WO2021038723A1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
WO2021038723A1
WO2021038723A1 PCT/JP2019/033547 JP2019033547W WO2021038723A1 WO 2021038723 A1 WO2021038723 A1 WO 2021038723A1 JP 2019033547 W JP2019033547 W JP 2019033547W WO 2021038723 A1 WO2021038723 A1 WO 2021038723A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
cellulose nanofibers
cellulose
amide
cnf
Prior art date
Application number
PCT/JP2019/033547
Other languages
French (fr)
Japanese (ja)
Inventor
剛士 大本
徹也 山田
宮本 和幸
蓮貞 林
Original Assignee
リョービ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リョービ株式会社 filed Critical リョービ株式会社
Priority to JP2021541843A priority Critical patent/JP7237165B2/en
Priority to PCT/JP2019/033547 priority patent/WO2021038723A1/en
Publication of WO2021038723A1 publication Critical patent/WO2021038723A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a composite material containing a polyacetal resin and cellulose nanofibers.
  • polyacetal resin has excellent mechanical strength and is inexpensive, so it has been used as a material for various products.
  • polyacetal resin is used as a material for gears, zippers, etc. because it has excellent slidability.
  • FRP fiber reinforced plastics
  • examples of the fiber material contained in FRP include glass fiber, carbon fiber and cellulose nanofiber.
  • cellulose nanofibers are excellent in light weight, and are preferable fiber materials from the viewpoints of ease of recycling and low environmental load.
  • the dispersibility of the cellulose nanofibers in the resin is important.
  • cellulose has many hydroxyl groups, cellulose nanofibers have high hydrophilicity, so that cellulose nanofibers are usually difficult to mix with a highly hydrophobic resin.
  • a composite material in which a resin contains modified cellulose nanofibers in which the hydroxyl group of cellulose is modified to an organic group has been proposed.
  • Patent Document 1 describes a composite material containing a polyacetal resin and modified cellulose nanofibers in which a part of the hydroxyl group of cellulose is acetylated.
  • the acetylated modified cellulose nanofibers have improved hydrophobicity because some of the hydroxyl groups of the cellulose are acetylated.
  • the acetylated modified cellulose nanofibers have improved affinity with the polyacetal resin and may exhibit better dispersibility in the polyacetal resin as compared with the unmodified cellulose nanofibers.
  • the composite material described in Patent Document 1 has a problem that the effect of adding the cellulose nanofibers is not sufficiently exhibited.
  • the composite material has a problem that the functions required when it is molded into various products are not sufficient.
  • the composite material has a drawback that it is not sufficiently dimensionally stable and shrinks during molding, which causes difficulty in molding.
  • cellulose nanofibers have a reduced crystallinity due to chemical modification such as acetylation. Further, since the amorphous portion is thermally unstable as compared with the crystalline portion, the cellulose nanofibers having a reduced degree of crystallinity are easily thermally decomposed.
  • the present inventors have found that the degree of crystallinity of the cotton-derived cellulose nanofibers is relatively high among the cellulose nanofibers, and further, the cotton-derived cellulose nanofibers are used before and after the chemical modification. We have found that the degree of crystallinity does not easily decrease, and have completed the present invention.
  • the composite material according to the present invention is Contains polyacetal resin and cellulose nanofibers, In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated.
  • the cellulose nanofibers are a composite material derived from cotton.
  • the acylation is acetylation.
  • the composite material according to the present invention further contains an amide-based dispersant.
  • the amide-based dispersant is polyoxyethylene alkylamide.
  • FIG. 1 is an SEM image of the CNF of Production Example 1 in the example.
  • FIG. 2 is an SEM image of the CNF of Production Example 2 in the example.
  • FIG. 3 is an SEM image of the CNF of Production Example 3 in the example.
  • FIG. 4 is an IR spectrum of CNFs of Production Examples 1 to 3 in Examples.
  • FIG. 5 is an XRD chart of CNFs of Production Examples 1 to 5 in Examples.
  • FIG. 6 is a TG chart of CNFs of Production Examples 1 to 5 in Examples.
  • FIG. 7 shows an example of a DMA chart, and is a diagram for showing a method of obtaining a softening temperature from the DMA chart.
  • the composite material according to the present embodiment contains a polyacetal resin, cellulose nanofibers, and an amide-based dispersant, and the cellulose nanofibers have a part of the hydroxyl group of cellulose acylated.
  • the cellulose nanofibers are made from cellulose fibers obtained from cotton.
  • the composite material is used as a molding material for various parts, and can be molded into automobile parts, precision parts, etc. by injection molding, for example.
  • the composite material is molded when the temperature at the time of molding is usually set to 180 to 220 ° C, preferably 180 to 200 ° C. Therefore, it is preferable that the composite material has excellent moldability under such molding conditions.
  • the coefficient of linear expansion of the composite material at 30 to 120 ° C. is preferably 90 ppm / ° C. or lower, more preferably 70 ppm / ° C. or lower, still more preferably 50 ppm / ° C. or lower.
  • the coefficient of linear expansion of the composite material is usually 10 ppm / ° C. or higher.
  • the coefficient of linear expansion is measured by the measuring method described in the examples.
  • the storage elastic modulus (E') of the composite material at 100 ° C. is preferably 1000 MPa or more, more preferably 1100 MPa or more, still more preferably 1200 MPa or more, and even more preferably 1500 MPa or more. Thereby, the composite material may have excellent heat resistance and mechanical properties.
  • the storage elastic modulus (E') of the composite material at 100 ° C. is usually 2500 MPa or less. The storage elastic modulus is measured by the measuring method described in the examples.
  • the polyacetal resin is a polymer having an acetal structure-(-O-CRH-) n- (R represents a hydrogen atom or an organic group) in a repeating structure.
  • R represents a hydrogen atom or an organic group
  • the oxymethylene group (-OCH 2- ) in which R is a hydrogen atom is the main constituent unit.
  • the polyacetal resin may be a polyacetal homopolymer or a polyacetal copolymer. Further, the content of the polyacetal homopolymer or the polyacetal copolymer is usually 90% by mass or more, preferably 95% by mass or more, and the polyacetal resin may contain other polymer components in part. Good.
  • the raw material is seed hair fiber collected from the seeds of seed hair plants.
  • the seed hair plant include cotton, acundo, and kapok, and among these, cotton is preferable.
  • the cotton seeds are covered with fibers called cotton balls, which are formed of a linter covering the seeds and a lint covering the outside of the linters. Since lint has a longer fiber length than linter, lint is generally used as a raw material for cotton yarn and cotton fabric, and linter is used as linter pulp and rayon.
  • the cellulose nanofibers may be produced from lint or may be produced from linter. In the present embodiment, the cellulose nanofibers are made from linter pulp produced from linter.
  • the cotton-derived cellulose nanofibers have a lower lignin content than other plants, such as coniferous cellulose nanofibers.
  • the thermal stability of the cellulose nanofibers may be lowered when the content of the lignin is large. Therefore, the composite material containing the cellulose nanofibers derived from cotton can have excellent thermal stability.
  • the content of the lignin in the cellulose nanofibers is preferably 500 ppm or less, more preferably 100 ppm or less. The content of the lignin is measured by the Klason method.
  • the cellulose nanofibers are defibrated at the nano level.
  • the nano-level means that the average fiber diameter of the cellulose nanofibers is usually 15 to 800 nm, preferably 20 to 500 nm.
  • the cellulose nanofibers may have the above average fiber diameter in the composite material.
  • cellulose fibers having an average fiber diameter of about several tens of ⁇ m may be defibrated at the nano level by kneading with the polyacetal resin. Further, the average fiber diameter is measured by the measuring method described in the examples.
  • the average fiber length of the cellulose nanofibers is usually 0.5 to 100 ⁇ m, preferably 1 to 80 ⁇ m.
  • the average fiber length is measured by the measuring method described in the examples.
  • a part of the hydroxyl group of cellulose is acylated.
  • part of the hydroxyl groups of the cellulose of the cellulose nanofiber is substituted with acyl group title by Formula R 1 COO.
  • R 1 is preferably an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms. preferable.
  • R 1 is preferably an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms. preferable.
  • the acyl group an acetyl group, a butyryl group or a lauryl group is preferable.
  • the cellulose nanofiber having an acetyl group is preferable from the viewpoint of exhibiting excellent thermal stability and reducing the production cost.
  • the ratio of the acylated hydroxyl group to the hydroxyl group of cellulose in the cellulose nanofiber is shown as the average degree of substitution.
  • the average degree of substitution is usually 0.1 to 0.5, preferably 0.2 to 0.45 in the case of wood pulp.
  • cotton-derived linter pulp it is 0.1 to 1.5, preferably 0.2 to 1.2, and more preferably 0.3 to 1.0.
  • the preferable value of the average degree of substitution differs depending on the type of the acyl group. For example, in the case of an acetyl group, it is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and in the case of a butyryl group, it is preferably 0.05 to 1.3, and more.
  • the lauryl group has 12 carbon atoms in R 1 , and the alkyl side chain is relatively long, and the alkyl side chain can cover the surface of cellulose. Therefore, the cellulose nanofiber having a lauryl group can have an excellent affinity with the polyacetal resin even when the average degree of substitution is relatively low. Further, when the average degree of substitution is low, a decrease in the crystallinity of the cellulose nanofibers can be suppressed, which is preferable.
  • the average degree of substitution is measured by the measuring method described in the examples.
  • the cellulose nanofibers have cellulose type I crystals.
  • the content of the cellulose type I crystal in the cellulose nanofiber is shown as the degree of crystallinity.
  • the cotton-derived cellulose nanofibers have a higher degree of crystallinity than other plant-derived cellulose nanofibers. Further, usually, when the cellulose nanofibers are acylated, the acylated portion becomes amorphous, so that the crystallinity is lowered. On the other hand, the cotton-derived cellulose nanofibers are less likely to decrease in crystallinity due to acylation.
  • the reason for this is that the cellulose nanofibers derived from cotton are difficult for the acylating agent to permeate into the inside, and the surface portion that greatly affects the affinity with the polyacetal resin is efficiently acylated. Further, the fact that the acylating agent does not easily penetrate into the cellulose nanofibers means that the cellulose inside is less likely to be acylated, that is, the degree of crystallinity inside is less likely to decrease. Cellulose nanofibers having a high crystallinity have high thermal stability and are not easily thermally decomposed during kneading with the polyacetal resin. Therefore, the composite material containing such cellulose nanofibers can exhibit excellent functions.
  • the crystallinity is preferably 45% or more, more preferably 50% or more, further preferably 70% or more, even more preferably 75% or more, and most preferably 80% or more. ..
  • the temperature at the time of kneading is also set to a relatively high temperature (usually 180 to 220 ° C, preferably 180 to 200 ° C). Further, usually, the temperature of the kneaded product may be several tens of degrees higher than the set temperature due to heat generation during kneading. Therefore, it is preferable that the cellulose nanofibers have heat resistance under such temperature conditions. From such a viewpoint, the thermal decomposition temperature (5% weight loss temperature) of the cellulose nanofibers is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and more preferably 310 ° C. or higher.
  • the cotton-derived cellulose nanofibers have higher heat resistance than other plant-derived cellulose nanofibers, that is, they can have the above-mentioned thermal decomposition temperature. As a result, the cellulose nanofibers are less likely to be thermally decomposed when kneaded with the polyacetal resin, and the composite material can exhibit excellent functions.
  • the thermal decomposition temperature of the cellulose nanofibers is usually 360 ° C. or lower. Further, the thermal decomposition temperature is measured by the measuring method described in the examples.
  • the content of the cellulose nanofibers is usually 4 to 50% by mass, preferably 10 to 30% by mass, and more preferably 10 to 20% by mass with respect to the total amount of the composite material.
  • the amide-based dispersant is a dispersant having an amide group in the molecule, and is designated by the chemical formula R 2 CONR 3 R 4 .
  • the amide-based dispersant is preferably a liquid under the temperature conditions during kneading, and preferably does not easily volatilize under the temperature conditions during kneading.
  • the melting point of the amide-based dispersant is usually 200 ° C. or higher, preferably 250 ° C. or higher.
  • the boiling point of the amide-based dispersant is usually 200 ° C. or higher, preferably 250 ° C. or higher.
  • amide-based dispersant examples include one or more selected from the group consisting of fatty acid amides, fatty acid alkanolamides, polyoxyethylene alkylamides and polyoxypropylene alkylamides.
  • the R 2 moiety of such amide-based dispersant is preferably a structure capable of exhibiting an affinity with the polyacetal resin. From this point of view, R 2 is preferably an alkyl group or an alkenyl group having 3 to 25 carbon atoms, more preferably 5 to 20 carbon atoms.
  • fatty acid amide examples include stearic acid monoamide, oleic acid monoamide, erucic acid monoamide, ethylene bisstearic acid amide, and ethylene bisoleic acid amide.
  • fatty acid alkanolamide examples include coconut fatty acid monoethanolamide, coconut fatty acid diethanolamide, lauric acid isopropanolamide, beef fatty acid diethanolamide, lauric acid diethanolamide, and oleic acid diethanolamide.
  • polyoxyethylene alkyl amide examples include polyoxyethylene coconut oil fatty acid monoethanolamide and polyoxyethylene lauric acid monoethanolamide.
  • polyoxypropylene alkylamide examples include polyoxypropylene coconut oil fatty acid monoisopropanolamide.
  • the hydrogen atom can form a hydrogen bond with the carbonyl oxygen atom of the acyl group in the cellulose nanofiber. Therefore, such an amide-based dispersant can exhibit an affinity for the cellulose nanofibers.
  • R 3 in the chemical formula is a hydrogen atom and R 4 is ⁇ (C 2 H 4 O) n H (polyoxyethylene alkyl group).
  • examples of such an amide-based dispersant include NOF Corporation's Nymid (registered trademark).
  • the polyoxyethylene group portion exhibits a high affinity with the polyacetal resin, and the hydrogen atom forms a hydrogen bond with the carbonyl oxygen atom of the acyl group in the cellulose nanofiber.
  • the content of the amide-based dispersant is usually 1 to 10% by mass, preferably 2 to 5% by mass, based on the entire composite material.
  • the raw material for the cellulose nanofibers is the linter pulp.
  • the crystallinity of the linter pulp is preferably 50% or more, more preferably 70% or more, further preferably 75% or more, and even more preferably 80% or more.
  • As the linter pulp commercially available ones can be used.
  • acylating and defibrating the cellulose fiber As a method for acylating and defibrating the cellulose fiber, a conventionally known method can be adopted. As a preferable method, a defibrating device such as a super mascoroider is used, and the cellulose fiber is subjected to an acylating agent such as a carboxylic acid vinyl ester or a carboxylic acid anhydride and an acid catalyst or a base catalyst and an organic solvent such as DMSO. Examples thereof include a method of obtaining an acylated cellulose fiber by treating with a treatment liquid containing the mixture. According to this method, a decrease in the crystallinity of the cellulose fibers can be suppressed as compared with a mechanical defibration method using a refiner, a high-pressure homogenizer, or the like.
  • an acylating agent such as a carboxylic acid vinyl ester or a carboxylic acid anhydride and an acid catalyst or a base catalyst and an organic
  • acylating agent examples include carboxylic acid anhydrides such as acetic acid anhydride, butyric anhydride and lauric anhydride; carboxylic acids such as acetic acid, butyric acid and lauric acid; vinyl carboxylates such as vinyl acetate, vinyl butyrate and vinyl laurate: Examples thereof include carboxylic acid halides such as acetic acid halide, butyric acid halide, and lauric acid halide.
  • organic solvent in addition to DMSO, aprotic polar solvents such as formamide, dimethylacetamide, and N-methyl-2-pyrrolidone are preferable.
  • a defibrating agent that promotes defibration of cellulose fibers may be added to the treatment liquid.
  • the treatment liquid is removed from the acylated cellulose fibers by filtration, centrifugation, or the like, and the treated cellulose fibers are washed with 2-propanol and / or dimethylacetamide as a washing solvent. By concentrating, a part of the washing solvent is removed to obtain a paste-like cellulose nanofiber.
  • the content of the cellulose nanofibers contained in the paste-like cellulose nanofibers is usually 5 to 30% with respect to the total amount.
  • the paste-like cellulose nanofibers and the amide-based dispersant are mixed using a generally used stirrer to obtain the dispersant-treated cellulose nanofibers.
  • the dispersant-treated cellulose nanofibers and the polyacetal resin are dispersed in a kneading solvent and kneaded using a kneader to obtain a kneaded product.
  • the kneading temperature is 180 to 195 ° C.
  • the rotation speed and kneading time of the kneading machine at the time of kneading can be appropriately changed in consideration of the amount of the composite material to be acquired, the amount of cellulose nanofibers contained in the composite material, and the like.
  • an alcohol solvent such as ethanol or 2-propanol
  • an amide solvent such as dimethylacetamide or 2-methyl-2-pyrrolidone
  • two or more kinds of these solvents may be mixed and used.
  • the organic solvent the amide-based solvent is preferable, and among these, dimethylacetamide is preferable.
  • the kneaded product is dried using a vacuum dryer or the like to obtain the composite material.
  • the drying temperature is usually 80 to 125 ° C.
  • the composite material according to the present invention is Contains polyacetal resin and cellulose nanofibers, In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated.
  • the cellulose nanofibers are derived from cotton.
  • the cellulose nanofibers are derived from cotton, they show a high degree of crystallinity as compared with other plant-derived cellulose nanofibers, and the degree of crystallinity is unlikely to decrease due to acylation. Therefore, according to such a configuration, the cellulose nanofibers are less likely to be thermally decomposed at the time of kneading with the polyacetal resin, so that the composite material can exhibit excellent functions. For example, the composite may have excellent dimensional stability, thereby having excellent moldability.
  • the acylation may be acetylation.
  • the composite material can have more excellent functions and can be manufactured at a relatively low cost.
  • the composite material may further contain an amide-based dispersant.
  • the amide-based dispersant may be a polyoxyethylene alkyl amide.
  • the composite material according to the present invention is not limited to the configuration of the above embodiment. Further, the composite material according to the present invention is not limited by the above-mentioned effects. The composite material according to the present invention can be variously modified without departing from the gist of the present invention.
  • the CNF of Production Example 1 in Table 1 was produced as follows. 10 g of vinyl acetate, 1.5 g of sodium carbonate and 90 g of DMSO were placed in a three-necked flask and mixed to prepare a treatment solution. 3 g of linter pulp was added to the obtained treatment liquid, and the mixture was reacted at 50 ° C. for 3 hours and then washed with water. Then, the acetylated CNF of Production Example 1 was obtained by defibrating with a super mascoroider.
  • FIGS. 1 to 3 show SEM images of CNFs of Production Examples 1 to 3.
  • (Measurement condition) ⁇ Pt coating condition: 10mA, 60 seconds ⁇ Acceleration voltage: 5kV ⁇ SEI: Secondary electron image ⁇ LEI: Downward detector image (secondary electron image + backscattered electron image)
  • the average degree of substitution of cellulose nanofibers was measured by the following titration method.
  • the acyl group was hydrolyzed by dispersing 0.5 g of CNF in 100 mL of a mixture of sodium hydroxide (molar number A) / ethanol / water and stirring at 23 ° C. for 4 hours.
  • the ratio of sodium hydroxide, ethanol and water is adjusted according to the type of acyl group. For example, in the case of acetylated CNF, a mixed solution of 5 g of sodium hydroxide / 50 g of ethanol / 50 g of water was used.
  • Table 1 shows the measurement results of CNF in Production Examples 1 to 5.
  • the linter that is, the cotton-derived CNF
  • the coniferous CNF showed relatively low crystallinity and pyrolysis temperature. From these results, it was considered that the cotton-derived CNF has a relatively high thermal stability and is therefore unlikely to be thermally decomposed during kneading with the polyacetal resin when the composite material is produced. Therefore, it is considered that such a composite material containing CNF can exhibit excellent functions.
  • the composite material was prepared as a sheet-like composite sheet according to the formulation shown in Table 2.
  • the blending amount of CNF in Table 2 represents the blending amount with respect to 100 parts by mass of the polyacetal resin.
  • ethanol (EtOH), 2-propanol (IPA), dimethylacetamide (DMAc) or N-methyl-2-pyrrolidone (NMP) was used as the kneading solvent (in Example 8).
  • EtOH ethanol
  • IPA 2-propanol
  • DMAc dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • Example 8 DMAc / EtOH mixed solvent
  • CNF in which the composite material contains an amide-based dispersant
  • CNF is added to a solvent in which the amide-based dispersant is dissolved, and the mixture is used as a stirrer or mechanically stirred at 20 to 180 ° C. Dispersed and dispersant-treated CNFs were prepared.
  • a lab plast mill was used for kneading CNF (or dispersant-treated CNF) and POM, and the mixture was kneaded at 180 to 195 ° C. and a rotation speed of 45 to 100 rpm for 20 to 70 minutes.
  • the obtained kneaded product was dried at 120 ° C. for 5 hours to obtain an unmolded composite material.
  • the unmolded composite material was heated at 190 ° C. for 4 minutes using a hot press machine, pressurized at a pressure of 180 kg / cm 2 for 1 minute, and then allowed to cool at room temperature to prepare a composite sheet.
  • Various data were acquired from the acquired composite sheet by the following measurement methods, and the dimensional stability, dynamic viscoelasticity and tensile properties were evaluated.
  • the dynamic viscoelasticity (DMA) of the composite sheet was measured using the dynamic viscoelasticity measuring device.
  • the cotton-derived CNF-containing composite material showed a relatively high storage elastic modulus at 100 ° C., and was found to have excellent heat resistance.
  • the composite material containing the amide-based dispersant has a higher storage elastic modulus and has better heat resistance than the composite material not containing the amide-based dispersant, and therefore can be used even in a higher temperature range. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a composite material containing a polyacetal resin and cellulose nanofibers. Some of the hydroxyl groups of the cellulose in the cellulose nanofibers are acylated. The cellulose nanofibers are derived from cotton.

Description

複合材料Composite material
 本発明は、ポリアセタール樹脂とセルロースナノファイバーとを含有する複合材料に関する。 The present invention relates to a composite material containing a polyacetal resin and cellulose nanofibers.
 従来、ポリアセタール樹脂は、優れた機械的強度を有し、安価であるため、各種製品の材料に使用されている。例えば、ポリアセタール樹脂は、優れた摺動性を有するため、歯車やジッパーなどの材料として用いられている。 Conventionally, polyacetal resin has excellent mechanical strength and is inexpensive, so it has been used as a material for various products. For example, polyacetal resin is used as a material for gears, zippers, etc. because it has excellent slidability.
 また、近年では、ポリアセタール樹脂などの樹脂材料は、繊維と複合させることにより強度を向上させた繊維強化プラスチック(FRP)として用いられている。FRPに含まれる繊維材料としては、ガラスファイバー、カーボンファイバー又はセルロースナノファイバーなどが挙げられる。これらの中でも、セルロースナノファイバーは、軽量性に優れ、リサイクルの容易性や低環境負荷などの観点から好ましい繊維材料である。 In recent years, resin materials such as polyacetal resin have been used as fiber reinforced plastics (FRP) whose strength has been improved by combining them with fibers. Examples of the fiber material contained in FRP include glass fiber, carbon fiber and cellulose nanofiber. Among these, cellulose nanofibers are excellent in light weight, and are preferable fiber materials from the viewpoints of ease of recycling and low environmental load.
 セルロースナノファイバーを含有する複合材料が、期待される機能を発揮するためには、樹脂に対するセルロースナノファイバーの分散性が重要となる。しかしながら、セルロースが多くの水酸基を有していることによって、セルロースナノファイバーは高い親水性を有するため、通常、セルロースナノファイバーは疎水性が高い樹脂とは混ざりにくい。これを克服するために、セルロースの水酸基が有機基に修飾された修飾セルロースナノファイバーを樹脂に含有させた複合材料が提案されている。 In order for the composite material containing cellulose nanofibers to exhibit the expected functions, the dispersibility of the cellulose nanofibers in the resin is important. However, since cellulose has many hydroxyl groups, cellulose nanofibers have high hydrophilicity, so that cellulose nanofibers are usually difficult to mix with a highly hydrophobic resin. In order to overcome this, a composite material in which a resin contains modified cellulose nanofibers in which the hydroxyl group of cellulose is modified to an organic group has been proposed.
 このような複合材料として、特許文献1には、ポリアセタール樹脂とセルロースの水酸基の一部がアセチル化された修飾セルロースナノファイバーとを含有する複合材料が記載されている。アセチル化された修飾セルロースナノファイバーは、セルロースの水酸基の一部がアセチル化されているため、疎水性が向上している。これによって、アセチル化された修飾セルロースナノファイバーは、ポリアセタール樹脂との親和性が向上し、修飾されていないセルロースナノファイバーと比較して、ポリアセタール樹脂に対する良好な分散性を示し得る。 As such a composite material, Patent Document 1 describes a composite material containing a polyacetal resin and modified cellulose nanofibers in which a part of the hydroxyl group of cellulose is acetylated. The acetylated modified cellulose nanofibers have improved hydrophobicity because some of the hydroxyl groups of the cellulose are acetylated. As a result, the acetylated modified cellulose nanofibers have improved affinity with the polyacetal resin and may exhibit better dispersibility in the polyacetal resin as compared with the unmodified cellulose nanofibers.
日本国特許第6091589号明細書Japanese Patent No. 6091589
 しかしながら、特許文献1に記載された複合材料は、セルロースナノファイバーの添加による効果が十分に発揮されないという問題点を有している。特に、該複合材料は、各種製品に成形される際に求められる機能が十分ではないという問題点を有している。例えば、該複合材料は、寸法安定性が十分ではなく、成形時の収縮が大きくなり、それによって、成形に困難性を伴うという欠点を有している。 However, the composite material described in Patent Document 1 has a problem that the effect of adding the cellulose nanofibers is not sufficiently exhibited. In particular, the composite material has a problem that the functions required when it is molded into various products are not sufficient. For example, the composite material has a drawback that it is not sufficiently dimensionally stable and shrinks during molding, which causes difficulty in molding.
 上記事情に鑑み、本発明は、従来技術と比較して、優れた機能を発揮し得る複合材料を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a composite material capable of exhibiting excellent functions as compared with the prior art.
 一般的に、セルロースナノファイバーは、アセチル化などの化学修飾によって結晶化度が低下する。また、アモルファス部分は結晶性部分と比較して熱的に不安定であるため、結晶化度が低下したセルロースナノファイバーは、熱分解し易くなる。 In general, cellulose nanofibers have a reduced crystallinity due to chemical modification such as acetylation. Further, since the amorphous portion is thermally unstable as compared with the crystalline portion, the cellulose nanofibers having a reduced degree of crystallinity are easily thermally decomposed.
 これに対して、本発明者らは、セルロースナノファイバーの中でも綿由来のセルロースナノファイバーの結晶化度が比較的高いことを見出し、さらに、綿由来のセルロースナノファイバーは、化学修飾の前後において、結晶化度が低下しにくいことを見出し、本発明を完成させるに至った。 On the other hand, the present inventors have found that the degree of crystallinity of the cotton-derived cellulose nanofibers is relatively high among the cellulose nanofibers, and further, the cotton-derived cellulose nanofibers are used before and after the chemical modification. We have found that the degree of crystallinity does not easily decrease, and have completed the present invention.
 本発明に係る複合材料は、
 ポリアセタール樹脂と、セルロースナノファイバーとを含有し、
 前記セルロースナノファイバーは、セルロースの水酸基の一部がアシル化されており、
 前記セルロースナノファイバーが、綿由来である、複合材料である。
The composite material according to the present invention is
Contains polyacetal resin and cellulose nanofibers,
In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated.
The cellulose nanofibers are a composite material derived from cotton.
 また、好ましくは、本発明に係る複合材料は、前記アシル化が、アセチル化である。 Further, preferably, in the composite material according to the present invention, the acylation is acetylation.
 好ましくは、本発明に係る複合材料は、アミド系分散剤をさらに含有する。 Preferably, the composite material according to the present invention further contains an amide-based dispersant.
 好ましくは、本発明に係る複合材料は、前記アミド系分散剤が、ポリオキシエチレンアルキルアミドである。 Preferably, in the composite material according to the present invention, the amide-based dispersant is polyoxyethylene alkylamide.
図1は、実施例における製造例1のCNFのSEM画像である。FIG. 1 is an SEM image of the CNF of Production Example 1 in the example. 図2は、実施例における製造例2のCNFのSEM画像である。FIG. 2 is an SEM image of the CNF of Production Example 2 in the example. 図3は、実施例における製造例3のCNFのSEM画像である。FIG. 3 is an SEM image of the CNF of Production Example 3 in the example. 図4は、実施例における製造例1~3のCNFのIRスペクトルである。FIG. 4 is an IR spectrum of CNFs of Production Examples 1 to 3 in Examples. 図5は、実施例における製造例1~5のCNFのXRDチャートである。FIG. 5 is an XRD chart of CNFs of Production Examples 1 to 5 in Examples. 図6は、実施例における製造例1~5のCNFのTGチャートである。FIG. 6 is a TG chart of CNFs of Production Examples 1 to 5 in Examples. 図7は、DMAチャートの一例を示し、DMAチャートから軟化温度を求める方法を示すための図である。FIG. 7 shows an example of a DMA chart, and is a diagram for showing a method of obtaining a softening temperature from the DMA chart.
 以下、図面を参照しつつ、本発明に係る複合材料の一実施形態について説明する。 Hereinafter, an embodiment of the composite material according to the present invention will be described with reference to the drawings.
 本実施形態に係る複合材料は、ポリアセタール樹脂と、セルロースナノファイバーと、アミド系分散剤とを含有し、前記セルロースナノファイバーは、セルロースの水酸基の一部がアシル化されている。また、前記セルロースナノファイバーは、綿から取得されたセルロース繊維を原料とする。 The composite material according to the present embodiment contains a polyacetal resin, cellulose nanofibers, and an amide-based dispersant, and the cellulose nanofibers have a part of the hydroxyl group of cellulose acylated. The cellulose nanofibers are made from cellulose fibers obtained from cotton.
 前記複合材料は、各種部品の成形材料として使用され、例えば、射出成形などによって自動車の部品や精密部品などに成形され得る。前記複合材料は、成形時の温度が通常180~220℃に設定され、好ましくは180~200℃に設定されて成形される。このため、前記複合材料は、このような成形条件下における優れた成形性を有していることが好ましい。このような観点から、前記複合材料の30~120℃における線膨張係数は、好ましくは90ppm/℃以下、より好ましくは70ppm/℃以下、さらに好ましくは50ppm/℃以下である。また、前記複合材料の前記線膨張係数は、通常10ppm/℃以上である。なお、前記線膨張係数は、実施例に記載された測定方法によって測定される。 The composite material is used as a molding material for various parts, and can be molded into automobile parts, precision parts, etc. by injection molding, for example. The composite material is molded when the temperature at the time of molding is usually set to 180 to 220 ° C, preferably 180 to 200 ° C. Therefore, it is preferable that the composite material has excellent moldability under such molding conditions. From this point of view, the coefficient of linear expansion of the composite material at 30 to 120 ° C. is preferably 90 ppm / ° C. or lower, more preferably 70 ppm / ° C. or lower, still more preferably 50 ppm / ° C. or lower. The coefficient of linear expansion of the composite material is usually 10 ppm / ° C. or higher. The coefficient of linear expansion is measured by the measuring method described in the examples.
 また、前記複合材料の100℃における貯蔵弾性率(E´)は、好ましくは1000MPa以上であり、より好ましくは1100MPa以上であり、さらに好ましくは1200MPa以上であり、より一層好ましくは1500MPa以上である。これによって、前記複合材料は、優れた耐熱性と機械特性を有し得る。また、前記複合材料の100℃における貯蔵弾性率(E´)は、通常2500MPa以下である。なお、前記貯蔵弾性率は、実施例に記載された測定方法によって測定される。 The storage elastic modulus (E') of the composite material at 100 ° C. is preferably 1000 MPa or more, more preferably 1100 MPa or more, still more preferably 1200 MPa or more, and even more preferably 1500 MPa or more. Thereby, the composite material may have excellent heat resistance and mechanical properties. The storage elastic modulus (E') of the composite material at 100 ° C. is usually 2500 MPa or less. The storage elastic modulus is measured by the measuring method described in the examples.
 前記ポリアセタール樹脂は、アセタール構造-(-O-CRH-)-(Rは水素原子又は有機基を示す)を繰り返し構造に有する高分子である。通常、Rが水素原子であるオキシメチレン基(-OCH-)が、主たる構成単位である。前記ポリアセタール樹脂は、ポリアセタールホモポリマーであってもよく、ポリアセタールコポリマーであってもよい。また、前記ポリアセタール樹脂は、前記ポリアセタールホモポリマー又は前記ポリアセタールコポリマーの含有量が通常90質量%以上であり、好ましくは95質量%以上であればよく、一部に他のポリマー成分を含んでいてもよい。 The polyacetal resin is a polymer having an acetal structure-(-O-CRH-) n- (R represents a hydrogen atom or an organic group) in a repeating structure. Usually, the oxymethylene group (-OCH 2- ) in which R is a hydrogen atom is the main constituent unit. The polyacetal resin may be a polyacetal homopolymer or a polyacetal copolymer. Further, the content of the polyacetal homopolymer or the polyacetal copolymer is usually 90% by mass or more, preferably 95% by mass or more, and the polyacetal resin may contain other polymer components in part. Good.
 種子毛植物の種子から採取される種子毛繊維を原料としている。前記種子毛植物としては、綿、アクンド、カポックが例示され、これらの中でも、綿が好ましい。綿の種子は、コットンボールと呼ばれる繊維に覆われており、該コットンボールは、種子を覆うリンター及びリンターの外側を覆うリントから形成されている。リントの方がリンターよりも繊維長が長いため、一般的に、リントは、綿糸や綿織物の原料として使用され、リンターは、リンターパルプやレーヨンとして使用される。なお、前記セルロースナノファイバーは、リントから製造されてもよく、リンターから製造されてもよい。本実施形態では、前記セルロースナノファイバーは、リンターから製造されたリンターパルプを原料としている。 The raw material is seed hair fiber collected from the seeds of seed hair plants. Examples of the seed hair plant include cotton, acundo, and kapok, and among these, cotton is preferable. The cotton seeds are covered with fibers called cotton balls, which are formed of a linter covering the seeds and a lint covering the outside of the linters. Since lint has a longer fiber length than linter, lint is generally used as a raw material for cotton yarn and cotton fabric, and linter is used as linter pulp and rayon. The cellulose nanofibers may be produced from lint or may be produced from linter. In the present embodiment, the cellulose nanofibers are made from linter pulp produced from linter.
 綿由来の前記セルロースナノファイバーは、他の植物、例えば針葉樹由来のセルロースナノファイバーと比較して、リグニンの含有量が少ない。ここで、前記リグニンは、熱によって分解し易いため、その含有量が多い場合、セルロースナノファイバーの熱安定性も低下し得る。よって、綿由来の前記セルロースナノファイバーを含有する複合材料は、優れた熱安定性を有し得る。前記セルロースナノファイバーにおける前記リグニンの含有量は、500ppm以下であることが好ましく、100ppm以下であることがより好ましい。なお、前記リグニンの含有量は、Klason法によって測定される。 The cotton-derived cellulose nanofibers have a lower lignin content than other plants, such as coniferous cellulose nanofibers. Here, since the lignin is easily decomposed by heat, the thermal stability of the cellulose nanofibers may be lowered when the content of the lignin is large. Therefore, the composite material containing the cellulose nanofibers derived from cotton can have excellent thermal stability. The content of the lignin in the cellulose nanofibers is preferably 500 ppm or less, more preferably 100 ppm or less. The content of the lignin is measured by the Klason method.
 前記セルロースナノファイバーは、ナノレベルに解繊されている。前記ナノレベルとは、前記セルロースナノファイバーの平均繊維径が、通常15~800nmであり、好ましくは20~500nmであることを意味する。なお、前記セルロースナノファイバーは、前記複合材料中において、前記平均繊維径が上記値であればよい。例えば、平均繊維径が数10μm程度のセルロース繊維が、前記ポリアセタール樹脂と混練されることによって、ナノレベルに解繊されてもよい。また、前記平均繊維径は、実施例に記載された測定方法によって測定される。 The cellulose nanofibers are defibrated at the nano level. The nano-level means that the average fiber diameter of the cellulose nanofibers is usually 15 to 800 nm, preferably 20 to 500 nm. The cellulose nanofibers may have the above average fiber diameter in the composite material. For example, cellulose fibers having an average fiber diameter of about several tens of μm may be defibrated at the nano level by kneading with the polyacetal resin. Further, the average fiber diameter is measured by the measuring method described in the examples.
 また、前記セルロースナノファイバーの平均繊維長は、通常0.5~100μmであり、好ましくは1~80μmである。なお、前記平均繊維長は、実施例に記載された測定方法によって測定される。 The average fiber length of the cellulose nanofibers is usually 0.5 to 100 μm, preferably 1 to 80 μm. The average fiber length is measured by the measuring method described in the examples.
 前記セルロースナノファイバーは、セルロースの水酸基の一部がアシル化されている。言い換えれば、前記セルロースナノファイバーのセルロースの水酸基の一部が、化学式RCOOで標記されるアシル基に置換されている。アシル基としては、Rが、炭素数1~18のアルキル基であることが好ましく、炭素数1~12のアルキル基であることが好ましく、炭素数1~4のアルキル基であることがさらに好ましい。例えば、前記アシル基としては、アセチル基、ブチリル基又はラウリル基が好ましい。これらの中でも、アセチル基を有する前記セルロースナノファイバーが、優れた熱安定性を発揮し、また、製造コストが安価になるという観点から、好ましい。 In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated. In other words, part of the hydroxyl groups of the cellulose of the cellulose nanofiber is substituted with acyl group title by Formula R 1 COO. As the acyl group, R 1 is preferably an alkyl group having 1 to 18 carbon atoms, preferably an alkyl group having 1 to 12 carbon atoms, and further preferably an alkyl group having 1 to 4 carbon atoms. preferable. For example, as the acyl group, an acetyl group, a butyryl group or a lauryl group is preferable. Among these, the cellulose nanofiber having an acetyl group is preferable from the viewpoint of exhibiting excellent thermal stability and reducing the production cost.
 前記セルロースナノファイバーにおけるセルロースの水酸基のうち、アシル化された水酸基が占める割合は、平均置換度として示される。該平均置換度は、通常木材パルプの場合は0.1~0.5であり、好ましくは0.2~0.45である。一方、綿由来リンターパルプの場合は、0.1~1.5であり、好ましくは、0.2~1.2、より好ましくは0.3~1.0である。また、該平均置換度は、前記アシル基の種類によって好ましい値が異なる。例えば、アセチル基の場合、好ましくは0.1~1.5であり、より好ましくは0.2~1.2であり、ブチリル基の場合、好ましくは0.05~1.3であり、より好ましくは0.1~1.2であり、また、ラウリル基の場合、好ましくは0.05~1.2であり、より好ましくは0.1~1.0である。ラウリル基はRの炭素数が12であり、アルキル側鎖が比較的長く、該アルキル側鎖がセルロースの表面を覆い得る。よって、ラウリル基を有するセルロースナノファイバーは、平均置換度が比較的低い場合であっても、前記ポリアセタール樹脂との優れた親和性を有し得る。また、平均置換度が低い場合、セルロースナノファイバーの結晶化度の低下が抑制され得るため好ましい。なお、前記平均置換度は、実施例に記載された測定方法によって測定される。 The ratio of the acylated hydroxyl group to the hydroxyl group of cellulose in the cellulose nanofiber is shown as the average degree of substitution. The average degree of substitution is usually 0.1 to 0.5, preferably 0.2 to 0.45 in the case of wood pulp. On the other hand, in the case of cotton-derived linter pulp, it is 0.1 to 1.5, preferably 0.2 to 1.2, and more preferably 0.3 to 1.0. Moreover, the preferable value of the average degree of substitution differs depending on the type of the acyl group. For example, in the case of an acetyl group, it is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and in the case of a butyryl group, it is preferably 0.05 to 1.3, and more. It is preferably 0.1 to 1.2, and in the case of a lauryl group, it is preferably 0.05 to 1.2, and more preferably 0.1 to 1.0. The lauryl group has 12 carbon atoms in R 1 , and the alkyl side chain is relatively long, and the alkyl side chain can cover the surface of cellulose. Therefore, the cellulose nanofiber having a lauryl group can have an excellent affinity with the polyacetal resin even when the average degree of substitution is relatively low. Further, when the average degree of substitution is low, a decrease in the crystallinity of the cellulose nanofibers can be suppressed, which is preferable. The average degree of substitution is measured by the measuring method described in the examples.
 前記セルロースナノファイバーは、セルロースI型結晶を有している。前記セルロースナノファイバーにおける前記セルロースI型結晶の含有率は、結晶化度として示される。綿由来の前記セルロースナノファイバーは、他の植物由来のセルロースナノファイバーと比較して、前記結晶化度が高い。また、通常、前記セルロースナノファイバーがアシル化されると、アシル化された部分がアモルファスとなるため、前記結晶化度は低下する。これに対して、綿由来の前記セルロースナノファイバーは、アシル化によって前記結晶化度が低下しにくい。この理由として、綿由来のセルロースナノファイバーは、アシル化剤が内部に浸透しにくく、前記ポリアセタール樹脂との親和性に大きく影響する表面部分が効率的にアシル化されるためであると考えられる。また、前記アシル化剤がセルロースナノファイバーの内部に浸透しにくいことは、内部のセルロースがアシル化されにくいことを意味し、すなわち、内部の前記結晶化度が低下しにくいことを意味する。高い結晶化度を有するセルロースナノファイバーは、熱安定性が高く、前記ポリアセタール樹脂との混練時に熱分解しにくい。よって、このようなセルロースナノファイバーを含有する前記複合材料は、優れた機能を発揮し得る。 The cellulose nanofibers have cellulose type I crystals. The content of the cellulose type I crystal in the cellulose nanofiber is shown as the degree of crystallinity. The cotton-derived cellulose nanofibers have a higher degree of crystallinity than other plant-derived cellulose nanofibers. Further, usually, when the cellulose nanofibers are acylated, the acylated portion becomes amorphous, so that the crystallinity is lowered. On the other hand, the cotton-derived cellulose nanofibers are less likely to decrease in crystallinity due to acylation. It is considered that the reason for this is that the cellulose nanofibers derived from cotton are difficult for the acylating agent to permeate into the inside, and the surface portion that greatly affects the affinity with the polyacetal resin is efficiently acylated. Further, the fact that the acylating agent does not easily penetrate into the cellulose nanofibers means that the cellulose inside is less likely to be acylated, that is, the degree of crystallinity inside is less likely to decrease. Cellulose nanofibers having a high crystallinity have high thermal stability and are not easily thermally decomposed during kneading with the polyacetal resin. Therefore, the composite material containing such cellulose nanofibers can exhibit excellent functions.
 前記結晶化度は、好ましくは45%以上であり、より好ましくは50%以上であり、さらに好ましくは70%以上であり、より一層好ましくは75%以上であり、最も好ましくは80%以上である。なお、前記結晶化度は、実施例に記載された測定方法によって測定される。また、図5に示されるように、綿由来の前記セルロースナノファイバーは、粉末X線結晶回折(XRD)チャートにおいて、2θ=14.9°及び16.5°に特異的なピークを示す。 The crystallinity is preferably 45% or more, more preferably 50% or more, further preferably 70% or more, even more preferably 75% or more, and most preferably 80% or more. .. The crystallinity is measured by the measuring method described in Examples. Further, as shown in FIG. 5, the cotton-derived cellulose nanofibers show specific peaks at 2θ = 14.9 ° and 16.5 ° in a powder X-ray crystal diffraction (XRD) chart.
 ここで、前記ポリアセタール樹脂の融点が比較的高いことにより、混練時の温度も比較的高い温度(通常、180~220℃であり、好ましくは180~200℃)に設定される。また、通常、混練時の発熱によって、混練物の温度は、設定された前記温度よりも数10℃高くなり得る。このため、前記セルロースナノファイバーは、このような温度条件下での耐熱性を有していることが好ましい。このような観点から、前記セルロースナノファイバーの熱分解温度(5%減量温度)は、290℃以上であることが好ましく、より好ましくは300℃以上であることがより好ましく、310℃以上であることがさらに好ましく、320℃以上であることがより一層好ましい。綿由来の前記セルロースナノファイバーは、他の植物由来のセルロースナノファイバーと比較して耐熱性が高く、すなわち、上記のような熱分解温度を有し得る。これによって、前記セルロースナノファイバーは、前記ポリアセタール樹脂との混練時において、熱分解しにくく、前記複合材料が、優れた機能を発揮し得る。なお、前記セルロースナノファイバーの熱分解温度は、通常360℃以下である。また、前記熱分解温度は、実施例に記載された測定方法によって測定される。 Here, since the melting point of the polyacetal resin is relatively high, the temperature at the time of kneading is also set to a relatively high temperature (usually 180 to 220 ° C, preferably 180 to 200 ° C). Further, usually, the temperature of the kneaded product may be several tens of degrees higher than the set temperature due to heat generation during kneading. Therefore, it is preferable that the cellulose nanofibers have heat resistance under such temperature conditions. From such a viewpoint, the thermal decomposition temperature (5% weight loss temperature) of the cellulose nanofibers is preferably 290 ° C. or higher, more preferably 300 ° C. or higher, and more preferably 310 ° C. or higher. Is even more preferable, and 320 ° C. or higher is even more preferable. The cotton-derived cellulose nanofibers have higher heat resistance than other plant-derived cellulose nanofibers, that is, they can have the above-mentioned thermal decomposition temperature. As a result, the cellulose nanofibers are less likely to be thermally decomposed when kneaded with the polyacetal resin, and the composite material can exhibit excellent functions. The thermal decomposition temperature of the cellulose nanofibers is usually 360 ° C. or lower. Further, the thermal decomposition temperature is measured by the measuring method described in the examples.
 前記セルロースナノファイバーの含有量は、前記複合材料全体量に対して、通常4~50質量%であり、好ましくは10~30質量%であり、より好ましくは10~20質量%である。 The content of the cellulose nanofibers is usually 4 to 50% by mass, preferably 10 to 30% by mass, and more preferably 10 to 20% by mass with respect to the total amount of the composite material.
 前記アミド系分散剤は、分子中にアミド基を有する分散剤であり、化学式RCONRで標記される。前記アミド系分散剤は、混練時の温度条件下において液体であることが好ましく、混練時の温度条件下において揮発しにくいものであることが好ましい。前記アミド系分散剤の融点は、通常200℃以上であり、好ましくは250℃以上である。また、前記アミド系分散剤の沸点は、通常200℃以上であり、好ましくは250℃以上である。 The amide-based dispersant is a dispersant having an amide group in the molecule, and is designated by the chemical formula R 2 CONR 3 R 4 . The amide-based dispersant is preferably a liquid under the temperature conditions during kneading, and preferably does not easily volatilize under the temperature conditions during kneading. The melting point of the amide-based dispersant is usually 200 ° C. or higher, preferably 250 ° C. or higher. The boiling point of the amide-based dispersant is usually 200 ° C. or higher, preferably 250 ° C. or higher.
 前記アミド系分散剤としては、脂肪酸アミド、脂肪酸アルカノールアミド、ポリオキシエチレンアルキルアミド及びポリオキシプロピレンアルキルアミドからなる群より選ばれる1又は2以上のものが挙げられる。このようなアミド系分散剤のR部分は、前記ポリアセタール樹脂との親和性を示し得る構造であることが好ましい。このような観点から、Rは、好ましくは炭素数3~25、より好ましくは炭素数5~20のアルキル基又はアルケニル基である。 Examples of the amide-based dispersant include one or more selected from the group consisting of fatty acid amides, fatty acid alkanolamides, polyoxyethylene alkylamides and polyoxypropylene alkylamides. The R 2 moiety of such amide-based dispersant is preferably a structure capable of exhibiting an affinity with the polyacetal resin. From this point of view, R 2 is preferably an alkyl group or an alkenyl group having 3 to 25 carbon atoms, more preferably 5 to 20 carbon atoms.
 前記脂肪酸アミドとしては、ステアリン酸モノアミド、オレイン酸モノアミド、エルカ酸モノアミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミドなどが挙げられる。 Examples of the fatty acid amide include stearic acid monoamide, oleic acid monoamide, erucic acid monoamide, ethylene bisstearic acid amide, and ethylene bisoleic acid amide.
 前記脂肪酸アルカノールアミドとしては、ヤシ脂肪酸モノエタノールアミド、ヤシ脂肪酸ジエタノールアミド、ラウリン酸イソプロパノールアミド、牛脂脂肪酸ジエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミドなどが挙げられる。 Examples of the fatty acid alkanolamide include coconut fatty acid monoethanolamide, coconut fatty acid diethanolamide, lauric acid isopropanolamide, beef fatty acid diethanolamide, lauric acid diethanolamide, and oleic acid diethanolamide.
 前記ポリオキシエチレンアルキルアミドとしては、ポリオキシエチレンヤシ油脂肪酸モノエタノールアミド、ポリオキシエチレンラウリン酸モノエタノールアミドなどが挙げられる。 Examples of the polyoxyethylene alkyl amide include polyoxyethylene coconut oil fatty acid monoethanolamide and polyoxyethylene lauric acid monoethanolamide.
 前記ポリオキシプロピレンアルキルアミドとしては、ポリオキシプロピレンヤシ油脂肪酸モノイソプロパノールアミドなどが挙げられる。 Examples of the polyoxypropylene alkylamide include polyoxypropylene coconut oil fatty acid monoisopropanolamide.
 前記アミド系分散剤は、前記化学式におけるR又はRの少なくとも一つが水素原子であることが好ましい。このようなアミド系分散剤は、前記水素原子が、前記セルロースナノファイバーにおける前記アシル基のカルボニル酸素原子と水素結合を形成し得る。よって、このようなアミド系分散剤は、前記セルロースナノファイバーとの親和性を示し得る。 In the amide-based dispersant, it is preferable that at least one of R 3 or R 4 in the chemical formula is a hydrogen atom. In such an amide-based dispersant, the hydrogen atom can form a hydrogen bond with the carbonyl oxygen atom of the acyl group in the cellulose nanofiber. Therefore, such an amide-based dispersant can exhibit an affinity for the cellulose nanofibers.
 さらに、前記アミド系分散剤は、前記化学式におけるRが水素原子であり、Rが-(CO)H(ポリオキシエチレンアルキル基)であることが好ましい。このようなアミド系分散剤としては、日油株式会社製のナイミッド(登録商標)が挙げられる。このようなアミド系分散剤は、前記ポリオキシエチレン基の部分がポリアセタール樹脂との高い親和性を示し、且つ、前記水素原子が、前記セルロースナノファイバーにおける前記アシル基のカルボニル酸素原子と水素結合を形成し得る。すなわち、このようなアミド系分散剤は、前記ポリアセタール樹脂及び前記セルロースナノファイバーそれぞれとの親和性を示す構造を有しており、これによって、これらの間で界面活性剤のように機能し得る。よって、このようなアミド系分散剤は、前記複合材料中の前記セルロースナノファイバーの分散を促進し得る。 Further, in the amide-based dispersant, it is preferable that R 3 in the chemical formula is a hydrogen atom and R 4 is − (C 2 H 4 O) n H (polyoxyethylene alkyl group). Examples of such an amide-based dispersant include NOF Corporation's Nymid (registered trademark). In such an amide-based dispersant, the polyoxyethylene group portion exhibits a high affinity with the polyacetal resin, and the hydrogen atom forms a hydrogen bond with the carbonyl oxygen atom of the acyl group in the cellulose nanofiber. Can form. That is, such an amide-based dispersant has a structure showing affinity with each of the polyacetal resin and the cellulose nanofibers, whereby it can function like a surfactant between them. Therefore, such an amide-based dispersant can promote the dispersion of the cellulose nanofibers in the composite material.
 前記アミド系分散剤の含有量は、前記複合材料全体に対して、通常1~10質量%であり、好ましくは2~5質量%である。 The content of the amide-based dispersant is usually 1 to 10% by mass, preferably 2 to 5% by mass, based on the entire composite material.
 次に、本実施形態に係る複合材料の製造方法について説明する。 Next, the method for producing the composite material according to the present embodiment will be described.
 まず、前記セルロースナノファイバーの製造方法について説明する。 First, the method for producing the cellulose nanofibers will be described.
 前記セルロースナノファイバーの原料は、前記リンターパルプである。前記リンターパルプの結晶化度は、好ましくは50%以上であり、より好ましくは70%以上であり、さらに好ましくは75%以上であり、より一層好ましくは80%以上である。前記リンターパルプは、市販されているものを使用することができる。 The raw material for the cellulose nanofibers is the linter pulp. The crystallinity of the linter pulp is preferably 50% or more, more preferably 70% or more, further preferably 75% or more, and even more preferably 80% or more. As the linter pulp, commercially available ones can be used.
 前記セルロース繊維をアシル化及び解繊する方法は、従来公知の方法を採用することができる。好ましい方法としては、スーパーマスコロイダーなどの解繊装置を使用し、前記セルロース繊維を、カルボン酸ビニルエステルやカルボン酸無水物などのアシル化剤と酸触媒又は塩基触媒とDMSOなどの有機溶媒とを含む処理液によって処理し、アシル化されたセルロース繊維を取得する方法が挙げられる。該方法によれば、リファイナーや高圧ホモジナイザーなどを使用する機械的な解繊方法と比較して、前記セルロース繊維の結晶化度の低下が抑制され得る。 As a method for acylating and defibrating the cellulose fiber, a conventionally known method can be adopted. As a preferable method, a defibrating device such as a super mascoroider is used, and the cellulose fiber is subjected to an acylating agent such as a carboxylic acid vinyl ester or a carboxylic acid anhydride and an acid catalyst or a base catalyst and an organic solvent such as DMSO. Examples thereof include a method of obtaining an acylated cellulose fiber by treating with a treatment liquid containing the mixture. According to this method, a decrease in the crystallinity of the cellulose fibers can be suppressed as compared with a mechanical defibration method using a refiner, a high-pressure homogenizer, or the like.
 前記アシル化剤としては、無水酢酸、無水酪酸、ラウリン酸無水物などのカルボン酸無水物;酢酸、酪酸、ラウリン酸などのカルボン酸;酢酸ビニル、酪酸ビニル、ラウリン酸ビニルなどのカルボン酸ビニル:ハロゲン化酢酸、ハロゲン化酪酸、ハロゲン化ラウリン酸などのカルボン酸ハロゲン化物などが挙げられる。 Examples of the acylating agent include carboxylic acid anhydrides such as acetic acid anhydride, butyric anhydride and lauric anhydride; carboxylic acids such as acetic acid, butyric acid and lauric acid; vinyl carboxylates such as vinyl acetate, vinyl butyrate and vinyl laurate: Examples thereof include carboxylic acid halides such as acetic acid halide, butyric acid halide, and lauric acid halide.
 前記有機溶媒としては、DMSOの他、ホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどの非プロトン性極性溶媒が好ましい。 As the organic solvent, in addition to DMSO, aprotic polar solvents such as formamide, dimethylacetamide, and N-methyl-2-pyrrolidone are preferable.
 また、前記処理液には、セルロース繊維の解繊を促す解繊剤を添加してもよい。解繊剤としては、R-CHO(Rは、水素原子、炭素数1~16のアルキル基、アルケニル基、シクロアルキル基又はアリール基を表す)で表されるアルデヒド;R-COO-CH=CH2(R6は、炭素数1~24のアルキル基、アルキレン基、シクロアルキル基又はアリール基を表す)で表されるカルボン酸ビニルエステルが挙げられる。 In addition, a defibrating agent that promotes defibration of cellulose fibers may be added to the treatment liquid. As a defibrating agent, an aldehyde represented by R 5- CHO (R 5 represents a hydrogen atom, an alkyl group having 1 to 16 carbon atoms, an alkenyl group, a cycloalkyl group or an aryl group); R 6- COO- Examples thereof include carboxylic acid vinyl esters represented by CH = CH2 (R6 represents an alkyl group having 1 to 24 carbon atoms, an alkylene group, a cycloalkyl group or an aryl group).
 次に、ろ過や遠心分離などによって、前記アシル化されたセルロース繊維から前記処理液を除去し、洗浄溶媒として2-プロパノール且つ/又はジメチルアセトアミドなどを用いて前記処理されたセルロース繊維を洗浄し、濃縮することによって前記洗浄溶媒の一部を除去し、ペースト状セルロースナノファイバーを取得する。該ペースト状セルロースナノファイバーに含まれるセルロースナノファイバーの含有量は、全体量に対して通常5~30%である。 Next, the treatment liquid is removed from the acylated cellulose fibers by filtration, centrifugation, or the like, and the treated cellulose fibers are washed with 2-propanol and / or dimethylacetamide as a washing solvent. By concentrating, a part of the washing solvent is removed to obtain a paste-like cellulose nanofiber. The content of the cellulose nanofibers contained in the paste-like cellulose nanofibers is usually 5 to 30% with respect to the total amount.
 次に、前記複合材料の製造方法について説明する。 Next, a method for manufacturing the composite material will be described.
 まず、一般的に使用されている撹拌機を使用して、前記ペースト状セルロースナノファイバー及び前記アミド系分散剤を混合し、分散剤処理されたセルロースナノファイバーを取得する。 First, the paste-like cellulose nanofibers and the amide-based dispersant are mixed using a generally used stirrer to obtain the dispersant-treated cellulose nanofibers.
 次に、前記分散剤処理されたセルロースナノファイバー及び前記ポリアセタール樹脂を混練溶媒中に分散させ、混練機を使用して混練し、混練物を取得する。通常、混練温度は180~195℃である。なお、混練時の混練機の回転数や混練時間は、取得する複合材料の量や複合材料に含有させるセルロースナノファイバーの量などを考慮して、適宜変更することができる。 Next, the dispersant-treated cellulose nanofibers and the polyacetal resin are dispersed in a kneading solvent and kneaded using a kneader to obtain a kneaded product. Generally, the kneading temperature is 180 to 195 ° C. The rotation speed and kneading time of the kneading machine at the time of kneading can be appropriately changed in consideration of the amount of the composite material to be acquired, the amount of cellulose nanofibers contained in the composite material, and the like.
 前記混練溶媒としては、エタノール又は2-プロパノールなどのアルコール系溶媒、ジメチルアセトアミド又は2-メチル-2-ピロリドンなどのアミド系溶媒を使用することができる。また、これらの溶媒を2種以上混合して使用してもよい。前記有機溶媒としては、前記アミド系溶媒が好ましく、これらの中でも、ジメチルアセトアミドが好ましい。 As the kneading solvent, an alcohol solvent such as ethanol or 2-propanol, or an amide solvent such as dimethylacetamide or 2-methyl-2-pyrrolidone can be used. Further, two or more kinds of these solvents may be mixed and used. As the organic solvent, the amide-based solvent is preferable, and among these, dimethylacetamide is preferable.
 次に、真空乾燥機などを使用して、前記混練物を乾燥し、前記複合材料を取得する。乾燥温度は、通常80~125℃である。 Next, the kneaded product is dried using a vacuum dryer or the like to obtain the composite material. The drying temperature is usually 80 to 125 ° C.
 上記の通り、本発明に係る複合材料は、
 ポリアセタール樹脂と、セルロースナノファイバーとを含有し、
 前記セルロースナノファイバーは、セルロースの水酸基の一部がアシル化されており、
 前記セルロースナノファイバーが、綿由来である。
As described above, the composite material according to the present invention is
Contains polyacetal resin and cellulose nanofibers,
In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated.
The cellulose nanofibers are derived from cotton.
 前記セルロースナノファイバーは、綿由来であるため、他の植物由来のセルロースナノファイバーと比較して、高い結晶化度を示し、また、アシル化によって前記結晶化度が低下しにくい。よって、斯かる構成によれば、前記セルロースナノファイバーが、前記ポリアセタール樹脂との混練時に熱分解しにくいため、前記複合材料が優れた機能を発揮し得る。例えば、前記複合材料は、優れた寸法安定性を有し、それによって、優れた成形性を有し得る。 Since the cellulose nanofibers are derived from cotton, they show a high degree of crystallinity as compared with other plant-derived cellulose nanofibers, and the degree of crystallinity is unlikely to decrease due to acylation. Therefore, according to such a configuration, the cellulose nanofibers are less likely to be thermally decomposed at the time of kneading with the polyacetal resin, so that the composite material can exhibit excellent functions. For example, the composite may have excellent dimensional stability, thereby having excellent moldability.
 前記複合材料では、前記アシル化が、アセチル化であってもよい。 In the composite material, the acylation may be acetylation.
 かかる構成によれば、前記複合材料がより優れた機能を有し得、さらに、比較的安価に製造され得る。 According to such a configuration, the composite material can have more excellent functions and can be manufactured at a relatively low cost.
 前記複合材料では、アミド系分散剤をさらに含有していてもよい。 The composite material may further contain an amide-based dispersant.
 かかる構成によれば、前記セルロースナノファイバーと前記ポリアセタールとの混練時、前記セルロースナノファイバーの分散が促進されるため、前記複合材料が、さらに優れた機能を発揮し得る。 According to such a configuration, when the cellulose nanofibers and the polyacetal are kneaded, the dispersion of the cellulose nanofibers is promoted, so that the composite material can exhibit more excellent functions.
 前記複合材料では、前記アミド系分散剤がポリオキシエチレンアルキルアミドであってもよい。 In the composite material, the amide-based dispersant may be a polyoxyethylene alkyl amide.
 かかる構成によれば、前記セルロースナノファイバーと前記ポリアセタールとの混練時、前記セルロースナノファイバーの分散がさらに促進されるため、前記複合材料がより一層優れた機能を発揮し得る。 According to such a configuration, when the cellulose nanofibers and the polyacetal are kneaded, the dispersion of the cellulose nanofibers is further promoted, so that the composite material can exhibit even more excellent functions.
 なお、本発明に係る複合材料は、上記実施形態の構成に限定されるものではない。また、本発明に係る複合材料は、上記した作用効果により限定されるものでもない。本発明に係る複合材料は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The composite material according to the present invention is not limited to the configuration of the above embodiment. Further, the composite material according to the present invention is not limited by the above-mentioned effects. The composite material according to the present invention can be variously modified without departing from the gist of the present invention.
 次に、実施例を挙げて、本発明についてさらに詳しく説明する。 Next, the present invention will be described in more detail with reference to examples.
[使用原料]
・セルロースナノファイバー(以下、CNFとも言う)の原料として、リンターパルプ及び針葉樹木材パルプ(Georgia-Pacific社製)を使用した。
・アシル化剤として、酢酸ビニル(ナカライテスク社製)、酪酸ビニル(ナカライテスク社製)、ラウリン酸ビニル(ナカライテスク社製)を使用した。
・ポリプラスチックス社製のポリアセタール樹脂(以下、POMとも言う)を使用した。
・アミド系分散剤として、ナイミッド(登録商標)MT-215(日油株式会社製)を使用した。
[Ingredients used]
-Linter pulp and softwood wood pulp (manufactured by Geolga-Pacific) were used as raw materials for cellulose nanofibers (hereinafter, also referred to as CNF).
-Vinyl acetate (manufactured by Nacalai Tesque), vinyl butyrate (manufactured by Nacalai Tesque), and vinyl laurate (manufactured by Nacalai Tesque) were used as acylating agents.
-A polyacetal resin manufactured by Polyplastics (hereinafter, also referred to as POM) was used.
-Nymid (registered trademark) MT-215 (manufactured by NOF CORPORATION) was used as the amide-based dispersant.
[セルロースナノファイバーの製造例]
 表1における製造例1のCNFは、次のようにして製造した。酢酸ビニル10g、炭酸ナトリウム1.5g及びDMSO90gをそれぞれ三口フラスコに入れて混合し、処理液を調製した。得られた処理液にリンターパルプ3gを加え、50℃で3時間反応した後、水で洗浄した。その後、スーパーマスコロイダーを用いて解繊することにより製造例1のアセチル化CNFを取得した。
[Production example of cellulose nanofibers]
The CNF of Production Example 1 in Table 1 was produced as follows. 10 g of vinyl acetate, 1.5 g of sodium carbonate and 90 g of DMSO were placed in a three-necked flask and mixed to prepare a treatment solution. 3 g of linter pulp was added to the obtained treatment liquid, and the mixture was reacted at 50 ° C. for 3 hours and then washed with water. Then, the acetylated CNF of Production Example 1 was obtained by defibrating with a super mascoroider.
[平均繊維径及び平均繊維長の測定方法]
 CNFの平均繊維径及び平均繊維長を、走査型電子顕微鏡(SEM)を用いて測定した。具体的には、FE-SEM(JSM-6700F、日本電子株式会社製)を使用し、下記測定条件で倍率100~100000倍のSEM画像を取得し、任意の繊維50本の繊維径及び繊維長を測定し、それぞれの算術平均値を平均繊維径及び平均繊維長とした。図1~3に、製造例1~3のCNFのSEM画像を示した。
(測定条件)
・Ptコート条件:10mA、60秒
・加速電圧:5kV
・SEI:二次電子像
・LEI:下方検出器像(二次電子像+反射電子像)
[Measuring method of average fiber diameter and average fiber length]
The average fiber diameter and average fiber length of CNF were measured using a scanning electron microscope (SEM). Specifically, using FE-SEM (JSM-6700F, manufactured by JEOL Ltd.), an SEM image with a magnification of 100 to 100,000 times is acquired under the following measurement conditions, and the fiber diameter and fiber length of 50 arbitrary fibers are obtained. Was measured, and the respective arithmetic average values were taken as the average fiber diameter and the average fiber length. FIGS. 1 to 3 show SEM images of CNFs of Production Examples 1 to 3.
(Measurement condition)
・ Pt coating condition: 10mA, 60 seconds ・ Acceleration voltage: 5kV
・ SEI: Secondary electron image ・ LEI: Downward detector image (secondary electron image + backscattered electron image)
[平均置換度の測定方法]
 セルロースナノファイバーの平均置換度は、下記滴定法によって測定した。
(滴定法)
 CNF0.5gを水酸化ナトリウム(モル数A)/エタノール/水の混合液100mLに分散させ、23℃で4時間撹拌することにより、アシル基を加水分解した。水酸化ナトリウム、エタノールと水の比率は、アシル基の種類により調整する。例えば、アセチル化されたCNFの場合、水酸化ナトリウム5g/エタノール50g/水50gの混合液を用いた。一方、ラウリル化されたCNFの場合、水酸化ナトリウム5g/エタノール80g/水20gの混合液を用いた。ろ過することによって、残渣(アシル基が水酸基に変換されたCNF)と反応溶液(カルボン酸ナトリウム及び水酸化ナトリウムが溶解した混合液)とを分離した。前記残渣を設定温度105℃で真空乾燥し、乾燥中の残渣の1時間ごとの質量変化が0.01%以下になったことが認められた時点で乾燥を終了し、乾燥した残渣の質量(W)を秤量した。また、塩酸水溶液を用いて前記反応溶液中の水酸化ナトリウム量を滴定し、そのモル数(C)を求めた。下記式によって、平均置換度を算出した。同じCNFは3回測定し、3回測定から得られた値の平均値を採用した。
 セルロースのモル数(M)=W/162
 アシル基が分解して生成したカルボン酸のモル数B=A-C
 平均置換度=B/M
[Measurement method of average substitution degree]
The average degree of substitution of cellulose nanofibers was measured by the following titration method.
(Titration method)
The acyl group was hydrolyzed by dispersing 0.5 g of CNF in 100 mL of a mixture of sodium hydroxide (molar number A) / ethanol / water and stirring at 23 ° C. for 4 hours. The ratio of sodium hydroxide, ethanol and water is adjusted according to the type of acyl group. For example, in the case of acetylated CNF, a mixed solution of 5 g of sodium hydroxide / 50 g of ethanol / 50 g of water was used. On the other hand, in the case of laurylated CNF, a mixed solution of 5 g of sodium hydroxide / 80 g of ethanol / 20 g of water was used. By filtration, the residue (CNF in which the acyl group was converted to a hydroxyl group) and the reaction solution (a mixed solution in which sodium carboxylate and sodium hydroxide were dissolved) were separated. The residue was vacuum dried at a set temperature of 105 ° C., and when it was confirmed that the hourly mass change of the residue during drying was 0.01% or less, the drying was terminated and the mass of the dried residue ( W) was weighed. Further, the amount of sodium hydroxide in the reaction solution was titrated using an aqueous hydrochloric acid solution, and the number of moles (C) thereof was determined. The average degree of substitution was calculated by the following formula. The same CNF was measured three times, and the average value of the values obtained from the three measurements was adopted.
Number of moles of cellulose (M) = W / 162
Number of moles of carboxylic acid produced by decomposition of acyl group B = AC
Average substitution = B / M
[CNFのIR分析]
 CNFをFT-IRを使用して分析した。図4にIRスペクトルを示した。IRスペクトルにおいて、1370cm-1付近のスペクトルは、セルロースのC-H結合による吸収である。また、1750cm-1付近のスペクトルは、アシル基のC=O結合による吸収である。図4のIRスペクトルから、製造例1~5のCNFは、アシル基を有することが認められた。
[IR analysis of CNF]
CNF was analyzed using FT-IR. The IR spectrum is shown in FIG. In the IR spectrum, the spectrum around 1370 cm -1 is the absorption by the CH bond of cellulose. The spectrum around 1750 cm -1 is the absorption of the acyl group by the C = O bond. From the IR spectrum of FIG. 4, it was confirmed that the CNFs of Production Examples 1 to 5 had an acyl group.
[結晶化度の測定方法]
 CNFの粉末X線結晶回折(XRD)を、試料水平型多目的X線回折装置(UltimaIV、株式会社リガク製)を使用して分析した。図5に示したように、製造例1~5のCNFは、2θ=22.6°にピークを示したため、セルロースI型結晶を有することが認められた。また、リンターパルプを原料とするCNF(製造例1~4)は、2θ=14.9°及び16.5°に特異的なピークを示した。一方、針葉樹木材パルプを原料とするCNF(製造例5)は、このようなピークを示さなかった。
(測定条件)
・X線:Cu/40kV/40mA
・スキャンスピード:10°/分
・走査範囲:2θ=5~70°
(結晶化度の算出方法)
 下記式によって、結晶化度を算出した(Textile Res. J.29:786-794, 1959参照)。
 結晶化度(%)=[(I200-IAM)/I200]×100
  I200:2θ=22.6°の回折強度
  IAM:アモルファス部の回折強度であり2θ=18.5°の回折強度
[Crystallinity measurement method]
Powder X-ray crystal diffraction (XRD) of CNF was analyzed using a sample horizontal multipurpose X-ray diffractometer (Ultima IV, manufactured by Rigaku Co., Ltd.). As shown in FIG. 5, since the CNFs of Production Examples 1 to 5 showed a peak at 2θ = 22.6 °, it was confirmed that they had cellulose type I crystals. Further, CNFs (Production Examples 1 to 4) using linter pulp as a raw material showed specific peaks at 2θ = 14.9 ° and 16.5 °. On the other hand, CNF made from softwood wood pulp (Production Example 5) did not show such a peak.
(Measurement condition)
-X-ray: Cu / 40kV / 40mA
・ Scanning speed: 10 ° / min ・ Scanning range: 2θ = 5 to 70 °
(Calculation method of crystallinity)
The crystallinity was calculated by the following formula (see Textile Res. J. 29: 786-794, 1959).
Crystallinity (%) = [(I 200- I AM ) / I 200 ] x 100
I 200 : Diffraction intensity of 2θ = 22.6 ° I AM : Diffraction intensity of amorphous part, 2θ = 18.5 °
[熱分解温度の測定方法]
 CNFの熱分解挙動を示差熱熱重量同時測定装置(STA7200、株式会社日立ハイテクサイエンス製)を使用して分析した。図6に測定結果を示した。
(測定条件)
・雰囲気:アルゴンガス(流量300mL/分)
・温度範囲:30~400℃
・昇温速度:10℃/分
(熱分解温度=5%減量温度)
 図6に、製造例1~5のCNFのTGチャートを示した。TGチャートにおいて、100℃までの質量減少は水分の蒸発による減少である。よって、TGチャートにおける200℃の質量を基準にして、質量が5%減少した温度(5%減量温度)を熱分解温度とした。
[Measurement method of thermal decomposition temperature]
The thermal decomposition behavior of CNF was analyzed using a differential thermogravimetric simultaneous measuring device (STA7200, manufactured by Hitachi High-Tech Science Corporation). The measurement results are shown in FIG.
(Measurement condition)
・ Atmosphere: Argon gas (flow rate 300 mL / min)
・ Temperature range: 30-400 ℃
・ Temperature rise rate: 10 ° C / min (pyrolysis temperature = 5% weight loss temperature)
FIG. 6 shows TG charts of CNFs of Production Examples 1 to 5. In the TG chart, the mass loss up to 100 ° C. is a decrease due to evaporation of water. Therefore, the temperature at which the mass was reduced by 5% (5% weight loss temperature) was defined as the thermal decomposition temperature based on the mass at 200 ° C. in the TG chart.
 表1に、製造例1~5のCNFの各測定結果を示した。リンターすなわち綿由来のCNFは、結晶化度が80%程度に維持されており、且つ、高い熱分解温度を示した。これに対して、針葉樹由来のCNFは、結晶化度及び熱分解温度が比較的低い値を示した。これらの結果から、綿由来のCNFは、比較的高い熱安定性を有しているため、前記複合材料を製造する際の前記ポリアセタール樹脂との混練時において熱分解しにくいと考えられた。よって、このようなCNFを含有する複合材料は、優れた機能を発揮し得ると考えられた。  Table 1 shows the measurement results of CNF in Production Examples 1 to 5. The linter, that is, the cotton-derived CNF, had a crystallinity of about 80% and showed a high thermal decomposition temperature. On the other hand, the coniferous CNF showed relatively low crystallinity and pyrolysis temperature. From these results, it was considered that the cotton-derived CNF has a relatively high thermal stability and is therefore unlikely to be thermally decomposed during kneading with the polyacetal resin when the composite material is produced. Therefore, it is considered that such a composite material containing CNF can exhibit excellent functions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[複合材料の製造]
 表2の配合に従い、複合材料をシート状の複合シートとして作製した。なお、表2におけるCNFの配合量は、ポリアセタール樹脂100質量部に対する配合量を表す。また、CNFとPOMとの混練では、混練溶媒としてエタノール(EtOH)、2-プロパノール(IPA)、ジメチルアセトアミド(DMAc)又はN-メチル-2-ピロリドン(NMP)を使用した(実施例8においてはDMAc/EtOHの混合溶媒)。以下、代表的な複合材料の製造例を示す。
[Manufacturing of composite materials]
The composite material was prepared as a sheet-like composite sheet according to the formulation shown in Table 2. The blending amount of CNF in Table 2 represents the blending amount with respect to 100 parts by mass of the polyacetal resin. In the kneading of CNF and POM, ethanol (EtOH), 2-propanol (IPA), dimethylacetamide (DMAc) or N-methyl-2-pyrrolidone (NMP) was used as the kneading solvent (in Example 8). DMAc / EtOH mixed solvent). Hereinafter, a production example of a typical composite material will be shown.
 複合材料にアミド系分散剤を含有させたCNFの調製実施例では、アミド系分散剤を溶解した溶媒にCNFを添加し、スターラーを用い又は機械攪拌により、120~180分、20~30℃で分散させ、分散剤処理されたCNFを調製した。 Preparation of CNF in which the composite material contains an amide-based dispersant In the example, CNF is added to a solvent in which the amide-based dispersant is dissolved, and the mixture is used as a stirrer or mechanically stirred at 20 to 180 ° C. Dispersed and dispersant-treated CNFs were prepared.
 CNF(又は分散剤処理されたCNF)及びPOMの混練にはラボプラストミルを使用し、180~195℃、回転数45~100rpmで20~70分混練した。次に、真空乾燥機を使用し、得られた混練物を120℃で5時間乾燥し、未成形複合材料を取得した。前記未成形複合材料を、ホットプレス機を使用し、190℃で4分加熱し、180kg/cmの圧力で1分加圧後、室温にて放冷し、複合シートを作製した。取得した複合シートについて、下記測定方法によって各種データを取得し、寸法安定性、動的粘弾性及び引張特性を評価した。 A lab plast mill was used for kneading CNF (or dispersant-treated CNF) and POM, and the mixture was kneaded at 180 to 195 ° C. and a rotation speed of 45 to 100 rpm for 20 to 70 minutes. Next, using a vacuum dryer, the obtained kneaded product was dried at 120 ° C. for 5 hours to obtain an unmolded composite material. The unmolded composite material was heated at 190 ° C. for 4 minutes using a hot press machine, pressurized at a pressure of 180 kg / cm 2 for 1 minute, and then allowed to cool at room temperature to prepare a composite sheet. Various data were acquired from the acquired composite sheet by the following measurement methods, and the dimensional stability, dynamic viscoelasticity and tensile properties were evaluated.
[線膨張係数の測定方法]
 前記複合シートの線膨張係数を熱機械分析(TMA)の機能を備えた動的粘弾性測定装置(ティー・エイ・インスツルメント・ジャパン社製Q800型DMA)を使用して測定した。
(測定条件)
 ・静荷重:50mN
 ・温度範囲:30~120℃(30℃における長さの変化を0%とした)
 ・昇温速度:3℃/分
 ・試験片:幅5mm及び長さ25~30mmの短冊形、厚み0.1~0.3mm
[Measurement method of coefficient of linear expansion]
The coefficient of linear expansion of the composite sheet was measured using a dynamic viscoelasticity measuring device (Q800 type DMA manufactured by TA Instruments Japan) equipped with a thermomechanical analysis (TMA) function.
(Measurement condition)
・ Static load: 50mN
-Temperature range: 30 to 120 ° C. (change in length at 30 ° C is 0%)
・ Temperature rise rate: 3 ℃ / min ・ Test piece: Strip type with width 5mm and length 25-30mm, thickness 0.1-0.3mm
[動的粘弾性の測定方法]
 前記複合シートの動的粘弾性(DMA)を、前記動的粘弾性測定装置を使用して測定した。
(測定条件)
 ・測定モード:引張
 ・試験片:幅5mm及び長さ25~30mmの短冊形、厚み0.1~0.3mm
 ・つかみ間距離:15mm
 ・昇温速度:3℃/分
 ・ひずみ:0.1%
 ・測定温度:-100~160℃又は室温~160℃
(軟化温度の求め方)
 図7に示すように、貯蔵弾性率の変化を示す曲線のうち、低温側に認められる直線部分を延長した直線と、貯蔵弾性率の低下速度が最大となる部分の接線との交点が示す温度を軟化温度とする。
[Measurement method of dynamic viscoelasticity]
The dynamic viscoelasticity (DMA) of the composite sheet was measured using the dynamic viscoelasticity measuring device.
(Measurement condition)
-Measurement mode: Tensile-Test piece: Strip type with width 5 mm and length 25-30 mm, thickness 0.1-0.3 mm
・ Distance between grips: 15 mm
・ Temperature rise rate: 3 ℃ / min ・ Strain: 0.1%
-Measurement temperature: -100 to 160 ° C or room temperature to 160 ° C
(How to find the softening temperature)
As shown in FIG. 7, the temperature indicated by the intersection of the straight line extending the straight line portion recognized on the low temperature side and the tangent line of the portion where the rate of decrease in the storage elastic modulus is maximum in the curve showing the change in the storage elastic modulus. Let be the softening temperature.
[引張試験の方法]
 下記測定条件によって、前記複合シートの引張試験を実施した。
(測定条件)
 ・試験片:幅5mmの短冊形
 ・つかみ具間距離:20mm
 ・引張速度:5mm/分
[Tensile test method]
A tensile test of the composite sheet was carried out under the following measurement conditions.
(Measurement condition)
・ Test piece: strip shape with a width of 5 mm ・ Distance between grippers: 20 mm
・ Tensile speed: 5 mm / min
 表2に示す測定結果から、綿由来のCNFを含有する複合材料は、線膨張係数が低い値を示しており、優れた寸法安定性を有していることが認められた。特に、アミド系分散剤を含有する複合材料は、顕著に線膨張係数が低い値を示し、精密部品へ適用され得る可能性を示した。 From the measurement results shown in Table 2, it was confirmed that the cotton-derived CNF-containing composite material showed a low coefficient of linear expansion and had excellent dimensional stability. In particular, the composite material containing the amide-based dispersant showed a significantly low coefficient of linear expansion, indicating the possibility of being applied to precision parts.
 また、綿由来のCNFを含有する複合材料は、100℃における貯蔵弾性率が比較的高い値を示しており、優れた耐熱性を有することが認められた。特に、アミド系分散剤を含有する複合材料は、それを含有しない複合材料よりも貯蔵弾性率が高く、より優れた耐熱性を有するため、より高い温度領域でも利用可能であることが認められた。  In addition, the cotton-derived CNF-containing composite material showed a relatively high storage elastic modulus at 100 ° C., and was found to have excellent heat resistance. In particular, it was confirmed that the composite material containing the amide-based dispersant has a higher storage elastic modulus and has better heat resistance than the composite material not containing the amide-based dispersant, and therefore can be used even in a higher temperature range. ..
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  ポリアセタール樹脂と、セルロースナノファイバーとを含有し、
     前記セルロースナノファイバーは、セルロースの水酸基の一部がアシル化されており、
     前記セルロースナノファイバーが、綿由来である、複合材料。
    Contains polyacetal resin and cellulose nanofibers,
    In the cellulose nanofiber, a part of the hydroxyl group of cellulose is acylated.
    A composite material in which the cellulose nanofibers are derived from cotton.
  2.  前記アシル化が、アセチル化である、請求項1に記載の複合材料。 The composite material according to claim 1, wherein the acylation is acetylation.
  3.  アミド系分散剤をさらに含有する、請求項1又は2に記載の複合材料。 The composite material according to claim 1 or 2, further containing an amide-based dispersant.
  4.  前記アミド系分散剤が、ポリオキシエチレンアルキルアミドである、請求項3に記載の複合材料。 The composite material according to claim 3, wherein the amide-based dispersant is a polyoxyethylene alkylamide.
PCT/JP2019/033547 2019-08-27 2019-08-27 Composite material WO2021038723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541843A JP7237165B2 (en) 2019-08-27 2019-08-27 Composite material
PCT/JP2019/033547 WO2021038723A1 (en) 2019-08-27 2019-08-27 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033547 WO2021038723A1 (en) 2019-08-27 2019-08-27 Composite material

Publications (1)

Publication Number Publication Date
WO2021038723A1 true WO2021038723A1 (en) 2021-03-04

Family

ID=74683893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033547 WO2021038723A1 (en) 2019-08-27 2019-08-27 Composite material

Country Status (2)

Country Link
JP (1) JP7237165B2 (en)
WO (1) WO2021038723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
JP6091589B2 (en) * 2015-03-19 2017-03-08 国立大学法人京都大学 Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
JP2018197304A (en) * 2017-05-24 2018-12-13 川研ファインケミカル株式会社 Leveling agent and composition containing the same
JP2019006875A (en) * 2017-06-22 2019-01-17 旭化成株式会社 Highly heat-resistant resin composite containing chemically modified cellulose fine fiber
JP2019014865A (en) * 2016-12-28 2019-01-31 旭化成株式会社 Cellulose-containing resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091589B2 (en) * 2015-03-19 2017-03-08 国立大学法人京都大学 Fiber reinforced resin composition containing chemically modified cellulose nanofiber and thermoplastic resin
JP2017014406A (en) * 2015-07-01 2017-01-19 味の素株式会社 Resin composition
JP2019014865A (en) * 2016-12-28 2019-01-31 旭化成株式会社 Cellulose-containing resin composition
JP2018197304A (en) * 2017-05-24 2018-12-13 川研ファインケミカル株式会社 Leveling agent and composition containing the same
JP2019006875A (en) * 2017-06-22 2019-01-17 旭化成株式会社 Highly heat-resistant resin composite containing chemically modified cellulose fine fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215756A1 (en) * 2021-04-09 2022-10-13 旭化成株式会社 Polyacetal resin composition and method for manufacturing same

Also Published As

Publication number Publication date
JP7237165B2 (en) 2023-03-10
JPWO2021038723A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Fernandes et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose
JP6640623B2 (en) Masterbatch containing acylated modified microfibrillated plant fibers
JP2013177540A (en) Rubber modifying material, rubber latex-dispersed solution and rubber composition
JP6678698B2 (en) Fine cellulose-containing resin composition
WO2021038723A1 (en) Composite material
JP2023053377A (en) Cellulose fine fiber-reinforced polyamide resin molding
JP6871079B2 (en) Method for producing defibrated cellulose fiber and method for producing resin composition
JP2022003120A (en) Cellulose resin composition and method for producing the same
JP2021172671A (en) Powdery fine cellulose fiber, resin composition, molding and method for producing the same
JP6083376B2 (en) Rubber modifier, rubber latex dispersion and rubber composition
JP7367918B2 (en) Vinyl chloride polymer composition, its manufacturing method and its uses
JP2014139303A (en) Rubber modifier, rubber latex dispersion and rubber composition
EP3985070A1 (en) Resin composition containing cellulose nanocrystals
WO2020095845A1 (en) Fiber-reinforced resin composition and production method therefor, and molded article
JP7492861B2 (en) Polyamide resin composition and method for producing same
WO2023277145A1 (en) Polysaccharide nanofiber-blended polysaccharide composition production method
Wei et al. Trifluoroacetic acid as an effective dispersing medium for cellulose nanocrystals
JP2020056045A (en) Fine cellulose-containing resin composition
JP2020196783A (en) Chemically modified cellulose fine fiber, and high heat resistant resin composite containing chemically modified cellulose fine fiber
Termizi et al. Mechanical and morphological properties of pure α-cellulose-filled polylactic acid (PLA) biocomposite
US20240263396A1 (en) Fine Cellulose Fibers and Production Method Therefor, Nonwoven Fabric, and Fiber-Reinforced Resin and Production Method Therefor
JP2022030446A (en) Dicarboxylic acid monoesterification modified cellulose nanofiber
JP2014074164A (en) Rubber modifier, rubber latex dispersion, and rubber composition
Mascal et al. Trifluoroacetic Acid as an Effective Dispersing Medium for Cellulose Nanocrystals
JP2023060625A (en) Esterified cellulose nanofiber and production method of resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943276

Country of ref document: EP

Kind code of ref document: A1