WO2021029274A1 - Substrate processing apparatus, nozzle inspection method, and storage medium - Google Patents

Substrate processing apparatus, nozzle inspection method, and storage medium Download PDF

Info

Publication number
WO2021029274A1
WO2021029274A1 PCT/JP2020/029794 JP2020029794W WO2021029274A1 WO 2021029274 A1 WO2021029274 A1 WO 2021029274A1 JP 2020029794 W JP2020029794 W JP 2020029794W WO 2021029274 A1 WO2021029274 A1 WO 2021029274A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nozzle
discharge port
image
liquid
nozzle
Prior art date
Application number
PCT/JP2020/029794
Other languages
French (fr)
Japanese (ja)
Inventor
佳志 濱田
浩貴 只友
裕一朗 桾本
隆史 羽山
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2021539220A priority Critical patent/JP7313449B2/en
Priority to KR1020227007252A priority patent/KR20220044319A/en
Priority to CN202080055978.1A priority patent/CN114269481A/en
Publication of WO2021029274A1 publication Critical patent/WO2021029274A1/en
Priority to JP2023113984A priority patent/JP2023133329A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Definitions

  • the present disclosure relates to a substrate processing apparatus, a nozzle inspection method, and a storage medium.
  • Patent Document 1 discloses a configuration in which an image is taken of a discharge port portion of a liquid nozzle that supplies a treatment liquid in a substrate processing apparatus, and an abnormality is determined according to the state of a foreign substance.
  • the present disclosure provides a technique capable of more appropriately evaluating the adhesion state of deposits in the vicinity of the discharge port of the nozzle.
  • the substrate processing apparatus controls a liquid nozzle that discharges a processing liquid from a discharge port to a lower substrate, and an imaging unit that images the entire circumference of the liquid nozzle in the vicinity of the discharge port.
  • the control unit includes an image acquisition control for acquiring an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle imaged by the image pickup unit, and a control unit for all of the vicinity of the discharge port of the liquid nozzle. From the inspection image of the circumference, evaluation control for evaluating the state of adhesion of the deposit to the discharge port of the liquid nozzle is executed.
  • FIG. 1 It is a perspective view which shows the coating
  • the substrate processing apparatus comprises a liquid nozzle that discharges processing liquid from a discharge port to a lower substrate, and an imaging unit that images the entire circumference of the liquid nozzle in the vicinity of the discharge port.
  • the control unit is provided with an image acquisition control for acquiring an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle imaged by the image pickup unit, and near the discharge port of the liquid nozzle. From the inspection image of the entire circumference, evaluation control for evaluating the state of adhesion of the deposit to the discharge port of the liquid nozzle is executed.
  • the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated based on an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle.
  • the adhesion state of the deposits is evaluated based on the image of the entire circumference of the vicinity of the discharge port of the liquid nozzle, so that the possibility that the liquid nozzle operates with the deposits adhered is reduced. Can be made to. Therefore, it is possible to more appropriately evaluate the adhered state of the deposits in the vicinity of the discharge port of the nozzle.
  • the control unit may further execute a determination control for determining an operation to be executed for the liquid nozzle based on the evaluation result in the evaluation control.
  • control unit determines the operation to be performed on the liquid nozzle based on the evaluation result, it is possible to take appropriate measures according to the evaluation result, and the liquid nozzle Appropriate measures can be taken in consideration of abnormalities.
  • the control unit estimates a region of deposits adhering to the liquid nozzle from the inspection image in the evaluation control, and discharges the liquid nozzle based on the pixel value of the estimated region. It is possible to evaluate the state of adhesion of the deposits to the liquid nozzle and determine the presence or absence of an abnormality in the liquid nozzle based on the evaluation result in the determination control.
  • the presence or absence of an abnormality can be evaluated substantially according to the amount of adhered matter, and the adhered state of the adhered matter can be evaluated more appropriately.
  • the control unit determines that the deposit attached to the liquid nozzle is a liquid based on the outer shape or size of the region in which the deposit attached to the liquid nozzle is imaged, which is estimated from the inspection image. It can be an aspect of estimating whether it is a solid or a solid.
  • control unit can be in a mode of estimating the adhesion position of the deposit on the liquid nozzle based on the inspection image.
  • control unit may select a cleaning method for the liquid nozzle based on the evaluation result.
  • the nozzle inspection method is a nozzle inspection method for a substrate processing apparatus having a liquid nozzle for discharging a treatment liquid from a discharge port to a lower substrate, wherein the discharge port of the liquid nozzle is provided.
  • An inspection image of the entire circumference of the vicinity of the liquid nozzle is acquired, and the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated from the inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle. ..
  • the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated based on an image obtained by capturing the entire circumference of the vicinity of the discharge port of the liquid nozzle. It is possible to reduce the possibility that the liquid nozzle operates in the state. Therefore, it is possible to more appropriately evaluate the adhesion state of the deposits in the vicinity of the discharge port of the nozzle.
  • the computer-readable storage medium stores a program for causing the device to perform the nozzle inspection method described above.
  • the coating / developing device 1 performs a process of applying a resist material to the surface Wa of the wafer (substrate) W to form a resist film before the exposure process by the exposure device E1.
  • the coating / developing device 1 develops a resist film formed on the surface Wa of the wafer W after the exposure process by the exposure device E1.
  • the wafer W has a disk shape, but it may have a shape in which a part of a circle is cut out, or a wafer having a shape other than a circle such as a polygon may be used. ..
  • the coating / developing device 1 controls the carrier block S1, the processing block S2, the interface block S3, the control device CU that functions as the control means of the coating / developing device 1, and the control device CU.
  • a display unit D capable of displaying a processing result by the apparatus CU is provided.
  • the carrier block S1, the processing block S2, the interface block S3, and the exposure apparatus E1 are arranged in series in this order.
  • the carrier block S1 has a carrier station 12 and a carry-in / carry-out unit 13.
  • the carrier station 12 supports a plurality of carriers 11.
  • the carrier 11 accommodates a plurality of wafers W in a sealed state.
  • the carrier 11 has an opening / closing door (not shown) for loading / unloading the wafer W on one side surface 11a side.
  • the carrier 11 is detachably installed on the carrier station 12 so that the side surface 11a faces the loading / unloading portion 13 side.
  • the carry-in / carry-out unit 13 has an opening / closing door 13a corresponding to each of the plurality of carriers 11 on the carrier station 12.
  • the opening / closing door of the side surface 11a and the opening / closing door 13a of the carry-in / carry-out section 13 are opened at the same time, the inside of the carrier 11 and the inside of the carry-in / carry-out section 13 communicate with each other.
  • the carry-in / carry-out unit 13 has a built-in delivery arm A1.
  • the transfer arm A1 takes out the wafer W from the carrier 11 and passes it to the processing block S2.
  • the transfer arm A1 receives the wafer W from the processing block S2 and returns it to the carrier 11.
  • the processing block S2 is adjacent to the carrier block S1 and is connected to the carrier block S1.
  • the processing block S2 includes a lower layer antireflection film forming (BCT) block 14, a resist film forming (COT) block 15, and an upper layer antireflection film forming (TCT) block 16. It has a development processing (DEV) block 17.
  • the DEV block 17, BCT block 14, COT block 15, and TCT block 16 are arranged side by side in this order from the bottom surface side.
  • the BCT block 14 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A2 for conveying the wafer W to these units.
  • the coating unit coats the surface Wa of the wafer W with a chemical solution for forming an antireflection film.
  • the heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, the lower layer antireflection film is formed on the surface Wa of the wafer W.
  • the COT block 15 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A3 for conveying the wafer W to these units.
  • the coating unit coats a chemical solution (resist material) for forming a resist film on the lower antireflection film.
  • the heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, a resist film is formed on the lower antireflection film of the wafer W.
  • the resist material may be a positive type or a negative type.
  • the TCT block 16 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A4 for conveying the wafer W to these units.
  • the coating unit coats a chemical solution for forming an antireflection film on the resist film.
  • the heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, an upper antireflection film is formed on the resist film of the wafer W.
  • the DEV block 17 has a plurality of developing processing units (board processing apparatus) U1 and a plurality of heating / cooling units (heat treatment unit) U2. Further, the DEV block 17 incorporates a transfer arm A5 that conveys the wafer W to these units, and a transfer arm A6 that conveys the wafer W between the front and rear of the processing block S2 without passing through these units.
  • developing processing units board processing apparatus
  • heating / cooling units heat treatment unit
  • the development processing unit U1 develops the exposed resist film as described later.
  • the heating / cooling unit U2 heats the resist film on the wafer W, for example, by heating the wafer W with a hot plate.
  • the heating / cooling unit U2 cools the heated wafer W with, for example, a cooling plate.
  • the heating / cooling unit U2 performs heat treatment such as post-exposure baking (PEB) and post-baking (PB).
  • PEB is a process of heating the resist film before the development process.
  • PB is a process of heating the resist film after the development process.
  • a shelf unit U10 is provided on the carrier block S1 side of the processing block S2.
  • the shelf unit U10 has a plurality of cells C30 to C38.
  • the cells C30 to C38 are arranged side by side in the vertical direction (Z-axis direction) between the DEV block 17 and the TCT block 16.
  • An elevating arm A7 is provided in the vicinity of the shelf unit U10. The elevating arm A7 conveys the wafer W between cells C30 to C38.
  • a shelf unit U11 is provided on the interface block S3 side of the processing block S2.
  • the shelf unit U11 has a plurality of cells C40 to C42.
  • the cells C40 to C42 are arranged side by side in the vertical direction (Z-axis direction) adjacent to the DEV block 17.
  • the interface block S3 is located between the processing block S2 and the exposure device E1, and is connected to each of the processing block S2 and the exposure device E1.
  • the interface block S3 has a built-in transfer arm A8 as shown in FIGS. 2 and 3.
  • the transfer arm A8 transfers the wafer W from the shelf unit U11 of the processing block S2 to the exposure device E1.
  • the delivery arm A8 receives the wafer W from the exposure apparatus E1 and returns the wafer W to the shelf unit U11.
  • the control device CU is composed of one or a plurality of control computers.
  • the control device 100 has a circuit 120 shown in FIG.
  • the circuit 120 has one or more processors 121, a memory 122, a storage 123, and an input / output port 124.
  • the storage 123 has a computer-readable storage medium, such as a hard disk.
  • the storage medium stores a program for causing the control device CU to execute the process processing procedure described later.
  • the storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 122 temporarily stores the program loaded from the storage medium of the storage 123 and the calculation result by the processor 121.
  • the processor 121 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 122.
  • the input / output port 124 inputs / outputs an electric signal to / from a member to be controlled according to a command from the processor 121.
  • each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
  • ASIC Application Specific Integrated Circuit
  • control device CU has a storage unit CU1 and a control unit CU2 as shown in FIG.
  • the storage unit CU1 stores a program for operating each part of the coating / developing device 1 and each part of the exposure device E1.
  • the storage unit CU1 also stores various types of data (for example, foreign matter size data and foreign matter position data) and captured images captured by the imaging unit 26.
  • the storage unit CU1 is, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or an optical magnetic recording disk.
  • the program may be included in an external storage device separate from the storage unit CU1 or in an intangible medium such as a propagation signal.
  • the program may be installed in the storage unit CU1 from these other media, and the program may be stored in the storage unit CU1.
  • the control unit CU2 controls the operation of each part of the coating / developing device 1 and each part of the exposure device E1 based on the program read from the storage unit CU1.
  • the control device CU is connected to the display unit D, and the processing condition setting screen, the processing progress of the wafer W by the coating / developing device 1, the processing result, and the like may be displayed on the display unit D.
  • the coating / developing apparatus 1 may further have an input unit (not shown) in which an operator can input processing conditions.
  • the control device CU may operate each part of the coating / developing device 1 and each part of the exposure device E1 according to the conditions input to the control device CU through the input unit.
  • Examples of the input unit include a mouse, a touch panel, a pen tablet, and a keyboard.
  • the carrier 11 is installed in the carrier station 12. At this time, one side surface 11a of the carrier 11 is directed to the opening / closing door 13a of the carry-in / carry-out portion 13. Subsequently, both the opening / closing door of the carrier 11 and the opening / closing door 13a of the carry-in / carry-out portion 13 are opened, the wafer W in the carrier 11 is taken out by the delivery arm A1, and any of the shelf units U10 of the processing block S2. It is sequentially transported to that cell.
  • the wafer W is sequentially conveyed to the cell C33 corresponding to the BCT block 14 by the elevating arm A7.
  • the wafer W conveyed to the cell C33 is conveyed to each unit in the BCT block 14 by the transfer arm A2.
  • a lower antireflection film is formed on the surface Wa of the wafer W in the process of the wafer W being conveyed in the BCT block 14 by the transfer arm A2.
  • the wafer W on which the lower antireflection film is formed is conveyed to the cell C34 above the cell C33 by the transfer arm A2.
  • the wafer W conveyed to the cell C34 is conveyed to the cell C35 corresponding to the COT block 15 by the elevating arm A7.
  • the wafer W conveyed to the cell C35 is conveyed to each unit in the COT block 15 by the transfer arm A3.
  • a resist film is formed on the lower antireflection film in the process in which the wafer W is conveyed in the COT block 15 by the transfer arm A3.
  • the wafer W on which the resist film is formed is conveyed to the cell C36 above the cell C35 by the transfer arm A3.
  • the wafer W conveyed to the cell C36 is conveyed to the cell C37 corresponding to the TCT block 16 by the elevating arm A7.
  • the wafer W conveyed to the cell C37 is conveyed to each unit in the TCT block 16 by the transfer arm A4.
  • An upper antireflection film is formed on the resist film in the process in which the wafer W is conveyed in the TCT block 16 by the transfer arm A4.
  • the wafer W on which the upper antireflection film is formed is conveyed to the cell C38 above the cell C37 by the transfer arm A4.
  • the wafer W conveyed to the cell C38 is conveyed to the cell C32 by the elevating arm A7 and then to the cell C42 of the shelf unit U11 by the transfer arm A6.
  • the wafer W conveyed to the cell C42 is passed to the exposure apparatus E1 by the transfer arm A8 of the interface block S3, and the resist film is exposed in the exposure apparatus E1.
  • the exposed wafer W is conveyed to cells C40 and C41 below cell C42 by the transfer arm A8.
  • the wafer W conveyed to the cells C40 and C41 is conveyed to each unit in the DEV block 17 by the transfer arm A5, and the developing process is performed. As a result, a resist pattern (concavo-convex pattern) is formed on the surface Wa of the wafer W.
  • the wafer W on which the resist pattern is formed is conveyed by the transfer arm A5 to the cells C30 and C31 of the shelf unit U10 corresponding to the DEV block 17.
  • the wafer W conveyed to the cells C30 and C31 is conveyed to the cell accessible by the transfer arm A1 by the elevating arm A7, and returned into the carrier 11 by the transfer arm A1.
  • the configuration and operation of the coating / developing device 1 described above is only an example.
  • the coating / developing device 1 may include a liquid processing unit such as a coating unit or a developing processing unit, a pretreatment / posttreatment unit such as a heating / cooling unit, and a transport device. That is, the number, type, layout, etc. of each of these units can be changed as appropriate.
  • the developing processing unit U1 sequentially executes the ejection process of ejecting the processing liquid onto the surface Wa of the wafer W one by one for the plurality of wafers W.
  • the developing processing unit U1 includes a rotation holding unit 20, an elevating device 22, and a processing liquid supply unit 24.
  • the rotation holding portion 20 has a main body portion 20a incorporating a power source such as an electric motor, a rotating shaft 20b extending vertically upward from the main body portion 20a, and a chuck 20c provided at the tip of the rotating shaft 20b.
  • the main body 20a rotates the rotating shaft 20b and the chuck 20c by a power source.
  • the chuck 20c supports the central portion of the wafer W and holds the wafer W substantially horizontally by suction, for example. That is, the rotation holding unit 20 rotates the wafer W around a central axis (vertical axis) perpendicular to the surface Wa of the wafer W in a state where the attitude of the wafer W is substantially horizontal. As shown in FIG. 4, the rotation holding unit 20 rotates the wafer W, for example, clockwise when viewed from above.
  • the lifting device 22 is attached to the rotation holding portion 20 and raises and lowers the rotation holding portion 20.
  • the elevating device 22 has an ascending position (delivery position) for transferring the wafer W between the transfer arm A5 and the chuck 20c and a descending position (developing position) for performing liquid treatment.
  • the rotation holding portion 20 (chuck 20c) is moved up and down between them.
  • a cup 30 is provided around the rotation holding portion 20.
  • the processing liquid supplied to the surface Wa of the wafer W is shaken off to the surroundings and drops, and the cup 30 functions as a container for receiving the dropped processing liquid.
  • the cup 30 has a ring-shaped bottom plate 31 surrounding the rotation holding portion 20, a cylindrical outer wall 32 protruding vertically upward from the outer edge of the bottom plate 31, and a cylindrical inner wall 33 protruding vertically upward from the inner edge of the bottom plate 31. And have.
  • the entire part of the outer wall 32 is located outside the wafer W held by the chuck 20c.
  • the upper end 32a of the outer wall 32 is located above the wafer W held by the rotation holding portion 20 in the lowered position.
  • the portion of the outer wall 32 on the upper end 32a side is an inclined wall portion 32b that is inclined inward as it goes upward.
  • the entire portion of the inner wall 33 is located inside the peripheral edge of the wafer W held by the chuck 20c.
  • the upper end 33a of the inner wall 33 is located below the wafer W held by the rotation holding portion 20 in the lowered position.
  • a partition wall 34 is provided between the inner wall 33 and the outer wall 32 so as to project vertically upward from the upper surface of the bottom plate 31. That is, the partition wall 34 surrounds the inner wall 33.
  • a liquid discharge hole 31a is formed in a portion of the bottom plate 31 between the outer wall 32 and the partition wall 34.
  • a drainage pipe 35 is connected to the liquid drainage hole 31a.
  • a gas discharge hole 31b is formed in a portion of the bottom plate 31 between the partition wall 34 and the inner wall 33.
  • An exhaust pipe 36 is connected to the gas discharge hole 31b.
  • An umbrella-shaped portion 37 projecting outward from the partition wall 34 is provided on the inner wall 33.
  • the processing liquid that has been shaken off from the wafer W to the outside is guided between the outer wall 32 and the partition wall 34, and is discharged from the liquid discharge hole 31a.
  • Gas or the like generated from the treatment liquid enters between the partition wall 34 and the inner wall 33, and the gas is discharged from the gas discharge hole 31b.
  • the upper part of the space surrounded by the inner wall 33 is closed by the partition plate 38.
  • the main body 20a of the rotation holding portion 20 is located below the partition plate 38.
  • the chuck 20c is located above the partition plate 38.
  • the rotating shaft 20b is inserted into a through hole formed in the central portion of the partition plate 38.
  • the processing liquid supply unit 24 includes a processing liquid supply source 24a, a head unit 24c, a moving body 24d, and an imaging unit 26.
  • the supply source 24a includes a storage container for the treatment liquid, a pump, a valve, and the like.
  • the treatment liquid is, for example, a cleaning liquid (rinsing liquid) or a developing liquid.
  • the cleaning liquid is, for example, pure water or DIW (Deionized Water).
  • the head portion 24c is connected to the supply source 24a via the supply pipe 24b.
  • the head portion 24c is located above the surface Wa of the wafer W when the treatment liquid is supplied.
  • the liquid nozzle N provided in the head portion 24c opens downward toward the surface Wa of the wafer W. Therefore, the head portion 24c receives the control signal from the control device CU and discharges the processing liquid supplied from the supply source 24a from the liquid nozzle N to the surface Wa of the wafer W.
  • the moving body 24d is connected to the head portion 24c via the arm 24e.
  • the moving body 24d moves in the horizontal direction (for example, the X-axis direction) on the guide rail (not shown) in response to the control signal from the control device CU.
  • the head portion 24c is above the wafer W in the descending position and orthogonal to the central axis of the wafer W in the discharge process of discharging the processing liquid from the discharge port Na of the liquid nozzle N to the surface Wa of the wafer W. It moves in the horizontal direction along the radial direction of the wafer W on the straight line.
  • the moving body 24d raises and lowers the arm 24e in response to a control signal from the control device CU.
  • the head portion 24c moves in the vertical direction and approaches or separates from the surface Wa of the wafer W.
  • the imaging unit 26 is provided near the tip of the head unit 24c as shown in FIG. 4, and moves together with the head unit 24c.
  • the imaging unit 26 images the discharge port Na portion of the liquid nozzle N.
  • the captured image captured by the imaging unit 26 is transmitted to the control unit CU2 of the control device CU.
  • the control unit CU2 performs image processing on the received captured image to acquire information on the presence / absence of deposits in the vicinity of the discharge port Na of the liquid nozzle N, the amount of deposits, and the like.
  • Examples of the deposits in the present embodiment include droplets, solids (solidified / crystallized treatment liquid, foreign matter) and the like.
  • the control unit CU2 determines an abnormality related to the liquid nozzle N based on the result of deposits in the vicinity of the discharge port Na of the liquid nozzle N, and if it is abnormal, cleans the liquid nozzle N. In addition, if the abnormality continues, take measures in the event of an abnormality (for example, issuing an alarm, notifying an abnormality, etc.).
  • the imaging unit 26 has a configuration capable of imaging the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N.
  • the vicinity of the discharge port Na of the liquid nozzle N is a region to which the processing liquid discharged from the discharge port Na can adhere.
  • the region to which the treatment liquid adheres can be changed according to the discharge speed of the treatment liquid (discharge amount per unit time), the rotation speed of the wafer W, and the like. Therefore, a place where the treatment liquid can adhere during normal operation can be treated as the vicinity of the discharge port Na. Specifically, for example, it is about 0.5 mm to several mm from the lower end of the discharge port Na.
  • the treatment liquid When the treatment liquid is discharged from the discharge port Na, if the treatment liquid adheres to the lower end of the discharge port Na or its peripheral edge and remains, when the treatment liquid is discharged again, the deposits are attached to the wafer W together with the treatment liquid in the initial stage of discharge. May flow towards.
  • the amount of the processing liquid supplied to the wafer W is large, the processing liquid in the initial stage of ejection is discharged from the wafer W, so that the deposits are also discharged from the wafer W.
  • the supply amount of the treatment liquid is small, the treatment liquid in the initial stage of discharge also remains on the wafer W, so that the deposits remain on the wafer W.
  • the imaging unit 26 images the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. It is sufficient that the imaging unit 26 can image the deposits on the entire circumference in the vicinity of the discharge port Na. Therefore, the image acquired by the imaging unit 26 may include an image of the entire circumference at least in a part near the discharge port Na. Further, the image obtained by capturing the entire circumference of the liquid nozzle N near the discharge port Na does not have to be captured at the same time, and is a combination of a plurality of images captured with a slight time difference. It may be.
  • the deposits adhering to the vicinity of the discharge port Na are mainly derived from the treatment liquid discharged from the liquid nozzle N, and the state may change due to drying, moisture absorption, etc. after a certain period of time. ..
  • the imaging unit 26 acquires an image of the entire circumference by capturing a plurality of images in a state having a time difference (for example, several seconds to several minutes) so that the state change of the deposits does not occur. May be.
  • the configuration of the image pickup unit 26 for imaging the entire circumference is not particularly limited.
  • 6 to 8 are views for explaining a configuration example of the imaging unit 26.
  • FIG. 6A shows a configuration in which the imaging unit 26 is configured by a plurality of cameras 27 to image the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na.
  • FIG. 6A shows an example in which three cameras 27 are arranged, but the number of imaging units 26 is not particularly limited.
  • the plurality of imaging units 26 By arranging the plurality of imaging units 26 so that the entire circumference in the vicinity of the discharge port Na can be imaged from different directions, it is possible to acquire an image relating to the entire circumference in the vicinity of the discharge port Na of the liquid nozzle N.
  • the angle between the line connecting the adjacent cameras 27 and the discharge port Na of the liquid nozzle N and the line connecting the own camera and the discharge port Na is 120, respectively.
  • the three cameras 27 can be evenly arranged in the circumferential direction so as to be °. As a result, the entire circumference in the vicinity of the discharge port Na can be uniformly imaged by the three cameras 27.
  • the plurality of cameras 27 may be arranged on the same horizontal plane (XY plane), but for example, the height positions in the vertical direction (Z-axis direction) may be arranged differently from each other.
  • the camera 27 may be provided, for example, in the processing liquid supply unit 24, or may be attached to the outer wall 32 or the like of the cup 30. That is, the position (member) to which the camera 27 is attached to the developing processing unit U1 is not particularly limited.
  • FIG. 6B shows a state in which the imaging unit 26 is composed of one camera 27 and one mirror 28.
  • the camera 27 captures an image of the vicinity of the discharge port Na of the liquid nozzle N reflected on the mirror 28.
  • the mirror 28 is arranged below the discharge port Na (in the negative direction of the Z axis) as shown in FIG. 6B, and the angle of the reflecting surface thereof is adjusted according to the position of the camera 27.
  • the camera 27 is arranged so as to face the reflecting surface of the mirror 28. As a result, the camera 27 can capture an image in the vicinity of the discharge port Na reflected by the mirror 28.
  • the mirror 28 it is possible to take an image of the vicinity of the discharge port Na on the blind spot side from the camera 27, and acquire an image of the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. can do.
  • the arrangement of the camera 27 and the mirror 28 can be changed as appropriate.
  • FIG. 6C shows a state in which the imaging unit 26 is configured by one camera 27.
  • the camera 27 is arranged directly below the discharge port Na of the liquid nozzle N (in the negative direction of the Z axis).
  • the camera 27 can take an image of the entire circumference of the lower end of the discharge port Na of the liquid nozzle N at one time. That is, even in the case of the configuration shown in FIG. 6C, it is possible to take an image of the entire circumference in the vicinity of the discharge port Na.
  • the camera 27 shown in FIG. 6 (c) is not only at the lower end of the discharge port Na but also above the lower end.
  • the camera 27 is arranged directly under the discharge port Na, and the mirror 28 can be used to capture an image of the side surface of the liquid nozzle N near the discharge port Na with the camera 27. It may be configured as such.
  • FIG. 7 is an example of the arrangement of the camera 27 and the mirror 28, in which the camera 27 is attached to the arm 24e connected to the head portion 24c and the mirror 28 is arranged below the liquid nozzle N.
  • the height position of the arm 24e is not limited to the configuration shown in FIG. 4, and can be appropriately changed by changing the configuration of other members such as changing the configuration of the head portion 24c.
  • a substrate bare wafer
  • the camera 27 captures an image of the vicinity of the discharge port Na of the liquid nozzle N reflected on the bare wafer.
  • FIG. 8 is another example of the arrangement of the camera 27 and the mirror 28, which is an example in which the camera 27 is attached to the arm 24e connected to the head portion 24c and the mirror 28 is arranged around the liquid nozzle N.
  • FIG. 8A is a side view of the above configuration
  • FIG. 8B is a diagram schematically showing the positional relationship between the liquid nozzle N, the camera 27, and the mirror 28 when viewed from above. is there.
  • the mounting position of the camera 27 is the same as that shown in FIG. 7, but the arrangement of the mirror 28 is different.
  • the mirror 28 is arranged so that the outer wall on the side surface of the liquid nozzle N, which is a blind spot with respect to the camera 27, is reflected on the mirror 28.
  • the camera 27 can also take an image of the blind spot by taking an image of the side surface of the liquid nozzle N reflected on the mirror 28. With such a configuration, the camera 27 can take an image of the entire circumference of the side surface of the liquid nozzle N with one image.
  • the configuration of the imaging unit 26 is not particularly limited, and various configurations can be applied. The configuration examples shown above may be combined. Further, a camera 27 having a moving mechanism whose position can be changed with respect to the liquid nozzle N may be used as the imaging unit 26. When the camera 27 is arranged near the discharge port Na, the configuration of each part may be appropriately adjusted so that the camera 27 and the mechanism for supporting the camera 27 do not interfere with the operation of each part of the developing processing unit U1. it can.
  • FIG. 9 is a flow chart illustrating a series of procedures related to the inspection method.
  • FIGS. 10 and 13 are flow charts for explaining the procedure related to image processing and evaluation of the adhesion state
  • FIGS. 11, 12, 14-16 explain an example of an image used when carrying out the above procedure. It is a figure to do.
  • step S01 a reference image for evaluating the state of deposits in the vicinity of the discharge port Na of the liquid nozzle N is acquired.
  • This reference image is an image of the vicinity of the discharge port Na of the liquid nozzle N in a state where no deposits are attached, and corresponds to an image of the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N acquired at the time of inspection.
  • the control unit CU2 controls the image pickup unit 26 to acquire a reference image related to the vicinity of the discharge port Na of the liquid nozzle N.
  • the acquired reference image may be stored in the storage unit CU1.
  • step S02 the control unit CU2 acquires an inspection image relating to the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N (image acquisition control).
  • the inspection image is an image to be evaluated for deposits and the like.
  • the control unit CU2 controls the image pickup unit 26 to acquire an inspection image related to the vicinity of the discharge port Na of the liquid nozzle N.
  • the timing of executing step S02 may be a preset timing (for example, after the processing related to the wafer W in lot units is completed). Further, the step S02 may be executed based on the result of evaluating the wafer W or the like after the processing in the developing processing unit U1.
  • a series of a plurality of images may be treated as one inspection image.
  • the acquired inspection image may be stored in the storage unit CU1.
  • step S03 the control unit CU2 performs image processing related to the evaluation of the deposit using the reference image acquired in step S01 and the inspection image acquired in step S02 (evaluation control).
  • step S04 an evaluation relating to the adhered state of the deposit is performed based on the image processed in step S03 (evaluation control). The above steps S03 and S04 will be described later.
  • step S05 as a result of the evaluation of the adhesion state in step S04, it is determined whether or not the liquid nozzle N has an abnormality (determination control).
  • the determination as to whether or not there is an abnormality at this stage is a determination as to whether or not the wafer W can be processed as it is using the liquid nozzle N. Therefore, when it is determined that there is no abnormality, it is determined that there is no operation to be executed for the liquid nozzle N based on the inspection result of the liquid nozzle N, and a series of processes is terminated.
  • step S06 when it is determined that there is an abnormality in this determination, it is determined whether or not it is necessary to perform an operation to be executed for the liquid nozzle N such as forced stop (abnormal stop) based on the abnormality of the device. (Judgment control).
  • forced stop abnormal stop
  • step S06 when it is determined that there is an abnormality, it is the case where it is detected that deposits are attached in the vicinity of the discharge port Na of the liquid nozzle N. In such a case, the vicinity of the discharge port Na of the normal liquid nozzle N is detected. It will be dealt with by cleaning the.
  • step S07 the control unit CU2 forcibly stops the substrate processing in the developing processing unit U1.
  • step S06 it may be configured to determine whether to execute the abnormal stop or the alarm notification.
  • step S08 the vicinity of the discharge port Na of the liquid nozzle N is cleaned (determination control / cleaning control).
  • the control unit CU2 controls the developing processing unit U1 and performs processing related to cleaning the liquid nozzle N.
  • the cleaning method of the liquid nozzle N in step S08 may be changed based on the evaluation result of the adhered state. This point will be described later.
  • step S11 the control unit CU2 calculates the difference from the reference image and the inspection image held in the storage unit CU1. By calculating the difference, it is possible to grasp how much each pixel in the inspection image changes with respect to the reference image from the luminance value. It is considered that most of the changes in the inspection image with respect to the reference image, that is, the portions where the luminance value is different from 0, are affected by the adhesion of deposits. That is, the region of the deposit can be estimated by performing the process of creating the image related to the difference.
  • step S12 the control unit CU2 calculates the average value of the brightness values at each pixel in the difference image. That is, the average value of the brightness values of all the pixels included in the difference image is calculated.
  • step S13 the abnormality determination is performed based on the average value of the brightness values calculated in step S12. Specifically, when the average value is equal to or greater than the threshold value, it is determined that there is an abnormality in the vicinity of the discharge port Na of the liquid nozzle N. If it is determined in step S13 that there is an abnormality, the control unit CU2 further determines based on the procedure shown in FIG. 9, and controls abnormal stop or cleaning.
  • FIG. 11 shows an example of an image obtained by capturing the vicinity of the discharge port Na of the liquid nozzle N from an oblique downward direction.
  • FIG. 11A corresponds to a reference image in the vicinity of the discharge port Na of the liquid nozzle N.
  • FIG. 11B is an image corresponding to an inspection image, and is an image showing a state in which deposits are almost absent. The result of obtaining the difference between these two images is shown in FIG. 11 (c).
  • FIG. 11C is a monochrome image in which the difference between the brightness values (pixel values) in each pixel of the two images is shown at the position corresponding to each pixel.
  • the difference in luminance value may be calculated after grayscale of each image.
  • FIG. 11C shows the luminance value (0 to 255) of each pixel as a gray scale, and the larger the luminance value is, the whiter it becomes.
  • FIG. 11C shows a state in which the brightness of the entire image is adjusted for reference.
  • a method of calculating the pixel value of each pixel by a method different from grayscale may be used.
  • FIG. 11D is an image corresponding to an inspection image different from that of FIG. 11B, and is an image showing a state in which deposits are present near the tip of the discharge port Na of the liquid nozzle N. is there.
  • FIG. 11E shows a state in which the brightness of the entire image is adjusted for reference.
  • FIG. 12 shows an example of an image obtained by capturing the vicinity of the discharge port Na of the liquid nozzle N from directly below the discharge port Na.
  • FIG. 12A corresponds to a reference image in the vicinity of the discharge port Na of the liquid nozzle N.
  • FIG. 12B is an image showing a state in which deposits are present near the tip of the discharge port Na of the liquid nozzle N. The result of calculating the difference between these two images is shown in FIG. 12 (c).
  • FIG. 12 shows an example of an image obtained by capturing the vicinity of the discharge port Na of the liquid nozzle N from directly below the discharge port Na.
  • FIG. 12 (c) is an image showing the result of calculating the difference luminance value by the same method as in FIGS. 11 (c) and 11 (e). Further, FIG. 12C also shows a state in which the brightness of the entire image is adjusted. As shown in FIG. 12 (c), in the region where the deposits are considered to be attached, there are pixels having a certain brightness value (appearing white). In this case as well, the average value of the brightness values at all pixels is considered to be large to some extent, so if the average value is larger than a predetermined threshold value, deposits adhere to the vicinity of the discharge port Na of the liquid nozzle N. It can be configured to determine that there is an abnormality.
  • step S21 the control unit CU2 calculates the difference from the reference image and the inspection image held in the storage unit CU1. This procedure is the same as in step S11.
  • step S22 the control unit CU2 estimates the adhesion position of the deposit in the vicinity of the discharge port Na of the liquid nozzle N based on the nozzle shape information in the vicinity of the discharge port Na of the liquid nozzle N.
  • the nozzle shape information specifies the shape of the liquid nozzle N.
  • the outer shape of the lower end portion of the liquid nozzle N that is, the contour of the lower end portion is the nozzle shape information, but for example, depending on the orientation of the liquid nozzle N in the inspection image, information for specifying the shape of the other portion may be obtained. It can be nozzle shape information.
  • the nozzle shape information refers to information that can specify the shape of the nozzle in a state where no deposits are attached.
  • the contour of the lower end of the discharge port Na of the liquid nozzle N can be specified in the difference image between the reference image and the inspection image. That is, as shown in FIG. 14A, the contour of the lower end of the discharge port Na of the liquid nozzle N, that is, the boundary portion between the lower end surface and the inner wall and the boundary portion with the outer wall is specified from the difference image. Can be done.
  • the corresponding information may be stored in advance in the storage unit CU1 of the control device CU.
  • the image in the vicinity of the discharge port Na of the liquid nozzle N imaged by the image pickup unit 26 is basically the one in which the image pickup position is basically determined as described above. Therefore, assuming that the position of the lower end of the discharge port Na of the liquid nozzle N in the inspection image is basically the same, the nozzle shape information of the discharge port Na of the liquid nozzle N included in the inspection image may be retained in advance. it can.
  • the adhesion position of the deposit can be estimated by using the nozzle shape information included in the difference image.
  • the estimation of the adhesion position of the deposit at this stage describes the case where the adhesion position is on the inner wall side or the outer wall side.
  • a more detailed adhesion position for example, in which direction the deposit is present with reference to the center of the liquid nozzle N, how far the liquid nozzle N is from the discharge port Na, and the like are determined. It may be an estimated configuration.
  • the adhesion position (positional relationship in the vertical direction, the radial direction, etc.) that can be estimated from the image may change depending on which side the inspection image is taken from.
  • step S23 the control unit CU2 evaluates the amount of deposits attached from the number of pixels in which the deposits are imaged for each attachment position.
  • FIG. 14 (b) shows an example in which the image shown in FIG. 12 (c) is subjected to a binarization process based on a predetermined threshold value, and then only the region in which the deposit on the outer wall side is considered to be imaged is extracted. ing.
  • FIG. 14 (c) shows an example in which the image shown in FIG. 12 (c) is subjected to binarization processing based on a predetermined threshold value, and then only the region in which the deposit on the inner wall side is considered to be imaged is extracted. Is shown.
  • the pixels in which the deposits adhered to the outer wall side / inner wall side of the liquid nozzle N are imaged.
  • the number of (number of pixels) can be calculated. For example, in the example shown in FIG. 14B, the number of pixels in which the deposit is imaged on the outer wall side can be counted as 12649 pixels. Further, in the example shown in FIG. 14C, the number of pixels in which the deposit is imaged on the inner wall side can be counted as 5426 pixels. In this way, the amount of deposits can be evaluated from the number of pixels in which the deposits are imaged, that is, the area where the deposits are imaged. The amount of adhesion calculated in this way can be used as information when determining the presence or absence of an abnormality.
  • step S24 the control unit CU2 evaluates the type of deposit. As described above, the types of deposits are roughly divided into liquids (droplets) and solids (solids). In step S24, the control unit CU2 distinguishes between the two types based on the inspection image or the difference image.
  • FIG. 15A is an inspection image of a state in which droplets are attached to the outer wall side near the discharge port Na of the liquid nozzle N.
  • FIG. 15B is an image obtained by binarizing the inspection image shown in FIG. 15A based on a predetermined threshold value.
  • FIG. 15C is an inspection image in which a solid substance is attached to the outer wall side near the discharge port Na of the liquid nozzle N.
  • FIG. 15D is an image obtained by performing binarization processing on the inspection image shown in FIG. 15C based on a predetermined threshold value.
  • the appearance of the captured image also changes between the case where the droplets adhere and the case where the solid matter adheres. Specifically, when droplets adhere, the outer shape of the adhered matter becomes gentle and the way of shining becomes uniform, so that the shape becomes gentle even on the image. On the other hand, when a solid substance adheres, fine irregularities may remain on the outer shape of the adhered substance (of course, the shape may differ depending on the solid substance), so that the way of shining becomes sparse and the unevenness remains clearly on the image. The above differences can also be grasped in the binarized images shown in FIGS. 15 (b) and 15 (d).
  • the configuration may be such that the type of the deposit is directly determined from the inspection image (image shown in FIGS. 15A and 15C) instead of the binarized image.
  • polar coordinate expansion may be performed when estimating the outer shape (unevenness).
  • the judgment may be made based on the size (number of pixels) of the region where one deposit is imaged. For example, since the droplet does not exist as a single substance unless it becomes a certain size, it can be estimated that the region where the deposit is imaged becomes large to some extent in the image obtained by capturing the droplet. On the other hand, a solid substance may exist alone even if it is smaller than a droplet. Based on this, based on the size (number of pixels) of the continuous area estimated to have imaged one deposit, it is determined that there are droplets in the area larger than the predetermined threshold value, and other than that.
  • the method for determining the type of deposits in the vicinity of the discharge port Na of the liquid nozzle N from the inspection image or the image processed from the inspection image is not particularly limited. Various methods can be applied.
  • step S25 the control unit CU2 determines the presence or absence of an abnormality from the various information obtained in the above steps S23 and S24. For example, by executing step S23, the control unit CU2 can obtain information on the amount of deposits. Further, by executing step S24, the control unit CU2 can obtain information on the type of the deposit. By using this information, it is possible to determine the presence or absence of an abnormality.
  • the standard for determining the presence or absence of an abnormality from the amount of adhered matter may be simply the number of pixels of the pixel in which the adhered matter is imaged, but the configuration is not limited to this.
  • the presence or absence of an abnormality may be determined based on the magnitude of the brightness value (pixel value) of the pixel in which the deposit is imaged.
  • how the deposits are attached may be included in the criteria for determining the presence or absence of abnormalities.
  • FIG. 16 is a diagram illustrating an example when considering the “state” in which deposits are attached.
  • two reference lines L1 and L2 for determining the presence or absence of an abnormality are added to the image obtained by extracting the region in which the deposits on the outer wall shown in FIG. 14B are imaged.
  • the reference lines L1 and L2 are circles whose distances from the outer wall are different from each other with reference to the center of the discharge port Na of the liquid nozzle N. That is, the reference line L1 is a line indicating 100 ⁇ m outside with respect to the outer wall, and the reference line L2 is a line indicating 50 ⁇ m outside with respect to the outer wall.
  • the reference lines L1 and L2 can be provided in advance, and the presence or absence of an abnormality can be determined from the positional relationship between the pixel in which the deposit is imaged and the reference lines L1 and L2. For example, when the deposit protrudes outside the reference line L1, it can be determined that an abnormal stop is necessary.
  • the deposit does not protrude outward from the reference line L1 but protrudes outward from the reference line L2, it may be determined that there is an abnormality and a warning is issued. Further, if the amount of deposits (the number of pixels in the imaged region) protruding outward from the reference line L1 or the reference line L2 exceeds a predetermined amount, it can be determined to be abnormal. .. As described above, the reference lines L1 and L2 may be used as a reference for determining the presence or absence of an abnormality.
  • step S26 when it is determined that cleaning of the liquid nozzle N is necessary according to the result of the abnormality determination, the control unit CU2 selects a cleaning method according to the determination result and executes cleaning.
  • FIG. 17 shows an example of the judgment flow in the control unit CU2 related to the selection of a specific cleaning method.
  • the control unit CU2 executes step S31.
  • step S31 the control unit CU2 determines whether or not there is dirt (whether there is deposit) on the inner wall side near the discharge port Na of the liquid nozzle N based on the result of specifying the position of the deposit (step S22). ..
  • step S32 the control unit CU2 cleans the liquid nozzle N by a method that enables the inner wall of the liquid nozzle N to be washed.
  • the outer wall can be cleaned together with the inside of the liquid nozzle N.
  • the control unit CU2 executes step S33. That is, the control unit CU2 cleans the nozzle tip.
  • Cleaning the nozzle tip is a method of mainly cleaning the outer wall of the nozzle, and is a method in which the number of steps is smaller than that of cleaning the inner wall. In this way, the cleaning method may be changed according to the adhesion position of the adhered matter.
  • a predetermined cleaning method may be executed when cleaning is required without selecting the cleaning method according to the adhesion position of the adhered matter (step S26).
  • control unit CU2 may perform both of the procedures described in FIGS. 10 and 13 at the same time, or only one of them may be performed.
  • the liquid nozzle N is supplied to the discharge port Na based on an inspection image obtained by imaging the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na.
  • the state of adhesion of deposits is evaluated. Further, in more detail, the region where the deposits adhering to the liquid nozzle N are imaged is estimated, and the presence or absence of abnormality is determined based on the result.
  • the evaluation is performed based on the image obtained by capturing the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na, and as one aspect thereof, the presence or absence of an abnormality is determined. Therefore, since the possibility that the liquid nozzle N operates in the state where the deposits are attached can be reduced, the adhered state of the deposits in the vicinity of the discharge port Na of the nozzle can be evaluated more appropriately.
  • the adhesion state of the deposit is evaluated based on the pixel value or the number of pixels of the region where the deposit is imaged in the inspection image, and the abnormality in the liquid nozzle N is evaluated based on the result.
  • the mode is to determine the presence or absence.
  • the deposit attached to the liquid nozzle N estimated from the inspection image is a liquid or a solid.
  • the adhesion position of the deposit by estimating the adhesion position of the deposit based on the inspection image, it is possible to more accurately evaluate how much the deposit affects the treatment using the liquid nozzle N. it can.
  • the risk of the deposits being discharged together with the treatment liquid may change depending on whether the deposits are attached to the inner wall side or the outer wall side of the liquid nozzle N. Therefore, by having a configuration for estimating whether the deposit is attached to the inner wall side or the outer wall side of the liquid nozzle N, it is possible to more appropriately evaluate the influence of the deposit on the substrate treatment.
  • the cleaning method of the liquid nozzle N is selected based on the evaluation result in the evaluation control. With such a configuration, it is possible to perform appropriate cleaning according to the adhesion state of the deposits. Therefore, it is possible to preferably remove the adhered portion from the liquid nozzle N.
  • control unit CU2 of the control device CU performs the control related to the nozzle inspection.
  • the functional units that control the nozzle inspection may be concentrated in one device or may be distributed in a plurality of devices.
  • the shapes of the liquid nozzle N and its discharge port Na can be changed as appropriate.
  • the configuration of the imaging unit 26 can be changed depending on the shape of the discharge port Na. Further, the image used as the inspection image can be changed according to the shape of the liquid nozzle N.
  • the method of estimating the region where the deposit is imaged from the inspection image is not limited to the above embodiment.
  • the image taken from directly below the discharge port Na of the liquid nozzle N is evaluated for the deposits on the lower end (lower surface) of the discharge port Na.
  • the deposit at the lower end may be evaluated based on the distribution of the brightness value of each pixel in the inspection image.
  • the case where the abnormality is determined based on the difference image generated by using the reference image has been described, but the configuration may not use the difference image. Further, the reference image may not be used.

Abstract

This substrate processing apparatus comprises: a liquid nozzle that discharges a processing liquid from a discharge port to a lower substrate; an imaging unit that images the entire circumference related to the vicinity of the discharge port of the liquid nozzle; and a control unit, wherein the control unit executes image acquisition control that acquires an inspection image related to the entire circumference related to the vicinity of the discharge port of the liquid nozzle, the entire circumference that has been imaged by the imaging unit, and evaluation control that evaluates, on the basis of the inspection image related to the entire circumference related to the vicinity of the discharge port of the liquid nozzle, the state of adhesion of an attachment to the discharge port of the liquid nozzle.

Description

基板処理装置、ノズル検査方法、及び、記憶媒体Substrate processing equipment, nozzle inspection method, and storage medium
 本開示は、基板処理装置、ノズル検査方法、及び、記憶媒体に関する。 The present disclosure relates to a substrate processing apparatus, a nozzle inspection method, and a storage medium.
 特許文献1では、基板処理装置において処理液を供給する液ノズルの吐出口部分を撮像し、異物の状態に応じて異常の判定を行う構成が開示されている。 Patent Document 1 discloses a configuration in which an image is taken of a discharge port portion of a liquid nozzle that supplies a treatment liquid in a substrate processing apparatus, and an abnormality is determined according to the state of a foreign substance.
特開2015-153913号公報JP-A-2015-153913
 本開示は、ノズルの吐出口付近における付着物の付着状態をより適切に評価することが可能な技術を提供する。 The present disclosure provides a technique capable of more appropriately evaluating the adhesion state of deposits in the vicinity of the discharge port of the nozzle.
 本開示の一態様による基板処理装置は、下方の基板に対して吐出口から処理液を吐出する液ノズルと、前記液ノズルの前記吐出口の近傍に係る全周を撮像する撮像部と、制御部と、を備え、前記制御部は、前記撮像部において撮像された前記液ノズルの吐出口近傍に係る全周の検査画像を取得する画像取得制御と、前記液ノズルの吐出口近傍に係る全周の検査画像から、前記液ノズルの吐出口への付着物の付着状態の評価を行う評価制御と、を実行する。 The substrate processing apparatus according to one aspect of the present disclosure controls a liquid nozzle that discharges a processing liquid from a discharge port to a lower substrate, and an imaging unit that images the entire circumference of the liquid nozzle in the vicinity of the discharge port. The control unit includes an image acquisition control for acquiring an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle imaged by the image pickup unit, and a control unit for all of the vicinity of the discharge port of the liquid nozzle. From the inspection image of the circumference, evaluation control for evaluating the state of adhesion of the deposit to the discharge port of the liquid nozzle is executed.
 本開示によれば、ノズルの吐出口付近における付着物の付着状態をより適切に評価することが可能となる。 According to the present disclosure, it is possible to more appropriately evaluate the adhered state of deposits in the vicinity of the nozzle discharge port.
一つの例示的実施形態に係る塗布・現像システムを示す斜視図である。It is a perspective view which shows the coating | development system which concerns on one exemplary embodiment. 図1のII-II線断面図の一例を示す図である。It is a figure which shows an example of the sectional view of line II-II of FIG. 図2のIII-III線断面図の一例を示す図である。It is a figure which shows an example of the sectional view of line III-III of FIG. 基板処理装置を示す断面図の一例である。It is an example of the cross-sectional view which shows the substrate processing apparatus. 基板処理装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the substrate processing apparatus. 撮像部の構成例を示す図である。It is a figure which shows the structural example of the imaging unit. 撮像部の構成例を示す図である。It is a figure which shows the structural example of the imaging unit. 撮像部の構成例を示す図である。It is a figure which shows the structural example of the imaging unit. 基板処理装置による基板検査方法の一例を示すフロー図である。It is a flow chart which shows an example of the substrate inspection method by the substrate processing apparatus. 基板処理装置による基板検査方法の一例を示すフロー図である。It is a flow chart which shows an example of the substrate inspection method by the substrate processing apparatus. 基板検査方法で使用される画像の一例を示す図である。It is a figure which shows an example of the image used in the substrate inspection method. 基板検査方法で使用される画像の一例を示す図である。It is a figure which shows an example of the image used in the substrate inspection method. 基板処理装置による基板検査方法の一例を示すフロー図である。It is a flow chart which shows an example of the substrate inspection method by the substrate processing apparatus. 基板検査方法で使用される画像の一例を示す図である。It is a figure which shows an example of the image used in the substrate inspection method. 基板検査方法で使用される画像の一例を示す図である。It is a figure which shows an example of the image used in the substrate inspection method. 基板検査方法で使用される画像の一例を示す図である。It is a figure which shows an example of the image used in the substrate inspection method. 基板洗浄方法の選択に係る手順の一例を示すフロー図である。It is a flow chart which shows an example of the procedure which concerns on the selection of the substrate cleaning method.
 以下、種々の例示的実施形態について説明する。 Hereinafter, various exemplary embodiments will be described.
 一つの例示的実施形態において、基板処理装置は、下方の基板に対して吐出口から処理液を吐出する液ノズルと、前記液ノズルの前記吐出口の近傍に係る全周を撮像する撮像部と、制御部と、を備え、前記制御部は、前記撮像部において撮像された前記液ノズルの吐出口近傍に係る全周の検査画像を取得する画像取得制御と、前記液ノズルの吐出口近傍に係る全周の検査画像から、前記液ノズルの吐出口への付着物の付着状態の評価を行う評価制御と、を実行する。 In one exemplary embodiment, the substrate processing apparatus comprises a liquid nozzle that discharges processing liquid from a discharge port to a lower substrate, and an imaging unit that images the entire circumference of the liquid nozzle in the vicinity of the discharge port. The control unit is provided with an image acquisition control for acquiring an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle imaged by the image pickup unit, and near the discharge port of the liquid nozzle. From the inspection image of the entire circumference, evaluation control for evaluating the state of adhesion of the deposit to the discharge port of the liquid nozzle is executed.
 上記の基板処理装置によれば、液ノズルの吐出口の近傍に係る全周を撮像した検査画像に基づいて、液ノズルの吐出口への付着物の付着状態の評価が行われる。このように、液ノズルの吐出口の近傍に係る全周を撮像した画像に基づいて付着物の付着状態の評価が行われるため、付着物が付着した状態で液ノズルが動作する可能性を低減させることができる。したがって、ノズルの吐出口付近における付着物の付着状態をより適切に評価することができる。 According to the above-mentioned substrate processing apparatus, the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated based on an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle. In this way, the adhesion state of the deposits is evaluated based on the image of the entire circumference of the vicinity of the discharge port of the liquid nozzle, so that the possibility that the liquid nozzle operates with the deposits adhered is reduced. Can be made to. Therefore, it is possible to more appropriately evaluate the adhered state of the deposits in the vicinity of the discharge port of the nozzle.
 前記制御部は、前記評価制御での評価結果に基づいて、前記液ノズルに対して実行すべき動作を判定する判定制御をさらに実行する、態様としてもよい。 The control unit may further execute a determination control for determining an operation to be executed for the liquid nozzle based on the evaluation result in the evaluation control.
 上記のように、制御部が評価結果に基づいて液ノズルに対して実行すべき動作を判定する構成とすることで、評価結果に応じて適切な処置を実施することが可能となり、液ノズルの異常等を考慮した適切な対応を行うことができる。 As described above, by configuring the control unit to determine the operation to be performed on the liquid nozzle based on the evaluation result, it is possible to take appropriate measures according to the evaluation result, and the liquid nozzle Appropriate measures can be taken in consideration of abnormalities.
 また、前記制御部は、前記評価制御において、前記評価制御において、前記検査画像から前記液ノズルに付着した付着物の領域を推定し、前記推定した領域の画素値に基づき前記液ノズルの吐出口への付着物の付着状態を評価し、前記判定制御において、前記評価結果に基づいて前記液ノズルにおける異常の有無を判定する態様とすることができる。 Further, in the evaluation control, the control unit estimates a region of deposits adhering to the liquid nozzle from the inspection image in the evaluation control, and discharges the liquid nozzle based on the pixel value of the estimated region. It is possible to evaluate the state of adhesion of the deposits to the liquid nozzle and determine the presence or absence of an abnormality in the liquid nozzle based on the evaluation result in the determination control.
 上記のように、検査画像において付着物を撮像した領域の画素値に基づいて液ノズルの吐出口への付着物の付着状態を評価し、その結果から液ノズルにおける異常の有無を判定する態様とする。このような構成とすることで、実質的に付着物の付着量に応じて異常の有無を評価することができ、付着物の付着状態をより適切に評価することができる。 As described above, an embodiment in which the state of adhesion of the deposit to the discharge port of the liquid nozzle is evaluated based on the pixel value of the region where the deposit is imaged in the inspection image, and the presence or absence of an abnormality in the liquid nozzle is determined from the result. To do. With such a configuration, the presence or absence of an abnormality can be evaluated substantially according to the amount of adhered matter, and the adhered state of the adhered matter can be evaluated more appropriately.
 前記制御部は、前記評価制御において、前記検査画像から推定された前記液ノズルに付着した付着物を撮像した領域の外形または大きさに基づいて、前記液ノズルに付着した付着物が液体であるか固体であるかを推定する態様とすることができる。 In the evaluation control, the control unit determines that the deposit attached to the liquid nozzle is a liquid based on the outer shape or size of the region in which the deposit attached to the liquid nozzle is imaged, which is estimated from the inspection image. It can be an aspect of estimating whether it is a solid or a solid.
 上記のように、検査画像から推定された液ノズルに付着した付着物が液体であるか固体であるかを推定することで、液ノズルの吐出口付近における付着物がどの程度強固に付着しているものであるか等を評価でき、付着状態をより適切に評価することができる。 As described above, by estimating whether the deposits attached to the liquid nozzle estimated from the inspection image are liquid or solid, how firmly the deposits near the discharge port of the liquid nozzle adhere. It is possible to evaluate whether or not it is present, and it is possible to more appropriately evaluate the adhesion state.
 前記制御部は、前記評価制御において、前記検査画像に基づいて、前記液ノズルにおける付着物の付着位置を推定する態様とすることができる。 In the evaluation control, the control unit can be in a mode of estimating the adhesion position of the deposit on the liquid nozzle based on the inspection image.
 上記のように、付着物の付着位置を推定することにより、当該付着物がノズルを使用した処理にどの程度影響を与えるか等をより精度よく評価できることができる。 As described above, by estimating the adhesion position of the deposit, it is possible to more accurately evaluate how much the deposit affects the processing using the nozzle.
 前記制御部は、前記判定制御において、前記液ノズルにおいて異常があると判定した場合に、前記評価結果に基づいて、前記液ノズルの洗浄方法を選択する態様とすることができる。 When the control unit determines in the determination control that there is an abnormality in the liquid nozzle, the control unit may select a cleaning method for the liquid nozzle based on the evaluation result.
 上記のように、評価制御での評価結果に基づいて液ノズルの洗浄方法を選択する構成とすることで、付着物の付着状況に応じた適切な洗浄を行うことが可能となるため、ノズルからの付着部の除去を好適に行うことができる。 As described above, by selecting the cleaning method of the liquid nozzle based on the evaluation result in the evaluation control, it is possible to perform appropriate cleaning according to the adhesion state of the deposits. It is possible to preferably remove the adhered portion of.
 一つの例示的実施形態において、ノズル検査方法は、下方の基板に対して吐出口から処理液を吐出する液ノズルを有する基板処理装置に係るノズル検査方法であって、前記液ノズルの前記吐出口の近傍に係る全周を撮像した検査画像を取得し、前記液ノズルの前記吐出口の近傍に係る全周の検査画像から、前記液ノズルの吐出口への付着物の付着状態の評価を行う。 In one exemplary embodiment, the nozzle inspection method is a nozzle inspection method for a substrate processing apparatus having a liquid nozzle for discharging a treatment liquid from a discharge port to a lower substrate, wherein the discharge port of the liquid nozzle is provided. An inspection image of the entire circumference of the vicinity of the liquid nozzle is acquired, and the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated from the inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle. ..
 上記のノズル検査方法によれば、液ノズルの吐出口の近傍に係る全周を撮像した画像に基づいて液ノズルの吐出口への付着物の付着状態の評価が行われる、付着物が付着した状態で液ノズルが動作する可能性を低減させることができる。したがって、ノズルの吐出口付近における付着物の付着状態をより適切に評価することができる。 According to the above nozzle inspection method, the state of adhesion of deposits to the discharge port of the liquid nozzle is evaluated based on an image obtained by capturing the entire circumference of the vicinity of the discharge port of the liquid nozzle. It is possible to reduce the possibility that the liquid nozzle operates in the state. Therefore, it is possible to more appropriately evaluate the adhesion state of the deposits in the vicinity of the discharge port of the nozzle.
 一つの例示的実施形態において、コンピュータ読み取り可能な記憶媒体は、上記のノズル検査方法を装置に実行させるためのプログラムを記憶する。 In one exemplary embodiment, the computer-readable storage medium stores a program for causing the device to perform the nozzle inspection method described above.
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。以下では、位置関係を明確にするために、必要に応じて、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。 Hereinafter, various exemplary embodiments will be described in detail with reference to the drawings. The same reference numerals are given to the same or corresponding parts in each drawing. In the following, in order to clarify the positional relationship, the X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined as necessary, and the Z-axis positive direction is defined as the vertically upward direction.
[塗布・現像装置の動作]
 まず、図1~図3に示される塗布・現像装置1の構成の概要について説明する。塗布・現像装置1は、露光装置E1による露光処理の前に、ウエハ(基板)Wの表面Waにレジスト材料を塗布してレジスト膜を形成する処理を行う。塗布・現像装置1は、露光装置E1による露光処理の後に、ウエハWの表面Waに形成されたレジスト膜の現像処理を行う。本実施形態において、ウエハWは円板状を呈するが、円形の一部が切り欠かれている形状であってもよく、また、多角形などの円形以外の形状を呈するウエハを用いてもよい。
[Operation of coating / developing device]
First, an outline of the configuration of the coating / developing apparatus 1 shown in FIGS. 1 to 3 will be described. The coating / developing device 1 performs a process of applying a resist material to the surface Wa of the wafer (substrate) W to form a resist film before the exposure process by the exposure device E1. The coating / developing device 1 develops a resist film formed on the surface Wa of the wafer W after the exposure process by the exposure device E1. In the present embodiment, the wafer W has a disk shape, but it may have a shape in which a part of a circle is cut out, or a wafer having a shape other than a circle such as a polygon may be used. ..
 塗布・現像装置1は、図1及び図2に示されるように、キャリアブロックS1と、処理ブロックS2と、インターフェースブロックS3と、塗布・現像装置1の制御手段として機能する制御装置CUと、制御装置CUによる処理結果を表示可能な表示部Dとを備える。本実施形態において、キャリアブロックS1、処理ブロックS2、インターフェースブロックS3及び露光装置E1は、この順に直列に並んでいる。 As shown in FIGS. 1 and 2, the coating / developing device 1 controls the carrier block S1, the processing block S2, the interface block S3, the control device CU that functions as the control means of the coating / developing device 1, and the control device CU. A display unit D capable of displaying a processing result by the apparatus CU is provided. In the present embodiment, the carrier block S1, the processing block S2, the interface block S3, and the exposure apparatus E1 are arranged in series in this order.
 キャリアブロックS1は、図1及び図3に示されるように、キャリアステーション12と、搬入・搬出部13とを有する。キャリアステーション12は、複数のキャリア11を支持する。キャリア11は、複数枚のウエハWを密封状態で収容する。キャリア11は、ウエハWを出し入れするための開閉扉(図示せず)を一方の側面11a側に有する。キャリア11は、側面11aが搬入・搬出部13側に面するように、キャリアステーション12上に着脱自在に設置される。 As shown in FIGS. 1 and 3, the carrier block S1 has a carrier station 12 and a carry-in / carry-out unit 13. The carrier station 12 supports a plurality of carriers 11. The carrier 11 accommodates a plurality of wafers W in a sealed state. The carrier 11 has an opening / closing door (not shown) for loading / unloading the wafer W on one side surface 11a side. The carrier 11 is detachably installed on the carrier station 12 so that the side surface 11a faces the loading / unloading portion 13 side.
 搬入・搬出部13は、図1~図3に示されるように、キャリアステーション12上の複数のキャリア11にそれぞれ対応する開閉扉13aを有する。側面11aの開閉扉と搬入・搬出部13の開閉扉13aとが同時に開放されると、キャリア11内と搬入・搬出部13内とが連通する。搬入・搬出部13は、図2及び図3に示されるように、受け渡しアームA1を内蔵している。受け渡しアームA1は、キャリア11からウエハWを取り出して処理ブロックS2に渡す。受け渡しアームA1は、処理ブロックS2からウエハWを受け取ってキャリア11内に戻す。 As shown in FIGS. 1 to 3, the carry-in / carry-out unit 13 has an opening / closing door 13a corresponding to each of the plurality of carriers 11 on the carrier station 12. When the opening / closing door of the side surface 11a and the opening / closing door 13a of the carry-in / carry-out section 13 are opened at the same time, the inside of the carrier 11 and the inside of the carry-in / carry-out section 13 communicate with each other. As shown in FIGS. 2 and 3, the carry-in / carry-out unit 13 has a built-in delivery arm A1. The transfer arm A1 takes out the wafer W from the carrier 11 and passes it to the processing block S2. The transfer arm A1 receives the wafer W from the processing block S2 and returns it to the carrier 11.
 処理ブロックS2は、図1~図3に示されるように、キャリアブロックS1に隣接すると共に、キャリアブロックS1と接続されている。処理ブロックS2は、図1及び図2に示されるように、下層反射防止膜形成(BCT)ブロック14と、レジスト膜形成(COT)ブロック15と、上層反射防止膜形成(TCT)ブロック16と、現像処理(DEV)ブロック17とを有する。DEVブロック17、BCTブロック14、COTブロック15及びTCTブロック16は、底面側からこの順に並んで配置されている。 As shown in FIGS. 1 to 3, the processing block S2 is adjacent to the carrier block S1 and is connected to the carrier block S1. As shown in FIGS. 1 and 2, the processing block S2 includes a lower layer antireflection film forming (BCT) block 14, a resist film forming (COT) block 15, and an upper layer antireflection film forming (TCT) block 16. It has a development processing (DEV) block 17. The DEV block 17, BCT block 14, COT block 15, and TCT block 16 are arranged side by side in this order from the bottom surface side.
 BCTブロック14は、図2に示されるように、塗布ユニット(図示せず)と、加熱・冷却ユニット(図示せず)と、これらのユニットにウエハWを搬送する搬送アームA2とを内蔵している。塗布ユニットは、反射防止膜形成用の薬液をウエハWの表面Waに塗布する。加熱・冷却ユニットは、例えば熱板によりウエハWを加熱し、その後例えば冷却板によりウエハWを冷却する。こうして、ウエハWの表面Wa上に下層反射防止膜が形成される。 As shown in FIG. 2, the BCT block 14 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A2 for conveying the wafer W to these units. There is. The coating unit coats the surface Wa of the wafer W with a chemical solution for forming an antireflection film. The heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, the lower layer antireflection film is formed on the surface Wa of the wafer W.
 COTブロック15は、図2に示されるように、塗布ユニット(図示せず)と、加熱・冷却ユニット(図示せず)と、これらのユニットにウエハWを搬送する搬送アームA3とを内蔵している。塗布ユニットは、レジスト膜形成用の薬液(レジスト材料)を下層反射防止膜の上に塗布する。加熱・冷却ユニットは、例えば熱板によりウエハWを加熱し、その後例えば冷却板によりウエハWを冷却する。こうして、ウエハWの下層反射防止膜上にレジスト膜が形成される。レジスト材料は、ポジ型でもよいし、ネガ型でもよい。 As shown in FIG. 2, the COT block 15 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A3 for conveying the wafer W to these units. There is. The coating unit coats a chemical solution (resist material) for forming a resist film on the lower antireflection film. The heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, a resist film is formed on the lower antireflection film of the wafer W. The resist material may be a positive type or a negative type.
 TCTブロック16は、図2に示されるように、塗布ユニット(図示せず)と、加熱・冷却ユニット(図示せず)と、これらのユニットにウエハWを搬送する搬送アームA4とを内蔵している。塗布ユニットは、反射防止膜形成用の薬液をレジスト膜の上に塗布する。加熱・冷却ユニットは、例えば熱板によりウエハWを加熱し、その後例えば冷却板によりウエハWを冷却する。こうして、ウエハWのレジスト膜上に上層反射防止膜が形成される。 As shown in FIG. 2, the TCT block 16 incorporates a coating unit (not shown), a heating / cooling unit (not shown), and a transfer arm A4 for conveying the wafer W to these units. There is. The coating unit coats a chemical solution for forming an antireflection film on the resist film. The heating / cooling unit heats the wafer W with, for example, a hot plate, and then cools the wafer W with, for example, a cooling plate. In this way, an upper antireflection film is formed on the resist film of the wafer W.
 DEVブロック17は、図2及び図3に示されるように、複数の現像処理ユニット(基板処理装置)U1と、複数の加熱・冷却ユニット(熱処理部)U2を有する。さらに、DEVブロック17は、これらのユニットにウエハWを搬送する搬送アームA5と、これらのユニットを経ずに処理ブロックS2の前後間でウエハWを搬送する搬送アームA6とを内蔵している。 As shown in FIGS. 2 and 3, the DEV block 17 has a plurality of developing processing units (board processing apparatus) U1 and a plurality of heating / cooling units (heat treatment unit) U2. Further, the DEV block 17 incorporates a transfer arm A5 that conveys the wafer W to these units, and a transfer arm A6 that conveys the wafer W between the front and rear of the processing block S2 without passing through these units.
 現像処理ユニットU1は、後述するように、露光されたレジスト膜の現像処理を行う。加熱・冷却ユニットU2は、例えば熱板によるウエハWの加熱を通じて、ウエハW上のレジスト膜を加熱する。加熱・冷却ユニットU2は、加熱後のウエハWを例えば冷却板により冷却する。加熱・冷却ユニットU2は、ポストエクスポージャベーク(PEB)、ポストベーク(PB)等の加熱処理を行う。PEBは、現像処理前にレジスト膜を加熱する処理である。PBは、現像処理後にレジスト膜を加熱する処理である。 The development processing unit U1 develops the exposed resist film as described later. The heating / cooling unit U2 heats the resist film on the wafer W, for example, by heating the wafer W with a hot plate. The heating / cooling unit U2 cools the heated wafer W with, for example, a cooling plate. The heating / cooling unit U2 performs heat treatment such as post-exposure baking (PEB) and post-baking (PB). PEB is a process of heating the resist film before the development process. PB is a process of heating the resist film after the development process.
 図1~図3に示されるように、処理ブロックS2のうちキャリアブロックS1側には、棚ユニットU10が設けられている。棚ユニットU10は、複数のセルC30~C38を有する。セルC30~C38は、DEVブロック17とTCTブロック16との間において上下方向(Z軸方向)に並んで配置されている。棚ユニットU10の近傍には、昇降アームA7が設けられている。昇降アームA7は、セルC30~C38の間でウエハWを搬送する。 As shown in FIGS. 1 to 3, a shelf unit U10 is provided on the carrier block S1 side of the processing block S2. The shelf unit U10 has a plurality of cells C30 to C38. The cells C30 to C38 are arranged side by side in the vertical direction (Z-axis direction) between the DEV block 17 and the TCT block 16. An elevating arm A7 is provided in the vicinity of the shelf unit U10. The elevating arm A7 conveys the wafer W between cells C30 to C38.
 処理ブロックS2のうちインターフェースブロックS3側には、棚ユニットU11が設けられている。棚ユニットU11は、複数のセルC40~C42を有する。セルC40~C42は、DEVブロック17に隣接して、上下方向(Z軸方向)に並んで配置されている。 A shelf unit U11 is provided on the interface block S3 side of the processing block S2. The shelf unit U11 has a plurality of cells C40 to C42. The cells C40 to C42 are arranged side by side in the vertical direction (Z-axis direction) adjacent to the DEV block 17.
 インターフェースブロックS3は、図1~図3に示されるように、処理ブロックS2及び露光装置E1の間に位置すると共に、処理ブロックS2及び露光装置E1のそれぞれに接続されている。インターフェースブロックS3は、図2及び図3に示されるように、受け渡しアームA8を内蔵している。受け渡しアームA8は、処理ブロックS2の棚ユニットU11から露光装置E1にウエハWを渡す。受け渡しアームA8は、露光装置E1からウエハWを受け取り、棚ユニットU11にウエハWを戻す。 As shown in FIGS. 1 to 3, the interface block S3 is located between the processing block S2 and the exposure device E1, and is connected to each of the processing block S2 and the exposure device E1. The interface block S3 has a built-in transfer arm A8 as shown in FIGS. 2 and 3. The transfer arm A8 transfers the wafer W from the shelf unit U11 of the processing block S2 to the exposure device E1. The delivery arm A8 receives the wafer W from the exposure apparatus E1 and returns the wafer W to the shelf unit U11.
[制御装置の動作]
 制御装置CUは、一つ又は複数の制御用コンピュータにより構成される。例えば制御装置100は、図5に示される回路120を有する。回路120は、一つ又は複数のプロセッサ121と、メモリ122と、ストレージ123と、入出力ポート124とを有する。ストレージ123は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述のプロセス処理手順を制御装置CUに実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ122は、ストレージ123の記憶媒体からロードしたプログラム及びプロセッサ121による演算結果を一時的に記憶する。プロセッサ121は、メモリ122と協働して上記プログラムを実行することで、上述した各機能モジュールを構成する。入出力ポート124は、プロセッサ121からの指令に従って、制御対象の部材との間で電気信号の入出力を行う。
[Control device operation]
The control device CU is composed of one or a plurality of control computers. For example, the control device 100 has a circuit 120 shown in FIG. The circuit 120 has one or more processors 121, a memory 122, a storage 123, and an input / output port 124. The storage 123 has a computer-readable storage medium, such as a hard disk. The storage medium stores a program for causing the control device CU to execute the process processing procedure described later. The storage medium may be a removable medium such as a non-volatile semiconductor memory, a magnetic disk, or an optical disk. The memory 122 temporarily stores the program loaded from the storage medium of the storage 123 and the calculation result by the processor 121. The processor 121 constitutes each of the above-mentioned functional modules by executing the above program in cooperation with the memory 122. The input / output port 124 inputs / outputs an electric signal to / from a member to be controlled according to a command from the processor 121.
 なお、制御装置CUのハードウェア構成は、必ずしもプログラムにより各機能モジュールを構成するものに限られない。例えば制御装置100の各機能モジュールは、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 The hardware configuration of the control device CU is not necessarily limited to the configuration of each functional module by a program. For example, each functional module of the control device 100 may be configured by a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) in which the logic circuit is integrated.
 また、制御装置CUは、図1に示されるように、記憶部CU1と、制御部CU2とを有する。記憶部CU1は、塗布・現像装置1の各部や露光装置E1の各部を動作させるためのプログラムを記憶している。詳しくは後述するが、記憶部CU1は、各種のデータ(例えば、異物の大きさデータ、異物の位置データ)や、撮像部26によって撮像された撮像画像も記憶している。記憶部CU1は、例えば半導体メモリ、光記録ディスク、磁気記録ディスク、光磁気記録ディスクである。当該プログラムは、記憶部CU1とは別体の外部記憶装置や、伝播信号などの無形の媒体にも含まれ得る。これらの他の媒体から記憶部CU1に当該プログラムをインストールして、記憶部CU1に当該プログラムを記憶させてもよい。制御部CU2は、記憶部CU1から読み出したプログラムに基づいて、塗布・現像装置1の各部や露光装置E1の各部の動作を制御する。 Further, the control device CU has a storage unit CU1 and a control unit CU2 as shown in FIG. The storage unit CU1 stores a program for operating each part of the coating / developing device 1 and each part of the exposure device E1. As will be described in detail later, the storage unit CU1 also stores various types of data (for example, foreign matter size data and foreign matter position data) and captured images captured by the imaging unit 26. The storage unit CU1 is, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or an optical magnetic recording disk. The program may be included in an external storage device separate from the storage unit CU1 or in an intangible medium such as a propagation signal. The program may be installed in the storage unit CU1 from these other media, and the program may be stored in the storage unit CU1. The control unit CU2 controls the operation of each part of the coating / developing device 1 and each part of the exposure device E1 based on the program read from the storage unit CU1.
 制御装置CUは、表示部Dと接続されており、処理条件の設定画面や、塗布・現像装置1によるウエハWの処理経過、処理結果等を表示部Dに表示させてもよい。塗布・現像装置1は、処理条件を作業者が入力可能な入力部(図示せず)をさらに有してもよい。この場合、制御装置CUは、入力部を通じて制御装置CUに入力された条件に従って、塗布・現像装置1の各部や露光装置E1の各部を動作させてもよい。入力部としては、例えば、マウス、タッチパネル、ペンタブレット、キーボードを挙げることができる。 The control device CU is connected to the display unit D, and the processing condition setting screen, the processing progress of the wafer W by the coating / developing device 1, the processing result, and the like may be displayed on the display unit D. The coating / developing apparatus 1 may further have an input unit (not shown) in which an operator can input processing conditions. In this case, the control device CU may operate each part of the coating / developing device 1 and each part of the exposure device E1 according to the conditions input to the control device CU through the input unit. Examples of the input unit include a mouse, a touch panel, a pen tablet, and a keyboard.
[塗布・現像装置の動作]
 次に、塗布・現像装置1の動作の概要について説明する。まず、キャリア11がキャリアステーション12に設置される。このとき、キャリア11の一方の側面11aは、搬入・搬出部13の開閉扉13aに向けられる。続いて、キャリア11の開閉扉と、搬入・搬出部13の開閉扉13aとが共に開放され、受け渡しアームA1により、キャリア11内のウエハWが取り出され、処理ブロックS2の棚ユニットU10のうちいずれかのセルに順次搬送される。
[Operation of coating / developing device]
Next, an outline of the operation of the coating / developing device 1 will be described. First, the carrier 11 is installed in the carrier station 12. At this time, one side surface 11a of the carrier 11 is directed to the opening / closing door 13a of the carry-in / carry-out portion 13. Subsequently, both the opening / closing door of the carrier 11 and the opening / closing door 13a of the carry-in / carry-out portion 13 are opened, the wafer W in the carrier 11 is taken out by the delivery arm A1, and any of the shelf units U10 of the processing block S2. It is sequentially transported to that cell.
 ウエハWが受け渡しアームA1により棚ユニットU10のいずれかのセルに搬送された後、ウエハWは、昇降アームA7により、BCTブロック14に対応するセルC33に順次搬送される。セルC33に搬送されたウエハWは、搬送アームA2によってBCTブロック14内の各ユニットに搬送される。搬送アームA2によってウエハWがBCTブロック14内を搬送される過程で、ウエハWの表面Wa上に下層反射防止膜が形成される。 After the wafer W is conveyed to any cell of the shelf unit U10 by the delivery arm A1, the wafer W is sequentially conveyed to the cell C33 corresponding to the BCT block 14 by the elevating arm A7. The wafer W conveyed to the cell C33 is conveyed to each unit in the BCT block 14 by the transfer arm A2. A lower antireflection film is formed on the surface Wa of the wafer W in the process of the wafer W being conveyed in the BCT block 14 by the transfer arm A2.
 下層反射防止膜が形成されたウエハWは、搬送アームA2によってセルC33の上のセルC34に搬送される。セルC34に搬送されたウエハWは、昇降アームA7によって、COTブロック15に対応するセルC35に搬送される。セルC35に搬送されたウエハWは、搬送アームA3によりCOTブロック15内の各ユニットに搬送される。搬送アームA3によってウエハWがCOTブロック15内を搬送される過程で、下層反射防止膜上にレジスト膜が形成される。 The wafer W on which the lower antireflection film is formed is conveyed to the cell C34 above the cell C33 by the transfer arm A2. The wafer W conveyed to the cell C34 is conveyed to the cell C35 corresponding to the COT block 15 by the elevating arm A7. The wafer W conveyed to the cell C35 is conveyed to each unit in the COT block 15 by the transfer arm A3. A resist film is formed on the lower antireflection film in the process in which the wafer W is conveyed in the COT block 15 by the transfer arm A3.
 レジスト膜が形成されたウエハWは、搬送アームA3によってセルC35の上のセルC36に搬送される。セルC36に搬送されたウエハWは、昇降アームA7によって、TCTブロック16に対応するセルC37に搬送される。セルC37に搬送されたウエハWは、搬送アームA4によってTCTブロック16内の各ユニットに搬送される。搬送アームA4によってウエハWがTCTブロック16内を搬送される過程で、レジスト膜上に上層反射防止膜が形成される。 The wafer W on which the resist film is formed is conveyed to the cell C36 above the cell C35 by the transfer arm A3. The wafer W conveyed to the cell C36 is conveyed to the cell C37 corresponding to the TCT block 16 by the elevating arm A7. The wafer W conveyed to the cell C37 is conveyed to each unit in the TCT block 16 by the transfer arm A4. An upper antireflection film is formed on the resist film in the process in which the wafer W is conveyed in the TCT block 16 by the transfer arm A4.
 上層反射防止膜が形成されたウエハWは、搬送アームA4によってセルC37の上のセルC38に搬送される。セルC38に搬送されたウエハWは、昇降アームA7によってセルC32に搬送された後、搬送アームA6によって棚ユニットU11のセルC42に搬送される。セルC42に搬送されたウエハWは、インターフェースブロックS3の受け渡しアームA8により露光装置E1に渡され、露光装置E1においてレジスト膜の露光処理が行われる。露光処理が行われたウエハWは、受け渡しアームA8によりセルC42の下のセルC40,C41に搬送される。 The wafer W on which the upper antireflection film is formed is conveyed to the cell C38 above the cell C37 by the transfer arm A4. The wafer W conveyed to the cell C38 is conveyed to the cell C32 by the elevating arm A7 and then to the cell C42 of the shelf unit U11 by the transfer arm A6. The wafer W conveyed to the cell C42 is passed to the exposure apparatus E1 by the transfer arm A8 of the interface block S3, and the resist film is exposed in the exposure apparatus E1. The exposed wafer W is conveyed to cells C40 and C41 below cell C42 by the transfer arm A8.
 セルC40,C41に搬送されたウエハWは、搬送アームA5により、DEVブロック17内の各ユニットに搬送され、現像処理が行われる。これにより、ウエハWの表面Wa上にレジストパターン(凹凸パターン)が形成される。レジストパターンが形成されたウエハWは、搬送アームA5によって棚ユニットU10のうちDEVブロック17に対応したセルC30,C31に搬送される。セルC30,C31に搬送されたウエハWは、昇降アームA7によって、受け渡しアームA1がアクセス可能なセルに搬送され、受け渡しアームA1によって、キャリア11内に戻される。 The wafer W conveyed to the cells C40 and C41 is conveyed to each unit in the DEV block 17 by the transfer arm A5, and the developing process is performed. As a result, a resist pattern (concavo-convex pattern) is formed on the surface Wa of the wafer W. The wafer W on which the resist pattern is formed is conveyed by the transfer arm A5 to the cells C30 and C31 of the shelf unit U10 corresponding to the DEV block 17. The wafer W conveyed to the cells C30 and C31 is conveyed to the cell accessible by the transfer arm A1 by the elevating arm A7, and returned into the carrier 11 by the transfer arm A1.
 上述した塗布・現像装置1の構成及び動作は一例にすぎない。塗布・現像装置1は、塗布ユニットや現像処理ユニット等の液処理ユニットと、加熱・冷却ユニット等の前処理・後処理ユニットと、搬送装置とを備えていればよい。すなわち、これら各ユニットの個数、種類、レイアウト等は適宜変更可能である。 The configuration and operation of the coating / developing device 1 described above is only an example. The coating / developing device 1 may include a liquid processing unit such as a coating unit or a developing processing unit, a pretreatment / posttreatment unit such as a heating / cooling unit, and a transport device. That is, the number, type, layout, etc. of each of these units can be changed as appropriate.
[現像処理ユニット(基板処理装置)]
 次に、現像処理ユニット(基板処理装置)U1について、さらに詳しく説明する。現像処理ユニットU1は、ウエハWの表面Waに処理液を吐出する吐出処理を、複数のウエハWについて一つずつ順次実行する。現像処理ユニットU1は、図4に示されるように、回転保持部20と、昇降装置22と、処理液供給部24とを備える。
[Development processing unit (board processing equipment)]
Next, the development processing unit (board processing apparatus) U1 will be described in more detail. The developing processing unit U1 sequentially executes the ejection process of ejecting the processing liquid onto the surface Wa of the wafer W one by one for the plurality of wafers W. As shown in FIG. 4, the developing processing unit U1 includes a rotation holding unit 20, an elevating device 22, and a processing liquid supply unit 24.
 回転保持部20は、電動モータ等の動力源を内蔵した本体部20aと、本体部20aから鉛直上方に延びる回転軸20bと、回転軸20bの先端部に設けられたチャック20cとを有する。本体部20aは、動力源により回転軸20b及びチャック20cを回転させる。チャック20cは、ウエハWの中心部を支持し、例えば吸着によりウエハWを略水平に保持する。すなわち、回転保持部20は、ウエハWの姿勢が略水平の状態で、ウエハWの表面Waに対して垂直な中心軸(鉛直軸)周りでウエハWを回転させる。図4に示されるように、回転保持部20は、上方から見て例えば正時計回りにウエハWを回転させる。 The rotation holding portion 20 has a main body portion 20a incorporating a power source such as an electric motor, a rotating shaft 20b extending vertically upward from the main body portion 20a, and a chuck 20c provided at the tip of the rotating shaft 20b. The main body 20a rotates the rotating shaft 20b and the chuck 20c by a power source. The chuck 20c supports the central portion of the wafer W and holds the wafer W substantially horizontally by suction, for example. That is, the rotation holding unit 20 rotates the wafer W around a central axis (vertical axis) perpendicular to the surface Wa of the wafer W in a state where the attitude of the wafer W is substantially horizontal. As shown in FIG. 4, the rotation holding unit 20 rotates the wafer W, for example, clockwise when viewed from above.
 昇降装置22は、回転保持部20に取り付けられており、回転保持部20を昇降させる。具体的には、昇降装置22は、搬送アームA5とチャック20cとの間でウエハWの受け渡しを行うための上昇位置(受け渡し位置)と、液処理を行うための下降位置(現像位置)との間で、回転保持部20(チャック20c)を昇降させる。 The lifting device 22 is attached to the rotation holding portion 20 and raises and lowers the rotation holding portion 20. Specifically, the elevating device 22 has an ascending position (delivery position) for transferring the wafer W between the transfer arm A5 and the chuck 20c and a descending position (developing position) for performing liquid treatment. The rotation holding portion 20 (chuck 20c) is moved up and down between them.
 回転保持部20の周囲には、カップ30が設けられている。ウエハWが回転すると、ウエハWの表面Waに供給された処理液が周囲に振り切られて落下するが、カップ30は、当該落下した処理液を受け止める収容器として機能する。カップ30は、回転保持部20を囲む円環形状の底板31と、底板31の外縁から鉛直上方に突出した円筒状の外壁32と、底板31の内縁から鉛直上方に突出した円筒状の内壁33とを有する。 A cup 30 is provided around the rotation holding portion 20. When the wafer W rotates, the processing liquid supplied to the surface Wa of the wafer W is shaken off to the surroundings and drops, and the cup 30 functions as a container for receiving the dropped processing liquid. The cup 30 has a ring-shaped bottom plate 31 surrounding the rotation holding portion 20, a cylindrical outer wall 32 protruding vertically upward from the outer edge of the bottom plate 31, and a cylindrical inner wall 33 protruding vertically upward from the inner edge of the bottom plate 31. And have.
 外壁32の全部分は、チャック20cに保持されたウエハWよりも外側に位置する。外壁32の上端32aは、下降位置にある回転保持部20に保持されたウエハWよりも上方に位置する。外壁32の上端32a側の部分は、上方に向かうにつれて内側に傾いた傾斜壁部32bとなっている。内壁33の全部分は、チャック20cに保持されたウエハWの周縁よりも内側に位置する。内壁33の上端33aは、下降位置にある回転保持部20に保持されたウエハWよりも下方に位置する。 The entire part of the outer wall 32 is located outside the wafer W held by the chuck 20c. The upper end 32a of the outer wall 32 is located above the wafer W held by the rotation holding portion 20 in the lowered position. The portion of the outer wall 32 on the upper end 32a side is an inclined wall portion 32b that is inclined inward as it goes upward. The entire portion of the inner wall 33 is located inside the peripheral edge of the wafer W held by the chuck 20c. The upper end 33a of the inner wall 33 is located below the wafer W held by the rotation holding portion 20 in the lowered position.
 内壁33と外壁32との間には、底板31の上面から鉛直上方に突出した仕切壁34が設けられている。すなわち、仕切壁34は、内壁33を囲んでいる。底板31のうち、外壁32と仕切壁34との間の部分には、液体排出孔31aが形成されている。液体排出孔31aには、排液管35が接続されている。底板31のうち、仕切壁34と内壁33との間の部分には、気体排出孔31bが形成されている。気体排出孔31bには、排気管36が接続されている。 A partition wall 34 is provided between the inner wall 33 and the outer wall 32 so as to project vertically upward from the upper surface of the bottom plate 31. That is, the partition wall 34 surrounds the inner wall 33. A liquid discharge hole 31a is formed in a portion of the bottom plate 31 between the outer wall 32 and the partition wall 34. A drainage pipe 35 is connected to the liquid drainage hole 31a. A gas discharge hole 31b is formed in a portion of the bottom plate 31 between the partition wall 34 and the inner wall 33. An exhaust pipe 36 is connected to the gas discharge hole 31b.
 内壁33の上には、仕切壁34よりも外側に張り出す傘状部37が設けられている。ウエハW上から外側に振り切られて落下した処理液は、外壁32と仕切壁34との間に導かれ、液体排出孔31aから排出される。仕切壁34と内壁33との間には、処理液から発生したガス等が進入し、当該ガスが気体排出孔31bから排出される。 An umbrella-shaped portion 37 projecting outward from the partition wall 34 is provided on the inner wall 33. The processing liquid that has been shaken off from the wafer W to the outside is guided between the outer wall 32 and the partition wall 34, and is discharged from the liquid discharge hole 31a. Gas or the like generated from the treatment liquid enters between the partition wall 34 and the inner wall 33, and the gas is discharged from the gas discharge hole 31b.
 内壁33に囲まれる空間の上部は、仕切板38により閉塞されている。回転保持部20の本体部20aは仕切板38の下方に位置する。チャック20cは仕切板38の上方に位置する。回転軸20bは仕切板38の中心部に形成された貫通孔内に挿通されている。 The upper part of the space surrounded by the inner wall 33 is closed by the partition plate 38. The main body 20a of the rotation holding portion 20 is located below the partition plate 38. The chuck 20c is located above the partition plate 38. The rotating shaft 20b is inserted into a through hole formed in the central portion of the partition plate 38.
 処理液供給部24は、図4に示されるように、処理液の供給源24aと、ヘッド部24cと、移動体24dと、撮像部26とを有する。供給源24aは、処理液の貯蔵容器、ポンプ及びバルブ等を有する。処理液は、例えば洗浄液(リンス液)や現像液である。洗浄液は、例えば純水又はDIW(Deionized Water)である。ヘッド部24cは、供給管24bを介して供給源24aに接続される。ヘッド部24cは、処理液の供給の際に、ウエハWの表面Waの上方に位置している。ヘッド部24cに設けられた液ノズルNは、ウエハWの表面Waに向けて下方に開口している。従って、ヘッド部24cは、制御装置CUからの制御信号を受けて供給源24aから供給された処理液を、液ノズルNからウエハWの表面Waに吐出する。 As shown in FIG. 4, the processing liquid supply unit 24 includes a processing liquid supply source 24a, a head unit 24c, a moving body 24d, and an imaging unit 26. The supply source 24a includes a storage container for the treatment liquid, a pump, a valve, and the like. The treatment liquid is, for example, a cleaning liquid (rinsing liquid) or a developing liquid. The cleaning liquid is, for example, pure water or DIW (Deionized Water). The head portion 24c is connected to the supply source 24a via the supply pipe 24b. The head portion 24c is located above the surface Wa of the wafer W when the treatment liquid is supplied. The liquid nozzle N provided in the head portion 24c opens downward toward the surface Wa of the wafer W. Therefore, the head portion 24c receives the control signal from the control device CU and discharges the processing liquid supplied from the supply source 24a from the liquid nozzle N to the surface Wa of the wafer W.
 移動体24dは、アーム24eを介してヘッド部24cに接続されている。移動体24dは、制御装置CUからの制御信号を受けて、ガイドレール(図示せず)上を水平方向(例えば、X軸方向)に移動する。これにより、ヘッド部24cは、ウエハWの表面Waに対して液ノズルNの吐出口Naから処理液を吐出する吐出処理において、下降位置にあるウエハWの上方で且つウエハWの中心軸に直交する直線上を、ウエハWの径方向に沿って水平方向、に移動する。移動体24dは、制御装置CUからの制御信号を受けて、アーム24eを昇降させる。これにより、ヘッド部24cは、上下方向に移動し、ウエハWの表面Waに対して近接又は離間する。 The moving body 24d is connected to the head portion 24c via the arm 24e. The moving body 24d moves in the horizontal direction (for example, the X-axis direction) on the guide rail (not shown) in response to the control signal from the control device CU. As a result, the head portion 24c is above the wafer W in the descending position and orthogonal to the central axis of the wafer W in the discharge process of discharging the processing liquid from the discharge port Na of the liquid nozzle N to the surface Wa of the wafer W. It moves in the horizontal direction along the radial direction of the wafer W on the straight line. The moving body 24d raises and lowers the arm 24e in response to a control signal from the control device CU. As a result, the head portion 24c moves in the vertical direction and approaches or separates from the surface Wa of the wafer W.
 撮像部26は、図4に示されるようにヘッド部24cの先端近傍に設けられており、ヘッド部24cと共に移動する。撮像部26は、液ノズルNの吐出口Na部分を撮像する。撮像部26によって撮像された撮像画像は、制御装置CUの制御部CU2に送信される。制御部CU2は、受信した撮像画像を画像処理して、液ノズルNの吐出口Na近傍の付着物の有無、付着物の量等に係る情報を取得する。本実施形態における付着物としては、例えば、液滴、固形物(処理液が固化・結晶化したもの、異物)等が挙げられる。制御部CU2は、液ノズルNの吐出口Na近傍での付着物の結果に基づいて、液ノズルNに係る異常判定を行い、異常である場合には液ノズルNの洗浄を行う。また、異常が続く場合などは異常時の措置(例えば、警報発出、異常通知等)を実施する。 The imaging unit 26 is provided near the tip of the head unit 24c as shown in FIG. 4, and moves together with the head unit 24c. The imaging unit 26 images the discharge port Na portion of the liquid nozzle N. The captured image captured by the imaging unit 26 is transmitted to the control unit CU2 of the control device CU. The control unit CU2 performs image processing on the received captured image to acquire information on the presence / absence of deposits in the vicinity of the discharge port Na of the liquid nozzle N, the amount of deposits, and the like. Examples of the deposits in the present embodiment include droplets, solids (solidified / crystallized treatment liquid, foreign matter) and the like. The control unit CU2 determines an abnormality related to the liquid nozzle N based on the result of deposits in the vicinity of the discharge port Na of the liquid nozzle N, and if it is abnormal, cleans the liquid nozzle N. In addition, if the abnormality continues, take measures in the event of an abnormality (for example, issuing an alarm, notifying an abnormality, etc.).
 撮像部26は、液ノズルNの吐出口Na近傍について、その全周を撮像可能な構成とされている。液ノズルNの吐出口Na近傍とは、吐出口Naから吐出される処理液が付着し得る領域である。処理液の吐出速度(単位時間当たりの吐出量)、ウエハWの回転速度等に応じて、処理液が付着する領域は変更し得る。したがって、通常動作時に処理液が付着し得る場所を吐出口Na近傍として取り扱うことができる。具体的には、例えば、吐出口Naの下端から0.5mm~数mm程度とされる。 The imaging unit 26 has a configuration capable of imaging the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N. The vicinity of the discharge port Na of the liquid nozzle N is a region to which the processing liquid discharged from the discharge port Na can adhere. The region to which the treatment liquid adheres can be changed according to the discharge speed of the treatment liquid (discharge amount per unit time), the rotation speed of the wafer W, and the like. Therefore, a place where the treatment liquid can adhere during normal operation can be treated as the vicinity of the discharge port Na. Specifically, for example, it is about 0.5 mm to several mm from the lower end of the discharge port Na.
 吐出口Naから処理液を吐出する際、吐出口Naの下端部またはその周縁に処理液が付着し残存すると、その後再度処理液を吐出する際に付着物が吐出初期段階の処理液と共にウエハWに向けて流れる場合がある。ウエハWに対する処理液の供給量が多い場合には、吐出初期段階の処理液はウエハW上から排出されるため、付着物もウエハW上から排出される。しかしながら、処理液の供給量が少ない場合には吐出初期段階の処理液もウエハW上に残存するため、付着物のウエハW上に残存することになる。このような場合付着物がウエハW上での異物となり、基板の処理精度等に影響を与える可能性がある。上記のような観点から、撮像部26は、液ノズルNの吐出口Na近傍において、その全周を撮像する。なお、撮像部26では、吐出口Naの近傍の全周における付着物を撮像可能であればよい。したがって、撮像部26が取得する画像は、少なくとも吐出口Na近傍の一部において全周の画像が含まれていればよい。また、液ノズルNの吐出口Na近傍の全周を撮像した画像とは、全周を同時に撮像していなくてもよく、多少の時間差を有して撮像された複数枚数の画像を組み合わせたものであってもよい。上述のように、吐出口Na近傍に付着する付着物は、主に液ノズルNから吐出された処理液に由来するものであり、ある程度時間が経つと乾燥・吸湿等によりその状態が変化し得る。撮像部26では、上記の付着物の状態変化が起こらない程度の時間差を有した状態(例えば、数秒~数分)で、複数枚数の画像を撮像することによって、全周の画像を取得する構成としてもよい。 When the treatment liquid is discharged from the discharge port Na, if the treatment liquid adheres to the lower end of the discharge port Na or its peripheral edge and remains, when the treatment liquid is discharged again, the deposits are attached to the wafer W together with the treatment liquid in the initial stage of discharge. May flow towards. When the amount of the processing liquid supplied to the wafer W is large, the processing liquid in the initial stage of ejection is discharged from the wafer W, so that the deposits are also discharged from the wafer W. However, when the supply amount of the treatment liquid is small, the treatment liquid in the initial stage of discharge also remains on the wafer W, so that the deposits remain on the wafer W. In such a case, the adhered matter becomes a foreign substance on the wafer W, which may affect the processing accuracy of the substrate and the like. From the above viewpoint, the imaging unit 26 images the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. It is sufficient that the imaging unit 26 can image the deposits on the entire circumference in the vicinity of the discharge port Na. Therefore, the image acquired by the imaging unit 26 may include an image of the entire circumference at least in a part near the discharge port Na. Further, the image obtained by capturing the entire circumference of the liquid nozzle N near the discharge port Na does not have to be captured at the same time, and is a combination of a plurality of images captured with a slight time difference. It may be. As described above, the deposits adhering to the vicinity of the discharge port Na are mainly derived from the treatment liquid discharged from the liquid nozzle N, and the state may change due to drying, moisture absorption, etc. after a certain period of time. .. The imaging unit 26 acquires an image of the entire circumference by capturing a plurality of images in a state having a time difference (for example, several seconds to several minutes) so that the state change of the deposits does not occur. May be.
 図4では、撮像部26を模式的に示しているが、全周を撮像するための撮像部26の構成は特に限定されない。図6~図8は、撮像部26の構成例を説明する図である。 Although the image pickup unit 26 is schematically shown in FIG. 4, the configuration of the image pickup unit 26 for imaging the entire circumference is not particularly limited. 6 to 8 are views for explaining a configuration example of the imaging unit 26.
 図6(a)は、複数のカメラ27により撮像部26が構成されて、液ノズルNの吐出口Na近傍の全周を撮像する構成を示している。図6(a)では、3つのカメラ27を配置している例を示しているが、撮像部26の数は特に限定されない。複数の撮像部26を互いに異なる方向から吐出口Na近傍の全周を撮像可能なように配置をすることで、液ノズルNの吐出口Na近傍の全周に係る画像を取得することができる。3つのカメラ27を配置する場合、例えば、平面視において、隣接するカメラ27と液ノズルNの吐出口Naとを結ぶ線と、自カメラと吐出口Naとを結ぶ線とのなす角度がそれぞれ120°となるように3つのカメラ27を周方向に均等に配置することができる。これにより、3つのカメラ27によって吐出口Na近傍の全周を均等に撮像する構成とすることができる。なお、複数のカメラ27は同一の水平面(XY平面)に配置してもよいが、例えば、上下方向(Z軸方向)の高さ位置を互いに異ならせて配置してもよい。カメラ27は、例えば、処理液供給部24に設けられていてもよいし、カップ30の外壁32等に取り付けられていてもよい。すなわち、カメラ27を現像処理ユニットU1のどの位置(部材)に取り付けるかは特に限定されない。 FIG. 6A shows a configuration in which the imaging unit 26 is configured by a plurality of cameras 27 to image the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. FIG. 6A shows an example in which three cameras 27 are arranged, but the number of imaging units 26 is not particularly limited. By arranging the plurality of imaging units 26 so that the entire circumference in the vicinity of the discharge port Na can be imaged from different directions, it is possible to acquire an image relating to the entire circumference in the vicinity of the discharge port Na of the liquid nozzle N. When three cameras 27 are arranged, for example, in a plan view, the angle between the line connecting the adjacent cameras 27 and the discharge port Na of the liquid nozzle N and the line connecting the own camera and the discharge port Na is 120, respectively. The three cameras 27 can be evenly arranged in the circumferential direction so as to be °. As a result, the entire circumference in the vicinity of the discharge port Na can be uniformly imaged by the three cameras 27. The plurality of cameras 27 may be arranged on the same horizontal plane (XY plane), but for example, the height positions in the vertical direction (Z-axis direction) may be arranged differently from each other. The camera 27 may be provided, for example, in the processing liquid supply unit 24, or may be attached to the outer wall 32 or the like of the cup 30. That is, the position (member) to which the camera 27 is attached to the developing processing unit U1 is not particularly limited.
 図6(b)は、1つのカメラ27と1つのミラー28とにより撮像部26が構成されている状態を示している。このような構成の場合、カメラ27は、ミラー28に写る液ノズルNの吐出口Na近傍の像を撮像する。ミラー28は、例えば、図6(b)に示すように吐出口Naの下方(Z軸負方向)に配置し、カメラ27の位置に応じてその反射面の角度を調整する。一方、カメラ27は、ミラー28の反射面に対向するような配置とする。これにより、カメラ27では、ミラー28において反射された吐出口Na近傍の像を撮像することができる。また、ミラー28を用いる構成とすることで、カメラ27からは死角となる側の吐出口Na近傍も撮像することができることになり、液ノズルNの吐出口Na近傍での全周の画像を取得することができる。なお、カメラ27及びミラー28の配置は適宜変更することができる。 FIG. 6B shows a state in which the imaging unit 26 is composed of one camera 27 and one mirror 28. In such a configuration, the camera 27 captures an image of the vicinity of the discharge port Na of the liquid nozzle N reflected on the mirror 28. For example, the mirror 28 is arranged below the discharge port Na (in the negative direction of the Z axis) as shown in FIG. 6B, and the angle of the reflecting surface thereof is adjusted according to the position of the camera 27. On the other hand, the camera 27 is arranged so as to face the reflecting surface of the mirror 28. As a result, the camera 27 can capture an image in the vicinity of the discharge port Na reflected by the mirror 28. Further, by using the mirror 28, it is possible to take an image of the vicinity of the discharge port Na on the blind spot side from the camera 27, and acquire an image of the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. can do. The arrangement of the camera 27 and the mirror 28 can be changed as appropriate.
 図6(c)は、1つのカメラ27により撮像部26が構成されている状態を示している。カメラ27は液ノズルNの吐出口Naの真下(Z軸負方向)に配置される。このような構成の場合、カメラ27は、液ノズルNの吐出口Naの下端の全周を一度に撮像することができる。すなわち、図6(c)に示す構成の場合であっても、吐出口Na近傍の全周に係る撮像を行うことができる。また、図6等に示す液ノズルNのように吐出口Naへ向けて先端が先細りするような形状の場合、図6(c)に示すカメラ27は吐出口Naの下端だけでなくその上方の傾斜部分も撮像することが可能といえる。また、図6(c)に示すようにカメラ27を吐出口Naの真下に配置し、さらに、ミラー28を利用して液ノズルNの吐出口Na近傍の側面の像についてもカメラ27で撮像可能な構成としてもよい。 FIG. 6C shows a state in which the imaging unit 26 is configured by one camera 27. The camera 27 is arranged directly below the discharge port Na of the liquid nozzle N (in the negative direction of the Z axis). In such a configuration, the camera 27 can take an image of the entire circumference of the lower end of the discharge port Na of the liquid nozzle N at one time. That is, even in the case of the configuration shown in FIG. 6C, it is possible to take an image of the entire circumference in the vicinity of the discharge port Na. Further, in the case of a shape such that the tip of the liquid nozzle N shown in FIG. 6 or the like is tapered toward the discharge port Na, the camera 27 shown in FIG. 6 (c) is not only at the lower end of the discharge port Na but also above the lower end. It can be said that it is possible to take an image of an inclined part. Further, as shown in FIG. 6C, the camera 27 is arranged directly under the discharge port Na, and the mirror 28 can be used to capture an image of the side surface of the liquid nozzle N near the discharge port Na with the camera 27. It may be configured as such.
 図7は、カメラ27とミラー28との配置の一例であり、ヘッド部24cに繋がるアーム24eにカメラ27を取り付けて、液ノズルNの下方にミラー28を配置した例である。アーム24eの高さ位置は図4の構成に限定されず、例えばヘッド部24cの構成を変更する等他の部材の構成を変更することで、適宜変更することができるとする。また、ミラー28に代えて、チャック20cに保持された表面が平坦な基板(ベアウエハ)を用いてもよい。この場合、ベアウエハに写る液ノズルNの吐出口Na近傍の像をカメラ27において撮像する構成となる。 FIG. 7 is an example of the arrangement of the camera 27 and the mirror 28, in which the camera 27 is attached to the arm 24e connected to the head portion 24c and the mirror 28 is arranged below the liquid nozzle N. The height position of the arm 24e is not limited to the configuration shown in FIG. 4, and can be appropriately changed by changing the configuration of other members such as changing the configuration of the head portion 24c. Further, instead of the mirror 28, a substrate (bare wafer) having a flat surface held by the chuck 20c may be used. In this case, the camera 27 captures an image of the vicinity of the discharge port Na of the liquid nozzle N reflected on the bare wafer.
 図8は、カメラ27とミラー28との配置の他の一例であり、ヘッド部24cに繋がるアーム24eにカメラ27を取り付けて、液ノズルNの周囲にミラー28を配置した例である。図8(a)は上記の構成を側面から見た図であり、図8(b)は上方から見た場合の液ノズルN、カメラ27及びミラー28の位置関係を模式的に示した図である。図8に示す例は、カメラ27の取り付け位置は図7に示す例と同じであるが、ミラー28の配置が異なる。具体的には、カメラ27に対して死角となる液ノズルNの側面の外壁がミラー28に写るようにミラー28が配置されている。したがって、カメラ27はミラー28に写る液ノズルNの側面の像も撮像することで死角の部分の撮像も行うことができる。このような構成とすることで、カメラ27は一度の撮像で液ノズルNの側面の全周の撮像を行うことができる。 FIG. 8 is another example of the arrangement of the camera 27 and the mirror 28, which is an example in which the camera 27 is attached to the arm 24e connected to the head portion 24c and the mirror 28 is arranged around the liquid nozzle N. FIG. 8A is a side view of the above configuration, and FIG. 8B is a diagram schematically showing the positional relationship between the liquid nozzle N, the camera 27, and the mirror 28 when viewed from above. is there. In the example shown in FIG. 8, the mounting position of the camera 27 is the same as that shown in FIG. 7, but the arrangement of the mirror 28 is different. Specifically, the mirror 28 is arranged so that the outer wall on the side surface of the liquid nozzle N, which is a blind spot with respect to the camera 27, is reflected on the mirror 28. Therefore, the camera 27 can also take an image of the blind spot by taking an image of the side surface of the liquid nozzle N reflected on the mirror 28. With such a configuration, the camera 27 can take an image of the entire circumference of the side surface of the liquid nozzle N with one image.
 上記のように、撮像部26の構成は特に限定されず、種々の構成を適用することができる。上記で示した構成例を組み合わせてもよい。また、液ノズルNに対してその位置を変更可能な移動機構を有するカメラ27を撮像部26として用いてもよい。なお、カメラ27を吐出口Naの近傍に配置する場合、カメラ27及びカメラ27を支持するための機構が現像処理ユニットU1の各部の動作に干渉しないように、各部の構成を適宜調整することができる。 As described above, the configuration of the imaging unit 26 is not particularly limited, and various configurations can be applied. The configuration examples shown above may be combined. Further, a camera 27 having a moving mechanism whose position can be changed with respect to the liquid nozzle N may be used as the imaging unit 26. When the camera 27 is arranged near the discharge port Na, the configuration of each part may be appropriately adjusted so that the camera 27 and the mechanism for supporting the camera 27 do not interfere with the operation of each part of the developing processing unit U1. it can.
[ノズル検査方法]
 次に、図9~図16を参照しながら、現像処理ユニットU1における液ノズルNの吐出口Naの検査方法の手順について説明する。図9は、検査方法に係る一連の手順を説明するフロー図である。また、図10及び図13は画像処理及び付着状態の評価に係る手順を説明するフロー図であり、図11,12,14-16は、上記の手順を実施する際に用いる画像の例を説明する図である。
[Nozzle inspection method]
Next, the procedure of the inspection method of the discharge port Na of the liquid nozzle N in the developing processing unit U1 will be described with reference to FIGS. 9 to 16. FIG. 9 is a flow chart illustrating a series of procedures related to the inspection method. Further, FIGS. 10 and 13 are flow charts for explaining the procedure related to image processing and evaluation of the adhesion state, and FIGS. 11, 12, 14-16 explain an example of an image used when carrying out the above procedure. It is a figure to do.
 まず、制御装置CUの制御部CU2は、ステップS01を実行する。ステップS01では、液ノズルNの吐出口Na近傍における付着物の状態を評価するための基準画像を取得する。この基準画像とは、付着物が付着していない状態での液ノズルNの吐出口Na近傍の画像であり、検査時に取得する液ノズルNの吐出口Na近傍の全周の画像に対応するものである。制御部CU2は撮像部26を制御して、液ノズルNの吐出口Na近傍に係る基準画像を取得する。取得した基準画像は、記憶部CU1において記憶する構成としてもよい。 First, the control unit CU2 of the control device CU executes step S01. In step S01, a reference image for evaluating the state of deposits in the vicinity of the discharge port Na of the liquid nozzle N is acquired. This reference image is an image of the vicinity of the discharge port Na of the liquid nozzle N in a state where no deposits are attached, and corresponds to an image of the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N acquired at the time of inspection. Is. The control unit CU2 controls the image pickup unit 26 to acquire a reference image related to the vicinity of the discharge port Na of the liquid nozzle N. The acquired reference image may be stored in the storage unit CU1.
 次に、制御部CU2は、ステップS02を実行する。ステップS02では、制御部CU2は、液ノズルNの吐出口Na近傍の全周に係る検査画像を取得する(画像取得制御)。検査画像とは、付着物に係る評価等を行う対象となる画像である。制御部CU2は撮像部26を制御して、液ノズルNの吐出口Na近傍に係る検査画像を取得する。ステップS02を実行するタイミングは、予め設定したタイミング(例えばロット単位のウエハWに係る処理が終わった後)であってもよい。また、現像処理ユニットU1における処理後のウエハW等を評価した結果に基づいてステップS02を実行する構成としてもよい。なお、複数の画像を組み合わせて液ノズルNの吐出口Na近傍の全周の画像が得られる場合、一連の複数の画像を一つの検査画像として取り扱う構成としてもよい。取得した検査画像は、記憶部CU1において記憶する構成としてもよい。 Next, the control unit CU2 executes step S02. In step S02, the control unit CU2 acquires an inspection image relating to the entire circumference of the vicinity of the discharge port Na of the liquid nozzle N (image acquisition control). The inspection image is an image to be evaluated for deposits and the like. The control unit CU2 controls the image pickup unit 26 to acquire an inspection image related to the vicinity of the discharge port Na of the liquid nozzle N. The timing of executing step S02 may be a preset timing (for example, after the processing related to the wafer W in lot units is completed). Further, the step S02 may be executed based on the result of evaluating the wafer W or the like after the processing in the developing processing unit U1. When a plurality of images are combined to obtain an image of the entire circumference in the vicinity of the discharge port Na of the liquid nozzle N, a series of a plurality of images may be treated as one inspection image. The acquired inspection image may be stored in the storage unit CU1.
 次に、制御部CU2は、ステップS03を実行する。ステップS03では、制御部CU2は、ステップS01で取得した基準画像と、ステップS02で取得した検査画像とを用いて、付着物の評価に係る画像処理を行う(評価制御)。次に、制御部CU2は、ステップS04を実行する。ステップS04では、ステップS03で処理を行った画像に基づいて、付着物の付着状態に係る評価を行う(評価制御)。上記のステップS03及びステップS04については後述する。 Next, the control unit CU2 executes step S03. In step S03, the control unit CU2 performs image processing related to the evaluation of the deposit using the reference image acquired in step S01 and the inspection image acquired in step S02 (evaluation control). Next, the control unit CU2 executes step S04. In step S04, an evaluation relating to the adhered state of the deposit is performed based on the image processed in step S03 (evaluation control). The above steps S03 and S04 will be described later.
 次に、制御部CU2は、ステップS05を実行する。ステップS05では、ステップS04における付着状態の評価の結果、液ノズルNに異常があるか否かを判定する(判定制御)。この段階での異常ありか否かの判定とは、このまま液ノズルNを用いてウエハWに対する処理を行ってよいかの判定である。したがって、異常がないと判定した場合には、液ノズルNの検査結果に基づいて液ノズルNに対して実行すべき動作は無いと判断し、一連の処理を終了する。 Next, the control unit CU2 executes step S05. In step S05, as a result of the evaluation of the adhesion state in step S04, it is determined whether or not the liquid nozzle N has an abnormality (determination control). The determination as to whether or not there is an abnormality at this stage is a determination as to whether or not the wafer W can be processed as it is using the liquid nozzle N. Therefore, when it is determined that there is no abnormality, it is determined that there is no operation to be executed for the liquid nozzle N based on the inspection result of the liquid nozzle N, and a series of processes is terminated.
 ステップS05において異常があると判定した場合には、制御部CU2は、ステップS06を実行する。ステップS06では、今回の判定において異常があると判定した場合に、装置の異常に基づく強制停止(異常停止)等の液ノズルNに対して実行すべき動作を実施する必要があるかを判定する(判定制御)。異常があると判定する場合には、液ノズルNの吐出口Na近傍に付着物が付着していることを検出した場合となるが、このような場合には通常液ノズルNの吐出口Na近傍の洗浄を行うことで対処する。しかしながら、例えば繰り返し異常があると判定されるなど、ノズルの洗浄以外の何らかの対応を採る必要がある場合には、異常停止が必要と判断する。この場合、制御部CU2はステップS07を実行する。すなわち、ステップS07では、制御部CU2は現像処理ユニットU1における基板処理の強制停止を行う。なお、図8では異常停止の要否判断及び異常停止を行う場合について説明したが、異常停止ではなく警報の通知のみを行う構成としてもよい。また、ステップS06において、異常停止及び警報の通知のどちらを実施するかについても判定する構成としてもよい。 If it is determined in step S05 that there is an abnormality, the control unit CU2 executes step S06. In step S06, when it is determined that there is an abnormality in this determination, it is determined whether or not it is necessary to perform an operation to be executed for the liquid nozzle N such as forced stop (abnormal stop) based on the abnormality of the device. (Judgment control). When it is determined that there is an abnormality, it is the case where it is detected that deposits are attached in the vicinity of the discharge port Na of the liquid nozzle N. In such a case, the vicinity of the discharge port Na of the normal liquid nozzle N is detected. It will be dealt with by cleaning the. However, when it is necessary to take some measures other than cleaning the nozzle, for example, it is determined that there is a repeated abnormality, it is determined that an abnormal stop is necessary. In this case, the control unit CU2 executes step S07. That is, in step S07, the control unit CU2 forcibly stops the substrate processing in the developing processing unit U1. Although the case of determining the necessity of abnormal stop and performing abnormal stop has been described with reference to FIG. 8, the configuration may be such that only an alarm is notified instead of abnormal stop. Further, in step S06, it may be configured to determine whether to execute the abnormal stop or the alarm notification.
 ステップS06において異常停止は必要ではないと判定した場合、制御部CU2は、ステップS08を実行する。ステップS08では、液ノズルNの吐出口Na近傍の洗浄を行う(判定制御・洗浄制御)。制御部CU2は現像処理ユニットU1を制御し、液ノズルNの洗浄に係る処理を行う。なお、付着状態の評価結果に基づいてステップS08における液ノズルNの洗浄方法を変更する構成としてもよい。この点については後述する。 If it is determined in step S06 that abnormal stop is not necessary, the control unit CU2 executes step S08. In step S08, the vicinity of the discharge port Na of the liquid nozzle N is cleaned (determination control / cleaning control). The control unit CU2 controls the developing processing unit U1 and performs processing related to cleaning the liquid nozzle N. The cleaning method of the liquid nozzle N in step S08 may be changed based on the evaluation result of the adhered state. This point will be described later.
[画像処理から異常判定までの具体的な手順]
 次に、図10~図12を参照しながら、液ノズルNの吐出口Na近傍の異常の有無を判定する際の具体的な手順について説明する。ここで説明する手順は図9におけるステップS03~ステップS06の具体的な手順の一つの手法である。
[Specific procedure from image processing to abnormality judgment]
Next, a specific procedure for determining the presence or absence of an abnormality in the vicinity of the discharge port Na of the liquid nozzle N will be described with reference to FIGS. 10 to 12. The procedure described here is one of the specific procedures of steps S03 to S06 in FIG.
 まず、制御部CU2は、ステップS11を実行する。ステップS11では、制御部CU2は、記憶部CU1に保持されている基準画像と検査画像とから差分を算出する。差分を算出することにより、検査画像における各ピクセルが基準画像に対してどの程度変化しているかを輝度値から把握することができる。基準画像に対する検査画像の変化、すなわち、輝度値が0とは異なる部分は、その多くが付着物の付着の影響を受けることが考えられる。すなわち、差分に係る画像を作成する処理を行うことで、付着物の領域を推定することができる。 First, the control unit CU2 executes step S11. In step S11, the control unit CU2 calculates the difference from the reference image and the inspection image held in the storage unit CU1. By calculating the difference, it is possible to grasp how much each pixel in the inspection image changes with respect to the reference image from the luminance value. It is considered that most of the changes in the inspection image with respect to the reference image, that is, the portions where the luminance value is different from 0, are affected by the adhesion of deposits. That is, the region of the deposit can be estimated by performing the process of creating the image related to the difference.
 制御部CU2は、ステップS12を実行する。ステップS12では、制御部CU2は、差分画像における各ピクセルでの輝度値の平均値を算出する。すなわち、差分画像に含まれる全ピクセルでの輝度値の平均値を算出する。 The control unit CU2 executes step S12. In step S12, the control unit CU2 calculates the average value of the brightness values at each pixel in the difference image. That is, the average value of the brightness values of all the pixels included in the difference image is calculated.
 制御部CU2は、ステップS13を実行する。ステップS13では、ステップS12で算出された輝度値の平均値に基づいて異常判定を行う。具体的には、平均値が閾値以上である場合には液ノズルNの吐出口Na近傍に異常があると判定する。なお、ステップS13において異常があると判定した場合、制御部CU2では、図9に示す手順に基づいて更なる判定を実施し、異常停止または洗浄等の制御を行う。 The control unit CU2 executes step S13. In step S13, the abnormality determination is performed based on the average value of the brightness values calculated in step S12. Specifically, when the average value is equal to or greater than the threshold value, it is determined that there is an abnormality in the vicinity of the discharge port Na of the liquid nozzle N. If it is determined in step S13 that there is an abnormality, the control unit CU2 further determines based on the procedure shown in FIG. 9, and controls abnormal stop or cleaning.
 具体的な例について、図11を参照しながら説明する。図11では、液ノズルNの吐出口Na近傍を下斜め方向から撮像した画像の例を示している。図11では、縦480ピクセル×横640ピクセルの合計307200ピクセルの画像を用いている。図11(a)は、液ノズルNの吐出口Na近傍の基準画像に相当するものである。これに対して、図11(b)は、検査画像に相当する画像であり、付着物がほぼ存在しないような状態を示す画像である。このような2つの画像の差分を求めた結果を図11(c)に示している。図11(c)に示す画像は2つの画像の各ピクセルにおける輝度値(画素値)の差分を各ピクセルに対応する位置に示したモノクロ画像である。基準画像及び検査画像がカラー画像である場合には、それぞれグレースケール化した後に輝度値の差分を算出する構成としてもよい。カラー画像である場合には、図11(c)は、各ピクセルの輝度値(0~255)をグレースケールとして示したものであり、輝度値が大きいほど白色となるように示している。図11(c)では、参考のために画像全体での明るさ調整を行った状態のものを示している。なお、基準画像及び検査画像がカラー画像である場合、グレースケール化とは異なる方法で各ピクセルの画素値を算出する方法を用いてもよい。 A specific example will be described with reference to FIG. FIG. 11 shows an example of an image obtained by capturing the vicinity of the discharge port Na of the liquid nozzle N from an oblique downward direction. In FIG. 11, an image having a total of 307,200 pixels, which is 480 pixels in length and 640 pixels in width, is used. FIG. 11A corresponds to a reference image in the vicinity of the discharge port Na of the liquid nozzle N. On the other hand, FIG. 11B is an image corresponding to an inspection image, and is an image showing a state in which deposits are almost absent. The result of obtaining the difference between these two images is shown in FIG. 11 (c). The image shown in FIG. 11C is a monochrome image in which the difference between the brightness values (pixel values) in each pixel of the two images is shown at the position corresponding to each pixel. When the reference image and the inspection image are color images, the difference in luminance value may be calculated after grayscale of each image. In the case of a color image, FIG. 11C shows the luminance value (0 to 255) of each pixel as a gray scale, and the larger the luminance value is, the whiter it becomes. FIG. 11C shows a state in which the brightness of the entire image is adjusted for reference. When the reference image and the inspection image are color images, a method of calculating the pixel value of each pixel by a method different from grayscale may be used.
 図11(b)に示す検査画像のように、付着物がほぼ存在しない状態を撮像した画像が検査画像である場合、図11(c)に示すように、差分の画像では輝度値を有するピクセルはかなり少なくなり、その結果、輝度値の平均値は小さくなる。図11(c)に示す例では、輝度値の平均値が2.95となる。一方、図11(d)は、図11(b)とは別の検査画像に相当する画像であり、液ノズルNの吐出口Naの先端付近に付着物が存在している状態を示す画像である。このような2つの画像の差分を算出した場合、図11(e)に示すように、付着物が付着していると思われる領域では、ある程度の輝度値を有する(白く見える)ピクセルが存在する。この場合、輝度値の平均値は大きくなる。図11(e)に示す例では、輝度値の平均値が2.95となる。このように、付着物の付着状況によって、基準画像を用いた差分画像の輝度値の平均値が変化する。したがって、この平均値が所定の閾値よりも大きくなっている場合には、液ノズルNの吐出口Na近傍に付着物が付着していると判断して異常ありと判定する構成とすることができる。なお、図11(e)では、参考のために画像全体での明るさ調整を行った状態のものを示している。 When the image obtained by capturing the state in which there is almost no deposit is the inspection image like the inspection image shown in FIG. 11 (b), as shown in FIG. 11 (c), the difference image is a pixel having a luminance value. Is considerably less, and as a result, the average brightness value is smaller. In the example shown in FIG. 11C, the average value of the brightness values is 2.95. On the other hand, FIG. 11D is an image corresponding to an inspection image different from that of FIG. 11B, and is an image showing a state in which deposits are present near the tip of the discharge port Na of the liquid nozzle N. is there. When the difference between these two images is calculated, as shown in FIG. 11 (e), there are pixels having a certain brightness value (appearing white) in the region where the deposits are considered to be attached. .. In this case, the average value of the brightness values becomes large. In the example shown in FIG. 11 (e), the average value of the brightness values is 2.95. In this way, the average value of the brightness values of the difference image using the reference image changes depending on the adhesion state of the deposits. Therefore, when this average value is larger than a predetermined threshold value, it can be determined that deposits are attached to the vicinity of the discharge port Na of the liquid nozzle N, and it can be determined that there is an abnormality. .. Note that FIG. 11E shows a state in which the brightness of the entire image is adjusted for reference.
 図11とは異なる具体例について、図12を参照しながら説明する。図12では、液ノズルNの吐出口Na近傍を吐出口Naの真下から撮像した画像の例を示している。図12では、縦640ピクセル×横480ピクセルの合計307200ピクセルの画像を用いている。図12(a)は、液ノズルNの吐出口Na近傍の基準画像に相当するものである。これに対して、図12(b)は、液ノズルNの吐出口Naの先端付近に付着物が存在している状態を示す画像である。このような2つの画像の差分を算出した結果を図12(c)に示している。図12(c)は、図11(c),(e)と同様の手法で差分の輝度値を算出した結果を示した画像である。また、図12(c)についても、画像全体での明るさ調整を行った状態のものを示している。図12(c)に示すように、付着物が付着していると思われる領域では、ある程度の輝度値を有する(白く見える)ピクセルが存在する。この場合も、全ピクセルでの輝度値の平均値はある程度大きくなると思われるので、平均値が所定の閾値よりも大きくなっている場合には、液ノズルNの吐出口Na近傍に付着物が付着していると判断して異常ありと判定する構成とすることができる。 A specific example different from FIG. 11 will be described with reference to FIG. FIG. 12 shows an example of an image obtained by capturing the vicinity of the discharge port Na of the liquid nozzle N from directly below the discharge port Na. In FIG. 12, an image having a total of 307200 pixels, which is 640 pixels in length and 480 pixels in width, is used. FIG. 12A corresponds to a reference image in the vicinity of the discharge port Na of the liquid nozzle N. On the other hand, FIG. 12B is an image showing a state in which deposits are present near the tip of the discharge port Na of the liquid nozzle N. The result of calculating the difference between these two images is shown in FIG. 12 (c). FIG. 12 (c) is an image showing the result of calculating the difference luminance value by the same method as in FIGS. 11 (c) and 11 (e). Further, FIG. 12C also shows a state in which the brightness of the entire image is adjusted. As shown in FIG. 12 (c), in the region where the deposits are considered to be attached, there are pixels having a certain brightness value (appearing white). In this case as well, the average value of the brightness values at all pixels is considered to be large to some extent, so if the average value is larger than a predetermined threshold value, deposits adhere to the vicinity of the discharge port Na of the liquid nozzle N. It can be configured to determine that there is an abnormality.
 また、図12(c)に示す差分画像では、液ノズルNの吐出口Naの内壁側及び外壁側のそれぞれに付着している付着物の画像を区別することができる。すなわち、吐出口Naの下端の端面に対応する領域では、基準画像及び検査画像の両方が同程度の輝度となっているので差分画像では輝度が0または0に近くなっている。一方、内壁表面より内側及び外壁表面より外側は、図12(b)に示すように基準画像と比べて検査画像における付着物が目立っている。そのため、図12(c)に示すように差分画像においても各領域において輝度値の大きな領域が見られる。 Further, in the difference image shown in FIG. 12 (c), it is possible to distinguish the images of the deposits adhering to the inner wall side and the outer wall side of the discharge port Na of the liquid nozzle N. That is, in the region corresponding to the end face of the lower end of the discharge port Na, since both the reference image and the inspection image have the same brightness, the brightness of the difference image is close to 0 or 0. On the other hand, on the inside of the inner wall surface and the outside of the outer wall surface, as shown in FIG. 12B, deposits in the inspection image are conspicuous as compared with the reference image. Therefore, as shown in FIG. 12 (c), even in the difference image, a region having a large luminance value can be seen in each region.
 図12に示す例の場合、上述のように内壁の付着物と外壁の付着物とを区別することができる。そこで、このような画像を用いて液ノズルNの吐出口Na近傍の付着物の評価を行う場合、内壁側の付着物と外壁側の付着物を区別して評価を行うことができる。また、図12に示す例のように、液ノズルNの吐出口Na近傍を撮像した画像の解像度が高い場合、付着物の特性が画像に反映される。したがって、検査画像または差分画像から付着物の特性に係る情報を取得し、付着物の種類を特定することが可能となる。 In the case of the example shown in FIG. 12, it is possible to distinguish between the deposits on the inner wall and the deposits on the outer wall as described above. Therefore, when evaluating the deposits in the vicinity of the discharge port Na of the liquid nozzle N using such an image, the deposits on the inner wall side and the deposits on the outer wall side can be distinguished and evaluated. Further, as in the example shown in FIG. 12, when the resolution of the image captured in the vicinity of the discharge port Na of the liquid nozzle N is high, the characteristics of the deposits are reflected in the image. Therefore, it is possible to acquire information on the characteristics of the deposit from the inspection image or the difference image and identify the type of the deposit.
 そこで、図13~図16を参照しながら、付着物の付着位置を区別した評価及び付着物の種類の評価等に基づいて、液ノズルNの吐出口Na近傍の異常の有無を判定する際の具体的な手順について説明する。ここで説明する手順は図9におけるステップS03~ステップS06の具体的な手順の一つの手法である。 Therefore, with reference to FIGS. 13 to 16, when determining the presence or absence of an abnormality in the vicinity of the discharge port Na of the liquid nozzle N based on the evaluation of the attachment position of the deposit and the evaluation of the type of the deposit. A specific procedure will be described. The procedure described here is one of the specific procedures of steps S03 to S06 in FIG.
 図14~図16では、図12と同様に液ノズルNの吐出口Naの下端を撮像した画像を用いた具体例を示している。ただし、図11で説明した液ノズルNの吐出口Naを斜め下から撮像した画像を検査画像とした場合でも同様の手順を行うことができる。また、液ノズルNの吐出口Na近傍の側面の全周を撮像した画像を検査画像とした場合でも、同様の手順を行うことができる。ただし、検査画像における液ノズルNの向きによっては液ノズルNの吐出口Naの下面の付着物は検出が困難である等、検査画像における液ノズルNの向きによって、異常判定を行う対象となる場所(液ノズルNの側面、下端等)が変化し得る。 14 to 16 show a specific example using an image of the lower end of the discharge port Na of the liquid nozzle N as in FIG. 12. However, the same procedure can be performed even when the image obtained by capturing the discharge port Na of the liquid nozzle N described in FIG. 11 from diagonally below is used as the inspection image. Further, the same procedure can be performed even when an image obtained by capturing the entire circumference of the side surface of the liquid nozzle N near the discharge port Na is used as an inspection image. However, depending on the orientation of the liquid nozzle N in the inspection image, it is difficult to detect the deposits on the lower surface of the discharge port Na of the liquid nozzle N, and the location where the abnormality is determined depending on the orientation of the liquid nozzle N in the inspection image. (Side surface, lower end, etc. of liquid nozzle N) can change.
 まず、制御部CU2は、ステップS21を実行する。ステップS21では、制御部CU2は、記憶部CU1に保持されている基準画像と検査画像とから差分を算出する。この手順は、ステップS11と同様である。 First, the control unit CU2 executes step S21. In step S21, the control unit CU2 calculates the difference from the reference image and the inspection image held in the storage unit CU1. This procedure is the same as in step S11.
 次に、制御部CU2は、ステップS22を実行する。ステップS22では、制御部CU2は、液ノズルNの吐出口Na近傍のノズル形状情報に基づいて液ノズルNの吐出口Na近傍における付着物の付着位置を推定する。ノズル形状情報とは、液ノズルNの形状を特定するものである。本実施形態では、液ノズルNの下端部の外形、すなわち下端部の輪郭がノズル形状情報となるが、例えば、検査画像における液ノズルNの向きによっては、その他の部分の形状を特定する情報がノズル形状情報となり得る。すなわち、ノズル形状情報とは、付着物が付着していない状態でのノズルの形状を特定することができる情報をいう。
図12(c)に示したように、基準画像と検査画像との差分画像では、液ノズルNの吐出口Naの下端の輪郭を特定することができる。すなわち、図14(a)に示すように、差分画像から液ノズルNの吐出口Naの下端の輪郭、すなわち、下端面の内壁との境界部と、外壁との境界部と、を特定することができる。なお、ノズル形状情報は、差分画像から取得することに代えて、予め制御装置CUの記憶部CU1において対応する情報を保持しておく態様としてもよい。撮像部26により撮像される液ノズルNの吐出口Na近傍の画像は、上記のように撮像位置が基本的に決まっているものである。したがって、検査画像における液ノズルNの吐出口Naの下端の位置は基本的に変わらないものとして、予め検査画像に含まれる液ノズルNの吐出口Naのノズル形状情報を保持しておくこととしてもできる。
Next, the control unit CU2 executes step S22. In step S22, the control unit CU2 estimates the adhesion position of the deposit in the vicinity of the discharge port Na of the liquid nozzle N based on the nozzle shape information in the vicinity of the discharge port Na of the liquid nozzle N. The nozzle shape information specifies the shape of the liquid nozzle N. In the present embodiment, the outer shape of the lower end portion of the liquid nozzle N, that is, the contour of the lower end portion is the nozzle shape information, but for example, depending on the orientation of the liquid nozzle N in the inspection image, information for specifying the shape of the other portion may be obtained. It can be nozzle shape information. That is, the nozzle shape information refers to information that can specify the shape of the nozzle in a state where no deposits are attached.
As shown in FIG. 12C, the contour of the lower end of the discharge port Na of the liquid nozzle N can be specified in the difference image between the reference image and the inspection image. That is, as shown in FIG. 14A, the contour of the lower end of the discharge port Na of the liquid nozzle N, that is, the boundary portion between the lower end surface and the inner wall and the boundary portion with the outer wall is specified from the difference image. Can be done. Instead of acquiring the nozzle shape information from the difference image, the corresponding information may be stored in advance in the storage unit CU1 of the control device CU. The image in the vicinity of the discharge port Na of the liquid nozzle N imaged by the image pickup unit 26 is basically the one in which the image pickup position is basically determined as described above. Therefore, assuming that the position of the lower end of the discharge port Na of the liquid nozzle N in the inspection image is basically the same, the nozzle shape information of the discharge port Na of the liquid nozzle N included in the inspection image may be retained in advance. it can.
 上記のようにノズル形状情報を用いると、差分画像において輝度値が高い領域となる付着物が付着した領域が、液ノズルNの内壁側にあるのか外壁側にあるのかを推定することができる。すなわち、差分画像に含まれるノズル形状情報を用いて、付着物の付着位置を推定することができる。なお、本実施形態では、この段階の付着物の付着位置の推定とは付着位置が内壁側/外壁側のどちらである場合について説明している。しかしながら、より詳細な付着位置として、例えば、液ノズルNの中心を基準としてどちらの方向に付着物があるか、液ノズルNの吐出口Naからの距離がどの程度の位置にあるか、等を推定する構成としてもよい。検査画像がどちらから撮像した画像であるかによって、画像から推定できる付着位置(上下方向、径方向での位置関係等)は変化し得る。 By using the nozzle shape information as described above, it is possible to estimate whether the region to which the deposits, which are the regions having a high brightness value, are attached to the liquid nozzle N is on the inner wall side or the outer wall side of the liquid nozzle N. That is, the adhesion position of the deposit can be estimated by using the nozzle shape information included in the difference image. In this embodiment, the estimation of the adhesion position of the deposit at this stage describes the case where the adhesion position is on the inner wall side or the outer wall side. However, as a more detailed adhesion position, for example, in which direction the deposit is present with reference to the center of the liquid nozzle N, how far the liquid nozzle N is from the discharge port Na, and the like are determined. It may be an estimated configuration. The adhesion position (positional relationship in the vertical direction, the radial direction, etc.) that can be estimated from the image may change depending on which side the inspection image is taken from.
 次に、制御部CU2は、ステップS23を実行する。ステップS23では、制御部CU2は、付着位置毎に付着物が撮像されたピクセルの数から付着物の付着量を評価する。図14(b)は、図12(c)に示す画像について所定の閾値を基準に二値化処理を行った後に、外壁側の付着物を撮像したと思われる領域のみを抽出した例を示している。また、図14(c)は、図12(c)に示す画像について所定の閾値を基準に二値化処理を行った後に、内壁側の付着物を撮像したと思われる領域のみを抽出した例を示している。このように、二値化処理を行った上で、外壁側/内壁側の付着物を撮像した領域を抽出することで、液ノズルNの外壁側/内壁側に付着した付着物の撮像したピクセルの数(ピクセル数)を算出することができる。例えば、図14(b)に示す例では、外壁側で付着物を撮像したピクセル数は12649ピクセルとカウントすることができる。また、図14(c)に示す例では、内壁側で付着物を撮像したピクセル数は5426ピクセルとカウントすることができる。このように、付着物を撮像したピクセル数、すなわち付着物を撮像した面積から付着物の付着量を評価することができる。このように算出された付着量は異常の有無を判定する際の情報として利用することができる。 Next, the control unit CU2 executes step S23. In step S23, the control unit CU2 evaluates the amount of deposits attached from the number of pixels in which the deposits are imaged for each attachment position. FIG. 14 (b) shows an example in which the image shown in FIG. 12 (c) is subjected to a binarization process based on a predetermined threshold value, and then only the region in which the deposit on the outer wall side is considered to be imaged is extracted. ing. Further, FIG. 14 (c) shows an example in which the image shown in FIG. 12 (c) is subjected to binarization processing based on a predetermined threshold value, and then only the region in which the deposit on the inner wall side is considered to be imaged is extracted. Is shown. In this way, after performing the binarization process, by extracting the region where the deposits on the outer wall side / inner wall side are imaged, the pixels in which the deposits adhered to the outer wall side / inner wall side of the liquid nozzle N are imaged. The number of (number of pixels) can be calculated. For example, in the example shown in FIG. 14B, the number of pixels in which the deposit is imaged on the outer wall side can be counted as 12649 pixels. Further, in the example shown in FIG. 14C, the number of pixels in which the deposit is imaged on the inner wall side can be counted as 5426 pixels. In this way, the amount of deposits can be evaluated from the number of pixels in which the deposits are imaged, that is, the area where the deposits are imaged. The amount of adhesion calculated in this way can be used as information when determining the presence or absence of an abnormality.
 次に、制御部CU2は、ステップS24を実行する。ステップS24では、制御部CU2は、付着物の種類を評価する。付着物の種類としては上述のように大枠として液体(液滴)と固体(固形物)とに分けられる。ステップS24では、制御部CU2は検査画像または差分画像に基づいてこの2種類を区別する。 Next, the control unit CU2 executes step S24. In step S24, the control unit CU2 evaluates the type of deposit. As described above, the types of deposits are roughly divided into liquids (droplets) and solids (solids). In step S24, the control unit CU2 distinguishes between the two types based on the inspection image or the difference image.
 付着物の種類を特定するための手順の一例について、図15を参照しながら説明する。図15(a)は液ノズルNの吐出口Na近傍の外壁側に液滴が付着している状態を撮像した検査画像である。図15(b)は、図15(a)に示す検査画像について所定の閾値を基準に二値化処理を行った画像である。一方、図15(c)は液ノズルNの吐出口Na近傍の外壁側に固形物が付着している状態を撮像した検査画像である。図15(d)は、図15(c)に示す検査画像について所定の閾値を基準に二値化処理を行った画像である。 An example of a procedure for identifying the type of deposit will be described with reference to FIG. FIG. 15A is an inspection image of a state in which droplets are attached to the outer wall side near the discharge port Na of the liquid nozzle N. FIG. 15B is an image obtained by binarizing the inspection image shown in FIG. 15A based on a predetermined threshold value. On the other hand, FIG. 15C is an inspection image in which a solid substance is attached to the outer wall side near the discharge port Na of the liquid nozzle N. FIG. 15D is an image obtained by performing binarization processing on the inspection image shown in FIG. 15C based on a predetermined threshold value.
 図15(a)と図15(c)との比較からわかるように、液滴が付着した場合と固形物が付着した場合とでは、撮像画像においても見た目が変化する。具体的には、液滴が付着した場合は、付着物の外形がなだらかとなり光り方が一様になるため、画像上でもなだらかな形状となる。一方、固形物が付着した場合は、付着物の外形に細かい凹凸が残り得る(当然ながら固形物によってその形状は異なり得る)ことにより光り方がまばらとなり、画像上でも凹凸がはっきりと残る。上記の相違点は、図15(b)及び図15(d)に示す二値化画像においても把握することができる。したがって、付着量を評価した二値化画像を利用して、付着物の外形(凹凸)を推定することで付着物が液体であるか固体であるかを判定することもできる。なお、二値化画像ではなく、検査画像(図15(a),(c)に示す画像)から直接付着物の種類を判定する構成としてもよい。また、外形(凹凸)を推定する際に、極座標展開を行うこととしてもよい。 As can be seen from the comparison between FIGS. 15 (a) and 15 (c), the appearance of the captured image also changes between the case where the droplets adhere and the case where the solid matter adheres. Specifically, when droplets adhere, the outer shape of the adhered matter becomes gentle and the way of shining becomes uniform, so that the shape becomes gentle even on the image. On the other hand, when a solid substance adheres, fine irregularities may remain on the outer shape of the adhered substance (of course, the shape may differ depending on the solid substance), so that the way of shining becomes sparse and the unevenness remains clearly on the image. The above differences can also be grasped in the binarized images shown in FIGS. 15 (b) and 15 (d). Therefore, it is also possible to determine whether the deposit is a liquid or a solid by estimating the outer shape (unevenness) of the deposit using the binarized image in which the amount of the deposit is evaluated. It should be noted that the configuration may be such that the type of the deposit is directly determined from the inspection image (image shown in FIGS. 15A and 15C) instead of the binarized image. In addition, polar coordinate expansion may be performed when estimating the outer shape (unevenness).
 また、上記のように付着物の外形の凹凸を基準に判定することに代えて、例えば、1つの付着物を撮像した領域の大きさ(ピクセル数)を基準に判定することとしてもよい。例えば、液滴はある程度の大きさにならないと単体で存在しないため、液滴を撮像した画像においては付着物を撮像した領域がある程度大きくなると推定できる。一方、固形物は液滴よりも小さくても単体で存在し得る。このことに基づいて、1つの付着物を撮像したと推定される連続する領域の大きさ(ピクセル数)に基づいて、所定の閾値より大きい領域には液滴が存在すると判定し、それ以外の領域には固形物が存在すると判定する構成としてもよい。このように、検査画像または検査画像から加工された画像(例えば、二値化後の画像)から、液ノズルNの吐出口Na近傍における付着物の種類を判定する方法は、特に限定されず、種々の方法を適用することができる。 Further, instead of judging based on the unevenness of the outer shape of the deposit as described above, for example, the judgment may be made based on the size (number of pixels) of the region where one deposit is imaged. For example, since the droplet does not exist as a single substance unless it becomes a certain size, it can be estimated that the region where the deposit is imaged becomes large to some extent in the image obtained by capturing the droplet. On the other hand, a solid substance may exist alone even if it is smaller than a droplet. Based on this, based on the size (number of pixels) of the continuous area estimated to have imaged one deposit, it is determined that there are droplets in the area larger than the predetermined threshold value, and other than that. It may be configured to determine that a solid substance is present in the region. As described above, the method for determining the type of deposits in the vicinity of the discharge port Na of the liquid nozzle N from the inspection image or the image processed from the inspection image (for example, the image after binarization) is not particularly limited. Various methods can be applied.
 次に、制御部CU2は、ステップS25を実行する。ステップS25では、制御部CU2は、上記のステップS23,S24で得られた各種情報から異常の有無を判定する。例えば、ステップS23を実行することで、制御部CU2では付着物の付着量に係る情報を得ることができる。また、ステップS24を実行することで、制御部CU2では付着物の種類に係る情報を得ることができる。これらの情報を利用して、異常の有無を判定する態様とすることができる。 Next, the control unit CU2 executes step S25. In step S25, the control unit CU2 determines the presence or absence of an abnormality from the various information obtained in the above steps S23 and S24. For example, by executing step S23, the control unit CU2 can obtain information on the amount of deposits. Further, by executing step S24, the control unit CU2 can obtain information on the type of the deposit. By using this information, it is possible to determine the presence or absence of an abnormality.
 付着物の付着量から異常の有無を判定する際の基準は、単純に付着物を撮像したピクセルのピクセル数としてもよいが、この構成に限定されるものではない。例えば、付着物を撮像したピクセルの輝度値(画素値)が大小に基づいて異常の有無を判定してもよい。また、付着物がどのように付着しているかについても異常の有無を判定する際の基準に含める構成としてもよい。図16は、付着物が付着している「状態」も考慮する場合も一例について説明する図である。図16では、図14(b)に示した外壁の付着物を撮像した領域を抽出した画像に対して異常の有無を判定するための2つの基準線L1,L2を追加したものである。基準線L1,L2は、それぞれ液ノズルNの吐出口Naの中心を基準としながら外壁からの距離が互いに異なる円である。すなわち、基準線L1は外壁に対して100μm外側を示す線であり、基準線L2は外壁に対して50μm外側を示す線である。この基準線L1,L2を事前に設けておき、付着物を撮像したピクセルと基準線L1,L2との位置関係から異常の有無を判定する態様とすることができる。例えば、付着物が基準線L1よりも外側に突出している場合には異常停止が必要であると判定する態様とすることができる。また、付着物が基準線L1よりも外側に突出していないが、基準線L2よりも外側に突出している場合には異常があると判定し警告を発出すると判定する態様としてもよい。また、基準線L1または基準線L2よりも外側に突出している付着物(を撮像した領域のピクセル数)が所定量よりも超えている場合には異常であると判定する態様とすることもできる。このように、異常の有無を判定する際の基準として、基準線L1,L2を利用するような構成としてもよい。 The standard for determining the presence or absence of an abnormality from the amount of adhered matter may be simply the number of pixels of the pixel in which the adhered matter is imaged, but the configuration is not limited to this. For example, the presence or absence of an abnormality may be determined based on the magnitude of the brightness value (pixel value) of the pixel in which the deposit is imaged. In addition, how the deposits are attached may be included in the criteria for determining the presence or absence of abnormalities. FIG. 16 is a diagram illustrating an example when considering the “state” in which deposits are attached. In FIG. 16, two reference lines L1 and L2 for determining the presence or absence of an abnormality are added to the image obtained by extracting the region in which the deposits on the outer wall shown in FIG. 14B are imaged. The reference lines L1 and L2 are circles whose distances from the outer wall are different from each other with reference to the center of the discharge port Na of the liquid nozzle N. That is, the reference line L1 is a line indicating 100 μm outside with respect to the outer wall, and the reference line L2 is a line indicating 50 μm outside with respect to the outer wall. The reference lines L1 and L2 can be provided in advance, and the presence or absence of an abnormality can be determined from the positional relationship between the pixel in which the deposit is imaged and the reference lines L1 and L2. For example, when the deposit protrudes outside the reference line L1, it can be determined that an abnormal stop is necessary. Further, if the deposit does not protrude outward from the reference line L1 but protrudes outward from the reference line L2, it may be determined that there is an abnormality and a warning is issued. Further, if the amount of deposits (the number of pixels in the imaged region) protruding outward from the reference line L1 or the reference line L2 exceeds a predetermined amount, it can be determined to be abnormal. .. As described above, the reference lines L1 and L2 may be used as a reference for determining the presence or absence of an abnormality.
 次に、制御部CU2は、ステップS26を実行する。ステップS26では、制御部CU2は、異常の判定の結果に応じて液ノズルNの洗浄が必要と判定された場合に、判定の結果に応じた洗浄方法を選択し、洗浄を実行する。 Next, the control unit CU2 executes step S26. In step S26, when it is determined that cleaning of the liquid nozzle N is necessary according to the result of the abnormality determination, the control unit CU2 selects a cleaning method according to the determination result and executes cleaning.
 具体的な洗浄方法の選択に係る制御部CU2での判断のフローの一例を図17に示す。まず、制御部CU2は、ステップS31を実行する。ステップS31では、制御部CU2は付着物の位置の特定(ステップS22)の結果に基づいて、液ノズルNの吐出口Na近傍の内壁側に汚れがあるか(付着物があるか)を判定する。この結果、内壁側に付着物があると判定された場合には、制御部CU2はステップS32を実行する。すなわち、制御部CU2は、ステップS32として、液ノズルNの内壁が洗浄可能となる方法で液ノズルNの洗浄を実施する。この場合、液ノズルN内部の洗浄と共に外壁の洗浄も行う態様とすることができる。一方、ステップ内壁側に付着物がないと判定された場合には、制御部CU2はステップS33を実行する。すなわち、制御部CU2はノズルチップの洗浄を行う。ノズルチップの洗浄とは、ノズルの外壁を主に洗浄する方法であり、内壁の洗浄を行う場合と比較して、工程数が少ない方法である。このように、付着物の付着位置に応じて洗浄方法を変更する態様としてもよい。なお、付着物の付着位置に応じた洗浄方法の選択(ステップS26)は行わずに、洗浄が必要である場合には所定の洗浄方法を実行する態様としてもよい。 FIG. 17 shows an example of the judgment flow in the control unit CU2 related to the selection of a specific cleaning method. First, the control unit CU2 executes step S31. In step S31, the control unit CU2 determines whether or not there is dirt (whether there is deposit) on the inner wall side near the discharge port Na of the liquid nozzle N based on the result of specifying the position of the deposit (step S22). .. As a result, when it is determined that there is an deposit on the inner wall side, the control unit CU2 executes step S32. That is, in step S32, the control unit CU2 cleans the liquid nozzle N by a method that enables the inner wall of the liquid nozzle N to be washed. In this case, the outer wall can be cleaned together with the inside of the liquid nozzle N. On the other hand, when it is determined that there is no deposit on the inner wall side of the step, the control unit CU2 executes step S33. That is, the control unit CU2 cleans the nozzle tip. Cleaning the nozzle tip is a method of mainly cleaning the outer wall of the nozzle, and is a method in which the number of steps is smaller than that of cleaning the inner wall. In this way, the cleaning method may be changed according to the adhesion position of the adhered matter. In addition, a predetermined cleaning method may be executed when cleaning is required without selecting the cleaning method according to the adhesion position of the adhered matter (step S26).
 なお、上記実施形態では、図10及び図13を参照しながら2つの手順について説明した。ただし、特に液ノズルNの異常の有無の判定に関して、図10及び図13で説明する手順を制御部CU2が両方同時に行う構成としてもよいし、どちらか一方のみを行う構成としてもよい。 In the above embodiment, the two procedures have been described with reference to FIGS. 10 and 13. However, particularly regarding the determination of the presence or absence of abnormality in the liquid nozzle N, the control unit CU2 may perform both of the procedures described in FIGS. 10 and 13 at the same time, or only one of them may be performed.
[作用]
 上記の現像処理ユニット(基板処理装置)U1及びノズル検査方法によれば、液ノズルNの吐出口Naの近傍に係る全周を撮像した検査画像に基づいて、液ノズルNの吐出口Naへの付着物の付着状態の評価が行われる。また、より詳細には、液ノズルNに付着した付着物を撮像した領域が推定され、その結果に基づいて異常の有無が判定される。このように、液ノズルNの吐出口Naの近傍に係る全周を撮像した画像に基づいた評価が行われ、その一態様として、異常の有無が判定される。したがって、付着物が付着した状態で液ノズルNが動作する可能性を低減させることができるため、ノズルの吐出口Na付近における付着物の付着状態をより適切に評価することができる。
[Action]
According to the development processing unit (board processing apparatus) U1 and the nozzle inspection method described above, the liquid nozzle N is supplied to the discharge port Na based on an inspection image obtained by imaging the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na. The state of adhesion of deposits is evaluated. Further, in more detail, the region where the deposits adhering to the liquid nozzle N are imaged is estimated, and the presence or absence of abnormality is determined based on the result. In this way, the evaluation is performed based on the image obtained by capturing the entire circumference of the liquid nozzle N in the vicinity of the discharge port Na, and as one aspect thereof, the presence or absence of an abnormality is determined. Therefore, since the possibility that the liquid nozzle N operates in the state where the deposits are attached can be reduced, the adhered state of the deposits in the vicinity of the discharge port Na of the nozzle can be evaluated more appropriately.
 従来から、基板処理装置における処理液を供給する液ノズルの状態を評価する際に、画像を用いることは検討されていた。しかしながら、液ノズルを一方向から撮像した画像を用いて評価を行う構成とした場合、画像では撮像することができない場所に付着物が付着した場合には、付着物が付着していることを気付けない場合がある。このような場合、液ノズルの異常判定について誤って判定してしまう可能性がある。しかしながら、上述したように、従来は基板に対して供給される処理液の供給量が多いため、吐出初期段階の処理液と共に基板表面に落下する付着物が、基板処理において問題となる可能性が低かった。そのため、上記の構成であっても大きな問題となる可能性は少なかった。 Conventionally, it has been considered to use an image when evaluating the state of a liquid nozzle that supplies a processing liquid in a substrate processing apparatus. However, when the evaluation is performed using an image of the liquid nozzle imaged from one direction, if deposits adhere to a place that cannot be imaged by the image, it is noticed that the deposits adhere. It may not be. In such a case, there is a possibility that the abnormality determination of the liquid nozzle is erroneously determined. However, as described above, since the amount of the treatment liquid supplied to the substrate is large in the past, deposits that fall on the substrate surface together with the treatment liquid in the initial stage of discharge may cause a problem in the substrate treatment. It was low. Therefore, even with the above configuration, there is little possibility that a big problem will occur.
 これに対して、近年検討が進められている、従来の液処理と比べて基板に対して供給する処理液の供給量を低減する制御では、吐出初期段階の処理液に付着物が混合することは基板における液処理で欠陥を引き起こす可能性がある。したがって、ノズルに対する付着物の付着をより高い精度で検知する構成が求められていた。上記の基板処理装置及びノズル検査方法によれば、従来の構成と比較して、より高い精度でノズルに対する付着物の付着に係る評価を行うことができ、さらに、異常の有無を判定することを可能とする。したがって、処理液の供給量を低減した基板処理の制御にも対応可能となる。 On the other hand, in the control that reduces the amount of the processing liquid supplied to the substrate as compared with the conventional liquid treatment, which has been studied in recent years, deposits are mixed with the treatment liquid in the initial stage of discharge. Can cause defects in liquid treatment on the substrate. Therefore, there has been a demand for a configuration that detects the adhesion of deposits to the nozzle with higher accuracy. According to the above-mentioned substrate processing apparatus and nozzle inspection method, it is possible to evaluate the adhesion of deposits to the nozzle with higher accuracy as compared with the conventional configuration, and further, it is possible to determine the presence or absence of abnormality. Make it possible. Therefore, it is possible to control the substrate processing by reducing the supply amount of the processing liquid.
 また、上記実施形態で説明したように、評価結果に基づいて液ノズルに対して実行すべき動作を判定する構成とすることで、評価結果に応じて適切な処置を実施することが可能となり、液ノズルNの異常等を考慮した適切な対応を行うことができる。 Further, as described in the above embodiment, by configuring the configuration to determine the operation to be performed on the liquid nozzle based on the evaluation result, it is possible to carry out an appropriate measure according to the evaluation result. Appropriate measures can be taken in consideration of abnormalities in the liquid nozzle N and the like.
 また、上記実施形態で説明したように、検査画像において付着物を撮像した領域の画素値またはピクセル数等に基づいて付着物の付着状態を評価し、その結果に基づいて液ノズルNにおける異常の有無を判定する態様とする。このような態様とすることで、付着物の付着状態に応じて異常の有無を評価することができる。したがって、このような構成とすることで、付着物の付着状態をより適切に評価することができる。 Further, as described in the above embodiment, the adhesion state of the deposit is evaluated based on the pixel value or the number of pixels of the region where the deposit is imaged in the inspection image, and the abnormality in the liquid nozzle N is evaluated based on the result. The mode is to determine the presence or absence. With such an aspect, the presence or absence of abnormality can be evaluated according to the state of adhesion of the deposit. Therefore, with such a configuration, the adhered state of the deposit can be evaluated more appropriately.
 また、上記実施形態では、検査画像から推定された液ノズルNに付着した付着物が液体であるか固体であるかを推定する。このような構成とすることで、液ノズルNの吐出口Na付近における付着物がどの程度強固に付着しているものであるか等を評価でき、付着状態をより適切に評価することができる。 Further, in the above embodiment, it is estimated whether the deposit attached to the liquid nozzle N estimated from the inspection image is a liquid or a solid. With such a configuration, it is possible to evaluate how strongly the deposits in the vicinity of the discharge port Na of the liquid nozzle N are adhered, and it is possible to more appropriately evaluate the adhered state.
 また、上記実施形態では、検査画像に基づいて、付着物の付着位置を推定することにより、当該付着物が液ノズルNを使用した処理にどの程度影響を与えるか等をより精度よく評価できることができる。特に、付着物が液ノズルNの内壁側及び外壁側のどちらに付着しているかに応じて、付着物が処理液と共に排出されるリスクも変わり得る。したがって、付着物が液ノズルNの内壁側及び外壁側のどちらに付着しているかを推定する構成を有することで、より付着物が基板処理に与える影響をより適切に評価することができる。 Further, in the above embodiment, by estimating the adhesion position of the deposit based on the inspection image, it is possible to more accurately evaluate how much the deposit affects the treatment using the liquid nozzle N. it can. In particular, the risk of the deposits being discharged together with the treatment liquid may change depending on whether the deposits are attached to the inner wall side or the outer wall side of the liquid nozzle N. Therefore, by having a configuration for estimating whether the deposit is attached to the inner wall side or the outer wall side of the liquid nozzle N, it is possible to more appropriately evaluate the influence of the deposit on the substrate treatment.
 また、上記実施形態では、評価制御での評価結果に基づいて液ノズルNの洗浄方法を選択する構成としている。このような構成とすることで、付着物の付着状況に応じた適切な洗浄を行うことが可能となる。したがって、液ノズルNからの付着部の除去を好適に行うことができる。 Further, in the above embodiment, the cleaning method of the liquid nozzle N is selected based on the evaluation result in the evaluation control. With such a configuration, it is possible to perform appropriate cleaning according to the adhesion state of the deposits. Therefore, it is possible to preferably remove the adhered portion from the liquid nozzle N.
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。 Although various exemplary embodiments have been described above, various omissions, substitutions, and changes may be made without being limited to the above-mentioned exemplary embodiments. It is also possible to combine elements in different embodiments to form other embodiments.
 例えば、上記実施形態では、制御装置CUの制御部CU2において、ノズル検査に係る制御を行う場合について説明した。しかしながらノズル検査に係る制御を行う機能部は、1つの装置に集中してもよいし、複数の装置に分散配置されていてもよい。 For example, in the above embodiment, the case where the control unit CU2 of the control device CU performs the control related to the nozzle inspection has been described. However, the functional units that control the nozzle inspection may be concentrated in one device or may be distributed in a plurality of devices.
 また、液ノズルN及びその吐出口Naの形状は適宜変更することができる。吐出口Naの形状によって、撮像部26の構成を変更することができる。また、液ノズルNの形状に応じて検査画像として使用する画像を変更することができる。 Further, the shapes of the liquid nozzle N and its discharge port Na can be changed as appropriate. The configuration of the imaging unit 26 can be changed depending on the shape of the discharge port Na. Further, the image used as the inspection image can be changed according to the shape of the liquid nozzle N.
 また、検査画像から付着物を撮像した領域を推定する方法は上記実施形態に限定されない。例えば、上記実施形態では、液ノズルNの吐出口Naの真下から撮像した画像については、吐出口Naの下端(下面)の付着物について評価を行うことについては説明をしていない。これに対して、例えば、検査画像における各ピクセルの輝度値の分布等に基づいて下端の付着物についても評価を行う構成としてもよい。また、上記実施形態では、基準画像を利用して生成した差分画像に基づいて異常の判定を行う場合について説明したが、差分画像を利用しない構成としてもよい。また、基準画像も利用しない構成としてもよい。 Further, the method of estimating the region where the deposit is imaged from the inspection image is not limited to the above embodiment. For example, in the above-described embodiment, it is not described that the image taken from directly below the discharge port Na of the liquid nozzle N is evaluated for the deposits on the lower end (lower surface) of the discharge port Na. On the other hand, for example, the deposit at the lower end may be evaluated based on the distribution of the brightness value of each pixel in the inspection image. Further, in the above embodiment, the case where the abnormality is determined based on the difference image generated by using the reference image has been described, but the configuration may not use the difference image. Further, the reference image may not be used.
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 From the above description, it is understood that the various embodiments of the present disclosure are described herein for purposes of explanation and that various modifications can be made without departing from the scope and gist of the present disclosure. Will. Therefore, the various embodiments disclosed herein are not intended to be limiting, and the true scope and gist is indicated by the appended claims.
 1…塗布・現像装置、26…撮像部、27…カメラ、28…ミラー、CU…制御装置、CU1…記憶部、CU2…制御部、D…表示部、N…液ノズル、Na…吐出口、U1…現像処理ユニット(基板処理装置)、W…ウエハ(基板)、Wa…表面。 1 ... Coating / developing device, 26 ... Imaging unit, 27 ... Camera, 28 ... Mirror, CU ... Control device, CU1 ... Storage unit, CU2 ... Control unit, D ... Display unit, N ... Liquid nozzle, Na ... Discharge port, U1 ... Development processing unit (board processing device), W ... Wafer (board), Wa ... Surface.

Claims (8)

  1.  下方の基板に対して吐出口から処理液を吐出する液ノズルと、
     前記液ノズルの前記吐出口の近傍に係る全周を撮像する撮像部と、
     制御部と、を備え、
     前記制御部は、
     前記撮像部において撮像された前記液ノズルの吐出口近傍に係る全周の検査画像を取得する画像取得制御と、
     前記液ノズルの吐出口近傍に係る全周の検査画像から、前記液ノズルの吐出口への付着物の付着状態の評価を行う評価制御と、
    を実行する、基板処理装置。
    A liquid nozzle that discharges the processing liquid from the discharge port to the lower substrate,
    An imaging unit that captures the entire circumference of the liquid nozzle in the vicinity of the discharge port,
    With a control unit
    The control unit
    Image acquisition control for acquiring an inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle imaged by the imaging unit, and
    Evaluation control for evaluating the state of adhesion of deposits to the discharge port of the liquid nozzle from the inspection image of the entire circumference of the vicinity of the discharge port of the liquid nozzle.
    A board processing device that executes.
  2.  前記制御部は、前記評価制御での評価結果に基づいて、前記液ノズルに対して実行すべき動作を判定する判定制御をさらに実行する、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the control unit further executes determination control for determining an operation to be executed for the liquid nozzle based on the evaluation result in the evaluation control.
  3.  前記制御部は、
     前記評価制御において、前記検査画像から前記液ノズルに付着した付着物の領域を推定し、前記推定した領域の画素値に基づき前記液ノズルの吐出口への付着物の付着状態を評価し、
     前記判定制御において、前記評価結果に基づいて前記液ノズルにおける異常の有無を判定する、請求項2に記載の基板処理装置。
    The control unit
    In the evaluation control, a region of deposits adhering to the liquid nozzle is estimated from the inspection image, and the state of deposits adhering to the discharge port of the liquid nozzle is evaluated based on the pixel value of the estimated region.
    The substrate processing apparatus according to claim 2, wherein in the determination control, the presence or absence of an abnormality in the liquid nozzle is determined based on the evaluation result.
  4.  前記制御部は、
     前記評価制御において、前記検査画像から推定された前記液ノズルに付着した付着物を撮像した領域の外形または大きさに基づいて、前記液ノズルに付着した付着物が液体であるか固体であるかを推定する、請求項1~3のいずれか一項に記載の基板処理装置。
    The control unit
    In the evaluation control, whether the deposit attached to the liquid nozzle is liquid or solid based on the outer shape or size of the region in which the deposit attached to the liquid nozzle is imaged, which is estimated from the inspection image. The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate processing apparatus is estimated.
  5.  前記制御部は、
     前記評価制御において、前記検査画像に基づいて、前記液ノズルにおける付着物の付着位置を推定する、請求項1~4のいずれか一項に記載の基板処理装置。
    The control unit
    The substrate processing apparatus according to any one of claims 1 to 4, wherein in the evaluation control, the adhesion position of the deposit in the liquid nozzle is estimated based on the inspection image.
  6.  前記制御部は、
     前記判定制御において、前記液ノズルにおいて異常があると判定した場合に、前記評価結果に基づいて、前記液ノズルの洗浄方法を選択する、請求項2に記載の基板処理装置。
    The control unit
    The substrate processing apparatus according to claim 2, wherein when it is determined in the determination control that there is an abnormality in the liquid nozzle, a cleaning method for the liquid nozzle is selected based on the evaluation result.
  7.  下方の基板に対して吐出口から処理液を吐出する液ノズルを有する基板処理装置に係るノズル検査方法であって、
     前記液ノズルの前記吐出口の近傍に係る全周を撮像した検査画像を取得し、
     前記液ノズルの前記吐出口の近傍に係る全周の検査画像から、前記液ノズルの吐出口への付着物の付着状態の評価を行う、ノズル検査方法。
    A nozzle inspection method for a substrate processing apparatus having a liquid nozzle for discharging a processing liquid from a discharge port to a lower substrate.
    An inspection image obtained by capturing the entire circumference of the liquid nozzle in the vicinity of the discharge port is acquired.
    A nozzle inspection method for evaluating the state of adhesion of deposits to the discharge port of the liquid nozzle from an inspection image of the entire circumference of the liquid nozzle in the vicinity of the discharge port.
  8.  請求項7に記載のノズル検査方法を装置に実行させるためのプログラムを記憶した、コンピュータ読み取り可能な記憶媒体。 A computer-readable storage medium that stores a program for causing the apparatus to execute the nozzle inspection method according to claim 7.
PCT/JP2020/029794 2019-08-13 2020-08-04 Substrate processing apparatus, nozzle inspection method, and storage medium WO2021029274A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021539220A JP7313449B2 (en) 2019-08-13 2020-08-04 SUBSTRATE PROCESSING APPARATUS, NOZZLE INSPECTION METHOD, AND STORAGE MEDIUM
KR1020227007252A KR20220044319A (en) 2019-08-13 2020-08-04 Substrate processing apparatus, nozzle inspection method and storage medium
CN202080055978.1A CN114269481A (en) 2019-08-13 2020-08-04 Substrate processing apparatus, nozzle inspection method, and storage medium
JP2023113984A JP2023133329A (en) 2019-08-13 2023-07-11 Substrate processing apparatus, nozzle inspection method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019148437 2019-08-13
JP2019-148437 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021029274A1 true WO2021029274A1 (en) 2021-02-18

Family

ID=74569583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029794 WO2021029274A1 (en) 2019-08-13 2020-08-04 Substrate processing apparatus, nozzle inspection method, and storage medium

Country Status (5)

Country Link
JP (2) JP7313449B2 (en)
KR (1) KR20220044319A (en)
CN (1) CN114269481A (en)
TW (1) TW202120198A (en)
WO (1) WO2021029274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189894A1 (en) * 2022-03-29 2023-10-05 東京エレクトロン株式会社 Substrate processing apparatus, inspection method therefor, and substrate processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141464A (en) * 1994-11-17 1996-06-04 Hitachi Techno Eng Co Ltd Paste applying machine
JP2003154301A (en) * 2001-11-21 2003-05-27 Seiko Epson Corp Applicator and application method
JP2007289796A (en) * 2006-04-20 2007-11-08 Yamaha Motor Co Ltd Coating apparatus
JP2010119954A (en) * 2008-11-19 2010-06-03 Hitachi High-Technologies Corp Functional liquid application apparatus, and apparatus and method for exchanging functional liquid supply head
JP2016072282A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2018026505A (en) * 2016-08-12 2018-02-15 東京エレクトロン株式会社 Cleaning method and cleaning device of wetting nozzle
JP2018051432A (en) * 2016-09-26 2018-04-05 セイコーエプソン株式会社 Droplet discharge device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226272A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Method and apparatus for detecting stain defect
JP2007021910A (en) 2005-07-15 2007-02-01 Canon Inc Liquid delivery apparatus and method for discharging liquid
JPWO2009072483A1 (en) * 2007-12-05 2011-04-21 株式会社ニコン Observation apparatus and observation method
JP5459279B2 (en) * 2011-09-02 2014-04-02 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP6161489B2 (en) * 2013-09-26 2017-07-12 株式会社Screenホールディングス Discharge inspection apparatus and substrate processing apparatus
KR101673061B1 (en) * 2013-12-03 2016-11-04 가부시키가이샤 스크린 홀딩스 Substrate processing apparatus and substrate processing method
JP2015148447A (en) * 2014-02-04 2015-08-20 東レエンジニアリング株式会社 Automatic visual inspection apparatus
JP6340204B2 (en) 2014-02-14 2018-06-06 エイブリック株式会社 Resin-sealed semiconductor device and manufacturing method thereof
JP2015153903A (en) * 2014-02-14 2015-08-24 東京エレクトロン株式会社 Liquid processing method, substrate processing apparatus and computer-readable recording medium
JP6035279B2 (en) * 2014-05-08 2016-11-30 東京エレクトロン株式会社 Film thickness measuring apparatus, film thickness measuring method, program, and computer storage medium
DE112016000229T5 (en) * 2015-01-13 2017-09-07 Murata Manufacturing Co., Ltd. Drop rate measuring device, drop rate controller, drip infusion device, and liquid drop volumeter
JP6686712B2 (en) * 2016-06-08 2020-04-22 大日本印刷株式会社 Spout inspection device and spout inspection method
JP2018187792A (en) * 2017-04-28 2018-11-29 セイコーエプソン株式会社 Liquid discharge device and operation method for liquid discharge device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141464A (en) * 1994-11-17 1996-06-04 Hitachi Techno Eng Co Ltd Paste applying machine
JP2003154301A (en) * 2001-11-21 2003-05-27 Seiko Epson Corp Applicator and application method
JP2007289796A (en) * 2006-04-20 2007-11-08 Yamaha Motor Co Ltd Coating apparatus
JP2010119954A (en) * 2008-11-19 2010-06-03 Hitachi High-Technologies Corp Functional liquid application apparatus, and apparatus and method for exchanging functional liquid supply head
JP2016072282A (en) * 2014-09-26 2016-05-09 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2018026505A (en) * 2016-08-12 2018-02-15 東京エレクトロン株式会社 Cleaning method and cleaning device of wetting nozzle
JP2018051432A (en) * 2016-09-26 2018-04-05 セイコーエプソン株式会社 Droplet discharge device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189894A1 (en) * 2022-03-29 2023-10-05 東京エレクトロン株式会社 Substrate processing apparatus, inspection method therefor, and substrate processing system

Also Published As

Publication number Publication date
TW202120198A (en) 2021-06-01
KR20220044319A (en) 2022-04-07
CN114269481A (en) 2022-04-01
JPWO2021029274A1 (en) 2021-02-18
JP2023133329A (en) 2023-09-22
JP7313449B2 (en) 2023-07-24

Similar Documents

Publication Publication Date Title
KR102271777B1 (en) Substrate cleaning method, substrate cleaning apparatus and computer readable storage medium
TWI804630B (en) Coating film formation device and method for calibrating coating film formation device
CN104854688B (en) Substrate processing device and application method for substrate device
WO2018042743A1 (en) Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method
JP2021044417A (en) Liquid processing device and method for detecting liquid for liquid processing device
JP2023133329A (en) Substrate processing apparatus, nozzle inspection method, and storage medium
US20220237770A1 (en) Substrate inspection device, substrate inspection system, and substrate inspection method
US9766543B2 (en) Liquid treatment method, substrate processing apparatus and non-transitory storage medium
US11158079B2 (en) Substrate treating apparatus and apparatus and method for eccentricity inspection
JP2020061403A (en) Substrate processing apparatus and substrate processing method
JP7219190B2 (en) Teaching data generation method and discharge state determination method
JP2003273003A (en) Substrate-processing device
TWI737335B (en) Detecting method of gas-liquid interface in nozzle and substrate processing apparatus
JP2016207838A (en) Substrate processing apparatus and substrate processing method
CN108695209A (en) Substrate board treatment, substrate processing method using same and storage medium
JP7473407B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND STORAGE MEDIUM
JP4170643B2 (en) Substrate processing equipment
JP6524185B2 (en) Substrate processing system
JP2020202315A (en) Coating apparatus and coating method
TW202001680A (en) Bump height measurement device, substrate processing device, bump height measurement method, and storage medium
JP7388896B2 (en) Substrate processing equipment
JP2017092306A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852957

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007252

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20852957

Country of ref document: EP

Kind code of ref document: A1