WO2021036493A1 - 换流装置及其组件、无功补偿装置、换流器及其控制方法 - Google Patents

换流装置及其组件、无功补偿装置、换流器及其控制方法 Download PDF

Info

Publication number
WO2021036493A1
WO2021036493A1 PCT/CN2020/099402 CN2020099402W WO2021036493A1 WO 2021036493 A1 WO2021036493 A1 WO 2021036493A1 CN 2020099402 W CN2020099402 W CN 2020099402W WO 2021036493 A1 WO2021036493 A1 WO 2021036493A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
semiconductor device
controllable semiconductor
turned
voltage
Prior art date
Application number
PCT/CN2020/099402
Other languages
English (en)
French (fr)
Inventor
詹长江
汪涛
虞晓阳
潘磊
邵震霞
焦鑫艳
卢宇
董云龙
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to KR1020217021208A priority Critical patent/KR102532842B1/ko
Priority to EP20858070.4A priority patent/EP3890174A4/en
Publication of WO2021036493A1 publication Critical patent/WO2021036493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/322Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • This application relates to high-voltage power converters. More specifically, the present application relates to a converter device that can realize failure energy consumption, a reactive power compensation device composed of the converter device, a converter, and a control method of the converter.
  • a scheme has been disclosed to decompose the aforementioned energy dissipation resistor, also known as the braking resistor, into multiple single energy dissipation resistors, and use the single resistor as a component of the converter sub-module, and these sub-modules are connected in series with each other.
  • the single energy dissipation resistor and the semiconductor switch form a series loop.
  • the semiconductor switch is closed to allow current to flow through the energy dissipation resistor; in the normal state, the semiconductor switch disconnects the current through the single energy dissipation resistor.
  • This scheme connects a high-voltage semiconductor switch and an energy-consuming resistor branch in parallel in the sub-module, which is only used to consume the unbalanced energy in the case of AC grid failure. Considering the fact that the probability of AC grid failure is extremely low, the high-voltage branch In most of the time, it is in the standby state, and the utilization rate is extremely low.
  • An embodiment of the present application discloses a converter device, including: a switch unit, including a first controllable semiconductor device and a second controllable semiconductor device connected in series; a capacitor, which is connected in parallel with the switch unit; The voltage unit is connected in parallel with the capacitor, and includes a first resistor, a second resistor, and a third controllable semiconductor device connected in series, and the third controllable semiconductor device is connected in parallel with the first resistor.
  • the energy-consuming and voltage-sharing unit further includes: a first switch connected in series with the first resistor, and the third controllable semiconductor device is connected in parallel with the first resistor and the first switch .
  • the second controllable semiconductor device is a unipolar transistor; the commutation device further includes: two terminals electrically connected to the drain and source of the second controllable semiconductor device, respectively.
  • the second controllable semiconductor device is a bipolar transistor; the commutation device further includes: two terminals electrically connected to the collector and the emitter of the second controllable semiconductor device, respectively.
  • the switch unit further includes: a fourth controllable semiconductor device and a fifth controllable semiconductor device connected in series, and the first controllable semiconductor device and the second controllable semiconductor device are connected to the fourth controllable semiconductor device.
  • the controllable semiconductor device and the fifth controllable semiconductor device are connected in parallel with each other.
  • the converter device further includes: two terminals, respectively connected between the first controllable semiconductor device and the second controllable semiconductor device, and the fourth controllable semiconductor device and the second controllable semiconductor device.
  • the fifth controllable semiconductor device is the first controllable semiconductor device and the second controllable semiconductor device.
  • the converter device further includes: a second switch connected across the two terminals.
  • the commutation device further includes: a freewheeling diode connected in anti-parallel to the second resistor.
  • the resistance of the first resistor is greater than the resistance of the second resistor.
  • An embodiment of the present application also provides a converter device assembly, which includes at least one of the above-mentioned converter devices connected in series.
  • An embodiment of the present application also provides a reactive power compensation device, including the aforementioned converter device assembly, which is electrically connected to the circuit to be compensated.
  • An embodiment of the present application also provides a converter, including the aforementioned converter assembly, both ends of which are DC sides, and are respectively electrically connected to both ends of the DC line.
  • a converter including the aforementioned converter assembly, both ends of which are DC sides, and are respectively electrically connected to both ends of the DC line.
  • the converter device assembly there are predetermined two converters. Between the devices is the AC side, which is electrically connected to the AC line.
  • the third controllable semiconductor device can be turned off and closed by controlling the third controllable semiconductor device.
  • the first resistor and the second resistor can be considered, energy consumption and series application, the voltage equalization between the converter devices, so that the volume of the converter device can be smaller.
  • the first resistor and the second resistor are both put into use, and the equipment utilization rate is relatively high. high.
  • An embodiment of the present application also provides a method for controlling the aforementioned converter, including: collecting the DC side voltage of the converter; judging whether the DC side voltage is greater than a preset first threshold; according to the judgment result , Controlling the third controllable semiconductor device in at least a part of the converter device in the converter to be turned on.
  • An embodiment of the present application also provides a method for controlling the aforementioned converter, including: collecting the voltage across the capacitor in the converter device; judging whether the voltage across the capacitor is greater than a preset sixth threshold; if Yes, control the third controllable semiconductor device in the commutation device to turn on, and turn off the first controllable semiconductor device and the second controllable semiconductor device; if not, control the third controllable semiconductor device in the commutation device The semiconductor device is turned off.
  • An embodiment of the present application also provides a method for controlling the aforementioned inverter, including: in response to a shutdown instruction of the inverter, controlling the first controllable semiconductor device and the second semiconductor device in the inverter device of the inverter The second controllable semiconductor device is turned off, and the third controllable semiconductor device is turned on.
  • An embodiment of the present application also provides a method for controlling the aforementioned converter device, which includes: controlling the first switch to close; and in response to the charging completion signal of the capacitor, controlling the first switch to open.
  • the switching off and closing of the third controllable semiconductor device in the converter device in the aforementioned converter can be controlled, so that the first resistor and the second resistor can take into account energy consumption and series applications.
  • the pressure of the modules is equalized at the time, so that the volume of the converter can be smaller.
  • the converter is in the normal working state most of the time, that is, the converter device is in the voltage equalization state most of the time, the first resistor and the second resistor are both put into use, and the equipment is used The rate is higher.
  • Fig. 1 shows an embodiment of the present application, a schematic diagram of the circuit principle of the converter device.
  • Fig. 2 shows an embodiment of the present application, a schematic diagram of the circuit principle of the converter device.
  • Fig. 3 shows an embodiment of the present application, a schematic diagram of the circuit principle of the converter device.
  • Fig. 4 shows an embodiment of the present application, a schematic diagram of the circuit principle of the inverter device components.
  • Fig. 5 shows an embodiment of the present application, a schematic diagram of the circuit principle of the reactive power compensation device.
  • Fig. 6 shows an embodiment of the present application, a schematic diagram of the circuit principle of the inverter.
  • Fig. 7A shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7B shows an embodiment of the present application, a schematic flow chart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7C shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7D shows an embodiment of the present application, a schematic flow chart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7E shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7F shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7G shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 7H shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 8 shows an embodiment of the present application, a schematic flowchart of a method for controlling any of the above-mentioned inverters.
  • Fig. 9 shows an embodiment of the present application, a schematic flowchart of a method for controlling the converter device shown in Fig. 2 or Fig. 3.
  • FIG. 1 shows a schematic diagram of the circuit principle of a converter device 1000 according to an embodiment of the present application.
  • the converter device 1000 includes a capacitor C1, a switch unit U1, and an energy consumption and voltage equalization unit U2. among them:
  • the switching unit U1 includes: a first controllable semiconductor device Q1 (for example, an insulated gate bipolar transistor (IGBT)) and a second controllable semiconductor device Q2 (for example, an insulated gate bipolar transistor (IGBT)) connected in series, That is, the emitter of Q1 is electrically connected to the collector of Q2, forming a topology similar to a half-bridge circuit.
  • a first controllable semiconductor device Q1 for example, an insulated gate bipolar transistor (IGBT)
  • Q2 for example, an insulated gate bipolar transistor (IGBT)
  • the energy consumption voltage equalization unit U2 includes a first resistor R1 and a second resistor R2 connected in series, and a third controllable semiconductor device Q3 (for example, an insulated gate bipolar transistor (IGBT)).
  • Q3 and R1 are connected in parallel, that is, the emitter and collector of Q3 are electrically connected to both ends of R1.
  • the capacitor C1 may be a single capacitor, or a capacitor array formed by connecting multiple capacitors in series/parallel.
  • connection relationship between the insulated gate bipolar transistor (IGBT) Q1 and the insulated gate bipolar transistor (IGBT) Q2 may also be that the collector of Q1 is connected to the emitter of Q2.
  • Q1 and Q2 can also be other types of bipolar transistors.
  • the converter device 1000 may include two lead terminals n1 and n2, which are electrically connected to the collector and emitter of Q2, respectively.
  • the lead terminals n1 and n2 can also be electrically connected to the collector and emitter of Q1, respectively.
  • the lead terminals n1 and n2 can also be electrically connected to the collector and emitter of Q2, respectively.
  • Q1 and Q2 can also be unipolar transistors.
  • Q1 and Q2 are connected in series, that is, the drain of Q1 is electrically connected with the source of Q2; or the source of Q1 is electrically connected with the drain of Q2.
  • the converter device 1000 may include two lead terminals n1 and n2, which are respectively connected to the drain and source of Q2.
  • the lead terminals n1 and n2 can also be connected to the drain and source of Q1, respectively.
  • the lead terminals n1 and n2 can also be connected to the drain and source of Q2, respectively.
  • the converter device 1000 may include a second switch K2 (not shown), which is connected across the lead terminals n1 and n2.
  • Q1 and Q2 can also be partial circuits composed of at least two controllable semiconductor devices in series/parallel.
  • Q1 and Q2 can also be other circuit modules with fast switching functions, such as intelligent power modules (IPM).
  • IPM intelligent power modules
  • Q1 and Q2 are semiconductor devices of the same type and have the same parameters.
  • Q1 and Q2 are high-power semiconductor devices.
  • R1 and R2 can be individual resistor elements, a resistor array composed of multiple resistors in series and/or parallel, or other resistive partial circuits.
  • the resistance of R1 is greater than the resistance of R2.
  • the converter device 1000 may further include a freewheeling diode D1 (not shown) in anti-parallel connection with the resistor R2 to provide a freewheeling path when the insulated gate bipolar transistor (IGBT) Q3 is turned off. .
  • a freewheeling diode D1 (not shown) in anti-parallel connection with the resistor R2 to provide a freewheeling path when the insulated gate bipolar transistor (IGBT) Q3 is turned off.
  • the energy consumption and voltage equalization unit U2 enters a low impedance state, that is, an energy consumption state.
  • the energy-consuming voltage equalization unit U2 in the energy-consuming state can be used to consume the power stored in the capacitor C1 and reduce the voltage across the capacitor C1 after a fault occurs. Further, the efficiency of power consumption can be improved by reasonably controlling Q1 and Q2 to cooperate with the power consumption process.
  • the switching off and closing of Q3 can be controlled, so that the resistance R1 and the resistor R2 can take into account the energy consumption and the voltage equalization of each converter device in series application, so that the volume of the converter device 1000 can be relatively large. small.
  • the converter device 1000 is in a voltage equalization state most of the time, and the resistors R1 and R2 of the converter device 1000 in the voltage equalization state are both put into use, so the device utilization of the converter device 1000 is relatively high.
  • FIG. 2 shows an embodiment of the present application, a schematic diagram of the circuit principle of the converter device 2000.
  • the converter device 2000 includes: a capacitor C1, a switch unit U1, and an energy consumption and voltage equalization unit U2. among them:
  • the capacitor C1 and the switch unit U1 are the same as the components of the same name in the converter device 1000, and will not be repeated here.
  • the energy consumption voltage equalization unit U2 includes an insulated gate bipolar transistor (IGBT) Q3, a first switch K1, and a resistor R1 and a resistor R2 connected in series.
  • the resistor R1, the resistor R2, and the insulated gate bipolar transistor (IGBT) Q3 are the same as the devices of the same name in the converter device 1000, and will not be repeated here.
  • the first switch K1 is connected in series with the resistor R1.
  • the first switch K1 may be any circuit device or circuit module with a switching function, such as a relay, an air switch, and a controllable semiconductor device.
  • K1 can be controlled to control whether to use R1 and R2 for voltage equalization. For example, you can close K1 at startup and use R1 and R2 for voltage equalization; after startup, disconnect K1 and no longer use R1 and R2 for voltage equalization, so as to reduce the normal operation of the converter device 2000 due to R1 and R2. Energy consumption.
  • Using the above-mentioned converter device can controllable and take into account the energy consumption requirement under the fault state, the voltage equalization requirement during the startup process and the high-efficiency operation requirement during normal operation. This makes the work of the circuit using the above-mentioned converter device more flexible.
  • FIG. 3 shows a schematic diagram of the circuit principle of the converter device 3000 according to an embodiment of the present application.
  • the inverter 3000 includes a capacitor C1, a switch unit U1, and an energy consumption and voltage equalization unit U2. among them:
  • the energy consumption voltage equalization unit U2 may include: resistors R1 and R2 connected in series, and an insulated gate bipolar transistor (IGBT) Q3. Among them, Q3 and R1 are connected in parallel, that is, the emitter and collector of Q3 are electrically connected to both ends of R1.
  • IGBT insulated gate bipolar transistor
  • the capacitor C1, the resistors R1 and R2, and the insulated gate bipolar transistor (IGBT) Q3 are the same as the devices of the same name in the inverter 1000, and will not be repeated here.
  • the switch unit U1 includes: insulated gate bipolar transistors (IGBT) Q1, Q2 connected in series and insulated gate bipolar transistors (IGBT) (fourth controllable semiconductor device) Q4, (The fifth controllable semiconductor device) Q5, Q1 and Q2 connected in series and Q4 and Q5 connected in series are connected in parallel.
  • Q1, Q2, Q4, and Q5 form a topology similar to a full-bridge circuit.
  • Q1, Q2, Q4, and Q5 can be replaced with other bipolar transistors, respectively.
  • Q1, Q2, Q4, and Q5 can also be replaced with unipolar transistors respectively.
  • Q1, Q2, Q4, and Q5 may also be partial circuits or switch modules composed of at least two semiconductor devices, respectively.
  • Q1, Q2, Q4, and Q5 may be semiconductor devices of the same type, and further, the device parameters of Q1, Q2, Q4, and Q5 are the same.
  • the converter device 3000 may include a switch K1 (not shown), which is connected in series with a resistor R1.
  • K1 in the inverter device 3000 is the same as K1 in the inverter 2000, and will not be repeated.
  • the inverter device 3000 may include two terminals n1 and n2. Wherein, the terminal n1 is electrically connected to the connection point between Q1 and Q2, and the terminal n2 is electrically connected to the connection point between Q4 and Q5.
  • the converter device 3000 may include a switch K2 (not shown), which is connected across the terminals n1 and n2.
  • FIG. 4 shows an embodiment of the present application, a schematic diagram of the circuit principle of the inverter device assembly 4000.
  • the inverter assembly 4000 includes series connected P1, P2, and P3 connected in series.
  • P1, P2 and P3 are any of the aforementioned converter devices.
  • the converter device assembly 4000 may include two converter devices connected in series, or may include more than three converter devices connected in series.
  • the converter device assembly 4000 may further include a reactor (not shown) in series with the converter device.
  • the converter device assembly 4000 may further include at least two groups of converter devices connected in parallel.
  • each group of converter devices includes at least two converter devices connected in series, and each converter device is any one of the aforementioned converter devices. Further, the number of converter devices in each group of converter devices is the same.
  • circuit topology of the converter devices included in the converter device assembly 4000 is the same, and the parameters of the circuit elements are also the same.
  • FIG. 5 shows an embodiment of the present application, a schematic diagram of the circuit principle of the reactive power compensation device 5000.
  • the reactive power compensation device 5000 includes: three star-connected converter device components T1, T2, and T3 of any of the aforementioned types, which are respectively electrically connected to the three phases a, b, and c of the line to be compensated.
  • T1, T2, and T3 can also be connected in a delta connection.
  • the circuit to be compensated may also be a single-phase AC circuit.
  • the reactive power compensation device 5000 includes only one converter device component, which is connected across the two ends of the AC line to be compensated.
  • Fig. 6 shows an embodiment of the present application, a schematic diagram of the circuit principle of the inverter 6000.
  • the inverter 6000 includes three inverter device components T601, T602 and T603.
  • T601, T602 and T603 are any of the aforementioned converter device components. Both ends of T601, T602 and T603 are connected to the DC lines LP and LN. LP is the positive terminal and LN is the negative terminal.
  • Each converter device component in T601, T602 and T603 consists of 6 converter devices in series.
  • the connection point between the third and fourth converter devices of each converter device assembly in T601, T602 and T603 is the AC side, which is electrically connected to the three-phase a, b, and c of the three-phase AC line.
  • T601, T602, and T603 can be formed by connecting other number of converter devices in series.
  • the number of converter devices included in each converter device component in T601, T602 and T603 can also be different.
  • the three-phase AC side can be located at the connection point between the two converter devices in the middle of T601, T602, and T603, respectively.
  • the three-phase AC side can also be respectively located at the connection point between the other predetermined two converter devices of T601, T602 and T603.
  • the inverter 6000 can also include two converter device components.
  • the two ends of each converter device are connected to the two ends LP and LN of the DC line on the DC side, and the two converter devices of each converter are connected to each other.
  • the points are the two ends of the AC side connected to the single-phase AC power respectively.
  • FIG. 7A shows an embodiment of the present application, a schematic flowchart of a method 7000A for controlling any of the above-mentioned inverters.
  • Method 7000A is a troubleshooting method for any of the aforementioned converters.
  • the method 7000A includes: step S710, step S720, and step S730. among them:
  • Step S710 Collect the voltage U d on the DC side of the converter.
  • Step S720 Determine whether U d is greater than a preset first threshold U th1 .
  • step S730 if the judgment result is yes, control at least a part of the converter devices in the converter to enter an energy consumption state, that is, control Q3 in at least a part of the converter devices in the converter to be turned on.
  • step S730 can be to control one converter device in the converter to enter the energy consumption state, or to control two or more converter devices in the converter to enter the energy consumption state, or It is to control all the converter devices in the converter to enter the energy consumption state.
  • the method 7000A may further include step S740 (not shown) of controlling the Q1 of the converter device entering the energy consumption state to be turned on and Q2 to be turned off.
  • the method 7000A may further include step S750 (not shown), controlling the Q1 and Q2 of all the converter devices in the converter to be turned off.
  • the method 7000A may further include step S760 (not shown). If the result of the judgment is no, control all the converter devices in the converter to enter the voltage equalization state, that is, control Q3 in all the converter devices. Shut down.
  • step S760 may also include: controlling Q1 and Q2 in all the converter devices to be in a normal working state, such as a pulse width control state.
  • step S710 it may further include: controlling all the converter devices to enter a voltage equalization state, that is, controlling Q3 in all converter devices to be turned off.
  • Method 7000A is any one of the aforementioned inverter protection methods, step S720 is to determine whether the inverter is in a fault state, and step S730 is to deal with the fault.
  • the output power of the power generation side is greater than the power consumption of the power consumption side, which causes the voltage of the transmission line to rise.
  • the excess capacity on the transmission line can be consumed by putting in an energy dissipation resistor, so that the voltage of the transmission line reaches the normal range.
  • FIG. 7B shows a schematic flowchart of a method 7000B for controlling any of the foregoing inverters according to an embodiment of the present application.
  • method 7000B is obtained by replacing step S730 with step S730B1, step S730B2, step S730B3, and step S730B4 on the basis of method 7000A. among them:
  • Step S730B1 Obtain the transmission power P of the DC side of the converter.
  • Step S730B2 Calculate the difference ⁇ P between the preset transmission power value P 0 of the converter and the transmission power P of the DC side of the converter.
  • Step S730B3 Calculate the number n of converter devices that need to consume energy in the converter according to ⁇ P.
  • Step S730B4 controlling the n converter devices in the converter to enter an energy consumption state, that is, controlling the third controllable semiconductor device Q3 in the n converter devices in the converter to be turned on.
  • step S730B1 may include the following steps:
  • the transmission power P on the DC side of the converter is calculated.
  • the preset transmission power value P 0 in step S730B2 may be the steady-state value of the DC side transmission power before the DC side voltage U d of the converter exceeds the first threshold U th1.
  • FIG. 7C shows an embodiment of the present application, a schematic flow chart of a method 7000C for controlling any of the foregoing inverters.
  • method 7000C is obtained by replacing step S730B4 with step S730C1, step S730C2, and step S730C3 on the basis of method 7000B. among them:
  • Step S730C1 collect the three-phase AC side voltage U CA , U CB , U CC of the converter.
  • Step S730C2 according to U CA , U CB , U CC and the number of energy-consuming converter devices n in step S730B3 of method 7000B, determine the number of energy-consuming converter devices n BA of each phase in the converter , N BB , n BC , where the sum of n BA , n BB , and n BC is equal to n.
  • step S730C3 Q3 in the n BA , n BB , and n BC inverter devices of each phase in the inverter are respectively controlled to be turned on.
  • the three-phase AC side voltages U CA , U CB , and U CC may be average values or effective values of the three-phase AC side voltages.
  • the three-phase AC side voltages U CA , U CB , and U CC may be phase voltages or line voltages.
  • step S730C2 can be calculated according to formulas (1), (2), and (3) to obtain the number n BA , n BB , and n BC of the converter devices that need to consume energy for each phase.
  • n BA n*(U CB +U CC )/[2(U CA +U CB +U CC )] (1)
  • n BB n*(U CA +U CC )/[2(U CA +U CB +U CC )] (2)
  • n BC nn BA -n BB (3)
  • FIG. 7D shows an embodiment of the present application, and a schematic flowchart of a method 7000D for controlling any of the foregoing inverters.
  • method 7000D is obtained by adding step S723 and step S726 between step S720 and step S730 on the basis of method 7000A. among them:
  • Step S723 Collect the AC side voltage U C of the converter.
  • step S726 it is determined whether the AC side voltage U C of the inverter is less than a preset second threshold U th2 .
  • step S723 can be set at any position before step S726.
  • the AC side voltage U C in step S723 may be the average value or effective value of the AC side voltage.
  • the AC side voltage U C can be a single-phase AC voltage, or a three-phase AC voltage U CA , U CB , U CC , or any two-phase voltage, the AC side voltage U C can also be three-phase The collective term for voltages U CA , U CB and U CC.
  • the AC side voltage U C can be a phase voltage or a line voltage.
  • the step S726 in the second threshold value U th2 may be a rated voltage of the AC side U N.
  • Fig. 7E shows an embodiment of the present application, a schematic flow chart of a method 7000E for controlling any of the foregoing inverters.
  • method 7000E is obtained by replacing step S730 with step S730E1 and step 730E2 on the basis of method 7000D. among them:
  • Step S730E1 according to the AC side voltage U C and the AC side rated voltage U N of the converter, determine the number n D of converter devices that need to consume energy.
  • Step 730E2 control the n D inverter devices in the inverter to enter an energy consumption state, that is, control the third controllable semiconductor device Q3 of the n D inverter devices to be turned on.
  • step S730E1 may be calculated according to the following formula to obtain the number n D of converter devices that need to consume energy.
  • M being the energy converter means required amount
  • C is a reliability coefficient
  • U N is the rated AC voltage
  • N is the number of commutation devices included in the inverter.
  • step S720 may be: collecting the AC side three-phase voltage U CA , U CB , U CC of the inverter.
  • Step S730E1 may be: according to the AC side three-phase voltage U CA , U CB , U CC and the AC side rated voltage U N , determine the number of converter devices that need energy consumption for each phase in the converter n DA , n DB , n DC .
  • Step 730E2 may be: control the n DA , n DB , n DC converter devices of each phase in the converter to enter the energy consumption state, that is, control the n DA , n DB , n DC converter devices of each phase
  • the third controllable semiconductor device Q3 is turned on.
  • n DA , n DB , and n DC of the converter devices that need to consume energy for each phase can be calculated according to equation (4).
  • the method 7000E can be used to balance the three-phase energy consumption power in the converter, that is, the number of energy-consuming devices in the three-phase converter device components that enter the energy-consuming state can be evenly distributed. In turn, it can be ensured that the inverter can output power with a larger output capacity.
  • Fig. 7F shows an embodiment of the present application, a schematic flow chart of a method 7000F for controlling any of the foregoing inverters.
  • method 7000F is obtained by adding steps S740F1, step S740F2, and step S740F3 on the basis of methods 7000C-7000E. among them,
  • step S740F1 it is determined whether the AC side voltage U C is less than a preset third threshold U th3 .
  • step S740F2 if the judgment result is yes, control the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 in the converter device in the energy-consuming state to turn off.
  • step S740F3 if the judgment result is no, otherwise, the first controllable semiconductor device Q1 of the converter device in the energy consumption state is controlled to be turned on, and the second controllable semiconductor device Q2 is turned off.
  • step 740F1 is to determine whether the inverter is in a serious fault state.
  • step S740F2 when the converter is in a serious fault state, the connection between the converter device in the energy-consuming state and the outside world is cut off.
  • step S740F3 when the converter is in a slight fault state, the input of the converter device is cut off, and the stored electricity in the capacitor C1 in the converter device is kept output.
  • the method 7000F can be used to control the converter's energy consumption while transmitting part of the power.
  • Fig. 7G shows an embodiment of the present application, a schematic flow chart of a method 7000G for controlling any of the foregoing inverters.
  • method 7000G adds steps S740G1, step S740G2, and step S740G3 on the basis of method 7000A. among them:
  • step S740G1 the AC side voltage U C of the converter is collected.
  • step S740G2 it is determined whether the AC side voltage U C of the converter is less than a preset fourth threshold U th4 .
  • step S740G3 if the judgment result is yes, the third controllable semiconductor device Q3 of all the converter devices in the inverter is controlled to be turned on, and the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 are turned off.
  • Method 7000G is the control method when the inverter has a serious fault.
  • step S740G2 is to determine whether the inverter is in a serious fault.
  • step S740G3 is to control all inverter devices in the inverter to stop working, that is, to control the inverter to stop.
  • FIG. 7H shows an embodiment of the present application, a schematic flow chart of a method 7000H for controlling any of the foregoing inverters.
  • method 7000H is obtained by adding steps S740H1 and S740H2 on the basis of method 7000C and method 7000D-7000G. among them,
  • step S740H1 it is determined whether the AC side voltage U C of the converter is greater than a preset fifth threshold U th5 .
  • step S740H2 if the judgment result is yes, the third controllable semiconductor device Q3 of all the converter devices in the inverter is turned off, and the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 enter the pulse width control state .
  • Method 7000H is a method for the converter to recover from the fault state to the normal working state.
  • step S740H1 is to determine whether the inverter returns to normal.
  • Step S740H2 is to exit the fault state and enter the normal working state.
  • the inverter can quickly recover to working status when the fault condition is removed.
  • FIG. 8 shows a schematic flowchart of a method 8000 for controlling any of the foregoing inverters in an embodiment of the present application.
  • Method 8000 is a method for troubleshooting any of the foregoing converter devices. As shown in FIG. 8, the method 8000 includes: step S810, step S820, step S830, and step S840. among them:
  • Step S810 Collect the voltage U C1 across the capacitor C1 in the converter device in the converter.
  • Step S820 Determine whether the voltage U C1 is greater than a preset sixth threshold U th6 .
  • step S830 if the judgment result is yes, the third controllable semiconductor device Q3 in the converter device is controlled to be turned on, and the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 are controlled to be turned off.
  • step S840 if the judgment result is no, the third controllable semiconductor device Q3 in the inverter device is controlled to be turned off.
  • step S840 may further include: controlling the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 to return to the normal operating state, that is, when U d is less than the first threshold U th1 , the first controllable semiconductor device Q1 And the working state of the second controllable semiconductor device Q2.
  • Method 8000 is a protection method for the converter device in the converter.
  • each converter device in the converter can be protected to avoid damage due to overvoltage, and to prevent each converter device from exiting operation due to an overvoltage fault.
  • Method 9000 is a method for controlling the shutdown of any of the aforementioned inverters, including:
  • the first controllable semiconductor device Q1 and the second controllable semiconductor device Q2 in all the inverter devices of the control converter are turned off, and the third controllable semiconductor device Q3 is turned on.
  • Method 9000 can realize rapid discharge of DC cables, rapid shutdown of the system, discharge of capacitors in the converter, and discharge of cables connected to the converter. To facilitate the maintenance of the system.
  • Fig. 9 is an embodiment of the application, the method A000 for controlling the converter device shown in Fig. 2 or Fig. 3.
  • Method A000 is applied to a circuit composed of a plurality of converter devices as shown in Fig. 2 or Fig. 3 connected in series.
  • Method A000 is a method of performing charging control on capacitors in one or more converter devices in the circuit.
  • method A000 includes step SA10 and step SA20. among them:
  • Step SA10 control the first switch K1 to close.
  • Step SA20 in response to the charge completion signal of the capacitor in the converter device, control the first switch K1 to turn off.
  • the charge completion signal in step SA20 may be a communication signal, a level signal, or other signals.
  • step SA20 may include: step SA30, step SA40, and step SA50. among them:
  • step SA30 the voltage U C1 across the capacitor C1 is detected.
  • Step SA40 it is judged whether U C1 is greater than the preset seventh threshold U th7 , if yes, go to step SA50; if not, go to step SA30.
  • step SA50 the first switch K1 is controlled to be turned off.
  • the first switch when the capacitor in any one or more of the converter devices is charged, the first switch can be controlled During the charging process of the capacitor in the converter device, the first resistor and the second resistor connected in series are used to equalize the voltage. After the charging is completed, the first switch is controlled to be turned off, so that the loss of the converter device can be reduced.
  • the switching off and closing of the third controllable semiconductor device in the converter device in the aforementioned converter can be controlled, so that the first resistor and the second resistor can take into account energy consumption and series applications.
  • the pressure of the modules is equalized at the time, so that the volume of the converter can be smaller.
  • the converter is in the normal working state most of the time, that is, the converter device is in the voltage equalization state most of the time, the first resistor and the second resistor are both put into use, and the equipment is used The rate is higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种换流装置及其组件、无功补偿装置、换流器及其控制方法。该换流装置(1000)包括:开关单元(U1),包括串联连接的第一可控半导体器件(Q1)和第二可控半导体器件(Q2);电容器(C1),与开关单元(U1)并联连接;耗能均压单元(U2),与电容器(C1)并联,并包括串联连接的第一电阻器(R1)和第二电阻器(R2)以及第三可控半导体器件(Q3),第三可控半导体器件(Q3)与第一电阻器(R1)并联。

Description

换流装置及其组件、无功补偿装置、换流器及其控制方法 技术领域
本申请涉及高压电力变换器。更具体的,本申请涉及一种可以实现故障能量消耗的换流装置,以及由换流装置构成的无功补偿装置、换流器,及换流器的控制方法。
背景技术
在利用电力变换器实现电力传输的高压直流输电领域,当受电端交流电网发生故障时,由于发电端和受电端的功率不平衡,直流极线侧快速累积能量,继而导致电压急剧升高,危害换流阀等设备安全和***运行。
一种最常见的解决方案是在换流器直流极线之间安装由半导体开关和耗能电阻串联构成的直流耗能装置,在故障时闭合半导体开关,将不平衡能量通过耗能电阻转化为热能而消耗掉。该方案在耗能的同时不能兼顾换流器内部的多个装置串联时的耗能需求和均压需求。
目前已经公开的一种方案,将上述耗能电阻又称制动电阻分解为多个单耗能电阻,并将单电阻作为换流器子模块的部件,而这些子模块是相互串联的。单耗能电阻与半导体开关构成串联回路。在故障时,半导体开关闭合使电流流过耗能电阻;在正常时半导体开关断开通过该单耗能电阻的电流。这一方案在子模块中并联了一个高压半导体开关与耗能电阻支路,仅用于消耗交流电网故障情况下的不平衡能量,考虑到交流电网故障概率极低的现实情况,该高压支路在绝大部分时间里都是处于备用状态,利用率极低。
发明内容
本申请的一个实施例公开了一种换流装置,包括:开关单元,包括串联连接的第一可控半导体器件和第二可控半导体器件;电容器,与所述开关单元并联连接;耗能均压单元,与所述电容器并联,并包括串联 连接的第一电阻器和第二电阻器以及第三可控半导体器件,所述第三可控半导体器件与所述第一电阻器并联。
可选地,所述耗能均压单元还包括:第一开关,与所述第一电阻器串联,并且所述第三可控半导体器件与所述第一电阻器和所述第一开关并联。
可选地,所述第二可控半导体器件为单极性晶体管;所述换流装置还包括:两个接线端,分别与所述第二可控半导体器件的漏极和源极电连接。
可选地,所述第二可控半导体器件为双极性晶体管;所述换流装置还包括:两个接线端,分别与所述第二可控半导体器件的集电极和发射极电连接。
可选地,所述开关单元还包括:串联连接的第四可控半导体器件和第五可控半导体器件,所述第一可控半导体器件和所述第二可控半导体器件与所述第四可控半导体器件和所述第五可控半导体器件彼此并联。
可选地,所述换流装置还包括:两个接线端,分别连接在所述第一可控半导体器件和所述第二可控半导体器件之间以及所述第四可控半导体器件和所述第五可控半导体器件之间。
可选地,所述换流装置还包括:第二开关,跨接于所述两个接线端之间。
可选地,所述换流装置还包括:续流二极管,与所述第二电阻器反向并联连接。
可选地,所述第一电阻器的阻值大于所述第二电阻器的阻值。本申请的一个实施例还提供了一种换流装置组件,包括串联连接的至少两个上述换流装置的一种。
本申请的一个实施例还提供了一种无功补偿装置,包括前述换流装置组件,电连接于待补偿电路。
本申请的一个实施例还提供了一种换流器,包括前述换流器组件,两端为直流侧,分别与直流线路的两端电连接,所述换流装置组件中预定两个换流装置之间为交流侧,与交流线路电连接。
利用上述任意一种换流装置、由换流装置组成的换流装置组件以及 由换流装置组件组成的无功补偿装置和换流器,可以通过控制第三可控半导体器件的关断与闭合,使得第一电阻器和第二电阻器可以兼顾,能量消耗和串联应用时,换流装置之间的均压,从而使得该换流装置的体积可以较小。同时由于该换流器在大部分时间均处于即正常工作状态,即该换流装置在大部分时间内处于均压状态,第一电阻器和第二电阻器均投入使用,其设备利用率较高。
本申请的一个实施例还提供了控制前述换流器的一种方法,包括:采集所述换流器的直流侧电压;判断所述直流侧电压是否大于预设的第一阈值;根据判断结果,控制所述换流器中的至少一部分换流装置中的第三可控半导体器件导通。
本申请的一个实施例还提供了控制前述换流器的一种方法,包括:采集所述换流装置中电容器两端的电压;判断所述电容器两端的电压是否大于预设的第六阈值;如果是,控制所述换流装置中的第三可控半导体器件导通,第一可控半导体器件和第二可控半导体器件关断;如果否,控制所述换流装置中的第三可控半导体器件关断。
本申请的一个实施例还提供了控制前述换流器的一种方法,包括:响应于换流器的停机指令,控制所述换流器的换流装置中的第一可控半导体器件和第二可控半导体器件关断,第三可控半导体器件导通。
本申请的一个实施例还提供了控制前述换流装置的一种方法,包括:控制所述第一开关闭合;响应于所述电容器的充电完成信号,控制所述第一开关断开。
通过上述任意一种方法可以通过控制前述换流器中的换流装置中的第三可控半导体器件的关断与闭合,使得该第一电阻器和第二电阻器可以兼顾能量消耗和串联应用时的模块均压,使得该换流器的体积可以较小。同时,同时由于该换流器在大部分时间均处于即正常工作状态,即该换流装置在大部分时间内处于均压状态,第一电阻器和第二电阻器均投入使用,其设备利用率较高。
同时,通过上述任意一种方法,控制前述任意一种换流器,可以有效地保护该换流器中的器件不受损害,以及可以保护该换流器所在电网的运行安全。
附图说明
图1示出了本申请的一个实施例,换流装置的电路原理示意图。
图2示出了本申请的一个实施例,换流装置的电路原理示意图。
图3示出了本申请的一个实施例,换流装置的电路原理示意图。
图4示出了本申请的一个实施例,换流器装置组件的电路原理示意图。
图5示出了本申请的一个实施例,无功补偿装置的电路原理示意图。
图6示出了本申请的一个实施例,换流器的电路原理示意图。
图7A示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7B示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7C示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7D示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7E示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7F示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7G示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图7H示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图8示出了本申请的一个实施例,控制上述任意一种换流器的方法的流程示意图。
图9示出了本申请的一个实施例,控制如图2或者图3所示的换流装置的方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,本申请的权利要求、说明书及附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。本申请的说明书和权利要求书中使用的术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的,而并不意在限定本申请。如在本申请说明书和权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。还应当进一步理解,在本申请说明书和权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
图1示出了为本申请的一个实施例,换流装置1000的电路原理示意图。如图1所示,换流装置1000包括:电容器C1、开关单元U1和耗能均压单元U2。其中:
开关单元U1包括:串联连接的第一可控半导体器件Q1(例如,绝缘栅双极型晶体管(IGBT))和第二可控半导体器件Q2(例如,绝缘栅双极型晶体管(IGBT)),即Q1的发射极与Q2的集电极电连接,组成一种类似于半桥电路的拓扑结构。
耗能均压单元U2包括:串联连接的第一电阻器R1和第二电阻器R2,以及第三可控半导体器件Q3(例如,绝缘栅双极型晶体管(IGBT))。其中,Q3与R1并联连接,即Q3的发射极和集电极分别与R1的两端电连接。
如图1所示,可选地,电容器C1可以是单个电容,也可以是多个 电容器经过串联/并联连接形成的电容阵列。
如图1所示,可选地,绝缘栅双极型晶体管(IGBT)Q1和绝缘栅双极型晶体管(IGBT)Q2的连接关系,也可以是Q1的集电极连接于Q2的发射极。
如图1所示,Q1和Q2也可以是其他类型的双极型晶体管。
如图1所示,进一步地,换流装置1000可以包括两个引线端n1和n2,分别电连接于Q2的集电极和发射极。可选地,引线端n1和n2也可以分别电连接于Q1的集电极和发射极。可选地,引线端n1和n2还可以分别电连接于Q2的集电极和发射极。
如图1所示,可选地,Q1和Q2还可以是单极性晶体管。其中,Q1和Q2串联连接,即Q1的漏极与Q2的源极电连接;或者Q1的源极与Q2的漏极电连接。
进一步地,换流装置1000可以包括两个引线端n1和n2,分别连接于Q2的漏极和源极。可选地,引线端n1和n2也可以分别连接于Q1的漏极和源极。可选地,引线端n1和n2还可以分别连接于Q2的漏极和源极。
如图1所示,可选地,换流装置1000可以包括第二开关K2(未示出),跨接于引线端n1和n2之间。
如图1所示,Q1、Q2也可以是由至少两个可控半导体器件串联/并联组成的局部电路。Q1、Q2还可以是其他具有快速开关功能的电路模块,比如智能功率模块(IPM)。
如图1所示,可选地,Q1和Q2为同类型半导体器件,且参数相同。
如图1所示,可选地,Q1和Q2为大功率半导体器件。
如图1所示,R1和R2可以是单独的电阻器元件,也可以是由多个电阻器串联和/或并联组成的电阻阵列,或者是其他呈阻性的局部电路。
如图1所示,可选地,R1的阻值大于R2的阻值。
如图1所示,可选地,换流装置1000还可以包括续流二极管D1(未示出)与电阻R2反并联,在绝缘栅双极型晶体管(IGBT)Q3关断时提供续流通路。
如图1所示,当Q3处于导通状态时,电阻R1短路、电容两端电压 直接施加于电阻R2。此时,耗能均压单元U2进入低阻抗状态,即耗能状态。耗能状态下的耗能均压单元U2,可以在故障发生后,用于消耗电容C1中储存的电量,降低电容C1两端的电压。进一步地,可以通过合理控制Q1和Q2配合耗电过程,提高耗电的效率。
如图1所示,当Q3处于关断状态时,电容两端电压直接施加于串联的电阻R1、R2之上。此时,耗能均压单元U2进入高阻抗状态,即均压状态。当多个换流装置1000串联连接时,均压状态的耗能均压单元U2可以用于均衡该多个换流装置1000中每个换流装置1000两端电压。
利用上述换流装置1000,可以通过控制Q3的关断与闭合,使得电阻R1和电阻R2可以兼顾能量消耗和串联应用时的每个换流装置的均压,使得换流装置1000的体积可以较小。同时换流装置1000的大部分时间均处于均压状态,且在均压状态下的换流装置1000电阻R1和电阻R2均投入使用,所以换流装置1000的器件利用率较高。
图2示出了本申请的一个实施例,换流装置2000的电路原理示意图。如图2所示,换流装置2000包括:电容器C1、开关单元U1和耗能均压单元U2。其中:
电容器C1与开关单元U1与换流装置1000中的同名器件相同,在此不做赘述。
耗能均压单元U2包括:绝缘栅双极型晶体管(IGBT)Q3和第一开关K1和串联连接的电阻器R1、电阻器R2。其中,电阻器R1、电阻器R2、绝缘栅双极型晶体管(IGBT)Q3与换流装置1000中的同名器件相同,在此不做赘述。第一开关K1与电阻器R1串联。
可选地,第一开关K1可以是任何一种具有开关功能的电路器件或者电路模块,比如:继电器、空气开关以及可控半导体器件等。
在换流装置2000处于正常状态时,可以通过控制K1,控制是否利用R1、R2进行均压。比如可以在启动时闭合K1,利用R1、R2进行均压;在启动完成后,断开K1,不再利用R1、R2进行均压,以减少换流装置2000正常运行时,由于R1、R2造成的能量消耗。
具体地,可以在***启动时可以进行一下步骤:控制K1闭合,利用R1、R2对串联连接的多个换流装置2000进行均压控制;检测换流器 2000中的电容器C1两端电压U C1;判断U C1是否大于预设的阈值U th7;如果判断结果为是,则断开K1,避免由于R1、R2造成的能量消耗。
利用上述换流装置可以可控兼顾故障状态下耗能需求、启动过程均压需求和正常工作时的高效率运行需求。使得利用上述换流装置的电路的工作更灵活。
图3示出了本申请的一个实施例,换流装置3000的电路原理示意图。如图3所示,换流器3000包括:电容器C1、开关单元U1和耗能均压单元U2。其中:
其中,耗能均压单元U2可以包括:串联连接的电阻器R1和R2,以及绝缘栅双极型晶体管(IGBT)Q3。其中,Q3与R1并联连接,即Q3的发射极和集电极分别与R1的两端电连接。
电容器C1、电阻器R1和R2以及绝缘栅双极型晶体管(IGBT)Q3与换流器1000中的同名器件相同,在此不做赘述。
如图3所示,开关单元U1包括:串联连接的绝缘栅双极型晶体管(IGBT)Q1、Q2以及串联连接的绝缘栅双极型晶体管(IGBT)(第四可控半导体器件)Q4、(第五可控半导体器件)Q5,串联后的Q1、Q2和串联后的Q4、Q5并联。Q1、Q2、Q4、Q5组成一种类似全桥电路的拓扑结构。
如图3所示,可选地,Q1、Q2、Q4、Q5可以分别换成其他双极型晶体管。Q1、Q2、Q4、Q5还可以分别换成单极性晶体管。Q1、Q2、Q4、Q5也可以分别是至少两个半导体器件组成的局部电路或者开关模块。
如图3所示,可选地,Q1、Q2、Q4、Q5可以是同类型半导体器件,进一步地Q1、Q2、Q4、Q5的器件参数相同。
如图3所示,可选地,换流装置3000可以包括开关K1(未示出),与电阻R1串联。换流装置3000中的K1与换流器2000中的K1相同,不做赘述。
如图3所示,可选地,换流装置3000可以包括两个接线端n1、n2。其中,接线端n1电连接于Q1、Q2之间的连接点,接线端n2电连接于 Q4、Q5之间的连接点。
如图3所示,可选地,换流装置3000可以包括开关K2(未示出),跨接于接线端n1、n2之间。
利用上述换流装置3000可以控制Q1、Q2、Q4、Q5产生U DC、0、-U DC三个电平,达到更好的***控制效果;其次,通过控制Q1和Q5导通、Q2和Q4导通来控制***电流流入或者流出直流电容,更快速地调节电容电压;再次,在***出现极限短路时,可以通过闭锁Q1、Q2、Q4、Q5,限制短路电流。
图4示出了本申请的一个实施例,换流器装置组件4000的电路原理示意图。如图4所示,换流器组件4000包括串联连接的串联连接的P1、P2和P3。
其中,P1、P2和P3为前述任意一种换流装置。
如图4所示,换流装置组件4000可以包括串联连接的两个换流装置,也可以包括串联连接的三个以上换流装置。
如图4所示,可选地,换流装置组件4000还可以包括电抗器(未示出)与换流装置串联。
可选地,换流装置组件4000还可以包括并联连接的至少两组换流装置。其中,每一组换流装置包括,串联连接的至少两个换流装置,每个换流装置为前述任意一种换流装置。进一步地,每组换流装置的换流装置数量相同。
可选地,换流装置组件4000所包含的换流装置的电路拓扑结构相同,电路元件的参数也相同。
图5示出了本申请的一个实施例,无功补偿装置5000的电路原理示意图。如图5所示,无功补偿装置5000包括:星形连接的三个前述任意一种换流装置组件T1、T2和T3,分别电连接于待补偿线路的a、b、c三相。
可选地,T1、T2和T3也可以通过三角连接的方式连接。
可选地,待补偿电路也可以是单相交流电路。相应地,无功补偿装 置5000仅包括一个换流装置组件,跨接于待补偿交流线路的两端。
图6示出了本申请的一个实施例,换流器6000的电路原理示意图。如图6所示,换流器6000包括:三个换流装置组件T601、T602和T603。
其中,T601、T602和T603为前述任意一种换流装置组件。T601、T602和T603的两端均连接于直流线路LP和LN,LP为正端、LN为负端。T601、T602和T603中的每个换流装置组件由6个换流装置串联构成。T601、T602和T603中每一换流装装置组件的第三和第四换流装置之间的连接点为交流侧,分别与三相交流线路的a、b、c三相电连接。
如图6所示,T601、T602和T603可以由其他数量的换流装置串联构成。T601、T602和T603中每个换流装置组件所包含的换流装置的数量也可以各不相同。
如图6所示,三相交流侧可以分别位于T601、T602和T603中部的两个换流装置之间的连接点。三相交流侧也可以分别位于T601、T602和T603的其他预定两个换流装置之间的连接点。
换流器6000也可以包含两个换流装置组件,每个换流装置的两端为直流侧连接于直流线路的两端LP和LN,每个换流器的预定两个换流装置的连接点为交流侧分别连接单相交流电的两端。
图7A示出了本申请的一个实施例,控制上述任意一种换流器的方法7000A的流程示意图。方法7000A为前述任意一种换流器的故障处理方法。如图7A所示,方法7000A包括:步骤S710、步骤S720和步骤S730。其中:
步骤S710,采集换流器的直流侧的电压U d
步骤S720,判断U d是否大于预设的第一阈值U th1
步骤S730,如果判断结果为是,则控制换流器中的至少一部分换流装置进入耗能状态,即控制换流器中的至少一部分换流装置中的Q3导通。
如图7A所示,其中步骤S730可以是控制换流器中的一个换流装置进入耗能状态,也可是控制换流器中的两个或者两个以上换流装置进入 耗能状态,还可以是控制换流器中的全部换流装置进入耗能状态。
可选地,方法7000A还可以包括步骤S740(未示出),控制进入耗能状态的换流装置的Q1导通、Q2关断。
可选地,方法7000A还可以包括步骤S750(未示出),控制换流器中的所有换流装置的Q1和Q2关断。
如图7A所示,方法7000A还可以包括步骤S760(未示出),如果判断结果为否,则控制换流器中的所有换流装置进入均压状态,即控制所有换能装置中的Q3关断。
进一步地,步骤S760还可以包括:控制所有换流装置中的Q1、Q2处于正常工作状态,比如脉宽控制状态。
可选地,在步骤S710之前还可以包括:控制所有换流装置进入均压状态,即控制所有换流装置中的Q3关断。
方法7000A是前述任意一种换流器的保护方法,步骤S720为判断换流器是否处于故障状态,步骤S730为故障的处理。
在线路发生某些故障时(比如说用电侧部分电路跳闸),发电侧的输出功率大于用电侧的用电功率,进而造成传输线路的电压会升高。当发生上述故障时,利用方法7000A,可以通过投入耗能电阻的方式消耗传输线路上的多余能力,使得传输线路的电压达到正常范围。
图7B示出了本申请的一个实施例,控制前述任意一种换流器的方法7000B的流程示意图。如图7B所示,方法7000B是在方法7000A的基础上把步骤S730换成步骤S730B1、步骤S730B2、步骤S730B3和步骤S730B4后得到的。其中:
步骤S730B1,获取换流器的直流侧的传输功率P。
步骤S730B2,计算换流器的预设传输功率值P 0超出换流器的直流侧的传输功率P的差值ΔP。
步骤S730B3,根据ΔP计算换流器中需要耗能的换流装置的数量n。
步骤S730B4,控制换流器中的n个换流装置进入耗能状态,即控制换流器中的n个换流装置中的第三可控半导体器件Q3导通。
如图7B所示,其中,步骤S730B1可以包括以下步骤:
采集换流器的直流侧电流I d
根据换流器的直流侧电压U d和直流侧电流I d,计算得到换流器直流侧的传输功率P。
如图7B所示,步骤S730B2中的预设传输功率值P 0可以是换流器的直流侧电压U d超出第一阈值U th1之前的直流侧传输功率的稳态值。
图7C示出了本申请的一个实施例,控制前述任意一种换流器的方法7000C的流程示意图。如图7C所示,方法7000C是在方法7000B的基础上把步骤S730B4换成:步骤S730C1、步骤S730C2和步骤S730C3后得到的。其中:
步骤S730C1,采集换流器的三相交流侧电压U CA、U CB、U CC
步骤S730C2,根据U CA、U CB、U CC和方法7000B的步骤S730B3中的需要耗能的换流装置的数量n,确定换流器中每一相需要耗能的换流装置的数量n BA、n BB、n BC,其中,n BA、n BB、n BC的总和等于n。
步骤S730C3,分别控制换流器中的每相的n BA、n BB、n BC个换流装置中的Q3导通。
其中,三相交流侧电压U CA、U CB、U CC可以是三相交流侧电压的平均值或者有效值。三相交流侧电压U CA、U CB、U CC可以是相电压也可以是线电压。
如图7C所示,进一步地,n BA与U CA负相关,n BB与U CB负相关,n BC与U CC负相关。更进一步地,步骤S730C2可以是根据式(1)(2)(3)计算,得到每一相需要耗能的换流装置的数量n BA、n BB、n BC
n BA=n*(U CB+U CC)/[2(U CA+U CB+U CC)]  (1)
n BB=n*(U CA+U CC)/[2(U CA+U CB+U CC)]  (2)
n BC=n-n BA-n BB        (3)
图7D示出了本申请的一个实施例,控制前述任意一种换流器的方法7000D的流程示意图。如图7D所示,方法7000D是在方法7000A的基础上,在步骤S720和步骤S730之间增加步骤S723、步骤S726后得到的。其中:
步骤S723,采集换流器的交流侧电压U C
步骤S726,判断换流器的交流侧电压U C是否小于预设的第二阈值U th2
如图7D所示,步骤S723可以设置于步骤S726之前的任何一个位置。
如图7D所示,步骤S723中的交流侧电压U C可以是交流侧电压的平均值或者有效值。交流侧电压U C可以是单相交流电压,也可以是三相交流电压U CA、U CB、U CC中的任意一相电压、或者任意两相电压,交流侧电压U C还可以是三相电压U CA、U CB、U CC的统称。交流侧电压U C可以是相电压也可以是线电压。
如图7D所示,步骤S726中的第二阈值U th2可以是交流侧额定电压U N
图7E示出了本申请的一个实施例,控制前述任意一种换流器的方法7000E的流程示意图。如图7E所示,方法7000E是在方法7000D的基础上,把步骤S730换成步骤S730E1和步骤730E2后得到的。其中:
步骤S730E1,根据换流器的交流侧电压U C和交流侧额定电压U N,确定需要耗能的换流装置的数量n D
步骤730E2,控制换流器中的n D个换流装置进入耗能状态,即控制n D个换流装置的第三可控半导体器件Q3导通。
进一步地,步骤S730E1可以是根据以下公式计算得到需要耗能的换流装置的数量n D
M=C*(1-U C/U N)*N      (4)
其中,M为需要耗能的换流装置的数量,C为可靠性系数,U C为交流电压,U N为额定交流电压,N为所述换流器中包含换流装置的数量。
如图7E所示,可选地,步骤S720可以是:采集换流器的交流侧三相电压U CA、U CB、U CC。步骤S730E1可以是:根据交流侧三相电压U CA、U CB、U CC和交流侧额定电压U N,确定换流器中每一相需要耗能的换流装置的数量n DA、n DB、n DC。步骤730E2可以是:分别控制换流器中每一相的n DA、n DB、n DC个换流装置进入耗能状态,即控制每一相的n DA、 n DB、n DC个换流装置的第三可控半导体器件Q3导通。
进一步地,每一相需要耗能的换流装置的数量n DA、n DB、n DC可以根据式(4)计算得到。
在三相交流侧线路发生故障时,利用方法7000E,可以均衡换流器中的三相耗能功率,即均衡分配三相换流装置组件中进入耗能状态的耗能装置的数量。进而可以保证换流器可以以较大的输出能力向外输出功率。
图7F示出了本申请的一个实施例,控制前述任意一种换流器的方法7000F的流程示意图。如图7F所示,方法7000F是在方法7000C-7000E的基础上增加步骤S740F1、步骤S740F2和步骤S740F3得到的。其中,
步骤S740F1,判断交流侧电压U C是否小于预设的第三阈值U th3
步骤S740F2,如果判断结果为是,则控制处于耗能状态的换流装置中的第一可控半导体器件Q1和第二可控半导体器件Q2关断。
步骤S740F3,如果判断结果为否,否则控制处于耗能状态的换流装置的第一可控半导体器件Q1导通,第二可控半导体器件Q2关断。
如图7F所示,方法7000F为换流器对轻微故障和较严重故障的控制方法。其中,步骤740F1为判断换流器是否处于较严重的故障状态。步骤S740F2为换流器处于较严重的故障状态时,切断处于耗能状态中的换流装置与外界的关联。步骤S740F3为换流器处于轻微的故障状态时,切断换流装置的输入,保持向外输出换流装置中的电容器C1中已经储存的电量。
在发生故障时,利用方法7000F可以在控制换流器进行耗能的同时,还能传输一部分功率。
图7G示出了本申请的一个实施例,控制前述任意一种换流器的方法7000G的流程示意图。如图7G所示,方法7000G是在方法7000A的基础上增加步骤S740G1、步骤S740G2和步骤S740G3。其中:
步骤S740G1,采集换流器的交流侧电压U C
步骤S740G2,判断换流器的交流侧电压U C是否小于预设的第四阈 值U th4
步骤S740G3,如果判断结果为是,则控制换流器中所有换流装置的第三可控半导体器件Q3导通,第一可控半导体器件Q1、第二可控半导体器件Q2关断。
方法7000G为换流器的严重故障时的控制方法。其中,步骤S740G2为判断换流器是否处于严重故障。步骤S740G3为控制换流器中的所有换流装置停止工作,即控制换流器停机。
图7H示出了本申请的一个实施例,控制前述任意一种换流器的方法7000H的流程示意图。如图7H所示,方法7000H是在方法7000C、方法7000D-7000G的基础上增加步骤S740H1和步骤S740H2后得到的。其中,
步骤S740H1,判断换流器的交流侧电压U C是否大于预设的第五阈值U th5
步骤S740H2,如果判断结果为是,则控制换流器中所有换流装置的第三可控半导体器件Q3关断,第一可控半导体器件Q1、第二可控半导体器件Q2进入脉宽控制状态。
方法7000H为换流器从故障状态恢复到正常工作状态的方法。其中,步骤S740H1为判断换流器是否恢复正常。步骤S740H2为退出故障状态,进入正常工作状态。
利用方法7000H,可以在故障状态解除时,换流器快速恢复工作状态。
图8示出了本申请的一个实施例,控制前述任意一种换流器的方法8000的流程示意图。方法8000为前述任意一种换流装置的故障处理方法。如图8所示,方法8000包括:步骤S810、步骤S820、步骤S830和步骤S840。其中:
步骤S810,采集换流器中的换流装置中的电容器C1两端的电压U C1
步骤S820,判断电压U C1是否大于预设的第六阈值U th6
步骤S830,如果判断结果为是,则控制换流装置中的第三可控半导体器件Q3导通,控制第一可控半导体器件Q1和第二可控半导体器件Q2关断。
步骤S840,如果判断结果为否,则控制换流装置中的第三可控半导体器件Q3断开。
可选地,步骤S840还可以包括:控制第一可控半导体器件Q1和第二可控半导体器件Q2恢复至正常工作状态,即U d小于第一阈值U th1时,第一可控半导体器件Q1和第二可控半导体器件Q2的工作状态。
方法8000为针对换流器中的换流装置的保护方法。
利用方法8000,可以对换流器中的每个换流装置进行保护,避免其因为过电压而造成损坏,以及避免每个换流装置因过压故障而退出运行。
本申请还公开了一个实施例,控制前述任意一种换流器的方法9000。方法9000为控制前述任意一种换流器停机的方法,包括:
响应于停机指令,控制换流器的所有换流装置中的第一可控半导体器件Q1和第二可控半导体器件Q2关断,第三可控半导体器件Q3导通。
利用方法9000可以实现直流电缆的快速放电、***快速停机,并对换流器内的电容放电,以及对于换流器连接的电缆放电。以便于***的检修维护。
图9为本申请的一个实施例,控制如图2或者图3所示的换流装置的方法A000。方法A000应用于,由多个串联连接的如图2或者图3所示的换流装置组成的电路。方法A000为,对该电路中的一个或者多个换流装置中的电容器进行充电控制的方法。如图9所示,方法A000包括步骤SA10和步骤SA20。其中:
步骤SA10,控制第一开关K1闭合。
步骤SA20,响应于该换流装置中的电容器的充电完成信号,控制第一开关K1断开。
可选地,步骤SA20中的充电完成信号可以是一种通信信号,也可以是一种电平信号,或者其他信号。
进一步地,步骤SA20可以包括:步骤SA30、步骤SA40和步骤SA50。 其中:
步骤SA30,,检测电容器C1的两端电压U C1
步骤SA40,判断U C1是否大于预设的第七阈值U th7,如果是,则进入步骤SA50;如果否,则进入步骤SA30。
步骤SA50,控制第一开关K1关断。
利用上述方法,对于由串联连接的多个图2或者图3所示的换流装置组成的电路,当对其中的任意一个或者多个换流装置中的电容器进行充电时,可以控制第一开关在换流装置中的电容器充电过程中,利用串联连接的第一电阻器和第二电阻器均压。在充电完成后,控制第一开关断开,从而可以减少该换流装置的损耗。
通过上述任意一种方法可以通过控制前述换流器中的换流装置中的第三可控半导体器件的关断与闭合,使得该第一电阻器和第二电阻器可以兼顾能量消耗和串联应用时的模块均压,使得该换流器的体积可以较小。同时,同时由于该换流器在大部分时间均处于即正常工作状态,即该换流装置在大部分时间内处于均压状态,第一电阻器和第二电阻器均投入使用,其设备利用率较高。
同时,通过上述任意一种方法,控制前述任意一种换流器,可以有效地保护该换流器中的器件不受损害,以及可以保护该换流器所在电网的运行安全。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。上述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明仅用于帮助理解本申请的方法及其核心思想。同时,本领域技术人员依据本申请的思想,基于本申请的具体实施方式及应用范围上做出的改变或变形之处,都属 于本申请保护的范围。综上所述,本说明书内容不应理解为对本申请的限制。

Claims (28)

  1. 一种换流装置,包括:
    开关单元,包括串联连接的第一可控半导体器件和第二可控半导体器件;
    电容器,与所述开关单元并联连接;
    耗能均压单元,与所述电容器并联,并包括串联连接的第一电阻器和第二电阻器以及第三可控半导体器件,所述第三可控半导体器件与所述第一电阻器并联。
  2. 根据权利要求1所述的换流装置,其中,所述耗能均压单元还包括:
    第一开关,与所述第一电阻器串联,并且所述第三可控半导体器件与所述第一电阻器和所述第一开关并联。
  3. 根据权利要求1所述的换流装置,其中,所述第二可控半导体器件为单极性晶体管;
    所述换流装置还包括:两个接线端,分别与所述第二可控半导体器件的漏极和源极电连接。
  4. 根据权利要求1所述的换流装置,其中,所述第二可控半导体器件为双极性晶体管;
    所述换流装置还包括:两个接线端,分别与所述第二可控半导体器件的集电极和发射极电连接。
  5. 根据权利要求1所述的换流装置,其中,所述开关单元还包括:
    串联连接的第四可控半导体器件和第五可控半导体器件,所述第一可控半导体器件和所述第二可控半导体器件与所述第四可控半导体器件和所述第五可控半导体器件彼此并联。
  6. 根据权利要求5所述的换流装置,还包括:
    两个接线端,分别连接在所述第一可控半导体器件和所述第二可控半导体器件之间以及所述第四可控半导体器件和所述第五可控半导体器件之间。
  7. 根据权利要求1所述的换流装置,其中,还包括:
    第二开关,跨接于所述两个接线端之间。
  8. 根据权利要求1所述的换流装置,还包括:
    续流二极管,与所述第二电阻器反向并联连接。
  9. 根据权利要求1所述的换流装置,其中所述第一电阻器的阻值大于所述第二电阻器的阻值。
  10. 一种换流装置组件,包括串联连接的至少两个如权利要求1-9中任一项所述的换流装置。
  11. 一种无功补偿装置,包括:
    如权利要求10所述的换流装置组件,电连接于待补偿电路。
  12. 一种换流器,包括:
    如权利要求10所述换流装置组件,两端为直流侧,分别与直流线路的两端电连接,所述换流装置组件中预定两个换流装置之间为交流侧,与交流线路电连接。
  13. 根据权利要求12所述的换流器,包括三个所述换流装置组件,交流侧分别与三相交流电路中的三相线路电连接。
  14. 一种用于控制如权利要求12或13所述的换流器的方法,包括:
    采集所述换流器的直流侧电压;
    判断所述直流侧电压是否大于预设的第一阈值;
    根据判断结果,控制所述换流器中的至少一部分换流装置中的第三可控半导体器件导通。
  15. 根据权利要求14所述的方法,其中根据判断结果,控制所述换流器中的至少一部分换流装置中的第三可控半导体器件导通包括:
    根据换流器交流侧电压和电流确定交流侧传输功率;
    计算所述交流侧传输功率低于所述换流器的预设传输功率值的差值;
    根据所述差值确定需要耗能的换流装置的数量;
    控制所述换流器中所确定数量的换流装置中的第三可控半导体器件导通。
  16. 根据权利要求15所述的方法,其中控制所述换流器中所确定数量的换流装置中的第三可控半导体器件导通包括:
    采集所述换流器的相交流侧电压;
    根据所述三相交流侧电压和所确定的数量,按比例分配每相需要耗能的换流装置的数量;
    控制所述换流器每一相中,按比例分配数量的换流装置中的第三可控半导体器件导通。
  17. 根据权利要求14所述的方法,还包括:
    采集所述换流器的交流侧电压;
    判断所述交流侧电压是否小于预设的第二阈值。
  18. 根据权利要求17所述的方法,其中根据判断结果,控制所述换流器中的至少一部分换流装置中的第三可控半导体器件导通包括:
    根据所述交流侧电压和所述换流器的交流侧额定电压,确定需要耗能的换流装置的数量,所述数量与所述交流侧电压负相关;
    控制所述换流器中所确定数量的换流装置中的第三可控半导体器件 导通。
  19. 根据权利要求18所述的方法,其中根据以下公式确定需要耗能的换流装置的数量:
    M=C*(1-Uac/Un)*N
    其中,M为需要耗能的换流装置的数量,C为可靠性系数,Uac为所述换流器的交流侧电压,Un为所述换流器的交流侧额定电压,N为所述换流器中包含换流装置的数量。
  20. 根据权利要求14-19中任一项所述的方法,还包括:
    控制所述换流器中第三可控半导体器件导通的换流装置的第一可控半导体器件导通,第二可控半导体器件关断。
  21. 根据权利要求16-19中任一项所述的方法,还包括:
    判断所述交流侧电压是否小于预设的第三阈值;
    如果是,则控制所述换流器中第三可控半导体器件导通的换流装置的第一可控半导体器件和第二可控半导体器件关断;
    如果否,则控制所述换流器中第三可控半导体器件导通的换流装置的第一可控半导体器件导通,第二可控半导体器件关断。
  22. 根据权利要求14所述的方法,还包括:
    采集所述换流器的交流侧电压;
    判断所述交流侧电压是否小于预设的第四阈值;
    如果是,则控制所述换流器中所有换流装置的第三可控半导体器件导通,第一可控半导体器件和第二可控半导体器件关断。
  23. 根据权利要求22所述的方法,其中还包括:
    控制所述换流器中的所有换流装置的第一可控半导体器件和第二可控半导体器件关断。
  24. 根据权利要求16或17所述的方法,还包括:
    判断所述交流侧电压是否大于预设的第五阈值;
    如果是,则控制所述换流器中所有换流装置的第三可控半导体器件关断,第一可控半导体器件和第二可控半导体器件恢复至所述直流侧电压超出所述第一阈值之前的运行策略。
  25. 一种用于控制如权利要求12或13所述的换流器的方法,包括:
    采集所述换流装置中电容器两端的电压;
    判断所述电容器两端的电压是否大于预设的第六阈值;
    如果是,控制所述换流装置中的第三可控半导体器件导通,第一可控半导体器件和第二可控半导体器件关断;
    如果否,控制所述换流装置中的第三可控半导体器件关断。
  26. 一种用于控制如权利要求12或13所述的换流器的方法,包括:
    响应于所述换流器的停机指令,控制所述换流器的换流装置中的第一可控半导体器件和第二可控半导体器件关断,第三可控半导体器件导通。
  27. 一种用于控制如权利要求2所述的换流装置的方法,包括:
    控制所述第一开关闭合;
    响应于所述电容器的充电完成信号,控制所述第一开关断开。
  28. 根据权利要求27所述的方法,其中,响应于所述电容器的充电完成信号,控制所述第一开关断开,包括:
    检测所述电容器两端的电压;
    将所述电容器两端的电压与预设的第七阈值进行比较;
    根据比较结果,确定所述电容器是否完成充电。
PCT/CN2020/099402 2019-08-26 2020-06-30 换流装置及其组件、无功补偿装置、换流器及其控制方法 WO2021036493A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217021208A KR102532842B1 (ko) 2019-08-26 2020-06-30 컨버터 장치 및 그 어셈블리, 무효전력 보상 장치, 컨버터 및 그 제어 방법
EP20858070.4A EP3890174A4 (en) 2019-08-26 2020-06-30 INVERTER AND ARRANGEMENT, VARIANT POWER COMPENSATION DEVICE AND INVERTER THEREOF, AND CONTROL METHOD THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910789028.0A CN112436724B (zh) 2019-08-26 2019-08-26 换流装置及其组件、无功补偿装置、换流器及其控制方法
CN201910789028.0 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021036493A1 true WO2021036493A1 (zh) 2021-03-04

Family

ID=74683238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099402 WO2021036493A1 (zh) 2019-08-26 2020-06-30 换流装置及其组件、无功补偿装置、换流器及其控制方法

Country Status (4)

Country Link
EP (1) EP3890174A4 (zh)
KR (1) KR102532842B1 (zh)
CN (1) CN112436724B (zh)
WO (1) WO2021036493A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202749815U (zh) * 2012-08-23 2013-02-20 无锡清源电气科技有限公司 一种卸荷装置和应用卸荷装置的模块化多电平风电变流器
CN205509501U (zh) * 2016-04-08 2016-08-24 南京南瑞继保电气有限公司 一种暂态能量耗散装置
CN106374767A (zh) * 2016-09-18 2017-02-01 国网福建省电力有限公司 一种考虑二次回路的模块化多电平换流器子模块仿真模型
US20170214335A1 (en) * 2016-01-27 2017-07-27 Ge Energy Power Conversion Technology Ltd Method to protect a power converter arrangement and power converter arrangement with a protective device
CN108376993A (zh) * 2018-04-24 2018-08-07 国网冀北电力有限公司检修分公司 一种适用于柔性直流孤岛运行时的交流耗能装置
CN108666995A (zh) * 2018-04-03 2018-10-16 国家电网有限公司 动态泄能装置、设备及直流输电***
CN109861269A (zh) * 2019-03-29 2019-06-07 西安许继电力电子技术有限公司 一种分布式直流耗能装置的投切控制***及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756021A (zh) * 2004-09-28 2006-04-05 中国科学院电工研究所 一种短路故障限流器
CN101051751A (zh) * 2007-05-14 2007-10-10 上海艾帕电力电子有限公司 含有功率单元的有源电力滤波器及其控制方法
CN103401253B (zh) * 2013-08-14 2016-02-03 深圳市英威腾电气股份有限公司 Svg功率单元电路、链式svg功率单元电路及静态均压方法
EP2913925B1 (en) * 2014-02-26 2021-03-31 General Electric Technology GmbH Balancing and/or discharge resistor arrangements
CN204046175U (zh) * 2014-03-27 2014-12-24 特变电工新疆新能源股份有限公司 用于链式svg的功率模块及链式svg拓扑结构
CN204651931U (zh) * 2015-05-13 2015-09-16 特变电工新疆新能源股份有限公司 一种用于链式svg的功率模块及链式svg
CN105680409B (zh) * 2016-04-19 2018-03-30 南京南瑞继保电气有限公司 一种桥式电路、直流电流分断装置及其控制方法
CN105811749A (zh) * 2016-04-20 2016-07-27 广州供电局有限公司 换流阀子模块和模块化多电平换流器
CN105846704B (zh) * 2016-05-17 2018-07-24 中国能源建设集团广东省电力设计研究院有限公司 功率模块和换流器及其充电方法和直流故障自清除方法
KR101943882B1 (ko) * 2016-12-26 2019-01-30 효성중공업 주식회사 Mmc 컨버터의 서브모듈 제어기용 전원장치
CN109546638B (zh) * 2018-10-22 2020-07-28 南京南瑞继保电气有限公司 一种直流耗能装置以及控制方法
CN209043136U (zh) * 2018-11-12 2019-06-28 中国工程物理研究院电子工程研究所 高压起爆电路及装置
CN109873441A (zh) * 2019-03-29 2019-06-11 西安许继电力电子技术有限公司 一种具有分布式直流耗能装置的风电柔性直流送出***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202749815U (zh) * 2012-08-23 2013-02-20 无锡清源电气科技有限公司 一种卸荷装置和应用卸荷装置的模块化多电平风电变流器
US20170214335A1 (en) * 2016-01-27 2017-07-27 Ge Energy Power Conversion Technology Ltd Method to protect a power converter arrangement and power converter arrangement with a protective device
CN205509501U (zh) * 2016-04-08 2016-08-24 南京南瑞继保电气有限公司 一种暂态能量耗散装置
CN106374767A (zh) * 2016-09-18 2017-02-01 国网福建省电力有限公司 一种考虑二次回路的模块化多电平换流器子模块仿真模型
CN108666995A (zh) * 2018-04-03 2018-10-16 国家电网有限公司 动态泄能装置、设备及直流输电***
CN108376993A (zh) * 2018-04-24 2018-08-07 国网冀北电力有限公司检修分公司 一种适用于柔性直流孤岛运行时的交流耗能装置
CN109861269A (zh) * 2019-03-29 2019-06-07 西安许继电力电子技术有限公司 一种分布式直流耗能装置的投切控制***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3890174A4 *

Also Published As

Publication number Publication date
CN112436724A (zh) 2021-03-02
KR102532842B1 (ko) 2023-05-15
EP3890174A4 (en) 2022-08-10
EP3890174A1 (en) 2021-10-06
KR20210099101A (ko) 2021-08-11
CN112436724B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
US20230208354A1 (en) Direct current combiner box, inverter, photovoltaic system, and protection method
KR102070553B1 (ko) 서브모듈 기반 하이브리드 컨버터의 충전 방법
WO2014111035A1 (zh) 一种模块化多电平换流器的充电方法
EP3893349B1 (en) Photovoltaic inverter, and photovoltaic power generation system for same
WO2018130205A1 (zh) 一种子模块混合型换流器的充电方法
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
BR102013007059A2 (pt) Conversor á base de gerador de indução de dupla alimentação (dfig) e método para funcionamento sustentado melhorado durante falta na rede
US20220294361A1 (en) Method and apparatus for detecting short circuit of inverter, and inverter
CN113991662A (zh) 基于lcc-mmc的能量路由***及直流故障保护方法
Diao et al. A novel fault ride-through topology with high efficiency and fast fault clearing capability for MVdc PV system
CN113098126B (zh) 电压补偿装置
CN103683327A (zh) 一种应用于风机低电压穿越的单相可控串联补偿装置
CN105826952A (zh) 一种供电接入装置及其保护方法
US20230402972A1 (en) Photovoltaic system, power supply system, and insulation fault detection method
US20230327453A1 (en) Photovoltaic System, Protection Method, and Inverter System
WO2021208141A1 (zh) 一种电源***
US10790738B1 (en) Circuit and method for fault detection and reconfiguration in cascaded H-bridge multilevel converters
WO2021036493A1 (zh) 换流装置及其组件、无功补偿装置、换流器及其控制方法
Yang et al. Open-Circuit fault diagnosis and tolerant method of multiport triple active-bridge DC-DC converter
CN106451428A (zh) 一种具有短路限流功能的混合型统一电能质量调节器
Wang et al. A secure system integrated with DC-side energy storage for renewable generation applications
EP3799244A1 (en) Energy storage unit separated converter, application system thereof and control method therefor
CN112398341B (zh) 一种多相交错并联dcdc转换器的控制方法
CN110690723B (zh) 海上风电***中储能型模块化多电平变换器的控制方法
CN110635472B (zh) 一种三相储能逆变***增大带载能力的方法和应用其的三相储能逆变***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020858070

Country of ref document: EP

Effective date: 20210628

ENP Entry into the national phase

Ref document number: 20217021208

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE