WO2021031664A1 - 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法 - Google Patents

一种混凝土结构全寿命性能智慧感知与劣化预警***及方法 Download PDF

Info

Publication number
WO2021031664A1
WO2021031664A1 PCT/CN2020/095588 CN2020095588W WO2021031664A1 WO 2021031664 A1 WO2021031664 A1 WO 2021031664A1 CN 2020095588 W CN2020095588 W CN 2020095588W WO 2021031664 A1 WO2021031664 A1 WO 2021031664A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
electrode
value
module
chloride ion
Prior art date
Application number
PCT/CN2020/095588
Other languages
English (en)
French (fr)
Inventor
王鹏刚
金祖权
赵铁军
侯东帅
田砾
张鹏
万小梅
郭思瑶
田玉鹏
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to EP20855469.1A priority Critical patent/EP4001855B1/en
Priority to US17/286,829 priority patent/US11268946B2/en
Publication of WO2021031664A1 publication Critical patent/WO2021031664A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19617Surveillance camera constructional details
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19654Details concerning communication with a camera
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B3/00Audible signalling systems; Audible personal calling systems
    • G08B3/10Audible signalling systems; Audible personal calling systems using electric transmission; using electromagnetic transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • H04L67/025Protocols based on web technology, e.g. hypertext transfer protocol [HTTP] for remote control or remote monitoring of applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19654Details concerning communication with a camera
    • G08B13/19656Network used to communicate with a camera, e.g. WAN, LAN, Internet

Definitions

  • the invention belongs to the technical field of civil engineering material performance testing equipment, and in particular relates to a system and method for intelligent perception and deterioration early warning of the full-life performance of a concrete structure.
  • the internal structure microenvironmental conditions determine the corrosion of steel bars, which in turn affect the service life of the reinforced concrete structures in service.
  • the internal structural microenvironmental conditions mainly include temperature, humidity, pH, chloride ion concentration, and stress strain And other parameters.
  • the reinforced concrete structure is often corroded by chloride ions, resulting in premature failure of the structure.
  • the critical concentration of chloride ions is often affected by the content of C 3 A, alkali content, sulfate content in cement, fly ash content in concrete, mineral powder content, silica fume
  • the critical chloride ion concentration of reinforced concrete structures in different environments varies greatly due to the influence of the mixing amount, the mixing amount of limestone powder, the type of steel bar, the construction quality, and the environmental conditions of service.
  • the method according to the relevant literature, the total chloride ion concentration method of its critical-chloro
  • the ion concentration is 0.17-2.45% of the total chloride ion concentration by weight of the gelling material.
  • the free chloride ion concentration method has a critical chloride ion concentration of 0.11-0.48% of the free chloride ion concentration by weight of the gelling material, [Cl - ]/[ OH -] the method of the critical chloride ion concentration of [Cl -] / [OH - ] ratio of 0.12-40%. It can be seen that the critical chloride ion concentration of steel bars is not a fixed value due to many factors. In this case, how to set the critical chloride ion concentration for different reinforced concrete structural engineering under different service environmental conditions, give a timely warning of deterioration, and accurately predict the remaining service life of the structure, which is an urgent problem in the scientific and engineering circles.
  • the present invention proposes a concrete structure full-life performance intelligent perception and deterioration early warning system and method, which can synchronously and real-time monitor, store and transmit the internal microenvironment of reinforced concrete structures and the corrosion of steel bars.
  • the critical chloride ion concentration of the structure is obtained, so that the health status of the structure can be grasped in time, the deterioration warning can be made in time, and the remaining service life of the structure can be accurately predicted, providing a scientific basis for structural durability evaluation, protection and repair.
  • a concrete structure full-life performance intelligent perception and deterioration early warning system including a main control module, a multifunctional sensor module, an anti-theft module and a critical early warning module, the multifunctional sensor module, the anti-theft Both the module and the criticality early warning module are connected to the main control module, and the main control module analyzes and processes the data collected by the multifunctional sensor module, and realizes timely safety early warning through the criticality early warning module;
  • the multifunctional sensor module is embedded in the concrete structure and includes a temperature and humidity sensor, a chloride ion-pH gradient sensor, a Hall voltage type steel bar corrosion sensor, a steel bar stress sensor and a concrete strain sensor; a temperature and humidity sensor, a steel bar stress sensor, and concrete
  • the strain sensor is used to monitor the temperature, humidity, steel bar stress and strain parameters of the concrete structure.
  • the chloride ion-pH gradient sensor is used to detect the chloride ion content and pH value at different depths in the concrete structure.
  • the Hall voltage type Rebar corrosion sensor is used to measure the corrosion status and amount of rebar;
  • the anti-theft module includes a network video camera and an anti-theft alarm device, the network video camera is used to realize video monitoring of the monitoring area, and the anti-theft alarm device is used to realize the perception and voice warning of personnel close to the system equipment to prevent the device from being stolen
  • the criticality early warning module is used to realize the early warning of the deterioration of the concrete structure into a high-risk state, and the high-risk state dynamically sets the criticality based on the results obtained by the main control module modeling analysis and the chloride ion content in the concrete at the rusted location Chloride ion concentration.
  • the chloride ion-pH gradient sensor includes a cylindrical body on which an Ag/AgCl electrode and an Ir/IrOx-pH electrode, and a reference corresponding to the Ag/AgCl electrode and the Ir/IrOx-pH electrode are arranged
  • the outer surface of the cylindrical body is provided with multiple annular grooves along the circumferential direction, and the annular groove is reserved with a wire reserve hole communicating with the thickness direction of the cylindrical body.
  • Corresponding to the annular groove is also provided with a wire groove, and the Ag/AgCl electrode and the Ir/IrOx-pH electrode are respectively made into a semi-annular shape and fixed in the annular groove.
  • the data preprocessing module also includes a data correction module for the data collected by the chloride ion-pH gradient sensor to consider the effects of temperature and pH.
  • the data correction module includes a pH-based influence correction module and a temperature-based correction module. Affect the correction module.
  • the temperature-based influence correction module realizes temperature correction of Ir/IrOx-pH electrode measurement data and temperature correction of Ag/AgCl electrode measurement data:
  • the early warning system also includes a cloud server, and the main control module performs data interaction with the cloud server to realize the system management of the concrete structure, and to correct, store and update the data in time.
  • the present invention also proposes a method for intelligent perception and deterioration early warning of concrete structure's full-life performance, including the following steps:
  • Step 1 Collect concrete structure state data based on the multi-functional sensor module, the state data including temperature, humidity, chloride ion concentration, pH value, steel corrosion parameters, steel stress and concrete strain data, and carry out the collected concrete state data Pretreatment
  • Step 2 Correct the internal pH value of the collected concrete structure based on the temperature to obtain accurate monitoring results of the internal pH value of the concrete;
  • Step 3 Correct the collected chloride ion concentration information in the concrete based on the temperature and pH value to obtain accurate monitoring results of the chloride ion content in the concrete;
  • Step 4 When the Hall voltage type steel bar corrosion sensor at a certain depth detects the corrosion of the steel bar, the early warning system will automatically input the chloride ion concentration measured by the chloride ion-pH gradient sensor at that depth as the critical chloride ion concentration into the critical warning Module
  • Step 5 Calculate the failure probability of the structure based on the life prediction model and predict the failure probability of the structure based on the concrete condition monitoring result and the critical chloride ion concentration set in step 4, as well as the measured steel bar stress, concrete strain, concrete internal temperature and humidity parameters Remaining service life, make safety warning in time.
  • the temperature correction of the measured data of the Ir/IrOx-pH electrode is mainly adopted as follows:
  • the temperature and pH value correction of the Ag/AgCl electrode measurement data mainly adopts the following methods:
  • the solution of the present invention realizes the monitoring of the environmental parameters in the concrete through the multifunctional sensor module, and is based on the design of the chloride ion-pH gradient sensor, combined with the temperature and humidity sensor arranged at this position, to realize the different gradient chloride ion content and pH of the concrete Accurate determination of the value, the Hall voltage type steel corrosion sensor based on the trapezoidal arrangement can accurately obtain the corrosion status and corrosion amount of the steel at different depths inside the concrete structure in situ and accurately;
  • the critical chloride ion concentration of the structure under the service environment can be obtained, which provides accurate critical values for structural deterioration early warning;
  • the remaining service life of the structure provides a scientific basis for structural durability evaluation, protection and repair;
  • a targeted correction method is designed to further ensure the accuracy of the monitoring data by correcting the temperature and pH of the real-time monitoring data of the chloride ion sensor; the dynamic critical chloride ion concentration proposed by the present invention
  • the test method avoids the disadvantages of the preset critical chloride ion concentration and greatly improves the accuracy of the deterioration warning.
  • a cloud server is designed, and the system data can be connected to the cloud in real time, and the cloud can realize unified management, and realize anti-theft based on remote camera monitoring, which has high practical and economic value.
  • FIG. 1 is a functional block diagram of a smart perception and deterioration early warning system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the three-dimensional structure of the chloride ion-pH gradient sensor according to an embodiment of the present invention
  • Figure 3 is a schematic diagram of the cross-sectional structure of the chloride ion-pH gradient sensor
  • Figure 4 shows the Hall voltage type steel corrosion sensor in a trapezoidal arrangement.
  • Embodiment 1 discloses a whole-life performance intelligent perception and deterioration early warning system for concrete structures, as shown in FIG. 1, including a main control module, a multifunctional sensor module, an anti-theft module, and a critical warning module.
  • the multifunctional sensor The module, the anti-theft module and the critical warning module are all connected to the main control module.
  • the multifunctional sensor module is embedded in the concrete structure and includes a temperature and humidity sensor, a chloride ion-pH gradient sensor, a Hall voltage type steel bar corrosion sensor, and a steel bar stress.
  • Sensors and concrete strain sensors are used to monitor the temperature, humidity, steel bar stress, concrete strain and other parameters of the concrete, and the chloride ion-pH gradient sensor is used to detect the difference in concrete The chloride ion content and pH value at the depth are detected.
  • the Hall voltage type steel bar corrosion sensor is based on the electromagnetic theory and the Shannon information entropy principle to achieve accurate measurement of the steel bar corrosion state and the amount of corrosion.
  • FIG. 2 and 3 it is a schematic diagram of the structure of the chloride ion-pH gradient sensor, which includes a cylindrical body with Ag/AgCl electrodes and Ir/IrOx-pH electrodes, and Ag/AgCl electrodes and Ir/ IrOx-pH electrode corresponding to the reference electrode, the outer surface of the cylindrical body is provided with a multi-layer annular groove 1 along its circumference.
  • the annular groove 1 is reserved with a wire connecting the thickness direction of the cylindrical body.
  • the aviation plug is inserted into the corresponding aviation plug on the data acquisition box Socket, transfer the data to the chloride ion-pH gradient sensor module in the data acquisition box, and convert the collected signal into chloride ion concentration and pH value after filtering, correction, etc., and epoxy resin is used after laying the wire in the wire groove 3 seal.
  • the epoxy resin is poured into the cylindrical body.
  • This solution uses a single reference electrode to avoid errors caused by too many reference electrodes.
  • the surface of the cylindrical body is also provided with threaded holes 4.
  • the cylindrical body can be fixed on the surrounding steel bars with a plastic screw to determine the position of the chloride ion-pH gradient sensor in the concrete, and realize the chlorine at different depths in the concrete. Accurate determination of ion content and pH value.
  • the Ag/AgCl electrode is prepared by an anodic polarization method, and the polarization parameters are the energization current density of 0.5mA/cm 2 , and the polarization time of 2.5 hours.
  • the electrode After the electrode is prepared, it must be saturated with hydrogen. It can be used after activation in calcium oxide solution for more than 30 days to ensure the accuracy of the test data;
  • the Ir/IrOx-pH electrode is prepared by the high-temperature carbonic acid oxidation method, and the Ir wire is buried in lithium carbonate and then placed in a high-temperature furnace. Oxidize at a high temperature of 850°C for 5 hours. After the electrode is prepared, it can be used after activation in a saturated calcium hydroxide solution for more than 20 days to ensure the accuracy of the test data.
  • FIG 4 it is a schematic diagram of the installation structure of the Hall voltage type steel corrosion sensor in a trapezoidal arrangement, which includes a fixed support 5 and a Hall voltage steel corrosion sensor 6.
  • the fixed support 5 can arbitrarily adjust the position of the Hall voltage steel corrosion sensor 6 according to actual test requirements.
  • the embedded depth of the Hall voltage steel corrosion sensor 6 is the same as the embedded depth of each layer of the chloride ion-pH gradient sensor.
  • the Hall voltage steel bar corrosion sensor 6 is provided with a pair of Hall sensors inside, which can accurately measure the corrosion amount of the steel bar clamped at the front end.
  • the Hall voltage steel corrosion sensor 6 is equipped with measuring steel fixing devices on both sides.
  • the device is composed of two pairs of fixed anti-skid elastic devices, which can fix any size steel bars at the front end of the Hall voltage steel corrosion sensor 6 at the Hall sensor position.
  • the trapezoidally arranged Hall voltage type steel bar corrosion sensor According to the trapezoidally arranged Hall voltage type steel bar corrosion sensor, it can accurately obtain the corrosion status and corrosion amount of the steel bar inside the concrete.
  • the trapezoidally arranged Hall voltage type steel bar corrosion sensor detects the corrosion of the steel bar at a certain depth inside the concrete, check the same time .
  • the chloride ion concentration measured by the chloride ion-pH gradient sensor at the same depth is the critical chloride ion concentration of the structure under the corresponding service environmental conditions.
  • the anti-theft module includes a network video camera and an anti-theft alarm device
  • the network video camera is used to realize video monitoring of the monitored area
  • the anti-theft alarm device is used to realize the perception of personnel close to the system equipment and voice warning
  • the critical early warning module is used to realize early warning of the deterioration of the concrete structure into a high-risk state.
  • the high-risk state dynamically sets the critical chloride ion concentration based on the results of the modeling analysis and the chloride ion content in the concrete at the rusted location.
  • the main control module is used to analyze and process the data collected by the multifunctional sensor module, and pass The criticality warning module realizes timely safety warning.
  • the main control module includes a data preprocessing module, a dynamic threshold setting module, and an early warning analysis module.
  • the data preprocessing module is used to preprocess the data collected by the multi-function sensor module, and the implementation is as follows: after the temperature and humidity probe collects the temperature and humidity data, the data is directly converted into a digital quantity, and then the data is converted through the IIC bus. Summarize to the main control circuit board; the temperature sensor uses PT1000 thermal resistance to collect, the resistance value of the sensor changes with temperature changes, connect this sensor in series to the main control circuit, and calculate the current value of the sensor through ADC conversion.
  • the main control circuit board single-chip microcomputer aggregates all the above-mentioned signal collection data results into one, the data is packaged and transmitted to the GPRS data remote transmission module, which is forwarded to the cloud server by the GPRS module, and the cloud server performs data protocol analysis and output processing after receiving the data , And then stored in the database.
  • the early warning system of this embodiment also includes a cloud server, and the main control module realizes data interaction with the cloud server to realize the system management of the reinforced concrete structure, and can realize data correction, storage and update.
  • the main control module realizes data interaction with the cloud server to realize the system management of the reinforced concrete structure, and can realize data correction, storage and update.
  • the warning threshold of the aforementioned monitoring parameters when the collected data is uploaded to the platform, data processing is performed. If the relevant parameters exceed the threshold, the warning information is automatically pushed to the system administrator, and the system administrator further judges and processes it.
  • the dynamic threshold setting module dynamically modifies the critical chloride ion concentration of the structure under the corresponding service environmental conditions according to the aforementioned method for determining the critical chloride ion concentration, and sets the critical value of the steel bar stress and the concrete strain; the early warning analysis module is used for preprocessing The data is compared with the data set by the dynamic threshold setting module, and the early warning result is transmitted to the critical early warning module for alarm; taking into account the particularity of the chloride ion-pH gradient sensor used in this program, that is, temperature and pH
  • the influence of Ag/AgCl electrode measurement data requires correction processing of the collected data.
  • the data preprocessing module also includes a data correction module for the data collected by the chloride ion-pH gradient sensor, which mainly considers temperature and pH.
  • the data correction module includes a pH-based influence correction module and a temperature-based influence correction module. The correction principle is as follows:
  • the pH value at the position of the Ir/IrOx-pH electrode inside the concrete can be converted at this moment.
  • test potential of the Ag/AgCl electrode mentioned in this solution is linearly related to temperature, and the linear correlation coefficient is different at different temperatures. Therefore, if the electrode is used to test the chloride ion concentration in concrete, temperature correction must be performed. specific:
  • the chloride ion concentration content at the position of the Ag/AgCl electrode inside the concrete can be obtained by conversion.
  • the test potential of the Ag/AgCl electrode mentioned in this scheme is affected by pH.
  • the electrode potential increases linearly with the increase of the pH value; and when the pH value is greater than 10.5 and less than 13, the electrode potential is not affected by the pH value. Therefore, if the electrode is used to test the concentration of chloride ions in concrete, the pH value must be corrected.
  • Embodiment 2 based on the intelligent perception and deterioration early-warning system for the full-life performance of concrete structures proposed in embodiment 1, this embodiment discloses a corresponding early-warning method, which specifically includes the following steps:
  • Step 3 Correct the collected chloride ion concentration information in the concrete based on the temperature and pH value to obtain accurate monitoring results of the chloride ion content in the concrete;
  • Step 4 When the Hall voltage type steel bar corrosion sensor at a certain depth detects the corrosion of the steel bar, the system will automatically input the chloride ion concentration measured by the chloride ion-pH gradient sensor at that depth as the critical chloride ion concentration into the critical warning module ;
  • step 2 the temperature correction of Ir/IrOx-pH electrode measurement data mainly adopts the following methods:
  • step 3 the following methods are mainly used to correct the temperature and pH value of the Ag/AgCl electrode measurement data:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Emergency Management (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Ceramic Engineering (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Alarm Systems (AREA)

Abstract

一种混凝土结构全寿命性能智慧感知与劣化预警***及方法,预警***包括主控制模块、多功能传感器模块、防盗模块和临界预警模块,通过多功能传感器模块实现对混凝土内环境参数的监测,并根据不同深度处的温度、湿度、氯离子浓度、pH值,以及动态获得的临界氯离子浓度和结构应力状态,结合寿命预测模型精准预测结构的剩余使用寿命;另外,在进行预警分析时,对采集的数据设计了针对性的修正方法,通过对氯离子传感器的实时监测数据进行温度和pH的修正,进一步保证监测数据的精确性,为结构耐久性评估、防护与修复提供科学依据,具有较高的实际应用价值。

Description

一种混凝土结构全寿命性能智慧感知与劣化预警***及方法 技术领域
本发明属于土木工程材料性能测试设备技术领域,具体涉及一种混凝土结构全寿命性能智慧感知与劣化预警***及方法。
背景技术
在钢筋混凝土结构中,内部结构微环境状况决定钢筋锈蚀情况,进而影响服役中钢筋混凝土结构的使用年限,所述的内部结构微环境状况主要包括温度、湿度、pH值、氯离子浓度和应力应变等参数。尤其是在海洋环境下,钢筋混凝土结构时常受到氯离子侵蚀,导致结构出现过早劣损的现象。
国内外钢筋混凝土结构都面临十分严重的耐久性问题,据统计,我国90年代前修建的海港工程,一般使用10-20年就会出现严重的钢筋锈蚀。而混凝土结构耐久性监测是动态获取钢筋混凝土内部微环境因素最直接、最有效的方法,为准确感知其服役寿命及预警其劣化性能,并为后期防护与修复提供依据。目前市场上监测混凝土内部微环境因素的设备大多是相对独立完成作业,因此不利于信号的同步采集。
以往研究表明,海洋环境下混凝土中钢筋是否发生锈蚀是由内部微环境中多种因素(如温度、湿度、pH值、氯离子浓度、应力应变)耦合作用决定,所以实时掌握海洋环境下混凝土结构微环境和内部钢筋锈蚀状况,并获得上述性能参数随时间变化规律能够为工程的安全性与修复决策提供重要依据。授权公告号为【CN104075756B】的发明专利公开一种混凝土耐久性多元复合无线检测***,实现对混凝土内部湿度、温度、pH及钢筋锈蚀状况的监测,然而该技术方案并没有给出具体的参数修正方法,以及如何使用这些参数。
众所周知,混凝土结构内部温度会随着使用环境温度变化而变化,而埋入混凝土内部的氯离子传感器,pH传感器是受温度影响的,如果不做修正,其测试结果不准确。另外,通常情况下硬化混凝土内部是呈强碱性的,pH值大于12.5。由于大气中的二氧化碳容易与混凝土内部的氢氧化钙发生反应,生成中性碳酸钙,降低混凝土的pH值。并且一些工业环境中会存在一些酸性气体或者酸性液体,这都会引起混凝土的中性化,而埋入混凝土内部的氯离子传感器是受pH值影响的,如果不做修正,其测试结果不准确,将导致钢筋混凝土结构临界状态的误判。
目前国内外针对氯离子临界浓度做了大量的研究工作,氯离子临界浓度往往受水泥中C 3A含量、碱含量、硫酸盐含量,混凝土中粉煤灰掺量、矿粉掺量、硅灰掺量、石灰石粉掺量,钢筋品种,施工质量,服役环境条件等的影响,处于不同环境的钢筋混凝土结构其临界氯离子浓度相差很大。现有技术中关于临界氯离子浓度表述方法有三种:总氯离子浓度方法、 自由氯离子浓度方法和[Cl -]/[OH -]方法,根据相关文献报道,总氯离子浓度方法其临界氯离子浓度为总氯离子浓度占胶凝材料重的0.17-2.45%,自由氯离子浓度方法其临界氯离子浓度为自由氯离子浓度占胶凝材料重的0.11-0.48%,[Cl -]/[OH -]方法其临界氯离子浓度为[Cl -]/[OH -]之比为0.12-40%。可以看出,受多种因素的影响,钢筋的临界氯离子浓度不是固定值。在这种情况下,针对服役环境条件的不同钢筋混凝土结构工程,如何设置临界氯离子浓度,及时作出劣化预警,精准预测结构剩余使用寿命,这是目前科学界和工程界急需解决的问题。
发明内容
本发明针对现有预警***存在的缺陷,提出一种混凝土结构全寿命性能智慧感知与劣化预警***及方法,能够同步、实时监测、储存和传输钢筋混凝土结构内部微环境和钢筋锈蚀的情况,动态获得该结构的临界氯离子浓度,从而及时掌握结构的健康状态,及时作出劣化预警,精准预测结构剩余使用寿命,为结构耐久性评估、防护与修复提供科学依据。
本发明是采用以下的技术方案实现的:一种混凝土结构全寿命性能智慧感知与劣化预警***,包括主控制模块、多功能传感器模块、防盗模块和临界预警模块,所述多功能传感器模块、防盗模块和临界预警模块均与主控制模块相连,主控制模块对所述多功能传感器模块采集的数据进行分析处理,并通过临界预警模块实现及时的安全预警;
所述多功能传感器模块预埋在混凝土结构内部,包括温湿度传感器、氯离子—pH梯度传感器、霍尔电压型钢筋锈蚀传感器、钢筋应力传感器和混凝土应变传感器;温湿度传感器、钢筋应力传感器、混凝土应变传感器用以监测混凝土结构的温度、湿度、钢筋应力和应变参数,所述氯离子—pH梯度传感器用以对混凝土结构内不同深度处氯离子含量、pH值进行检测,所述霍尔电压型钢筋锈蚀传感器用以实现钢筋锈蚀状态和锈蚀量的测量;
所述防盗模块包括网络视频摄像头和防盗报警设备,所述网络视频摄像头用以实现监测区域的视频监控,所述防盗报警设备用以实现对靠近***设备的人员感知和语音警示,预防设备被盗取和损坏;所述临界预警模块用以实现对混凝土结构劣化进入高危状态的预警,所述高危状态根据主控制模块建模分析得到的结果,根据锈蚀位置处混凝土内部氯离子含量,动态设置临界氯离子浓度。
进一步的,所述主控制模块包括数据预处理模块、动态阈值设定模块和预警分析模块,所述数据预处理模块用以对多功能传感器模块采集的数据进行预处理;所述动态阈值设定模块基于数据预处理模块修正后的氯离子浓度动态修改相应服役环境条件下混凝土结构的临界氯离子浓度,并设定钢筋应力、混凝土应变临界值,所述预警分析模块用以将预处理后的数据与动态阈值设定模块设定的数据进行比较,并得出预警结果传输至临界预警模块进行报警。
进一步的,所述氯离子—pH梯度传感器包括筒状主体,筒状主体上设置有Ag/AgCl电极和Ir/IrOx—pH电极,以及Ag/AgCl电极和Ir/IrOx—pH电极对应的参比电极,筒状主体的外 表面沿其周向设置有多层环状凹槽,环状凹槽上预留设置有连通筒状主体厚度方向的导线预留孔,在筒状主体内部与所述环状凹槽相对应的还设置有导线凹槽,Ag/AgCl电极和Ir/IrOx—pH电极分别被制作成半环状,固定在环状凹槽内。
进一步的,所述数据预处理模块还包括对氯离子—pH梯度传感器所采集数据的数据修正模块,以考虑温度和pH两方面的影响,所述数据修正模块包括基于pH影响修正模块和基于温度影响修正模块。
进一步的,所述基于温度影响修正模块实现对Ir/IrOx—pH电极测量数据温度修正和Ag/AgCl电极测量数据温度修正:
(1)Ir/IrOx—pH电极测量数据温度修正:
①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位值;
②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,得到20℃情况下Ir/IrOx—pH电极的电位;
④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位y1与pH值x1线性相关,方程如下:y1=-51.84x1+369.52;
根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值;
(2)Ag/AgCl电极测量数据温度修正:
①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,得到20℃情况下Ag/AgCl电极的电位;
④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位y2与氯离子浓度对数x2线性相关,方程如下:y2=-683.14x2-531.29;
根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量。
进一步的,所述基于pH影响修正模块实现对Ag/AgCl电极测量数据pH修正:根据Ir/IrOx—pH电极测量混凝土内部的pH值;如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正;如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位y3依据公式y3=14.26x3+23.58进行pH值x3的修正。
进一步的,所述预警***还包括云服务器,主控制模块与云服务器进行数据交互,实现对混凝土结构的***管理,并及时进行数据的修正、存储和更新。
本发明另外还提出一种混凝土结构全寿命性能智慧感知与劣化预警方法,包括以下步骤:
步骤1、基于多功能传感器模块采集混凝土结构状态数据,所述状态数据包括温度、湿度、氯离子浓度、pH值、钢筋锈蚀参数、钢筋应力和混凝土应变数据,并对所采集的混凝土状态数据进行预处理;
步骤2、基于温度对所采集的混凝土结构内部pH值进行修正,以获得准确的混凝土内部pH值监测结果;
步骤3、基于温度和pH值对所采集的混凝土内部氯离子浓度信息进行修正,以获得准确的混凝土内部氯离子含量监测结果;
步骤4、当某深度处霍尔电压型钢筋锈蚀传感器监测到钢筋发生锈蚀时,预警***自动将此时该深度处氯离子—pH梯度传感器测得的氯离子浓度作为临界氯离子浓度输入临界预警模块;
步骤5、将混凝土状态监测结果与步骤4所设定的临界氯离子浓度、以及测得的钢筋应力、混凝土应变、混凝土内部温度和湿度参数,基于寿命预测模型计算结构的失效概率,并预测其剩余使用寿命,以及时做出安全预警。
进一步的,所述步骤2中,基于温度对所采集的混凝土结构内部pH值进行修正时,通过对Ir/IrOx—pH电极测量数据温度修正,主要采用以下方式:
①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位值;
②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性进行拟合,以得到拟合方程;
③根据拟合方程,换算得到20℃情况下Ir/IrOx—pH电极的电位;
④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位y1与pH值x1线性相关,方程如下:y1=-51.84x1+369.52;
根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值。
进一步的,所述步骤3中,基于温度和pH值对所采集的混凝土内部氯离子浓度信息进行修正时,对Ag/AgCl电极测量数据温度、pH值修正主要采用以下方式:
①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,换算得到20℃情况下Ag/AgCl电极的电位;
④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位y2与氯离子浓度对数x2线性相关,方程如下:y2=-683.14x2-531.29;
根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量;
⑤根据Ir/IrOx—pH电极测量混凝土内部的pH值:
如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正;如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位y3进行pH值x3修正,修正公式如下:y3=14.26x3+23.58。
与现有技术相比,本发明的优点和积极效果在于:
本发明方案通过多功能传感器模块实现对混凝土内环境参数的监测,并基于氯离子—pH梯度传感器的设计,结合设置在该位置处的温湿度传感器,实现了对混凝土不同梯度氯离子含量和pH值的准确测定,基于梯形布置的霍尔电压型钢筋锈蚀传感器可以原位、精准获得混凝土结构内部不同深度处钢筋的锈蚀状态和锈蚀量;
并且,根据某深度处混凝土结构内部钢筋的锈蚀情况,以及该深度处的氯离子浓度和pH值可得到该服役环境条件下结构的临界氯离子浓度,为结构劣化预警提供精准临界值;根据不同深度处的温度、湿度、氯离子浓度、pH值,以及动态获得的临界氯离子浓度,结构应力状态,结合寿命预测模型(模型考虑温度、湿度、应力状态等参数的影响),能够精准预测结构的剩余使用寿命,为结构耐久性评估,防护与修复提供科学依据;
另外,对数据进行分析处理时,设计了针对性的修正方法,通过对氯离子传感器的实时监测数据进行温度和pH的修正,进一步保证监测数据的精确性;本发明提出的动态临界氯离子浓度测试方法避免了预设临界氯离子浓度的弊端,大大提高了劣化预警的精度。本方案中设计云服务器,***数据能够实时与云端对接,可由云端实现统一管理,并基于远程摄像监测实现防盗,具有较高的实用及经济价值。
附图说明
图1为本发明实施例所述智慧感知与劣化预警***的原理框图;
图2为本发明实施例所述氯离子—pH梯度传感器的立体结构示意图;
图3为氯离子—pH梯度传感器的剖视结构示意图
图4为梯形布置的霍尔电压型钢筋锈蚀传感器。
具体实施方式
为了能够更清楚的理解本发明的上述目的和优点,下面结合附图对本发明的具体实施方式做详细地描述:
实施例1、本实施例公开一种混凝土结构全寿命性能智慧感知与劣化预警***,如图1所示,包括主控制模块、多功能传感器模块、防盗模块和临界预警模块,所述多功能传感器模块、防盗模块和临界预警模块均与主控制模块相连,所述多功能传感器模块预埋在混凝土结构内部,包括温湿度传感器、氯离子—pH梯度传感器、霍尔电压型钢筋锈蚀传感器、钢筋应力传感器和混凝土应变传感器;其中,温湿度传感器、钢筋应力传感器、混凝土应变传感 器用以监测混凝土的温度、湿度、钢筋应力、混凝土应变等参数,所述氯离子—pH梯度传感器用以对混凝土内不同深度处氯离子含量、pH值进行检测,所述霍尔电压型钢筋锈蚀传感器基于电磁学理论,基于香农信息熵原理,实现钢筋锈蚀状态和锈蚀量的精准测量。
如图2和3所示,为氯离子—pH梯度传感器的结构示意图,包括筒状主体,筒状主体上设置有Ag/AgCl电极和Ir/IrOx—pH电极,以及Ag/AgCl电极和Ir/IrOx—pH电极对应的参比电极,筒状主体的外表面沿其周向设置有多层环状凹槽1,环状凹槽1上预留设置有连通筒状主体厚度方向的导线预留孔2,在筒状主体内部与所述环状凹槽1相对应的还设置有导线凹槽3,Ag/AgCl电极和Ir/IrOx—pH电极分别被制作成半环状,固定在环状凹槽1内;Ag/AgCl电极和IrOx—pH电极的一端与导线连接,导线***预留孔2,并经导线凹槽3引出至顶端的航空插头,航空插头***数据采集箱上相应的航空插座,将数据传入数据采集箱中氯离子—pH梯度传感器模块,将采集到的信号经滤波、修正等换算为氯离子浓度和pH值,所述导线凹槽3铺设导线后用环氧树脂密封。
筒状主体中间安置Ag/AgCl电极和IrOx—pH电极的参比电极,该参比电极为直径为30mm,高度为50mm的Mn/MnO 2固态参比电极,将Mn/MnO 2固态参比电极放置到筒状主体中间后,向筒状主体内部灌注环氧树酯,本方案采用单参比电极的设置可以避免由于参比电极过多引起的误差。另外筒状主体的表面还设置有螺纹孔4,实际应用时可用塑料螺杆将筒体固定在周边的钢筋上,以确定氯离子—pH梯度传感器在混凝土内部的位置,实现混凝土内部不同深度处氯离子含量和pH值的精准测定。
本方案中,所述Ag/AgCl电极采用阳极极化法制备,极化参数为通电电流密度为通电电流密度为0.5mA/cm 2,极化时间为2.5小时,电极制备后,要在饱和氢氧化钙溶液中活化30天以上才能使用,以确保测试数据的精确度;所述Ir/IrOx—pH电极采用高温碳酸氧化法制备,将Ir丝埋入碳酸锂中,然后放到高温炉中,在850℃高温条件下氧化5小时,电极制备后,饱和氢氧化钙溶液中活化20天以上才能使用,以确保测试数据的精确度。
本方案中氯离子—pH梯度传感器具体尺寸设计如下:所述筒状主体的直径为80mm,共设计有7层环状凹槽,每层工作电极之间的距离为10mm(可以根据实际工程需求进行调整),螺纹孔深度为6mm,直径为6mm,导线凹槽的直径为5mm。
如图4所示,为梯形布置的霍尔电压型钢筋锈蚀传感器安装结构示意图,包括固定支座5和霍尔电压钢筋锈蚀传感器6。固定支座5可以根据实际测试需求任意调整霍尔电压钢筋锈蚀传感器6的位置,霍尔电压钢筋锈蚀传感器6的埋入深度与氯离子—pH梯度传感器中各层传感器的埋入深度相同。霍尔电压钢筋锈蚀传感器6内部设置有一对霍尔传感器,可以精准测量前端所夹持钢筋的锈蚀量。霍尔电压钢筋锈蚀传感器6两侧设置有测量钢筋固定装置,该装置由两对固定防滑弹性装置组成,可以将任意尺寸的钢筋固定在霍尔电压钢筋锈蚀传感 器6前端霍尔传感器位置。
基于氯离子—pH梯度传感器和梯形布置的霍尔电压型钢筋锈蚀传感器测量结果可以动态获得实际混凝土结构内部临界氯离子浓度。具体如下:
根据梯形布置的霍尔电压型钢筋锈蚀传感器可以精准获得混凝土内部钢筋的锈蚀状态和锈蚀量,当梯形布置的霍尔电压型钢筋锈蚀传感器监测到混凝土内部某深度处钢筋发生锈蚀时,查阅同一时间、相同深度处氯离子—pH梯度传感器所测得的氯离子浓度即为相应服役环境条件下该结构的临界氯离子浓度。
继续参考图1,所述防盗模块包括网络视频摄像头和防盗报警设备,所述网络视频摄像头用以实现监测区域的视频监控,所述防盗报警设备用以实现对靠近***设备的人员感知和语音警示,预防设备被盗取和损坏;所述临界预警模块用以实现对混凝土结构劣化进入高危状态的预警。高危状态基于建模分析得到的结果,根据锈蚀位置处混凝土内部氯离子含量,动态设置临界氯离子浓度,所述主控制模块用以对所述多功能传感器模块采集的数据进行分析处理,并通过临界预警模块实现及时的安全预警。
具体的,所述主控制模块包括数据预处理模块、动态阈值设定模块和预警分析模块。所述数据预处理模块用以对多功能传感器模块采集的数据进行预处理,实施方式如下:温湿度探头采集到温湿度数据之后,将数据直接转换成数字量,然后通过IIC总线将数据转换结果汇总到主控电路板;温度传感器使用PT1000热电阻进行采集,传感器的电阻值随温度变化而发生变化,将此传感器串联接入主控电路中,通过ADC转换得到的电压值,计算得到传感器当前的电阻值,查表得到当前的温度值,此温度值由主控电路板芯片直接采集得到;混凝土应变和钢筋应力信号,使用正弦信号采集模块,采集到传感器输出的频率值,将此频率值通过485总线汇总到主控电路板;氯离子传感器信号,pH传感器信号和霍尔电压型钢筋锈蚀传感器,使用运放进行电压跟随和放大之后,由主控单片机的ADC采集模块直接进行电压转换,将转换到的电压值,5次电压转换值进行均值滤波得到结果。主控电路板单片机将上述所有的信号采集数据结果汇总到一块之后,将数据打包传输给GPRS数据远程传输模块,由GPRS模块转发到云端服务器,云端服务器接收到数据之后进行数据协议解析和输出处理,然后存储到数据库中。
另外,本实施例所述预警***还包括云服务器,主控制模块与云服务器实现数据交互,以实现对钢筋混凝土结构的***管理,并能够实现数据的修正、存储和更新。通过本地pc软件,根据前述监测参数的预警阈值,当采集数据上传到平台后,进行数据处理,如果相关参数超过阈值,向***管理员自动推送预警信息,再由***管理员进一步判断和处理。
本地PC端软件通过网络将数据从云端服务器中获取到之后,按照试验得到的数据转换关系,将得到的传感器采集的原始数据转换成实际的物理信号量,并在软件中进行数据展示。 所述动态阈值设定模块根据前述临界氯离子浓度确定方法动态修改相应服役环境条件下结构的临界氯离子浓度,设定钢筋应力、混凝土应变临界值;所述预警分析模块用以将预处理后的数据与动态阈值设定模块设定的数据进行比较,并得出预警结果传输至临界预警模块进行报警;考虑到本方案所采用的氯离子—pH梯度传感器的特殊性,即温度和pH对Ag/AgCl电极测量数据的影响,需要对其所采集的数据进行修正处理,所述数据预处理模块还包括对氯离子—pH梯度传感器所采集数据的数据修正模块,主要考虑温度和pH两方面的影响,所述数据修正模块包括基于pH影响修正模块和基于温度影响修正模块,修正原理如下:
(1)Ir/IrOx—pH电极测量数据温度修正步骤如下:
通过实验建模分析可知,本方案提到的Ir/IrOx—pH电极测试电位与温度线性相关,而且不同pH情况下的线性相关系数不同,所以,如果将该电极用于测试混凝土中的pH值,必须进行温度修正,具体的:
①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位值;
②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,得到20℃情况下Ir/IrOx—pH电极的电位;
④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位(y1)与pH值(x1)线性相关,方程如下:y1=-51.84x1+369.52。
根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,就可以换算得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值。
(2)Ag/AgCl电极测量数据温度修正步骤如下:
另外,本方案提到的Ag/AgCl电极测试电位与温度线性相关,而且不同温度情况下的线性相关系数不同,所以,如果将该电极用于测试混凝土中的氯离子浓度,必须进行温度修正,具体的:
①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,换算得到20℃情况下Ag/AgCl电极的电位;
④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位(y2)与氯离子浓度对数(x2)线性相关,方程如下:y2=-683.14x2-531.29。
根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,就可以换算得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量。
(3)Ag/AgCl电极测量数据pH修正步骤如下:
研究发现:本方案提到的Ag/AgCl电极测试电位受pH的影响。当pH值大于1小于10.5 时,电极的电位随着pH值的升高而线性增加;而当pH值大于10.5小于13时,电极的电位不受pH值的影响。所以,如果将该电极用于测试混凝土中的氯离子浓度,必须进行pH值修正。
①根据Ir/IrOx—pH电极测量混凝土内部的pH值;
②如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正;
③如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位(y3)进行pH值(x3)修正,修正公式如下:y3=14.26x3+23.58。
通过上述数据修正,可以获得更为准确的监测数据,从而为准确预警提供精准的数据保障。
实施例2,基于实施例1所提出的混凝土结构全寿命性能智慧感知与劣化预警***,本实施例公开一种对应的预警方法,具体包括以下步骤:
步骤1、基于多功能传感器模块采集混凝土状态数据,所述状态数据包括温度、湿度、氯离子浓度、pH值、钢筋锈蚀参数、钢筋应力和混凝土应变数据,并对所采集的混凝土状态数据进行预处理;
步骤2、基于温度对所采集的混凝土内部pH值进行修正,以获得准确的混凝土内部pH值监测结果;
步骤3、基于温度和pH值对所采集的混凝土内部氯离子浓度信息进行修正,以获得准确的混凝土内部氯离子含量监测结果;
步骤4、当某深度处霍尔电压型钢筋锈蚀传感器监测到钢筋发生锈蚀时,***自动将此时该深度处氯离子—pH梯度传感器测得的氯离子浓度作为临界氯离子浓度输入临界预警模块;
步骤5、将混凝土状态监测结果与步骤4动态设定的临界氯离子浓度,以及测得的钢筋应力、混凝土应变、混凝土内部温度、湿度等参数预测其剩余使用寿命,及时做出安全预警。
其中,步骤1中,所述多功能传感器模块预埋在混凝土中,包括温湿度传感器、氯离子—pH梯度传感器、霍尔电压型钢筋锈蚀传感器、钢筋应力传感器和混凝土应变传感器;温湿度传感器、钢筋应力传感器、混凝土应变传感器用以监测混凝土内部不同深度处的温度、湿度、钢筋应力和混凝土应变等状态信息,所述霍尔电压型钢筋锈蚀传感器基于电磁学理论,利用香农信息熵原理,实现混凝土内部不同深度处钢筋锈蚀状态和锈蚀量的精准测量,所述氯离子—pH梯度传感器用以对混凝土内不同深度处的氯离子、pH进行精准测试。
步骤2中,对Ir/IrOx—pH电极测量数据温度修正主要采用以下方式:
①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位 值;
②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,换算得到20℃情况下Ir/IrOx—pH电极的电位;
④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位(y1)与pH值(x1)线性相关,方程如下:y1=-51.84x1+369.52;根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,就可以换算得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值。
步骤3中,对Ag/AgCl电极测量数据温度、pH值修正主要采用以下方式:
①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
③根据拟合方程,换算得到20℃情况下Ag/AgCl电极的电位;
④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位(y2)与氯离子浓度对数(x2)线性相关,方程如下:y2=-683.14x2-531.29。根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,就可以换算得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量。
⑤根据Ir/IrOx—pH电极测量混凝土内部的pH值;
⑥如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正;
⑦如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位(y3)进行pH值(x3)修正,修正公式如下:y3=14.26x3+23.58。
另外,步骤4中根据锈蚀钢筋位置处的氯离子浓度,动态设置临界氯离子浓度到临界预警模块;然后步骤5中将混凝土状态监测结果与步骤4动态设定的临界氯离子浓度,以及测得的钢筋应力、混凝土应变、混凝土内部温度、湿度等参数,根据寿命预测模型获得结构的失效概率,并预测期剩余使用寿命,及时做出安全预警。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

  1. 一种混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:包括主控制模块、多功能传感器模块、防盗模块和临界预警模块,所述多功能传感器模块、防盗模块和临界预警模块均与主控制模块相连,主控制模块对所述多功能传感器模块采集的数据进行分析处理,并通过临界预警模块实现及时的安全预警;
    所述多功能传感器模块预埋在混凝土结构内部,包括温湿度传感器、氯离子—pH梯度传感器、霍尔电压型钢筋锈蚀传感器、钢筋应力传感器和混凝土应变传感器;温湿度传感器、钢筋应力传感器、混凝土应变传感器用以监测混凝土结构的温度、湿度、钢筋应力和应变参数,所述氯离子—pH梯度传感器用以对混凝土结构内不同深度处氯离子含量、pH值进行检测,所述霍尔电压型钢筋锈蚀传感器用以实现钢筋锈蚀状态和锈蚀量的测量;
    所述防盗模块包括网络视频摄像头和防盗报警设备,所述网络视频摄像头用以实现监测区域的视频监控,所述防盗报警设备用以实现对靠近***设备的人员感知和语音警示,预防设备被盗取和损坏;所述临界预警模块用以实现对混凝土结构劣化进入高危状态的预警,所述高危状态根据主控制模块建模分析得到的结果,根据锈蚀位置处混凝土内部氯离子含量,动态设置临界氯离子浓度。
  2. 根据权利要求1所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述主控制模块包括数据预处理模块、动态阈值设定模块和预警分析模块,所述数据预处理模块用以对多功能传感器模块采集的数据进行预处理;所述动态阈值设定模块基于数据预处理模块修正后的氯离子浓度动态修改相应服役环境条件下混凝土结构的临界氯离子浓度,并设定钢筋应力、混凝土应变临界值,所述预警分析模块用以将预处理后的数据与动态阈值设定模块设定的数据进行比较,并得出预警结果传输至临界预警模块进行报警。
  3. 根据权利要求1所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述氯离子—pH梯度传感器包括筒状主体,筒状主体上设置有Ag/AgCl电极和Ir/IrOx—pH电极,以及Ag/AgCl电极和Ir/IrOx—pH电极对应的参比电极,筒状主体的外表面沿其周向设置有多层环状凹槽,环状凹槽上预留设置有连通筒状主体厚度方向的导线预留孔,在筒状主体内部与所述环状凹槽相对应的还设置有导线凹槽,Ag/AgCl电极和Ir/IrOx—pH电极分别被制作成半环状,固定在环状凹槽内。
  4. 根据权利要求2或3所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述数据预处理模块还包括对氯离子—pH梯度传感器所采集数据的数据修正模块,以考虑温度和pH两方面的影响,所述数据修正模块包括基于pH影响修正模块和基于温度影响修正模块。
  5. 根据权利要求4所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述基于温度影响修正模块实现对Ir/IrOx—pH电极测量数据温度修正和Ag/AgCl电极测量数 据温度修正:
    (1)Ir/IrOx—pH电极测量数据温度修正:
    ①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位值;
    ②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性拟合,得到拟合方程;
    ③根据拟合方程,得到20℃情况下Ir/IrOx—pH电极的电位;
    ④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位y1与pH值x1线性相关,方程如下:y1=-51.84x1+369.52;
    根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值;
    (2)Ag/AgCl电极测量数据温度修正:
    ①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
    ②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
    ③根据拟合方程,得到20℃情况下Ag/AgCl电极的电位;
    ④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位y2与氯离子浓度对数x2线性相关,方程如下:y2=-683.14x2-531.29;
    根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量。
  6. 根据权利要求4所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述基于pH影响修正模块实现对Ag/AgCl电极测量数据pH修正:根据Ir/IrOx—pH电极测量混凝土内部的pH值;如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正;如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位y3依据公式y3=14.26x3+23.58进行pH值x3的修正。
  7. 根据权利要求1所述的混凝土结构全寿命性能智慧感知与劣化预警***,其特征在于:所述预警***还包括云服务器,主控制模块与云服务器进行数据交互,实现对混凝土结构的***管理,并及时进行数据的修正、存储和更新。
  8. 基于权利要求1-7任一项所述的混凝土结构全寿命性能智慧感知与劣化预警***的预警方法,其特征在于:包括以下步骤:
    步骤1、基于多功能传感器模块采集混凝土结构状态数据,所述状态数据包括温度、湿度、氯离子浓度、pH值、钢筋锈蚀参数、钢筋应力和混凝土应变数据,并对所采集的混凝土状态数据进行预处理;
    步骤2、基于温度对所采集的混凝土结构内部pH值进行修正,以获得准确的混凝土内部 pH值监测结果;
    步骤3、基于温度和pH值对所采集的混凝土内部氯离子浓度信息进行修正,以获得准确的混凝土内部氯离子含量监测结果;
    步骤4、当某深度处霍尔电压型钢筋锈蚀传感器监测到钢筋发生锈蚀时,预警***自动将此时该深度处氯离子—pH梯度传感器测得的氯离子浓度作为临界氯离子浓度输入临界预警模块;
    步骤5、将混凝土状态监测结果与步骤4所设定的临界氯离子浓度、以及测得的钢筋应力、混凝土应变、混凝土内部温度和湿度参数,基于寿命预测模型计算结构的失效概率,并预测其剩余使用寿命,以及时做出安全预警。
  9. 根据权利要求8所述的混凝土结构全寿命性能智慧感知与劣化预警方法,其特征在于:所述步骤2中,基于温度对所采集的混凝土结构内部pH值进行修正时,通过对Ir/IrOx—pH电极测量数据温度修正,主要采用以下方式:
    ①通过Ir/IrOx—pH电极测量两个不同温度情况下混凝土内部Ir/IrOx—pH电极的电位值;
    ②将步骤①中Ir/IrOx—pH电极电位与相应温度实测值线性进行拟合,以得到拟合方程;
    ③根据拟合方程,换算得到20℃情况下Ir/IrOx—pH电极的电位;
    ④20℃情况下Ir/IrOx—pH电极电位与pH值符合能斯特方程,Ir/IrOx—pH电极电位y1与pH值x1线性相关,方程如下:y1=-51.84x1+369.52;
    根据步骤③得到的20℃情况下Ir/IrOx—pH电极的电位,以及方程y1=-51.84x1+369.52,得到此刻混凝土内部Ir/IrOx—pH电极位置处的pH值。
  10. 根据权利要求8所述的混凝土结构全寿命性能智慧感知与劣化预警方法,其特征在于:所述步骤3中,基于温度和pH值对所采集的混凝土内部氯离子浓度信息进行修正时,对Ag/AgCl电极测量数据温度、pH值修正主要采用以下方式:
    ①通过Ag/AgCl电极测量两个不同温度情况下混凝土内部Ag/AgCl电极的电位值;
    ②将步骤①中Ag/AgCl电极电位与相应温度实测值线性拟合,得到拟合方程;
    ③根据拟合方程,换算得到20℃情况下Ag/AgCl电极的电位;
    ④20℃情况下Ag/AgCl电极电位与氯离子浓度对数符合能斯特方程,Ag/AgCl电极电位y2与氯离子浓度对数x2线性相关,方程如下:y2=-683.14x2-531.29;
    根据步骤③得到的20℃情况下Ag/AgCl电极的电位,以及方程y2=-683.14x2-531.29,得到此刻混凝土内部Ag/AgCl电极位置处的氯离子浓度含量;
    ⑤根据Ir/IrOx—pH电极测量混凝土内部的pH值:
    如果pH值大于10.5小于13,则无需对此时相同深度处的Ag/AgCl电极电位进行修正; 如果pH值大于1小于10.5,则需要对此时相同深度处的Ag/AgCl电极电位y3进行pH值x3修正,修正公式如下:y3=14.26x3+23.58。
PCT/CN2020/095588 2019-08-22 2020-06-11 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法 WO2021031664A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20855469.1A EP4001855B1 (en) 2019-08-22 2020-06-11 Intelligent perception and deterioration early warning systems and methods for full-life performance of concrete structure
US17/286,829 US11268946B2 (en) 2019-08-22 2020-06-11 Life-cycle performance intelligent-sensing and degradation warning system and method for concrete structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910778440.2 2019-08-22
CN201910778440.2A CN110567513B (zh) 2019-08-22 2019-08-22 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法

Publications (1)

Publication Number Publication Date
WO2021031664A1 true WO2021031664A1 (zh) 2021-02-25

Family

ID=68774390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095588 WO2021031664A1 (zh) 2019-08-22 2020-06-11 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法

Country Status (5)

Country Link
US (1) US11268946B2 (zh)
EP (1) EP4001855B1 (zh)
JP (1) JP6785515B1 (zh)
CN (1) CN110567513B (zh)
WO (1) WO2021031664A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118169374A (zh) * 2024-04-15 2024-06-11 深圳大学 深远海混凝土智能化实时监测方法及***

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567513B (zh) * 2019-08-22 2020-06-26 青岛理工大学 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法
CN111365028A (zh) * 2020-03-31 2020-07-03 中铁五局集团有限公司 基于变断面可调式衬砌台车的混凝土监测方法
CN113970579B (zh) * 2020-07-23 2022-10-11 中国科学院金属研究所 一种大气环境下空气中氯离子沉积率实时在线检测方法
CN111947703A (zh) * 2020-08-10 2020-11-17 中国电子科技集团公司第四十九研究所 一种基于双应力加速贮存试验的传感器寿命获取方法
CN112529255B (zh) * 2020-11-20 2021-12-17 中交四航工程研究院有限公司 一种基于氯离子浓度监测的钢筋混凝土构件寿命预测方法
CN112414902B (zh) * 2020-11-27 2021-10-15 青岛理工大学 考虑硫酸盐化学损伤效应的混凝土中氯离子传输评估方法
CN113075390A (zh) * 2021-03-22 2021-07-06 青岛理工大学 一种混凝土内部水分和氯离子同步传输感知装置
CN113064381A (zh) * 2021-03-29 2021-07-02 中信国安建工集团有限公司 多层模架受力模型构建方法及监测***、方法
CN113188984B (zh) * 2021-04-29 2022-06-24 青岛理工大学 一种用于混凝土中钢筋腐蚀状态的智能监测***及方法
CN113376061B (zh) * 2021-05-21 2022-12-09 青岛理工大学 一种混凝土内氯离子渗透状态监测装置及其监测方法
CN117664843A (zh) * 2021-12-09 2024-03-08 长江师范学院 一种用于耐侵蚀测试的混凝土试件
PL440648A1 (pl) * 2022-03-16 2023-09-18 Politechnika Śląska Sposób wytwarzania i aplikacji w betonie stałych czujników elektrochemicznych zwłaszcza w istniejących konstrukcjach żelbetowych
CN114965967A (zh) * 2022-04-18 2022-08-30 太原理工大学 一种多种作用下的高温后混凝土寿命预测方法
CN115050163B (zh) * 2022-06-15 2023-10-03 中铁第四勘察设计院集团有限公司 一种边坡监测预警***
CN115146216B (zh) 2022-09-01 2022-11-15 交通运输部公路科学研究所 一种隧道混凝土碳硫硅钙石侵蚀环境的评价方法
CN115752588A (zh) * 2022-11-25 2023-03-07 国网福建省电力有限公司经济技术研究院 一种混凝土电杆运行状态全息智能感知及预警***
CN117471071B (zh) * 2023-10-30 2024-06-04 重庆交通大学 港口基础设施结构耐久性安全预警***及方法
CN117580010B (zh) * 2024-01-15 2024-04-05 中交三公局桥梁隧道工程(北京)有限公司 一种基于无线传感器的喷淋监测数据传输***
CN117571164B (zh) * 2024-01-16 2024-03-12 福建省交通建设试验检测中心有限公司 一种多功能混凝土试样表面应力自动化采集装置
CN118040895A (zh) * 2024-02-18 2024-05-14 北京大瑀工业科技有限公司 一种智能配电柜的监控方法及***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140249788A1 (en) * 2013-03-01 2014-09-04 Simco Technologies Inc. Method and system for estimating degradation and durability of concrete structures and asset management system making use of same
CN104075756A (zh) 2014-07-21 2014-10-01 青岛理工大学 混凝土结构耐久性多元复合无线监测***
CN105116134A (zh) * 2015-08-21 2015-12-02 中国路桥工程有限责任公司 混凝土基础设施的耐久性在线监测与预警***
CN106053326A (zh) * 2016-07-19 2016-10-26 青岛理工大学 钢筋混凝土结构耐久性劣化演变的监测***
CN108469514A (zh) * 2018-06-07 2018-08-31 青岛理工大学 一种混凝土内钢筋锈蚀行为的监测设备及其方法
CN108680490A (zh) * 2018-07-23 2018-10-19 三峡大学 一种铁塔钢筋混凝土基础钢筋腐蚀程度检测装置与方法
CN109374726A (zh) * 2018-10-18 2019-02-22 浙江大学 基于磁场的混凝土中钢筋锈蚀无损动态监测传感器及***
CN110567513A (zh) * 2019-08-22 2019-12-13 青岛理工大学 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034660B2 (en) * 1999-02-26 2006-04-25 Sri International Sensor devices for structural health monitoring
US6690182B2 (en) * 2000-07-19 2004-02-10 Virginia Technologies, Inc Embeddable corrosion monitoring-instrument for steel reinforced structures
US7551058B1 (en) * 2003-12-10 2009-06-23 Advanced Design Consulting Usa, Inc. Sensor for monitoring environmental parameters in concrete
JP2006349535A (ja) * 2005-06-16 2006-12-28 Taiheiyo Cement Corp 複合センサモジュールおよびセンサデバイス
KR100884578B1 (ko) * 2007-10-12 2009-02-19 연세대학교 산학협력단 철근부식 임계 염화물량 측정방법
CN101334353B (zh) * 2008-08-01 2010-12-08 厦门大学 一种用于监测钢筋混凝土结构腐蚀的多功能传感器
US10203268B2 (en) * 2008-12-04 2019-02-12 Laura P. Solliday Methods for measuring and modeling the process of prestressing concrete during tensioning/detensioning based on electronic distance measurements
CN101763053B (zh) * 2008-12-26 2012-05-02 中海网络科技股份有限公司 一种移动式桥梁安全检测分析管理***
JP5796344B2 (ja) * 2011-05-13 2015-10-21 セイコーエプソン株式会社 センサー装置
EP2839057B1 (fr) * 2012-04-17 2018-10-17 Soletanche Freyssinet Procede de protection galvanique d'une structure en beton arme
US10768130B2 (en) * 2013-01-30 2020-09-08 Giatec Scientific Inc. Method and systems relating to construction material assessment
CN103293091B (zh) * 2013-05-21 2016-04-27 青海省交通科学研究院 一种盐富集环境下水泥混凝土自然腐蚀特性的试验方法
WO2016144972A1 (en) * 2015-03-09 2016-09-15 Micromem Applied Sensor Technologies Inc. Cement integrity sensors and methods of manufacture and use thereof
CN105807035B (zh) * 2016-04-11 2017-12-01 青岛理工大学 混凝土内部微环境参数原位动态监测***
CN205537774U (zh) * 2016-04-20 2016-08-31 程旭东 混凝土结构埋入式传感器
CN205898650U (zh) * 2016-07-19 2017-01-18 青岛理工大学 钢筋混凝土结构耐久性劣化演变的监测***
JP2018013405A (ja) * 2016-07-20 2018-01-25 日立化成株式会社 モニタリングセンサの配置方法
JP7079052B2 (ja) * 2017-10-16 2022-06-01 太平洋セメント株式会社 塩化物イオン濃度推定方法
US10620062B2 (en) * 2017-10-23 2020-04-14 Deborah D. L. Chung Cement-based material systems and method for self-sensing and weighing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140249788A1 (en) * 2013-03-01 2014-09-04 Simco Technologies Inc. Method and system for estimating degradation and durability of concrete structures and asset management system making use of same
CN104075756A (zh) 2014-07-21 2014-10-01 青岛理工大学 混凝土结构耐久性多元复合无线监测***
CN105116134A (zh) * 2015-08-21 2015-12-02 中国路桥工程有限责任公司 混凝土基础设施的耐久性在线监测与预警***
CN106053326A (zh) * 2016-07-19 2016-10-26 青岛理工大学 钢筋混凝土结构耐久性劣化演变的监测***
CN108469514A (zh) * 2018-06-07 2018-08-31 青岛理工大学 一种混凝土内钢筋锈蚀行为的监测设备及其方法
CN108680490A (zh) * 2018-07-23 2018-10-19 三峡大学 一种铁塔钢筋混凝土基础钢筋腐蚀程度检测装置与方法
CN109374726A (zh) * 2018-10-18 2019-02-22 浙江大学 基于磁场的混凝土中钢筋锈蚀无损动态监测传感器及***
CN110567513A (zh) * 2019-08-22 2019-12-13 青岛理工大学 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4001855A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118169374A (zh) * 2024-04-15 2024-06-11 深圳大学 深远海混凝土智能化实时监测方法及***

Also Published As

Publication number Publication date
CN110567513B (zh) 2020-06-26
JP2021034031A (ja) 2021-03-01
EP4001855A1 (en) 2022-05-25
US11268946B2 (en) 2022-03-08
EP4001855B1 (en) 2023-04-19
CN110567513A (zh) 2019-12-13
US20210356451A1 (en) 2021-11-18
JP6785515B1 (ja) 2020-11-18
EP4001855A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
WO2021031664A1 (zh) 一种混凝土结构全寿命性能智慧感知与劣化预警***及方法
CN105758904A (zh) 一种多参数水质监测***、方法以及应用
CN207993206U (zh) 一种滑坡灾害实时监测预警装置
CN103792263A (zh) 用于混凝土结构的无线智能骨料健康监测装置及方法
CN209148032U (zh) 基于物联网的桥梁结构健康监测***
CN102636306B (zh) 用于船舶结构长期安全监测的分布式应变采集器
CN106979798B (zh) 一种土木工程结构健康检测***
CN109099975A (zh) 一种建筑结构健康监测***
CN211825988U (zh) 一种水面污染物监测***
CN103542943A (zh) 一种电缆隧道温度监控***
CN113075119A (zh) 钢筋混凝土腐蚀监测设备
CN105157753A (zh) 一种无线远程监控土木工程建筑监测***
WO2022199224A1 (zh) 一种混凝土内部水分和氯离子同步传输感知装置
CN205175954U (zh) 一种水质多参数在线监测装置
CN210035092U (zh) 一种气体输送管道检测装置
CN204287909U (zh) 一种基于物联网的塔式起重机寿命评估***
CN110234088B (zh) 一种幕墙监控传输方法
CN204479094U (zh) 混凝土结构耐久性多元复合无线监测***
CN215598972U (zh) 钢筋混凝土腐蚀监测设备
CN109977618B (zh) 阴极保护远程检测装置的模块化设计方法
CN108759913B (zh) 基于ZigBee传感实时测温监控智能判断方法及***
CN208283240U (zh) 一种无损检测钢筋锈蚀的装置
CN206353153U (zh) 一种水质在线检测***
CN205778836U (zh) 高压密闭测井井下仪器位置感应***和感应装置
CN220773237U (zh) 用于电力输电线路的绝缘子泄漏电流在线监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855469

Country of ref document: EP

Effective date: 20220217