WO2021031281A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021031281A1
WO2021031281A1 PCT/CN2019/107276 CN2019107276W WO2021031281A1 WO 2021031281 A1 WO2021031281 A1 WO 2021031281A1 CN 2019107276 W CN2019107276 W CN 2019107276W WO 2021031281 A1 WO2021031281 A1 WO 2021031281A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
optical lens
radius
Prior art date
Application number
PCT/CN2019/107276
Other languages
English (en)
French (fr)
Inventor
石荣宝
孙雯
寺冈弘之
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Publication of WO2021031281A1 publication Critical patent/WO2021031281A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to the field of optical lenses, and in particular to an imaging optical lens suitable for portable terminal devices such as smart phones and digital cameras, and imaging devices such as monitors and PC lenses.
  • the photosensitive devices of general photographic lenses are nothing more than photosensitive coupling devices (Charge Coupled Device, CCD) or complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor), and due to the advancement of semiconductor manufacturing technology, the pixel size of photosensitive devices has been reduced, and nowadays electronic products are developing trends with good functions, light, thin and short appearance. Therefore, The miniaturized camera lens with good image quality has become the mainstream in the current market.
  • CCD Charge Coupled Device
  • CMOS Sensor complementary metal oxide semiconductor device
  • the lenses traditionally mounted on mobile phone cameras mostly adopt three-element and four-element lens structures.
  • the pixel area of the photosensitive device continues to shrink, and the system's requirements for image quality continue to increase, the five-element lens structure gradually appears in the lens design.
  • the five-element lens has good optical performance, its optical power, lens spacing and lens shape settings are still unreasonable, resulting in the lens structure having good optical performance, but cannot meet the requirements of large aperture, Design requirements for ultra-thin and wide-angle.
  • the object of the present invention is to provide an imaging optical lens, which has good optical performance and meets the design requirements of large aperture, ultra-thin, and wide-angle.
  • the embodiments of the present invention provide the imaging optical lens, which sequentially includes from the object side to the image side: a first lens with positive refractive power, a second lens with negative refractive power, and A third lens with negative refractive power, a fourth lens with positive refractive power, and a fifth lens with negative refractive power;
  • the radius of curvature of the object side of the second lens is R3, the radius of curvature of the image side of the second lens is R4, the radius of curvature of the object side of the third lens is R5, and the curvature of the image side of the third lens
  • the radius is R6, the radius of curvature of the object side of the fifth lens is R9, the radius of curvature of the image side of the fifth lens is R10, and the image side of the fourth lens is on the axis from the object side of the fifth lens
  • the distance is d8, the on-axis thickness of the fifth lens is d9, and the following relationship is satisfied:
  • the focal length of the third lens is f3
  • the overall focal length of the imaging optical lens is f, which satisfies the following relationship:
  • the focal length of the first lens is f1
  • the overall focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the axial thickness of the first lens is d1
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the focal length of the second lens is f2
  • the overall focal length of the imaging optical lens is f
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship formula:
  • the axial thickness of the third lens is d5
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the focal length of the fourth lens is f4
  • the overall focal length of the imaging optical lens is f
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the axial thickness of the fourth lens is d7
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the overall focal length of the imaging optical lens is f
  • the total optical length of the imaging optical lens is TTL, which satisfies the following relationship:
  • the total optical length of the imaging optical lens is TTL, and the image height of the imaging optical lens is IH, which satisfies the following relationship:
  • the aperture F number of the imaging optical lens is Fno, which satisfies the following relationship:
  • the imaging optical lens according to the present invention has good optical performance, and has the characteristics of large aperture, wide angle, and ultra-thinness, and is especially suitable for mobile phones composed of high-pixel CCD, CMOS and other imaging elements Camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of the imaging optical lens of the first embodiment
  • FIG. 2 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 1;
  • FIG. 3 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 1;
  • FIG. 4 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the imaging optical lens of the second embodiment
  • FIG. 6 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 5;
  • FIG. 7 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 5;
  • FIG. 9 is a schematic diagram of the structure of the imaging optical lens of the third embodiment.
  • FIG. 10 is a schematic diagram of axial aberration of the imaging optical lens shown in FIG. 9;
  • FIG. 11 is a schematic diagram of chromatic aberration of magnification of the imaging optical lens shown in FIG. 9;
  • FIG. 12 is a schematic diagram of field curvature and distortion of the imaging optical lens shown in FIG. 9.
  • FIG. 1 shows an imaging optical lens 10 according to a first embodiment of the present invention.
  • the imaging optical lens 10 includes five lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a third lens with negative refractive power. Lens L3, fourth lens L4 with positive refractive power, and fifth lens L5 with negative refractive power.
  • An optical element such as an optical filter GF may be provided between the fifth lens L5 and the image plane Si.
  • the curvature radius of the object side surface of the second lens L2 is defined as R3, and the curvature radius of the image side surface of the second lens L2 is defined as R4, which satisfies the following relationship: 0.60 ⁇ (R3+R4)/(R3 -R4) ⁇ 0.7, which stipulates the shape of the second lens L2, which is beneficial to the correction of spherical aberration within the range of conditions and improves the imaging quality.
  • the radius of curvature of the object side surface of the third lens L3 as R5
  • the radius of curvature of the image side surface of the third lens L3 as R6, which satisfies the following relationship: -5.00 ⁇ (R5+R6)/(R5-R6) ⁇ -4.20, which specifies the shape of the third lens L3.
  • the degree of deflection of the light passing through the lens can be relaxed, and aberrations can be effectively reduced.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • the shape of the fifth lens L5 is specified, which is beneficial to balance the field curvature of the system within the range of conditions and improve the imaging quality.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: -5.60 ⁇ R3/R4 ⁇ -4.00, which specifies the second
  • the ratio of the radius of curvature of the object surface and the image surface of the lens L2 helps to improve the performance of the optical system within the range of the conditional expression.
  • the focal length of the third lens L3 as f3
  • the overall focal length of the imaging optical lens 10 as f, which satisfies the following relationship: -11.00 ⁇ f3/f ⁇ -9.00.
  • f3/f meets the conditions, it can be effectively allocated
  • the refractive power of the third lens L3 corrects the aberration of the optical system, thereby improving the imaging quality.
  • the focal length of the first lens L1 as f1
  • the overall focal length of the imaging optical lens 10 as f, which satisfies the following relationship: 0.40 ⁇ f1/f ⁇ 1.36, which specifies the focal length and the overall focal length of the first lens L1 Ratio.
  • the first lens L1 has a proper positive refractive power, which is beneficial to reduce system aberrations, and at the same time, is beneficial to the development of ultra-thin and wide-angle lenses.
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.08 ⁇ d1/TTL ⁇ 0.25. Within the range of the conditional expression, it is beneficial to achieve ultra-thinness .
  • the focal length of the second lens L2 is defined as f2, and the overall focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -6.05 ⁇ f2/f ⁇ -1.42, which specifies the focal length of the second lens L2 and the
  • the ratio of the overall focal length of the imaging optical lens 10 is within the range of the conditional formula, and by controlling the negative refractive power of the second lens L2 in a reasonable range, it is beneficial to correct the aberration of the optical system.
  • the axial thickness of the second lens L2 is d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.08. Within the range of the conditional expression, it is beneficial to realize ultra-thinness .
  • the axial thickness of the third lens L3 is d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d5/TTL ⁇ 0.10. Within the range of the conditional formula, it is beneficial to realize ultra-thinness .
  • the focal length of the fourth lens L4 is defined as f4, the overall focal length of the imaging optical lens 10 is f, and the following relational expression is satisfied: 0.34 ⁇ f4/f ⁇ 1.06, within the range of the conditional expression, through the reasonable optical power Distribution makes the system have better imaging quality and lower sensitivity.
  • the curvature radius of the object side surface of the fourth lens L4 is R7
  • the curvature radius of the image side surface of the fourth lens L4 is R8, which satisfies the following relationship: 0.63 ⁇ (R7+R8)/(R7-R8) ⁇ 2.11.
  • the shape of the fourth lens L4 is specified.
  • the axial thickness of the fourth lens L4 is d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.07 ⁇ d7/TTL ⁇ 0.27. Within the range of the conditional formula, it is beneficial to realize ultra-thinness .
  • the focal length of the fifth lens L5 is defined as f5, and the overall focal length of the imaging optical lens 10 is f, which satisfies the following relationship: -1.22 ⁇ f5/f ⁇ -0.39.
  • the limitation on the fifth lens L5 can effectively make The light angle of the camera lens is gentle, reducing tolerance sensitivity.
  • the axial thickness of the fifth lens L5 is d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d9/TTL ⁇ 0.11. Within the range of the conditional formula, it is beneficial to achieve ultra-thinness .
  • the total optical length of the imaging optical lens 10 is defined as TTL, and the image height of the imaging optical lens 10 is IH, which satisfies the following relationship: TTL/IH ⁇ 1.46, which is beneficial to realize ultra-thinness.
  • Fno the aperture of the photographing optical lens 10
  • Fno the ratio of the effective focal length to the entrance pupil aperture
  • the imaging optical lens 10 can achieve the design requirements of large aperture, wide-angle, and ultra-thin while having good optical imaging performance; according to the characteristics of the imaging optical lens 10, the imaging optical lens 10
  • the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
  • the imaging optical lens 10 of the present invention will be described below with examples.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, on-axis thickness, inflection point position, stagnation point position is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • the object side and/or the image side of the lens may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • inflection points and/or stagnation points may also be provided with inflection points and/or stagnation points to meet high-quality imaging requirements.
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present invention.
  • R The radius of curvature of the optical surface, when the lens is the central radius of curvature
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side surface of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the curvature radius of the object side surface of the optical filter GF
  • R12 the radius of curvature of the image side surface of the optical filter GF
  • D the on-axis thickness of the lens and the on-axis distance between the lenses
  • D2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • D4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • D6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • D8 the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5;
  • D10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the optical filter GF;
  • D11 the axial thickness of the optical filter GF
  • D12 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • Nd the refractive index of d-line
  • Nd1 the refractive index of the d-line of the first lens L1;
  • Nd2 the refractive index of the d-line of the second lens L2
  • Nd3 the refractive index of the d-line of the third lens L3
  • Nd4 the refractive index of the d-line of the fourth lens L4
  • Nd5 the refractive index of the d-line of the fifth lens L5;
  • Ndg the refractive index of the d-line of the optical filter GF
  • Vd Abbe number
  • V1 Abbe number of the first lens L1;
  • V2 Abbe number of the second lens L2
  • V3 Abbe number of the third lens L3;
  • V4 Abbe number of the fourth lens L4;
  • V5 Abbe number of the fifth lens L5;
  • Vg Abbe number of optical filter GF.
  • Table 2 shows aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • k is the conic coefficient
  • A4, A6, A8, A10, A12, A14, and A16 are the aspheric coefficients.
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • the present invention is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 and Table 4 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 10 of the first embodiment of the present invention.
  • P1R1, P1R2 represent the object side and image side of the first lens L1
  • P2R1, P2R2 represent the object side and image side of the second lens L2
  • P3R1, P3R2 represent the object side and image side of the third lens L3
  • P4R1 and P4R2 represent the object side and image side of the fourth lens L4, respectively
  • P5R1 and P5R2 represent the object side and the image side of the fifth lens L5, respectively.
  • the corresponding data in the “reflection point position” column is the vertical distance from the reflex point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • the data corresponding to the “stationary point position” column is the vertical distance from the stationary point set on the surface of each lens to the optical axis of the imaging optical lens 10.
  • FIG. 2 and 3 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 10 of the first embodiment.
  • FIG. 4 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555nm after passing through the imaging optical lens 10 of the first embodiment.
  • the field curvature S in FIG. is a schematic diagram of field curvature and distortion of light with a wavelength of 555nm after passing through the imaging optical lens 10 of the first embodiment.
  • Table 13 shows the values corresponding to the various values in the first, second, and third embodiments and the parameters specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter of the imaging optical lens 10 is 2.145mm
  • the full-field image height is 2.950mm
  • the diagonal field angle is 77.90°, so that the imaging optical lens 10 has a wide angle.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 5 for the structure of the imaging optical lens 20 of the second embodiment. Only the differences are listed below.
  • Table 5 and Table 6 show design data of the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 6 shows aspheric surface data of each lens in the imaging optical lens 20 according to the second embodiment of the present invention.
  • Table 7 and Table 8 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 20 of the second embodiment of the present invention.
  • FIG. 6 and 7 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 20 of the second embodiment.
  • FIG. 8 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 20 of the second embodiment.
  • the field curvature S in FIG. 8 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. .
  • the entrance pupil diameter of the imaging optical lens 20 is 2.134 mm
  • the full-field image height is 2.950 mm
  • the diagonal field angle is 78.20°, which makes the imaging optical lens 20 wide-angle , Ultra-thin, large aperture, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment. Please refer to FIG. 9 for the structure of the imaging optical lens 30 of the third embodiment. Only the differences are listed below.
  • Table 9 and Table 10 show design data of the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 10 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • Table 11 and Table 12 show the design data of the inflection point and stagnation point of each lens in the imaging optical lens 30 of the third embodiment of the present invention.
  • FIG. 10 and 11 respectively show schematic diagrams of axial aberration and chromatic aberration of magnification after light having wavelengths of 470 nm, 510 nm, 555 nm, 610 nm, and 650 nm pass through the imaging optical lens 30 of the third embodiment.
  • FIG. 12 shows a schematic diagram of field curvature and distortion of light with a wavelength of 555 nm after passing through the imaging optical lens 30 of the third embodiment.
  • the field curvature S in FIG. 12 is the field curvature in the sagittal direction, and T is the field curvature in the meridian direction. .
  • the entrance pupil diameter of the imaging optical lens 30 is 2.138 mm
  • the full field of view image height is 2.950 mm
  • the diagonal field angle is 78.20°, which makes the imaging optical lens 30 wide-angle , Ultra-thin, large aperture, its on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),其自物侧至像侧依序包含:具有正屈折力的第一透镜(L1),具有负屈折力的第二透镜(L2),具有负屈折力的第三透镜(L3),具有正屈折力的第四透镜(L4),及具有负屈折力的第五透镜(L5);第二透镜(L2)物侧面的曲率半径为R3,第二透镜(L2)像侧面的曲率半径为R4,第三透镜(L3)的物侧面的曲率半径为R5,第三透镜(L3)的像侧面的曲率半径为R6,第五透镜(L5)物侧面的曲率半径为R9,第五透镜(L5)像侧面的曲率半径为R10,第四透镜(L4)的像侧面到第五透镜(L5)的物侧面的轴上距离为d8,第五透镜(L5)的轴上厚度为d9,满足下列关系式:0.60≤(R3+R4)/(R3-R4)≤0.7;-5.00≤(R5+R6)/(R5-R6)≤-4.20;0.85≤(R9+R10)/(R9-R10)≤0.89;1.10≤d8/d9≤1.20。摄像光学镜头(10)具有良好光学性能的同时,满足大光圈、广角化、超薄化的设计要求。

Description

摄像光学镜头 技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。
技术问题
为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式、四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且***对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,常见的五片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足大光圈、超薄化、广角化的设计要求。
技术解决方案
针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足大光圈、超薄化、广角化的设计要求。
为解决上述技术问题,本发明的实施方式提供了一种所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:
0.60≤(R3+R4)/(R3-R4)≤ 0.7;
-5.00≤(R5+R6)/(R5-R6) ≤-4.20;
0.85≤(R9+R10)/(R9-R10) ≤0.89;
1.10≤d8/d9≤1.20。
优选的,满足下列关系式:
-5.60≤R3/R4≤-4.00。
优选的,所述第三透镜的焦距为f3,所述摄像光学镜头整体的焦距为f,满足下列关系式:
-11.00≤f3/f≤-9.00。
优选的,所述第一透镜的焦距为f1,所述摄像光学镜头整体的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.40≤f1/f≤1.36;
-3.26≤(R1+R2)/(R1-R2)≤-0.89;
0.08≤d1/TTL≤0.25。
优选的,所述第二透镜的焦距为f2,所述摄像光学镜头整体的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-6.05≤f2/f≤-1.42;
0.02≤d3/TTL≤0.08。
优选的,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.03≤d5/TTL≤0.10。
优选的,所述第四透镜的焦距为f4,所述摄像光学镜头整体的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
0.34≤f4/f≤1.06;
0.63≤(R7+R8)/(R7-R8)≤2.11;
0.07≤d7/TTL≤0.27。
优选的,所述第五透镜的焦距为f5,所述摄像光学镜头整体的焦距为f,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
-1.22≤f5/f≤-0.39;
0.03≤d9/TTL≤0.11。
优选的,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
TTL/IH≤1.46。
优选的,所述摄像光学镜头的光圈F数为 Fno,满足下列关系式:
Fno≤1.66。
有益效果
本发明的有益效果在于: 根据本发明的摄像光学镜头具有良好光学性能,且具有大光圈、广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是实施方式一的摄像光学镜头的结构示意图;
图2是图1所示的摄像光学镜头的轴向像差示意图;
图3是图1所示的摄像光学镜头的倍率色差示意图;
图4是图1所示的摄像光学镜头的场曲及畸变示意图;
图5是实施方式二的摄像光学镜头的结构示意图;
图6是图5所示的摄像光学镜头的轴向像差示意图;
图7是图5所示的摄像光学镜头的倍率色差示意图;
图8是图5所示的摄像光学镜头的场曲及畸变示意图;
图9是实施方式三的摄像光学镜头的结构示意图;
图10是图9所示的摄像光学镜头的轴向像差示意图;
图11是图9所示的摄像光学镜头的倍率色差示意图;
图12是图9所示的摄像光学镜头的场曲及畸变示意图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
请参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。第五透镜L5和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
在本实施方式中,定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:0.60≤ (R3+R4)/(R3-R4)≤ 0.7,规定了所述第二透镜L2的形状,在条件范围内有利于球差校正,提高成像质量。
定义所述第三透镜L3的物侧面的曲率半径为R5,所述第三透镜L3的像侧面的曲率半径为R6,满足下列关系式:-5.00≤(R5+R6)/(R5-R6)≤-4.20,规定了所述第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:0.85≤(R9+R10)/(R9-R10)≤0.89,规定了所述第五透镜L5的形状,在条件范围内有利于平衡***场曲,提升成像品质。
定义所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,所述第五透镜L5的轴上厚度为d9,满足下列关系式:1.10≤d8/d9≤1.20,规定了所述第四透镜L4与所述第五透镜L5之间空气间隔距离和第五透镜厚度的比值,在条件式范围内有助于镜片的加工和镜头的组装。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:-5.60≤R3/R4≤-4.00,规定了所述第二透镜L2物方表面和像方表面曲率半径的比值,在条件式范围内有助于提高光学***性能。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-11.00≤f3/f≤-9.00,当f3/f满足条件时,可有效分配所述第三透镜L3的光焦度,对光学***的像差进行校正,进而提升成像品质。
定义所述第一透镜L1的焦距为f1,所述摄像光学镜头10整体的焦距为f,满足下列关系式:0.40≤f1/f≤1.36,规定了所述第一透镜L1的焦距与整体焦距的比值。在规定的范围内时,所述第一透镜L1具有适当的正屈折力,有利于减小***像差,同时有利于镜头向超薄化、广角化发展。
定义所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.26≤(R1+R2)/(R1-R2)≤-0.89,在条件式范围内,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正***球差。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.25,在条件式范围内,有利于实现超薄化。
定义所述第二透镜L2的焦距为f2,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-6.05≤f2/f≤-1.42,规定了第二透镜L2的焦距和所述摄像光学镜头10整体的焦距的比值,在条件式范围内,通过将第二透镜L2的负光焦度控制在合理范围,有利于矫正光学***的像差。
所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.08,在条件式范围内,有利于实现超薄化。
所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.10,在条件式范围内,有利于实现超薄化。
定义所述第四透镜L4的焦距为f4,所述摄像光学镜头10整体的焦距为f,且满足下列关系式:0.34≤f4/f≤1.06,在条件式范围内,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。
所述第四透镜L4物侧面的曲率半径为R7,以及所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:0.63≤(R7+R8)/(R7-R8)≤2.11。规定了第四透镜L4的形状,在条件式范围内,随着超薄化、广角化的发展,有利于补正轴外画角的像差等问题。
所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.07≤d7/TTL≤0.27,在条件式范围内,有利于实现超薄化。
定义所述第五透镜L5的焦距为f5,所述摄像光学镜头10整体的焦距为f,满足下列关系式:-1.22≤f5/f≤-0.39,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。
所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d9/TTL≤0.11,在条件式范围内,有利于实现超薄化。
进一步的,定义所述摄像光学镜头10的光学总长为TTL,所述摄像光学镜头10的像高为IH,满足下列关系式:TTL/IH≤1.46,有利于实现超薄化。
定义所述摄像光学镜头10的光圈F数为Fno,也即有效焦距与入射瞳孔径的比值,满足下列关系式:Fno≤1.66,有利于实现大光圈,使得成像性能好。
即当满足上述关系时,使得摄像光学镜头10实现了在具有良好光学成像性能的同时,还能满足大光圈、广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
Figure 488611dest_path_image001
其中,各符号的含义如下。
 S1: 光圈;
 R:  光学面的曲率半径、透镜时为中心曲率半径;
 R1: 第一透镜L1的物侧面的曲率半径;
 R2: 第一透镜L1的像侧面的曲率半径;
 R3: 第二透镜L2的物侧面的曲率半径;
 R4: 第二透镜L2的像侧面的曲率半径;
 R5: 第三透镜L3的物侧面的曲率半径;
 R6: 第三透镜L3的像侧面的曲率半径;
 R7: 第四透镜L4的物侧面的曲率半径;
 R8: 第四透镜L4的像侧面的曲率半径;
 R9: 第五透镜L5的物侧面的曲率半径;
 R10:第五透镜L5的像侧面的曲率半径;
 R11:光学过滤片GF的物侧面的曲率半径;
 R12:光学过滤片GF的像侧面的曲率半径;
 d:  透镜的轴上厚度与透镜之间的轴上距离;
 d0: 光圈S1到第一透镜L1的物侧面的轴上距离;
 d1: 第一透镜L1的轴上厚度;
 d2: 第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
 d3: 第二透镜L2的轴上厚度;
 d4: 第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
 d5: 第三透镜L3的轴上厚度;
 d6: 第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
 d7: 第四透镜L4的轴上厚度;
 d8: 第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
 d9: 第五透镜L5的轴上厚度;
 d10:第五透镜L5的像侧面到光学过滤片GF的物侧面的轴上距离;
 d11:光学过滤片GF的轴上厚度;
 d12:光学过滤片GF的像侧面到像面的轴上距离;
 nd: d线的折射率;
 nd1:第一透镜L1的d线的折射率;
 nd2:第二透镜L2的d线的折射率;
 nd3:第三透镜L3的d线的折射率;
 nd4:第四透镜L4的d线的折射率;
 nd5:第五透镜L5的d线的折射率;
 ndg:光学过滤片GF的d线的折射率;
 vd:阿贝数;
 v1:第一透镜L1的阿贝数;
 v2:第二透镜L2的阿贝数;
 v3:第三透镜L3的阿贝数;
 v4:第四透镜L4的阿贝数;
 v5:第五透镜L5的阿贝数;
 vg:光学过滤片GF的阿贝数。
表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure 26778dest_path_image002
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
y=(x 2/R)/[1+{1-(k+1)(x 2/R 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16                                                            (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面, P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面,P4R1、P4R2分别代表第四透镜L4的物侧面和像侧面,P5R1、P5R2分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
Figure 596299dest_path_image003
【表4】
Figure 684472dest_path_image004
图2、图3分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差和倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实施方式一、二、三中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头10的入瞳直径为2.145mm,全视场像高为2.950mm,对角线方向的视场角为77.90°,使得所述摄像光学镜头10广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第二实施方式的摄像光学镜头20的结构形式请参图5所示,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
Figure 390260dest_path_image005
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
Figure 725426dest_path_image006
表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
Figure 765932dest_path_image007
【表8】
Figure 907064dest_path_image008
图6和图7分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差和倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图,图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头20满足上述的条件式。
在本实施方式中,所述摄像光学镜头20的入瞳直径为2.134mm,全视场像高为2.950mm,对角线方向的视场角为78.20°,使得所述摄像光学镜头20广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,该第三实施方式的摄像光学镜头30的结构形式请参图9所示,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
Figure 218090dest_path_image009
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
Figure 52054dest_path_image010
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
Figure 314277dest_path_image011
【表12】
Figure 259099dest_path_image012
图10和图11分别示出了波长为470nm、510nm、555nm、610nm和650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差和倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图,图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头30满足上述的条件式。
在本实施方式中,所述摄像光学镜头30的入瞳直径为2.138mm,全视场像高为2.950mm,对角线方向的视场角为78.20°,使得所述摄像光学镜头30广角化、超薄化、大光圈,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
Figure 424633dest_path_image013
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:具有正屈折力的第一透镜,具有负屈折力的第二透镜,具有负屈折力的第三透镜,具有正屈折力的第四透镜,以及具有负屈折力的第五透镜;
    所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第三透镜的物侧面的曲率半径为R5,所述第三透镜的像侧面的曲率半径为R6,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,所述第五透镜的轴上厚度为d9,满足下列关系式:
    0.60≤(R3+R4)/(R3-R4)≤ 0.7;
    -5.00≤(R5+R6)/(R5-R6)≤-4.20;
    0.85≤(R9+R10)/(R9-R10)≤0.89;
    1.10≤d8/d9≤1.20。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,满足下列关系式:
    -5.60≤R3/R4≤-4.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述摄像光学镜头整体的焦距为f,满足下列关系式:
    -11.00≤f3/f≤-9.00。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述摄像光学镜头整体的焦距为f,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.40≤f1/f≤1.36;
    -3.26≤(R1+R2)/(R1-R2)≤-0.89;
    0.08≤d1/TTL≤0.25。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜的焦距为f2,所述摄像光学镜头整体的焦距为f,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    -6.05≤f2/f≤-1.42;
    0.02≤d3/TTL≤0.08。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.03≤d5/TTL≤0.10。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述摄像光学镜头整体的焦距为f,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    0.34≤f4/f≤1.06;
    0.63≤(R7+R8)/(R7-R8)≤2.11;
    0.07≤d7/TTL≤0.27。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述摄像光学镜头整体的焦距为f,所述摄像光学镜头的光学总长为TTL,满足下列关系式:
    -1.22≤f5/f≤-0.39;
    0.03≤d9/TTL≤0.11。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长为TTL,所述摄像光学镜头的像高为IH,满足下列关系式:
    TTL/IH≤1.46。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,满足下列关系式:
     Fno≤1.66。
PCT/CN2019/107276 2019-08-19 2019-09-23 摄像光学镜头 WO2021031281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910765627.9 2019-08-19
CN201910765627.9A CN110488464B (zh) 2019-08-19 2019-08-19 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021031281A1 true WO2021031281A1 (zh) 2021-02-25

Family

ID=68552018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107276 WO2021031281A1 (zh) 2019-08-19 2019-09-23 摄像光学镜头

Country Status (4)

Country Link
US (1) US11460674B2 (zh)
JP (1) JP6847293B2 (zh)
CN (1) CN110488464B (zh)
WO (1) WO2021031281A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110908075B (zh) * 2019-12-05 2020-10-30 瑞声通讯科技(常州)有限公司 摄像光学镜头
WO2021127825A1 (zh) * 2019-12-23 2021-07-01 诚瑞光学(常州)股份有限公司 摄像光学镜头
TWI750615B (zh) 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
WO2022174438A1 (zh) * 2021-02-22 2022-08-25 欧菲光集团股份有限公司 光学***、摄像模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903684U (zh) * 2010-12-13 2011-07-20 大立光电股份有限公司 光学取像透镜组
CN202256845U (zh) * 2011-05-26 2012-05-30 大立光电股份有限公司 光学影像镜头组
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
CN108398770A (zh) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 光学成像镜头
US20180341088A1 (en) * 2015-10-13 2018-11-29 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US10241296B1 (en) * 2018-02-14 2019-03-26 AAC Technologies Pte. Ltd. Camera lens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102023370B (zh) * 2009-09-15 2012-05-23 大立光电股份有限公司 成像透镜***
TWI440922B (zh) * 2010-11-01 2014-06-11 Largan Precision Co Ltd 光學取像透鏡組
TWI447471B (zh) * 2011-05-24 2014-08-01 Largan Precision Co Ltd 影像拾取鏡片組
TWI416163B (zh) * 2011-07-19 2013-11-21 Largan Precision Co Ltd 光學影像拾取鏡頭
CN204515219U (zh) * 2012-08-29 2015-07-29 富士胶片株式会社 摄影透镜以及具备摄影透镜的摄影装置
KR102015852B1 (ko) * 2012-12-12 2019-08-29 엘지이노텍 주식회사 촬상 렌즈
JP2015121668A (ja) * 2013-12-24 2015-07-02 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI589916B (zh) * 2015-01-06 2017-07-01 先進光電科技股份有限公司 光學成像系統(五)
CN104898255B (zh) * 2015-02-13 2017-06-13 玉晶光电(厦门)有限公司 便携式电子装置与其光学成像镜头
CN107765403A (zh) * 2017-11-17 2018-03-06 瑞声声学科技(深圳)有限公司 摄像光学镜头
CN108008521B (zh) * 2017-11-17 2020-06-09 瑞声通讯科技(常州)有限公司 摄像光学镜头
JP6362294B1 (ja) * 2018-01-19 2018-07-25 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201903684U (zh) * 2010-12-13 2011-07-20 大立光电股份有限公司 光学取像透镜组
CN202256845U (zh) * 2011-05-26 2012-05-30 大立光电股份有限公司 光学影像镜头组
US20180341088A1 (en) * 2015-10-13 2018-11-29 Samsung Electro-Mechanics Co., Ltd. Optical imaging system
US20180113281A1 (en) * 2016-10-20 2018-04-26 Newmax Technology Co., Ltd. Five-piece optical imaging lens
US10241296B1 (en) * 2018-02-14 2019-03-26 AAC Technologies Pte. Ltd. Camera lens
CN108398770A (zh) * 2018-06-05 2018-08-14 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN110488464B (zh) 2021-04-06
CN110488464A (zh) 2019-11-22
US11460674B2 (en) 2022-10-04
JP6847293B2 (ja) 2021-03-24
US20210055518A1 (en) 2021-02-25
JP2021033272A (ja) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021168910A1 (zh) 摄像光学镜头
WO2021031233A1 (zh) 摄像光学镜头
WO2021031284A1 (zh) 摄像光学镜头
WO2021031283A1 (zh) 摄像光学镜头
WO2021097929A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2021031285A1 (zh) 摄像光学镜头
WO2021031275A1 (zh) 摄像光学镜头
WO2021031281A1 (zh) 摄像光学镜头
WO2021031277A1 (zh) 摄像光学镜头
WO2021027022A1 (zh) 摄像光学镜头
WO2021031274A1 (zh) 摄像光学镜头
WO2021097952A1 (zh) 摄像光学镜头
WO2020134277A1 (zh) 摄像光学镜头
WO2021168884A1 (zh) 摄像光学镜头
WO2021253555A1 (zh) 摄像光学镜头
WO2021253518A1 (zh) 摄像光学镜头
WO2021168885A1 (zh) 摄像光学镜头
WO2021119894A1 (zh) 摄像光学镜头
WO2021127827A1 (zh) 摄像光学镜头
WO2021114241A1 (zh) 摄像光学镜头
WO2021031286A1 (zh) 摄像光学镜头
WO2021097953A1 (zh) 摄像光学镜头
WO2021237779A1 (zh) 摄像光学镜头
WO2021127844A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941873

Country of ref document: EP

Kind code of ref document: A1