WO2021033283A1 - Multi-stage rotary compressor and refrigeration cycle device - Google Patents

Multi-stage rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2021033283A1
WO2021033283A1 PCT/JP2019/032593 JP2019032593W WO2021033283A1 WO 2021033283 A1 WO2021033283 A1 WO 2021033283A1 JP 2019032593 W JP2019032593 W JP 2019032593W WO 2021033283 A1 WO2021033283 A1 WO 2021033283A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
low
compression mechanism
partition plate
stage compression
Prior art date
Application number
PCT/JP2019/032593
Other languages
French (fr)
Japanese (ja)
Inventor
平山 卓也
武士 知念
木村 茂喜
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2021541402A priority Critical patent/JP7195446B2/en
Priority to CN201980098795.5A priority patent/CN114174684B/en
Priority to CN202310397445.7A priority patent/CN116378957A/en
Priority to PCT/JP2019/032593 priority patent/WO2021033283A1/en
Publication of WO2021033283A1 publication Critical patent/WO2021033283A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps

Definitions

  • An embodiment of the present invention relates to a multi-stage rotary compressor and a refrigeration cycle device.
  • a multi-stage rotary compressor that gradually compresses the working fluid by rotating the eccentric part.
  • a multi-stage rotary compressor includes a low-stage compression mechanism unit that compresses a low-pressure working fluid to an intermediate pressure, and a high-stage compression mechanism unit that compresses an intermediate-pressure working fluid compressed by the low-stage compression mechanism unit to a high pressure.
  • the multi-stage rotary compressor includes a sealed case that houses the compression and drive elements. A high-pressure working fluid compressed by the high-stage compression mechanism is discharged into the closed case.
  • the low-stage side discharge hole and the discharge valve device are provided on the partition plate, and the high-stage side discharge hole and the discharge valve device are provided on the high-stage side bearing.
  • An intermediate pressure space is provided inside the partition plate.
  • the working fluid discharged into the intermediate pressure space is discharged into the case via the muffler space.
  • the compressed fluid having a high temperature and high pressure may be discharged into the case without being sufficiently cooled. Then, the electric motor may be overheated, leading to a decrease in motor efficiency and demagnetization of the magnet.
  • the problem to be solved by the present invention is a multi-stage rotary compressor and a refrigerating cycle capable of securing an intermediate pressure space formed in a partition plate, securing a sealing area of a roller end face, and improving the cooling performance of the discharged fluid.
  • the multi-stage rotary compressor of the embodiment has a rotating shaft, a driving element provided on one end side in the axial direction of the rotating shaft, and a compression element provided on the other end side in the axial direction of the rotating shaft inside the case.
  • the compression element consists of a low-stage compression mechanism that compresses the low-pressure working fluid to an intermediate pressure, a high-stage compression mechanism that compresses the intermediate-pressure working fluid to a high pressure, and a partition plate that separates both compression mechanisms.
  • a first bearing and a second bearing are provided on the opposite sides of the partition plate of each compression mechanism, respectively.
  • the partition plate is provided with an intermediate pressure space in which the working fluid of the intermediate pressure compressed by the low-stage compression mechanism is discharged.
  • the partition plate is provided with a low-stage discharge hole and a low-stage side discharge valve device.
  • the second bearing on the high-stage compression mechanism side is provided with a high-stage discharge hole and a high-stage discharge valve device.
  • the thickness of the portion of the partition plate that forms the low-stage valve seat is smaller than the thickness of the portion of the second bearing that forms the high-stage valve seat.
  • FIG. 2 is a sectional view taken along line III-III of FIG. Explanatory drawing which shows the procedure of assembling the low-stage side roller to the rotating shaft of the multi-stage rotary compressor of embodiment in the order of (a)-(d). Enlarged view of the main part of FIG.
  • FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus including a cross-sectional view of the multi-stage rotary compressor of the embodiment.
  • the refrigeration cycle device 1 of the embodiment includes a multi-stage rotary compressor 2 having a compressor main body 11 and an accumulator (gas-liquid separator) 12 to compress a gas refrigerant as an operating fluid, and discharge of the compressor main body 11.
  • a multi-stage rotary compressor 2 having a compressor main body 11 and an accumulator (gas-liquid separator) 12 to compress a gas refrigerant as an operating fluid, and discharge of the compressor main body 11.
  • a radiator 3 connected to the unit 15 to cool the high-temperature and high-pressure gas refrigerant discharged from the compressor main body 11, and an expansion device (expansion valve) 4 connected to the downstream side of the radiator 3 to reduce the pressure of the refrigerant. It has an evaporator (heat absorber) 5 connected between the expansion device 4 and the introduction portion 12a of the accumulator 12 to evaporate the refrigerant.
  • Reference numeral 13 in the figure indicates an introduction passage extending from the discharge portion 15 of the compressor main body 11 to the introduction portion 12a of the accumulator 12.
  • the lead-out portion 12b of the accumulator 12 and the suction portion 14 of the compressor body 11 are connected by a suction pipe 6.
  • the gas-liquid separated gas refrigerant by the accumulator 12 is guided to the low-stage compression mechanism unit 37 described later of the compressor main body 11 via the suction pipe 6.
  • the refrigeration cycle device 1 shown in FIG. 1 has an intermediate pressure passage 7 that guides an intermediate pressure gas refrigerant compressed by the low-stage compression mechanism portion 37 of the compressor main body 11 to the intercooler 7a.
  • the intermediate pressure passage 7 guides the intermediate pressure gas refrigerant compressed by the low-stage compression mechanism unit 37 of the compressor main body 11 to the high-stage compression mechanism unit 38 of the compressor main body 11.
  • the intermediate pressure passage 7 extends from the second discharge portion 15a communicating with the low-stage compression mechanism portion 37 to the second suction portion 14a communicating with the high-stage compression mechanism portion 38.
  • the refrigeration cycle device 1 has a second accumulator (gas-liquid separator) 8 and a second expansion device (expansion valve) 9 between the expansion device 4 and the evaporator 5.
  • a bypass that guides the gas refrigerant separated by the second accumulator 8 to the high-stage compression mechanism 38 between the second accumulator 8 and the second suction portion 14a of the high-stage compression mechanism 38 of the compressor body 11.
  • a passage 8a is provided.
  • the bypass passage 8a in FIG. 1 joins in the middle of the intermediate pressure passage 7.
  • the pressure of the gas refrigerant separated by the second accumulator 8 is equal to the intermediate pressure of the gas refrigerant compressed by the low-stage compression mechanism 37 of the compressor main body 11.
  • the intermediate pressure passage 7, the bypass passage 8a, the second accumulator 8, and the second expansion device 9 may be eliminated.
  • the multi-stage rotary compressor 2 is a so-called rotary compressor.
  • the multi-stage rotary compressor 2 compresses the low-pressure gas refrigerant taken into the inside in two stages to obtain a high-temperature and high-pressure gas refrigerant.
  • the specific configuration of the multi-stage rotary compressor 2 will be described later.
  • the refrigerant which is the working fluid, circulates in the refrigeration cycle device 1 while changing the phase between the gaseous refrigerant and the liquid refrigerant.
  • the refrigerant absorbs heat in the process of phase change from a liquid refrigerant to a gaseous refrigerant. Freezing and refrigeration are performed using this endothermic process.
  • an HFC-based refrigerant such as R410A or R32
  • an HFO-based refrigerant such as R1234yf or R1234ze
  • a natural refrigerant such as CO2, or the like.
  • the radiator 3 dissipates heat from a high-temperature, high-pressure gaseous refrigerant sent from the multi-stage rotary compressor 2.
  • the expansion device 4 lowers the pressure of the high-pressure refrigerant sent from the radiator 3 to make a low-temperature / low-pressure liquid refrigerant.
  • the evaporator 5 vaporizes the low-temperature / low-pressure liquid refrigerant sent from the expansion device 4 into a low-pressure gaseous refrigerant.
  • the evaporator 5 when the low-pressure liquid refrigerant vaporizes, the heat of vaporization is taken from the surroundings, and the surroundings are cooled.
  • the low-pressure gaseous refrigerant that has passed through the evaporator 5 is taken into the multi-stage rotary compressor 2 described above.
  • the gas-liquid-separated intermediate pressure gas refrigerant separated by the second accumulator 8 is guided into the high-stage compression mechanism portion 38 of the compressor main body 11 via the bypass passage 8a. As a result, the compression performance of the compressor main body 11 is improved.
  • the multi-stage rotary compressor 2 of the embodiment includes a compressor main body 11 and an accumulator 12.
  • the accumulator 12 is a so-called gas-liquid separator.
  • the accumulator 12 is provided between the above-mentioned evaporator 5 and the compressor main body 11.
  • the accumulator 12 is connected to the compressor main body 11 through a suction pipe 6.
  • the accumulator 12 supplies only the gaseous refrigerant out of the gaseous refrigerant vaporized by the evaporator 5 and the liquid refrigerant not vaporized by the evaporator 5 to the compressor main body 11.
  • the compressor main body 11 includes a rotating shaft 31, an electric motor (driving element) 32, a compression element 33, and a sealed case 34 for accommodating the rotating shaft 31, the electric motor 32, and the compression element 33.
  • the compressor main body 11 is arranged with the axial direction of the rotating shaft 31 and the sealing case 34 as the vertical direction.
  • the rotation shaft 31 makes the rotation center axis C coincide with the center axis of the sealed case 34.
  • the direction along the central axis C of the rotating shaft 31 and the sealed case 34 is simply referred to as the axial direction
  • the direction orthogonal to the axial direction is referred to as the radial direction
  • the direction around the axis C is referred to as the circumferential direction. ..
  • both ends in the axial direction of the cylindrical body are closed to form a closed container.
  • the electric motor 32 is housed on the upper side
  • the compression element 33 is housed on the lower side.
  • These electric motors 32 and the compression element 33 are connected via a rotating shaft 31.
  • the electric motor 32 is provided on one end side of the rotating shaft 31, and the compression element 33 is provided on the other end side of the rotating shaft 31.
  • an annular frame 34a fixed to the inner wall surface of the closed case 34 is provided between the electric motor 32 and the compression element 33.
  • Lubricating oil J for lubricating the compression element 33 is stored in the bottom of the sealed case 34.
  • the bottom of the sealed case 34 constitutes a lubricating oil storage portion 34b that stores the lubricating oil J.
  • a part of the compression element 33 is immersed in the lubricating oil J.
  • the high-pressure gas refrigerant compressed by the high-stage compression mechanism unit 38 is discharged into the space inside the closed case 34.
  • the electric motor 32 is a so-called inner rotor type DC brushless motor.
  • the electric motor 32 is an electric motor including a stator 35 and a rotor 36.
  • the stator 35 is fixed to the inner wall surface of the upper part of the sealed case 34.
  • the rotor 36 is arranged inside the stator 35 with a radial interval, and is fixed to the upper part of the rotating shaft 31.
  • FIG. 2 is a cross-sectional view of the compression element 33 of the multi-stage rotary compressor 2.
  • FIG. 3 is a sectional view taken along line III-III of FIG.
  • the compression element 33 is a multi-cylinder compression element having a plurality of cylinders 37a and 38a.
  • the compression element 33 is a two-cylinder (multi-cylinder) compression element having a pair (plurality) of cylinders 37a and 38a arranged in the axial direction.
  • the compression element 33 of the embodiment includes a low-stage compression mechanism unit 37 located on the upper side in the axial direction (side of the electric motor 32) and a high-stage compression mechanism unit 38 located on the lower side in the axial direction (opposite side of the electric motor 32).
  • a partition plate 39 for partitioning between the low-stage compression mechanism unit 37 and the high-stage compression mechanism unit 38 in the vertical direction (axial direction) is provided.
  • the low-stage compression mechanism unit 37 compresses (boosts) the low-pressure working fluid sucked from the accumulator 12 to an intermediate pressure.
  • the high-stage compression mechanism unit 38 compresses (boosts) the intermediate-pressure working fluid compressed by the low-stage compression mechanism unit 37 to a high pressure.
  • the low-stage compression mechanism unit 37 is provided with a rotation shaft 31 parallel to the axial direction, and includes a low-stage side cylinder 37a that allows the rotation shaft 31 to penetrate in the vertical direction.
  • the low-stage cylinder 37a forms a circular low-stage cylinder hole 37b that coincides with the rotation center axis C of the rotation shaft 31.
  • the low-stage compression mechanism unit 37 closes the upper end opening of the low-stage side cylinder hole 37b on the upper side of the low-stage side cylinder 37a (opposite to the partition plate 39 in the axial direction) and the first spindle on the upper side of the rotary shaft 31.
  • a first bearing 41 that rotatably supports 31a is provided.
  • the high-stage compression mechanism unit 38 includes a high-stage side cylinder 38a that is provided in parallel with the rotating shaft 31 in the axial direction and allows the rotating shaft 31 to penetrate in the vertical direction.
  • the high-stage cylinder 38a forms a circular high-stage cylinder hole 38b that coincides with the rotation center axis C of the rotation shaft 31. That is, the high-stage side cylinder hole 38b and the low-stage side cylinder hole 37b are arranged coaxially with each other and coaxially with the rotating shaft 31.
  • the high-stage compression mechanism portion 38 closes the lower end opening of the high-stage side cylinder hole 38b on the lower side of the high-stage side cylinder 38a (opposite to the partition plate 39 in the axial direction) and at the lower side of the rotary shaft 31.
  • a second bearing 42 that rotatably supports the three main shafts 31e is provided.
  • the outer peripheral portion of the lower stage cylinder 37a is fastened and fixed to the frame 34a by a bolt B1 inserted from below in a state of being in contact with the lower surface of the frame 34a.
  • a first bearing 41 is arranged on the inner peripheral side of the frame 34a.
  • the first bearing 41 is fastened and fixed to the low-stage cylinder 37a by a bolt B2 inserted from above in a state of being in contact with the upper surface of the low-stage cylinder 37a.
  • the bolt B2 penetrates the low-stage cylinder 37a and extends downward, further penetrates the partition plate 39 and the high-stage cylinder 38a, and then is screwed into the screw hole of the second bearing 42 and tightened.
  • first bearing 41, the lower stage cylinder 37a, the partition plate 39, the higher stage side cylinder 38a and the second bearing 42 are integrally fastened in a laminated state, and these laminated bodies are fixed to the frame 34a.
  • the rotating shaft 31 is rotatably supported by the first bearing 41 and the second bearing 42 fixed to the frame 34a and thus the closed case 34.
  • the upper end opening of the low-stage cylinder hole 37b is closed by the first bearing 41
  • the lower end opening of the low-stage cylinder hole 37b is closed by the partition plate 39.
  • the space partitioned by the low-stage cylinder 37a, the first bearing 41, and the partition plate 39 is defined as the low-stage cylinder chamber 37c.
  • the lower end opening of the high-stage cylinder hole 38b is closed by the second bearing 42, and the upper end opening of the high-stage cylinder hole 38b is closed by the partition plate 39.
  • the space partitioned by the high-stage cylinder 38a, the second bearing 42, and the partition plate 39 is referred to as the high-stage cylinder chamber 38c.
  • the low-stage cylinder 37a and the high-stage cylinder 38a are butted in the axial direction with a partition plate 39 sandwiched between them. The specific configuration of the partition plate 39 will be described later.
  • the rotating shaft 31 is provided with a low-stage eccentric portion 31b eccentric to one side in the radial direction with respect to the central axis C at a portion located in the low-stage side cylinder chamber 37c.
  • the rotary shaft 31 includes a high-stage side eccentric portion 31d eccentric to the other side in the radial direction with respect to the central axis C at a portion located in the high-stage side cylinder chamber 38c.
  • the rotating shaft 31 is a second spindle extending around the central axis C, extending between the first spindle 31a extending above the lower eccentric portion 31b, the lower eccentric portion 31b, and the higher eccentric portion 31d. It includes a spindle 31c and a third spindle 31e extending below the eccentric portion 31d on the higher stage side.
  • the first spindle 31a extends greatly upward, and the rotor 36 of the electric motor 32 is fixed to the first spindle 31a.
  • the eccentric portions 31b and 31d have a cylindrical shape having the same diameter as each other.
  • the eccentric portions 31b and 31d are arranged with a phase difference of 180 ° in the circumferential direction.
  • the eccentric portions 31b and 31d have the same amount of eccentricity with respect to the central axis C.
  • a cylindrical low-stage roller 45 is rotatably extrapolated to the low-stage eccentric portion 31b.
  • the low-stage side eccentric portion 31b and the low-stage side roller 45 rotate around the central axis of the eccentric portion 31b.
  • a cylindrical high-stage roller 46 is rotatably extrapolated to the high-stage eccentric portion 31d.
  • the high-stage side eccentric portion 31d and the high-stage side roller 46 rotate around the central axis of the eccentric portion 31d.
  • the first bearing 41 includes a cylindrical tubular portion 41a that rotatably supports the first spindle 31a of the rotating shaft 31, and a flange portion 41b formed with an enlarged diameter on the outer peripheral side of the lower end portion of the tubular portion 41a. ing.
  • An upper muffler member (second muffler member) 43 is fixed to the first bearing 41 by, for example, the bolt B2.
  • the second bearing 42 includes a cylindrical tubular portion 42a that rotatably supports the third main shaft 31e of the rotating shaft 31, and a flange portion 42b formed with an enlarged diameter on the outer peripheral side of the upper end portion of the tubular portion 42a. ing.
  • a bottom side muffler member (first muffler member) 44 is fixed to the second bearing 42.
  • the sliding portion length L1 of the first bearing 41 is the sliding portion of the second bearing 42. Longer than length L2. Therefore, the deflection of the rotating shaft 31 on the first bearing 41 side can be reduced, and the inclination of the low-stage side eccentric portion 31b and the low-stage side roller 45 can be reduced.
  • the eccentric portion 31b of the low-stage compression mechanism unit 37 is arranged offset to the first bearing 41 side in the axial direction in the low-stage side cylinder chamber 37c.
  • the axial center position cp1 of the eccentric sliding portion (sliding portion between the eccentric portion 31b and the roller 45) of the low-stage compression mechanism portion 37 is the axis of the low-stage side cylinder 37a of the low-stage compression mechanism portion 37. It is located closer to the first bearing 41 in the axial direction than the central position cp2 in the direction. This also makes it possible to reduce the deflection of the rotating shaft 31 on the first bearing 41 side.
  • the low-stage compression mechanism unit 37 includes a blade (low-stage side blade) 18 that divides the low-stage side cylinder chamber 37c into a suction chamber 16 and a compression chamber 17.
  • the blade 18 is provided in the blade groove 18c formed in the lower stage cylinder 37a, and can move forward and backward with respect to the cylinder chamber 37c.
  • the blade 18 maintains a state in which the tip surface (roller contact surface) 18a on the roller 45 side is in contact with the outer peripheral surface of the roller 45.
  • the blade 18 and the roller 45 divide the inside of the cylinder chamber 37c into a suction chamber 16 and a compression chamber 17.
  • the blade 18 of the low-stage compression mechanism unit 37 is composed of, for example, a plurality of blade members (lower-stage side blade members) 19a and 19b provided so as to be stacked in the axial direction (a pair of upper and lower blade members in the embodiment).
  • the upper and lower blade members 19a and 19b may be simply referred to as blade members 19.
  • the blade 18 (blade member 19) is urged toward the roller 45 only by receiving the case internal pressure on the back surface 18b opposite to the tip surface 18a in the radial direction (advancing / retreating direction) of the cylinder chamber 37c.
  • No urging member such as a spring is provided on the back surface 18b side of the blade 18.
  • the tip surface 18a of the blade 18 has, for example, an arc shape when viewed from the axial direction.
  • the tip surface 18a of the blade 18 is subjected to a surface hardening treatment such as DLC coating.
  • the back surface 18b of the blade 18 has a flat shape that is orthogonal to, for example, the advancing / retreating direction when viewed from the axial direction.
  • Reference numeral 34c in the figure indicates an internal communication portion in the case in which the internal pressure of the case acts by communicating with the inside of the closed case 34.
  • the blade 18 (a pair of blade members 19a, 19b) is slidably held in the blade groove 18c.
  • the pair of blade members 19a and 19b can individually slide (advance and retreat) along the radial direction with respect to the blade groove 18c.
  • the blade 18 is urged inward in the radial direction (toward the roller 45) by the pressure of the high-pressure gas refrigerant (case internal pressure) in the closed case 34. As a result, the blade 18 maintains a state of being in contact with the outer peripheral surface of the eccentric rotating roller 45.
  • the low-stage compression mechanism unit 37 performs a compression operation in the low-pressure side cylinder chamber 37c by the eccentric rotation operation of the roller 45 and the advance / retreat operation of the blade 18.
  • a suction hole 18d that penetrates the low-stage cylinder 37a in the radial direction is formed in a part of the low-stage cylinder 37a in the circumferential direction.
  • the suction hole 18d is located on the downstream side of the blade groove 18c (on the left side of the blade groove 18c in FIG. 3) in the eccentric rotation direction of the roller 45 (in the direction of arrow F in FIG. 3, which is also the rotation direction of the rotation shaft 31). ing.
  • a suction pipe 6 extending from the accumulator 12 is connected to the radial outer side of the suction hole 18d.
  • the high-stage compression mechanism unit 38 also compresses the cylinder chamber 38c with the suction chamber 16 in the same manner as the low-stage compression mechanism unit 37, with reference to FIG.
  • a blade (high-stage side blade) 21 that divides into a chamber 17 is provided.
  • the blade 21 of the high-stage compression mechanism unit 38 is composed of one blade member (high-stage side blade member) 22.
  • reference numeral 21a indicates a front end surface of the blade 21, and reference numeral 21b indicates a back surface of the blade 21.
  • the blade member 22 is urged toward the roller 46 by receiving the case internal pressure on the back surface 21b, and is also urged toward the roller 46 by the urging spring 23 (for example, a coil spring) reduced to the back surface 21b side. Being urged.
  • the high-stage compression mechanism unit 38 includes an urging spring 23 for urging the blade member 22, so that the blade member 22 is directed toward the roller 46 even when the case internal pressure is low, such as when the multi-stage rotary compressor 2 is started. It is possible to urge and compress and boost the inhaled refrigerant.
  • each of the compression mechanism units 37 and 38 a suction operation of sucking the gas refrigerant into the suction chamber 16 and a compression operation of compressing the gas refrigerant in the compression chamber 17 are performed by the eccentric rotation of the rollers 45 and 46.
  • the low-stage compression mechanism unit 37 the low-pressure gas refrigerant is sucked from the accumulator 12 by the suction operation.
  • the low-stage compression mechanism unit 37 compresses the sucked gas refrigerant by a compression operation and boosts the pressure to an intermediate pressure.
  • the gas refrigerant boosted by the low-stage compression mechanism unit 37 is discharged into the intermediate pressure chamber 39c of the partition plate 39 through the discharge hole 47a provided in the partition plate 39.
  • the intermediate pressure gas refrigerant is sucked from the intermediate pressure chamber 39c by the suction operation.
  • the high-stage compression mechanism unit 38 further compresses the sucked gas refrigerant by a compression operation and boosts the pressure to a high pressure.
  • the gas refrigerant boosted by the high-stage compression mechanism unit 38 is discharged to the outside of the cylinder chamber 38c (inside the bottom muffler chamber 44a) through the discharge hole 49a provided in the flange portion 42b of the second bearing 42.
  • the partition plate 39 is formed in an annular shape centered on the axis C.
  • the partition plate 39 has an inner diameter through which the rotating shaft 31 including the eccentric portions 31b and 31d can be inserted.
  • the inner diameter of the partition plate 39 needs to be larger than the outer diameter of at least one of the eccentric portions 31b and 31d of the rotating shaft 31. Therefore, the intermediate pressure space 39c in the partition plate 39 is difficult to expand to the inner peripheral side, and is formed to be expanded to the outer peripheral side.
  • the partition plate 39 is divided into a plurality of partition plate members 39a and 39b (a pair of upper and lower parts in the embodiment) in the axial direction.
  • Each of the partition plate members 39a and 39b has a concave cross-sectional shape with a recess on the other side and extends in an annular shape.
  • the partition plate members 39a and 39b are connected to each other with the open side of the concave cross-sectional shape facing the other side.
  • an intermediate pressure space (intermediate pressure chamber) 39c is formed inside the partition plate 39.
  • the low-stage partition plate member 39a is provided with a low-stage discharge valve device 47 that discharges an intermediate-pressure gas refrigerant compressed by the low-stage compression mechanism 37 into the intermediate-pressure space 39c.
  • the intermediate pressure gas refrigerant discharged from the low stage compression mechanism unit 37 into the intermediate pressure space 39c is guided to the second suction portion 14a communicating with the high stage compression mechanism unit 38 via the intermediate pressure passage 7.
  • the intermediate pressure gas refrigerant guided to the high-stage compression mechanism portion 38 via the intermediate pressure passage 7 is cooled by the intercooler 7a on the way. Therefore, a cooled intermediate pressure gas refrigerant is guided to the high-stage compression mechanism unit 38.
  • the intermediate pressure gas refrigerant separated by gas and liquid by the second accumulator 8 is guided through the bypass passage 8a that joins in the middle of the intermediate pressure passage 7.
  • the intermediate pressure gas refrigerant guided to the second suction portion 14a is compressed by the high-stage compression mechanism portion 38.
  • the low-stage side discharge valve device 47 of the low-stage side partition plate member 39a opens.
  • the intermediate pressure gas refrigerant is discharged into the intermediate pressure space 39c.
  • This gas refrigerant is guided into the cylinder chamber 38c of the high-stage compression mechanism unit 38.
  • the intermediate pressure gas refrigerant is compressed into the high pressure gas refrigerant by the compression operation of the high-stage compression mechanism unit 38.
  • the flange portion 42b of the second bearing 42 is provided with a high-stage side discharge valve device 49 that discharges the high-pressure gas refrigerant compressed by the high-stage compression mechanism portion 38 to the outside of the cylinder chamber 38c.
  • the high-stage side discharge valve device 49 of the second bearing 42 opens.
  • the high-stage discharge valve device 49 opens, the high-pressure gas refrigerant is discharged to the outside of the cylinder chamber 38c. This gas refrigerant is discharged into the space (bottom side muffler chamber 44a) in the bottom side muffler member 44, and then appropriately discharged into the closed case 34.
  • the high-pressure gas refrigerant discharged into the bottom muffler chamber 44a passes through the discharge passage 33a in the compression element 33 and reaches the space in the upper muffler member 43 (upper muffler chamber 43a).
  • the discharge passage 33a is formed so as to penetrate the second bearing 42, the low-stage cylinder 37a, the partition plate 39, the high-stage cylinder 38a, and the outer peripheral side of the first bearing 41 in the axial direction.
  • the gas refrigerant that has reached the upper muffler chamber 43a is discharged into the closed case 34 from a discharge hole appropriately provided in the upper muffler member 43.
  • the bottom side muffler member 44 has a container shape that covers the second bearing 42 from below.
  • the lower wall of the bottom side muffler member 44 is formed with a lower end communication hole in the central portion that exposes the lower end of the rotating shaft 31 downward (outside the muffler). Lubricating oil J is sucked into the oil supply path in the rotating shaft 31 through the lower end communication hole.
  • the upper muffler member 43 has a container shape that covers the first bearing 41 from above. On the upper wall portion of the upper muffler member 43, a shaft insertion hole for inserting the rotating shaft 31 is formed in the central portion, and an upper end communication hole for communicating the inside and outside of the upper muffler member 43 is formed around the shaft insertion hole. It is formed.
  • the high-temperature, high-pressure gaseous refrigerant flowing into the upper muffler chamber 43a is discharged into the closed case 34 through the upper end communication hole.
  • the upper muffler chamber 43a is formed around the first bearing 41 on the lower stage side.
  • the lower end inner wall surface of the upper muffler chamber 43a is formed by a flange portion 41b of the first bearing 41 that closes the upper end of the lower cylinder chamber 37c.
  • the bottom side muffler chamber 44a is formed around the second bearing 42 on the high stage side.
  • the bottom side muffler member 44 forms the inner wall surface of the bottom side muffler chamber 44a in a range in which the bottom side muffler member 44 is immersed in the lubricating oil J of the lubricating oil storage portion 34b.
  • the thickness of the portion of the bottom side muffler member 44 that separates the inside of the bottom side muffler chamber 44a from the lubricating oil storage portion 34b is such that the thickness of the portion of the first bearing 41 that separates the inside of the bottom side muffler chamber 43a and the low stage compression mechanism portion 37 The thickness is smaller than the thickness of the portion (flange portion 41b) that separates the suction chamber 16.
  • the thickness of the compartment of the bottom muffler chamber 44a is thinner than the thickness of the compartment of the upper muffler chamber 43a.
  • the amount of heat radiated from the bottom muffler chamber 44a to the lubricating oil J can be further increased, and the cooling performance of the working fluid can be improved.
  • the amount of heat radiated from the upper muffler chamber 43a to the suction chamber 16 of the low-stage compression mechanism portion 37 can be made smaller, and the influence of suction overheating on efficiency and reliability can be further suppressed. Therefore, it is possible to provide the multi-stage rotary compressor 2 with high efficiency and high reliability.
  • the surface area of the outer wall surface of the portion (bottom side muffler member 44) that separates the inside of the bottom side muffler chamber 44a and the lubricating oil storage portion 34b is the inside of the upper side muffler chamber 43a and the suction of the low-stage compression mechanism portion 37.
  • the configuration may be larger than the surface area of the outer wall surface of the portion (flange portion 41b) that separates the chamber 16. The above effect can also be obtained by this.
  • the thermal conductivity of the portion (bottom side muffler member 44) that separates the inside of the bottom side muffler chamber 44a and the lubricating oil storage portion 34b is the inside of the upper side muffler chamber 43a and the suction chamber of the low stage compression mechanism portion 37.
  • the configuration may be larger than the thermal conductivity of the portion (flange portion 41b) separated from 16.
  • the bottom muffler member 44 is made of copper alloy
  • the second bearing 42 is made of cast iron. The above effect can also be obtained by this.
  • the lower end of the rotating shaft 31 is immersed in the lubricating oil J stored in the bottom of the sealed case 34 together with the bottom muffler member 44.
  • the rotating shaft 31 is formed with an oil supply path for supplying the lubricating oil J to each sliding portion of the compression element 33.
  • the sliding portions of the compression element 33 are between the eccentric portions 31b and 31d and the rollers 45 and 46, between the rotating shaft 31 and the bearings 41 and 42, the rollers 45 and 46 and the blades 18, respectively. Between 21 and so on.
  • the rotating shaft 31 has an axial flow path 95 extending coaxially with the axis C, a first radial flow path 96 extending radially from the axial flow path 95, and a second radial flow path 97 as oil supply paths. It has.
  • the lower end of the axial flow path 95 is open downward at the lower end of the rotating shaft 31.
  • the upper end of the axial flow path 95 is terminated in the first spindle 31a above the lower cylinder 37a.
  • the lubricating oil J in the sealed case 34 can flow into the axial flow path 95.
  • the first radial flow path 96 is formed at a connecting portion between the first spindle 31a and the lower eccentric portion 31b on the rotating shaft 31.
  • the radial inner end of the first radial flow path 96 is open within the axial flow path 95.
  • the radial outer end of the first radial flow path 96 is radially outwardly open on the outer peripheral surface of the rotating shaft 31 (inside the oil groove extending in the circumferential direction in the figure).
  • the second radial flow path 97 is formed at a connecting portion between the third main shaft 31e and the higher stage side eccentric portion 31d on the rotating shaft 31.
  • the radial inner end of the second radial flow path 97 is open within the axial flow path 95.
  • the radial outer end of the second radial flow path 97 is radially outwardly open on the outer peripheral surface of the rotating shaft 31 (inside the oil groove extending in the circumferential direction in the figure).
  • the lubricating oil J flowing out from the first radial flow path 96 is supplied to the first bearing 41, the low-stage compression mechanism portion 37, and the like.
  • the lubricating oil J flowing out of the second radial flow path 97 is supplied to the high-stage compression mechanism portion 38, the third spindle 31e, the second bearing 42, and the like.
  • the lubricating oil J supplied to each sliding portion flows down to the bottom of the sealed case 34 and returns, and is again supplied to the sliding portion of the compression element 33.
  • the working fluid is discharged from the high-stage compression mechanism portion 38 into the closed case 34, and the lubricating oil J is stored in the bottom of the closed case 34.
  • the lubricating oil J in the sealed case 34 is guided from the first radial flow path 96 to the inner peripheral side of the lower stage roller 45 of the lower stage compression mechanism portion 37, and is guided to the inner peripheral side of the lower stage side roller 45 of the lower stage compression mechanism portion 37, and is passed through the roller end face sealing portion 45a to the lower stage. It is supplied into the side cylinder chamber 37c.
  • the axial dimensional difference between the low-stage cylinder 37a and the low-stage roller 45 in the low-stage compression mechanism 37 is the difference between the high-stage cylinder 38a and the high-stage roller in the high-stage compression mechanism 38. It is smaller than the axial dimensional difference from 46.
  • the rollers 45 and 46 of both compression mechanism portions 37 and 38 are transferred to the inner peripheral surfaces of the cylinder chambers 37c and 38c via an oil film, but the blades 18 and 21 are as follows. That is, the blade 21 of the high-stage compression mechanism 38 slides into contact with the roller 46 by the urging force of the urging spring 23. In the blade 18 of the low-stage compression mechanism unit 37, if the case internal pressure remains low, it remains immersed in the blade groove 18c. Therefore, when the multi-stage rotary compressor 2 is started, only the cylinder chamber 38c of the high-stage compression mechanism unit 38 is divided into the suction side and the compression side to compress the gas refrigerant.
  • the blade 18 of the low-stage compression mechanism unit 37 is urged toward the roller 45 by the case internal pressure and slides on the roller 45. Start contacting. Then, the cylinder chamber 37c of the low-stage compression mechanism unit 37 is also divided into a suction side and a compression side, and compression of the gas refrigerant is started.
  • the low-pressure gas refrigerant separated by gas and liquid in the accumulator 12 is guided into the cylinder chamber 37c of the low-stage compression mechanism unit 37 via the suction pipe 6.
  • the low-pressure gas refrigerant guided into the cylinder chamber 37c is compressed by the low-stage compression mechanism unit 37 to reach a predetermined intermediate pressure.
  • the low-stage side discharge valve device 47 of the partition plate 39 opens, and the gas refrigerant at the intermediate pressure is discharged into the intermediate pressure space 39c of the partition plate 39.
  • the gas refrigerant discharged into the intermediate pressure space 39c is sucked into the high-stage compression mechanism unit 38 via the intermediate pressure passage 7 and the bypass passage 8a.
  • the gas refrigerant sucked into the high-stage compression mechanism unit 38 is boosted from an intermediate pressure to a predetermined high pressure.
  • the high-stage side discharge valve device 49 of the second bearing 42 opens, and the high-pressure gas refrigerant is discharged into the second muffler chamber 44a.
  • the gas refrigerant discharged into the second muffler chamber 44a reaches the inside of the first muffler chamber 43a from the discharge passage 33a, and then is appropriately discharged into the closed case 34.
  • the high-pressure gas refrigerant discharged into the sealed case 34 circulates in the radiator 3, the expansion device 4, the evaporator 5, etc., and returns to the low-pressure gas refrigerant.
  • the gas refrigerant that has returned to a low pressure is again guided into the cylinder chamber 37c of the low-stage compression mechanism unit 37, and the above-mentioned process is repeated.
  • the first spindle 31a and the third spindle 31e of the rotating shaft 31 have the same diameter as each other.
  • the first spindle 31a and the third spindle 31e may be collectively referred to as the spindle 31j.
  • the first bearing 41 and the rotor 36 are assembled to the rotating shaft 31 from the upper end side.
  • the low-stage roller 45, the partition plate 39, the high-stage roller 46, and the second bearing 42 are assembled to the rotating shaft 31 from the lower end side.
  • the radius of the main shaft 31j of the rotating shaft 31 is Rj
  • the radius and eccentricity of the eccentric portion 31b of the low-stage compression mechanism portion 37 are R1 and E1, respectively
  • the radius and eccentricity of the eccentric portion 31d of the high-stage compression mechanism portion 38 are defined. It is indicated by R2 and E2, respectively.
  • the low-stage roller 45 is axially moved from the lower end side of the rotary shaft 31 to the high-stage eccentric portion 31d.
  • the inner radius of the lower stage roller 45 (corresponding to the radius R1 of the lower stage eccentric portion 31b) needs to be equal to or greater than the radius R2 of the higher stage side eccentric portion 31d. That is, it is necessary to satisfy the relational expression “R1 ⁇ R2”.
  • the radius R2 of the high-stage eccentric portion 31d sets the eccentricity E2 to the radius RJ of the third spindle 31e. Must be greater than or equal to the added value. That is, it is necessary to satisfy the relational expression “R2 ⁇ Rj + E2”.
  • the low-stage roller 45 is axially moved to the high-stage eccentric portion 31d, and then the low-stage roller 45 is further moved in the axial direction to obtain a second roller.
  • the spindle 31c and the axial position are wrapped.
  • the low-stage roller 45 is moved in the eccentric direction of the low-stage eccentric portion 31b (FIG. 4C), and the low-stage roller 45 is arranged coaxially with the low-stage eccentric portion 31b.
  • the axial length of the second spindle 31c (distance between both eccentric portions 31b and 31d) is the shaft of the low-stage roller 45. Must be greater than or equal to the directional length.
  • the low-stage roller 45 is axially moved and extrapolated to the low-stage eccentric portion 31b. ..
  • the outer peripheral surface of the lower step side eccentric portion 31b and the outer peripheral surface of the second main shaft 31c are substantially flush with each other.
  • the outer peripheral surface (outer peripheral edge) of the second spindle 31c fits inside the outer peripheral surface (outer peripheral edge) of the lower eccentric portion 31b when viewed from the axial direction.
  • the outer diameter of the lower eccentric portion 31b is substantially the same as the inner diameter of the lower roller 45.
  • the eccentric quantities E1 and E2 of both eccentric portions 31b and 31d have a relationship of "E1> E2".
  • the inner radius (radius of the low-stage side eccentric portion 31b) R1 of the low-stage side roller 45 needs to be less than the value obtained by adding the eccentricity amount E1 to the radius RJ of the main shaft 31j. That is, it is necessary to satisfy the relational expression "R1 ⁇ Rj + E1".
  • the low-stage compression mechanism unit 37 is arranged on the electric motor 32 side in the compression element 33.
  • the low-stage roller 45 when the low-stage roller 45 is assembled to the low-stage eccentric portion 31b, the low-stage roller 45 can be assembled from the side of the rotating shaft 31 to which the electric motor 32 is not connected. Since the first spindle 31a is long on the electric motor 32 side of the rotary shaft 31, by assembling the low-stage roller 45 from the side opposite to the electric motor 32 of the rotary shaft 31, it is a multi-stage rotary type that is easy to assemble and has high manufacturability. The compressor 2 can be obtained.
  • the lower-stage partition plate (lower-stage partition plate member 39a) is provided with a low-stage discharge hole 47a that discharges an intermediate-pressure working fluid compressed by the lower-stage compression mechanism 37 into the intermediate-pressure space 39c. Has been done.
  • the low-stage discharge hole 47a penetrates the upper wall portion of the low-stage side partition plate member 39a in the axial direction.
  • the low-stage side partition plate member 39a is provided with a low-stage side discharge valve device 47 that opens and closes the low-stage discharge hole 47a.
  • the low-stage discharge valve device 47 includes a low-stage valve seat 47b formed around the low-stage discharge hole 47a, a low-stage valve material 47c that opens and closes the low-stage discharge hole 47a, and the like. It is equipped with a low-stage valve retainer (retainer) 47d that regulates the maximum lift amount of the low-stage valve material 47c.
  • the low-stage valve material 47c is an elastic plate-shaped reed valve, and is urged toward the low-stage valve seat 47b in the axial direction.
  • the low-stage discharge valve device 47 closes the low-stage discharge hole 47a before the pressure rises in the cylinder chamber 37c (compression chamber 17).
  • the low-stage discharge valve device 47 opens the low-stage discharge hole 47a as the pressure inside the cylinder chamber 37c (compression chamber 17) rises, and discharges the refrigerant to the outside of the cylinder chamber 37c.
  • the flange portion 42b of the second bearing 42 on the high stage side is provided with a high stage discharge hole 49a that discharges the working fluid compressed by the high stage compression mechanism unit 38 to the outside of the compression element 33 (inside the sealed case 34). ing.
  • the high-stage discharge hole 49a penetrates the flange portion 42b in the axial direction.
  • the flange portion 42b is provided with a high-stage discharge valve device 49 that opens and closes the high-stage discharge hole 49a.
  • the high-stage valve device 49 includes a high-stage valve seat 49b formed around the high-stage discharge hole 49a, a high-stage valve material 49c that opens and closes the high-stage valve seat 49b, and a maximum lift of the high-stage valve material 49c. It is equipped with a high-stage valve retainer (retainer) 49d that regulates the amount.
  • the high-stage valve material 49c is an elastic plate-shaped reed valve, and is urged toward the high-stage valve seat 49b in the axial direction.
  • the high-stage discharge valve device 49 closes the high-stage discharge hole 49a before the pressure in the cylinder chamber 38c (compression chamber 17) rises.
  • the high-stage discharge valve device 49 opens the high-stage discharge hole 49a as the pressure inside the cylinder chamber 38c (compression chamber 17) rises, and discharges the refrigerant to the outside of the cylinder chamber 38c.
  • the intermediate pressure space 39c is expanded in order to suppress the pulsation of the intermediate pressure refrigerant discharged from the low-stage discharge hole 47a.
  • the following configuration was adopted in the embodiment.
  • the thickness T1 in the axial direction (biasing direction) of the portion 39d forming the low-stage valve seat 47b in the low-stage side partition plate member 39a is formed, and the high-stage valve seat 49b in the second bearing 42 is formed.
  • the thickness of the portion 42d in the axial direction (biasing direction) was made smaller than the thickness T2.
  • the intermediate pressure space 39c formed in the partition plate 39 by making the thickness T1 of the portion 39d forming the low-stage valve seat 47b smaller than the thickness T2 of the portion 42d forming the high-stage valve seat 49b. It is possible to expand the capacity of. Therefore, it is possible to suppress the pulsation of the intermediate pressure refrigerant discharged from the low-stage discharge hole 47a and reduce the flow path loss of the discharge fluid on the low-stage side.
  • the pressure difference acting on the valve seat 47b of the discharge valve device 47 on the lower stage side is smaller than the pressure difference acting on the valve seat 49b of the discharge valve device 49 on the higher stage side. Therefore, even if the thickness T1 of the valve seat forming portion 39d on the lower stage side is reduced, the risk of deformation in the vicinity of the valve seat 47b is small.
  • the pressure difference acting on the valve seat 49b of the discharge valve device 49 on the high stage side is relatively large, it is difficult to reduce the thickness T2 of the valve seat forming portion 42d on the high stage side in order to secure the strength.
  • the volume of the working fluid on the lower stage side discharged from the lower stage compression mechanism unit 37 is larger than the volume of the working fluid on the higher stage side discharged from the high stage compression mechanism unit 38. Therefore, it is preferable to secure the capacity of the intermediate pressure space 39c formed in the partition plate 39 as large as possible.
  • the low-stage valve material 47c is set to open with a differential pressure smaller than that of the high-stage valve material 49c.
  • the configuration is effective in reducing the overcompression loss, and the efficiency of the multi-stage rotary compressor 2 can be further improved. ..
  • the opening delay of the discharge valve has a large effect on the overcompression loss.
  • the ratio of the differential pressure required for valve opening to the discharge pressure is large, so that the ratio of the overcompression loss to the total loss tends to be large.
  • the valve members 47c and 49c each have a target pressure of + 0.2 Mpa.
  • each valve opening differential pressure of each valve material 47c, 49c is changed by making the thickness, length, material, etc. of each valve material 47c, 49c different from each other.
  • the thickness of the low-stage valve material 47c is made thinner than the thickness of the high-stage valve material 49c.
  • the spring rigidity of the low-stage valve material 47c is easily reduced, and the valve opening differential pressure is changed.
  • the thickness of the high-stage valve member 49c which exerts a large differential pressure when the valve is closed, the risk of valve cracking is reduced, and the multi-stage rotary compressor 2 has high reliability.
  • the following effects are obtained by increasing only the diameter of the low-stage discharge hole 47a without increasing the maximum lift amount. That is, since the flow path loss of the low-stage discharge fluid can be suppressed without increasing the thickness of the partition plate, it is possible to provide a high-performance and highly reliable multi-stage rotary compressor 2.
  • the central axis c1 of the low-stage discharge hole 47a formed in the partition plate 39 in the radial direction with respect to the rotation center axis C of the rotation shaft 31 is the high-stage discharge hole 49a provided in the second bearing 42.
  • the configuration is such that it is on the outer peripheral side of the central axis c2.
  • the low-stage discharge hole 47a can be arranged so as to be close to the center (center axis C) of the intermediate pressure space 39c expanded to the outer peripheral side, so that the discharge loss on the low-stage side can be suppressed. Be done. Therefore, the efficiency of the multi-stage rotary compressor 2 can be further improved.
  • the low-stage discharge hole 47a has a larger flow rate of refrigerant than the higher-stage discharge hole 49a, a larger hole diameter, and a hole position on the outer peripheral side. Therefore, by providing the discharge notch 47a1 in the inner peripheral portion of the lower stage cylinder 37a, it is possible to prevent the low stage discharge hole 47a from being blocked by the inner peripheral portion of the lower stage cylinder 37a, and to discharge the lower stage side. Can be done without loss.
  • the discharge notch 47a1 is not provided on the high stage side to prevent an increase in loss due to the invalid volume, while reducing the discharge flow path loss on the low stage side to further improve efficiency.
  • the radius of the shaft portion of the rotating shaft 31 supported by the first bearing 41 and the second bearing 42 is Rj
  • the radius and the eccentric amount of the eccentric portion 31b in the low-stage compression mechanism portion 37 are R1 and E1, respectively.
  • the radius and the amount of eccentricity of the eccentric portion 31d in the high-stage compression mechanism portion 38 are R2 and E2, respectively, at least the following relational expressions (1) to (4) are satisfied.
  • the roller 45 mounted on the low-stage eccentric portion 31b can be assembled from the high-stage side, and the shaft diameter of the rotating shaft 31 is secured to improve the performance of the multi-stage rotary compressor 2. be able to. That is, when the volume of the compression chamber 17 on the lower stage side is made larger than the volume of the compression chamber 17 on the high stage side, it is easy by setting E1> E2 in the relational expression (1) without making a large change in the cylinder size. It is possible to obtain a volume difference between the compression chambers 17 on the lower stage side and the compression chamber 17 on the higher stage side.
  • the shaft load is also small, and it is not necessary to increase the radius R1 of the low-stage side eccentric portion 31b. Rather, in the low-stage compression mechanism portion 37, it is desired that the radius R1 is small in order to reduce the sliding friction between the roller 45 and the eccentric portion 31b and secure the sealing area of the roller end face. Therefore, it is desirable to satisfy R1 ⁇ Rj + E1 in the relational expression (2).
  • the first bearing 41 and the second bearing are satisfied by setting E1> E2 in the relational expression (1) and satisfying R2 ⁇ Rj + E2 in the relational expression (3) and R1 ⁇ R2 in the relational expression (4). Satisfy R1 ⁇ Rj + E1 of the relational expression (2) without reducing the diameter of one of the shafts supported by each of the 42s or the shaft diameter of the shaft between the eccentric portions 31b and 31d. Is possible. Therefore, it is possible to reduce the sliding loss on the lower stage side and improve the airtightness at the end face of the roller while suppressing the deflection of the rotating shaft 31. Therefore, a high-performance and highly reliable multi-stage rotary compressor 2 can be obtained.
  • the working fluid discharged from the high-stage compression mechanism portion 38 has a first muffler chamber in which the first component (bottom side muffler member 44) in contact with the lubricating oil storage portion 34b forms an inner wall surface.
  • the flange portion 42b of the second bearing 42 in contact with the suction chamber 16 of the low-stage compression mechanism portion 37 is discharged into the case via the second muffler chamber 43a forming the inner wall surface.
  • the working fluid discharged from the high-stage compression mechanism unit 38 which becomes hot, is first radiated to the lubricating oil J through the inner wall surface in the first muffler chamber 44a and cooled. After that, the working fluid is radiated to the suction chamber 16 of the low-stage compression mechanism 37, which is the lowest temperature, through the inner wall surface in the second muffler chamber 43a, and is further cooled. After that, the working fluid is discharged from the second muffler chamber 43a into the case. Therefore, it is possible to reduce the risk of efficiency decrease due to overheating of the electric motor 32, demagnetization of the magnet, and dissolution of the insulator.
  • the working fluid first dissipates heat to the lubricating oil J, the amount of heat radiated to the suction chamber 16 of the low-stage compression mechanism 37 is reduced, and deterioration of efficiency and reliability due to suction overheating can be suppressed. .. Therefore, it is possible to provide the multi-stage rotary compressor 2 with high efficiency and high reliability.
  • the refrigeration cycle device 1 of the embodiment is connected to the multi-stage rotary compressor 2 described above, the radiator 3 connected to the discharge portion 15 of the multi-stage rotary compressor 2, and the downstream side of the radiator 3. It includes an expansion device 4 and an evaporator 5 connected between the downstream side of the expansion device 4 and the introduction portion 12a of the multi-stage rotary compressor 2.
  • the refrigeration cycle device 1 is provided with the above-mentioned multi-stage rotary compressor 2 to achieve the following effects. That is, it is possible to provide the refrigeration cycle apparatus 1 capable of improving the operation reliability and the compression performance over a long period of time.
  • the multi-stage rotary compressor 2 compresses the partition plate 39 that partitions the low-stage compression mechanism unit 37 and the high-stage compression mechanism unit 38 by the low-stage compression mechanism unit 37.
  • An intermediate pressure space 39c is formed in which the generated intermediate pressure working fluid is discharged, and the partition plate 39 is provided with a low-stage discharge hole 47a and a low-stage side discharge valve device 47, and is provided on the high-stage compression mechanism portion 38 side.
  • the second bearing 42 is provided with a high-stage discharge hole 49a and a high-stage side discharge valve device 49, and the thickness T1 of the portion of the partition plate 39 forming the low-stage valve seat 47b is set to the high-stage valve seat 49b of the second bearing 42.
  • a multi-stage rotary compressor that can expand the capacity of the intermediate pressure space 39c formed in the partition plate 39 and suppress the pulsation of the intermediate pressure working fluid by making it smaller than the thickness T2 of the portion forming the bearing. 2 and the refrigeration cycle device 1 can be provided.
  • Refrigeration cycle device 2 ... Multi-stage rotary compressor, 3 ... Radiator, 4 ... Expansion device, 5 ... Heat absorber, 16 ... Suction chamber, 17 ... Compression chamber, 31 ... Rotation axis, C ... Central axis (rotation) Center), Rj ... Main axis radius (radius), R1, R2 ... Eccentric part radius (radius), E1, E2 ... Eccentricity, 32 ... Electric motor (drive element), 33 ... Compression element, 34 ... Sealed case (case) , 34b ... Lubricating oil storage unit, 37 ... Low stage compression mechanism unit, 37a ... Low stage side cylinder (cylinder), 37c ... Low stage side cylinder chamber (cylinder chamber), 38 ...
  • High stage compression mechanism unit 38a ... High stage Side cylinder (cylinder), 38c ... High-stage side cylinder chamber (cylinder chamber), 39 ... Partition plate, 39a ... Low-stage side partition plate member (partition plate member), 39b ... High-stage side partition plate member (partition plate member) , 39c ... Intermediate pressure space, 41 ... First bearing (first component), 42 ... Second bearing, 44 ... Bottom side muffler member (first muffler member), 44a ... Bottom side muffler chamber (first muffler) Room), 45 ... Lower stage side roller (roller), 45a ... Roller end face sealing part, 46 ... Higher stage side roller (roller), 46a ... Roller end face sealing part, 47 ...
  • Lower stage side discharge valve device 47a ... Lower stage Discharge hole, c1 ... Central axis (center), 47b ... Low-stage valve seat, 47c ... Low-stage valve material, 47d ... Site forming bottom-stage valve seat, T1 ... Thickness, 49 ... High-stage side discharge valve device, 49a ... High-stage discharge hole, c2 ... Central axis (center), 49b ... High-stage valve seat, 49c ... High-stage valve material, 49d ... Part forming the high-stage valve seat, T2 ... Thickness, Lubricating oil J

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The multi-stage rotary compressor according to an embodiment comprises a rotary shaft inside a case, a drive element provided on one axial end side of the rotary shaft, and a compression element provided on the other axial end side of the rotary shaft. The compression element comprises a lower-stage compression mechanism portion that compresses a low-pressure working fluid to an intermediate pressure, a higher-stage compression mechanism portion that compresses an intermediate-pressure working fluid to a high pressure, and a partition plate that separates the two compression mechanism portions. The lower-stage compression mechanism portion and the higher-stage compression mechanism portion respectively comprise a first bearing and a second bearing on the opposite side of the partition plate. The partition plate is provided with an intermediate-pressure space into which the intermediate-pressure working fluid compressed by the lower-stage compression mechanism portion is discharged. The partition plate is provided with a lower-stage discharge hole and a lower-stage side discharge valve device. The second bearing on the higher-stage compression mechanism portion side is provided with a higher-stage discharge hole and a higher-stage side discharge valve device. The thickness of a portion of the partition plate forming a lower-stage valve seat is smaller than the thickness of a portion of the second bearing forming a higher-stage valve seat.

Description

多段回転式圧縮機及び冷凍サイクル装置Multi-stage rotary compressor and refrigeration cycle equipment
 本発明の実施形態は、多段回転式圧縮機及び冷凍サイクル装置に関する。 An embodiment of the present invention relates to a multi-stage rotary compressor and a refrigeration cycle device.
 従来、偏心部の回転により作動流体を段階的に圧縮する多段回転式圧縮機が知られている。例えば、多段回転式圧縮機は、低圧の作動流体を中間圧に圧縮する低段圧縮機構部と、低段圧縮機構部で圧縮した中間圧の作動流体を高圧に圧縮する高段圧縮機構部と、を備えている。多段回転式圧縮機は、圧縮要素および駆動要素を収容する密閉ケースを備えている。密閉ケース内には、高段圧縮機構部で圧縮された高圧の作動流体が吐出される。 Conventionally, a multi-stage rotary compressor that gradually compresses the working fluid by rotating the eccentric part is known. For example, a multi-stage rotary compressor includes a low-stage compression mechanism unit that compresses a low-pressure working fluid to an intermediate pressure, and a high-stage compression mechanism unit that compresses an intermediate-pressure working fluid compressed by the low-stage compression mechanism unit to a high pressure. , Is equipped. The multi-stage rotary compressor includes a sealed case that houses the compression and drive elements. A high-pressure working fluid compressed by the high-stage compression mechanism is discharged into the closed case.
 多段回転式圧縮機において、低段側の吐出孔と吐出弁装置とを仕切板に設け、高段側の吐出孔と吐出弁装置とを高段側の軸受に設けたものがある。仕切板内部には中間圧空間が設けられる。低段圧縮機構部から吐出される中間圧の作動流体の脈動を抑えるために、中間圧空間は大きく確保したい。そのためには、仕切板の厚さを増すことが考えられる。しかし、単に仕切板の厚さを増すと、低段側および高段側の両軸受間の距離が増大し、回転軸の撓みが生じやすくなる。 In some multi-stage rotary compressors, the low-stage side discharge hole and the discharge valve device are provided on the partition plate, and the high-stage side discharge hole and the discharge valve device are provided on the high-stage side bearing. An intermediate pressure space is provided inside the partition plate. In order to suppress the pulsation of the working fluid of the intermediate pressure discharged from the low-stage compression mechanism, we want to secure a large intermediate pressure space. For that purpose, it is conceivable to increase the thickness of the partition plate. However, if the thickness of the partition plate is simply increased, the distance between the bearings on the low-stage side and the high-stage side increases, and the rotating shaft tends to bend.
 また、仕切板における回転軸を挿通する貫通孔の内径を小さくする等により、ローラ端面と仕切板とのシール面積を増やすことが考えられる。前記シール面積の確保により、圧縮室の気密性を向上させることで、多段回転式圧縮機の効率の向上が図られる。しかし、前記シール面積を確保するためには、回転軸偏心部およびローラ等の寸法関係を見直す必要がある。 It is also conceivable to increase the sealing area between the roller end face and the partition plate by reducing the inner diameter of the through hole through which the rotating shaft is inserted in the partition plate. By securing the seal area, the airtightness of the compression chamber is improved, and the efficiency of the multi-stage rotary compressor can be improved. However, in order to secure the seal area, it is necessary to review the dimensional relationship between the eccentric portion of the rotating shaft and the rollers.
 また、中間圧空間に吐出された作動流体が、マフラ空間を経由してケース内部に吐出される例もある。この場合、高温・高圧となった圧縮流体が、十分冷却されることなく、ケース内部に吐出されることがある。すると、電動モータの過熱を招き、モータ効率の低下や磁石の減磁等につながる虞がある。 There is also an example in which the working fluid discharged into the intermediate pressure space is discharged into the case via the muffler space. In this case, the compressed fluid having a high temperature and high pressure may be discharged into the case without being sufficiently cooled. Then, the electric motor may be overheated, leading to a decrease in motor efficiency and demagnetization of the magnet.
特許第6176782号公報Japanese Patent No. 6176782
 本発明が解決しようとする課題は、仕切板に形成される中間圧空間を確保し、ローラ端面のシール面積を確保し、吐出流体の冷却性を高めることができる多段回転式圧縮機及び冷凍サイクル装置を提供することである。 The problem to be solved by the present invention is a multi-stage rotary compressor and a refrigerating cycle capable of securing an intermediate pressure space formed in a partition plate, securing a sealing area of a roller end face, and improving the cooling performance of the discharged fluid. To provide a device.
 実施形態の多段回転式圧縮機は、ケースの内部に回転軸と、回転軸の軸方向一端側に設けられる駆動要素と、回転軸の軸方向他端側に設けられる圧縮要素と、を持つ。圧縮要素は、低圧の作動流体を中間圧に圧縮する低段圧縮機構部と、中間圧の作動流体を高圧に圧縮する高段圧縮機構部と、両圧縮機構部間を仕切る仕切板と、を持つ。各圧縮機構部の仕切板と反対側には、それぞれ第一軸受および第二軸受を持つ。仕切板には、低段圧縮機構部にて圧縮された中間圧の作動流体が吐出される中間圧空間が設けられる。仕切板には、低段吐出孔および低段側吐出弁装置が設けられる。高段圧縮機構部側の第二軸受には、高段吐出孔および高段側吐出弁装置が設けられる。仕切板における低段弁座を形成する部位の厚みは、第二軸受における高段弁座を形成する部位の厚みよりも小さい。 The multi-stage rotary compressor of the embodiment has a rotating shaft, a driving element provided on one end side in the axial direction of the rotating shaft, and a compression element provided on the other end side in the axial direction of the rotating shaft inside the case. The compression element consists of a low-stage compression mechanism that compresses the low-pressure working fluid to an intermediate pressure, a high-stage compression mechanism that compresses the intermediate-pressure working fluid to a high pressure, and a partition plate that separates both compression mechanisms. Have. A first bearing and a second bearing are provided on the opposite sides of the partition plate of each compression mechanism, respectively. The partition plate is provided with an intermediate pressure space in which the working fluid of the intermediate pressure compressed by the low-stage compression mechanism is discharged. The partition plate is provided with a low-stage discharge hole and a low-stage side discharge valve device. The second bearing on the high-stage compression mechanism side is provided with a high-stage discharge hole and a high-stage discharge valve device. The thickness of the portion of the partition plate that forms the low-stage valve seat is smaller than the thickness of the portion of the second bearing that forms the high-stage valve seat.
実施形態の多段回転式圧縮機の断面図を含む、冷凍サイクル装置の概略構成図。Schematic configuration of a refrigeration cycle apparatus, including a cross-sectional view of the multi-stage rotary compressor of the embodiment. 実施形態の多段回転式圧縮機の圧縮要素の断面図。Sectional drawing of the compression element of the multi-stage rotary compressor of an embodiment. 図2のIII-III断面図。FIG. 2 is a sectional view taken along line III-III of FIG. 実施形態の多段回転式圧縮機の回転軸に低段側ローラを組み付ける手順を(a)~(d)の順に示す説明図。Explanatory drawing which shows the procedure of assembling the low-stage side roller to the rotating shaft of the multi-stage rotary compressor of embodiment in the order of (a)-(d). 図1の要部拡大図。Enlarged view of the main part of FIG.
 以下、実施形態の多段回転式圧縮機および冷凍サイクル装置を、図面を参照して説明する。
 まず、冷凍サイクル装置について説明する。
 図1は、実施形態の多段回転式圧縮機の断面図を含む、冷凍サイクル装置の概略構成図である。実施形態の冷凍サイクル装置1は、圧縮機本体11とアキュムレータ(気液分離器)12とを有して作動流体であるガス冷媒を圧縮する多段回転式圧縮機2と、圧縮機本体11の吐出部15に接続されて圧縮機本体11から吐出された高温高圧のガス冷媒を冷却する放熱器3と、放熱器3の下流側に接続されて冷媒を減圧する膨張装置(膨張弁)4と、膨張装置4とアキュムレータ12の導入部12aとの間に接続されて冷媒を蒸発させる蒸発器(吸熱器)5と、を有している。図中符号13は、圧縮機本体11の吐出部15からアキュムレータ12の導入部12aまで延びる導入通路を示す。
Hereinafter, the multi-stage rotary compressor and the refrigeration cycle apparatus of the embodiment will be described with reference to the drawings.
First, the refrigeration cycle apparatus will be described.
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus including a cross-sectional view of the multi-stage rotary compressor of the embodiment. The refrigeration cycle device 1 of the embodiment includes a multi-stage rotary compressor 2 having a compressor main body 11 and an accumulator (gas-liquid separator) 12 to compress a gas refrigerant as an operating fluid, and discharge of the compressor main body 11. A radiator 3 connected to the unit 15 to cool the high-temperature and high-pressure gas refrigerant discharged from the compressor main body 11, and an expansion device (expansion valve) 4 connected to the downstream side of the radiator 3 to reduce the pressure of the refrigerant. It has an evaporator (heat absorber) 5 connected between the expansion device 4 and the introduction portion 12a of the accumulator 12 to evaporate the refrigerant. Reference numeral 13 in the figure indicates an introduction passage extending from the discharge portion 15 of the compressor main body 11 to the introduction portion 12a of the accumulator 12.
 アキュムレータ12の導出部12bと圧縮機本体11の吸込部14とは、吸込管6により接続されている。アキュムレータ12で気液分離されたガス冷媒は、吸込管6を介して圧縮機本体11の後述する低段圧縮機構部37へ導かれる。 The lead-out portion 12b of the accumulator 12 and the suction portion 14 of the compressor body 11 are connected by a suction pipe 6. The gas-liquid separated gas refrigerant by the accumulator 12 is guided to the low-stage compression mechanism unit 37 described later of the compressor main body 11 via the suction pipe 6.
 図1に示す冷凍サイクル装置1は、圧縮機本体11の低段圧縮機構部37で圧縮した中間圧のガス冷媒をインタークーラー7aに導く中間圧通路7を有している。中間圧通路7は、圧縮機本体11の低段圧縮機構部37で圧縮した中間圧のガス冷媒を、圧縮機本体11の高段圧縮機構部38に導く。中間圧通路7は、低段圧縮機構部37に連通する第二吐出部15aから、高段圧縮機構部38に連通する第二吸込部14aまで延びている。 The refrigeration cycle device 1 shown in FIG. 1 has an intermediate pressure passage 7 that guides an intermediate pressure gas refrigerant compressed by the low-stage compression mechanism portion 37 of the compressor main body 11 to the intercooler 7a. The intermediate pressure passage 7 guides the intermediate pressure gas refrigerant compressed by the low-stage compression mechanism unit 37 of the compressor main body 11 to the high-stage compression mechanism unit 38 of the compressor main body 11. The intermediate pressure passage 7 extends from the second discharge portion 15a communicating with the low-stage compression mechanism portion 37 to the second suction portion 14a communicating with the high-stage compression mechanism portion 38.
 冷凍サイクル装置1は、膨張装置4と蒸発器5との間に、第二アキュムレータ(気液分離器)8および第二膨張装置(膨張弁)9を有している。第二アキュムレータ8と圧縮機本体11の高段圧縮機構部38の第二吸込部14aとの間には、第二アキュムレータ8で気液分離されたガス冷媒を高段圧縮機構部38に導くバイパス通路8aが設けられている。なお、図1のバイパス通路8aは、中間圧通路7の途中に合流している。 The refrigeration cycle device 1 has a second accumulator (gas-liquid separator) 8 and a second expansion device (expansion valve) 9 between the expansion device 4 and the evaporator 5. A bypass that guides the gas refrigerant separated by the second accumulator 8 to the high-stage compression mechanism 38 between the second accumulator 8 and the second suction portion 14a of the high-stage compression mechanism 38 of the compressor body 11. A passage 8a is provided. The bypass passage 8a in FIG. 1 joins in the middle of the intermediate pressure passage 7.
 第二アキュムレータ8で気液分離されたガス冷媒の圧力は、圧縮機本体11の低段圧縮機構部37で圧縮したガス冷媒の中間圧と同等とされる。なお、中間圧通路7、バイパス通路8a、第二アキュムレータ8および第二膨張装置9を無くした構成としてもよい。 The pressure of the gas refrigerant separated by the second accumulator 8 is equal to the intermediate pressure of the gas refrigerant compressed by the low-stage compression mechanism 37 of the compressor main body 11. The intermediate pressure passage 7, the bypass passage 8a, the second accumulator 8, and the second expansion device 9 may be eliminated.
 多段回転式圧縮機2は、いわゆるロータリ式の圧縮機である。多段回転式圧縮機2は、内部に取り込まれた低圧の気体冷媒を二段階で圧縮して高温・高圧の気体冷媒とする。多段回転式圧縮機2の具体的な構成については後述する。 The multi-stage rotary compressor 2 is a so-called rotary compressor. The multi-stage rotary compressor 2 compresses the low-pressure gas refrigerant taken into the inside in two stages to obtain a high-temperature and high-pressure gas refrigerant. The specific configuration of the multi-stage rotary compressor 2 will be described later.
 作動流体である冷媒は、気体冷媒と液体冷媒とに相変化しながら冷凍サイクル装置1内を循環する。冷媒は、液体冷媒から気体冷媒に相変化する過程で吸熱する。この吸熱を利用して冷凍や冷蔵などが行われる。例えば、冷媒は、R410AやR32等のHFC系冷媒、R1234yfやR1234ze等のHFO系冷媒、CO2等の自然冷媒等、を用いることが可能である。 The refrigerant, which is the working fluid, circulates in the refrigeration cycle device 1 while changing the phase between the gaseous refrigerant and the liquid refrigerant. The refrigerant absorbs heat in the process of phase change from a liquid refrigerant to a gaseous refrigerant. Freezing and refrigeration are performed using this endothermic process. For example, as the refrigerant, an HFC-based refrigerant such as R410A or R32, an HFO-based refrigerant such as R1234yf or R1234ze, a natural refrigerant such as CO2, or the like can be used.
 放熱器3は、多段回転式圧縮機2から送り込まれる高温・高圧の気体冷媒から熱を放熱させる。
 膨張装置4は、放熱器3から送り込まれる高圧の冷媒の圧力を下げ、低温・低圧の液体冷媒にする。
 蒸発器5は、膨張装置4から送り込まれる低温・低圧の液体冷媒を気化させ、低圧の気体冷媒にする。蒸発器5において、低圧の液体冷媒が気化する際に周囲から気化熱を奪い、周囲が冷却される。蒸発器5を通過した低圧の気体冷媒は、上述した多段回転式圧縮機2内に取り込まれる。
The radiator 3 dissipates heat from a high-temperature, high-pressure gaseous refrigerant sent from the multi-stage rotary compressor 2.
The expansion device 4 lowers the pressure of the high-pressure refrigerant sent from the radiator 3 to make a low-temperature / low-pressure liquid refrigerant.
The evaporator 5 vaporizes the low-temperature / low-pressure liquid refrigerant sent from the expansion device 4 into a low-pressure gaseous refrigerant. In the evaporator 5, when the low-pressure liquid refrigerant vaporizes, the heat of vaporization is taken from the surroundings, and the surroundings are cooled. The low-pressure gaseous refrigerant that has passed through the evaporator 5 is taken into the multi-stage rotary compressor 2 described above.
 冷凍サイクル装置1では、第二アキュムレータ8で気液分離した中間圧のガス冷媒を、バイパス通路8aを介して圧縮機本体11の高段圧縮機構部38内に導く。これにより、圧縮機本体11の圧縮性能を高めている。 In the refrigeration cycle device 1, the gas-liquid-separated intermediate pressure gas refrigerant separated by the second accumulator 8 is guided into the high-stage compression mechanism portion 38 of the compressor main body 11 via the bypass passage 8a. As a result, the compression performance of the compressor main body 11 is improved.
 次に、多段回転式圧縮機2について説明する。
 図1に示すように、実施形態の多段回転式圧縮機2は、圧縮機本体11と、アキュムレータ12と、を備えている。
Next, the multi-stage rotary compressor 2 will be described.
As shown in FIG. 1, the multi-stage rotary compressor 2 of the embodiment includes a compressor main body 11 and an accumulator 12.
 アキュムレータ12は、いわゆる気液分離器である。アキュムレータ12は、上述した蒸発器5と圧縮機本体11との間に設けられている。アキュムレータ12は、吸込管6を通して圧縮機本体11に接続されている。アキュムレータ12は、蒸発器5で気化された気体冷媒、および蒸発器5で気化されなかった液体冷媒のうち、気体冷媒のみを圧縮機本体11に供給する。 The accumulator 12 is a so-called gas-liquid separator. The accumulator 12 is provided between the above-mentioned evaporator 5 and the compressor main body 11. The accumulator 12 is connected to the compressor main body 11 through a suction pipe 6. The accumulator 12 supplies only the gaseous refrigerant out of the gaseous refrigerant vaporized by the evaporator 5 and the liquid refrigerant not vaporized by the evaporator 5 to the compressor main body 11.
 圧縮機本体11は、回転軸31と、電動モータ(駆動要素)32と、圧縮要素33と、これら回転軸31、電動モータ32および圧縮要素33を収納する密閉ケース34と、を備えている。圧縮機本体11は、回転軸31および密閉ケース34の軸方向を上下方向として配置されている。回転軸31は、回転中心軸線Cを密閉ケース34の中心軸線と一致させている。なお、以下の説明では、回転軸31および密閉ケース34の中心軸線Cに沿う方向を単に軸方向と称し、軸方向に直交する方向を径方向と称し、軸線C回りの方向を周方向と称する。 The compressor main body 11 includes a rotating shaft 31, an electric motor (driving element) 32, a compression element 33, and a sealed case 34 for accommodating the rotating shaft 31, the electric motor 32, and the compression element 33. The compressor main body 11 is arranged with the axial direction of the rotating shaft 31 and the sealing case 34 as the vertical direction. The rotation shaft 31 makes the rotation center axis C coincide with the center axis of the sealed case 34. In the following description, the direction along the central axis C of the rotating shaft 31 and the sealed case 34 is simply referred to as the axial direction, the direction orthogonal to the axial direction is referred to as the radial direction, and the direction around the axis C is referred to as the circumferential direction. ..
 密閉ケース34は、円筒体の軸方向の両端部が閉塞されて密閉容器を形成している。密閉ケース34内には、上部側に電動モータ32が収容され、下部側に圧縮要素33が収容されている。これらの電動モータ32と圧縮要素33とは、回転軸31を介して連結されている。密閉ケース34内において、回転軸31の一端側に電動モータ32が設けられ、回転軸31の他端側に圧縮要素33が設けられている。密閉ケース34内において、電動モータ32と圧縮要素33との間には、密閉ケース34の内壁面に固定された環状のフレーム34aが設けられている。 In the closed case 34, both ends in the axial direction of the cylindrical body are closed to form a closed container. In the sealed case 34, the electric motor 32 is housed on the upper side, and the compression element 33 is housed on the lower side. These electric motors 32 and the compression element 33 are connected via a rotating shaft 31. In the closed case 34, the electric motor 32 is provided on one end side of the rotating shaft 31, and the compression element 33 is provided on the other end side of the rotating shaft 31. In the closed case 34, an annular frame 34a fixed to the inner wall surface of the closed case 34 is provided between the electric motor 32 and the compression element 33.
 密閉ケース34の底部内には、圧縮要素33を潤滑するための潤滑油Jが貯留されている。密閉ケース34の底部は、潤滑油Jを貯留した潤滑油貯留部34bを構成している。潤滑油J内には、圧縮要素33の一部が浸漬されている。密閉ケース34内において、高段圧縮機構部38で圧縮された高圧のガス冷媒は、密閉ケース34内の空間に吐出される。 Lubricating oil J for lubricating the compression element 33 is stored in the bottom of the sealed case 34. The bottom of the sealed case 34 constitutes a lubricating oil storage portion 34b that stores the lubricating oil J. A part of the compression element 33 is immersed in the lubricating oil J. In the closed case 34, the high-pressure gas refrigerant compressed by the high-stage compression mechanism unit 38 is discharged into the space inside the closed case 34.
 電動モータ32は、いわゆるインナーロータ型のDCブラシレスモータである。電動モータ32は、固定子35と回転子36とを備えた電動機である。固定子35は、密閉ケース34の上部の内壁面に固定されている。回転子36は、固定子35の内側に径方向の間隔を空けた状態で配置され、回転軸31の上部に固定されている。 The electric motor 32 is a so-called inner rotor type DC brushless motor. The electric motor 32 is an electric motor including a stator 35 and a rotor 36. The stator 35 is fixed to the inner wall surface of the upper part of the sealed case 34. The rotor 36 is arranged inside the stator 35 with a radial interval, and is fixed to the upper part of the rotating shaft 31.
 図2は、多段回転式圧縮機2の圧縮要素33の断面図である。図3は、図2のIII-III断面図である。
 図2、図3に示すように、圧縮要素33は、複数のシリンダ37a,38aを有する多気筒の圧縮要素である。例えば、圧縮要素33は、軸方向に並ぶ一対(複数)のシリンダ37a,38aを有する二気筒(多気筒)の圧縮要素である。実施形態の圧縮要素33は、軸方向上側(電動モータ32側)に位置する低段圧縮機構部37と、軸方向下側(電動モータ32と反対側)に位置する高段圧縮機構部38と、これら低段圧縮機構部37および高段圧縮機構部38の間を上下方向(軸方向)で仕切る仕切板39と、を備えている。低段圧縮機構部37は、アキュムレータ12から吸入した低圧の作動流体を中間圧に圧縮(昇圧)する。高段圧縮機構部38は、低段圧縮機構部37で圧縮した中間圧の作動流体を高圧に圧縮(昇圧)する。
FIG. 2 is a cross-sectional view of the compression element 33 of the multi-stage rotary compressor 2. FIG. 3 is a sectional view taken along line III-III of FIG.
As shown in FIGS. 2 and 3, the compression element 33 is a multi-cylinder compression element having a plurality of cylinders 37a and 38a. For example, the compression element 33 is a two-cylinder (multi-cylinder) compression element having a pair (plurality) of cylinders 37a and 38a arranged in the axial direction. The compression element 33 of the embodiment includes a low-stage compression mechanism unit 37 located on the upper side in the axial direction (side of the electric motor 32) and a high-stage compression mechanism unit 38 located on the lower side in the axial direction (opposite side of the electric motor 32). A partition plate 39 for partitioning between the low-stage compression mechanism unit 37 and the high-stage compression mechanism unit 38 in the vertical direction (axial direction) is provided. The low-stage compression mechanism unit 37 compresses (boosts) the low-pressure working fluid sucked from the accumulator 12 to an intermediate pressure. The high-stage compression mechanism unit 38 compresses (boosts) the intermediate-pressure working fluid compressed by the low-stage compression mechanism unit 37 to a high pressure.
 低段圧縮機構部37は、回転軸31と軸方向を平行にして設けられて回転軸31を上下方向で貫通させる低段側シリンダ37aを備えている。低段側シリンダ37aは、回転軸31の回転中心軸線Cと中心軸線を一致させる円形の低段側シリンダ孔37bを形成している。低段圧縮機構部37は、低段側シリンダ37aの上側(軸方向で仕切板39と反対側)に、低段側シリンダ孔37bの上端開口を閉塞するとともに回転軸31の上側の第一主軸31aを回転可能に支持する第一軸受41を備えている。 The low-stage compression mechanism unit 37 is provided with a rotation shaft 31 parallel to the axial direction, and includes a low-stage side cylinder 37a that allows the rotation shaft 31 to penetrate in the vertical direction. The low-stage cylinder 37a forms a circular low-stage cylinder hole 37b that coincides with the rotation center axis C of the rotation shaft 31. The low-stage compression mechanism unit 37 closes the upper end opening of the low-stage side cylinder hole 37b on the upper side of the low-stage side cylinder 37a (opposite to the partition plate 39 in the axial direction) and the first spindle on the upper side of the rotary shaft 31. A first bearing 41 that rotatably supports 31a is provided.
 高段圧縮機構部38は、回転軸31と軸方向を平行にして設けられて回転軸31を上下方向で貫通させる高段側シリンダ38aを備えている。高段側シリンダ38aは、回転軸31の回転中心軸線Cと中心軸線を一致させる円形の高段側シリンダ孔38bを形成している。すなわち、高段側シリンダ孔38bと低段側シリンダ孔37bとは、互いに同軸に配置され、かつ回転軸31と同軸に配置されている。高段圧縮機構部38は、高段側シリンダ38aの下側(軸方向で仕切板39と反対側)に、高段側シリンダ孔38bの下端開口を閉塞するとともに回転軸31の下側の第三主軸31eを回転可能に支持する第二軸受42を備えている。 The high-stage compression mechanism unit 38 includes a high-stage side cylinder 38a that is provided in parallel with the rotating shaft 31 in the axial direction and allows the rotating shaft 31 to penetrate in the vertical direction. The high-stage cylinder 38a forms a circular high-stage cylinder hole 38b that coincides with the rotation center axis C of the rotation shaft 31. That is, the high-stage side cylinder hole 38b and the low-stage side cylinder hole 37b are arranged coaxially with each other and coaxially with the rotating shaft 31. The high-stage compression mechanism portion 38 closes the lower end opening of the high-stage side cylinder hole 38b on the lower side of the high-stage side cylinder 38a (opposite to the partition plate 39 in the axial direction) and at the lower side of the rotary shaft 31. A second bearing 42 that rotatably supports the three main shafts 31e is provided.
 低段側シリンダ37aの外周部は、フレーム34aの下面に当接した状態で、下方から挿通したボルトB1によりフレーム34aに締結固定されている。フレーム34aの内周側には、第一軸受41が配置されている。第一軸受41は、低段側シリンダ37aの上面に当接した状態で、上方から挿通したボルトB2により低段側シリンダ37aに締結固定されている。ボルトB2は、低段側シリンダ37aを貫通して下方に延び、さらに仕切板39および高段側シリンダ38aを貫通した後、第二軸受42のネジ孔に螺入されて締め込まれる。これにより、第一軸受41、低段側シリンダ37a、仕切板39、高段側シリンダ38aおよび第二軸受42が積層状態で一体的に締結されるとともに、これらの積層体がフレーム34aに固定される。フレーム34aひいては密閉ケース34に固定した第一軸受41および第二軸受42によって、回転軸31が回転可能に支持されている。 The outer peripheral portion of the lower stage cylinder 37a is fastened and fixed to the frame 34a by a bolt B1 inserted from below in a state of being in contact with the lower surface of the frame 34a. A first bearing 41 is arranged on the inner peripheral side of the frame 34a. The first bearing 41 is fastened and fixed to the low-stage cylinder 37a by a bolt B2 inserted from above in a state of being in contact with the upper surface of the low-stage cylinder 37a. The bolt B2 penetrates the low-stage cylinder 37a and extends downward, further penetrates the partition plate 39 and the high-stage cylinder 38a, and then is screwed into the screw hole of the second bearing 42 and tightened. As a result, the first bearing 41, the lower stage cylinder 37a, the partition plate 39, the higher stage side cylinder 38a and the second bearing 42 are integrally fastened in a laminated state, and these laminated bodies are fixed to the frame 34a. Cylinder. The rotating shaft 31 is rotatably supported by the first bearing 41 and the second bearing 42 fixed to the frame 34a and thus the closed case 34.
 低段側シリンダ37aは、低段側シリンダ孔37bの上端開口が第一軸受41により閉塞され、低段側シリンダ孔37bの下端開口が仕切板39により閉塞されている。低段側シリンダ37a、第一軸受41および仕切板39に区画された空間は、低段側シリンダ室37cとされる。 In the low-stage cylinder 37a, the upper end opening of the low-stage cylinder hole 37b is closed by the first bearing 41, and the lower end opening of the low-stage cylinder hole 37b is closed by the partition plate 39. The space partitioned by the low-stage cylinder 37a, the first bearing 41, and the partition plate 39 is defined as the low-stage cylinder chamber 37c.
 高段側シリンダ38aは、高段側シリンダ孔38bの下端開口が第二軸受42により閉塞され、高段側シリンダ孔38bの上端開口が仕切板39により閉塞されている。高段側シリンダ38a、第二軸受42および仕切板39に区画された空間は、高段側シリンダ室38cとされる。
 低段側シリンダ37aと高段側シリンダ38aとは、仕切板39を間に挟んで軸方向で突き合わされている。仕切板39の具体的な構成については後述する。
In the high-stage cylinder 38a, the lower end opening of the high-stage cylinder hole 38b is closed by the second bearing 42, and the upper end opening of the high-stage cylinder hole 38b is closed by the partition plate 39. The space partitioned by the high-stage cylinder 38a, the second bearing 42, and the partition plate 39 is referred to as the high-stage cylinder chamber 38c.
The low-stage cylinder 37a and the high-stage cylinder 38a are butted in the axial direction with a partition plate 39 sandwiched between them. The specific configuration of the partition plate 39 will be described later.
 回転軸31は、低段側シリンダ室37c内に位置する部位に、中心軸線Cに対して径方向一側に偏心した低段側偏心部31bを備えている。回転軸31は、高段側シリンダ室38c内に位置する部位に、中心軸線Cに対して径方向他側に偏心した高段側偏心部31dを備えている。 The rotating shaft 31 is provided with a low-stage eccentric portion 31b eccentric to one side in the radial direction with respect to the central axis C at a portion located in the low-stage side cylinder chamber 37c. The rotary shaft 31 includes a high-stage side eccentric portion 31d eccentric to the other side in the radial direction with respect to the central axis C at a portion located in the high-stage side cylinder chamber 38c.
 回転軸31は、中心軸線Cを中心に延びる主軸として、低段側偏心部31bの上方に延びる第一主軸31aと、低段側偏心部31bおよび高段側偏心部31dの間を延びる第二主軸31cと、高段側偏心部31dの下方に延びる第三主軸31eと、を備えている。第一主軸31aは、上方へ大きく延び、この第一主軸31aに電動モータ32の回転子36が固定されている。 The rotating shaft 31 is a second spindle extending around the central axis C, extending between the first spindle 31a extending above the lower eccentric portion 31b, the lower eccentric portion 31b, and the higher eccentric portion 31d. It includes a spindle 31c and a third spindle 31e extending below the eccentric portion 31d on the higher stage side. The first spindle 31a extends greatly upward, and the rotor 36 of the electric motor 32 is fixed to the first spindle 31a.
 各偏心部31b,31dは、互いに同径の円柱形をなしている。各偏心部31b,31dは、互いに周方向に180°の位相差をもって配置されている。各偏心部31b,31dは、中心軸線Cに対する偏心量を互いに同一にしている。 The eccentric portions 31b and 31d have a cylindrical shape having the same diameter as each other. The eccentric portions 31b and 31d are arranged with a phase difference of 180 ° in the circumferential direction. The eccentric portions 31b and 31d have the same amount of eccentricity with respect to the central axis C.
 低段側偏心部31bには、円筒状の低段側ローラ45が回転可能に外挿されている。低段側偏心部31bおよび低段側ローラ45は、偏心部31bの中心軸線回りに回転する。
 高段側偏心部31dには、円筒状の高段側ローラ46が回転可能に外挿されている。高段側偏心部31dおよび高段側ローラ46は、偏心部31dの中心軸線回りに回転する。
A cylindrical low-stage roller 45 is rotatably extrapolated to the low-stage eccentric portion 31b. The low-stage side eccentric portion 31b and the low-stage side roller 45 rotate around the central axis of the eccentric portion 31b.
A cylindrical high-stage roller 46 is rotatably extrapolated to the high-stage eccentric portion 31d. The high-stage side eccentric portion 31d and the high-stage side roller 46 rotate around the central axis of the eccentric portion 31d.
 第一軸受41は、回転軸31の第一主軸31aを回転可能に支持する円筒状の筒部41aと、筒部41aの下端部の外周側に拡径形成されるフランジ部41bと、を備えている。第一軸受41には、上部側マフラ部材(第2のマフラ部材)43が例えば前記ボルトB2により固定されている。 The first bearing 41 includes a cylindrical tubular portion 41a that rotatably supports the first spindle 31a of the rotating shaft 31, and a flange portion 41b formed with an enlarged diameter on the outer peripheral side of the lower end portion of the tubular portion 41a. ing. An upper muffler member (second muffler member) 43 is fixed to the first bearing 41 by, for example, the bolt B2.
 第二軸受42は、回転軸31の第三主軸31eを回転可能に支持する円筒状の筒部42aと、筒部42aの上端部の外周側に拡径形成されるフランジ部42bと、を備えている。第二軸受42には、底部側マフラ部材(第1のマフラ部材)44が固定されている。 The second bearing 42 includes a cylindrical tubular portion 42a that rotatably supports the third main shaft 31e of the rotating shaft 31, and a flange portion 42b formed with an enlarged diameter on the outer peripheral side of the upper end portion of the tubular portion 42a. ing. A bottom side muffler member (first muffler member) 44 is fixed to the second bearing 42.
 第一軸受41および第二軸受42における回転軸31との摺動部分の軸方向長さL1,L2の内、第一軸受41の摺動部分長さL1は、第二軸受42の摺動部分長さL2よりも長い。そのため、第一軸受41側の回転軸31の撓みを小さくすることができ、低段側偏心部31b及び低段側ローラ45の傾きを小さくすることができる。 Of the axial lengths L1 and L2 of the sliding portion of the first bearing 41 and the second bearing 42 with the rotating shaft 31, the sliding portion length L1 of the first bearing 41 is the sliding portion of the second bearing 42. Longer than length L2. Therefore, the deflection of the rotating shaft 31 on the first bearing 41 side can be reduced, and the inclination of the low-stage side eccentric portion 31b and the low-stage side roller 45 can be reduced.
 低段圧縮機構部37の偏心部31bは、低段側シリンダ室37c内において、軸方向で第一軸受41側に片寄って配置されている。換言すれば、低段圧縮機構部37の偏心摺動部(偏心部31bとローラ45との摺動部分)の軸方向中央位置cp1は、低段圧縮機構部37の低段側シリンダ37aの軸方向中央位置cp2よりも、軸方向で第一軸受41に近い位置にある。これによっても、第一軸受41側の回転軸31の撓みを小さくすることができる。 The eccentric portion 31b of the low-stage compression mechanism unit 37 is arranged offset to the first bearing 41 side in the axial direction in the low-stage side cylinder chamber 37c. In other words, the axial center position cp1 of the eccentric sliding portion (sliding portion between the eccentric portion 31b and the roller 45) of the low-stage compression mechanism portion 37 is the axis of the low-stage side cylinder 37a of the low-stage compression mechanism portion 37. It is located closer to the first bearing 41 in the axial direction than the central position cp2 in the direction. This also makes it possible to reduce the deflection of the rotating shaft 31 on the first bearing 41 side.
 低段圧縮機構部37は、低段側シリンダ室37cを吸込室16と圧縮室17とに二分するブレード(低段側ブレード)18を備えている。ブレード18は、低段側シリンダ37aに形成されたブレード溝18cに設けられ、シリンダ室37cに対して進退移動可能である。ブレード18は、ローラ45側の先端面(ローラ当接面)18aをローラ45の外周面に当接させた状態を維持する。このブレード18とローラ45とにより、シリンダ室37c内が吸込室16と圧縮室17とに区画される。 The low-stage compression mechanism unit 37 includes a blade (low-stage side blade) 18 that divides the low-stage side cylinder chamber 37c into a suction chamber 16 and a compression chamber 17. The blade 18 is provided in the blade groove 18c formed in the lower stage cylinder 37a, and can move forward and backward with respect to the cylinder chamber 37c. The blade 18 maintains a state in which the tip surface (roller contact surface) 18a on the roller 45 side is in contact with the outer peripheral surface of the roller 45. The blade 18 and the roller 45 divide the inside of the cylinder chamber 37c into a suction chamber 16 and a compression chamber 17.
 低段圧縮機構部37のブレード18は、例えば軸方向に重ねて設けられた複数(実施形態では上下一対)のブレード部材(低段側ブレード部材)19a,19bから構成されている。以下、上下ブレード部材19a,19bを単にブレード部材19と称することがある。 The blade 18 of the low-stage compression mechanism unit 37 is composed of, for example, a plurality of blade members (lower-stage side blade members) 19a and 19b provided so as to be stacked in the axial direction (a pair of upper and lower blade members in the embodiment). Hereinafter, the upper and lower blade members 19a and 19b may be simply referred to as blade members 19.
 ブレード18(ブレード部材19)は、シリンダ室37cの径方向(進退方向)で先端面18aと反対側の背面18bにケース内圧を受けることでのみ、ローラ45に向けて付勢される。ブレード18の背面18b側には、バネ等の付勢部材は設けられていない。ブレード18の先端面18aは、軸方向から見て例えば円弧状をなしている。ブレード18の先端面18aには、DLCコーティング等の表面硬化処理が施されている。ブレード18の背面18bは、軸方向から見て例えば進退方向と直交する平坦状をなしている。図中符号34cは密閉ケース34内に連通してケース内圧が作用するケース内連通部を示す。 The blade 18 (blade member 19) is urged toward the roller 45 only by receiving the case internal pressure on the back surface 18b opposite to the tip surface 18a in the radial direction (advancing / retreating direction) of the cylinder chamber 37c. No urging member such as a spring is provided on the back surface 18b side of the blade 18. The tip surface 18a of the blade 18 has, for example, an arc shape when viewed from the axial direction. The tip surface 18a of the blade 18 is subjected to a surface hardening treatment such as DLC coating. The back surface 18b of the blade 18 has a flat shape that is orthogonal to, for example, the advancing / retreating direction when viewed from the axial direction. Reference numeral 34c in the figure indicates an internal communication portion in the case in which the internal pressure of the case acts by communicating with the inside of the closed case 34.
 ブレード溝18c内には、ブレード18(一対のブレード部材19a,19b)がスライド可能に保持されている。一対のブレード部材19a,19bは、ブレード溝18cに対して、径方向に沿って個々にスライド移動(進退移動)可能である。 The blade 18 (a pair of blade members 19a, 19b) is slidably held in the blade groove 18c. The pair of blade members 19a and 19b can individually slide (advance and retreat) along the radial direction with respect to the blade groove 18c.
 ブレード18は、密閉ケース34内の高圧のガス冷媒の圧力(ケース内圧)によって、径方向内側に向けて(ローラ45に向けて)付勢される。これにより、ブレード18は、偏心回転するローラ45の外周面に当接した状態を維持する。
 低段圧縮機構部37は、ローラ45の偏心回転動作およびブレード18の進退動作により、低圧側シリンダ室37c内で圧縮動作を行う。
The blade 18 is urged inward in the radial direction (toward the roller 45) by the pressure of the high-pressure gas refrigerant (case internal pressure) in the closed case 34. As a result, the blade 18 maintains a state of being in contact with the outer peripheral surface of the eccentric rotating roller 45.
The low-stage compression mechanism unit 37 performs a compression operation in the low-pressure side cylinder chamber 37c by the eccentric rotation operation of the roller 45 and the advance / retreat operation of the blade 18.
 低段側シリンダ37aの周方向の一部には、低段側シリンダ37aを径方向に貫通する吸込孔18dが形成されている。吸込孔18dは、ローラ45の偏心回転方向(図3中矢印F方向、回転軸31の回転方向でもある)でブレード溝18cよりも下流側(図3におけるブレード溝18cよりも左側)に位置している。吸込孔18dの径方向外側には、アキュムレータ12から延びる吸込管6が接続されている。 A suction hole 18d that penetrates the low-stage cylinder 37a in the radial direction is formed in a part of the low-stage cylinder 37a in the circumferential direction. The suction hole 18d is located on the downstream side of the blade groove 18c (on the left side of the blade groove 18c in FIG. 3) in the eccentric rotation direction of the roller 45 (in the direction of arrow F in FIG. 3, which is also the rotation direction of the rotation shaft 31). ing. A suction pipe 6 extending from the accumulator 12 is connected to the radial outer side of the suction hole 18d.
 なお、高段圧縮機構部38について図3同様の図示は略すが、図2を参照し、高段圧縮機構部38も低段圧縮機構部37と同様に、シリンダ室38cを吸込室16と圧縮室17とに二分するブレード(高段側ブレード)21を備えている。高段圧縮機構部38のブレード21は、1個のブレード部材(高段側ブレード部材)22で構成されている。図中符号21aはブレード21の先端面、符号21bはブレード21の背面をそれぞれ示す。 Although the same illustration as in FIG. 3 is omitted for the high-stage compression mechanism unit 38, the high-stage compression mechanism unit 38 also compresses the cylinder chamber 38c with the suction chamber 16 in the same manner as the low-stage compression mechanism unit 37, with reference to FIG. A blade (high-stage side blade) 21 that divides into a chamber 17 is provided. The blade 21 of the high-stage compression mechanism unit 38 is composed of one blade member (high-stage side blade member) 22. In the figure, reference numeral 21a indicates a front end surface of the blade 21, and reference numeral 21b indicates a back surface of the blade 21.
 ブレード部材22は、背面21bにケース内圧を受けることで、ローラ46に向けて付勢されるとともに、背面21b側に縮設した付勢バネ23(例えばコイルスプリング)によっても、ローラ46に向けて付勢されている。高段圧縮機構部38は、ブレード部材22を付勢する付勢バネ23を備えることで、多段回転式圧縮機2の起動時等でケース内圧が低い状態でも、ブレード部材22をローラ46に向けて付勢し、吸入した冷媒を圧縮、昇圧することが可能である。 The blade member 22 is urged toward the roller 46 by receiving the case internal pressure on the back surface 21b, and is also urged toward the roller 46 by the urging spring 23 (for example, a coil spring) reduced to the back surface 21b side. Being urged. The high-stage compression mechanism unit 38 includes an urging spring 23 for urging the blade member 22, so that the blade member 22 is directed toward the roller 46 even when the case internal pressure is low, such as when the multi-stage rotary compressor 2 is started. It is possible to urge and compress and boost the inhaled refrigerant.
 各圧縮機構部37,38では、ローラ45,46の偏心回転によって、吸込室16に気体冷媒を吸い込む吸込動作と、圧縮室17で気体冷媒を圧縮する圧縮動作と、が行われる。
 低段圧縮機構部37では、吸込動作によりアキュムレータ12から低圧のガス冷媒が吸い込まれる。低段圧縮機構部37では、吸い込んだガス冷媒を圧縮動作により圧縮して中間圧に昇圧する。低段圧縮機構部37で昇圧したガス冷媒は、仕切板39に設けた吐出孔47aを通じて、仕切板39の中間圧室39c内に吐出される。
In each of the compression mechanism units 37 and 38, a suction operation of sucking the gas refrigerant into the suction chamber 16 and a compression operation of compressing the gas refrigerant in the compression chamber 17 are performed by the eccentric rotation of the rollers 45 and 46.
In the low-stage compression mechanism unit 37, the low-pressure gas refrigerant is sucked from the accumulator 12 by the suction operation. The low-stage compression mechanism unit 37 compresses the sucked gas refrigerant by a compression operation and boosts the pressure to an intermediate pressure. The gas refrigerant boosted by the low-stage compression mechanism unit 37 is discharged into the intermediate pressure chamber 39c of the partition plate 39 through the discharge hole 47a provided in the partition plate 39.
 高段圧縮機構部38では、吸込動作により中間圧室39cから中間圧のガス冷媒が吸い込まれる。高段圧縮機構部38では、吸い込んだガス冷媒を圧縮動作によりさらに圧縮して高圧に昇圧する。高段圧縮機構部38で昇圧したガス冷媒は、第二軸受42のフランジ部42bに設けた吐出孔49aを通じて、シリンダ室38cの外部(底部側マフラ室44a内)に吐出される。 In the high-stage compression mechanism unit 38, the intermediate pressure gas refrigerant is sucked from the intermediate pressure chamber 39c by the suction operation. The high-stage compression mechanism unit 38 further compresses the sucked gas refrigerant by a compression operation and boosts the pressure to a high pressure. The gas refrigerant boosted by the high-stage compression mechanism unit 38 is discharged to the outside of the cylinder chamber 38c (inside the bottom muffler chamber 44a) through the discharge hole 49a provided in the flange portion 42b of the second bearing 42.
 仕切板39は、軸線C中心の環状に形成されている。仕切板39は、各偏心部31b,31dを含む回転軸31を挿通可能な内径を有している。仕切板39の内径は、少なくとも回転軸31の各偏心部31b,31dのうちの一方の外径より大きくする必要がある。このため、仕切板39内の中間圧空間39cは内周側に拡大し難く、より外周側に拡大形成される。 The partition plate 39 is formed in an annular shape centered on the axis C. The partition plate 39 has an inner diameter through which the rotating shaft 31 including the eccentric portions 31b and 31d can be inserted. The inner diameter of the partition plate 39 needs to be larger than the outer diameter of at least one of the eccentric portions 31b and 31d of the rotating shaft 31. Therefore, the intermediate pressure space 39c in the partition plate 39 is difficult to expand to the inner peripheral side, and is formed to be expanded to the outer peripheral side.
 仕切板39は、軸方向で複数(実施形態では上下一対)の仕切板部材39a,39bに分割されている。各仕切板部材39a,39bは、他方側が凹んだ凹状の断面形状を有して環状に延びている。各仕切板部材39a,39bは、凹状の断面形状の開放側を他方側に向けた状態で、互いに連結されている。これにより、仕切板39の内部には、中間圧空間(中間圧室)39cが形成されている。仕切板39を分割することで中間圧空間39cを形成しやすく、かつ仕切板39に低段側吐出弁装置47を設置しやすくなる。各仕切板部材39a,39bの内、低段側に位置するものを低段側仕切板部材39a、高段側に位置するものを高段側仕切板部材39b、ということがある。 The partition plate 39 is divided into a plurality of partition plate members 39a and 39b (a pair of upper and lower parts in the embodiment) in the axial direction. Each of the partition plate members 39a and 39b has a concave cross-sectional shape with a recess on the other side and extends in an annular shape. The partition plate members 39a and 39b are connected to each other with the open side of the concave cross-sectional shape facing the other side. As a result, an intermediate pressure space (intermediate pressure chamber) 39c is formed inside the partition plate 39. By dividing the partition plate 39, it becomes easy to form the intermediate pressure space 39c, and it becomes easy to install the low-stage side discharge valve device 47 on the partition plate 39. Among the partition plate members 39a and 39b, the one located on the lower stage side may be referred to as the lower stage side partition plate member 39a, and the one located on the higher stage side may be referred to as the higher stage side partition plate member 39b.
 仕切板39に中間圧空間39cを設けることで、中間圧空間39cの容積が確保される。これにより、低段圧縮機構部37からのガス冷媒の吐出脈動や高段圧縮機構部38へのガス冷媒の吸込脈動が抑制される。
 低段側仕切板部材39aには、低段圧縮機構部37で圧縮された中間圧のガス冷媒を中間圧空間39c内に吐出させる低段側吐出弁装置47が設けられている。
By providing the intermediate pressure space 39c on the partition plate 39, the volume of the intermediate pressure space 39c is secured. As a result, the discharge pulsation of the gas refrigerant from the low-stage compression mechanism unit 37 and the suction pulsation of the gas refrigerant into the high-stage compression mechanism unit 38 are suppressed.
The low-stage partition plate member 39a is provided with a low-stage discharge valve device 47 that discharges an intermediate-pressure gas refrigerant compressed by the low-stage compression mechanism 37 into the intermediate-pressure space 39c.
 低段圧縮機構部37から中間圧空間39c内に吐出された中間圧のガス冷媒は、中間圧通路7を介して高段圧縮機構部38に連通する第二吸込部14aに導かれる。中間圧通路7を介して高段圧縮機構部38に導かれる中間圧のガス冷媒は、途中でインタークーラー7aにて冷却される。したがって、高段圧縮機構部38には、冷却された中間圧のガス冷媒が導かれる。また、第二アキュムレータ8で気液分離された中間圧のガス冷媒が、中間圧通路7の途中に合流しているバイパス通路8aを介して導かれる。第二吸込部14aに導かれた中間圧のガス冷媒は、高段圧縮機構部38で圧縮される。 The intermediate pressure gas refrigerant discharged from the low stage compression mechanism unit 37 into the intermediate pressure space 39c is guided to the second suction portion 14a communicating with the high stage compression mechanism unit 38 via the intermediate pressure passage 7. The intermediate pressure gas refrigerant guided to the high-stage compression mechanism portion 38 via the intermediate pressure passage 7 is cooled by the intercooler 7a on the way. Therefore, a cooled intermediate pressure gas refrigerant is guided to the high-stage compression mechanism unit 38. Further, the intermediate pressure gas refrigerant separated by gas and liquid by the second accumulator 8 is guided through the bypass passage 8a that joins in the middle of the intermediate pressure passage 7. The intermediate pressure gas refrigerant guided to the second suction portion 14a is compressed by the high-stage compression mechanism portion 38.
 多段回転式圧縮機2では、低段圧縮機構部37において圧縮したガス冷媒が所定の中間圧になると、低段側仕切板部材39aの低段側吐出弁装置47が開弁する。仕切板39の低段側吐出弁装置47が開弁すると、中間圧のガス冷媒が中間圧空間39c内に吐出される。このガス冷媒は、高段圧縮機構部38のシリンダ室38c内に導かれる。その後、高段圧縮機構部38の圧縮動作により、中間圧のガス冷媒が高圧のガス冷媒に圧縮される。 In the multi-stage rotary compressor 2, when the gas refrigerant compressed by the low-stage compression mechanism unit 37 reaches a predetermined intermediate pressure, the low-stage side discharge valve device 47 of the low-stage side partition plate member 39a opens. When the low-stage side discharge valve device 47 of the partition plate 39 is opened, the intermediate pressure gas refrigerant is discharged into the intermediate pressure space 39c. This gas refrigerant is guided into the cylinder chamber 38c of the high-stage compression mechanism unit 38. After that, the intermediate pressure gas refrigerant is compressed into the high pressure gas refrigerant by the compression operation of the high-stage compression mechanism unit 38.
 第二軸受42のフランジ部42bには、高段圧縮機構部38で圧縮された高圧のガス冷媒をシリンダ室38c外に吐出させる高段側吐出弁装置49が設けられている。
 多段回転式圧縮機2では、高段圧縮機構部38において圧縮したガス冷媒が所定の高圧になると、第二軸受42の高段側吐出弁装置49が開弁する。高段側吐出弁装置49が開弁すると、高圧のガス冷媒がシリンダ室38c外に吐出される。このガス冷媒は、底部側マフラ部材44内の空間(底部側マフラ室44a)内に吐出された後、密閉ケース34内に適宜吐出される。
The flange portion 42b of the second bearing 42 is provided with a high-stage side discharge valve device 49 that discharges the high-pressure gas refrigerant compressed by the high-stage compression mechanism portion 38 to the outside of the cylinder chamber 38c.
In the multi-stage rotary compressor 2, when the gas refrigerant compressed by the high-stage compression mechanism unit 38 reaches a predetermined high pressure, the high-stage side discharge valve device 49 of the second bearing 42 opens. When the high-stage discharge valve device 49 opens, the high-pressure gas refrigerant is discharged to the outside of the cylinder chamber 38c. This gas refrigerant is discharged into the space (bottom side muffler chamber 44a) in the bottom side muffler member 44, and then appropriately discharged into the closed case 34.
 具体的に、底部側マフラ室44a内に吐出された高圧のガス冷媒は、圧縮要素33内の吐出通路33aを通過し、上部側マフラ部材43内の空間(上部側マフラ室43a)内に至る。例えば、吐出通路33aは、第二軸受42、低段側シリンダ37a、仕切板39、高段側シリンダ38aおよび第一軸受41の外周側を軸方向に貫通して形成されている。上部側マフラ室43aに至ったガス冷媒は、上部側マフラ部材43に適宜設けた吐出孔より密閉ケース34内に吐出される。 Specifically, the high-pressure gas refrigerant discharged into the bottom muffler chamber 44a passes through the discharge passage 33a in the compression element 33 and reaches the space in the upper muffler member 43 (upper muffler chamber 43a). .. For example, the discharge passage 33a is formed so as to penetrate the second bearing 42, the low-stage cylinder 37a, the partition plate 39, the high-stage cylinder 38a, and the outer peripheral side of the first bearing 41 in the axial direction. The gas refrigerant that has reached the upper muffler chamber 43a is discharged into the closed case 34 from a discharge hole appropriately provided in the upper muffler member 43.
 底部側マフラ部材44は、第二軸受42を下方から覆う容器形状をなしている。底部側マフラ部材44の下壁には、中央部に回転軸31の下端を下方(マフラ外)に露出させる下端連通孔が形成されている。下端連通孔を通じて、回転軸31内のオイル供給路に潤滑油Jが吸入される。 The bottom side muffler member 44 has a container shape that covers the second bearing 42 from below. The lower wall of the bottom side muffler member 44 is formed with a lower end communication hole in the central portion that exposes the lower end of the rotating shaft 31 downward (outside the muffler). Lubricating oil J is sucked into the oil supply path in the rotating shaft 31 through the lower end communication hole.
 上部側マフラ部材43は、第一軸受41を上方から覆う容器形状をなしている。上部側マフラ部材43の上壁部には、中央部に回転軸31を挿通する軸挿通孔が形成されるとともに、軸挿通孔の周囲に上部側マフラ部材43の内外を連通する上端連通孔が形成されている。上部側マフラ室43aに流入する高温・高圧の気体冷媒は、上端連通孔を通して密閉ケース34内に吐出される。 The upper muffler member 43 has a container shape that covers the first bearing 41 from above. On the upper wall portion of the upper muffler member 43, a shaft insertion hole for inserting the rotating shaft 31 is formed in the central portion, and an upper end communication hole for communicating the inside and outside of the upper muffler member 43 is formed around the shaft insertion hole. It is formed. The high-temperature, high-pressure gaseous refrigerant flowing into the upper muffler chamber 43a is discharged into the closed case 34 through the upper end communication hole.
 上部側マフラ室43aは、低段側の第一軸受41の周囲に形成されている。上部側マフラ室43aの下端内壁面は、低段側シリンダ室37cの上端を閉塞する第一軸受41のフランジ部41bが形成している。 The upper muffler chamber 43a is formed around the first bearing 41 on the lower stage side. The lower end inner wall surface of the upper muffler chamber 43a is formed by a flange portion 41b of the first bearing 41 that closes the upper end of the lower cylinder chamber 37c.
 底部側マフラ室44aは、高段側の第二軸受42の周囲に形成されている。底部側マフラ部材44が潤滑油貯留部34bの潤滑油J内に浸漬される範囲において、底部側マフラ室44aの内壁面は、底部側マフラ部材44が形成している。 The bottom side muffler chamber 44a is formed around the second bearing 42 on the high stage side. The bottom side muffler member 44 forms the inner wall surface of the bottom side muffler chamber 44a in a range in which the bottom side muffler member 44 is immersed in the lubricating oil J of the lubricating oil storage portion 34b.
 実施形態では、底部側マフラ部材44における底部側マフラ室44a内と潤滑油貯留部34bとを隔する部分の厚みが、第一軸受41における上部側マフラ室43a内と低段圧縮機構部37の吸込室16とを隔する部分(フランジ部41b)の厚みより小さい構成とした。 In the embodiment, the thickness of the portion of the bottom side muffler member 44 that separates the inside of the bottom side muffler chamber 44a from the lubricating oil storage portion 34b is such that the thickness of the portion of the first bearing 41 that separates the inside of the bottom side muffler chamber 43a and the low stage compression mechanism portion 37 The thickness is smaller than the thickness of the portion (flange portion 41b) that separates the suction chamber 16.
 この構成では、底部側マフラ室44aの区画部分の厚みを、上部側マフラ室43aの区画部分の厚みより薄くした。これにより、底部側マフラ室44aから潤滑油Jへの放熱量をより大きくし、作動流体の冷却性を高めることができる。また、上部側マフラ室43aから低段圧縮機構部37の吸込室16への放熱量をより小さくし、吸込過熱による効率および信頼性への影響をより一層抑制することができる。したがって、高効率で信頼性の高い多段回転式圧縮機2を提供することができる。 In this configuration, the thickness of the compartment of the bottom muffler chamber 44a is thinner than the thickness of the compartment of the upper muffler chamber 43a. As a result, the amount of heat radiated from the bottom muffler chamber 44a to the lubricating oil J can be further increased, and the cooling performance of the working fluid can be improved. Further, the amount of heat radiated from the upper muffler chamber 43a to the suction chamber 16 of the low-stage compression mechanism portion 37 can be made smaller, and the influence of suction overheating on efficiency and reliability can be further suppressed. Therefore, it is possible to provide the multi-stage rotary compressor 2 with high efficiency and high reliability.
 実施形態では、底部側マフラ室44a内と潤滑油貯留部34bとを隔する部分(底部側マフラ部材44)の外壁面の表面積が、上部側マフラ室43a内と低段圧縮機構部37の吸込室16とを隔する部分(フランジ部41b)の外壁面の表面積より大きい構成としてもよい。これによっても、上記効果を得ることができる。 In the embodiment, the surface area of the outer wall surface of the portion (bottom side muffler member 44) that separates the inside of the bottom side muffler chamber 44a and the lubricating oil storage portion 34b is the inside of the upper side muffler chamber 43a and the suction of the low-stage compression mechanism portion 37. The configuration may be larger than the surface area of the outer wall surface of the portion (flange portion 41b) that separates the chamber 16. The above effect can also be obtained by this.
 実施形態では、底部側マフラ室44a内と潤滑油貯留部34bとを隔する部分(底部側マフラ部材44)の熱伝導率が、上部側マフラ室43a内と低段圧縮機構部37の吸込室16とを隔する部分(フランジ部41b)の熱伝導率より大きい構成としてもよい。例えば、底部側マフラ部材44は銅合金で形成され、第二軸受42は鋳鉄で形成されている。これによっても、上記効果を得ることができる。 In the embodiment, the thermal conductivity of the portion (bottom side muffler member 44) that separates the inside of the bottom side muffler chamber 44a and the lubricating oil storage portion 34b is the inside of the upper side muffler chamber 43a and the suction chamber of the low stage compression mechanism portion 37. The configuration may be larger than the thermal conductivity of the portion (flange portion 41b) separated from 16. For example, the bottom muffler member 44 is made of copper alloy, and the second bearing 42 is made of cast iron. The above effect can also be obtained by this.
 回転軸31の下端部は、底部側マフラ部材44とともに、密閉ケース34の底部に貯留された潤滑油J内に浸漬されている。
 回転軸31には、圧縮要素33における各摺動部分に潤滑油Jを供給するためのオイル供給路が形成されている。圧縮要素33の摺動部分とは、各偏心部31b,31dと各ローラ45,46との間や、回転軸31と各軸受41,42との間、各ローラ45,46と各ブレード18,21との間、等である。
The lower end of the rotating shaft 31 is immersed in the lubricating oil J stored in the bottom of the sealed case 34 together with the bottom muffler member 44.
The rotating shaft 31 is formed with an oil supply path for supplying the lubricating oil J to each sliding portion of the compression element 33. The sliding portions of the compression element 33 are between the eccentric portions 31b and 31d and the rollers 45 and 46, between the rotating shaft 31 and the bearings 41 and 42, the rollers 45 and 46 and the blades 18, respectively. Between 21 and so on.
 回転軸31は、オイル供給路として、軸線Cと同軸に延びる軸方向流路95と、軸方向流路95から径方向に延びる第一径方向流路96および第二径方向流路97と、を備えている。
 軸方向流路95は、下端部が回転軸31の下端で下方に開放している。軸方向流路95は、上端部が低段側シリンダ37aよりも上方の第一主軸31a内で終端している。軸方向流路95には、密閉ケース34内の潤滑油Jが流入可能である。
The rotating shaft 31 has an axial flow path 95 extending coaxially with the axis C, a first radial flow path 96 extending radially from the axial flow path 95, and a second radial flow path 97 as oil supply paths. It has.
The lower end of the axial flow path 95 is open downward at the lower end of the rotating shaft 31. The upper end of the axial flow path 95 is terminated in the first spindle 31a above the lower cylinder 37a. The lubricating oil J in the sealed case 34 can flow into the axial flow path 95.
 第一径方向流路96は、回転軸31における第一主軸31aと低段側偏心部31bとの接続部分に形成されている。第一径方向流路96における径方向の内側端部は、軸方向流路95内に開放している。第一径方向流路96における径方向の外側端部は、回転軸31の外周面上(図では周方向に延びる油溝内)で径方向外側に開放している。 The first radial flow path 96 is formed at a connecting portion between the first spindle 31a and the lower eccentric portion 31b on the rotating shaft 31. The radial inner end of the first radial flow path 96 is open within the axial flow path 95. The radial outer end of the first radial flow path 96 is radially outwardly open on the outer peripheral surface of the rotating shaft 31 (inside the oil groove extending in the circumferential direction in the figure).
 第二径方向流路97は、回転軸31における第三主軸31eと高段側偏心部31dとの接続部分に形成されている。第二径方向流路97における径方向の内側端部は、軸方向流路95内に開放している。第二径方向流路97における径方向の外側端部は、回転軸31の外周面上(図では周方向に延びる油溝内)で径方向外側に開放している。 The second radial flow path 97 is formed at a connecting portion between the third main shaft 31e and the higher stage side eccentric portion 31d on the rotating shaft 31. The radial inner end of the second radial flow path 97 is open within the axial flow path 95. The radial outer end of the second radial flow path 97 is radially outwardly open on the outer peripheral surface of the rotating shaft 31 (inside the oil groove extending in the circumferential direction in the figure).
 圧縮要素33の駆動によりケース内圧が上昇すると、回転軸31の下端部から軸方向流路95内に潤滑油Jが押し上げられる。この潤滑油Jは、回転軸31の回転による遠心力により軸方向流路95から各径方向流路96,97に分配される。各径方向流路96,97に至った潤滑油Jは、回転軸31の外周面上で流出し、圧縮要素33の摺動部分に適宜供給される。 When the internal pressure of the case rises due to the drive of the compression element 33, the lubricating oil J is pushed up from the lower end of the rotating shaft 31 into the axial flow path 95. The lubricating oil J is distributed from the axial flow path 95 to the radial flow paths 96 and 97 by the centrifugal force generated by the rotation of the rotating shaft 31. The lubricating oil J that has reached the radial flow paths 96 and 97 flows out on the outer peripheral surface of the rotating shaft 31, and is appropriately supplied to the sliding portion of the compression element 33.
 例えば、第一径方向流路96から流出した潤滑油Jは、第一軸受41や低段圧縮機構部37等に供給される。第二径方向流路97から流出した潤滑油Jは、高段圧縮機構部38、第三主軸31eおよび第二軸受42等に供給される。各摺動部分に供給された潤滑油Jは、密閉ケース34の底部に流下して戻り、圧縮要素33の摺動部分へ再度供給される。 For example, the lubricating oil J flowing out from the first radial flow path 96 is supplied to the first bearing 41, the low-stage compression mechanism portion 37, and the like. The lubricating oil J flowing out of the second radial flow path 97 is supplied to the high-stage compression mechanism portion 38, the third spindle 31e, the second bearing 42, and the like. The lubricating oil J supplied to each sliding portion flows down to the bottom of the sealed case 34 and returns, and is again supplied to the sliding portion of the compression element 33.
 実施形態では、前記密閉ケース34の内部に前記高段圧縮機構部38から作動流体が吐出されるとともに、前記密閉ケース34の底部に潤滑油Jが貯留される。密閉ケース34内の潤滑油Jは、第一径方向流路96から前記低段圧縮機構部37の低段側ローラ45内周側に導かれ、ローラ端面シール部45aを経由して前記低段側シリンダ室37c内に供給される。前記低段圧縮機構部37における前記低段側シリンダ37aと前記低段側ローラ45との軸方向の寸法差は、前記高段圧縮機構部38における前記高段側シリンダ38aと前記高段側ローラ46との軸方向の寸法差より小さい。 In the embodiment, the working fluid is discharged from the high-stage compression mechanism portion 38 into the closed case 34, and the lubricating oil J is stored in the bottom of the closed case 34. The lubricating oil J in the sealed case 34 is guided from the first radial flow path 96 to the inner peripheral side of the lower stage roller 45 of the lower stage compression mechanism portion 37, and is guided to the inner peripheral side of the lower stage side roller 45 of the lower stage compression mechanism portion 37, and is passed through the roller end face sealing portion 45a to the lower stage. It is supplied into the side cylinder chamber 37c. The axial dimensional difference between the low-stage cylinder 37a and the low-stage roller 45 in the low-stage compression mechanism 37 is the difference between the high-stage cylinder 38a and the high-stage roller in the high-stage compression mechanism 38. It is smaller than the axial dimensional difference from 46.
 この構成では、差圧が大きい低段圧縮機構部37のローラ端面シール部45aにおいて、ローラ45の端面と仕切板39及び第一軸受41間の隙間が小さくなり、潤滑油Jが過剰に低段側シリンダ室37c内に流入することを防ぐことができる。
 また、各シリンダ37a,38aおよび各ローラ45,46間の軸方向の寸法差を上記設定とするので、差圧が大きい低段圧縮機構部37のローラ端面シール部45aでのシール性を高める一方、差圧が小さい高段圧縮機構部38のローラ端面シール部46aにおいては、高段側シリンダ室38c内への潤滑油Jの供給量が不足するリスクを軽減し、高段側の摺動損失の低減を図ることができる。
In this configuration, in the roller end face sealing portion 45a of the low-stage compression mechanism portion 37 having a large differential pressure, the gap between the end face of the roller 45 and the partition plate 39 and the first bearing 41 becomes small, and the lubricating oil J becomes excessively low. It is possible to prevent the oil from flowing into the side cylinder chamber 37c.
Further, since the axial dimensional difference between the cylinders 37a and 38a and the rollers 45 and 46 is set as described above, the sealing performance of the low-stage compression mechanism portion 37 having a large differential pressure at the roller end face sealing portion 45a is improved. In the roller end face sealing portion 46a of the high-stage compression mechanism portion 38 having a small differential pressure, the risk of insufficient supply of lubricating oil J into the high-stage side cylinder chamber 38c is reduced, and sliding loss on the high-stage side is reduced. Can be reduced.
 次に、多段回転式圧縮機2の作用について説明する。
 多段回転式圧縮機2の起動時、電動モータ32の固定子35に電力が供給されると、回転子36とともに回転軸31が軸線C回りに回転する。回転軸31が回転すると、両圧縮機構部37,38の各偏心部31b,31dおよび各ローラ45,46が、各シリンダ室37c,38c内で偏心回転する。
Next, the operation of the multi-stage rotary compressor 2 will be described.
When power is supplied to the stator 35 of the electric motor 32 when the multi-stage rotary compressor 2 is started, the rotating shaft 31 rotates around the axis C together with the rotor 36. When the rotating shaft 31 rotates, the eccentric portions 31b, 31d and the rollers 45, 46 of both compression mechanism portions 37, 38 rotate eccentrically in the cylinder chambers 37c, 38c.
 このとき、両圧縮機構部37,38のローラ45,46は、シリンダ室37c,38cの内周面に油膜を介して転接するが、ブレード18,21については以下の通りである。つまり、高段圧縮機構部38のブレード21においては、付勢バネ23の付勢力によりローラ46に摺接する。低段圧縮機構部37のブレード18においては、ケース内圧が低圧のままではブレード溝18c内に没入したままとなる。したがって、多段回転式圧縮機2の起動時には、高段圧縮機構部38のシリンダ室38cのみが吸込側と圧縮側とに区画されてガス冷媒の圧縮を行う。 At this time, the rollers 45 and 46 of both compression mechanism portions 37 and 38 are transferred to the inner peripheral surfaces of the cylinder chambers 37c and 38c via an oil film, but the blades 18 and 21 are as follows. That is, the blade 21 of the high-stage compression mechanism 38 slides into contact with the roller 46 by the urging force of the urging spring 23. In the blade 18 of the low-stage compression mechanism unit 37, if the case internal pressure remains low, it remains immersed in the blade groove 18c. Therefore, when the multi-stage rotary compressor 2 is started, only the cylinder chamber 38c of the high-stage compression mechanism unit 38 is divided into the suction side and the compression side to compress the gas refrigerant.
 やがて、高段圧縮機構部38が吐出した高圧のガス冷媒で密閉ケース34内が満たされると、ケース内圧によって低段圧縮機構部37のブレード18がローラ45側に付勢されてローラ45に摺接し始める。すると、低段圧縮機構部37のシリンダ室37cでも吸込側と圧縮側とに区画されてガス冷媒の圧縮を開始する。 Eventually, when the inside of the sealed case 34 is filled with the high-pressure gas refrigerant discharged from the high-stage compression mechanism unit 38, the blade 18 of the low-stage compression mechanism unit 37 is urged toward the roller 45 by the case internal pressure and slides on the roller 45. Start contacting. Then, the cylinder chamber 37c of the low-stage compression mechanism unit 37 is also divided into a suction side and a compression side, and compression of the gas refrigerant is started.
 以降、アキュムレータ12において気液分離された低圧のガス冷媒は、吸込管6を経由して低段圧縮機構部37のシリンダ室37c内に導かれる。シリンダ室37c内に導かれた低圧のガス冷媒は、低段圧縮機構部37において圧縮されて所定の中間圧となる。ガス冷媒が所定の中間圧になると、仕切板39の低段側吐出弁装置47が開弁し、中間圧のガス冷媒を仕切板39の中間圧空間39c内に吐出する。 After that, the low-pressure gas refrigerant separated by gas and liquid in the accumulator 12 is guided into the cylinder chamber 37c of the low-stage compression mechanism unit 37 via the suction pipe 6. The low-pressure gas refrigerant guided into the cylinder chamber 37c is compressed by the low-stage compression mechanism unit 37 to reach a predetermined intermediate pressure. When the gas refrigerant reaches a predetermined intermediate pressure, the low-stage side discharge valve device 47 of the partition plate 39 opens, and the gas refrigerant at the intermediate pressure is discharged into the intermediate pressure space 39c of the partition plate 39.
 中間圧空間39cに吐出されたガス冷媒は、中間圧通路7及びバイパス通路8aを介して高段圧縮機構部38に吸入される。
 高段圧縮機構部38に吸入されたガス冷媒は、中間圧から所定の高圧に昇圧される。ガス冷媒が所定の高圧になると、第二軸受42の高段側吐出弁装置49が開弁し、高圧のガス冷媒を第二マフラ室44a内に吐出する。第二マフラ室44a内に吐出されたガス冷媒は、吐出通路33aから第一マフラ室43a内に至った後、密閉ケース34内に適宜吐出される。
The gas refrigerant discharged into the intermediate pressure space 39c is sucked into the high-stage compression mechanism unit 38 via the intermediate pressure passage 7 and the bypass passage 8a.
The gas refrigerant sucked into the high-stage compression mechanism unit 38 is boosted from an intermediate pressure to a predetermined high pressure. When the gas refrigerant reaches a predetermined high pressure, the high-stage side discharge valve device 49 of the second bearing 42 opens, and the high-pressure gas refrigerant is discharged into the second muffler chamber 44a. The gas refrigerant discharged into the second muffler chamber 44a reaches the inside of the first muffler chamber 43a from the discharge passage 33a, and then is appropriately discharged into the closed case 34.
 密閉ケース34内に吐出された高圧のガス冷媒は、放熱器3、膨張装置4、蒸発器5等を循環して、低圧のガス冷媒に戻る。低圧に戻ったガス冷媒は、再び低段圧縮機構部37のシリンダ室37c内に導かれ、上述の行程を繰り返す。 The high-pressure gas refrigerant discharged into the sealed case 34 circulates in the radiator 3, the expansion device 4, the evaporator 5, etc., and returns to the low-pressure gas refrigerant. The gas refrigerant that has returned to a low pressure is again guided into the cylinder chamber 37c of the low-stage compression mechanism unit 37, and the above-mentioned process is repeated.
 回転軸31の第一主軸31aと第三主軸31eと、相互に同一径を有している。以下、第一主軸31aと第三主軸31eを主軸31jと総称することがある。回転軸31に組み付けられる部品の内、第一軸受41および回転子36は、回転軸31に上端側から組み付けられる。回転軸31に組み付けられる部品の内、低段側ローラ45、仕切板39、高段側ローラ46および第二軸受42は、回転軸31に下端側から組み付けられる。 The first spindle 31a and the third spindle 31e of the rotating shaft 31 have the same diameter as each other. Hereinafter, the first spindle 31a and the third spindle 31e may be collectively referred to as the spindle 31j. Among the parts to be assembled to the rotating shaft 31, the first bearing 41 and the rotor 36 are assembled to the rotating shaft 31 from the upper end side. Among the parts to be assembled to the rotating shaft 31, the low-stage roller 45, the partition plate 39, the high-stage roller 46, and the second bearing 42 are assembled to the rotating shaft 31 from the lower end side.
 ここで、回転軸31に低段側ローラ45を組み付ける手順について図4を参照して説明する。以下、回転軸31の主軸31jの半径をRj、低段圧縮機構部37の偏心部31bの半径および偏心量をそれぞれR1およびE1、高段圧縮機構部38の偏心部31dの半径および偏心量をそれぞれR2およびE2で示す。 Here, the procedure for assembling the low-stage roller 45 to the rotating shaft 31 will be described with reference to FIG. Hereinafter, the radius of the main shaft 31j of the rotating shaft 31 is Rj, the radius and eccentricity of the eccentric portion 31b of the low-stage compression mechanism portion 37 are R1 and E1, respectively, and the radius and eccentricity of the eccentric portion 31d of the high-stage compression mechanism portion 38 are defined. It is indicated by R2 and E2, respectively.
 図4(a)を参照し、まず、低段側ローラ45を回転軸31の下端側から高段側偏心部31dまで軸方向移動させる。このとき、低段側ローラ45の内半径(低段側偏心部31bの半径R1に相当)は、高段側偏心部31dの半径R2以上である必要がある。すなわち、関係式「R1≧R2」を満たす必要がある。また、低段側ローラ45が第三主軸31eから高段側偏心部31dに軸方向移動するためには、高段側偏心部31dの半径R2は第三主軸31eの半径RJに偏心量E2を加えた値以上である必要がある。すなわち、関係式「R2≧Rj+E2」を満たす必要がある。 With reference to FIG. 4A, first, the low-stage roller 45 is axially moved from the lower end side of the rotary shaft 31 to the high-stage eccentric portion 31d. At this time, the inner radius of the lower stage roller 45 (corresponding to the radius R1 of the lower stage eccentric portion 31b) needs to be equal to or greater than the radius R2 of the higher stage side eccentric portion 31d. That is, it is necessary to satisfy the relational expression “R1 ≧ R2”. Further, in order for the low-stage roller 45 to move axially from the third spindle 31e to the high-stage eccentric portion 31d, the radius R2 of the high-stage eccentric portion 31d sets the eccentricity E2 to the radius RJ of the third spindle 31e. Must be greater than or equal to the added value. That is, it is necessary to satisfy the relational expression “R2 ≧ Rj + E2”.
 図4(b)、図4(c)を参照し、低段側ローラ45を高段側偏心部31dまで軸方向移動させた後、さらに低段側ローラ45を軸方向移動させて、第二主軸31cと軸方向位置をラップさせる。この状態で、低段側ローラ45を低段側偏心部31bの偏心方向に移動させて(図4(c))、低段側ローラ45を低段側偏心部31bと同軸に配置する。低段側ローラ45を低段側偏心部31bの偏心方向に移動させるために、第二主軸31cの軸方向長さ(両偏心部31b,31d間の間隔)は、低段側ローラ45の軸方向長さ以上である必要がある。 With reference to FIGS. 4 (b) and 4 (c), the low-stage roller 45 is axially moved to the high-stage eccentric portion 31d, and then the low-stage roller 45 is further moved in the axial direction to obtain a second roller. The spindle 31c and the axial position are wrapped. In this state, the low-stage roller 45 is moved in the eccentric direction of the low-stage eccentric portion 31b (FIG. 4C), and the low-stage roller 45 is arranged coaxially with the low-stage eccentric portion 31b. In order to move the low-stage roller 45 in the eccentric direction of the low-stage eccentric portion 31b, the axial length of the second spindle 31c (distance between both eccentric portions 31b and 31d) is the shaft of the low-stage roller 45. Must be greater than or equal to the directional length.
 図4(d)を参照し、低段側ローラ45を低段側偏心部31bと同軸に配置した後、低段側ローラ45を軸方向移動させて、低段側偏心部31bに外挿する。低段側偏心部31bの偏心方向と反対側の外周部において、低段側偏心部31bの外周面と第二主軸31cの外周面とは概ね面一状に並ぶ。第二主軸31cの外周面(外周縁)は、軸方向から見て低段側偏心部31bの外周面(外周縁)の内側に収まる。低段側偏心部31bの外径は、低段側ローラ45の内径と実質同一である。これにより、低段側ローラ45を軸方向移動させて低段側偏心部31bに外挿可能である。 With reference to FIG. 4D, after arranging the low-stage roller 45 coaxially with the low-stage eccentric portion 31b, the low-stage roller 45 is axially moved and extrapolated to the low-stage eccentric portion 31b. .. In the outer peripheral portion on the side opposite to the eccentric direction of the lower step side eccentric portion 31b, the outer peripheral surface of the lower step side eccentric portion 31b and the outer peripheral surface of the second main shaft 31c are substantially flush with each other. The outer peripheral surface (outer peripheral edge) of the second spindle 31c fits inside the outer peripheral surface (outer peripheral edge) of the lower eccentric portion 31b when viewed from the axial direction. The outer diameter of the lower eccentric portion 31b is substantially the same as the inner diameter of the lower roller 45. As a result, the low-stage roller 45 can be moved in the axial direction and extrapolated to the low-stage eccentric portion 31b.
 低段圧縮機構部37は、高段圧縮機構部38に比べて吸込む作動流体の圧力が低いため、吸込み容積(排除容積)を大きくする必要がある。したがって両偏心部31b,31dの偏心量E1,E2には、「E1>E2」の関係がある。そして、低段側ローラ45の内半径(低段側偏心部31bの半径)R1は、主軸31jの半径RJに偏心量E1を加えた値未満である必要がある。すなわち、関係式「R1<Rj+E1」を満たす必要がある。 Since the pressure of the working fluid sucked in the low-stage compression mechanism unit 37 is lower than that in the high-stage compression mechanism unit 38, it is necessary to increase the suction volume (exclusion volume). Therefore, the eccentric quantities E1 and E2 of both eccentric portions 31b and 31d have a relationship of "E1> E2". The inner radius (radius of the low-stage side eccentric portion 31b) R1 of the low-stage side roller 45 needs to be less than the value obtained by adding the eccentricity amount E1 to the radius RJ of the main shaft 31j. That is, it is necessary to satisfy the relational expression "R1 <Rj + E1".
 以上から、実施形態では、下記関係式(1)~(4)が全て成り立つ。
 E1>E2・・・(1)
 R1<Rj+E1・・・(2)
 R2≧Rj+E2・・・(3)
 R1≧R2・・・(4)
From the above, in the embodiment, the following relational expressions (1) to (4) all hold.
E1> E2 ... (1)
R1 <Rj + E1 ... (2)
R2 ≧ Rj + E2 ... (3)
R1 ≧ R2 ... (4)
 このように構成することで、回転軸31の下端側の第三主軸31eの軸径や両偏心部31b,31d間の第二主軸31cの軸径を小さくすることなく、低段側ローラ45の組み付けを可能とすることができる。 With this configuration, the shaft diameter of the third spindle 31e on the lower end side of the rotating shaft 31 and the shaft diameter of the second spindle 31c between the eccentric portions 31b and 31d are not reduced, and the lower roller 45 It can be assembled.
 図1、図2を参照し、実施形態では、低段圧縮機構部37は、圧縮要素33において電動モータ32側に配置されている。
 この構成では、低段側偏心部31bに低段側ローラ45を組み付ける際、回転軸31における電動モータ32が連結されない側から低段側ローラ45を組み付けることができる。回転軸31の電動モータ32側は第一主軸31aが長いことから、回転軸31の電動モータ32と反対側から低段側ローラ45を組み付けることで、組立が容易で製造性の高い多段回転式圧縮機2を得ることができる。
With reference to FIGS. 1 and 2, in the embodiment, the low-stage compression mechanism unit 37 is arranged on the electric motor 32 side in the compression element 33.
In this configuration, when the low-stage roller 45 is assembled to the low-stage eccentric portion 31b, the low-stage roller 45 can be assembled from the side of the rotating shaft 31 to which the electric motor 32 is not connected. Since the first spindle 31a is long on the electric motor 32 side of the rotary shaft 31, by assembling the low-stage roller 45 from the side opposite to the electric motor 32 of the rotary shaft 31, it is a multi-stage rotary type that is easy to assemble and has high manufacturability. The compressor 2 can be obtained.
 低段側の分割仕切板(低段側仕切板部材39a)には、低段圧縮機構部37にて圧縮された中間圧の作動流体を中間圧空間39cに吐出する低段吐出孔47aが設けられている。低段吐出孔47aは、低段側仕切板部材39aの上壁部を軸方向に貫通している。低段側仕切板部材39aには、低段吐出孔47aを開閉する低段側吐出弁装置47が配設されている。 The lower-stage partition plate (lower-stage partition plate member 39a) is provided with a low-stage discharge hole 47a that discharges an intermediate-pressure working fluid compressed by the lower-stage compression mechanism 37 into the intermediate-pressure space 39c. Has been done. The low-stage discharge hole 47a penetrates the upper wall portion of the low-stage side partition plate member 39a in the axial direction. The low-stage side partition plate member 39a is provided with a low-stage side discharge valve device 47 that opens and closes the low-stage discharge hole 47a.
 図5を併せて参照し、低段側吐出弁装置47は、低段吐出孔47aの周囲に形成される低段弁座47bと、低段吐出孔47aを開閉する低段弁材47cと、低段弁材47cの最大リフト量を規制する低段弁押さえ(リテーナ)47dと、を備えている。低段弁材47cは弾性板状のリード弁であり、軸方向で低段弁座47bに向けて付勢されている。低段側吐出弁装置47は、シリンダ室37c(圧縮室17)内の圧力上昇前は低段吐出孔47aを閉塞する。低段側吐出弁装置47は、シリンダ室37c(圧縮室17)内の圧力上昇に伴い低段吐出孔47aを開放し、シリンダ室37c外に冷媒を吐出する。 With reference to FIG. 5, the low-stage discharge valve device 47 includes a low-stage valve seat 47b formed around the low-stage discharge hole 47a, a low-stage valve material 47c that opens and closes the low-stage discharge hole 47a, and the like. It is equipped with a low-stage valve retainer (retainer) 47d that regulates the maximum lift amount of the low-stage valve material 47c. The low-stage valve material 47c is an elastic plate-shaped reed valve, and is urged toward the low-stage valve seat 47b in the axial direction. The low-stage discharge valve device 47 closes the low-stage discharge hole 47a before the pressure rises in the cylinder chamber 37c (compression chamber 17). The low-stage discharge valve device 47 opens the low-stage discharge hole 47a as the pressure inside the cylinder chamber 37c (compression chamber 17) rises, and discharges the refrigerant to the outside of the cylinder chamber 37c.
 高段側の第二軸受42のフランジ部42bには、高段圧縮機構部38にて圧縮された作動流体を圧縮要素33外(密閉ケース34内)に吐出する高段吐出孔49aが設けられている。高段吐出孔49aは、フランジ部42bを軸方向に貫通している。フランジ部42bには、高段吐出孔49aを開閉する高段側吐出弁装置49が配設されている。 The flange portion 42b of the second bearing 42 on the high stage side is provided with a high stage discharge hole 49a that discharges the working fluid compressed by the high stage compression mechanism unit 38 to the outside of the compression element 33 (inside the sealed case 34). ing. The high-stage discharge hole 49a penetrates the flange portion 42b in the axial direction. The flange portion 42b is provided with a high-stage discharge valve device 49 that opens and closes the high-stage discharge hole 49a.
 高段側吐出弁装置49は、高段吐出孔49aの周囲に形成される高段弁座49bと、高段弁座49bを開閉する高段弁材49cと、高段弁材49cの最大リフト量を規制する高段弁押さえ(リテーナ)49dと、を備えている。高段弁材49cは弾性板状のリード弁であり、軸方向で高段弁座49bに向けて付勢されている。高段側吐出弁装置49は、シリンダ室38c(圧縮室17)内の圧力上昇前は高段吐出孔49aを閉塞する。高段側吐出弁装置49は、シリンダ室38c(圧縮室17)内の圧力上昇に伴い高段吐出孔49aを開放し、シリンダ室38c外に冷媒を吐出する。 The high-stage valve device 49 includes a high-stage valve seat 49b formed around the high-stage discharge hole 49a, a high-stage valve material 49c that opens and closes the high-stage valve seat 49b, and a maximum lift of the high-stage valve material 49c. It is equipped with a high-stage valve retainer (retainer) 49d that regulates the amount. The high-stage valve material 49c is an elastic plate-shaped reed valve, and is urged toward the high-stage valve seat 49b in the axial direction. The high-stage discharge valve device 49 closes the high-stage discharge hole 49a before the pressure in the cylinder chamber 38c (compression chamber 17) rises. The high-stage discharge valve device 49 opens the high-stage discharge hole 49a as the pressure inside the cylinder chamber 38c (compression chamber 17) rises, and discharges the refrigerant to the outside of the cylinder chamber 38c.
 ここで、実施形態では、低段吐出孔47aから吐出される中間圧の冷媒の脈動を抑えるために、中間圧空間39cの拡大を図っている。中間圧空間39cを大きくするために、実施形態では以下の構成を採用した。 Here, in the embodiment, the intermediate pressure space 39c is expanded in order to suppress the pulsation of the intermediate pressure refrigerant discharged from the low-stage discharge hole 47a. In order to increase the intermediate pressure space 39c, the following configuration was adopted in the embodiment.
 すなわち、実施形態では、低段側仕切板部材39aにおける低段弁座47bを形成する部位39dの軸方向(付勢方向)の厚みT1を、第二軸受42における高段弁座49bを形成する部位42dの軸方向(付勢方向)の厚みT2よりも小さくした。 That is, in the embodiment, the thickness T1 in the axial direction (biasing direction) of the portion 39d forming the low-stage valve seat 47b in the low-stage side partition plate member 39a is formed, and the high-stage valve seat 49b in the second bearing 42 is formed. The thickness of the portion 42d in the axial direction (biasing direction) was made smaller than the thickness T2.
 このように、低段弁座47bを形成する部位39dの厚みT1を、高段弁座49bを形成する部位42dの厚みT2より小さくすることにより、仕切板39内に形成される中間圧空間39cの容量を拡大することが可能となる。このため、低段吐出孔47aから吐出される中間圧の冷媒の脈動を抑え、低段側の吐出流体の流路損失の低減を図ることができる。 As described above, the intermediate pressure space 39c formed in the partition plate 39 by making the thickness T1 of the portion 39d forming the low-stage valve seat 47b smaller than the thickness T2 of the portion 42d forming the high-stage valve seat 49b. It is possible to expand the capacity of. Therefore, it is possible to suppress the pulsation of the intermediate pressure refrigerant discharged from the low-stage discharge hole 47a and reduce the flow path loss of the discharge fluid on the low-stage side.
 一般に、低段側の吐出弁装置47の弁座47bに作用する圧力差は、高段側の吐出弁装置49の弁座49bに作用する圧力差より小さい。このため、低段側の弁座形成部位39dの厚みT1を小さくしても、弁座47b近傍の変形リスクは小さい。一方、高段側の吐出弁装置49の弁座49bに作用する圧力差は比較的大きいため、高段側の弁座形成部位42dの厚みT2は強度確保のため薄くすることが難しい。 Generally, the pressure difference acting on the valve seat 47b of the discharge valve device 47 on the lower stage side is smaller than the pressure difference acting on the valve seat 49b of the discharge valve device 49 on the higher stage side. Therefore, even if the thickness T1 of the valve seat forming portion 39d on the lower stage side is reduced, the risk of deformation in the vicinity of the valve seat 47b is small. On the other hand, since the pressure difference acting on the valve seat 49b of the discharge valve device 49 on the high stage side is relatively large, it is difficult to reduce the thickness T2 of the valve seat forming portion 42d on the high stage side in order to secure the strength.
 また、低段圧縮機構部37から吐出される低段側の作動流体の容積は、高段圧縮機構部38から吐出される高段側の作動流体の容積より多い。このため、仕切板39内に形成される中間圧空間39cの容量は、できるだけ大きく確保することが好ましい。
 実施形態の構成では、中間圧空間39cの断面積を拡大しつつ、高段弁座49bの周囲の変形を抑え、高性能で信頼性の高い多段回転式圧縮機2を提供することができる。
Further, the volume of the working fluid on the lower stage side discharged from the lower stage compression mechanism unit 37 is larger than the volume of the working fluid on the higher stage side discharged from the high stage compression mechanism unit 38. Therefore, it is preferable to secure the capacity of the intermediate pressure space 39c formed in the partition plate 39 as large as possible.
In the configuration of the embodiment, it is possible to provide a high-performance and highly reliable multi-stage rotary compressor 2 by suppressing deformation around the high-stage valve seat 49b while expanding the cross-sectional area of the intermediate pressure space 39c.
 また、実施形態では、低段弁材47cが、高段弁材49cより小さい差圧で開弁する設定とした。
 低段弁材47cが高段弁材49cより小さい圧力差で開弁することで、過圧縮損失の低減に有効な構成となり、多段回転式圧縮機2の更なる高効率化を図ることができる。
Further, in the embodiment, the low-stage valve material 47c is set to open with a differential pressure smaller than that of the high-stage valve material 49c.
By opening the low-stage valve material 47c with a pressure difference smaller than that of the high-stage valve material 49c, the configuration is effective in reducing the overcompression loss, and the efficiency of the multi-stage rotary compressor 2 can be further improved. ..
 すなわち、作動流体の流量が多い低段側においては、吐出弁の開き遅れが過圧縮損失に及ぼす影響が大きい。しかも、吐出圧力が低い低段側では、吐出圧力に対し、開弁に要する差圧の比が大きいため、全体の損失に対する過圧縮損失の割合が大きくなりやすい。例えば、低段圧縮機構部37が作動流体を1Mpaから2Mpaに圧縮し、高段圧縮機構部38が作動流体を2Mpaから4Mpaに圧縮する構成において、各弁材47c,49cが目標圧+0.2Mpaの差圧で開弁する場合、低段圧縮機構部37の吐出圧力(2.2Mpa)に対し、開弁に要する差圧の割合は、高段圧縮機構部38に比べて大きい。 That is, on the lower stage side where the flow rate of the working fluid is large, the opening delay of the discharge valve has a large effect on the overcompression loss. Moreover, on the lower stage side where the discharge pressure is low, the ratio of the differential pressure required for valve opening to the discharge pressure is large, so that the ratio of the overcompression loss to the total loss tends to be large. For example, in a configuration in which the low-stage compression mechanism unit 37 compresses the working fluid from 1 Mpa to 2 Mpa and the high-stage compression mechanism unit 38 compresses the working fluid from 2 Mpa to 4 Mpa, the valve members 47c and 49c each have a target pressure of + 0.2 Mpa. When the valve is opened with the differential pressure of, the ratio of the differential pressure required for valve opening to the discharge pressure (2.2 Mpa) of the low-stage compression mechanism unit 37 is larger than that of the high-stage compression mechanism unit 38.
 例えば、各弁材47c,49cの厚み、長さ、材質等を相互に異ならせることで、各弁材47c,49cの開弁差圧を変化させる。例えば、低段弁材47cの厚みを、高段弁材49cの厚みより薄くする。低段弁材47cの厚みを薄くすることにより、低段弁材47cのバネ剛性を容易に小さくし、開弁差圧を変化させる。閉弁時にかかる差圧が大きい高段弁材49cの厚みを確保することにより、弁割れリスクを低減し、信頼性の高い多段回転式圧縮機2とする。 For example, the valve opening differential pressure of each valve material 47c, 49c is changed by making the thickness, length, material, etc. of each valve material 47c, 49c different from each other. For example, the thickness of the low-stage valve material 47c is made thinner than the thickness of the high-stage valve material 49c. By reducing the thickness of the low-stage valve material 47c, the spring rigidity of the low-stage valve material 47c is easily reduced, and the valve opening differential pressure is changed. By ensuring the thickness of the high-stage valve member 49c, which exerts a large differential pressure when the valve is closed, the risk of valve cracking is reduced, and the multi-stage rotary compressor 2 has high reliability.
 また、低段吐出孔47aの直径をφD1、高段吐出孔49aの直径をφD2、低段弁材47cの最大リフト量をL1、高段弁材49cの最大リフト量をL2とすると、下記関係式(5),(6)が成り立つ。
 φD1>φD2・・・(5)
 L1≦L2・・・(6)
Further, assuming that the diameter of the low-stage discharge hole 47a is φD1, the diameter of the high-stage discharge hole 49a is φD2, the maximum lift amount of the low-stage valve material 47c is L1, and the maximum lift amount of the high-stage valve material 49c is L2, the following relationship is established. Equations (5) and (6) hold.
φD1> φD2 ... (5)
L1 ≤ L2 ... (6)
 弁材のリフト量を規制するためのリテーナが設けられるような場合、低段側吐出弁装置47においては、吐出流体の流路損失低減のために最大リフト量を大きくすると、以下の課題がある。すなわち、中間圧空間39cを確保するために仕切板39の厚みを軸方向に拡大しなければならず、軸間距離の増大により回転軸31の撓みが増加する等、信頼性に影響することが考えられる。 When a retainer for regulating the lift amount of the valve material is provided, in the low-stage side discharge valve device 47, if the maximum lift amount is increased in order to reduce the flow path loss of the discharge fluid, there are the following problems. .. That is, in order to secure the intermediate pressure space 39c, the thickness of the partition plate 39 must be increased in the axial direction, and the deflection of the rotating shaft 31 increases due to the increase in the distance between the shafts, which may affect the reliability. Conceivable.
 実施形態では、最大リフト量を大きくすることなく、低段吐出孔47aの径のみを大きくすることにより、以下の効果がある。すなわち、仕切板の厚みを大きくすることなく、低段側吐出流体の流路損失を抑制できるので、高性能で信頼性の高い多段回転式圧縮機2を提供することができる。 In the embodiment, the following effects are obtained by increasing only the diameter of the low-stage discharge hole 47a without increasing the maximum lift amount. That is, since the flow path loss of the low-stage discharge fluid can be suppressed without increasing the thickness of the partition plate, it is possible to provide a high-performance and highly reliable multi-stage rotary compressor 2.
 また、低段吐出孔47aの中心軸線c1と回転軸31の中心軸線Cとの距離をS1、高段吐出孔49aの中心軸線c2と回転軸31の中心軸線Cとの距離をS2とすると、下記関係式(7)が成り立つ。
 S1>S2・・・(7)
Further, assuming that the distance between the central axis c1 of the low-stage discharge hole 47a and the central axis C of the rotating shaft 31 is S1, and the distance between the central axis c2 of the high-stage discharge hole 49a and the central axis C of the rotating shaft 31 is S2. The following relational expression (7) holds.
S1> S2 ... (7)
 また、実施形態では、回転軸31の回転中心軸線Cに対する径方向で、仕切板39に形成される低段吐出孔47aの中心軸線c1は、第二軸受42に設けられる高段吐出孔49aの中心軸線c2より外周側にある構成とした。
 低段吐出孔47aの中心を高段吐出孔49aの中心より外周側に位置させることにより、低段側の吐出をより損失なく行うことができる。
Further, in the embodiment, the central axis c1 of the low-stage discharge hole 47a formed in the partition plate 39 in the radial direction with respect to the rotation center axis C of the rotation shaft 31 is the high-stage discharge hole 49a provided in the second bearing 42. The configuration is such that it is on the outer peripheral side of the central axis c2.
By locating the center of the low-stage discharge hole 47a on the outer peripheral side of the center of the high-stage discharge hole 49a, discharge on the low-stage side can be performed without loss.
 すなわち、環状の仕切板39において、外周側に拡大した中間圧空間39cの中心(中心軸線C)に近付けるように低段吐出孔47aを配置可能となるので、低段側の吐出の損失が抑えられる。このため、多段回転式圧縮機2の更なる高効率化を図ることができる。 That is, in the annular partition plate 39, the low-stage discharge hole 47a can be arranged so as to be close to the center (center axis C) of the intermediate pressure space 39c expanded to the outer peripheral side, so that the discharge loss on the low-stage side can be suppressed. Be done. Therefore, the efficiency of the multi-stage rotary compressor 2 can be further improved.
 図5を参照し、各シリンダ室37c,38c内に臨む各吐出孔47a,49aの内、低段吐出孔47aにのみ、開口部をシリンダ室37cに連通する吐出切欠部47a1が設けられている。
 低段吐出孔47aは、高段吐出孔49aに比べて冷媒流量が大きく、加えて孔径が大きく、さらに孔位置もより外周側にある。このため、低段側シリンダ37aの内周部に吐出切欠部47a1を設けることにより、低段吐出孔47aが低段側シリンダ37aの内周部に塞がれることを防ぎ、低段側の吐出をより損失なく行うことができる。
With reference to FIG. 5, of the discharge holes 47a and 49a facing the cylinder chambers 37c and 38c, only the lower discharge hole 47a is provided with a discharge notch 47a1 for communicating the opening with the cylinder chamber 37c. ..
The low-stage discharge hole 47a has a larger flow rate of refrigerant than the higher-stage discharge hole 49a, a larger hole diameter, and a hole position on the outer peripheral side. Therefore, by providing the discharge notch 47a1 in the inner peripheral portion of the lower stage cylinder 37a, it is possible to prevent the low stage discharge hole 47a from being blocked by the inner peripheral portion of the lower stage cylinder 37a, and to discharge the lower stage side. Can be done without loss.
 その一方、流量が少ない高段側においては、吐出切欠部47a1による吐出流路損失の低減より、吐出切欠部47a1が無効容積となることによる損失の方が上回ることがある。そのため、実施形態では、高段側には吐出切欠部47a1を設けず、無効容積による損失増大を防ぎつつ、低段側では吐出流路損失を低減し、更なる高効率化を図っている。 On the other hand, on the higher stage side where the flow rate is low, the loss due to the discharge cutout portion 47a1 becoming an invalid volume may be greater than the reduction in the discharge flow path loss due to the discharge cutout portion 47a1. Therefore, in the embodiment, the discharge notch 47a1 is not provided on the high stage side to prevent an increase in loss due to the invalid volume, while reducing the discharge flow path loss on the low stage side to further improve efficiency.
 また、実施形態では、第一軸受41および第二軸受42に支持される回転軸31の軸部の半径をRj、低段圧縮機構部37における偏心部31bの半径及び偏心量をそれぞれR1及びE1、高段圧縮機構部38における偏心部31dの半径及び偏心量をそれぞれR2及びE2とすると、少なくとも下記関係式(1)~(4)がすべて成り立つ構成とした。
 E1>E2・・・(1)
 R1<Rj+E1・・・(2)
 R2≧Rj+E2・・・(3)
 R1≧R2・・・(4)
Further, in the embodiment, the radius of the shaft portion of the rotating shaft 31 supported by the first bearing 41 and the second bearing 42 is Rj, and the radius and the eccentric amount of the eccentric portion 31b in the low-stage compression mechanism portion 37 are R1 and E1, respectively. Assuming that the radius and the amount of eccentricity of the eccentric portion 31d in the high-stage compression mechanism portion 38 are R2 and E2, respectively, at least the following relational expressions (1) to (4) are satisfied.
E1> E2 ... (1)
R1 <Rj + E1 ... (2)
R2 ≧ Rj + E2 ... (3)
R1 ≧ R2 ... (4)
 この構成では、低段側偏心部31bに装着するローラ45を高段側から組み付け可能とした上で、回転軸31の軸径を確保する等により、多段回転式圧縮機2の性能向上を図ることができる。
 すなわち、低段側の圧縮室17の容積を高段側の圧縮室17の容積より大きくする場合、関係式(1)のE1>E2とすることにより、シリンダ寸法の大きな変更を伴わずに容易に低段側および高段側の各圧縮室17の容積差を得ることができる。
In this configuration, the roller 45 mounted on the low-stage eccentric portion 31b can be assembled from the high-stage side, and the shaft diameter of the rotating shaft 31 is secured to improve the performance of the multi-stage rotary compressor 2. be able to.
That is, when the volume of the compression chamber 17 on the lower stage side is made larger than the volume of the compression chamber 17 on the high stage side, it is easy by setting E1> E2 in the relational expression (1) without making a large change in the cylinder size. It is possible to obtain a volume difference between the compression chambers 17 on the lower stage side and the compression chamber 17 on the higher stage side.
 また、低段圧縮機構部37においては、圧力が低いため軸負荷も小さく、低段側偏心部31bの半径R1は大きくする必要はない。むしろ、低段圧縮機構部37においては、ローラ45および偏心部31b間の摺動摩擦の低減とローラ端面のシール面積の確保とを図るため、半径R1は小さいことが望まれる。このため、関係式(2)のR1<Rj+E1を満たすことが望ましい。 Further, in the low-stage compression mechanism portion 37, since the pressure is low, the shaft load is also small, and it is not necessary to increase the radius R1 of the low-stage side eccentric portion 31b. Rather, in the low-stage compression mechanism portion 37, it is desired that the radius R1 is small in order to reduce the sliding friction between the roller 45 and the eccentric portion 31b and secure the sealing area of the roller end face. Therefore, it is desirable to satisfy R1 <Rj + E1 in the relational expression (2).
 しかし、単に関係式(2)を満たす場合、低段側偏心部31bにローラ45を組み付けるためには、回転軸31における第一軸受41および第二軸受42の各々に支持される軸部の一方の軸径を小さくするとともに、低段側および高段側の両偏心部31b,31d間の軸部の軸径も小さくする必要がある。この場合、回転軸31がたわみやすくなり、信頼性や性能の低下を招くこととなる。 However, when the relational expression (2) is simply satisfied, in order to assemble the roller 45 to the lower eccentric portion 31b, one of the shaft portions supported by each of the first bearing 41 and the second bearing 42 in the rotating shaft 31. It is necessary to reduce the shaft diameter of the shaft portion between the eccentric portions 31b and 31d on the lower stage side and the upper stage side as well as the shaft diameter of the shaft portion. In this case, the rotating shaft 31 tends to bend, resulting in deterioration of reliability and performance.
 実施形態の構成では、関係式(1)のE1>E2とし、かつ関係式(3)のR2≧Rj+E2および関係式(4)のR1≧R2を満たすことにより、第一軸受41および第二軸受42の各々に支持される軸部の一方の軸径を小さくしたり、両偏心部31b,31d間の軸部の軸径を小さくすることなく、関係式(2)のR1<Rj+E1を満たすことが可能となる。このため、回転軸31のたわみを抑制しつつ、低段側の摺動損失の低減を図り、かつローラ端面における気密性の向上を図ることができる。したがって、高性能で信頼性の高い多段回転式圧縮機2を得ることができる。 In the configuration of the embodiment, the first bearing 41 and the second bearing are satisfied by setting E1> E2 in the relational expression (1) and satisfying R2 ≧ Rj + E2 in the relational expression (3) and R1 ≧ R2 in the relational expression (4). Satisfy R1 <Rj + E1 of the relational expression (2) without reducing the diameter of one of the shafts supported by each of the 42s or the shaft diameter of the shaft between the eccentric portions 31b and 31d. Is possible. Therefore, it is possible to reduce the sliding loss on the lower stage side and improve the airtightness at the end face of the roller while suppressing the deflection of the rotating shaft 31. Therefore, a high-performance and highly reliable multi-stage rotary compressor 2 can be obtained.
 また、実施形態では、高段圧縮機構部38から吐出される作動流体は、前記潤滑油貯留部34bと接する第1の部品(底部側マフラ部材44)が内壁面を形成する第1のマフラ室44aに流入後、前記低段圧縮機構部37の吸込室16と接する第二軸受42のフランジ部42bが内壁面を形成する第2のマフラ室43aを経由して、ケース内部に吐出される構成とした。 Further, in the embodiment, the working fluid discharged from the high-stage compression mechanism portion 38 has a first muffler chamber in which the first component (bottom side muffler member 44) in contact with the lubricating oil storage portion 34b forms an inner wall surface. After flowing into 44a, the flange portion 42b of the second bearing 42 in contact with the suction chamber 16 of the low-stage compression mechanism portion 37 is discharged into the case via the second muffler chamber 43a forming the inner wall surface. And said.
 この構成では、高温となる高段圧縮機構部38から吐出される作動流体は、まず第1のマフラ室44aにて内壁面を通じて潤滑油Jに放熱され冷却される。その後、作動流体は、第2のマフラ室43aにて内壁面を通じて最も低温である低段圧縮機構部37の吸込室16に放熱されて更に冷却される。その後、作動流体は、第2のマフラ室43aからケース内部に吐出される。従って、電動モータ32の過熱による効率低下や磁石の減磁、さらにはインシュレータの溶解等のリスクを軽減することができる。また、作動流体が先に潤滑油Jに放熱することで、低段圧縮機構部37の吸込室16に放熱される熱量が低減され、吸込過熱による効率および信頼性の悪化も抑制することができる。従って、高効率で信頼性の高い多段回転式圧縮機2を提供することができる。 In this configuration, the working fluid discharged from the high-stage compression mechanism unit 38, which becomes hot, is first radiated to the lubricating oil J through the inner wall surface in the first muffler chamber 44a and cooled. After that, the working fluid is radiated to the suction chamber 16 of the low-stage compression mechanism 37, which is the lowest temperature, through the inner wall surface in the second muffler chamber 43a, and is further cooled. After that, the working fluid is discharged from the second muffler chamber 43a into the case. Therefore, it is possible to reduce the risk of efficiency decrease due to overheating of the electric motor 32, demagnetization of the magnet, and dissolution of the insulator. Further, since the working fluid first dissipates heat to the lubricating oil J, the amount of heat radiated to the suction chamber 16 of the low-stage compression mechanism 37 is reduced, and deterioration of efficiency and reliability due to suction overheating can be suppressed. .. Therefore, it is possible to provide the multi-stage rotary compressor 2 with high efficiency and high reliability.
 また、実施形態の冷凍サイクル装置1は、上記した多段回転式圧縮機2と、多段回転式圧縮機2の吐出部15に接続される放熱器3と、放熱器3の下流側に接続される膨張装置4と、膨張装置4の下流側と多段回転式圧縮機2の導入部12aとの間に接続される蒸発器5と、を備えている。
 この構成では、冷凍サイクル装置1が上述した多段回転式圧縮機2を備えることで、以下の効果を奏する。すなわち、長期に渡って動作信頼性および圧縮性能の向上を図ることができる冷凍サイクル装置1を提供することができる。
Further, the refrigeration cycle device 1 of the embodiment is connected to the multi-stage rotary compressor 2 described above, the radiator 3 connected to the discharge portion 15 of the multi-stage rotary compressor 2, and the downstream side of the radiator 3. It includes an expansion device 4 and an evaporator 5 connected between the downstream side of the expansion device 4 and the introduction portion 12a of the multi-stage rotary compressor 2.
In this configuration, the refrigeration cycle device 1 is provided with the above-mentioned multi-stage rotary compressor 2 to achieve the following effects. That is, it is possible to provide the refrigeration cycle apparatus 1 capable of improving the operation reliability and the compression performance over a long period of time.
 以上説明した少なくともひとつの実施形態によれば、多段回転式圧縮機2が、低段圧縮機構部37および高段圧縮機構部38間を仕切る仕切板39に、低段圧縮機構部37にて圧縮された中間圧の作動流体が吐出される中間圧空間39cを形成し、仕切板39には、低段吐出孔47aおよび低段側吐出弁装置47を設け、高段圧縮機構部38側の第二軸受42には、高段吐出孔49aおよび高段側吐出弁装置49を設け、仕切板39における低段弁座47bを形成する部位の厚みT1を、第二軸受42における高段弁座49bを形成する部位の厚みT2よりも小さくすることにより、仕切板39内に形成される中間圧空間39cの容量を拡大して中間圧の作動流体の脈動を抑えることが可能な多段回転式圧縮機2および冷凍サイクル装置1を提供することができる。 According to at least one embodiment described above, the multi-stage rotary compressor 2 compresses the partition plate 39 that partitions the low-stage compression mechanism unit 37 and the high-stage compression mechanism unit 38 by the low-stage compression mechanism unit 37. An intermediate pressure space 39c is formed in which the generated intermediate pressure working fluid is discharged, and the partition plate 39 is provided with a low-stage discharge hole 47a and a low-stage side discharge valve device 47, and is provided on the high-stage compression mechanism portion 38 side. The second bearing 42 is provided with a high-stage discharge hole 49a and a high-stage side discharge valve device 49, and the thickness T1 of the portion of the partition plate 39 forming the low-stage valve seat 47b is set to the high-stage valve seat 49b of the second bearing 42. A multi-stage rotary compressor that can expand the capacity of the intermediate pressure space 39c formed in the partition plate 39 and suppress the pulsation of the intermediate pressure working fluid by making it smaller than the thickness T2 of the portion forming the bearing. 2 and the refrigeration cycle device 1 can be provided.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
1…冷凍サイクル装置、2…多段回転式圧縮機、3…放熱器、4…膨張装置、5…吸熱器、16…吸込室、17…圧縮室、31…回転軸、C…中心軸線(回転中心)、Rj…主軸半径(半径)、R1,R2…偏心部半径(半径)、E1,E2…偏心量、32…電動モータ(駆動要素)、33…圧縮要素、34…密閉ケース(ケース)、34b…潤滑油貯留部、37…低段圧縮機構部、37a…低段側シリンダ(シリンダ)、37c…低段側シリンダ室(シリンダ室)、38…高段圧縮機構部、38a…高段側シリンダ(シリンダ)、38c…高段側シリンダ室(シリンダ室)、39…仕切板、39a…低段側仕切板部材(仕切板部材)、39b…高段側仕切板部材(仕切板部材)、39c…中間圧空間、41…第一軸受(第1の部品)、42…第二軸受、44…底部側マフラ部材(第1のマフラ部材)、44a…底部側マフラ室(第1のマフラ室)、45…低段側ローラ(ローラ)、45a…ローラ端面シール部、46…高段側ローラ(ローラ)、46a…ローラ端面シール部、47…低段側吐出弁装置、47a…低段吐出孔、c1…中心軸線(中心)、47b…低段弁座、47c…低段弁材、47d…底段弁座を形成する部位、T1…厚み、49…高段側吐出弁装置、49a…高段吐出孔、c2…中心軸線(中心)、49b…高段弁座、49c…高段弁材、49d…高段弁座を形成する部位、T2…厚み、潤滑油J 1 ... Refrigeration cycle device, 2 ... Multi-stage rotary compressor, 3 ... Radiator, 4 ... Expansion device, 5 ... Heat absorber, 16 ... Suction chamber, 17 ... Compression chamber, 31 ... Rotation axis, C ... Central axis (rotation) Center), Rj ... Main axis radius (radius), R1, R2 ... Eccentric part radius (radius), E1, E2 ... Eccentricity, 32 ... Electric motor (drive element), 33 ... Compression element, 34 ... Sealed case (case) , 34b ... Lubricating oil storage unit, 37 ... Low stage compression mechanism unit, 37a ... Low stage side cylinder (cylinder), 37c ... Low stage side cylinder chamber (cylinder chamber), 38 ... High stage compression mechanism unit, 38a ... High stage Side cylinder (cylinder), 38c ... High-stage side cylinder chamber (cylinder chamber), 39 ... Partition plate, 39a ... Low-stage side partition plate member (partition plate member), 39b ... High-stage side partition plate member (partition plate member) , 39c ... Intermediate pressure space, 41 ... First bearing (first component), 42 ... Second bearing, 44 ... Bottom side muffler member (first muffler member), 44a ... Bottom side muffler chamber (first muffler) Room), 45 ... Lower stage side roller (roller), 45a ... Roller end face sealing part, 46 ... Higher stage side roller (roller), 46a ... Roller end face sealing part, 47 ... Lower stage side discharge valve device, 47a ... Lower stage Discharge hole, c1 ... Central axis (center), 47b ... Low-stage valve seat, 47c ... Low-stage valve material, 47d ... Site forming bottom-stage valve seat, T1 ... Thickness, 49 ... High-stage side discharge valve device, 49a ... High-stage discharge hole, c2 ... Central axis (center), 49b ... High-stage valve seat, 49c ... High-stage valve material, 49d ... Part forming the high-stage valve seat, T2 ... Thickness, Lubricating oil J

Claims (10)

  1.  ケースの内部に、回転軸と、前記回転軸の軸方向一端側に設けられる駆動要素と、前記回転軸の軸方向他端側に設けられる圧縮要素と、が収容され、
     前記圧縮要素は、低圧の作動流体を中間圧に圧縮する低段圧縮機構部と、前記低段圧縮機構部で圧縮した中間圧の作動流体を高圧に圧縮する高段圧縮機構部と、前記低段圧縮機構部および高段圧縮機構部の間を仕切る仕切板と、を備え、
     前記低段圧縮機構部および高段圧縮機構部の前記仕切板と反対側には、それぞれ前記回転軸を軸支する第一軸受および第二軸受を備え、
     前記仕切板は、前記回転軸の軸方向で複数の仕切板部材を連結して形成され、
     前記複数の仕切板部材の間には、前記低段圧縮機構部にて圧縮された中間圧の作動流体が吐出される中間圧空間が設けられ、
     前記複数の仕切板部材の内、前記低段圧縮機構部側に位置する低段側仕切板部材には、前記低段圧縮機構部にて圧縮された中間圧の作動流体を前記中間圧空間に吐出させる低段吐出孔が形成されるとともに、前記低段吐出孔を開閉する低段側吐出弁装置が設けられ、
     前記高段圧縮機構部側に位置する第二軸受には、前記高段圧縮機構部にて圧縮された作動流体を吐出させる高段吐出孔が形成されるとともに、前記高段吐出孔を開閉する高段側吐出弁装置が設けられる多段圧縮機において、
     前記低段側吐出弁装置は、前記低段吐出孔の周囲に形成される低段弁座と、前記低段弁座に付勢力を伴い当接する低段弁材と、を備え、
     前記高段側吐出弁装置は、前記高段吐出孔の周囲に形成される高段弁座と、前記高段弁座に付勢力を伴い当接する高段弁材と、を備え、
     前記低段側仕切板部材における前記低段弁座を形成する部位の厚みは、前記第二軸受における前記高段弁座を形成する部位の厚みよりも小さい、多段回転式圧縮機。
    Inside the case, a rotating shaft, a driving element provided on one end side of the rotating shaft in the axial direction, and a compression element provided on the other end side of the rotating shaft in the axial direction are housed.
    The compression element includes a low-stage compression mechanism unit that compresses a low-pressure working fluid to an intermediate pressure, a high-stage compression mechanism unit that compresses an intermediate-pressure working fluid compressed by the low-stage compression mechanism unit to a high pressure, and the low-stage compression mechanism unit. A partition plate that partitions between the stage compression mechanism and the high-stage compression mechanism is provided.
    A first bearing and a second bearing that pivotally support the rotating shaft are provided on the opposite sides of the low-stage compression mechanism portion and the high-stage compression mechanism portion from the partition plate, respectively.
    The partition plate is formed by connecting a plurality of partition plate members in the axial direction of the rotation axis.
    An intermediate pressure space is provided between the plurality of partition plate members to discharge an intermediate pressure working fluid compressed by the low-stage compression mechanism portion.
    Among the plurality of partition plate members, the low-stage side partition plate member located on the low-stage compression mechanism portion is provided with an intermediate pressure working fluid compressed by the low-stage compression mechanism portion into the intermediate pressure space. A low-stage discharge hole for discharging is formed, and a low-stage discharge valve device for opening and closing the low-stage discharge hole is provided.
    The second bearing located on the high-stage compression mechanism side is formed with a high-stage discharge hole for discharging the working fluid compressed by the high-stage compression mechanism, and opens and closes the high-stage discharge hole. In a multi-stage compressor provided with a high-stage discharge valve device,
    The low-stage valve device includes a low-stage valve seat formed around the low-stage discharge hole and a low-stage valve material that comes into contact with the low-stage valve seat with urging force.
    The high-stage valve device includes a high-stage valve seat formed around the high-stage discharge hole and a high-stage valve material that comes into contact with the high-stage valve seat with urging force.
    A multi-stage rotary compressor in which the thickness of the portion of the low-stage partition plate member that forms the low-stage valve seat is smaller than the thickness of the portion of the second bearing that forms the high-stage valve seat.
  2.  前記回転軸の回転中心に対する径方向で、前記低段側仕切板部材に形成される前記低段吐出孔の中心は、前記第二軸受に設けられる前記高段吐出孔の中心より外周側にある、請求項1に記載の多段回転式圧縮機。 The center of the low-stage discharge hole formed in the low-stage partition plate member in the radial direction with respect to the rotation center of the rotation shaft is on the outer peripheral side of the center of the high-stage discharge hole provided in the second bearing. , The multi-stage rotary compressor according to claim 1.
  3.  前記低段側吐出弁装置の低段弁材は、前記高段側吐出弁装置の高段弁材より小さい圧力差で開弁する、請求項1又は2に記載の多段回転式圧縮機。 The multi-stage rotary compressor according to claim 1 or 2, wherein the low-stage valve material of the low-stage discharge valve device opens with a pressure difference smaller than that of the high-stage valve material of the high-stage discharge valve device.
  4. 前記低段圧縮機構部および高段圧縮機構部の各々は、シリンダ室を形成するシリンダと、前記回転軸に有する偏心部に装着され、前記シリンダ室内において偏心回転可能なローラと、を備え、
     前記第一軸受および第二軸受に支持される前記回転軸の軸部の半径をRj、前記低段圧縮機構部における前記偏心部の半径及び偏心量をそれぞれR1及びE1、前記高段圧縮機構部における前記偏心部の半径及び偏心量をそれぞれR2及びE2とすると、下記関係式(1)~(4)がすべて成り立つ、請求項1に記載の多段回転式圧縮機。
     E1>E2・・・(1)
     R1<Rj+E1・・・(2)
     R2≧Rj+E2・・・(3)
     R1≧R2・・・(4)
    Each of the low-stage compression mechanism unit and the high-stage compression mechanism unit includes a cylinder forming a cylinder chamber and a roller mounted on an eccentric portion having the rotating shaft and capable of eccentric rotation in the cylinder chamber.
    The radius of the shaft portion of the rotating shaft supported by the first bearing and the second bearing is Rj, the radius and eccentricity of the eccentric portion in the low-stage compression mechanism portion are R1 and E1, respectively, and the high-stage compression mechanism portion. The multi-stage rotary compressor according to claim 1, wherein if the radius and the amount of eccentricity of the eccentric portion in the above are R2 and E2, respectively, the following relational expressions (1) to (4) are all satisfied.
    E1> E2 ... (1)
    R1 <Rj + E1 ... (2)
    R2 ≧ Rj + E2 ... (3)
    R1 ≧ R2 ... (4)
  5.  前記ケースの内部に前記高段圧縮機構部で圧縮された作動流体が吐出されるとともに、前記ケースの底部に潤滑油が貯留され、
     前記ケース内の潤滑油は、前記低段圧縮機構部においてローラ端面シール部を経由して前記シリンダ室内に供給され、
     前記低段圧縮機構部における前記シリンダと前記ローラとの軸方向の寸法差は、前記高段圧縮機構部における前記シリンダと前記ローラとの軸方向の寸法差より小さい、請求項4に記載の多段回転式圧縮機。
    The working fluid compressed by the high-stage compression mechanism is discharged into the case, and the lubricating oil is stored in the bottom of the case.
    The lubricating oil in the case is supplied into the cylinder chamber via the roller end face sealing portion in the low-stage compression mechanism portion.
    The multi-stage according to claim 4, wherein the axial dimensional difference between the cylinder and the roller in the low-stage compression mechanism unit is smaller than the axial dimensional difference between the cylinder and the roller in the high-stage compression mechanism unit. Rotary compressor.
  6.  前記低段圧縮機構部は、前記圧縮要素において前記駆動要素側に配置される、請求項4に記載の多段回転式圧縮機。 The multi-stage rotary compressor according to claim 4, wherein the low-stage compression mechanism unit is arranged on the drive element side of the compression element.
  7.  前記ケースの底部には、前記圧縮要素を潤滑する潤滑油が貯留される潤滑油貯留部を備え、
     前記高段圧縮機構部から吐出される作動流体は、前記潤滑油貯留部と接する第1のマフラ室に流入後、前記低段圧縮機構部の吸込室と接する第2のマフラ室を経由して、ケース内部に吐出される、請求項1に記載の多段回転式圧縮機。
    The bottom of the case is provided with a lubricating oil storage portion for storing the lubricating oil that lubricates the compression element.
    The working fluid discharged from the high-stage compression mechanism unit flows into the first muffler chamber in contact with the lubricating oil storage unit, and then passes through the second muffler chamber in contact with the suction chamber of the low-stage compression mechanism unit. The multi-stage rotary compressor according to claim 1, which is discharged into the case.
  8.  前記第1のマフラ室を形成する第1のマフラ部材の厚みは、前記第2のマフラ室を形成する第2のマフラ部材の厚みより小さい、請求項7に記載の多段回転式圧縮機。 The multi-stage rotary compressor according to claim 7, wherein the thickness of the first muffler member forming the first muffler chamber is smaller than the thickness of the second muffler member forming the second muffler chamber.
  9.  前記第1のマフラ室を形成する第1のマフラ部材の熱伝導率は、前記第2のマフラ室を形成する第2のマフラ部材の熱伝導率より大きい、請求項7に記載の多段回転式圧縮機。 The multi-stage rotary type according to claim 7, wherein the thermal conductivity of the first muffler member forming the first muffler chamber is larger than the thermal conductivity of the second muffler member forming the second muffler chamber. Compressor.
  10.  請求項1から9の何れか一項に記載の多段回転式圧縮機と、前記多段回転式圧縮機の吐出部に接続される放熱器と、前記放熱器の下流側に接続される膨張装置と、前記膨張装置の下流側と前記多段回転式圧縮機の導入部との間に接続される吸熱器と、を備えている、冷凍サイクル装置。 The multi-stage rotary compressor according to any one of claims 1 to 9, a radiator connected to the discharge portion of the multi-stage rotary compressor, and an expansion device connected to the downstream side of the radiator. A refrigeration cycle apparatus comprising a heat absorber connected between the downstream side of the inflator and the introduction portion of the multi-stage rotary compressor.
PCT/JP2019/032593 2019-08-21 2019-08-21 Multi-stage rotary compressor and refrigeration cycle device WO2021033283A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021541402A JP7195446B2 (en) 2019-08-21 2019-08-21 Multi-stage rotary compressor and refrigeration cycle device
CN201980098795.5A CN114174684B (en) 2019-08-21 2019-08-21 Multistage rotary compressor and refrigeration cycle device
CN202310397445.7A CN116378957A (en) 2019-08-21 2019-08-21 Multistage rotary compressor and refrigeration cycle device
PCT/JP2019/032593 WO2021033283A1 (en) 2019-08-21 2019-08-21 Multi-stage rotary compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032593 WO2021033283A1 (en) 2019-08-21 2019-08-21 Multi-stage rotary compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021033283A1 true WO2021033283A1 (en) 2021-02-25

Family

ID=74660669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032593 WO2021033283A1 (en) 2019-08-21 2019-08-21 Multi-stage rotary compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP7195446B2 (en)
CN (2) CN116378957A (en)
WO (1) WO2021033283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181362A1 (en) * 2022-03-25 2023-09-28 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162126A (en) * 2008-01-08 2009-07-23 Daikin Ind Ltd Compressor
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
CN104279163A (en) * 2014-07-04 2015-01-14 广东美芝制冷设备有限公司 Rotary compressor
JP2016023596A (en) * 2014-07-22 2016-02-08 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device
JP6176782B2 (en) * 2013-08-23 2017-08-09 東芝キヤリア株式会社 Multistage compressor and refrigeration cycle apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022247B2 (en) * 2011-09-29 2016-11-09 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle apparatus
CN202883380U (en) * 2012-09-21 2013-04-17 合肥凌达压缩机有限公司 Double-cylinder compressor with middle partition plate for air suction
JP6102172B2 (en) * 2012-10-17 2017-03-29 ダイキン工業株式会社 Rotary compressor
CN109154297B (en) * 2016-05-20 2020-03-10 东芝开利株式会社 Hermetic compressor and refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162126A (en) * 2008-01-08 2009-07-23 Daikin Ind Ltd Compressor
JP2010223140A (en) * 2009-03-24 2010-10-07 Fujitsu General Ltd Two-stage compression rotary compressor
JP6176782B2 (en) * 2013-08-23 2017-08-09 東芝キヤリア株式会社 Multistage compressor and refrigeration cycle apparatus
CN104279163A (en) * 2014-07-04 2015-01-14 广东美芝制冷设备有限公司 Rotary compressor
JP2016023596A (en) * 2014-07-22 2016-02-08 東芝キヤリア株式会社 Hermetic compressor and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181362A1 (en) * 2022-03-25 2023-09-28 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Also Published As

Publication number Publication date
CN114174684B (en) 2023-05-05
CN116378957A (en) 2023-07-04
CN114174684A (en) 2022-03-11
JP7195446B2 (en) 2022-12-23
JPWO2021033283A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP4875484B2 (en) Multistage compressor
JP4422208B2 (en) Expander integrated compressor
WO2005103496A1 (en) Rotating fluid machine
JPWO2008087795A1 (en) Expander integrated compressor
WO2023084722A1 (en) Compressor and refrigeration cycle device
WO2021033283A1 (en) Multi-stage rotary compressor and refrigeration cycle device
CN108457858B (en) Rotary compressor and refrigeration cycle device
JP2018105243A (en) Hermetic rotary compressor and refrigeration air conditioner
JP4989269B2 (en) Fluid machinery and refrigeration cycle equipment
JP5338314B2 (en) Compressor and refrigeration equipment
WO2020161965A1 (en) Rotary compressor, method for manufacturing rotary compressor, and refrigeration cycle device
JP2017141802A (en) Rotary type compressor, and refrigeration cycle device
JP6735662B2 (en) Rotary compressor and refrigeration cycle device
JP7232914B2 (en) Multi-stage rotary compressor and refrigeration cycle device
JP5861457B2 (en) Rotary compressor
JP5494139B2 (en) Rotary compressor
JP5724706B2 (en) Rotary compressor
US10968911B2 (en) Oscillating piston-type compressor
JP2010090789A (en) Rotary compressor
JP2015001197A (en) Rotary compressor
CN112412789B (en) Compressor and refrigeration cycle device
JP5343501B2 (en) Rotary compressor
JP7186242B2 (en) Rotary compressor and refrigeration cycle equipment
WO2022269752A1 (en) Rotary compressor and refrigeration cycle device
JP2008014227A (en) Gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941821

Country of ref document: EP

Kind code of ref document: A1