WO2021037076A1 - 二次电池 - Google Patents

二次电池 Download PDF

Info

Publication number
WO2021037076A1
WO2021037076A1 PCT/CN2020/111451 CN2020111451W WO2021037076A1 WO 2021037076 A1 WO2021037076 A1 WO 2021037076A1 CN 2020111451 W CN2020111451 W CN 2020111451W WO 2021037076 A1 WO2021037076 A1 WO 2021037076A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
area
secondary battery
electrode
layer
Prior art date
Application number
PCT/CN2020/111451
Other languages
English (en)
French (fr)
Inventor
谢绵钰
王广军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20857179.4A priority Critical patent/EP3907819B1/en
Publication of WO2021037076A1 publication Critical patent/WO2021037076A1/zh
Priority to US17/488,352 priority patent/US11855304B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of battery technology, in particular to a secondary battery.
  • lithium-ion batteries are widely used in portable electronic devices such as mobile phones and notebooks, as well as electric vehicles and electric bicycles due to their high energy density, high power density, many cycles of use, and long storage time. Waiting for electric vehicles.
  • the electrode components of lithium ion batteries are usually made of metal.
  • the positive electrode components usually use aluminum foil
  • the negative electrode components usually use copper foil.
  • the positive electrode member and the negative electrode member will be short-circuited, causing fire and explosion of the lithium ion battery.
  • the purpose of this application is to provide a secondary battery that can reduce the risk of short circuit and increase the energy density.
  • the present application provides a secondary battery, which includes an electrode assembly, a packaging bag, and an electrode lead.
  • the electrode assembly is contained in a packaging bag, and the electrode assembly includes a first electrode member, a second electrode member and a diaphragm, and the diaphragm separates the first electrode member and the second electrode member.
  • the first electrode member includes an insulating base, a conductive layer, an active material layer, and a conductive structure.
  • the conductive layer is disposed on the surface of the insulating substrate, and the conductive layer has a first part and a second part extending from the first part.
  • the first part is coated with an active material layer, and the second part is not coated with an active material layer.
  • the conductive structure is welded to the second part.
  • the electrode lead is connected to the conductive structure and extends to the outside of the packaging bag.
  • the part of the insulating base corresponding to the first part and the first part form a main body part, and the part of the insulating base corresponding to the second part and the second part form an electrical guiding part.
  • the electrical guide portion has an inclined area arranged obliquely with respect to the main body portion, and the first welding area is at least partially located in the inclined area.
  • the first welding area is spaced apart from the first portion.
  • the electrical guide part further has a transition area, and the transition area is connected between the inclined area and the main body part. Relative to the transition area, the inclined area is bent in a direction closer to the electrode lead.
  • the surface of the transition region is not covered by the conductive structure.
  • the conductive layer is disposed on opposite sides of the insulating base.
  • the conductive structure includes a first conductive member and a second conductive member, and the first conductive member is connected to the second conductive member.
  • the first welding zone includes a first sub-welding zone and a second sub-welding zone.
  • the first conductive element is welded to the second part of the area on one side of the insulating base to form a first sub-welding area
  • the second conductive element is welded to the second part of the area on the other side of the insulating base to form a second sub-welding area .
  • the first conductive member in a direction away from the main body, the first conductive member extends beyond the second conductive member, and the portion of the first conductive member that extends beyond the second conductive member is welded to the electrode lead.
  • the first conductive member includes a first connection part and a second connection part.
  • the first connecting part is welded to the second part to form a first sub-welding area, and an end of the first connecting part away from the main body part extends beyond the second part.
  • the second connecting portion extends from an end of the first connecting portion away from the main body portion and is bent relative to the first connecting portion, and the second connecting portion is welded to the electrode lead.
  • the second conductive member is welded to the area of the first connecting part that exceeds the second part.
  • each electrical guiding part is connected to a corresponding conductive structure.
  • the angle between the inclined area of the outermost electrical guide and the main body is 100 degrees to 160 degrees.
  • the packaging bag has a top wall and a first side wall, the top wall is located on one side of the electrode assembly along the thickness direction, and the first side wall extends from the edge of the top wall and is located on a side of the electrical guide part away from the main body. side.
  • the first side wall is arranged obliquely with respect to the top wall, and the included angle between the first side wall and the top wall is smaller than the included angle between the inclined area of the outermost electrical guide part and the main body part.
  • the surface of the first welding area is provided with insulating glue.
  • the thickness of the conductive layer can be reduced by providing an insulating substrate.
  • the conductive layer has a small thickness, the conductive layer generates less burrs at the part pierced by the foreign body, and it is difficult to pierce the separator, thereby reducing the risk of short circuit and improving safety performance.
  • the present application reduces the space occupied by the first welding zone and improves the energy density of the secondary battery by arranging the first welding zone obliquely.
  • Fig. 1 is a schematic diagram of an embodiment of a secondary battery according to the present application.
  • Fig. 2 is a cross-sectional view of the secondary battery of Fig. 1 taken along line A-A.
  • Fig. 3 is a cross-sectional view of the secondary battery of Fig. 1 taken along the line B-B.
  • Fig. 4 is an enlarged view of Fig. 3 in the box.
  • Fig. 5 is a schematic diagram of an embodiment of an electrode assembly of a secondary battery according to the present application.
  • Fig. 6 is a schematic diagram of a packaging film of a packaging bag for a secondary battery according to the present application.
  • Fig. 7 is a cross-sectional view of the packaging film of the packaging bag of the secondary battery according to the present application.
  • Fig. 8 is a schematic diagram of an embodiment of the first electrode member in an unfolded state.
  • Fig. 9 is an enlarged view of Fig. 8 in the box.
  • Fig. 10 is a cross-sectional view taken along line C-C in Fig. 9;
  • Fig. 11 is a schematic diagram of another embodiment of the first electrode member.
  • 11 first electrode member 111 insulating substrate; 112 conductive layer; 112a first part; 112b second part; 113 active material layer; 114 conductive structure; 1141 first conductive member; 1141a first connection part; 1141b second connection part; 1142 second conductive element; 115 insulating glue
  • P1 main body part P2 electric guide part; P21 inclined area; P22 transition area;
  • W1 first welding zone W11 first sub welding zone; W12 second sub welding zone; W2 second welding zone; W3 third welding zone;
  • the secondary battery of the present application includes an electrode assembly 1, a packaging bag 2 and an electrode lead 3.
  • the electrode assembly 1 is the core component of the secondary battery to realize the charging and discharging function. Referring to FIGS. 3 to 5, the electrode assembly 1 includes a first electrode member 11, a second electrode member 12 and a separator 13. The diaphragm 13 separates the first electrode member 11 and the second electrode member 12. The electrode assembly 1 is contained in a packaging bag 2.
  • the electrode assembly 1 may have a wound structure. Both the first electrode member 11 and the second electrode member 12 are one, and the first electrode member 11 and the second electrode member 12 have a belt-shaped structure. The first electrode member 11, the separator 13, and the second electrode member 12 are sequentially stacked and wound two or more turns to form the electrode assembly 1. The electrode assembly 1 is flat.
  • the packaging bag 2 includes two layers of packaging film 21.
  • the two-layer packaging film 21 is arranged up and down in the thickness direction Z. Referring to FIG. 6, at least one layer of packaging film 21 is punched to form a cavity, and the electrode assembly 1 is located between the two layers of packaging film 21 and is accommodated in the cavity.
  • each packaging film 21 includes a protective layer 211, a metal layer 212 and a connection layer 213.
  • the protection layer 211 and the connection layer 213 are respectively disposed on both sides of the metal layer 212.
  • the protective layer 211 may be fixed to the surface of the metal layer 212 away from the electrode assembly 1 by an adhesive.
  • the connection layer 213 may be fixed to the surface of the metal layer 212 close to the electrode assembly 1 by an adhesive.
  • the material of the protective layer 211 can be nylon or polyethylene terephthalate.
  • the material of the metal layer 212 may be aluminum foil or steel foil.
  • the material of the connection layer 213 may be polypropylene.
  • each packaging film 21 has a top wall 214 and a plurality of side walls, and the top wall 214 is located on one side of the electrode assembly 1 along the thickness direction Z.
  • a plurality of side walls extend from the edge of the top wall 214.
  • the top wall 214 and the plurality of side walls enclose a cavity for accommodating the electrode assembly 1.
  • Each packaging film 21 also has an extension wall 217.
  • the extension wall 217 extends from the edges of the side walls away from the top wall 214 and surrounds the outside of the cavity.
  • the extension walls 217 of the two-layer packaging film 21 are connected to form a sealing portion 22.
  • the connecting layer 213 of the two layers of packaging film 21 at the extension wall 217 is welded together directly or indirectly, thereby forming a sealed packaging bag 2.
  • the connecting layer 213 is melted and compressed. Therefore, after the hot pressing, the thickness of the sealing portion 22 is smaller than the sum of the thicknesses of the two layers of packaging film 21 before the hot pressing.
  • the electrode lead 3 is connected to the electrode assembly 1 and passes through the sealing portion 22 and extends to the outside of the packaging bag 2.
  • One electrode lead 3 is electrically connected to the first electrode member 11, and the other electrode lead 3 is electrically connected to the second electrode member 12.
  • the two electrode leads 3 connect the electrode assembly 1 with other components outside the packaging bag 2 so as to realize the charging and discharging of the electrode assembly 1.
  • the material of the electrode lead 3 can be aluminum, nickel or copper with nickel plated.
  • the two electrode leads 3 can respectively protrude from the two ends of the packaging bag 2 along the length direction X, and can also protrude from the same end of the packaging bag 2 along the length direction X.
  • the electrode lead 3 has a sheet shape and is substantially parallel to the longitudinal direction X.
  • the electrode lead 3 passes between the two packaging films 21, and because the connection layer 213 is thin, the electrode lead 3 is easily in contact with the metal layer 212, causing safety risks. Therefore, the secondary battery of the present application is provided with the insulating member 4.
  • the two insulators 4 separate the two electrode leads 3 from the sealing portion 22, respectively.
  • Each insulating member 4 surrounds the outer side of a corresponding electrode lead 3.
  • a part of the insulator 4 is clamped between the two packaging films 21 to separate the electrode lead 3 from the packaging film 21 and reduce the risk of contact between the electrode lead 3 and the metal layer 212.
  • the material of the insulating member 4 may be polypropylene. Since a part of the insulating member 4 is sandwiched between the two layers of packaging films 21, when the two layers of packaging film 21 are heat-pressed, the connecting layer 213 of the two layers of packaging film 21 will be welded to the insulating member 4.
  • the first electrode member 11 includes an insulating base 111, a conductive layer 112, an active material layer 113 and a conductive structure 114.
  • the material of the insulating base 111 can be a PET (polyethylene terephthalate) film or a PP (polypropylene) film.
  • the conductive layer 112 is disposed on the surface of the insulating base 111.
  • the material of the conductive layer 112 is selected from at least one of metal conductive materials and carbon-based conductive materials.
  • the metal conductive material may be at least one of aluminum, copper, nickel, titanium, silver, nickel-copper alloy, and aluminum-zirconium alloy.
  • the carbon-based conductive material may be at least one of graphite, acetylene black, graphene, and carbon nanotubes.
  • the conductive layer 112 may be formed on the surface of the insulating base 111 by at least one of vapor deposition and electroless plating.
  • vapor deposition methods include physical vapor deposition (Physical Vapor Deposition, PVD), such as thermal evaporation (Thermal Vaporation Deposition).
  • the conductive layer 112 has a first portion 112a and a second portion 112b extending from the first portion 112a.
  • the first portion 112a is coated with the active material layer 113, and the second portion 112b is not coated with the active material layer 113.
  • the active material layer 113 may be provided on the surface of the conductive layer 112 by coating. Active materials (such as lithium manganate, lithium iron phosphate), binders, conductive agents, and solvents can be made into a slurry, and then the slurry can be coated on the surface of the conductive layer 112, and the slurry is cured to form the active material layer 113 .
  • Active materials such as lithium manganate, lithium iron phosphate
  • the thickness of the insulating base 111 may be 1 micrometer ( ⁇ m) to micrometers ( ⁇ m), and the thickness of the conductive layer 112 may be 0.1 micrometers ( ⁇ m) to 10 micrometers ( ⁇ m). Since the conductive layer 112 is relatively thin, the burrs generated by the conductive layer 112 during the cutting of the first electrode member 11 are relatively small, and it is difficult to pierce the diaphragm 13 with a thickness of more than ten micrometers, thereby reducing the risk of short circuit and improving safety performance.
  • the conductive layer 112 when a foreign object pierces the first electrode member 11 of the secondary battery, since the conductive layer 112 has a small thickness, the conductive layer 112 generates less burrs at the portion pierced by the foreign object, and it is difficult to pierce the separator 13, thereby Reduce the risk of short circuit and improve safety performance.
  • the portion of the insulating base 111 corresponding to the first portion 112a and the first portion 112a form the main body portion P1.
  • the portion of the insulating base 111 corresponding to the second portion 112b and the second portion 112b form an electrical guide portion P2.
  • the conductive structure 114 is welded to the second portion 112b and forms the first welding area W1.
  • the first welding area W1 may be formed by ultrasonic welding.
  • the electrode lead 3 is connected to the conductive structure 114 and extends to the outside of the packaging bag 2.
  • the electric guide portion P2 has an inclined area P21 that is inclined with respect to the main body portion P1.
  • the main body P1 is substantially parallel to the longitudinal direction X, and the inclined region P21 is inclined with respect to the longitudinal direction X.
  • the first welding area W1 is at least partially located in the inclined area P21.
  • the conductive structure 114 is welded to the area of the second portion 112b located in the inclined area P21.
  • the first welding zone is inclined with respect to the main body portion P1.
  • the first welding zone W1 has poor flexibility and is difficult to bend. Therefore, if the entire first welding area W1 is parallel to the length direction X, the first welding area W1 will occupy a relatively large space in the length direction X, which affects the energy density.
  • the first welding area W1 is arranged obliquely, so that the space occupied by the first welding area W1 in the length direction X can be reduced, and the energy density of the secondary battery can be improved.
  • the first welding area W1 is spaced apart from the first portion 112a.
  • the first welding area W1 is separated from the first portion 112a by a set distance, and the area of the second portion 112b located between the first welding area W1 and the first portion 112a can be bent, thereby connecting the first welding area W1 and the first portion 112a.
  • a welding zone W1 is arranged obliquely.
  • the electrical guide P2 also has a transition area P22.
  • the transition area P22 is connected between the inclined area P21 and the main body P1. With respect to the transition area P22, the inclined area P21 is bent in a direction approaching the electrode lead 3.
  • the distance between the bending part of the electrical guiding part P2 and the active material layer 113 can be ensured, the stress at the junction of the first part 112a and the second part 112b when the electrical guiding part P2 is bent is reduced, and the activity is reduced. Risk of material layer 113 falling off.
  • the surface of the transition area P22 is not covered by the conductive structure 114. In this way, it is possible to avoid bending the conductive structure 114 when bending the electrical guide portion P2, thereby reducing the bending difficulty.
  • the conductive layer 112 is disposed on two opposite surfaces of the insulating base 111.
  • the conductive layers 112 located on both sides of the insulating base 111 are separated by the insulating base 111.
  • the current between the conductive layers 112 cannot be directly transferred.
  • the conductive structure 114 of the present application is connected to the conductive layers 112 respectively located on both sides of the insulating base 111.
  • the conductive structure 114 includes a first conductive member 1141 and a second conductive member 1142.
  • the first conductive member 1141 is connected to the second conductive member 1142.
  • the first welding area W1 includes a first sub-welding area W11 and a second sub-welding area W12.
  • the first conductive member 1141 is welded to the area of the second portion 112b on the surface of the insulating base 111 to form a first sub-welding area W11.
  • the second conductive member 1142 is welded to the area of the second portion 112b on the other side surface of the insulating base 111 to form a second sub-welding area W12. Both the first sub-welding area W11 and the second sub-welding area W12 are inclined with respect to the main body portion P1.
  • the first conductive member 1141 and the second conductive member 1142 can collect the currents on the conductive layers 112 respectively located on both sides of the insulating base 111 and transmit them to the electrode lead 3, thereby improving the overcurrent capability.
  • the first conductive member 1141 extends beyond the second conductive member 1142, and the portion of the first conductive member 1141 extending beyond the second conductive member 1142 is welded to the electrode lead 3.
  • the first conductive member 1141 includes a first connection portion 1141a and a second connection portion 1141b.
  • the first connecting portion 1141a is welded to the second portion 112b to form a first sub-welding area W11, and an end of the first connecting portion 1141a away from the main body portion P1 extends beyond the second portion 112b.
  • the second connection portion 1141 b extends from an end of the first connection portion 1141 a away from the main body portion P1 and is bent relative to the first connection portion 1141 a, and the second connection portion 1141 b is welded to the electrode lead 3.
  • the second conductive member 1142 is welded to the area of the first connecting portion 1141a that exceeds the second portion 112b.
  • the second connection portion 1141b is substantially parallel to the electrode lead 3.
  • the first connection portion 1141a is inclined with respect to the electrode lead 3.
  • each electrical guiding portion P2 is connected to the corresponding conductive structure 114.
  • the second connecting portion 1141b of the first conductive member 1141 of the plurality of conductive structures 114 is welded to the electrode lead 3 and forms a second welding area W2.
  • the second conductive member 1142 is welded to the first connecting portion 1141a and forms a third welding area W3.
  • the third welding area W3 is arranged obliquely with respect to the longitudinal direction X, thereby reducing the space occupied by the third welding area W3 in the longitudinal direction X.
  • the second welding area W2 there is no need to weld the second conductive members 1142 of the plurality of conductive structures 114 to the electrode lead 3, thereby reducing the welding difficulty and saving space.
  • the angle between the inclined area P21 of the outermost electrical guide portion P2 and the main body portion P1 is ⁇ .
  • the larger the space occupied by the inclined region P21 and the first welding zone W1 in the longitudinal direction X, and the lower the degree of bending of the inclined region P21 with respect to the main body P1.
  • the smaller the value of ⁇ the smaller the space occupied by the inclined area P21 and the first welding area W1 in the longitudinal direction X, and the higher the degree of bending of the inclined area P21 relative to the main body P1.
  • the value of ⁇ can be 100 degrees -160 degrees.
  • the multiple side walls of the packaging film 21 include a first side wall 215 and a second side wall 216.
  • the first side wall 215 and the second side wall 216 are respectively located on both sides of the electrode assembly 1 along the length direction X.
  • the first side wall 215 is located on a side of the electrical guide portion P2 away from the main body portion P1.
  • the first side wall 215 is inclined with respect to the top wall 214, and the angle between the first side wall 215 and the top wall 214 is ⁇ .
  • the thickness of the secondary battery is constant, the greater the value of ⁇ , the greater the size of the first side wall 215 in the longitudinal direction X, and the inclined area P21 between the first side wall 215 and the outermost electrical guide P2 The distance in the length direction X is also smaller. If the value of ⁇ is too large, the distance between the first welding area W1 and the first side wall 215 will be too small, so that when the secondary battery vibrates, the burrs on the surface of the first welding area W1 will easily pierce the first side wall 215.
  • the value of ⁇ is smaller than the value of ⁇ to reduce the risk of the first welding area W1 piercing the first side wall 215.
  • the surface of the first welding area W1 is provided with an insulating glue 115.
  • the insulating glue 115 can cover the burrs on the surface of the first welding area W1, thereby reducing the risk of the first welding area W1 piercing the packaging film 21 or other components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种二次电池,其包括电极组件、包装袋及电极引线。电极组件收容于包装袋内且包括第一电极构件、第二电极构件和隔膜,隔膜将第一电极构件和第二电极构件隔开。第一电极构件包括绝缘基体、导电层、活性物质层和导电结构。导电层设置于绝缘基体的表面,且导电层具有第一部分和第二部分,第一部分涂覆有活性物质层,第二部分未涂覆活性物质层,导电结构焊接于第二部分并形成第一焊接区。电极引线连接于导电结构并延伸到包装袋外部。绝缘基体的与第一部分对应的部分和第一部分形成主体部,绝缘基体的与第二部分对应的部分和第二部分形成电引导部。电引导部具有相对于主体部倾斜设置的倾斜区域,且第一焊接区至少部分位于倾斜区域。

Description

二次电池
相关申请的交叉引用
本申请要求享有于2019年08月27日提交的名称为“二次电池”的中国专利申请201921404422.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种二次电池。
背景技术
作为一种二次电池,锂离子电池由于具有能量密度高、功率密度高、循环使用次数多以及存储时间长等优点,而被广泛应用于手机和笔记本等便携式电子设备上以及电动汽车和电动自行车等电动交通工具上。
锂离子电池的电极构件通常采用金属材质,例如正电极构件通常采用铝箔,负电极构件则通常采用铜箔。然而,在穿钉实验中,会导致正电极构件和负电极构件内部短路,造成锂离子电池的起火、***。
发明内容
鉴于背景技术中存在的问题,本申请的目的在于提供一种二次电池,其能降低短路风险,提高能量密度。
为了实现上述目的,本申请提供了一种二次电池,其包括电极组件、包装袋以及电极引线。电极组件收容于包装袋内,且电极组件包括第一电极构件、第二电极构件和隔膜,隔膜将第一电极构件和第二电极构件隔开。第一电极构件包括绝缘基体、导电层、活性物质层和导电结构。导电层设置于绝缘基体的表面,且导电层具有第一部分和从第一部分延伸的第二部分,第一部分涂覆有活性物质层,第二部分未涂覆活性物质层, 导电结构焊接于第二部分并形成第一焊接区。电极引线连接于导电结构并延伸到包装袋外部。绝缘基体的与第一部分对应的部分和第一部分形成主体部,绝缘基体的与第二部分对应的部分和第二部分形成电引导部。电引导部具有相对于主体部倾斜设置的倾斜区域,且第一焊接区至少部分位于倾斜区域。
在一些实施例中,沿电引导部的延伸方向,第一焊接区与第一部分间隔设置。
在一些实施例中,电引导部还具有过渡区域,过渡区域连接于倾斜区域和主体部之间。相对于过渡区域,倾斜区域朝靠近电极引线的方向弯折。
在一些实施例中,过渡区域的表面未被导电结构覆盖。
在一些实施例中,导电层设置于绝缘基体的相对两侧表面上。导电结构包括第一导电件和第二导电件,第一导电件连接于第二导电件。第一焊接区包括第一子焊接区和第二子焊接区。第一导电件焊接于第二部分位于绝缘基体一侧表面的区域并形成第一子焊接区,第二导电件焊接于第二部分位于绝缘基体另一侧表面的区域并形成第二子焊接区。
在一些实施例中,沿远离主体部的方向,第一导电件超出第二导电件,且第一导电件的超出第二导电件的部分焊接于电极引线。
在一些实施例中,第一导电件包括第一连接部和第二连接部。第一连接部焊接于第二部分并形成第一子焊接区,且第一连接部的远离主体部的一端超出第二部分。第二连接部从第一连接部的远离主体部的一端延伸并相对于第一连接部弯折,且第二连接部焊接于电极引线。第二导电件焊接于第一连接部的超出第二部分的区域。
在一些实施例中,电引导部为多个且沿电极组件的厚度方向布置,导电结构为多个,且各电引导部连接于对应的导电结构。在电极组件 的厚度方向上,最外侧的电引导部的倾斜区域与主体部的夹角为100度-160度。
在一些实施例中,包装袋具有顶壁和第一侧壁,顶壁位于电极组件沿厚度方向的一侧,第一侧壁从顶壁的边缘延伸且位于电引导部的远离主体部的一侧。第一侧壁相对于顶壁倾斜设置,且第一侧壁与顶壁的夹角小于最外侧的电引导部的倾斜区域与主体部的夹角。
在一些实施例中,第一焊接区的表面设有绝缘胶。
本申请的有益效果如下:本申请通过设置绝缘基体,可以减小导电层的厚度。当异物刺穿二次电池的电极构件时,由于导电层厚度较小,因此导电层在被异物刺穿的部位产生的毛刺较小,很难刺破隔膜,从而降低短路风险,提高安全性能。本申请通过将第一焊接区倾斜设置,减小第一焊接区占用的空间,提高二次电池的能量密度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为根据本申请的二次电池的一实施例的示意图。
图2为图1的二次电池沿线A-A作出的剖视图。
图3为图1的二次电池沿线B-B作出的断面图。
图4为图3在方框处的放大图。
图5为根据本申请的二次电池的电极组件的一实施例的示意图。
图6为根据本申请的二次电池的包装袋的包装膜的一示意图。
图7为根据本申请的二次电池的包装袋的包装膜的一断面图。
图8为第一电极构件的一实施例在展开状态的示意图。
图9为图8在方框处的放大图。
图10为图9沿线C-C作出的剖视图。
图11为第一电极构件的另一实施例的示意图。
其中,附图标记说明如下:
1电极组件;
11第一电极构件;111绝缘基体;112导电层;112a第一部分;112b第二部分;113活性物质层;114导电结构;1141第一导电件;1141a第一连接部;1141b第二连接部;1142第二导电件;115绝缘胶
12第二电极构件;
13隔膜;
2包装袋;21包装膜;211保护层;212金属层;213连接层;214顶壁;215第一侧壁;216第二侧壁;217延伸壁;22密封部;
3电极引线;
4绝缘件;
P1主体部;P2电引导部;P21倾斜区域;P22过渡区域;
W1第一焊接区;W11第一子焊接区;W12第二子焊接区;W2第二焊接区;W3第三焊接区;
X长度方向;Y宽度方向;Z厚度方向。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第 一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”是指两个以上(包括两个);除非另有规定或说明,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接,或信号连接;“连接”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
申请人研究发现,在穿钉实验中,由于铝箔(铜箔)在钉子的穿刺中会产生毛刺,使得毛刺直接搭接在负电极构件(正电极构件)上,因此会导致正电极构件和负电极构件内部短路,造成锂离子电池的起火、***。
参照图1和图2,本申请的二次电池包括电极组件1、包装袋2以及电极引线3。
电极组件1是二次电池实现充放电功能的核心构件。参照图3至图5,电极组件1包括第一电极构件11、第二电极构件12和隔膜13。隔膜13将第一电极构件11和第二电极构件12隔开。电极组件1收容于包装袋2内。
在一些实施例中,电极组件1可为卷绕式结构。第一电极构件11和第二电极构件12均为一个,且第一电极构件11和第二电极构件12为带状结构。将第一电极构件11、隔膜13和第二电极构件12依次层叠并卷绕两圈以上以形成电极组件1。电极组件1为扁平状。
参照图2,包装袋2包括两层包装膜21。两层包装膜21沿厚 度方向Z上下设置。参照图6,至少一层包装膜21通过冲压形成凹腔,而电极组件1位于两层包装膜21之间且收容于凹腔内。
参照图7,各包装膜21包括保护层211、金属层212和连接层213。保护层211和连接层213分别设置于金属层212的两侧。示例性地,保护层211可通过粘接剂固定于金属层212的远离电极组件1的表面。连接层213可通过粘接剂固定于金属层212的靠近电极组件1的表面。
保护层211的材质可为尼龙或聚对苯二甲酸乙二醇酯。金属层212的材质可为铝箔或钢箔。连接层213的材质可为聚丙烯。
在一些实施例中,参照图6,各包装膜21具有顶壁214和多个侧壁,顶壁214位于电极组件1沿厚度方向Z的一侧。多个侧壁从顶壁214的边缘延伸。顶壁214和多个侧壁围成用于收容电极组件1的凹腔。各包装膜21还具有延伸壁217。延伸壁217从多个侧壁的远离顶壁214的边缘延伸且环绕在凹腔的外侧。
两层包装膜21的延伸壁217连接并形成密封部22。示例性地,通过热压,两层包装膜21在延伸壁217处的连接层213直接或间接地熔接在一起,从而形成密封的包装袋2。在热压过程中,连接层213熔化且被压缩,因此,热压成型后,密封部22的厚度小于两层包装膜21在热压前的厚度之和。
电极引线3连接于电极组件1、穿过密封部22并延伸到包装袋2外部。示例性地,电极引线3可为两个。一个电极引线3电连接于第一电极构件11,另一个电极引线3电连接于第二电极构件12。两个电极引线3将电极组件1与包装袋2外部的其它构件连接,从而实现电极组件1的充放电。电极引线3的材质可为铝、镍或铜镀镍。
两个电极引线3可分别从包装袋2沿长度方向X的两端伸出, 也可从包装袋2沿长度方向X的同一端伸出。电极引线3为片状且大体平行于长度方向X。
电极引线3从两层包装膜21之间穿过,而由于连接层213较薄,所以电极引线3容易与金属层212接触,引发安全风险。因此,本申请的二次电池设置绝缘件4。
在一些实施例中,绝缘件4可为两个。两个绝缘件4分别将两个电极引线3与密封部22隔开。各绝缘件4环绕在对应一个电极引线3的外侧。绝缘件4的一部分夹持在两层包装膜21之间,从而将电极引线3与包装膜21隔开,降低电极引线3与金属层212接触的风险。绝缘件4的材质可为聚丙烯。由于绝缘件4的一部分夹持在两层包装膜21之间,因此,当对两层包装膜21进行热压时,两层包装膜21的连接层213会熔接于绝缘件4。
参照图8至图10,第一电极构件11包括绝缘基体111、导电层112、活性物质层113和导电结构114。
绝缘基体111材质可为PET(聚对苯二甲酸乙二醇酯)膜或PP(聚丙烯)膜。
导电层112设置于绝缘基体111的表面。导电层112的材料选自金属导电材料、碳基导电材料中的至少一种。金属导电材料可以为铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种。碳基导电材料可以为石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。导电层112可通过气相沉积法(vapor deposition)、化学镀(electroless plating)中的至少一种形成于绝缘基体111的表面。其中,气相沉积法包括物理气相沉积法(Physical Vapor Deposition,PVD),例如热蒸发法(Thermal Evaporation Deposition)。
导电层112具有第一部分112a和从第一部分112a延伸的第二 部分112b。第一部分112a涂覆有活性物质层113,而第二部分112b未涂覆活性物质层113。
活性物质层113可通过涂布的方式设置到导电层112的表面。可将活性材料(例如锰酸锂、磷酸铁锂)、粘结剂、导电剂及溶剂制成浆料,然后将浆料涂布在导电层112的表面,浆料固化后形成活性物质层113。
绝缘基体111的厚度可为1微米(μm)至微米(μm),导电层112的厚度可为0.1微米(μm)至10微米(μm)。由于导电层112较薄,所以在裁切第一电极构件11的过程中,导电层112产生的毛刺较小,很难刺破十几微米的隔膜13,从而降低短路风险,提高安全性能。另外,当异物刺穿二次电池的第一电极构件11时,由于导电层112厚度较小,因此导电层112在被异物刺穿的部位产生的毛刺较小,很难刺破隔膜13,从而降低短路风险,提高安全性能。
绝缘基体111的与第一部分112a对应的部分和第一部分112a形成主体部P1。绝缘基体111的与第二部分112b对应的部分和第二部分112b形成电引导部P2。电引导部P2可为多个。参照图3和图4,当电极组件1卷绕成型后,多个电引导部P2沿厚度方向Z布置。
导电结构114焊接于第二部分112b并形成第一焊接区W1。第一焊接区W1可通过超声波焊接形成。电极引线3连接于导电结构114并延伸到包装袋2外部。
电引导部P2具有相对于主体部P1倾斜设置的倾斜区域P21。主体部P1大体平行于长度方向X,而倾斜区域P21相对于长度方向X倾斜。
第一焊接区W1至少部分位于倾斜区域P21。导电结构114焊接于第二部分112b的位于倾斜区域P21的区域。第一焊接区相对于主体部 P1倾斜。
第一焊接区W1的柔韧性较差,难以弯折。因此,如果第一焊接区W1整体平行于长度方向X,会导致第一焊接区W1在长度方向X上占用较大的空间,影响能量密度。
本申请通过将第一焊接区W1倾斜设置,能够减小第一焊接区W1在长度方向X上占用的空间,提高二次电池的能量密度。
沿电引导部P2的延伸方向,第一焊接区W1与第一部分112a间隔设置。沿电引导部P2的延伸方向,第一焊接区W1与第一部分112a间隔设定的距离,而第二部分112b位于第一焊接区W1与第一部分112a之间的区域可以弯折,从而将第一焊接区W1倾斜设置。
参照图4,电引导部P2还具有过渡区域P22。过渡区域P22连接于倾斜区域P21和主体部P1之间。相对于过渡区域P22,倾斜区域P21朝靠近电极引线3的方向弯折。通过设置过渡区域P22,可以保证电引导部P2的弯折处与活性物质层113的距离,减小第一部分112a和第二部分112b的连接处在弯折电引导部P2时的应力,降低活性物质层113脱落的风险。
过渡区域P22的表面未被导电结构114覆盖。这样,可以避免在弯折电引导部P2时弯折导电结构114,从而降低弯折难度。
在一些实施例中,导电层112设置于绝缘基体111的相对两侧表面上。分别位于绝缘基体111两侧的导电层112被绝缘基体111隔开。导电层112之间的电流无法直接传递。为了提高电引导部P的过流能力,本申请的导电结构114连接分别位于绝缘基体111两侧的导电层112。
参照图4和图10,导电结构114包括第一导电件1141和第二导电件1142。第一导电件1141连接于第二导电件1142。第一焊接区W1包括第一子焊接区W11和第二子焊接区W12。第一导电件1141焊接于第二 部分112b位于绝缘基体111一侧表面的区域并形成第一子焊接区W11。第二导电件1142焊接于第二部分112b位于绝缘基体111另一侧表面的区域并形成第二子焊接区W12。第一子焊接区W11和第二子焊接区W12均相对于主体部P1倾斜。
在本申请中,第一导电件1141和第二导电件1142能够将分别位于绝缘基体111两侧的导电层112上的电流汇集在一起,并传输到电极引线3,从而提高过流能力。
沿远离主体部P1的方向,第一导电件1141超出第二导电件1142,且第一导电件1141的超出第二导电件1142的部分焊接于电极引线3。在本申请中,只需将第一导电件1141的焊接于电极引线3即可,无需将第二导电件1142焊接到电极引线3。也就是说,本申请可以在电极引线3与导电结构114的焊接处,避免第一导电件1141和第二导电件1142在厚度方向Z上叠加,从而降低焊接难度,并节省空间。
第一导电件1141包括第一连接部1141a和第二连接部1141b。第一连接部1141a焊接于第二部分112b并形成第一子焊接区W11,且第一连接部1141a的远离主体部P1的一端超出第二部分112b。第二连接部1141b从第一连接部1141a的远离主体部P1的一端延伸并相对于第一连接部1141a弯折,且第二连接部1141b焊接于电极引线3。第二导电件1142焊接于第一连接部1141a的超出第二部分112b的区域。
第二连接部1141b大体平行于电极引线3。第一连接部1141a相对于电极引线3倾斜。在弯折第一导电件1141时,本申请无需弯折第二导电件1142,从而降低弯折难度。
导电结构114为多个,且各电引导部P2连接于对应的导电结构114。多个导电结构114的第一导电件1141的第二连接部1141b焊接于电极引线3并形成第二焊接区W2。第二导电件1142焊接于第一连接部 1141a并形成第三焊接区W3。
第三焊接区W3相对于长度方向X倾斜设置,从而降低第三焊接区W3在长度方向X上占用的空间。在形成第二焊接区W2时,无需将多个导电结构114的第二导电件1142焊接到电极引线3,从而降低焊接难度,并节省空间。
参照图4,在电极组件1的厚度方向Z上,最外侧的电引导部P2的倾斜区域P21与主体部P1的夹角为α。α的值越大,倾斜区域P21和第一焊接区W1在长度方向X上占用的空间越大,而倾斜区域P21相对于主体部P1弯折的程度越低。反之,α的值越小,倾斜区域P21和第一焊接区W1在长度方向X上占用的空间越小,而倾斜区域P21相对于主体部P1弯折的程度越高。如果α的值过小,那么倾斜区域P21相对于主体部P1弯折的程度较高,使得第二部分112b容易在弯折处产生裂纹,导致过流能力不足。综合考虑能量密度和过流能力,α的值可以为100度-160度。
包装膜21的多个侧壁包括第一侧壁215和第二侧壁216。第一侧壁215和第二侧壁216分别位于电极组件1沿长度方向X的两侧。其中,第一侧壁215位于电引导部P2的远离主体部P1的一侧。
参照图3和图4,第一侧壁215相对于顶壁214倾斜设置,且第一侧壁215与顶壁214的夹角为β。当二次电池的厚度一定时,β的值越大,第一侧壁215沿长度方向X的尺寸也就越大,而第一侧壁215与最外侧的电引导部P2的倾斜区域P21在长度方向X上的间距也就越小。如果β的值过大,会造成第一焊接区W1与第一侧壁215之间的间距过小,从而当二次电池震动时,第一焊接区W1表面的毛刺容易刺破第一侧壁215。
而通过增大α的值,可以增大第一焊接区W1与第一侧壁215 在长度方向X上的间距。因此,在本申请中,β的值小于α的值,以降低第一焊接区W1刺破第一侧壁215的风险。
在一些实施例中,参照图11,第一焊接区W1的表面设有绝缘胶115。绝缘胶115可以覆盖第一焊接区W1表面的毛刺,从而降低第一焊接区W1刺破包装膜21或其它构件的风险。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种二次电池,包括电极组件(1)、包装袋(2)以及电极引线(3);
    电极组件(1)收容于包装袋(2)内,且电极组件(1)包括第一电极构件(11)、第二电极构件(12)和隔膜(13),隔膜(13)将第一电极构件(11)和第二电极构件(12)隔开;
    第一电极构件(11)包括绝缘基体(111)、导电层(112)、活性物质层(113)和导电结构(114);
    其中,导电层(112)设置于绝缘基体(111)的表面,且导电层(112)具有第一部分(112a)和从第一部分(112a)延伸的第二部分(112b),第一部分(112a)涂覆有活性物质层(113),第二部分(112b)未涂覆活性物质层(113),导电结构(114)焊接于第二部分(112b)并形成第一焊接区(W1);
    电极引线(3)连接于导电结构(114)并延伸到包装袋(2)外部;
    绝缘基体(111)的与第一部分(112a)对应的部分和第一部分(112a)形成主体部(P1),绝缘基体(111)的与第二部分(112b)对应的部分和第二部分(112b)形成电引导部(P2);
    电引导部(P2)具有相对于主体部(P1)倾斜设置的倾斜区域(P21),且第一焊接区(W1)至少部分位于倾斜区域(P21)。
  2. 根据权利要求1所述的二次电池,其中,沿电引导部(P2)的延伸方向,第一焊接区(W1)与第一部分(112a)间隔设置。
  3. 根据权利要求2所述的二次电池,其中,
    电引导部(P2)还具有过渡区域(P22),过渡区域(P22)连接于倾斜区域(P21)和主体部(P1)之间;
    相对于过渡区域(P22),倾斜区域(P21)朝靠近电极引线(3)的方向弯折。
  4. 根据权利要求3所述的二次电池,其中,过渡区域(P22)的表面未被导电结构(114)覆盖。
  5. 根据权利要求1至4任一项所述的二次电池,其中,
    导电层(112)设置于绝缘基体(111)的相对两侧表面上;
    导电结构(114)包括第一导电件(1141)和第二导电件(1142),第一导电件(1141)连接于第二导电件(1142);
    第一焊接区(W1)包括第一子焊接区(W11)和第二子焊接区(W12);
    第一导电件(1141)焊接于第二部分(112b)位于绝缘基体(111)一侧表面的区域并形成第一子焊接区(W11),第二导电件(1142)焊接于第二部分(112b)位于绝缘基体(111)另一侧表面的区域并形成第二子焊接区(W12)。
  6. 根据权利要求5所述的二次电池,其中,沿远离主体部(P1)的方向,第一导电件(1141)超出第二导电件(1142),且第一导电件(1141)的超出第二导电件(1142)的部分焊接于电极引线(3)。
  7. 根据权利要求6所述的二次电池,其中,
    第一导电件(1141)包括第一连接部(1141a)和第二连接部(1141b);
    第一连接部(1141a)焊接于第二部分(112b)并形成第一子焊接区(W11),且第一连接部(1141a)的远离主体部(P1)的一端超出第二部分(112b);
    第二连接部(1141b)从第一连接部(1141a)的远离主体部(P1)的一端延伸并相对于第一连接部(1141a)弯折,且第二连接部(1141b)焊 接于电极引线(3);
    第二导电件(1142)焊接于第一连接部(1141a)的超出第二部分(112b)的区域。
  8. 根据权利要求1至7任一项所述的二次电池,其中,
    电引导部(P2)为多个且沿电极组件(1)的厚度方向(Z)布置,导电结构(114)为多个,且各电引导部(P2)连接于对应的导电结构(114);
    在电极组件(1)的厚度方向(Z)上,最外侧的电引导部(P2)的倾斜区域(P21)与主体部(P1)的夹角为100度-160度。
  9. 根据权利要求8所述的二次电池,其中,
    包装袋(2)具有顶壁(214)和第一侧壁(215),顶壁(214)位于电极组件(1)沿厚度方向(Z)的一侧,第一侧壁(215)从顶壁(214)的边缘延伸且位于电引导部(P2)的远离主体部(P1)的一侧;
    第一侧壁(215)相对于顶壁(214)倾斜设置,且第一侧壁(215)与顶壁(214)的夹角小于最外侧的电引导部(P2)的倾斜区域(P21)与主体部(P1)的夹角。
  10. 根据权利要求1至9任一项所述的二次电池,其中,第一焊接区(W1)的表面设有绝缘胶(115)。
  11. 根据权利要求1至10任一项所述的二次电池,其中,绝缘基体(111)的厚度可为1微米(μm)至微米(μm),导电层(112)的厚度可为0.1微米(μm)至10微米(μm)。
  12. 根据权利要求1至11任一项所述的二次电池,其中,包装袋(2)包括两层包装膜(21),两层包装膜(21)沿电极组件(1)的厚度方向(Z)上下设置,至少一层包装膜(21)通过冲压形成凹腔,而电极组件(1)位于两层包装膜(21)之间且收容于凹腔内。
  13. 根据权利要求12所述的二次电池,其中,包装膜(21)包括保护层(211)、金属层(212)和连接层(213),保护层(211)和连接层(213)分别设置于金属层(212)的两侧。
PCT/CN2020/111451 2019-08-27 2020-08-26 二次电池 WO2021037076A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20857179.4A EP3907819B1 (en) 2019-08-27 2020-08-26 Secondary battery
US17/488,352 US11855304B2 (en) 2019-08-27 2021-09-29 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201921404422.X 2019-08-27
CN201921404422.XU CN210136972U (zh) 2019-08-27 2019-08-27 二次电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/488,352 Continuation US11855304B2 (en) 2019-08-27 2021-09-29 Secondary battery

Publications (1)

Publication Number Publication Date
WO2021037076A1 true WO2021037076A1 (zh) 2021-03-04

Family

ID=69708411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111451 WO2021037076A1 (zh) 2019-08-27 2020-08-26 二次电池

Country Status (4)

Country Link
US (1) US11855304B2 (zh)
EP (1) EP3907819B1 (zh)
CN (1) CN210136972U (zh)
WO (1) WO2021037076A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210136972U (zh) 2019-08-27 2020-03-10 宁德时代新能源科技股份有限公司 二次电池
CN114730944B (zh) * 2021-03-15 2024-06-07 宁德新能源科技有限公司 柔性电池及应用该柔性电池的用电装置
CN116802921A (zh) * 2022-09-29 2023-09-22 宁德新能源科技有限公司 电化学装置及用电设备
WO2024065365A1 (zh) * 2022-09-29 2024-04-04 宁德新能源科技有限公司 电化学装置及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242613A (zh) * 1998-06-30 2000-01-26 三洋电机株式会社 电池
CN101026250A (zh) * 2006-02-22 2007-08-29 株式会社东芝 非水电解质电池、电池组和汽车
JP2008016368A (ja) * 2006-07-07 2008-01-24 Nec Corp フィルム外装電池および組電池
CN208507818U (zh) * 2018-06-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其极片
CN210136972U (zh) * 2019-08-27 2020-03-10 宁德时代新能源科技股份有限公司 二次电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734986B2 (en) * 2007-07-11 2014-05-27 Nissan Motor Co., Ltd. Laminate type battery
JP5784928B2 (ja) 2011-03-03 2015-09-24 シャープ株式会社 非水系二次電池
KR101863703B1 (ko) * 2014-10-20 2018-06-01 주식회사 엘지화학 파우치형 이차 전지 및 이의 제조방법
CN111900320B (zh) * 2017-11-22 2021-04-02 宁德时代新能源科技股份有限公司 电极组件和充电电池
KR102132844B1 (ko) * 2018-07-17 2020-07-10 삼성에스디아이 주식회사 이차 전지
CN209087968U (zh) 2018-08-02 2019-07-09 宁德时代新能源科技股份有限公司 电极构件、电极组件及二次电池
CN208820001U (zh) 2018-09-18 2019-05-03 宁德时代新能源科技股份有限公司 二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1242613A (zh) * 1998-06-30 2000-01-26 三洋电机株式会社 电池
CN101026250A (zh) * 2006-02-22 2007-08-29 株式会社东芝 非水电解质电池、电池组和汽车
JP2008016368A (ja) * 2006-07-07 2008-01-24 Nec Corp フィルム外装電池および組電池
CN208507818U (zh) * 2018-06-29 2019-02-15 宁德时代新能源科技股份有限公司 二次电池及其极片
CN210136972U (zh) * 2019-08-27 2020-03-10 宁德时代新能源科技股份有限公司 二次电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907819A4 *

Also Published As

Publication number Publication date
US11855304B2 (en) 2023-12-26
EP3907819A4 (en) 2022-03-23
US20220021085A1 (en) 2022-01-20
CN210136972U (zh) 2020-03-10
EP3907819A1 (en) 2021-11-10
EP3907819B1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021037076A1 (zh) 二次电池
JP4878800B2 (ja) リチウム二次電池
EP2293367B1 (en) Rechargeable secondary battery having improved safety against puncture and collapse
US11121439B2 (en) Secondary battery
US11271274B2 (en) Secondary battery
WO2021073470A1 (zh) 二次电池及其电极构件、电池模块和相关装置
EP3490034B1 (en) Electrode member, electrode assembly and rechargeable battery
WO2020073887A1 (zh) 二次电池及其制造方法、电极构件及其制造方法、集流体的制造方法
US11043677B2 (en) Secondary battery and electrode member thereof having an electricity generation region with reduced curvature
CN106025119A (zh) 方形二次电池
US10177351B2 (en) Rechargeable battery
US10833371B2 (en) Wound-type cell
JP2022537227A (ja) 電極アセンブリ及び電池
US11101493B2 (en) Secondary battery and electrode member thereof
KR101734327B1 (ko) 파우치형 이차전지
US20190067746A1 (en) Wound-type cell
US11043689B2 (en) Electrode assembly, and rechargeable battery comprising same
JP2021150228A (ja) リチウムイオン二次電池
JP7479104B1 (ja) 電極シート及び2次電池
JP7232229B2 (ja) 二次電池
US20220231321A1 (en) Rechargeable battery
US20230163426A1 (en) Battery cell
US20230335869A1 (en) Sealed battery
EP3506396A1 (en) Battery
WO2018016194A1 (ja) 二次電池およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020857179

Country of ref document: EP

Effective date: 20210804

NENP Non-entry into the national phase

Ref country code: DE