WO2021031876A1 - 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆 - Google Patents

一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆 Download PDF

Info

Publication number
WO2021031876A1
WO2021031876A1 PCT/CN2020/107672 CN2020107672W WO2021031876A1 WO 2021031876 A1 WO2021031876 A1 WO 2021031876A1 CN 2020107672 W CN2020107672 W CN 2020107672W WO 2021031876 A1 WO2021031876 A1 WO 2021031876A1
Authority
WO
WIPO (PCT)
Prior art keywords
force value
shock absorber
damping
damping force
stroke position
Prior art date
Application number
PCT/CN2020/107672
Other languages
English (en)
French (fr)
Inventor
陈刚
Original Assignee
陈刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010780692.1A external-priority patent/CN112413030A/zh
Application filed by 陈刚 filed Critical 陈刚
Publication of WO2021031876A1 publication Critical patent/WO2021031876A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/04Suspension or damping

Definitions

  • the invention mainly relates to the design, manufacture and performance evaluation of a vehicle shock absorber.
  • shock absorbers For a long time, engineers and technicians have a consistent view on the damping control method of shock absorbers: when the road is uneven, the smaller the stiffness of the support spring, the lower the damping of the shock absorber, the better the comfort. On the contrary, when the road is uneven, the support The greater the spring stiffness, the greater the damping of the shock absorber and the worse the comfort. Due to the technical awareness of engineering and technical personnel engaged in shock absorbers, the design and manufacture of shock absorbers and the matching with vehicles and support springs have not been effectively solved.
  • shock absorber damping control technology has not been able to solve Fundamentally solve the essential problems involved in shock absorber design, so that it is complicated such as obtaining road condition information based on 3D camera to control shock absorber damping, controlling shock absorber damping according to vehicle vibration, and manually setting different damping or certain vehicle condition information
  • the automatic adjustment of the damping of the shock absorber fails to effectively solve the damping control problem of the shock absorber, and does not achieve the optimal effect of damping control. Therefore, there is no direct quantitative criterion for the performance of shock absorbers.
  • the current standard for measuring shock absorber performance is based on the tensile damping force value of the shock absorber at multiple specified speeds and the compression damping force value at multiple specified speeds as the criteria for judging whether the shock absorber is qualified or not. , That is, the commonly used damper indicator method to determine whether the damper is qualified or not.
  • the qualified shock absorber with this standard cannot guarantee the comfort after matching with the support spring. There is no direct and regular correlation between the existing shock absorber measurement method and the measured value and the comfort of the shock absorber after installation. Therefore, there is no better reference for the match between the shock absorber and the support spring stiffness and body weight.
  • shock absorber Based on the theoretical basis and practical solutions, the matching of shock absorber and support spring stiffness and body weight completely depends on the experience or subjective consciousness of the vehicle designer or debugger to determine the rationality or comfort of the matching.
  • the shock absorber has roughly the same damping force value at different stroke positions, which is the characteristic of most commonly used shock absorbers at this stage. Even for a few shock absorbers with different stroke positions corresponding to different damping force values in use today, there is no clear standard for the corresponding relationship between the stroke position and the damping force value.
  • the comfort of the vehicle during driving is directly related to the resultant force of the support springs and shock absorbers on the support force of the vehicle body.
  • Vehicle support springs are usually composed of gas springs, liquid-gas springs, leaf springs or coil springs.
  • the stiffness value or force value and its stroke position change according to a certain rule.
  • the best way is to minimize the change in the resultant force value of the spring and shock absorber supporting the vehicle, and as close as possible to or equal to the supporting spring as possible And the weight of the part where the shock absorber supports the vehicle.
  • This article solves the problem of the damping control and performance evaluation method of the shock absorber based on the function of the vehicle support spring and the working principle of the shock absorber.
  • This method can intuitively determine the performance of the shock absorber based on the test data.
  • the comfort level of the shock absorber can be determined intuitively based on the data, and the support spring is matched with the vehicle weight. It makes it easier to debug the vehicle suspension, select and match the shock absorber and support spring. It also provides the best damping control scheme for the controllable damping shock absorber. Solve the problem of how to achieve the optimal damping of the shock absorber that has long plagued the shock absorber industry.
  • the difference F1 of the set force value or the actual gravity value of the object F3 minus the set support spring or equivalent support spring (1) support force value F2 at each stroke position is used as the judgment value.
  • the difference F1 is the same as the set A set of functions corresponding to the stroke position s of the fixed support spring or equivalent support spring (the length of the spring after tension or compression).
  • the absolute value of the difference F1 is used as the reference force value of the tensile damping force at the current stroke position of the shock absorber.
  • the minimum damping force value that can be achieved by the tensile damping force value is used as the reference force value of the tensile damping force value at the current stroke position of the shock absorber.
  • the difference When the difference is positive, use the difference as the reference force value of the compression damping force value at the current stroke position of the shock absorber.
  • the difference When the difference is not a positive value, the minimum damping force value that can be achieved by the compression damping force value is used as the reference force value of the compression damping force value at the current stroke position of the shock absorber.
  • the reference force value of tensile damping force and the reference force value of compression damping force of the shock absorber are each a set of force value data, which is a function corresponding to the stroke position of the support spring and the support spring force value; it is related to the stiffness of the spring and the support
  • the weight of the object and the compression stroke of the spring are directly related, and there is a one-to-one correspondence. Any stroke position of the shock absorber has a corresponding tensile damping reference force value and compression damping reference force value.
  • the corresponding tensile damping reference force value is the absolute value of Fl' at the S3 position
  • the compression damping reference force value is the minimum force value that the compression damping can reach
  • the corresponding spring and shock absorber The stroke position is S3.
  • the reference force value of the shock absorber at the stroke position is used as the basis for controlling or setting the tensile damping force value or the compression damping force value of the shock absorber at the stroke position, so that the tensile damping force value of the shock absorber is as close as possible Or equal to the reference force value of the tensile damping force value, or make the compression damping force value of the shock absorber as close as possible to or equal to the reference force value of the compression damping force value, the performance of the shock absorber is the best, so as to control the shock absorber Tensile damping force value or compression damping force value.
  • a force measuring device is not needed to measure the real-time support force value of the supporting spring, and a force measuring device can also be used if necessary To measure the real-time support force value of the support spring to achieve the purpose of accurately controlling the damping force value of the shock absorber in some cases.
  • the equivalent support spring refers to a support spring whose force effect is the same as the force effect of the equivalently replaced support spring.
  • the force direction and position of the equivalent spring and the shock absorber are roughly the same. That is, the specific or actual support spring's force effect on the supported object is equivalently converted into a support spring installed coaxially with the shock absorber (the force direction and the force position are roughly the same) (such as: converted into a coil spring) ), this support spring installed coaxially with the shock absorber is the equivalent support spring of the original support spring.
  • the force effect of the equivalent support spring on the support is the same as the force effect of the original support spring on the support, but the spring size parameters, installation method, and installation position are not necessarily the same as the equivalent support spring.
  • a strut-type shock absorber that is, a shock absorber in which the shock absorber and the support spring are integrally installed, the original spring of the shock absorber can be used as the equivalent support spring of the shock absorber.
  • the above-mentioned equivalent support springs include commonly used coil springs, gas springs, and leaf springs.
  • the tensile damping force value at each corresponding position at a tensile speed of 0.52 meters per second with the tensile damping reference value force value or compare the compression damping force value and the compression damping reference value at a compression speed of 0.52 meters per second
  • the force value is compared, and the performance of the shock absorber is determined or the damping of the shock absorber is controlled according to the comparison result.
  • the tensile or compression speed value of the shock absorber can be selected according to the actual vibration reduction effect, such as 0.2 meters per second, 2 meters per second, etc.
  • the damping force value of the current position of the shock absorber can be controlled according to the reference force value of the current position of the shock absorber, so that the shock absorber can stretch the damping force in real time Value or compression damping force value is close to or equal to the reference force value.
  • schemes 3 and 4 electronically controlled damping shock absorbers Such as schemes 3 and 4 electronically controlled damping shock absorbers.
  • the shock absorber s0 ⁇ s5 are the specific stroke position points.
  • F1 of the shock absorber is the tensile damping force value
  • F1' is the curve corresponding to the tensile damping force value of the shock absorber and the stroke position
  • F1” is the curve corresponding to the compression damping force value of the shock absorber and the stroke position
  • F2 is the support force value and stroke position of the support spring
  • F3 is the line corresponding to the body gravity value and the stroke position.
  • the optimal force value (reference force value) corresponding to each stroke position of the shock absorber in the figure is as follows:
  • the compression damping force value Fa corresponding to s0 should be close to F3 (Fe) minus Fb,
  • the compression damping force value Fj corresponding to s1 should be close to F3 (Fe) minus Fc,
  • the compression damping force value Fk corresponding to s2 should be close to F3 (Fe) minus Fd,
  • the tensile damping force value Fl’ corresponding to S3 should be close to F3(Fe) minus Fg’,
  • the tensile damping force value Fm’ corresponding to S4 should be close to F3 (Fe) minus Fh’,
  • the tensile damping force value Fn' corresponding to S5 should be close to F3 (Fe) minus Fi'.
  • the damping setting of the shock absorber in the schemes described in schemes 5 to 8 in this article is to evaluate or control the damping force value of the shock absorber at a specific speed.
  • the measurement is standard, that is, the tensile damping force value or the compression damping force value at a specific speed is compared with the reference force value of the shock absorber and controlled and judged. The closer the value is to the reference force value, the shock absorber The better the performance.
  • use the tensile damping reference value to set or control the tensile damping force value of each corresponding position at a tensile speed of 0.52 meters per second, or set or control the tensile damping force value at a compression speed of 0.52 meters per second using the compression reference value. Compress the damping force value so that the tensile damping force value or the compression damping force value at a speed of 0.52 meters per second is close to or equal to the reference force value.
  • the damper that uses the reference damping force value as the basis for controlling the tensile damping force value or the compression damping force value, and its damping force value changes with the stroke position.
  • Solution 2 Use the shock absorber damping control and performance evaluation method described in Solution 1 to control and set the damping force value of a shock absorber whose damping force value changes with the stroke position, including: hydraulic cylinder, piston, piston Rod, damping valve; its characteristic is: the magnitude of the tensile damping force value or the compression damping force value of the shock absorber is changed with the stroke position of the shock absorber, which is based on the damping control and performance evaluation of the shock absorber described in Scheme 1.
  • the method to control the damping force value is based on the reference force value as the basis for controlling or setting the tensile damping force value or the compression damping force value of the shock absorber at each stroke position, so that the shock absorber is at each stroke position
  • the damping force value is equal to or close to the reference force value.
  • the shock absorber as described in Scheme 2 includes a measuring device (vehicle height measuring device) for measuring the stroke position of the shock absorber, a controller, and an electronically controlled damping valve. Its characteristics are: The stretch damping valve or compression damping valve of the shock absorber is an electronically controlled damping valve.
  • the stroke position of the shock absorber is provided to the controller by the shock absorber stroke position measuring device (body height measuring device), and the controller is based on the body height ( The stroke position of the shock absorber) and the reference force value control the damping force value of the electronically controlled tension damping valve or the electronically controlled compression damping valve.
  • the shock absorber stroke position measuring device refers to a device that can directly or indirectly measure the shock absorber stroke position, such as the vehicle height measuring device can indirectly measure the shock absorber stroke position.
  • Electronically controlled damping valve refers to a valve assembly used to control the tensile damping force or compression damping force of an electronically controlled shock absorber.
  • the damping force of the valve assembly is controlled by current or voltage, such as solenoid valves, magnetorheological damping ⁇
  • Electronically controlled damping shock absorber refers to a shock absorber in which one of the damping force value when the shock absorber is stretched or the damping force value is controlled by voltage or current, or both are controlled by voltage or current . That is, the extension valve of the electronic control shock absorber is an electronic control damping valve or the compression valve is an electronic control damping valve, or both the extension valve and the compression valve are electronic control damping valves.
  • the tensile damping force value or compression damping force value of the shock absorber should also change with the stroke change of the shock absorber . That is, according to the height of the vehicle, the stroke of the shock absorber or the stroke of the spring can control the tensile or compressive damping force value of the shock absorber according to its corresponding reference force value.
  • the ordinate represents the current value of the electronically controlled damping valve and the stroke position of the shock absorber
  • the abscissa represents the force value.
  • the shock absorber s0 ⁇ s5 is the specific stroke position point
  • se is the supporting force equal to the set force value.
  • the intersection point of the object's gravity when the force value F1 of the shock absorber is the tensile damping force value, it is marked as F1', and when the force value F1 of the shock absorber is the compression damping force value, it is marked as F1".
  • F1' is vibration reduction
  • F1” is the curve corresponding to the compression damping force value of the shock absorber and the stroke position
  • F2 is the line corresponding to the support force value of the support spring and the stroke position
  • F3 is the body gravity value
  • the Aa' curve represents the corresponding relationship between the tensile damping force value of the shock absorber and the control current of the tensile damping valve when the electronically controlled damping valve is an extension valve
  • the Aa" curve represents the The corresponding relationship between the compression damping force value of the shock absorber and the control current of the compression damping valve when the damping valve is a compression valve.
  • the optimal force value corresponding to each stroke position of the shock absorber in the figure and the optimal control current value of the electronically controlled damping valve are as follows:
  • the compression damping force value Fa corresponding to s0 should be close to F3 (Fe) minus Fb.
  • the control current value should be set close to A-Fa when the compression valve is an electronically controlled damping valve;
  • the compression damping force value Fj corresponding to s1 should be close to F3 (Fe) minus Fc.
  • the control current value should be set close to A-Fj when the compression valve is an electronically controlled damping valve;
  • the compression damping force value Fk corresponding to s2 should be close to F3 (Fe) minus Fd.
  • the control current value should be set close to A-Fk when the compression valve is an electronically controlled damping valve;
  • the compression stroke position of the shock absorber is s3, s4, s5
  • the force value of the shock absorber during compression cannot be a negative value, so it can only be set to the minimum
  • the compression damping force value Fn the control current of the compression valve as an electronic control damping valve can be set to 0.
  • the stretch stroke position of the shock absorber is s0, s1, s2, since the support force value of the support spring is less than the weight of the car body, the force value of the shock absorber when stretched cannot be positive, so only the stretch damping force value can be set Set as the Fk' with the smallest absolute value, the control current of the stretch valve as an electronically controlled damping valve can be set to 0.
  • the tensile damping force value Fl' corresponding to S3 should be close to F3 (Fe) minus Fg'.
  • the control current value should be set close to A-Fl' when the compression valve is an electronically controlled damping valve ;
  • the tensile damping force value Fm' corresponding to S4 should be close to F3 (Fe) minus Fh'.
  • the control current value should be set close to A-Fm' when the compression valve is an electronically controlled damping valve ;
  • the tensile damping force value Fn' corresponding to S5 should be close to F3 (Fe) minus Fi'.
  • the control current value should be set close to A-Fn' when the compression valve is an electronically controlled damping valve .
  • Scheme 4 ( Figure 4), the shock absorber as described in Scheme 3.
  • the shock absorber is equipped with a load cell, which measures the tensile or compressive damping force value of the shock absorber, and the controller according to the shock absorber
  • the reference force value corresponding to the current stroke position is compared with the real-time tensile damping force value or the real-time compression damping force value of the current position, and the tensile damping force value or the compression damping force value of the current stroke of the shock absorber is controlled according to the comparison result. It is close to or equal to the reference force value.
  • This solution uses real-time measurement of the tensile damping force value or compression damping force value of the shock absorber, and compares the tensile damping force value or compression damping force value with the reference force value of the current position, and controls the shock absorber in real time according to the comparison result Tensile damping or compression damping.
  • the control method is as follows:
  • the current shock absorber stroke position and the value measured by the load cell on the shock absorber is the tensile force
  • the tensile damping reference force value at the current position of the shock absorber is used Control the tensile damping valve of the shock absorber so that the tensile damping force value of the current stroke position of the shock absorber is close to or equal to the tensile damping reference force value of the current position of the shock absorber.
  • Scheme 5 The shock absorber whose damping force value follows the stroke position as described in Scheme 2 (as shown in Figure 5, Figure 6, and Figure 7): Its characteristic is: between the tension cavity and the compression cavity of the shock absorber There is a damping hole whose size follows the change of the shock absorber stroke position. The size of the damping hole is based on the reference force value as the basis for controlling the tensile damping force value or the compressive damping force value of the shock absorber. The damping force value of each stroke position at the set extension speed or compression speed is equal to or close to the reference force value.
  • the shock absorber whose damping force value follows the change of stroke position as described in Scheme 5 is characterized in that one of the damping valves is mainly composed of a damping rod and a central orifice, and the piston rod is a hollow tube , The hollow part communicates with the stretching cavity, the central damping hole is located on the piston rod near the end of the piston, and the damping rod is a rod with different cross-sectional areas; the damping rod can be connected to the bottom of the hydraulic cylinder or the bottom valve of the shock absorber, It can also be connected to the bottom valve or floating piston of the single-tube shock absorber; the damping rod passes through the central damping hole, and the central damping hole forms a stretch damping valve hole with different diameters corresponding to the stroke position of the shock absorber.
  • the diameter of the orifice is based on the tensile damping reference force value as the reference for controlling or setting the tensile damping force value of the shock absorber, so that the damping force of each stroke position of the shock absorber under the set tensile speed The value is equal to or close to the reference force value.
  • the shock absorber whose damping force value follows the change of stroke position as described in Scheme 5 is characterized in that one of the damping valves is mainly composed of a damping rod and a central orifice, and the piston rod is a hollow tube The hollow part communicates with the stretching cavity.
  • the central damping hole is located on the piston rod near the end of the piston.
  • the damping rod is a rod with different cross-sectional areas; the stretching cavity and the liquid storage cavity are connected through a one-way valve, and the damping rod can be connected to
  • the bottom of the hydraulic cylinder can be connected to the bottom valve of the shock absorber, or it can be connected to the bottom valve or floating piston of the single-tube shock absorber; the damping rod passes through the central orifice and forms the same position as the shock absorber stroke position. Corresponding compression orifices of different diameters.
  • the diameter of the orifice is based on the reference force value of the compression damping force value as the basis for controlling the reduction or setting the compression damping force value of the vibrator, so that the shock absorber is compressed at each stroke position under the set compression speed
  • the damping force value is equal to or close to the reference force value.
  • the shock absorber When the shock absorber is compressed, the liquid flow flows into the liquid storage chamber through the orifice, the stretching chamber and the one-way valve. When the shock absorber is stretched, the liquid flow passes through the orifice, and the check valve on the piston and the check valve on the bottom valve flow into the compression chamber.
  • Scheme 8 ( Figure 7), a shock absorber whose damping force value changes with stroke position as described in Scheme 5, including a variable cross-section hydraulic cylinder, piston, and one-way valve; its feature is: the inside of the variable cross-section cylinder The size of the cross-sectional area changes along the center line of the cylinder.
  • the inner section of the cylinder and the piston constitute a damping hole with different diameters between the stretching chamber and the compression chamber. The diameter of the damping hole is used for tensile damping.
  • the reference force value of the force value is used as the basis for controlling or setting the tensile damping force value of the shock absorber, so that the tensile damping force value of each stroke position of the shock absorber at the set tensile speed is equal to or close to the reference Force value.
  • the liquid flows through the one-way valve and the damping gap and enters the stretching cavity.
  • the one-way valve is closed, the liquid flows through the damping gap and flows out of the stretching cavity to form a tensile damping force.
  • the vibration amplitude of the vehicle using the shock absorber of this scheme is smaller during the driving process, which makes the vehicle travel more stable and comfortable.
  • Figure 2 Schematic diagram of the corresponding relationship between the force value, stroke, and electric current of the electronically controlled damping valve related to the shock absorber
  • FIG. Schematic diagram of the damping control scheme of the electronically controlled damping valve of the electronically controlled shock absorber
  • FIG. 4 Schematic diagram of the electronic control principle of an electronically controlled shock absorber with a load cell
  • Figure 5 A schematic diagram of a shock absorber in which the diameter of the tension damping gap changes with the change of the stroke position
  • Figure 6 A schematic diagram of a shock absorber in which the diameter of the compression damping gap changes with the change of the stroke position
  • FIG. 7 A schematic diagram of a shock absorber for a variable cross-section hydraulic cylinder
  • FIG. 8 Schematic diagram of the damping gap formed by the variable cross-section hydraulic cylinder barrel and the piston of the shock absorber A-A in Figure 7
  • FIG. 9 Schematic diagram of the damping gap formed by the variable cross-section hydraulic cylinder barrel and the piston of the shock absorber B-B in Figure 7
  • FIG. 10 Schematic diagram of the damping gap formed by the variable cross-section hydraulic cylinder barrel and the piston of the shock absorber C-C in Figure 7
  • Optimal scheme 1 A method for judging the performance of shock absorbers (as shown in Figure 1, Figure 2)
  • the shock absorber s0 ⁇ s5 is the specific stroke position point
  • F1' is the curve corresponding to the tensile damping force value of the shock absorber and the stroke position
  • F1" is the compression damping force value of the shock absorber corresponding to the stroke position Curve
  • F2 is the curve corresponding to the support spring's support force value and the stroke position
  • F3 is the curve corresponding to the body gravity value and the stroke position.
  • the optimal force value corresponding to each stroke position of the shock absorber in the figure is as follows:
  • the compression damping force value Fa corresponding to s0 should be close to F3 (Fe) minus Fb,
  • the compression damping force value Fj corresponding to s1 should be close to F3 (Fe) minus Fc,
  • the compression damping force value Fk corresponding to s2 should be close to F3 (Fe) minus Fd,
  • the tensile damping force value can only be set as the closest to zero Fk' .
  • the tensile damping force value Fl’ corresponding to S3 should be close to F3 (Fe) minus Fg’,
  • the tensile damping force value Fm’ corresponding to S4 should be close to F3 (Fe) minus Fh’,
  • the tensile damping force value Fn' corresponding to S5 should be close to F3 (Fe) minus Fi'.
  • Preferred plan 2 An electronically controlled damping shock absorber whose damping force value changes with the stroke position (as shown in Figure 1, Figure 2, Figure 3)
  • the electronically controlled shock absorber shown in Figure 3 includes two electronically controlled damping valves (7), of which the one that communicates with the compression chamber and the liquid storage chamber is an electronically controlled compression damping valve, and the other one that communicates with the tension chamber and the compression chamber is an Controlled tensile damping valve, check valve (5), controller (9); electronically controlled damping valve according to the tensile damping force value, compression damping force value and control current value shown in the curves of Aa' and Aa” in Figure 2 The corresponding relationship curve provides the control current:
  • the ordinate represents the current value of the electronically controlled damping valve and the stroke position of the shock absorber
  • the abscissa represents the force value.
  • the shock absorber s0 ⁇ s5 are the specific stroke position points
  • F1' is the tensile damping of the shock absorber.
  • the curve corresponding to the force value and the stroke position F1" is the curve corresponding to the compression damping force value of the shock absorber and the stroke position
  • F2 is the corresponding line between the support force value of the support spring and the stroke position
  • F3 is the body gravity value and the stroke position corresponding Line segment
  • Aa' when the electronically controlled damping valve is a tension valve the corresponding curve of the relationship between the tension damping force value of the shock absorber and the control current of the tension damping valve
  • Aa” when the electronically controlled damping valve is a compression valve Correspondence curve between the compression damping force value of the compressor and the control current of the compression damping valve
  • the reference force value corresponding to each stroke position of the shock absorber in the figure and the optimal control current value of the electronically controlled damping valve are as follows:
  • the compression damping force value Fa corresponding to s0 should be close to F3 (Fe) minus Fb.
  • the control current value should be set close to A-Fa (A0) when the compression valve is an electronically controlled damping valve;
  • the compression damping force value Fj corresponding to s1 should be close to F3 (Fe) minus Fc.
  • the control current value should be set close to A-Fj when the compression valve is an electronically controlled damping valve;
  • the compression damping force value Fk corresponding to s2 should be close to F3 (Fe) minus Fd.
  • the control current value should be set close to A-Fk when the compression valve is an electronically controlled damping valve;
  • the compression stroke position of the shock absorber is s3, s4, s5
  • the force value of the shock absorber during compression cannot be a negative value, so it can only be set to the minimum
  • the compression damping force value Fn the control current of the compression valve as an electronic control damping valve can be set to 0.
  • the extension valve is an electronically controlled damping valve whose control current can be set to 0.
  • the tensile damping force value Fl' corresponding to S3 should be close to F3 (Fe) minus Fg'.
  • the control current value should be set close to A-Fl' when the compression valve is an electronically controlled damping valve ;
  • the tensile damping force value Fm' corresponding to S4 should be close to F3 (Fe) minus Fh'.
  • the control current value should be set close to A-Fm' when the compression valve is an electronically controlled damping valve ;
  • the tensile damping force value Fn' corresponding to S5 should be close to F3 (Fe) minus Fi'.
  • the control current value should be set close to A-Fn' when the compression valve is an electronically controlled damping valve .
  • Preferred solution 3 A shock absorber whose tensile damping force value changes with the stroke position (as shown in Figure 5)
  • the shock absorber shown in Figure 5 includes: a hydraulic cylinder, a piston, a piston rod, a damping rod, and a central orifice.
  • the characteristics of the shock absorber the piston rod is a hollow tube, the hollow part communicates with the stretching chamber, the central damping hole is located on the piston rod near the end of the piston, and the damping rod is a rod with different cross-sectional areas; the damping rod can be connected to the hydraulic
  • the bottom of the cylinder can be connected to the bottom valve of the shock absorber, or it can be connected to the bottom valve or floating piston of the single-tube shock absorber; the damping rod passes through the central orifice and forms the center orifice corresponding to the shock absorber stroke position
  • the tensile orifice of different diameters; the diameter of the orifice is based on the reference force value of tensile damping as the basis for controlling or setting the tensile damping force value of the shock absorber, so that the shock absorber is set The damping force value of
  • the cross-sectional area of each part of the damping rod of the shock absorber is different to adapt to different situations, so that it can achieve the best damping effect relative to a specific vehicle and a specific spring.
  • Preferred solution 4 A shock absorber (as shown in Figure 6)
  • the shock absorber shown in Figure 3 includes: a hydraulic cylinder, a piston, a piston rod, a damping rod, a central orifice, and a compression return line. Its characteristics are: the piston rod is a hollow tube, the hollow part communicates with the compression chamber, the central damping hole is arranged on the piston rod near the end of the piston, and the damping rod is a rod with different cross-sectional areas; the compressed oil return pipe is stretched through a one-way valve The cavity and the reservoir are connected.
  • the damping rod can be connected to the bottom of the hydraulic cylinder, to the bottom valve of the shock absorber, or to the bottom valve or floating piston of the single-tube shock absorber; the damping rod passes through the central orifice,
  • the central orifice forms compression orifices with different diameters corresponding to the shock absorber stroke position;
  • the orifice size is based on the reference force value of the compression damping force as the control or setting of the shock absorber compression damping force The value is based on the compression damping force value of each stroke position of the shock absorber at the set compression speed equal to or close to the reference force value.
  • the shock absorber When the shock absorber is compressed, the liquid flow flows into the liquid storage chamber through the damping hole, the tension chamber and the compressed oil return pipeline. When the shock absorber is stretched, the liquid flow passes through the orifice, and the check valve on the piston and the check valve on the bottom valve flow into the compression chamber.
  • Preferred solution 5 A shock absorber whose tensile damping force value changes with the stroke position (as shown in Figure 7)
  • the shock absorber includes: a hydraulic cylinder outer tube, a variable cross-section hydraulic cylinder tube, a piston, a piston rod, and a one-way valve.
  • the characteristics of the shock absorber the cross-sectional area of the variable section hydraulic cylinder tube changes along the axis of the hydraulic cylinder tube, and the variable section hydraulic cylinder tube and the piston form a damping gap with different diameters along the axis.
  • the diameter size is based on the tensile damping reference force value as the basis for controlling or setting the tensile damping force value of the shock absorber, so that the damping force value of each stroke position of the shock absorber at the set tensile speed is equal to or Close to the reference force value.
  • the shock absorber When the shock absorber is compressed, the liquid flows through the one-way valve and the damping gap into the stretching chamber. When the shock absorber is stretched, the one-way valve is closed, and the fluid flows out through the damping gap formed by the piston and the variable cross-section cylinder, so that the shock absorber has different tensile damping force values at different stroke positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种减振器(2)性能的评定方法,该方法以支撑弹簧(1)所支撑的车身部分的重力减去设定支撑弹簧(1)或等效支撑弹簧(1)当前行程位置的支撑力值的差值作为计算减振器(2)当前行程位置的拉伸阻尼力值或压缩阻尼力值的基准力值的依据;并将减振器(2)在该行程位置的基准力值作为控制或设定减振器(2)阻尼力值的依据以及作为判定减振器(2)性能的依据。该方法可以直观判定减振器(2),支撑弹簧(1),与车重匹配后的舒适程度,使车辆悬架的调试,减振器(2)和支撑弹簧(1)的选择和匹配变得更容易,同时也公开了减振器(2)的最佳阻尼控制方案,解决长期困扰减振器(2)行业的关于怎样达到减振器(2)阻尼最优的问题。

Description

一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆 技术领域
本发明主要涉及车用减振器的设计、制造和性能评定。
背景技术
长期以来,工程技术人员对减振器阻尼控制方法的一致观点是:路面凹凸不平时,支撑弹簧刚度越小,减振器的阻尼偏小,舒适性越好,反之,路面凹凸不平时,支撑弹簧刚度越大,减振器的阻尼越大,舒适性越差。由于从事减振器的工程技术人员的此类技术意识,使得减振器设计制造以及与车辆和支撑弹簧匹配问题没有得到有效的解决,即便是目前最先进减振器阻尼控制技术也未能从根本上解决减振器设计所涉及的本质问题,以致于复杂的诸如依据3D摄像获取路况信息控制减振器阻尼,依据车辆振动情况控制减振器阻尼,采用手动设置不同阻尼或者某些车况信息自动调节减振器阻尼的情况,都没能有效的解决减振器的阻尼控制问题,没有达到阻尼控制最优的效果。因此,也没有关于减振器性能优劣的最直接的量化判定标准。当然也没有减振器与车辆支撑弹簧匹配的相关量化标准来确定减振器的阻尼力值对车辆舒适性的影响程度。
目前通用的测量减振器性能的标准是以该减振器在多个规定速度下的拉伸阻尼力值,以及多个规定速度下的压缩阻尼力值作为判定减振器合格与否的标准,也就是常用的减振器示功法来判定减振器合格与否。但是以此为标准的合格减振器并不能保证与支撑弹簧匹配装车后的舒适性。现有减振器的测量方法以及测量值与减振器装机后的舒适性没有直接的有规律可循的相关性,因此减振器与支撑弹簧刚度和车身重量的匹配没有更好的可以参考的理论依据和实用方案来进行选择,以致于减振器与支撑弹簧刚度,车身重量的匹配完全依赖于车辆设计或调试人员的经验或主观意识来判定其匹配的合理性或舒适性。减振器在不同的行程位置有大致相同的阻尼力值是现阶段大多常用减振器的特点。即便是现今在用的少数不同的行程位置对应不同的阻尼力值的减振器,其行程位置与阻尼力值的对应关系也没有明确的标准。
   发明内容
本发明要解决的技术问题
       车辆行驶过程中的舒适性与支撑弹簧和减振器对车身的支撑力的合力直接相关,其合力值变化速率越快,变化幅度越大,则车辆抖动或颠跛越厉害,舒适性越差。反之,合力值变化幅度越接近于零,频率越低,则舒适性越好,当路面不平整时,弹簧对车身的支撑力值会随着起伏的路面发生变化,减振器则起到调节弹簧支撑力值的作用,使支撑弹簧与减振器形成的对车辆的支撑力合力值更趋于平缓,稳定,以提高车辆行驶过程中的舒适性。车用支撑弹簧通常由气弹簧、液气弹簧、钢板弹簧或螺旋弹簧构成。当气弹簧、液气弹簧、钢板弹簧、螺旋弹簧的初始值确定以后,其刚度值或力值与其行程位置是按一定规律变化的。为了使车辆行驶过程中的舒适性更佳,最好的方法是使对车辆起支撑作用的弹簧和减振器对车辆的支撑合力值的变化幅度最小,且尽可能的接近于或等于支撑弹簧和减振器对车辆起支撑作用的部分的重力。
本文根据车辆支撑弹簧的作用和减振器的工作原理解决了减振器阻尼控制和性能评定方法的问题,该方法能根据测试数据直观判定减振器的性能。并且根据减振器的性能与支撑弹簧进行匹配的方法以及量化标准,可以直观的依据数据判定减振器,支撑弹簧与车重匹配后的舒适程度。使车辆悬架的调试,减振器和支撑弹簧的选择和匹配变得更容易。同时也为可控阻尼减振器的提供了最佳阻尼控制方案。解决了长期困扰减振器行业的关于怎样达到减振器阻尼最优的问题。
本发明的技术方案
方案1、如图1,图2所示的减振器阻尼控制以及性能评定方法:
以设定力值或物体的实际重力值F3减去设定支撑弹簧或等效支撑弹簧(1)在各行程位置的支撑力值F2的差值F1作为判定值,该差值F1是与设定支撑弹簧或等效支撑弹簧行程位置s(弹簧拉伸或压缩后的长度)一一对应的一组函数。
差值为负时,以该差值F1的绝对值作为减振器当前行程位置的拉伸阻尼力值的基准力值。差值不为负值时,以拉伸阻尼力值所能达到的最小阻尼力值作为减振器当前行程位置的拉伸阻尼力值的基准力值。如图2中F1’所对应的绝对值。即当前行程位置,差值为负时,拉伸阻尼力值的基准力值等于差值的绝对值;差值为正或为零时,以拉伸阻尼力值所能达到的最小力值作为当前位置拉伸阻尼力值的基准力值。
差值为正时,以该差值作为减振器当前行程位置的压缩阻尼力值的基准力值。差值不为正值时,以压缩阻尼力值所能达到的最小阻尼力值作为减振器当前行程位置的压缩阻尼力值的基准力值。如图2中F1”所对应的值。即当前行程位置,差值为正时,压缩阻尼力值的基准力值等于差值;差值为负或为零时,以压缩阻尼力值所能达到的最小力值作为当前位置压缩阻尼力值的基准力值。
减振器的拉伸阻尼力基准力值和压缩阻尼基准力值各是一组力值数据,是与支撑弹簧行程位置和支撑弹簧力值有着对应关系的函数;是与弹簧的刚度、所支撑物体的重量、弹簧的压缩行程直接相关,且一一对应的。减振器的任一行程位置都有对应的拉伸阻尼基准力值和压缩阻尼基准力值。例如:图2中s3位,对应的拉伸阻尼基准力值为Fl’在S3位的绝对值,压缩阻尼基准力值为压缩阻尼所能达到的最小力值,对应的弹簧和减振器的行程位置为S3。
将减振器在该行程位置的基准力值作为控制或设定减振器在该行程位置的拉伸阻尼力值或压缩阻尼力值的依据,使减振器的拉伸阻尼力值尽量接近或等于拉伸阻尼力值的基准力值,或使减振器的压缩阻尼力值尽量接近或等于压缩阻尼力值的基准力值,则减振器的性能最佳,以此控制减振器拉伸阻尼力值或压缩阻尼力值。
将减振器各行程位置的基准力值与减振器在该行程位置的拉伸阻尼或压缩阻尼力值进行比较,减振器的拉伸阻尼力值越接近于拉伸阻尼力值的基准力值或减振器的压缩阻尼力值越接于减振器的压缩阻尼力值的基准力值,则减振器的性能越好,以此作为判定减振器性能的依据。
使用该方案所述的基准力值作为控制减振器拉伸阻尼力值或压缩阻尼力值时,可以不需要测力装置来测量支撑弹簧的实时支撑力值,必要时也可以采用测力装置来测量支撑弹簧的实时支撑力值以达到某些情况下,精确控制减振器阻尼力值的目的。
等效支撑弹簧指作用力效果与被等效替代的支撑弹簧作用力效果相同的支撑弹簧,等效弹簧与减振器的受力方向和受力位置大致相同。也就是将具体的或实际的支撑弹簧对所支撑物的作用力效果等效换算成为与减振器同轴安装(受力方向和受力位置大致相同)的支撑弹簧(如:换算成螺旋弹簧),这个与减振器同轴安装的支撑弹簧,即为原支撑弹簧的等效支撑弹簧。等效支撑弹簧对支撑物的作用力效果与原支撑弹簧对支撑物的作用力效果相同,但弹簧尺寸参数,安装方式,安装位置与等效支撑弹簧不一定相同。
支柱式减振器,即减振器与支撑弹簧一体安装的减振器,该减振器的原弹簧可以作为该减振器的等效支撑弹簧。
减振器与支撑弹簧分立安装的,将支撑弹簧对支撑物的作用力效果等效换算成与减振器同轴安装的支撑弹簧,这个与减振器同轴安装的支撑弹簧即为原支撑弹簧的等效支撑弹簧。
上述的被等效的支撑弹簧包括常用的螺旋弹簧,气弹簧,钢板弹簧等。
减振器的压缩阻尼力值或拉伸阻尼力值的标定,分为以下两种情况:
1、对于不能实时测量压缩阻尼力值或拉伸阻尼力值的减振器,由于减振器当前行程位置的压缩阻尼力值或拉伸阻尼力值与减振器的压缩或拉伸速度相关,通常以一特定速度下减振器当前位置的拉伸阻尼力值或压缩阻尼力作为标定值,与基准力值进行比较,以比较结果作为评定减振器性能优劣判定的依据或减振器阻尼控制的依据。如以0.52米每秒的拉伸速度下的各对应位置的拉伸阻尼力值与拉伸阻尼基准值力值进行比较或以0.52米每秒的压缩速度下的压缩阻尼力值与压缩阻尼基准力值进行比较,根据比较结果判定减振器的性能或控制减振器的阻尼。减振器测试时的拉伸或压缩速度值可以根据实际减振效果选取不同的速度值,如0.2米每秒,2米每秒等。
2、 对于可以实时控制减振器阻尼的电控阻尼减振器,则可以依据减振器当前位置的基准力值控制减振器当前位置的阻尼力值,使减振器实时拉伸阻尼力值或压缩阻尼力值接近于或等于基准力值。如方案3、4的电控阻尼减振器。
以基准力值控制减振器的拉伸阻尼力值或压缩阻尼力值,使之接近于基准力值, 即:
a. 当前减振器行程位置,支撑弹簧的支撑力值大于该支撑弹簧所支撑物的重力时,控制或设定减振器在当前行程位置的拉伸阻尼力值跟随基准力值增大而增加,或跟随基准力值减小而减小,使之接近于基准力值,同时控制或设定减振器在当前行程位置的压缩阻尼力值使之接近于零,则减振器的性能越好。
b. 当前行程位置支撑弹簧的支撑力值小于该支撑弹簧所支撑物的重力时,控制或设定减振器的当前行程位置的压缩阻尼力值跟随基准力值增大而增加,或跟随基准力值减小而减小,使之越接近于基准力值,同时控制或设定减振器在当前行程位置的拉伸阻尼力值使之接近于零,则减振器的性能越好。
 减振器阻尼力值(基准力值)与行程位置的关系示意(如图2所示):
图中以减振器s0~s5为特定的行程位置点,减振器的力值F1为拉伸阻尼力值时标记为F1’,减振器的力值F1为压缩阻尼力值时标记为F1”。F1’为减振器的拉伸阻尼力值与行程位置对应的曲线,F1”为减振器的压缩阻尼力值与行程位置对应曲线,F2为支撑弹簧的支撑力值与行程位置对应线,F3为车身重力值与行程位置对应的线。
图中减振器各行程位置对应的最佳力值(基准力值)如下:
减振器趋于或正在压缩时,
s0对应的压缩阻尼力值Fa应接近于F3(Fe)减去Fb,
 s1对应的压缩阻尼力值Fj应接近于F3(Fe)减去Fc,
s2对应的压缩阻尼力值Fk应接近于F3(Fe)减去Fd,
图中,减振器的压缩行程位置为s3,s4,s5时,由于支撑弹簧的支撑力值已大于车身重力,减振器压缩时的力值不能为负值,故只能将压缩阻尼力值设定为绝对值最小的Fn。
减振器趋于或正在拉伸时,
图中,减振器的拉伸行程位置为s0,s1,s2时,由于支撑弹簧的支撑力值已小于车身重力,减振器拉伸时的力值不能为正,故只能将拉伸阻尼力值设定为绝对值最小的Fk’,
S3对应的拉伸阻尼力值Fl’应接近于F3(Fe)减去Fg’,
 S4对应的拉伸阻尼力值Fm’应接近于F3(Fe)减去Fh’,
S5对应的拉伸阻尼力值Fn’应接近于F3(Fe)减去Fi’。
本文中方案5~8所述的方案中的减振器阻尼的设定都是以特定速度下的减振器拉伸阻尼力值或压缩阻尼力值作为评定或控制减振器阻尼力值的测量标准的,即用特定速度下的拉伸阻尼力值或压缩阻尼力值与减振器的基准力值进行比较并控制和判定,使其值越接近于基准力值,则减振器的性能越好。如以拉伸阻尼基准值设定或控制0.52米每秒的拉伸速度下的各对应位置的拉伸阻尼力值,或以压缩基准力值设定或控制0.52米每秒的压缩速度下的压缩阻尼力值,使其在0.52米每秒的速度下的拉伸阻尼力值或压缩阻尼力值接近于或等于基准力值。
采用基准阻尼力值作为控制拉伸阻尼力值或压缩阻尼力值的依据的减振器,其阻尼力值是跟随行程位置变化的。
方案2、以方案1所述的减振器阻尼控制以及性能评定方法控制和设定其阻尼力值的一种阻尼力值跟随行程位置变化的减振器,包括:液压缸筒,活塞,活塞杆,阻尼阀;其特征是:减振器的拉伸阻尼力值或压缩阻尼力值的大小是跟随减振器行程位置变化的,是以方案1所述的减振器阻尼控制以及性能评定方法来控制其阻尼力值的,是以基准力值作为控制或设定减振器在各行程位置的拉伸阻尼力值或压缩阻尼力值的依据的,使减振器在各行程位置的阻尼力值等于或接近于基准力值。
方案3(图3,图4)、如方案2所述的减振器,包括测量减振器行程位置的测量装置(车身高度测量装置),控制器,电控阻尼阀,其特征是:该减振器的拉伸阻尼阀或压缩阻尼阀为电控阻尼阀,减振器的行程位置由减振器行程位置测量装置(车身高度测量装置)提供给控制器,由控制器根据车身高度(减振器的行程位置)和基准力值控制电控拉伸阻尼阀或电控压缩阻尼阀的阻尼力值。
减振器行程位置测量装置指可以直接或间接测量减振器行程位置的装置,如通过车身高度测量装置可以间接测量减振器的行程位置。
电控阻尼阀指的是用于控制电控减振器拉伸阻尼力值或压缩阻尼力值的阀组件,该阀组件的阻尼力值受电流或电压控制,如电磁阀,磁流变阻尼器等。
电控阻尼减振器指减振器拉伸时的阻尼力值或压缩时的阻尼力值中其中一种阻尼力值受电压或电流控制,或者两者都受电压或电流控制的减振器。即电控减振器的拉伸阀为电控阻尼阀或压缩阀为电控阻尼阀,或者拉伸阀和压缩阀都为电控阻尼阀。
当减振器的阻尼阀为电控阻尼阀时,则可以采用以下两种方案:
1、 (图3)通过先标定在特定拉伸或压缩速度下电控减振器的拉伸阻尼力值和压缩阻尼力值与电流或电压的对应关系,再根据当前位置的基准力值来控制当前电控阻尼阀的电流值或电压值,使减振器当前行程位置的拉伸阻尼力值和压缩阻尼力值跟随基准力值增减。
由于减振器在特定速度下的基准力值与减振器的行程的一一对应关系,故减振器的拉伸阻尼力值或压缩阻尼力值也应跟随减振器的行程变化而变化。即可以根据车身高度,减振器的行程或弹簧的行程按其对应的基准力值控制减振器的拉伸或压缩阻尼力值。
2、在减振器上加装测力传感器,实时测量减振器的拉伸阻尼力值或压缩阻尼力值,并将实时的拉伸阻尼力值或压缩阻尼力值与当前位置的基准力值进行较,并根据比较结果实时控制减振器的拉伸阻尼或压缩阻尼。
 减振器行程位置与电控阻尼阀的电流值的最佳对应关系 (如图2所示):
纵坐标分别表示电控阻尼阀的电流值和减振器的行程位置,横坐标表示力值,图中以减振器s0~s5为特定的行程位置点,se为支撑力等于设定力值或物体的重力时的交点,减振器的力值F1为拉伸阻尼力值时标记为F1’,减振器的力值F1为压缩阻尼力值时标记为F1”。F1’为减振器的拉伸阻尼力值与行程位置对应的曲线,F1”为减振器的压缩阻尼力值与行程位置对应曲线,F2为支撑弹簧的支撑力值与行程位置对应线,F3为车身重力值与行程位置对应的线段,Aa’曲线表示当电控阻尼阀为拉伸阀时,减振器的拉伸阻尼力值与拉伸阻尼阀的控制电流的对应关系,Aa”曲线表示当电控阻尼阀为压缩阀时的减振器的压缩阻尼力值与压缩阻尼阀控制电流的对应关系。
图中减振器各行程位置对应的最佳力值,以及电控阻尼阀的最佳控制电流值如下:
减振器趋于或正在压缩时:
s0对应的压缩阻尼力值Fa应接近于F3(Fe)减去Fb,要达到Fa力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fa;
 s1对应的压缩阻尼力值Fj应接近于F3(Fe)减去Fc,要达到Fj力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fj;
s2对应的压缩阻尼力值Fk应接近于F3(Fe)减去Fd,要达到Fk力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fk;
图中,减振器的压缩行程位置为s3,s4,s5时,由于支撑弹簧的支撑力值已大于车身重力,减振器压缩时的力值不能为负值,故只能设定为最小的压缩阻尼力值Fn,此时压缩阀为电控阻尼阀的控制电流可以设为0。
减振器趋于或正在拉伸时:
减振器的拉伸行程位置为s0,s1,s2时,由于支撑弹簧的支撑力值已小于车身重力,减振器拉伸时的力值不能为正,故只能拉伸阻尼力值设定为绝对值最小的Fk’, 此时拉伸阀为电控阻尼阀的控制电流可以设为0。
S3对应的拉伸阻尼力值Fl’应接近于F3(Fe)减去Fg’,要达到Fl’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fl’;
 S4对应的拉伸阻尼力值Fm’应接近于F3(Fe)减去Fh’,要达到Fm’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fm’;
S5对应的拉伸阻尼力值Fn’应接近于F3(Fe)减去Fi’,要达到Fn’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fn’。
方案4(图4)、如方案3所述的减振器,该减振器上设有测力传感器,测力传感器测量减振器拉伸或压缩阻尼力值,由控制器根据减振器当前行程位置所对应的基准力值与当前位置的实时拉伸阻尼力值或实时压缩阻尼力值进行比较,并根据比较结果控制减振器当前行程的拉伸阻尼力值或压缩阻尼力值使之接近于或等于基准力值。
该方案采用实时测量减振器的拉伸阻尼力值或压缩阻尼力值,并将拉伸阻尼力值或压缩阻尼力值与当前位置的基准力值进行较,根据比较结果实时控制减振器的拉伸阻尼或压缩阻尼。其控制方法如下:
a. 当设置有电控拉伸阻尼阀时,当前减振器行程位置,减振器上的测力传感器测得的值为拉力时,则按减振器当前位置的拉伸阻尼基准力值控制减振器的拉伸阻尼阀,使减振器当前行程位置的拉伸阻尼力值接近或等于减振器当前位置的拉伸阻尼基准力值。
b.当设置有电控压缩阻尼阀时, 当前减振器行程位置,减振器上的测力传感器测得的值为压力时,则按减振器当前位置的压缩阻尼基准力值控制减振器的压缩阻尼阀,使减振器当前行程位置的压缩阻尼力值接近或等于减振器当前位置的压缩阻尼基准力值。
方案5、如方案2所述的阻尼力值跟随行程位置变化的减振器(如图5、图6、图7所示):其特征是:减振器的拉伸腔和压缩腔之间有通径大小跟随减振器行程位置变化的阻尼孔,该阻尼孔的通径大小是以基准力值作为控制减振器拉伸阻尼力值或压缩阻尼力值的依据的,使减振器在设定的拉伸速度或压缩速度下的各行程位置的阻尼力值等于或接近于基准力值。
方案6(图5),如方案5所述的阻尼力值跟随行程位置变化的减振器,其特征是:其中的一个阻尼阀主要由阻尼杆,中心阻尼孔构成,活塞杆为中空管,中空部分与拉伸腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;阻尼杆可以连接在液压缸底部,可以连接在减振器底阀上,也可以连接在单筒减振器的底阀或浮动活塞上;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的拉伸阻尼阀孔。该阻尼孔的通径大小以拉伸阻尼的基准力值作为控制或设定减振器拉伸阻尼力值的基准,使减振器在设定的拉伸速度下的各行程位置的阻尼力值等于或接近于基准力值。
方案7(图6)、如方案5所述的阻尼力值跟随行程位置变化的减振器,其特征是:其中的一个阻尼阀主要由阻尼杆,中心阻尼孔构成,活塞杆为中空管,中空部分与拉伸腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;拉伸腔与储液腔通过单向阀将连通,阻尼杆可以连接在液压缸底部,可以连接在减振器底阀上,也可以连接在单筒减振器的底阀或浮动活塞上;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的压缩阻尼孔。该阻尼孔的通径大小是以压缩阻尼力值的基准力值作为控制减或设定振器压缩阻尼力值的依据的,使减振器在设定的压缩速度下的各行程位置的压缩阻尼力值等于或接近于基准力值。
减振器压缩时,液流是经过阻尼孔,拉伸腔和单向阀流入储液腔的。减振器拉伸时,液流是经过阻尼孔,活塞上的单向阀和底阀上的单向阀流入压缩腔的。
 方案8(图7)、一种如方案5所述的阻尼力值跟随行程位置变化的减振器,包括变截面液压缸筒,活塞,单向阀;其特征是:变截面缸筒的内部截面积的大小是沿缸筒的中心线变化的,缸筒的内截面与活塞构成拉伸腔与压缩腔之间通径大小不等的阻尼孔,该阻尼孔的通径大小以拉伸阻尼力值的基准力值作为控制或设定减振器拉伸阻尼力值的依据的,使减振器在设定的拉伸速度下的各行程位置的拉伸阻尼力值等于或接近于基准力值。
减振器压缩时,液流经单向阀和阻尼间隙进入拉伸腔,拉伸时单向阀关闭,液流经阻尼间隙流出拉伸腔,形成拉伸阻尼力。
方案9. 一种车辆,其特征是:该车辆采用了方案2~8所述的其中一种减振器。
本发明的有益效果
1. 能根据减振器的测试参数,直观的判定减振器性能的优劣;
2. 提供了一种减振器阻尼控制方法或标准,使减振器的阻尼控制变得更加精准,容易;
3. 提供了减振器与支撑弹簧和车辆的匹配的方法,使减振器与支撑弹簧和车辆的匹配变得非常容易,可以大幅提高车辆舒适性;
4. 解决长期以来始终不能使减振器阻尼匹配达到最优的问题;
5. 为减振器的设计和制造提供了更好的方案;
6. 使用该方案的减振器的车辆在行驶过程中的起伏颠簸幅值更小,使车辆行驶更加平稳舒适。
附图说明
图1. 减振器与支撑弹簧的行程对应示意图
图2. 与减振器相关的力值,行程,电控阻尼阀的电流等相互对应关系示意图
图3. 电控减振器的电控阻尼阀的阻尼控制方案示意图
图4.  一种带测力传感器的电控减振器的电控原理示意图
图5. 一种拉伸阻尼间隙通径跟随着行程位置变化而改变的减振器示意图
图6. 一种压缩阻尼间隙通径跟随着行程位置变化而改变的减振器示意图
图7. 一种变截面液压缸筒的减振器示意图
图8. 图7中减振器A-A剖切位变截面液压缸筒与活塞形成的阻尼间隙示意
图9. 图7中减振器B-B剖切位变截面液压缸筒与活塞形成的阻尼间隙示意图
图10. 图7中减振器C-C剖切位变截面液压缸筒与活塞形成的阻尼间隙示意图
图示编号名称:
1-支撑弹簧              2-减振器                3-拉伸腔  
4-储液腔               5-单向阀               6-阻尼阀控制线缆        
7-电控阻尼阀             8-液压管路            9-控制器  
10-活塞                    11-压缩腔             12-底阀    
13-活塞杆                 14-中心阻尼孔 
15-拉伸时液流路径(压缩时部分液流也流经此处)  
16-单向背压阀        17-阻尼杆              18-阻尼杆截面图
 23-压缩时液流路径    27-密封环  28-变截面液压缸 
29-变截面液压缸与活塞形成的阻尼间隙    30-测力传感器。
具体实施方式
优选方案1:一种减振器性能优劣判定方法(如图1,图2所示)
减振器的力值F1为拉伸阻尼力值时标记为F1’,减振器的力值F1为压缩阻尼力值时标记为F1”。
当支撑弹簧的支撑力值为F2时,支撑弹簧和减振器所支撑的车身重力值为F3时,则减振器的拉伸阻尼力值F1’和减振器压缩阻力值F1”越接近于F3减去F2时,减振器的性能越佳。
减振器阻尼力值与行程位置的关系示意(如2图所示):
图中以减振器s0~s5为特定的行程位置点,F1’为减振器的拉伸阻尼力值与行程位置对应的曲线,F1”为减振器的压缩阻尼力值与行程位置对应曲线,F2为支撑弹簧的支撑力值与行程位置对应曲线,F3为车身重力值与行程位置对应的曲线。
图中减振器各行程位置对应的最佳力值如下:
减振器趋于或正在压缩时,
s0对应的压缩阻尼力值Fa应接近于F3(Fe)减去Fb,
s1对应的压缩阻尼力值Fj应接近于F3(Fe)减去Fc,
s2对应的压缩阻尼力值Fk应接近于F3(Fe)减去Fd,
图中,减振器的压缩行程位置为s3,s4,s5时,由于支撑弹簧的支撑力值已大于车身重力,故只能设定为最小的压缩阻尼力值Fn。
减振器趋于或正在拉伸时,
图中,减振器的拉伸行程位置为s0,s1,s2时,由于支撑弹簧的支撑力值已小于车身重力,故只能将拉伸阻尼力值设定为最接近于零的Fk’。
S3对应的拉伸阻尼力值Fl’应接近于F3(Fe)减去Fg’,
S4对应的拉伸阻尼力值Fm’应接近于F3(Fe)减去Fh’,
S5对应的拉伸阻尼力值Fn’应接近于F3(Fe)减去Fi’。
优选方案2:一种阻尼力值跟随行程位置变化的电控阻尼减振器(如图1,图2,图3所示)
图3所示的电控减振器包括:两个电控阻尼阀(7),其中连通压缩腔与储液腔的为电控压缩阻尼阀,另一个连通拉伸腔和压缩腔的为电控拉伸阻尼阀,单向阀(5),控制器(9);电控阻尼阀按图2 的Aa’和Aa”曲线所示的拉伸阻尼力值和压缩阻尼力值与控制电流值的对应关系曲线提供控制电流:
减振器行程位置与电控阻尼阀的电流值的最佳对应关系 (如图2所示):
纵坐标表示电控阻尼阀的电流值和减振器的行程位置,横坐标表示力值,图中以减振器s0~s5为特定的行程位置点,F1’为减振器的拉伸阻尼力值与行程位置对应的曲线,F1”为减振器的压缩阻尼力值与行程位置对应曲线,F2为支撑弹簧的支撑力值与行程位置对应线,F3为车身重力值与行程位置对应的线段,Aa’当电控阻尼阀为拉伸阀时,减振器的拉伸阻尼力值与拉伸阻尼阀的控制电流关系对应曲线,Aa”当电控阻尼阀为压缩阀时的减振器的压缩阻尼力值与压缩阻尼阀控制电流对应关系曲线。
图中减振器各行程位置对应的基准力值,以及电控阻尼阀的最佳控制电流值如下:
减振器趋于或正在压缩时,
s0对应的压缩阻尼力值Fa应接近于F3(Fe)减去Fb,要达到Fa力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fa(A0);
 s1对应的压缩阻尼力值Fj应接近于F3(Fe)减去Fc,要达到Fj力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fj;
s2对应的压缩阻尼力值Fk应接近于F3(Fe)减去Fd,要达到Fk力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fk;
图中,减振器的压缩行程位置为s3,s4,s5时,由于支撑弹簧的支撑力值已大于车身重力,减振器压缩时的力值不能为负值,故只能设定为最小的压缩阻尼力值Fn,此时压缩阀为电控阻尼阀的控制电流可以设为0。
减振器趋于或正在拉伸时,
减振器的拉伸行程位置为s0,s1,s2时,由于支撑弹簧的支撑力值已小于车身重力,故只能将拉伸阻尼力值设定为最接近于零的Fk’, 此时拉伸阀为电控阻尼阀的控制电流可以设为0。
S3对应的拉伸阻尼力值Fl’应接近于F3(Fe)减去Fg’,要达到Fl’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fl’;
 S4对应的拉伸阻尼力值Fm’应接近于F3(Fe)减去Fh’,要达到Fm’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fm’;
S5对应的拉伸阻尼力值Fn’应接近于F3(Fe)减去Fi’,要达到Fn’力值,压缩阀为电控阻尼阀时控制电流值则应设定为接近A-Fn’。
优选方案3:一种拉伸阻尼力值跟随行程位置变化的减振器(如图5所示)
图5所示的减振器包括:液压缸筒,活塞,活塞杆,阻尼杆,中心阻尼孔。该减振器的特征:活塞杆为中空管,中空部分与拉伸腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;阻尼杆可以连接在液压缸底部,可以连接在减振器底阀上,也可以连接在单筒减振器的底阀或浮动活塞上;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的拉伸阻尼孔;该阻尼孔的通径大小是以拉伸阻尼的基准力值作为控制或设定减振器拉伸阻尼力值的依据的,使减振器在设定的拉伸速度下的各行程位置的阻尼力值等于或接近于基准力值。
对于不同的车辆和支撑弹簧,减振器的阻尼杆各部分的截面面积也不相同以适应各种不同的情况,使之相对于特定的车辆和特定的弹簧达到最佳的阻尼效果。
优选方案4:一种减振器(如图6所示)
图3所示的减振器包括:液压缸筒,活塞,活塞杆,阻尼杆,中心阻尼孔,压缩回油管路。其特征是:活塞杆为中空管,中空部分与压缩腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;压缩回油管通过单向阀将拉伸腔和储液腔连通,阻尼杆可以连接在液压缸底部,可以连接在减振器底阀上,也可以连接在单筒减振器的底阀或浮动活塞上;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的压缩阻尼孔;该阻尼孔的通径大小是以压缩阻尼力值的基准力值作为控制或设定减振器压缩阻尼力值的依据的,使减振器在设定的压缩速度下的各行程位置的压缩阻尼力值等于或接近于基准力值。
减振器压缩时,液流是经过阻尼孔,拉伸腔和压缩回油管路流入储液腔的。减振器拉伸时,液流是经过阻尼孔,活塞上的单向阀和底阀上的单向阀流入压缩腔的。
优选方案5:一种拉伸阻尼力值跟随行程位置变化的减振器(如图7所示)
该减振器包括:液压缸外筒,变截面液压缸筒,活塞,活塞杆,单向阀。该减振器的特征:变截面液压缸筒的截面积是沿液压缸筒轴线变化的,变截面液压缸筒与活塞之间形成沿轴线变化的不同通径的阻尼间隙,该阻尼间隙的通径大小是以拉伸阻尼的基准力值作为控制或设定减振器拉伸阻尼力值的依据的,使减振器在设定的拉伸速度下的各行程位置的阻尼力值等于或接近于基准力值。
该减振器压缩时,液流经单向阀和阻尼间隙进入拉伸腔。减振器拉伸时,单向阀关闭,液流经过活塞与变截面缸筒形成的阻尼间隙流出,使减振器在不同的行程位置具有不同的拉伸阻尼力值。

Claims (10)

  1. 减振器阻尼控制以及性能评定方法:
    以设定力值或物体的实际重力值减去设定支撑弹簧或等效支撑弹簧在各行程位置的支撑力值的差值作为判定值,
    差值为负时,以该差值的绝对值作为减振器当前行程位置的拉伸阻尼力值的基准力值,差值不为负值时,以拉伸阻尼力值所能达到的最小阻尼力值作为减振器当前行程位置的拉伸阻尼力值的基准力值;
    差值为正时,以该差值作为减振器当前行程位置的压缩阻尼力值的基准力值,差值不为正值时,以压缩阻尼力值所能达到的最小阻尼力值作为减振器当前行程位置的压缩阻尼力值的基准力值;
    将减振器在各行程位置的基准力值作为控制或设定减振器在该行程位置的拉伸阻尼力值或压缩阻尼力值的依据,使减振器的拉伸阻尼力值尽量接近或等于拉伸阻尼力值的基准力值,或使减振器的压缩阻尼力值尽量接近或等于压缩阻尼力值的基准力值,则减振器的性能最佳,以此控制减振器拉伸阻尼力值或压缩阻尼力值;
    将减振器各行程位置的基准力值与减振器在该行程位置的拉伸阻尼或压缩阻尼力值进行比较,减振器的拉伸阻尼力值越接近于拉伸阻尼力值的基准力值或减振器的压缩力阻尼力值越接于减振器的压缩阻尼力值的基准力值,则减振器的性能越好,以此作为判定减振器性能的依据。
  2. 如权利要求1所述减振器阻尼控制以及性能评定方法,其特征是减振器的阻尼力值是指特定拉伸速度或压缩速度下的拉伸阻尼力值或压缩阻尼力值,
    或者,
    是减振器的阻尼力值由测力传感器实时测得的减振器的拉伸阻尼力值或压缩阻尼力值。
  3. 一种阻尼力值跟随行程位置变化的减振器,包括:液压缸筒,活塞,活塞杆,阻尼阀;其特征是:该减振器采用了权利要求1所述的减振器阻尼控制以及性能评定方法,是以基准力值作为控制或设定减振器在各行程位置的拉伸阻尼力值或压缩阻尼力值的依据的,使减振器的阻尼力值是跟随减振器的行程位置变化的,且减振器在各行程位置的阻尼力值等于或接近于基准力值。
  4. 如权利要求3所述的阻尼力值跟随行程位置变化的减振器,包括:测量减振器行程位置的测量装置、控制器、电控阻尼阀,其特征是该减振器的拉伸阻尼阀或压缩阻尼阀为电控阻尼阀,减振器的行程位置由减振器行程位置测量装置提供给控制器,由控制器根据减振器的行程位置和基准力值控制减振器的阻尼力值。
  5. 如权利要求4所述的阻尼力值跟随行程位置变化的减振器,其特征是:该减振器上设有测力传感器,测力传感器实时测量减振器拉伸或压缩阻尼力值,由控制器根据减振器当前行程位置所对应的基准力值与当前行程位置的实时拉伸阻尼力值或实时压缩阻尼力值进行比较,并根据比较结果控制当前行程位置拉伸阻尼力值或压缩阻尼力值使之接近于或等于基准力值。
  6. 如权利要求3所述的阻尼力值跟随行程位置变化的减振器,其特征是:减振器的拉伸腔和压缩腔之间有通径大小跟随减振器行程位置变化的阻尼孔,该阻尼孔的通径大小是以基准力值作为控制或设定减振器拉伸阻尼力值或压缩阻尼力值的依据的,使减振器在设定的拉伸速度或压缩速度下的各行程位置的阻尼力值等于或接近于基准力值。
  7. 如权利要求6所述的阻尼力值跟随行程位置变化的减振器,其特征是:其中的一个阻尼阀主要由阻尼杆,中心阻尼孔构成,活塞杆为中空管,中空部分与拉伸腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;阻尼杆可以连接在液压缸底部,可以连接在减振器底阀上,也可以连接在单筒减振器的底阀或浮动活塞上;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的拉伸阻尼阀孔;该阻尼孔的通径大小是以拉伸阻尼的基准力值作为控制或设定减振器拉伸阻尼力值的依据的,使减振器在设定的拉伸速度下的各行程位置的阻尼力值等于或接近于基准力值。
  8. 如权利要求6所述的阻尼力值跟随行程位置变化的减振器,
    其特征是:其中的一个阻尼阀主要由阻尼杆,中心阻尼孔构成,活塞杆为中空管,中空部分与拉伸腔相通,中心阻尼孔设在活塞杆靠近活塞端,阻尼杆为各部分截面积不同的杆;拉伸腔与储液腔通过单向阀连通,阻尼杆可以连接在液压缸底部;阻尼杆通过中心阻尼孔,与中心阻尼孔形成与减振器行程位置相对应的不同通径的压缩阻尼孔;该阻尼孔的通径大小是以压缩阻尼力值的基准力值作为控制或设定减振器压缩阻尼力值的依据的,使减振器在设定的压缩速度下的各行程位置的压缩阻尼力值等于或接近于基准力值;减振器压缩时,压缩腔的液流是经过阻尼孔进入拉伸腔,通过拉伸腔流入储液腔的。
  9. 如权利要求6所述的阻尼力值跟随行程位置变化的减振器,其特征是:减振器的液压缸筒为变截面液压缸筒,变截面缸筒的内部截面积的大小是沿缸筒的中心线变化的,缸筒的内截面与活塞构成拉伸腔与压缩腔之间通径大小不等的阻尼孔,该阻尼孔的通径大小是以拉伸阻尼力值的基准力值作为控制或设定减振器拉伸阻尼力值的依据的,使减振器在设定的拉伸速度下的各行程位置的拉伸阻尼力值等于或接近于基准力值。
  10. 一种车辆,其特征是:该车辆采用了权利要求3~9所述的其中一种减振器。
PCT/CN2020/107672 2019-08-22 2020-08-07 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆 WO2021031876A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910776512.X 2019-08-22
CN201910776512 2019-08-22
CN202021610473 2020-08-06
CN202010780692.1A CN112413030A (zh) 2019-08-22 2020-08-06 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆
CN202021610473.0 2020-08-06
CN202010780692.1 2020-08-06

Publications (1)

Publication Number Publication Date
WO2021031876A1 true WO2021031876A1 (zh) 2021-02-25

Family

ID=74659564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107672 WO2021031876A1 (zh) 2019-08-22 2020-08-07 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆

Country Status (1)

Country Link
WO (1) WO2021031876A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012540A (ja) * 1999-06-29 2001-01-16 Canon Inc 除振装置ならびにデバイス製造装置および方法
US20060224287A1 (en) * 2005-03-31 2006-10-05 Honda Motor Co., Ltd Control system for adjustable damping force damper
CN101101036A (zh) * 2006-07-03 2008-01-09 萱场工业株式会社 用于减震器的控制装置和方法
CN101101037A (zh) * 2006-07-03 2008-01-09 萱场工业株式会社 用于减震器的控制装置和方法
CN103112508A (zh) * 2013-03-08 2013-05-22 山东理工大学 卡车驾驶室减振器最佳速度特性的设计方法
CN103149036A (zh) * 2013-03-08 2013-06-12 山东理工大学 减振器外特性试验的分析方法
CN106907422A (zh) * 2015-12-23 2017-06-30 上海汽车集团股份有限公司 电流变液减振器及其控制方法、控制单元、ecu及汽车
CN108412943A (zh) * 2018-03-28 2018-08-17 辽宁机电职业技术学院 一种阻尼可变汽车悬架减震器及其控制方法
CN109424690A (zh) * 2017-08-23 2019-03-05 郑州宇通客车股份有限公司 减振器的阻尼控制方法、压控变阻尼减振***及车辆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012540A (ja) * 1999-06-29 2001-01-16 Canon Inc 除振装置ならびにデバイス製造装置および方法
US20060224287A1 (en) * 2005-03-31 2006-10-05 Honda Motor Co., Ltd Control system for adjustable damping force damper
CN101101036A (zh) * 2006-07-03 2008-01-09 萱场工业株式会社 用于减震器的控制装置和方法
CN101101037A (zh) * 2006-07-03 2008-01-09 萱场工业株式会社 用于减震器的控制装置和方法
CN103112508A (zh) * 2013-03-08 2013-05-22 山东理工大学 卡车驾驶室减振器最佳速度特性的设计方法
CN103149036A (zh) * 2013-03-08 2013-06-12 山东理工大学 减振器外特性试验的分析方法
CN106907422A (zh) * 2015-12-23 2017-06-30 上海汽车集团股份有限公司 电流变液减振器及其控制方法、控制单元、ecu及汽车
CN109424690A (zh) * 2017-08-23 2019-03-05 郑州宇通客车股份有限公司 减振器的阻尼控制方法、压控变阻尼减振***及车辆
CN108412943A (zh) * 2018-03-28 2018-08-17 辽宁机电职业技术学院 一种阻尼可变汽车悬架减震器及其控制方法

Similar Documents

Publication Publication Date Title
JP5519502B2 (ja) ショックアブソーバ
CN202040257U (zh) 可变阻尼减振器
CN106515348A (zh) 一种用于车辆悬架***的智能加速度阻尼半主动控制方法
US20160025180A1 (en) Shock absorber
JP2011169462A (ja) 減衰力の調整が可能な分解組立式ショックアブソーバー
JP2024504295A (ja) 減衰適応型自動車用ショックアブソーバ
CN107862152A (zh) 非线性的抗蛇形减振器的结构参数优化设计方法
CN108662069B (zh) 一种支撑减振装置
US20210123496A1 (en) Support damping apparatus and vehicle using support damping apparatus
CN108488292B (zh) 一种复合式可调节减振器及其控制方法
WO2021031876A1 (zh) 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆
CN102678810B (zh) 高低速双向阻尼可调机械式减振器
JP2001012534A (ja) 減衰力調整式油圧緩衝器
CN112413030A (zh) 一种减振器阻尼控制和性能评定方法、以此方法优化的减振器和采用此减振器的车辆
JPH07501130A (ja) 振動ダンパ
US20150354659A1 (en) Shock absorber system
US11960801B2 (en) Method for calculating pressure loss of parallel R-type automobile vibration damper
KR20170010146A (ko) 체적변화형 에어스프링의 특성 검사 장치
WO2020199754A1 (zh) 一种电控液气支撑减振器
JPS63270935A (ja) オイルダンパ−
KR102186762B1 (ko) 각변위 센서를 적용한 mr댐퍼 착륙장치
Peng et al. Research on mechanics model verification and skyhook semi-active control of magneto-rheological damper
CN103161870B (zh) 汽车半主动悬架磁流变减振器阻尼通道宽度的设计方法
JP5952629B2 (ja) サスペンション制御装置
KR101165057B1 (ko) 차량의 현가 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854940

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 202010780692.1

Country of ref document: CN

Date of ref document: 20220123

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 202021610473.0

Country of ref document: CN

Date of ref document: 20220123

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

Ref document number: 201910776512.X

Country of ref document: CN

Date of ref document: 20220123

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854940

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20854940

Country of ref document: EP

Kind code of ref document: A1