which concerns on Embodiment 1. 実施の形態1における電力変換部の一例としての直流交流変換器の構成を示す図The figure which shows the structure of the DC AC converter as an example of the power conversion part in Embodiment 1. FIG. 実施の形態1における結線切替部の構成例及び第1の結線状態を示す図The figure which shows the configuration example of the connection switching part and the 1st connection state in Embodiment 1. 実施の形態1における結線切替部の構成例及び第2の結線状態を示す図The figure which shows the structural example of the connection switching part and the 2nd connection state in Embodiment 1. 実施の形態1における帰還電流調整部の構成例を示す図The figure which shows the structural example of the feedback current adjustment part in Embodiment 1. 実施の形態1に係る電動機駆動装置の変形例の構成を示す図The figure which shows the structure of the modification of the electric motor drive device which concerns on Embodiment 1. 図6に示す帰還電流調整部の構成例を示す図The figure which shows the structural example of the feedback current adjustment part shown in FIG. 図1及び図6に示す電源部に交流直流変換器が含まれる場合の構成例を示す図The figure which shows the configuration example when the AC / DC converter is included in the power-source part shown in FIGS. 1 and 6. 電源部に交流直流変換器が含まれる場合の図8とは異なる構成例を示す図The figure which shows the configuration example different from FIG. 8 when the AC / DC converter is included in the power-source part. 電源部に交流直流変換器が含まれる場合の図8及び図9とは異なる構成例を示す図The figure which shows the configuration example which is different from FIG. 8 and FIG. 実施の形態1における制御部の機能を実現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that realizes the function of the control unit according to the first embodiment. 実施の形態1における制御部の機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that realizes the function of the control unit according to the first embodiment. 実施の形態2に係る空気調和機の構成例を示す図The figure which shows the structural example of the air conditioner which concerns on Embodiment 2.
 以下に添付図面を参照し、本発明の実施の形態に係る電動機駆動装置、空気調和機及び冷凍サイクル装置について説明する。なお、以下に示す実施の形態により本発明が限定されるものではない。 The electric motor drive device, the air conditioner, and the refrigeration cycle device according to the embodiment of the present invention will be described below with reference to the accompanying drawings. The present invention is not limited to the embodiments shown below.
実施の形態1.
 図1は、実施の形態1に係る電動機駆動装置100の構成を示す図である。図2は、実施の形態1における電力変換部4の一例としての直流交流変換器の構成を示す図である。図3は、実施の形態1における結線切替部3の構成例及び第1の結線状態を示す図である。図4は、実施の形態1における結線切替部3の構成例及び第2の結線状態を示す図である。図5は、実施の形態1における帰還電流調整部5の構成例を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing a configuration of an electric motor drive device 100 according to a first embodiment. FIG. 2 is a diagram showing a configuration of a DC / AC converter as an example of the power conversion unit 4 in the first embodiment. FIG. 3 is a diagram showing a configuration example of the connection switching unit 3 and the first connection state in the first embodiment. FIG. 4 is a diagram showing a configuration example of the connection switching unit 3 and the second connection state in the first embodiment. FIG. 5 is a diagram showing a configuration example of the feedback current adjusting unit 5 according to the first embodiment.
 実施の形態1に係る電動機駆動装置100は、電力供給部110と、制御部200と、結線切替信号伝達部210と、駆動信号伝達部220と、帰還選択信号伝達部230とを備える。電力供給部110は、電源部1と、帰還電流調整部5と、電力変換部4と、結線切替部3とを備える。 The electric motor drive device 100 according to the first embodiment includes a power supply unit 110, a control unit 200, a connection switching signal transmission unit 210, a drive signal transmission unit 220, and a feedback selection signal transmission unit 230. The power supply unit 110 includes a power supply unit 1, a feedback current adjusting unit 5, a power conversion unit 4, and a connection switching unit 3.
 結線切替部3は、電動機2の各相巻線をスター結線又はデルタ結線の何れかに切り替える。電源部1は、電動機2に供給する電力を生成する。電力変換部4は、電源部1から供給される直流電力の電圧を任意の交流周波数の電圧の交流電力に変換し、変換した電力を電動機2に供給する。帰還電流調整部5は、電力変換部4から電動機2を介して電源部1に帰還するコモンモード電流を含む帰還電流を調整する動作を実施する。 The connection switching unit 3 switches each phase winding of the motor 2 to either star connection or delta connection. The power supply unit 1 generates electric power to be supplied to the electric motor 2. The power conversion unit 4 converts the voltage of the DC power supplied from the power supply unit 1 into AC power having a voltage of an arbitrary AC frequency, and supplies the converted power to the electric motor 2. The feedback current adjusting unit 5 performs an operation of adjusting the feedback current including the common mode current that returns from the power conversion unit 4 to the power supply unit 1 via the electric motor 2.
 電源部1の一例は、直流電圧を出力する直流電源であるが、これに限定されない。電源部1は、交流電圧を出力する交流電源の出力に基づいて直流電圧を生成する電源装置であってもよい。なお、この場合、交流電源は電源部1の構成要素には含まれない。直流電源又は交流電源の使い分けは、電力供給部110の構成を変更することで実施可能である。 An example of the power supply unit 1 is a DC power supply that outputs a DC voltage, but the present invention is not limited to this. The power supply unit 1 may be a power supply device that generates a DC voltage based on the output of an AC power supply that outputs an AC voltage. In this case, the AC power supply is not included in the components of the power supply unit 1. The DC power supply or the AC power supply can be used properly by changing the configuration of the power supply unit 110.
 電動機2は、各相巻線の結線状態がスター結線又はデルタ結線の何れかに切り替え可能に構成される結線切替電動機である。電動機2は、結線切替電動機であるため、図示のように中性点が切り離されている。この構成により、電動機2からは合計6本の引き出し線50u_1,50u_2,50v_1,50v_2,50w_1,50w_2が引き出されている。引き出し線50u_1,50u_2は、U相の交流配線である。引き出し線50v_1,50v_2は、V相の交流配線である。引き出し線50w_1,50w_2は、W相の交流配線である。電動機2と電力供給部110とは、引き出し線50u_1,50u_2,50v_1,50v_2,50w_1,50w_2によって電気的に接続される。電動機2への動作電力は、制御部200の制御により、3本の引き出し線50u_1,50v_1,50w_1を通じて電力供給部110から供給される。 The electric motor 2 is a connection switching motor in which the connection state of each phase winding can be switched to either star connection or delta connection. Since the electric motor 2 is a connection switching electric motor, the neutral point is separated as shown in the figure. With this configuration, a total of six lead wires 50u_1,50u_2,50v_1,50v_2,50w_1,50w_2 are drawn from the motor 2. Leader wires 50u_1 and 50u_2 are U-phase AC wirings. Leader wires 50v_1, 50v_2 are V-phase AC wirings. The leader wires 50w_1 and 50w_2 are W-phase AC wirings. The electric motor 2 and the power supply unit 110 are electrically connected by lead wires 50u_1,50u_2,50v_1,50v_2,50w_1,50w_2. The operating power to the electric motor 2 is supplied from the power supply unit 110 through the three lead wires 50u_1, 50v_1, 50w_1 under the control of the control unit 200.
 電動機2は、U相巻線21と、V相巻線22と、W相巻線23とを備える。また、電動機2は、端子2u_1,2u_2,2v_1,2v_2,2w_1,2w_2を有する。電動機2において、U相巻線21の一端は端子2u_1に接続され、U相巻線21の他端は端子2u_2に接続される。V相巻線22の一端は端子2v_1に接続され、V相巻線22の他端は端子2v_2に接続される。W相巻線23の一端は端子2w_1に接続され、W相巻線23の他端は端子2w_2に接続される。 The electric motor 2 includes a U-phase winding 21, a V-phase winding 22, and a W-phase winding 23. Further, the electric motor 2 has terminals 2u_1, 2, u_2, 2v_1, 2, v_2, 2w_1, 2w_2. In the electric motor 2, one end of the U-phase winding 21 is connected to the terminal 2u_1, and the other end of the U-phase winding 21 is connected to the terminal 2u_1. One end of the V-phase winding 22 is connected to the terminal 2v_1, and the other end of the V-phase winding 22 is connected to the terminal 2v_1. One end of the W-phase winding 23 is connected to the terminal 2w_1, and the other end of the W-phase winding 23 is connected to the terminal 2w_1.
 結線切替部3は、電動機2の各相巻線の結線状態を、スター結線からデルタ結線に切り替え、又はデルタ結線からスター結線に切り替える機能を有する。この機能を実現するため、結線切替部3は、図3及び図4に示すように、切替器31と、切替器32と、切替器33とを有する。また、結線切替部3は、端子3u,3v,3w,3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,3Nと、接続配線3u_3,3v_3,3w_3とを有する。 The connection switching unit 3 has a function of switching the connection state of each phase winding of the motor 2 from star connection to delta connection, or from delta connection to star connection. In order to realize this function, the connection switching unit 3 includes a switching device 31, a switching device 32, and a switching device 33, as shown in FIGS. 3 and 4. Further, the connection switching unit 3 has terminals 3u, 3v, 3w, 3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,3N and connection wirings 3u_3,3v_3,3w_3.
 切替器31、切替器32及び切替器33の一例は、図3及び図4に示すように、接点d,e,fを有するc接点型の切替器である。接点fは、通電時に接点dと接続され、非通電時に接点eと接続される。或いは、接点fは、通電時に接点eと接続され、非通電時に接点dと接続される。なお、図3及び図4では、各切替器は、c接点型の切替器として記載しているが、これらの例に限定されない。各切替器は、それぞれが双方向に開閉することのできる切替器であればよい。例えば、各切替器は、a接点型の切替器又はb接点型の切替器又は両者の切替器が組み合わされて構成されていてもよい。また、各切替器は、半導体スイッチであってもよい。 An example of the switch 31, the switch 32, and the switch 33 is a c-contact type switch having contacts d, e, and f, as shown in FIGS. 3 and 4. The contact f is connected to the contact d when the power is on, and is connected to the contact e when the power is off. Alternatively, the contact f is connected to the contact e when energized and is connected to the contact d when not energized. In addition, in FIG. 3 and FIG. 4, each switch is described as a c-contact type switch, but the present invention is not limited to these examples. Each switch may be a switch that can be opened and closed in both directions. For example, each switch may be configured by a contact type switch, a b contact type switch, or a combination of both switches. Further, each switch may be a semiconductor switch.
 切替器31、切替器32及び切替器33は、結線切替信号伝達部210から出力される駆動信号S11,S21,S31によって駆動される。駆動信号S11,S21,S31は、制御部200から出力される制御信号S1,S2,S3に基づいて生成される。 The switch 31, the switch 32, and the switch 33 are driven by the drive signals S11, S21, and S31 output from the connection switching signal transmission unit 210. The drive signals S11, S21, and S31 are generated based on the control signals S1, S2, and S3 output from the control unit 200.
 各切替器は、オン時の導通損失が小さいものが好適であり、リレー又はコンタクタといった機械スイッチを用いることができる。また、機械スイッチに代えて、ワイドバンドギャップ半導体により形成されたスイッチング素子を使用してもよい。ワイドバンドギャップ半導体により形成されたスイッチング素子とすることで、オン抵抗が小さく、低損失で素子発熱が小さいという効果を享受することができる。 It is preferable that each switch has a small conduction loss when it is turned on, and a mechanical switch such as a relay or a contactor can be used. Further, instead of the mechanical switch, a switching element formed of a wide bandgap semiconductor may be used. By using a switching element formed of a wide bandgap semiconductor, it is possible to enjoy the effects of low on-resistance, low loss, and low element heat generation.
 切替器31の接点dは、接続配線3v_3に接続される。接続配線3v_3は、結線切替部3の内部において、端子3vと端子3v_1とを電気的に接続するための接続配線である。端子3v_1は、引き出し線50v_1に接続される端子である。切替器32の接点dは、接続配線3w_3に接続される。接続配線3w_3は、結線切替部3の内部において、端子3wと端子3w_1とを電気的に接続するための接続配線である。端子3w_1は、引き出し線50w_1に接続される端子である。切替器33の接点dは、接続配線3u_3に接続される。接続配線3u_3は、結線切替部3の内部において、端子3uと端子3u_1とを電気的に接続するための接続配線である。端子3u_1は、引き出し線50u_1に接続される端子である。 The contact d of the switch 31 is connected to the connection wiring 3v_3. The connection wiring 3v_3 is a connection wiring for electrically connecting the terminal 3v and the terminal 3v_1 inside the connection switching unit 3. The terminal 3v_1 is a terminal connected to the lead wire 50v_1. The contact d of the switch 32 is connected to the connection wiring 3w_3. The connection wiring 3w_3 is a connection wiring for electrically connecting the terminal 3w and the terminal 3w_1 inside the connection switching unit 3. The terminal 3w_1 is a terminal connected to the lead wire 50w_1. The contact d of the switch 33 is connected to the connection wiring 3u_3. The connection wiring 3u_3 is a connection wiring for electrically connecting the terminal 3u and the terminal 3u_1 inside the connection switching unit 3. The terminal 3u_1 is a terminal connected to the lead wire 50u_1.
 切替器31,32,33の各接点eは、端子3Nに接続される。切替器31の接点fは、端子3u_2に接続される。端子3u_2は、引き出し線50u_2に接続される端子である。従って、端子3u_2と、電動機2の端子2u_2とは、引き出し線50u_2によって電気的に接続される。切替器32の接点fは、端子3v_2に接続される。端子3v_2は、引き出し線50v_2に接続される端子である。従って、端子3v_2と、電動機2の端子2v_2とは、引き出し線50v_2によって電気的に接続される。切替器33の接点fは、端子3w_2に接続される。端子3w_2は、引き出し線50w_2に接続される端子である。従って、端子3w_2と、電動機2の端子2w_2とは、引き出し線50w_2によって電気的に接続される。 Each contact e of the switches 31, 32, 33 is connected to the terminal 3N. The contact f of the switch 31 is connected to the terminal 3u_2. The terminal 3u_2 is a terminal connected to the lead wire 50u_2. Therefore, the terminal 3u_2 and the terminal 2u_2 of the electric motor 2 are electrically connected by the lead wire 50u_2. The contact f of the switch 32 is connected to the terminal 3v_2. The terminal 3v_2 is a terminal connected to the lead wire 50v_2. Therefore, the terminal 3v_2 and the terminal 2v_2 of the electric motor 2 are electrically connected by the lead wire 50v_2. The contact f of the switch 33 is connected to the terminal 3w_2. The terminal 3w_2 is a terminal connected to the lead wire 50w_2. Therefore, the terminal 3w_2 and the terminal 2w_2 of the electric motor 2 are electrically connected by the lead wire 50w_2.
 図3では、各切替器の接点fは、接点eに接続されている。このため、電動機2における図3の結線状態は、スター結線である。また、図4では、各切替器の接点fは、接点dに接続されている。このため、電動機2における図4の結線状態は、デルタ結線である。 In FIG. 3, the contact f of each switch is connected to the contact e. Therefore, the connection state of FIG. 3 in the motor 2 is a star connection. Further, in FIG. 4, the contact f of each switch is connected to the contact d. Therefore, the connection state of FIG. 4 in the motor 2 is a delta connection.
 電力変換部4は、図2にされるように、上アーム素子41と下アーム素子42とが直列に接続されたレグ40uと、上アーム素子43と下アーム素子44とが直列に接続されたレグ40vと、上アーム素子45と下アーム素子46とが直列に接続されたレグ40wと、を備える。レグ40u、レグ40v及びレグ40wは、互いに並列に接続されている。なお、図2では、上アーム素子41,43,45及び下アーム素子42,44,46が金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)を例示しているが、MOSFETに限定されない。MOSFETに代えて、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)を用いてもよい。 As shown in FIG. 2, the power conversion unit 4 has a leg 40u in which the upper arm element 41 and the lower arm element 42 are connected in series, and the upper arm element 43 and the lower arm element 44 are connected in series. It includes a leg 40v and a leg 40w in which an upper arm element 45 and a lower arm element 46 are connected in series. The legs 40u, 40v and 40w are connected in parallel to each other. In FIG. 2, the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 exemplify a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET). Not limited. Insulated gate bipolar transistors (Insulated Gate Bipolar Transistors: IGBTs) may be used instead of the MOSFETs.
 上アーム素子41,43,45及び下アーム素子42,44,46は、駆動信号伝達部220から出力される駆動信号Sup1,Sun1,Svp1,Svn1,Swp1,Swn1によって駆動される。駆動信号Sup1,Sun1,Svp1,Svn1,Swp1,Swn1は、制御部200から出力される制御信号Sup,Sun,Svp,Svn,Swp,Swnに基づいて生成される。 The upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 are driven by the drive signals Sup1, Sun1, Sbp1, Svn1, Swp1, Swn1 output from the drive signal transmission unit 220. The drive signals Sup1, Sun1, Subp1, Svn1, Swp1, Swn1 are generated based on the control signals Sup, Sun, Spp, Swn, Swp, Swn output from the control unit 200.
 上アーム素子41は、トランジスタ40aと、トランジスタ40aに逆並列に接続されるダイオード40bとを含む。他の上アーム素子43,45、及び下アーム素子42,44,46についても同様の構成である。逆並列とは、MOSFETのソースにダイオードのアノードが接続され、MOSFETのコレクタにダイオードのカソードが接続されることを意味する。なお、図2は、上アーム素子と下アーム素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。 The upper arm element 41 includes a transistor 40a and a diode 40b connected to the transistor 40a in antiparallel. The other upper arm elements 43, 45 and lower arm elements 42, 44, 46 have the same configuration. Opposite parallel means that the anode of the diode is connected to the source of the MOSFET and the cathode of the diode is connected to the collector of the MOSFET. Note that FIG. 2 has a configuration including three legs in which the upper arm element and the lower arm element are connected in series, but the configuration is not limited to this configuration. The number of legs may be four or more.
 上アーム素子41,43,45及び下アーム素子42,44,46のトランジスタ40aがMOSFETである場合、上アーム素子41,43,45及び下アーム素子42,44,46のうちの少なくとも1つは、炭化珪素、窒化ガリウム、酸化ガリウム又はダイヤモンドといったワイドバンドギャップ半導体により形成されていてもよい。ワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。 When the transistor 40a of the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 is a MOSFET, at least one of the upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 is , Silicon carbide, gallium nitride, gallium oxide or diamond may be formed of a wide bandgap semiconductor. If a MOSFET formed of a wide bandgap semiconductor is used, the effects of withstand voltage and heat resistance can be enjoyed.
 また、電力変換部4は、端子4a,4b,4u,4v,4wを有する。上アーム素子41と下アーム素子42との接続点48uは、端子4uに接続される。上アーム素子43と下アーム素子44との接続点48vは、端子4vに接続される。上アーム素子45と下アーム素子46との接続点48wは、端子4wに接続される。端子4uと、結線切替部3の端子3uとは、接続線30uによって電気的に接続される。端子4vと、結線切替部3の端子3vとは、接続線30vによって電気的に接続される。端子4wと、結線切替部3の端子3wとは、接続線30wによって電気的に接続される。 Further, the power conversion unit 4 has terminals 4a, 4b, 4u, 4v, 4w. The connection point 48u between the upper arm element 41 and the lower arm element 42 is connected to the terminal 4u. The connection point 48v between the upper arm element 43 and the lower arm element 44 is connected to the terminal 4v. The connection point 48w between the upper arm element 45 and the lower arm element 46 is connected to the terminal 4w. The terminal 4u and the terminal 3u of the connection switching unit 3 are electrically connected by the connection line 30u. The terminal 4v and the terminal 3v of the connection switching unit 3 are electrically connected by the connection line 30v. The terminal 4w and the terminal 3w of the connection switching unit 3 are electrically connected by the connection line 30w.
 上アーム素子41,43,45の接続点は、端子4aに接続される。端子4aには、高電位側の電源線50aが接続される。下アーム素子42,44,46の接続点は、端子4bに接続される。端子4bには低電位側の電源線50bが接続される。なお、以下において、高電位側の電源線50aを「第1電源線」と呼び、低電位側の電源線50bを「第2電源線」と呼ぶ場合がある。 The connection points of the upper arm elements 41, 43, 45 are connected to the terminal 4a. A power line 50a on the high potential side is connected to the terminal 4a. The connection points of the lower arm elements 42, 44, 46 are connected to the terminal 4b. A power line 50b on the low potential side is connected to the terminal 4b. In the following, the power supply line 50a on the high potential side may be referred to as a "first power supply line", and the power supply line 50b on the low potential side may be referred to as a "second power supply line".
 帰還電流調整部5は、図5に示されるように、バイパスコンデンサ51,52と、開閉スイッチ53,55と、カップリングコンデンサ54,56,57,58,59とを備える。バイパスコンデンサ51,52は、いわゆるYコンデンサとして動作する。また、帰還電流調整部5は、端子5u,5v,5w,5Nを有する。端子5uと、結線切替部3の端子3uとは、接続線32uによって電気的に接続される。端子5vと、結線切替部3の端子3vとは、接続線32vによって電気的に接続される。端子5wと、結線切替部3の端子3wとは、接続線32wによって電気的に接続される。端子5Nと、結線切替部3の端子3Nとは、接続線32Nによって電気的に接続される。 As shown in FIG. 5, the feedback current adjusting unit 5 includes bypass capacitors 51 and 52, open / close switches 53 and 55, and coupling capacitors 54, 56, 57, 58 and 59. The bypass capacitors 51 and 52 operate as so-called Y capacitors. Further, the feedback current adjusting unit 5 has terminals 5u, 5v, 5w, 5N. The terminal 5u and the terminal 3u of the connection switching unit 3 are electrically connected by the connection line 32u. The terminal 5v and the terminal 3v of the connection switching unit 3 are electrically connected by the connection line 32v. The terminal 5w and the terminal 3w of the connection switching unit 3 are electrically connected by the connection line 32w. The terminal 5N and the terminal 3N of the connection switching unit 3 are electrically connected by the connection line 32N.
 開閉スイッチ53,55は、帰還選択信号伝達部230から出力される選択信号Sa1,Sb1によって駆動される。選択信号Sa1,Sb1は、制御部200から出力される制御信号Sa,Sbに基づいて生成される。 The open / close switches 53 and 55 are driven by the selection signals Sa1 and Sb1 output from the feedback selection signal transmission unit 230. The selection signals Sa1 and Sb1 are generated based on the control signals Sa and Sb output from the control unit 200.
 帰還電流調整部5の内部には、電源線50a,50bが引き通されている。電源線50aの一端は電力変換部4の端子4aに接続され(図2)、電源線50aの他端は電源部1の端子1aに接続される(図1)。電源線50bの一端は電力変換部4の端子4bに接続され(図2)、電源線50bの他端は電源部1の端子1bに接続される(図1)。電源部1において、端子1aは高電位側端子であり、端子1bは低電位側端子である。 Power lines 50a and 50b are routed inside the feedback current adjusting unit 5. One end of the power supply line 50a is connected to the terminal 4a of the power conversion unit 4 (FIG. 2), and the other end of the power supply line 50a is connected to the terminal 1a of the power supply unit 1 (FIG. 1). One end of the power supply line 50b is connected to the terminal 4b of the power conversion unit 4 (FIG. 2), and the other end of the power supply line 50b is connected to the terminal 1b of the power supply unit 1 (FIG. 1). In the power supply unit 1, the terminal 1a is a high potential side terminal and the terminal 1b is a low potential side terminal.
 図5に戻り、バイパスコンデンサ51,52は、直列に接続されて電源線50a,50b間に配される。バイパスコンデンサ51は電源線50aに接続され、バイパスコンデンサ52は電源線50bに接続される。カップリングコンデンサ54の一端は、開閉スイッチ53を介してバイパスコンデンサ51,52の接続点である中点50cに接続される。カップリングコンデンサ54の他端は、端子5Nに接続される。カップリングコンデンサ56の一端は、開閉スイッチ55を介して中点50cに接続される。カップリングコンデンサ56の他端は、カップリングコンデンサ57,58,59の各一端同士の接続点50dに接続される。カップリングコンデンサ57の他端は端子5uに接続され、カップリングコンデンサ58の他端は端子5vに接続され、カップリングコンデンサ59の他端は端子5wに接続される。 Returning to FIG. 5, the bypass capacitors 51 and 52 are connected in series and arranged between the power supply lines 50a and 50b. The bypass capacitor 51 is connected to the power supply line 50a, and the bypass capacitor 52 is connected to the power supply line 50b. One end of the coupling capacitor 54 is connected to the midpoint 50c, which is the connection point of the bypass capacitors 51 and 52, via the open / close switch 53. The other end of the coupling capacitor 54 is connected to the terminal 5N. One end of the coupling capacitor 56 is connected to the midpoint 50c via the open / close switch 55. The other end of the coupling capacitor 56 is connected to a connection point 50d between one ends of the coupling capacitors 57, 58, 59. The other end of the coupling capacitor 57 is connected to the terminal 5u, the other end of the coupling capacitor 58 is connected to the terminal 5v, and the other end of the coupling capacitor 59 is connected to the terminal 5w.
 次に、実施の形態1に係る電動機駆動装置100における要部の動作について説明する。 Next, the operation of the main part of the electric motor drive device 100 according to the first embodiment will be described.
 電力変換部4には、帰還電流調整部5を介して電源部1から出力される直流電圧が印加される。電力変換部4における上アーム素子41,43,45、及び下アーム素子42,44,46は、それぞれ上下アーム素子が相補動作しながら、電動機2に交流電圧を印加する。電動機2は、印加された交流電圧によって回転磁界が与えられて駆動される。 A DC voltage output from the power supply unit 1 is applied to the power conversion unit 4 via the feedback current adjustment unit 5. The upper arm elements 41, 43, 45 and the lower arm elements 42, 44, 46 in the power conversion unit 4 apply an AC voltage to the electric motor 2 while the upper and lower arm elements operate in a complementary manner. The electric motor 2 is driven by applying a rotating magnetic field by the applied AC voltage.
 電動機2の結線状態がスター結線である場合、各切替器の接点fは接点eに接続されている。この場合、電動機2から引き出された引き出し線50u_2,50v_2,50w_2は、各切替器を介して結線切替部3の端子3Nに電気的に接続される。 When the connection state of the motor 2 is a star connection, the contact f of each switch is connected to the contact e. In this case, the lead wire 50u_2, 50v_2, 50w_2 drawn out from the electric motor 2 is electrically connected to the terminal 3N of the connection switching unit 3 via each switch.
 近年の応用製品では、電力変換部4の上下アーム素子が相補的にスイッチング動作することが多くなっている。この動作の場合、電力変換部4における接続点48u,48v,48wには、高電位側の電源線50aによる電位と、低電位側の電源線50bによる電位とが交互に発生する。これにより接続点48u,48v,48wの電位は大きく変動する。このような相補的なスイッチング動作が行われている過渡状態においては、電動機2の中性点電位も、瞬間的に大きく変動している状態になる。 In recent applied products, the upper and lower arm elements of the power conversion unit 4 often perform complementary switching operations. In the case of this operation, the potential of the power supply line 50a on the high potential side and the potential of the power supply line 50b on the low potential side are alternately generated at the connection points 48u, 48v, 48w in the power conversion unit 4. As a result, the potentials of the connection points 48u, 48v, and 48w fluctuate greatly. In the transient state in which such a complementary switching operation is performed, the neutral point potential of the electric motor 2 also momentarily fluctuates greatly.
 電動機2は、通常フレーム等で囲われているため、電動機巻線とフレームとの間に浮遊容量を有することになる。例えば空気調和機の圧縮機に用いられる電動機の場合、電動機巻線と圧縮機シェルとの間に浮遊容量を有する。電動機2の中性点電位がこの種の浮遊容量を介して瞬間的に変動した場合、電動機2の外部にコモンモード電流が流れることとなる。このコモンモード電流が大地を経由して電源部1に向かい、コモンモードノイズとして伝導し、他の機器に悪影響を及ぼす場合がある。 Since the motor 2 is usually surrounded by a frame or the like, it has a stray capacitance between the motor winding and the frame. For example, in the case of an electric motor used in a compressor of an air conditioner, there is a stray capacitance between the electric motor winding and the compressor shell. When the neutral point potential of the motor 2 fluctuates momentarily through this kind of stray capacitance, a common mode current flows to the outside of the motor 2. This common mode current may pass through the ground to the power supply unit 1 and be conducted as common mode noise, which may adversely affect other devices.
 そこで、実施の形態1では、電源部1に向かうコモンモード電流を調整するため、電動機2の中性点電位の瞬間的変動に起因して流れるコモンモード電流を、電源部1を除く電力供給部110と電動機2との間で還流させる電流経路、即ち回路ループを形成する。 Therefore, in the first embodiment, in order to adjust the common mode current toward the power supply unit 1, the power supply unit excluding the power supply unit 1 applies the common mode current that flows due to the momentary fluctuation of the neutral point potential of the electric motor 2. A current path, that is, a circuit loop, is formed between the 110 and the electric motor 2.
 回路ループを形成するための構成要素は、前述した通りである。具体的な制御として、電動機2の結線状態がスター結線である場合、開閉スイッチ53をオンに制御する。開閉スイッチ53をオンにすることにより、前述したコモンモード電流は、結線切替部3の端子3N、接続線32N、端子5N、カップリングコンデンサ54、開閉スイッチ53、中点50c、バイパスコンデンサ51又はバイパスコンデンサ52を経由して電力変換部4に戻る。即ち、帰還電流調整部5内のカップリングコンデンサ54及び開閉スイッチ53を介してコモンモード電流が帰還する。従って、電動機2から大地を経由して電源部1に向かうコモンモード電流を小さくすることができる。これにより、コモンモード電流の電源部1側への流出を抑制することができ、他の機器に悪影響を及ぼすコモンモードノイズを抑制することができる。 The components for forming the circuit loop are as described above. As a specific control, when the connection state of the motor 2 is a star connection, the open / close switch 53 is controlled to be turned on. By turning on the open / close switch 53, the above-mentioned common mode current can be reduced to the terminal 3N, connection line 32N, terminal 5N, coupling capacitor 54, open / close switch 53, midpoint 50c, bypass capacitor 51 or bypass of the connection switching unit 3. It returns to the power conversion unit 4 via the capacitor 52. That is, the common mode current is fed back via the coupling capacitor 54 and the open / close switch 53 in the feedback current adjusting unit 5. Therefore, the common mode current from the electric motor 2 to the power supply unit 1 via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit 1 side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
 なお、上記の制御を行う際、他方の開閉スイッチである開閉スイッチ55の状態は、オン又はオフの何れの状態でもよい。但し、カップリングコンデンサ56,57,58,59の存在によって、コモンモード電流が影響を受ける場合には、開閉スイッチ55はオフに制御されていることが望ましい。 When performing the above control, the state of the open / close switch 55, which is the other open / close switch, may be either on or off. However, when the common mode current is affected by the presence of the coupling capacitors 56, 57, 58, 59, it is desirable that the open / close switch 55 is controlled to be off.
 次に、電動機2の結線状態がデルタ結線である場合について説明する。電動機2の結線状態がデルタ結線である場合、各切替器の接点fは接点dに接続されている。この場合、電動機2から引き出された引き出し線50u_2は、切替器31、接続配線3v_3、端子3v、接続線32vを介して帰還電流調整部5の端子5vに電気的に接続される。以下同様に、電動機2から引き出された引き出し線50v_2は、切替器32、接続配線3w_3、端子3w、接続線32wを介して帰還電流調整部5の端子5wに電気的に接続される。電動機2から引き出された引き出し線50w_2は、切替器33、接続配線3u_3、端子3u、接続線32uを介して帰還電流調整部5の端子5uに電気的に接続される。 Next, a case where the connection state of the motor 2 is a delta connection will be described. When the connection state of the electric motor 2 is delta connection, the contact f of each switch is connected to the contact d. In this case, the lead wire 50u_2 drawn out from the electric motor 2 is electrically connected to the terminal 5v of the feedback current adjusting unit 5 via the switch 31, the connecting wiring 3v_3, the terminal 3v, and the connecting wire 32v. Similarly, the lead wire 50v_2 drawn out from the electric motor 2 is electrically connected to the terminal 5w of the feedback current adjusting unit 5 via the switch 32, the connecting wiring 3w_3, the terminal 3w, and the connecting wire 32w. The lead wire 50w_2 drawn out from the electric motor 2 is electrically connected to the terminal 5u of the feedback current adjusting unit 5 via the switch 33, the connection wiring 3u_3, the terminal 3u, and the connection line 32u.
 電動機2の結線状態がデルタ結線である場合においても、上述したコモンモード電流は発生する。そこで、スター結線のときと同様に、電源部1に向かうコモンモード電流の一部を、電源部1を除く電力供給部110と電動機2との間で還流させるための回路ループを形成する制御を行う。 The above-mentioned common mode current is generated even when the connection state of the motor 2 is delta connection. Therefore, as in the case of star connection, control is performed to form a circuit loop for circulating a part of the common mode current toward the power supply unit 1 between the power supply unit 110 excluding the power supply unit 1 and the motor 2. Do.
 回路ループを形成するための構成要素は、前述した通りである。具体的な制御として、開閉スイッチ55をオンに制御する。開閉スイッチ55をオンにすることにより、前述したコモンモード電流は、結線切替部3の端子3u、接続線32u、端子5u、カップリングコンデンサ57、カップリングコンデンサ56、開閉スイッチ55、中点50c、バイパスコンデンサ51又はバイパスコンデンサ52を経由して電力変換部4に戻る。また、コモンモード電流は、結線切替部3の端子3v、接続線32v、端子5v、カップリングコンデンサ58、カップリングコンデンサ56、開閉スイッチ55、中点50c、バイパスコンデンサ51又はバイパスコンデンサ52を経由して電力変換部4に戻る。更に、コモンモード電流は、結線切替部3の端子3w、接続線32w、端子5w、カップリングコンデンサ59、カップリングコンデンサ56、開閉スイッチ55、中点50c、バイパスコンデンサ51又はバイパスコンデンサ52を経由して電力変換部4に戻る。即ち、帰還電流調整部5内のカップリングコンデンサ56,57,58,59及び開閉スイッチ55を介してコモンモード電流が帰還する。従って、電動機2から大地を経由して電源部1に向かうコモンモード電流を小さくすることができる。これにより、コモンモード電流の電源部1側への流出を抑制することができ、他の機器に悪影響を及ぼすコモンモードノイズを抑制することができる。 The components for forming the circuit loop are as described above. As a specific control, the open / close switch 55 is controlled to be turned on. By turning on the open / close switch 55, the above-mentioned common mode current can be reduced to the terminal 3u, the connection line 32u, the terminal 5u, the coupling capacitor 57, the coupling capacitor 56, the open / close switch 55, and the midpoint 50c of the connection switching unit 3. It returns to the power conversion unit 4 via the bypass capacitor 51 or the bypass capacitor 52. Further, the common mode current passes through the terminal 3v, the connection line 32v, the terminal 5v, the coupling capacitor 58, the coupling capacitor 56, the open / close switch 55, the middle point 50c, the bypass capacitor 51 or the bypass capacitor 52 of the connection switching unit 3. Return to the power conversion unit 4. Further, the common mode current passes through the terminal 3w, the connection line 32w, the terminal 5w, the coupling capacitor 59, the coupling capacitor 56, the open / close switch 55, the midpoint 50c, the bypass capacitor 51 or the bypass capacitor 52 of the connection switching unit 3. Return to the power conversion unit 4. That is, the common mode current is fed back via the coupling capacitors 56, 57, 58, 59 and the open / close switch 55 in the feedback current adjusting unit 5. Therefore, the common mode current from the electric motor 2 to the power supply unit 1 via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit 1 side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
 上記の構成において、端子5u,5v,5w、カップリングコンデンサ56,57,58,59及び開閉スイッチ55は、電動機2の結線状態がデルタ結線であるときに、コモンモード電流を含む帰還電流を帰還電流調整部5に引き込む第1の引き込み部として動作する。 In the above configuration, the terminals 5u, 5v, 5w, the coupling capacitors 56, 57, 58, 59 and the open / close switch 55 feed back the feedback current including the common mode current when the connection state of the motor 2 is delta connection. It operates as a first pull-in unit that draws into the current adjusting unit 5.
 また、上記の構成において、端子5N、カップリングコンデンサ54及び開閉スイッチ53は、電動機2の結線状態がスター結線であるときに、コモンモード電流を含む帰還電流を帰還電流調整部5に引き込む第2の引き込み部として動作する。 Further, in the above configuration, the terminal 5N, the coupling capacitor 54, and the open / close switch 53 draw a feedback current including a common mode current into the feedback current adjusting unit 5 when the connection state of the motor 2 is a star connection. Operates as a pull-in part of.
 なお、結線切替電動機である電動機2において、スター結線の場合の巻線抵抗及びインダクタンスは、等価的にデルタ結線の場合の巻線抵抗及びインダクタンスの3倍となる。従って、デルタ結線の方がスター結線よりもインピーダンスが低く、コモンモード電流が流れ易くなる。これにより、スター結線よりもデルタ結線の方が、コモンモードノイズが大きくなることがある。このため、実施の形態1では、電動機2の結線状態がデルタ結線の場合には、帰還電流調整部5を介して装置内を循環させるコモンモード電流の経路をスター結線の場合の3倍にしている。これにより、デルタ結線の場合、装置内を循環させるコモンモード電流量を増やすことができ、コモンモード電流の電源部1側への流出量を、デルタ結線とスター結線とで同等にすることができる。 In the motor 2 which is a connection switching motor, the winding resistance and inductance in the case of star connection are equivalently three times the winding resistance and inductance in the case of delta connection. Therefore, the impedance of the delta connection is lower than that of the star connection, and the common mode current easily flows. As a result, the common mode noise may be larger in the delta connection than in the star connection. Therefore, in the first embodiment, when the connection state of the motor 2 is a delta connection, the path of the common mode current circulating in the device via the feedback current adjusting unit 5 is tripled as in the case of the star connection. There is. As a result, in the case of delta connection, the amount of common mode current circulating in the device can be increased, and the amount of common mode current flowing out to the power supply unit 1 side can be made equal between the delta connection and the star connection. ..
 また、上記の制御を行う際、他方の開閉スイッチである開閉スイッチ53の状態は、オン又はオフの何れの状態でもよい。但し、カップリングコンデンサ54の存在によって、コモンモード電流が影響を受ける場合には、開閉スイッチ53はオフに制御されていることが望ましい。 Further, when performing the above control, the state of the open / close switch 53, which is the other open / close switch, may be either on or off. However, when the common mode current is affected by the presence of the coupling capacitor 54, it is desirable that the open / close switch 53 is controlled to be off.
 また、コモンモード電流の要因となる電動機2における浮遊容量は、電動機種別又は装置構成によって異なるため、カップリングコンデンサ54,56,57,58,59のうちの少なくとも1つは、容量調整が可能であるものが望ましい。 Further, since the stray capacitance in the motor 2 which is a factor of the common mode current differs depending on the motor type or the device configuration, the capacitance of at least one of the coupling capacitors 54, 56, 57, 58, 59 can be adjusted. Something is desirable.
 また、図5では、電動機2の結線状態がデルタ結線の場合及びスター結線の場合の両方に対応できるように、両方の経路にカップリングコンデンサ54又はカップリングコンデンサ56,57,58,59を配置する例を示しているが、図5の構成に限定されない。前述したように、コモンモード電流の影響はデルタ結線の方が大きいと考えられる。このため、図1の構成から、開閉スイッチ53及びカップリングコンデンサ54を省略し、デルタ結線の場合のみに対応できる構成としてもよい。 Further, in FIG. 5, the coupling capacitors 54 or the coupling capacitors 56, 57, 58, 59 are arranged in both paths so that the connection state of the motor 2 can correspond to both the case of the delta connection and the case of the star connection. However, the configuration is not limited to that shown in FIG. As mentioned above, the influence of the common mode current is considered to be greater in the delta connection. Therefore, from the configuration of FIG. 1, the open / close switch 53 and the coupling capacitor 54 may be omitted, and a configuration that can handle only the case of delta connection may be used.
 コモンモード電流の影響はデルタ結線の方が大きいと考えられるので、開閉スイッチ55は省略し、コモンモード電流を還流させるための回路ループがカップリングコンデンサ56,57,58,59を通じて常時形成されるように、帰還電流調整部5が構成されていてもよい。この場合、開閉スイッチ53及びカップリングコンデンサ54については、電動機種別又は装置構成に対応させて、実装又は非実装を決定してもよい。 Since the influence of the common mode current is considered to be larger in the delta connection, the open / close switch 55 is omitted, and a circuit loop for returning the common mode current is always formed through the coupling capacitors 56, 57, 58, 59. As described above, the feedback current adjusting unit 5 may be configured. In this case, the open / close switch 53 and the coupling capacitor 54 may be mounted or not mounted according to the motor type or the device configuration.
 また、図5では、コモンモード電流を調整する素子例としてコンデンサを例示したが、これに限定されない。コモンモード電流を調整できる素子であれば、どのような素子を用いてもよい。一例として、カップリングコンデンサ54,56,57,58,59のそれぞれを抵抗素子で置き替えてもよい。 Further, in FIG. 5, a capacitor is illustrated as an example of an element for adjusting the common mode current, but the present invention is not limited to this. Any element may be used as long as it can adjust the common mode current. As an example, each of the coupling capacitors 54, 56, 57, 58, 59 may be replaced with a resistance element.
 次に、電力供給部110を構成する際の着意事項について説明する。電力供給部110において、結線切替部3、電力変換部4及び帰還電流調整部5のうちの少なくとも2つの構成部は、同一基板上に搭載されていてもよい。通常の電動機は、電気的な中性点が電動機の内部にあるので、電気的な中性点と電力変換部4との間の距離が長くなる。このため、コモンモード電流の調整は、交流配線の影響を受け易くなる。 Next, we will explain the important points when configuring the power supply unit 110. In the power supply unit 110, at least two components of the connection switching unit 3, the power conversion unit 4, and the feedback current adjusting unit 5 may be mounted on the same substrate. In a normal electric motor, since the electric neutral point is inside the electric motor, the distance between the electric neutral point and the power conversion unit 4 becomes long. Therefore, the adjustment of the common mode current is easily affected by the AC wiring.
 一方、結線切替電動機である電動機2の場合、電気的な中性点は結線切替部3の内部にある。このため、結線切替部3と電力変換部4とを同一基板上に搭載すれば、結線切替部3の電気的な中性点と電力変換部4との距離を短くすることができる。これにより、コモンモード電流の調整に際し、交流配線の影響を低減することができる。また、結線切替部3の電気的な中性点と電力変換部4との距離を短くできるので、配線経路と大地との間に存在する浮遊容量を低減することができる。このため、浮遊容量を介して電動機2から大地を経由して流れ得るコモンモード電流自体の大きさを小さくできる。これにより、コモンモードノイズの発生を低減することができる。 On the other hand, in the case of the electric motor 2 which is a connection switching electric motor, the electrical neutral point is inside the connection switching unit 3. Therefore, if the connection switching unit 3 and the power conversion unit 4 are mounted on the same substrate, the distance between the electrical neutral point of the connection switching unit 3 and the power conversion unit 4 can be shortened. As a result, the influence of the AC wiring can be reduced when adjusting the common mode current. Further, since the distance between the electrical neutral point of the connection switching unit 3 and the power conversion unit 4 can be shortened, the stray capacitance existing between the wiring path and the ground can be reduced. Therefore, the magnitude of the common mode current itself that can flow from the electric motor 2 via the ground via the stray capacitance can be reduced. Thereby, the generation of common mode noise can be reduced.
 また、結線切替部3と帰還電流調整部5とを同一基板上に搭載すれば、結線切替部3の電気的な中性点と帰還電流調整部5との距離を短くすることができる。これにより、コモンモード電流の調整に際し、交流配線の影響を低減することができる。 Further, if the connection switching unit 3 and the feedback current adjusting unit 5 are mounted on the same substrate, the distance between the electrical neutral point of the wiring switching unit 3 and the feedback current adjusting unit 5 can be shortened. As a result, the influence of the AC wiring can be reduced when adjusting the common mode current.
 また、結線切替部3、電力変換部4及び帰還電流調整部5のうちの少なくとも2つを同一基板上に搭載すれば、当該基板上に上述した各端子を設けることができる。この構成により、電動機2から引き出された各種の引き出し線と、電源部1から引き出された各種の電源線との接続が、一般的な電動機の場合と比べて容易となる。 Further, if at least two of the connection switching unit 3, the power conversion unit 4, and the feedback current adjusting unit 5 are mounted on the same board, the above-mentioned terminals can be provided on the board. With this configuration, the connection between the various lead wires drawn from the electric motor 2 and the various power supply lines drawn from the power supply unit 1 becomes easier than in the case of a general electric motor.
 次に、変形例について説明する。図6は、実施の形態1に係る電動機駆動装置100Aの変形例の構成を示す図である。図6において、実施の形態1の変形例に係る電動機駆動装置100Aでは、図1に示す電動機駆動装置100の構成において、電力供給部110が電力供給部110Aに置き替えられている。また、電力供給部110Aの内部では、帰還電流調整部5が帰還電流調整部5Aに置き替えられている。帰還電流調整部5Aでは、図1の帰還電流調整部5の構成において、更に接地される端子5N_2が設けられている。なお、その他の構成については、図1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。 Next, a modified example will be described. FIG. 6 is a diagram showing a configuration of a modified example of the electric motor drive device 100A according to the first embodiment. In FIG. 6, in the electric motor drive device 100A according to the modified example of the first embodiment, the power supply unit 110 is replaced with the power supply unit 110A in the configuration of the electric motor drive device 100 shown in FIG. Further, inside the power supply unit 110A, the feedback current adjusting unit 5 is replaced with the feedback current adjusting unit 5A. In the feedback current adjusting unit 5A, in the configuration of the feedback current adjusting unit 5 of FIG. 1, a terminal 5N_2 to be further grounded is provided. The other configurations are the same as or equivalent to the configurations shown in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and redundant description will be omitted.
 図7は、図6に示す帰還電流調整部5Aの構成例を示す図である。図7において、帰還電流調整部5Aでは、中点50cが端子5N_2に電気的に接続されている。これにより、中点50cの電位は、グラウンド(GND)と同電位とされている。即ち、中点50cの電位は、グラウンド電位とされている。なお、その他の構成については、図5の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。 FIG. 7 is a diagram showing a configuration example of the feedback current adjusting unit 5A shown in FIG. In FIG. 7, in the feedback current adjusting unit 5A, the midpoint 50c is electrically connected to the terminal 5N_2. As a result, the potential at the midpoint 50c is set to the same potential as the ground (GND). That is, the potential at the midpoint 50c is the ground potential. The other configurations are the same as or equivalent to the configuration shown in FIG. 5, and the same or equivalent components are designated by the same reference numerals, and redundant description will be omitted.
 図5及び図7の構成において、接続点50dには、電動機2の中性点の電位に相当する電位が表れる。このため、中点50cを接地してグラウンド電位とすることで、電動機2の中性点の電位を安定化することができる。これにより、コモンモード電流の調整を確実に行うことができる。 In the configurations of FIGS. 5 and 7, a potential corresponding to the potential of the neutral point of the electric motor 2 appears at the connection point 50d. Therefore, the potential of the neutral point of the electric motor 2 can be stabilized by grounding the midpoint 50c to the ground potential. As a result, the common mode current can be reliably adjusted.
 なお、図7では、帰還電流調整部5Aに設けられた端子5N_2を介して、中点50cの電位をグラウンド電位としているが、この構成に限定されない。グラウンド電位と同等の端子が帰還電流調整部5Aの内部にある場合には、当該同等の端子と中点50cとが電気的に接続される構成であってもよい。 Note that in FIG. 7, the potential at the midpoint 50c is set as the ground potential via the terminal 5N_2 provided in the feedback current adjusting unit 5A, but the configuration is not limited to this. When a terminal equivalent to the ground potential is inside the feedback current adjusting unit 5A, the equivalent terminal and the midpoint 50c may be electrically connected.
 次に、電源部1の構成について説明する。図8は、図1及び図6に示す電源部1に交流直流変換器が含まれる場合の構成例を示す図である。図8において、電源部1は、交流電源10に接続される交流直流変換器8を備える。交流直流変換器8は、ブリッジ接続される4つのスイッチング素子11,12,13,14を備える。交流電源10から出力される交流電圧は、リアクトル15を介して、スイッチング素子11,12の接続点とスイッチング素子13,14の接続点との間に印加される。スイッチング素子11,12,13,14は、制御部200によってスイッチング制御され、昇圧した電圧を生成して端子1a,1bから出力する。 Next, the configuration of the power supply unit 1 will be described. FIG. 8 is a diagram showing a configuration example when the AC / DC converter is included in the power supply unit 1 shown in FIGS. 1 and 6. In FIG. 8, the power supply unit 1 includes an AC / DC converter 8 connected to the AC power supply 10. The AC / DC converter 8 includes four switching elements 11, 12, 13, and 14 that are bridge-connected. The AC voltage output from the AC power supply 10 is applied between the connection points of the switching elements 11 and 12 and the connection points of the switching elements 13 and 14 via the reactor 15. The switching elements 11, 12, 13, and 14 are switched and controlled by the control unit 200, generate a boosted voltage, and output the boosted voltage from the terminals 1a and 1b.
 電源部1が図8に示す構成の交流直流変換器8を含む場合、スイッチング素子11,12,13,14のスイッチング動作に起因するコモンモード電流が発生する。このコモンモード電流の一部は、実施の形態1における帰還電流調整部5,5Aによって抑制できる場合がある。このため、実施の形態1における帰還電流調整部5,5Aは、電源部1が図8に示す構成の場合において、コモンモード電流の調整に有効である。 When the power supply unit 1 includes the AC / DC converter 8 having the configuration shown in FIG. 8, a common mode current is generated due to the switching operation of the switching elements 11, 12, 13, and 14. A part of this common mode current may be suppressed by the feedback current adjusting units 5 and 5A in the first embodiment. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current when the power supply unit 1 has the configuration shown in FIG.
 図9は、電源部1Aに交流直流変換器が含まれる場合の図8とは異なる構成例を示す図である。図9に示す電源部1Aでは、図8に示す電源部1の構成において、スイッチング素子11がダイオード11aに置き替えられ、スイッチング素子13がダイオード13aに置き替えられた交流直流変換器8Aが示されている。図9に示す構成においても、スイッチング素子12,14のスイッチング動作によってコモンモード電流が発生する。このため、実施の形態1における帰還電流調整部5,5Aは、電源部1Aが図9に示す交流直流変換器8Aを備える場合においても、コモンモード電流の調整に有効である。 FIG. 9 is a diagram showing a configuration example different from that of FIG. 8 when the power supply unit 1A includes an AC / DC converter. In the power supply unit 1A shown in FIG. 9, in the configuration of the power supply unit 1 shown in FIG. 8, the AC / DC converter 8A in which the switching element 11 is replaced with the diode 11a and the switching element 13 is replaced with the diode 13a is shown. ing. Also in the configuration shown in FIG. 9, a common mode current is generated by the switching operation of the switching elements 12 and 14. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current even when the power supply unit 1A includes the AC / DC converter 8A shown in FIG.
 図10は、電源部1Bに交流直流変換器が含まれる場合の図8及び図9とは異なる構成例を示す図である。図10に示す電源部1Bでは、図8に示す電源部1の構成において、スイッチング素子13がダイオード13bに置き替えられ、スイッチング素子14がダイオード14bに置き替えられた交流直流変換器8Bが示されている。図10に示す構成においても、スイッチング素子11,12のスイッチング動作によってコモンモード電流が発生する。このため、実施の形態1における帰還電流調整部5,5Aは、電源部1Bが図10に示す交流直流変換器8Bを備える場合においても、コモンモード電流の調整に有効である。 FIG. 10 is a diagram showing a configuration example different from that of FIGS. 8 and 9 when the power supply unit 1B includes an AC / DC converter. In the power supply unit 1B shown in FIG. 10, in the configuration of the power supply unit 1 shown in FIG. 8, the AC / DC converter 8B in which the switching element 13 is replaced with the diode 13b and the switching element 14 is replaced with the diode 14b is shown. ing. Also in the configuration shown in FIG. 10, a common mode current is generated by the switching operation of the switching elements 11 and 12. Therefore, the feedback current adjusting units 5 and 5A in the first embodiment are effective for adjusting the common mode current even when the power supply unit 1B includes the AC / DC converter 8B shown in FIG.
 以上説明したように、実施の形態1によれば、各相巻線の結線状態がスター結線又はデルタ結線の何れかに切り替え可能に構成される電動機を駆動する電動機駆動装置は、電力変換部から電動機を介して電源部に帰還するコモンモード電流を含む帰還電流を調整する帰還電流調整部を備える。この帰還電流調整部によれば、電動機から大地を経由して電源部に向かうコモンモード電流を小さくすることができる。これにより、コモンモード電流の電源部側への流出を抑制することができ、他の機器に悪影響を及ぼすコモンモードノイズを抑制することができる。 As described above, according to the first embodiment, the electric motor drive device for driving the electric motor configured so that the connection state of each phase winding can be switched to either star connection or delta connection is from the power conversion unit. It is provided with a feedback current adjusting unit that adjusts a feedback current including a common mode current that returns to the power supply unit via an electric motor. According to this feedback current adjusting unit, the common mode current from the electric motor to the power supply unit via the ground can be reduced. As a result, the outflow of the common mode current to the power supply unit side can be suppressed, and the common mode noise that adversely affects other devices can be suppressed.
 また、実施の形態1によれば、帰還電流調整部は、電動機の結線状態がデルタ結線であるときの帰還電流を、結線切替部を介して引き込む第1の引き込み部を具備する。これにより、他の機器に悪影響を及ぼすコモンモードノイズを、比較的簡易且つ安価な手段で抑制することができる。 Further, according to the first embodiment, the feedback current adjusting unit includes a first lead-in unit that draws in the feedback current when the connection state of the motor is delta connection via the connection switching unit. As a result, common mode noise that adversely affects other devices can be suppressed by relatively simple and inexpensive means.
 また、実施の形態1によれば、帰還電流調整部は、電動機の結線状態がスター結線であるときの帰還電流を、結線切替部を介して引き込む第2の引き込み部を具備する。これにより、他の機器に悪影響を及ぼすコモンモードノイズを、比較的簡易且つ安価な手段で抑制することができる。 Further, according to the first embodiment, the feedback current adjusting unit includes a second lead-in portion that draws in the feedback current when the connection state of the motor is star connection through the connection switching unit. As a result, common mode noise that adversely affects other devices can be suppressed by relatively simple and inexpensive means.
 また、実施の形態1によれば、帰還電流調整部は、帰還電流を引き込むか否かを選択可能に構成されている。これにより、電動機種別又は装置構成に対応させて、実装又は非実装を決定することができる。 Further, according to the first embodiment, the feedback current adjusting unit is configured to be able to select whether or not to draw in the feedback current. Thereby, it is possible to decide whether to mount or not to mount the motor according to the motor type or the device configuration.
 なお、電動機駆動装置の構成要素である電力変換部、結線切替部及び帰還電流調整部のうちの少なくとも2つの構成部は、同一基板上に搭載されていてもよい。これにより、コモンモード電流の調整に際し、交流配線の影響を低減することができる。また、電動機から引き出された各種の引き出し線と、電源部から引き出された各種の電源線との接続が、一般的な電動機の場合と比べて容易となる。 Note that at least two components of the power conversion unit, the connection switching unit, and the feedback current adjusting unit, which are the components of the electric motor drive device, may be mounted on the same substrate. As a result, the influence of the AC wiring can be reduced when adjusting the common mode current. Further, the connection between the various lead wires drawn from the electric motor and the various power supply lines drawn from the power supply unit becomes easier than in the case of a general electric motor.
 特に、結線切替部と電力変換部とを同一基板上に搭載すれば、配線経路と大地との間に存在する浮遊容量を低減することができる。これにより、コモンモードノイズの発生を低減することができる。 In particular, if the connection switching unit and the power conversion unit are mounted on the same board, the stray capacitance existing between the wiring path and the ground can be reduced. Thereby, the generation of common mode noise can be reduced.
 次に、実施の形態1における制御部200のハードウェア構成について、図11及び図12の図面を参照して説明する。図11は、実施の形態1における制御部200の機能を実現するハードウェア構成の一例を示すブロック図である。図12は、実施の形態1における制御部200の機能を実現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration of the control unit 200 according to the first embodiment will be described with reference to the drawings of FIGS. 11 and 12. FIG. 11 is a block diagram showing an example of a hardware configuration that realizes the function of the control unit 200 according to the first embodiment. FIG. 12 is a block diagram showing another example of the hardware configuration that realizes the function of the control unit 200 according to the first embodiment.
 実施の形態1における制御部200の機能を実現する場合には、図11に示すように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When the function of the control unit 200 according to the first embodiment is realized, as shown in FIG. 11, the processor 300 that performs the calculation, the memory 302 that stores the program read by the processor 300, and the input / output of the signal are input / output. It can be configured to include the interface 304 to be performed.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Program ROM), and an EPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic disks, flexible disks, optical disks, compact disks, mini disks, and DVDs (Digital Versailles Disc).
 メモリ302には、実施の形態1における制御部200の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the function of the control unit 200 according to the first embodiment. The processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-described processing. It can be carried out. The calculation result by the processor 300 can be stored in the memory 302.
 また、実施の形態1における制御部200の機能を実現する場合には、図12に示す処理回路305を用いることもできる。処理回路305は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路305に入力する情報、及び処理回路305から出力する情報は、インタフェース304を介して入手することができる。なお、処理回路305を用いる構成でも、制御部200における一部の処理は、図11に示す構成のプロセッサ300で実施してもよい。 Further, when the function of the control unit 200 according to the first embodiment is realized, the processing circuit 305 shown in FIG. 12 can also be used. The processing circuit 305 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 305 and the information output from the processing circuit 305 can be obtained via the interface 304. Even in the configuration using the processing circuit 305, some processing in the control unit 200 may be performed by the processor 300 having the configuration shown in FIG.
実施の形態2.
 図13は、実施の形態2に係る空気調和機240の構成例を示す図である。実施の形態2に係る空気調和機240は、実施の形態1で説明した電動機駆動装置100を備える。空気調和機240は、実施の形態1における電動機2を内蔵した圧縮機251と、四方弁259と、室外熱交換器252と、膨張弁261と、室内熱交換器257とが冷媒配管262を介して取り付けられた冷凍サイクルを備えて、セパレート形空気調和機を構成している。なお、実施の形態1と同一又は同等の機能を有する構成要素には、実施の形態1と同一の符号を付している。
Embodiment 2.
FIG. 13 is a diagram showing a configuration example of the air conditioner 240 according to the second embodiment. The air conditioner 240 according to the second embodiment includes the electric motor driving device 100 described in the first embodiment. In the air conditioner 240, the compressor 251 incorporating the electric motor 2 in the first embodiment, the four-way valve 259, the outdoor heat exchanger 252, the expansion valve 261 and the indoor heat exchanger 257 are connected via a refrigerant pipe 262. It is equipped with a refrigeration cycle installed in the air conditioner to form a separate air conditioner. The components having the same or equivalent functions as those of the first embodiment are designated by the same reference numerals as those of the first embodiment.
 圧縮機251の内部には、冷媒を圧縮する圧縮機構250と、圧縮機構250を動作させる電動機2とが設けられている。圧縮機251と室外熱交換器252との間、及び圧縮機251と室内熱交換器257との間を冷媒が循環することで冷暖房などを行う冷凍サイクルが構成されている。なお、図13に示した構成は、空気調和機だけでなく、冷蔵庫、冷凍庫といった冷凍サイクルを備える冷凍サイクル装置に適用可能である。 Inside the compressor 251 is provided with a compression mechanism 250 for compressing the refrigerant and an electric motor 2 for operating the compression mechanism 250. A refrigeration cycle is configured in which the refrigerant circulates between the compressor 251 and the outdoor heat exchanger 252 and between the compressor 251 and the indoor heat exchanger 257 to perform heating and cooling. The configuration shown in FIG. 13 can be applied not only to an air conditioner but also to a refrigerating cycle apparatus including a refrigerating cycle such as a refrigerator and a freezer.
 なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.
 1,1A,1B 電源部、1a,1b,2u_1,2u_2,2v_1,2v_2,2w_1,2w_2,3N,3u,3v,3w,3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,4a,4b,4u,4v,4w,5N,5u,5v,5w 端子、2 電動機、3 結線切替部、3u_3,3v_3,3w_3 接続配線、4 電力変換部、5,5A 帰還電流調整部、8,8A,8B 交流直流変換器、10 交流電源、11,12,13,14 スイッチング素子、11a,13a,13b,14b,40b ダイオード、21 U相巻線、22 V相巻線、23 W相巻線、30u,30v,30w,32N,32u,32v,32w 接続線、31,32,33 切替器、40a トランジスタ、40u,40v,40w レグ、41,43,45 上アーム素子、42,44,46 下アーム素子、48u,48v,48w,50d 接続点、50a,50b 電源線、50u_1,50u_2,50v_1,50v_2,50w_1,50w_2 引き出し線、50c 中点、51,52 バイパスコンデンサ、53,55 開閉スイッチ、54,56,57,58,59 カップリングコンデンサ、100,100A 電動機駆動装置、110,110A 電力供給部、200 制御部、210 結線切替信号伝達部、220 駆動信号伝達部、230 帰還選択信号伝達部、240 空気調和機、250 圧縮機構、251 圧縮機、252 室外熱交換器、257 室内熱交換器、259 四方弁、261 膨張弁、262 冷媒配管、300 プロセッサ、302 メモリ、304 インタフェース、305 処理回路。 1,1A, 1B Power supply unit, 1a, 1b, 2u_1,2u_2,2v_1,2v_2,2w_1,2w_2,3N, 3u, 3v, 3w, 3u_1,3v_1,3w_1,3u_2,3v_2,3w_2,4a, 4b, 4u, 4v, 4w, 5N, 5u, 5v, 5w terminal, 2 electric motor, 3 connection switching part, 3u_3, 3v_3, 3w_3 connection wiring, 4 power conversion part, 5,5A feedback current adjustment part, 8,8A, 8B AC / DC conversion Instrument, 10 AC power supply, 11, 12, 13, 14 switching element, 11a, 13a, 13b, 14b, 40b diode, 21 U-phase winding, 22 V-phase winding, 23 W-phase winding, 30u, 30v, 30w , 32N, 32u, 32v, 32w connection line, 31, 32, 33 switch, 40a transistor, 40u, 40v, 40w leg, 41, 43, 45 upper arm element, 42, 44, 46 lower arm element, 48u, 48v , 48w, 50d connection point, 50a, 50b power supply line, 50u_1,50u_2,50v_1,50v_2,50w_1,50w_2 lead wire, 50c middle point, 51,52 bypass capacitor, 53,55 open / close switch, 54,56,57,58 , 59 Coupling condenser, 100, 100A electric motor drive, 110, 110A power supply, 200 control, 210 connection switching signal transmission, 220 drive signal transmission, 230 feedback selection signal transmission, 240 air conditioner, 250 Compression mechanism, 251 compressor, 252 outdoor heat exchanger, 257 indoor heat exchanger, 259 four-way valve, 261 expansion valve, 262 refrigerant wiring, 300 processor, 302 memory, 304 interface, 305 processing circuit.

Claims (12)

  1.  中性点が切り離されて引き出された合計6本の引き出し線を有する電動機を駆動する電動機駆動装置であって、
     前記電動機の各相巻線をスター結線又はデルタ結線の何れかに切り替える結線切替部と、
     前記電動機に供給する電力を生成する電源部と、
     前記電源部から供給される直流電力の電圧を任意の交流周波数の電圧の交流電力に変換する電力変換部と、
     前記電力変換部から前記電動機を介して前記電源部に帰還するコモンモード電流を含む帰還電流を調整する帰還電流調整部と、
     を備えた電動機駆動装置。
    It is an electric motor drive device that drives an electric motor having a total of 6 lead wires drawn out with the neutral point separated.
    A connection switching unit that switches each phase winding of the motor to either star connection or delta connection, and
    A power supply unit that generates electric power to be supplied to the electric motor,
    A power conversion unit that converts the voltage of DC power supplied from the power supply unit into AC power with a voltage of an arbitrary AC frequency, and
    A feedback current adjusting unit that adjusts a feedback current including a common mode current that returns from the power conversion unit to the power supply unit via the electric motor.
    Electric motor drive device equipped with.
  2.  前記電力変換部、前記結線切替部及び前記帰還電流調整部のうちの少なくとも2つの構成部が同一基板上に搭載されている
     請求項1に記載の電動機駆動装置。
    The electric motor drive device according to claim 1, wherein at least two components of the power conversion unit, the connection switching unit, and the feedback current adjusting unit are mounted on the same substrate.
  3.  前記帰還電流調整部は、前記電動機の結線状態がデルタ結線であるときの前記帰還電流を、前記結線切替部を介して引き込む第1の引き込み部を具備する
     請求項1又は2に記載の電動機駆動装置。
    The motor drive according to claim 1 or 2, wherein the feedback current adjusting unit includes a first lead-in portion that draws the feedback current when the connection state of the electric motor is delta connection via the connection switching portion. apparatus.
  4.  前記帰還電流調整部には、高電位側の第1電源線と低電位側の第2電源線とが引き通され、
     直列に接続されて前記第1電源線と前記第2電源線との間に配される2つのコンデンサが具備され、
     前記第1の引き込み部の一方は、前記結線切替部に電気的に接続され、
     前記第1の引き込み部の他方は、2つの前記コンデンサの接続点である中点に電気的に接続される
     請求項3に記載の電動機駆動装置。
    A first power supply line on the high potential side and a second power supply line on the low potential side are passed through the feedback current adjusting unit.
    Two capacitors connected in series and arranged between the first power supply line and the second power supply line are provided.
    One of the first lead-in portions is electrically connected to the connection switching portion.
    The electric motor drive device according to claim 3, wherein the other of the first lead-in portion is electrically connected to a midpoint which is a connection point between the two capacitors.
  5.  前記帰還電流調整部は、前記電動機の結線状態がスター結線であるときの前記帰還電流を、前記結線切替部を介して引き込む第2の引き込み部を具備する
     請求項1から4の何れか1項に記載の電動機駆動装置。
    Any one of claims 1 to 4, wherein the feedback current adjusting unit includes a second lead-in portion that draws in the feedback current when the connection state of the electric motor is a star connection via the connection switching portion. The electric motor drive device described in.
  6.  前記帰還電流調整部には、高電位側の第1電源線と低電位側の第2電源線とが引き通され、
     直列に接続されて前記第1電源線と前記第2電源線との間に配される2つのコンデンサが具備され、
     前記第2の引き込み部の一方は、前記結線切替部に電気的に接続され、
     前記第2の引き込み部の他方は、2つの前記コンデンサの接続点である中点に電気的に接続される
     請求項5に記載の電動機駆動装置。
    A first power supply line on the high potential side and a second power supply line on the low potential side are passed through the feedback current adjusting unit.
    Two capacitors connected in series and arranged between the first power line and the second power line are provided.
    One of the second lead-in portions is electrically connected to the connection switching portion.
    The electric motor drive device according to claim 5, wherein the other of the second lead-in portion is electrically connected to a midpoint which is a connection point of the two capacitors.
  7.  前記帰還電流調整部は、前記帰還電流を引き込むか否かを選択可能に構成されている
     請求項3から6の何れか1項に記載の電動機駆動装置。
    The electric motor driving device according to any one of claims 3 to 6, wherein the feedback current adjusting unit is configured to be able to select whether or not to draw the feedback current.
  8.  前記中点は接地される
     請求項4又は6に記載の電動機駆動装置。
    The electric motor drive device according to claim 4 or 6, wherein the midpoint is grounded.
  9.  前記電力変換部は、直流交流変換器である
     請求項1から8の何れか1項に記載の電動機駆動装置。
    The electric motor drive device according to any one of claims 1 to 8, wherein the power conversion unit is a DC / AC converter.
  10.  前記電源部は、交流直流変換器を含む
     請求項1から9の何れか1項に記載の電動機駆動装置。
    The electric motor drive device according to any one of claims 1 to 9, wherein the power supply unit includes an AC / DC converter.
  11.  請求項1から10の何れか1項に記載の電動機駆動装置を備えた空気調和機。 An air conditioner including the electric motor drive device according to any one of claims 1 to 10.
  12.  請求項1から10の何れか1項に記載の電動機駆動装置を備えた冷凍サイクル装置。 A refrigeration cycle device including the electric motor drive device according to any one of claims 1 to 10.
PCT/JP2019/034258 2019-08-30 2019-08-30 Electric motor driving device, air-conditioner, and refrigeration cycle apparatus WO2021038864A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541948A JP7221400B2 (en) 2019-08-30 2019-08-30 Electric motor drives, air conditioners and refrigeration cycle devices
PCT/JP2019/034258 WO2021038864A1 (en) 2019-08-30 2019-08-30 Electric motor driving device, air-conditioner, and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/034258 WO2021038864A1 (en) 2019-08-30 2019-08-30 Electric motor driving device, air-conditioner, and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2021038864A1 true WO2021038864A1 (en) 2021-03-04

Family

ID=74684368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034258 WO2021038864A1 (en) 2019-08-30 2019-08-30 Electric motor driving device, air-conditioner, and refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP7221400B2 (en)
WO (1) WO2021038864A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235081A (en) * 1998-02-20 1999-08-27 Hitachi Ltd Load device drive system
JP2008228513A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Motor drive device and driving method, and refrigerating and air-conditioning device
WO2019026257A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Electric motor system and outdoor unit equipped with electric motor system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235081A (en) * 1998-02-20 1999-08-27 Hitachi Ltd Load device drive system
JP2008228513A (en) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp Motor drive device and driving method, and refrigerating and air-conditioning device
WO2019026257A1 (en) * 2017-08-03 2019-02-07 三菱電機株式会社 Electric motor system and outdoor unit equipped with electric motor system

Also Published As

Publication number Publication date
JPWO2021038864A1 (en) 2021-03-04
JP7221400B2 (en) 2023-02-13

Similar Documents

Publication Publication Date Title
JP5444381B2 (en) System for precharging a DC link in a variable speed drive
JP5584357B2 (en) Variable speed drive
US9590540B2 (en) Hybrid pulse width modulation method for variable speed drive
US7005829B2 (en) System for precharging a DC link in a variable speed drive
US7555912B2 (en) System for precharging a DC link in a variable speed drive
US9698709B2 (en) Motor driving device
WO2003032482A1 (en) Apparatus for switching windings of ac three-phase motor
US6373728B1 (en) Frequency converter with an intermediate buck-boost converter for controlling an electric motor
WO2007029544A1 (en) Inverter device and refrigeration cycle device
WO2021038864A1 (en) Electric motor driving device, air-conditioner, and refrigeration cycle apparatus
US10978982B2 (en) Method and device for operating an electronically commutated electrical machine in the event of a fault
JP6621913B2 (en) Electric motor drive device, refrigeration cycle device, and air conditioner
US20190348941A1 (en) Electric-motor driving apparatus, refrigeration cycle apparatus, and air conditioner
WO2022009270A1 (en) Motor driving device and air-conditioning apparatus
JP7471509B2 (en) DC power supply device, refrigeration cycle device, air conditioner and refrigerator
JP6921272B2 (en) Motor drive device, refrigeration cycle device and air conditioner
WO2023176281A1 (en) Power conversion apparatus
WO2021171562A1 (en) Electric motor drive device and air conditioner
JP2011244576A (en) Drive unit of induction motor
JP2022141036A (en) Inverter device and inverter module
JP2018042294A (en) Electric power conversion system and air conditioner with the same
JP2010124540A (en) Motor controller and refrigerator/air-conditioner and household electrical appliances using the controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541948

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943081

Country of ref document: EP

Kind code of ref document: A1