WO2021027173A1 - 高通量薄膜沉积设备及薄膜沉积方法 - Google Patents

高通量薄膜沉积设备及薄膜沉积方法 Download PDF

Info

Publication number
WO2021027173A1
WO2021027173A1 PCT/CN2019/119931 CN2019119931W WO2021027173A1 WO 2021027173 A1 WO2021027173 A1 WO 2021027173A1 CN 2019119931 W CN2019119931 W CN 2019119931W WO 2021027173 A1 WO2021027173 A1 WO 2021027173A1
Authority
WO
WIPO (PCT)
Prior art keywords
film deposition
thin film
substrate
baffle
deposition equipment
Prior art date
Application number
PCT/CN2019/119931
Other languages
English (en)
French (fr)
Inventor
李卫民
俞文杰
朱雷
王轶滢
Original Assignee
中国科学院上海微***与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微***与信息技术研究所 filed Critical 中国科学院上海微***与信息技术研究所
Publication of WO2021027173A1 publication Critical patent/WO2021027173A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Definitions

  • the invention belongs to the technical field of vapor deposition, and particularly relates to a high-throughput thin film deposition equipment and a thin film deposition method.
  • High-throughput thin film deposition equipment is used to manufacture multi-element material films, which can achieve a large number of element composition combinations in a short time, and then can do a more comprehensive study of multi-element material systems, and can select the optimal composition according to the needs of the application combination.
  • the purpose of the present invention is to provide a high-throughput thin film deposition equipment and a thin film deposition method, which are used to solve the complex structure, high cost, and difficulty of heating in the prior art Qualcomm thin film deposition equipment. , Many moving parts and low work efficiency.
  • the present invention provides a high-throughput thin film deposition equipment, which includes:
  • a workbench located in the reaction chamber, for carrying a substrate
  • a baffle located in the reaction chamber and above the workbench, with a distance from the workbench; the baffle is provided with at least one through hole penetrating in the thickness direction of the baffle;
  • the driving device is connected to at least one of the workbench and the baffle, and is used to drive at least one of the workbench and the baffle to move or rotate horizontally to change the The relative position of the through hole and the substrate;
  • the material source is located in the reaction chamber and above the baffle, with a distance from the baffle; the material source is used to generate particles required for deposition.
  • the material source includes at least one target gun.
  • the driving device is connected to the baffle, and is used to drive the baffle to move in horizontal and vertical directions.
  • the center of the through hole is deviated from the center of the substrate; the driving device is connected to the worktable for driving the worktable to rotate.
  • the center of the through hole is deviated from the center of the substrate; the driving device is connected with the baffle for driving the baffle to rotate.
  • the driving device includes:
  • the first driving device is connected with the worktable and is used for driving the worktable to rotate;
  • the second driving device is connected with the baffle, and is used to drive the baffle to move in the horizontal and vertical directions.
  • the center of the through hole is offset from the center of the substrate; the driving device includes:
  • the first driving device is connected with the worktable and is used for driving the worktable to rotate;
  • the second driving device is connected with the baffle and is used to drive the baffle to rotate.
  • the material source includes a target gun
  • the high-throughput thin film deposition equipment further includes:
  • An angle adjustment device which is connected to the target gun, and is used to adjust the angle of the sputtering surface of the target gun compared to the baffle.
  • the high-throughput thin film deposition equipment further includes a height adjustment device connected with the target gun for driving the target gun to move vertically.
  • the high-throughput thin film deposition equipment further includes:
  • the transfer chamber is located on one side of the reaction chamber
  • the robot arm is located in the transfer chamber and is used to transfer the substrate between the transfer chamber and the reaction chamber; the transfer chamber communicates with the substrate when the robot arm transfers the substrate.
  • the reaction chambers are connected.
  • the high-throughput thin film deposition equipment further includes a heating device, which is located at the bottom of the workbench or at the periphery of the workbench, and is used to prepare the substrate on the workbench. Heat up.
  • the high-throughput thin film deposition equipment further includes a positioning sensor connected to the driving device for detecting and controlling the driving device to drive at least one of the worktable and the baffle One moves horizontally or rotates to a preset position.
  • the high-throughput thin film deposition equipment further includes:
  • the protective gas supply system includes a protective gas source, a first flow meter, and a first supply pipeline; one end of the first supply pipeline is connected with the protective gas source, and the other end extends into the reaction chamber;
  • the first flow meter is located on the first supply pipeline;
  • the reaction gas supply system includes a reaction gas source, a second flow meter, and a second supply pipeline; one end of the second supply pipeline is connected with the reaction gas source, and the other end extends into the reaction chamber and extends To between the through hole and the substrate; the second flow meter is located on the second supply pipeline.
  • the high-throughput thin film deposition equipment further includes a real-time measurement device for characterizing the thin film deposited on the upper surface of the substrate including element composition, film thickness, and microstructure;
  • the measuring end is located in the reaction chamber and between the worktable and the substrate.
  • the present invention also provides a thin film deposition method, which includes the following steps:
  • step 3) at least once to separately deposit thin films on multiple different regions of the substrate.
  • step 2) further includes passing a reactive gas between the through hole and the substrate, and the reactive gas reacts with the particles to form the thin film.
  • the step of heating the substrate is also included when the film is deposited on the surface of the substrate.
  • the high-throughput thin film deposition equipment and thin film deposition method of the present invention have the following beneficial effects:
  • the high-throughput thin film deposition equipment of the present invention has a simple structure, few horizontal moving parts and low cost; the substrate on the working platform can not move horizontally, which can realize the heating of the substrate; it is easy to integrate online testing devices and other external equipment .
  • FIG. 1 shows a schematic structural diagram of a high-throughput thin film deposition apparatus provided in Embodiment 1 of the present invention.
  • FIG. 2 shows a flowchart of the thin film deposition method provided in the second embodiment of the present invention.
  • the present invention also provides a high-throughput thin-film deposition equipment
  • the high-throughput thin-film deposition equipment includes: a reaction chamber 1; a workbench 2, the workbench 2 is located in the reaction chamber 1 , The workbench 2 is used to carry a substrate (not shown); a baffle 3, the baffle 3 is located in the reaction chamber 1, and the baffle 3 is located above the workbench 2, And has a distance from the worktable 2; the baffle 3 is provided with at least one through hole 31 penetrating along the thickness direction of the baffle 3; a driving device (not shown), the driving device and the At least one of the workbench 2 and the baffle 3 is connected, and the driving device is used to drive at least one of the workbench 2 and the baffle 3 to move or rotate horizontally to Change the relative position of the through hole 31 and the substrate; a material source, the material source is located in the reaction chamber 1, and the material source is located above the baffle 3, and is in contact with the barrier
  • the plate 3 has
  • the driving device may be connected to the baffle 3, and the driving device may be used to drive the baffle 3 to move in a horizontal direction and a vertical direction.
  • the particles generated by the material source need to pass through the through hole 31 to be deposited on the surface of the substrate to form a thin film.
  • the driving device may include a driving rod and a driving motor. One end of the driving rod is connected to the baffle 3, the other end is connected to the driving motor, and the driving motor drives the The driving rod moves to drive the baffle 3 to move in the horizontal and vertical directions.
  • the worktable 2 does not need to move in the horizontal direction, that is, the substrate does not need to move in the horizontal direction, the substrate can be easily heated.
  • the center of the through hole 31 is deviated from the center of the substrate; the driving device may be connected to the table 2, and the driving device is used to drive the table 2 to rotate.
  • the driving device may include a driving motor.
  • the worktable 2 does not need to move in the horizontal direction, that is, the substrate does not need to move in the horizontal direction, the substrate can be easily heated.
  • the center of the through hole 31 is deviated from the center of the substrate; the driving device may be connected to the baffle 3, and the driving device is used to drive the baffle 3 to rotate.
  • the driving device may include a driving rod and a driving motor. One end of the driving rod is connected to the baffle 3, the other end is connected to the driving motor, and the driving motor drives the The driving rod moves to drive the baffle 3 to rotate.
  • the driving device may further include: a first driving device, the first driving device may be connected to the workbench 2, and the first driving device is used to drive the workbench 2 to rotate A second driving device, the second driving device can be connected with the baffle 3, the second driving device is used to drive the baffle 3 to move in the horizontal and vertical directions.
  • a first driving device the first driving device may be connected to the workbench 2
  • the first driving device is used to drive the workbench 2 to rotate
  • the second driving device can be connected with the baffle 3
  • the second driving device is used to drive the baffle 3 to move in the horizontal and vertical directions.
  • the center of the through hole 31 is deviated from the center of the substrate;
  • the driving device includes: a first driving device, the first driving device is connected to the worktable 2, the first A driving device is used to drive the worktable 2 to rotate; a second driving device is connected to the baffle 3, and the second driving device is used to drive the baffle 3 to rotate.
  • baffle 3 needs to move in the horizontal direction and the vertical direction, and even the baffle 3 and the workbench 2 do not need to move in the horizontal direction.
  • the orthographic projection of the baffle 3 on the plane where the substrate is located may cover the substrate.
  • the material source includes at least one target gun 4, and the number of the target gun 4 can be set according to actual needs.
  • the high-throughput thin film deposition equipment further includes: an angle adjustment device (not shown), the angle adjustment device is connected to the target gun 4, the angle adjustment device is used to adjust the target The angle of the sputtering surface of the gun 4 compared to the baffle 3.
  • the angle adjusting device may include a driving rod and a driving motor. One end of the driving rod is connected with the driving motor, and the other end is connected with the target gun 4, and the driving motor drives the driving rod to move to drive all the targets. The angle required for turning the target gun.
  • any device that can adjust the angle of the target gun 4 can be used here.
  • the high-throughput thin film deposition equipment further includes a height adjustment device (not shown), the height adjustment device is connected to the target gun 4, and the height adjustment device is used to drive the target gun 4 vertically. Move straight.
  • the height adjustment device may include, but is not limited to, an adjustment rod. The specific structure of the adjustment rod is known to those skilled in the art and will not be repeated here.
  • the high-throughput thin film deposition equipment further includes: a transfer chamber 5, the transfer chamber 5 is located on one side of the reaction chamber 1; a robot arm 6, the robot arm 6 is located in the transfer chamber In the chamber 5, the robot arm 6 is used to transfer the substrate between the transfer chamber 5 and the reaction chamber 1; the transfer chamber 5 transfers the substrate in the robot arm 6 When communicating with the reaction chamber 1.
  • the high-throughput thin film deposition equipment further includes a heating device (not shown), the heating device is located at the bottom of the workbench 2 or at the periphery of the workbench 2, and the heating device is used for The substrate on the worktable 2 is heated.
  • a heating device (not shown)
  • the heating device is located at the bottom of the workbench 2 or at the periphery of the workbench 2, and the heating device is used for The substrate on the worktable 2 is heated.
  • the specific structure of the heating device for heating the substrate on the worktable 2 is known to those skilled in the art, and will not be repeated here.
  • the high-throughput thin film deposition equipment further includes a positioning sensor 7, which is connected to the driving device, and the positioning sensor 7 is used to detect and control the driving device to drive the worktable At least one of 2 and the baffle 3 moves horizontally or rotates to a preset position.
  • the positioning sensor 7 may include a detection module (not shown) and a processing module (not shown), wherein the detection module is used to detect the workbench 2 and the baffle 3 The position of at least one of those (that is, the detection module is used to detect the position of the workbench 2 and the baffle 3 that needs to move or rotate horizontally), the processing module and the The detection module and the driving device are connected to compare the position information detected by the detection module with the target information, and move to a preset position on both the workbench 2 and the search baffle 3 When sending a control signal to the driving device to control the driving device to stop driving.
  • the high-throughput thin film deposition equipment further includes: a protective gas supply system 81, which includes a protective gas source (not shown), a first flow meter 811, and a first supply pipeline 812; One end of the first supply pipe 812 is connected with the protective gas source, and the other end extends into the reaction chamber 1; the first flow meter 811 is located on the first supply pipe 812; reaction gas A supply system 82, the reaction gas supply system 82 includes a reaction gas source (not shown), a second flow meter 821, and a second supply pipe 822; one end of the second supply pipe 822 is connected to the reaction gas source Connected, the other end extends into the reaction chamber 1 and between the through hole 31 and the substrate; the second flow meter 821 is located on the second supply pipe 822.
  • the reaction gas provided by the second supply line 822 can react with the particles generated by the material source to form the thin film on the surface of the substrate.
  • the reaction gas flows into the vicinity of the through hole 31 through the lower part of the baffle
  • the end of the first supply pipe 812 away from the protective gas source may extend above the baffle 3 or may extend below the baffle 3.
  • the number of the protective gas source, the first flow meter 811, the first supply pipe 812, the reaction gas source, the second flow meter 821, and the second supply pipe 822 It can be set according to actual needs. In FIG. 1, only the protective gas source, the first flow meter 811, the first supply pipe 812, the reactive gas source, the second flow meter 821 and The number of the second supply pipe 822 is two as an example.
  • the high-throughput thin film deposition equipment also includes a real-time measuring device 9 for measuring the film deposited on the upper surface of the substrate including but not limited to element composition, film thickness, and microstructure
  • the characterization; the measurement end of the real-time measurement device 9 is located in the reaction chamber 1 and between the workbench 2 and the substrate.
  • the real-time measurement device 9 may include, but is not limited to, an Auger electron spectrometer (AES).
  • AES Auger electron spectrometer
  • the working principle of the high-throughput thin film deposition equipment of the present invention is as follows: First, adjust the baffle 3 or the worktable 2 so that the through hole 31 is aligned with the first deposition of the substrate. Area, the material source is used to generate particles for film deposition in the first deposition area; then, at least one of the worktable 2 and the baffle 3 is driven to move or rotate horizontally, so that the The through hole 31 is aligned with the second deposition area of the substrate, and the material source is used to generate particles for film deposition in the second deposition area... Repeat the above steps until the film deposition is completed.
  • the high-flux thin film deposition equipment of the present invention has a simple structure, few horizontal moving parts and low cost; the substrate on the working platform can not move horizontally, so that the substrate can be heated.
  • the present invention provides a thin film deposition method.
  • the thin film deposition method includes the following steps:
  • step 3) at least once to separately deposit thin films on multiple different regions of the substrate.
  • step 1) please refer to step S1 in FIG. 2 in conjunction with FIG. 1 to provide the high-throughput thin film deposition equipment as described in the first embodiment. Please refer to the first embodiment for the specific structure of the high-throughput thin film deposition equipment, which will not be repeated here.
  • step 2) please refer to step S2 in FIG. 2 in conjunction with FIG. 1, using the material source to generate particles, and the particles pass through the through holes 31 for film deposition on a region of the substrate.
  • the particles generated by the material source may be deposited on a region of the substrate to form a thin film.
  • the material source while using the material source to generate particles, it also includes passing a reactive gas between the through hole 31 and the substrate, and the reactive gas reacts with the particles to form the thin film.
  • the reaction gas supply system 82 described in the first embodiment may be used to pass the reaction gas between the through hole 31 and the substrate.
  • forming and depositing a thin film on the surface of the substrate also includes the step of heating the substrate.
  • the heating device as described in the first embodiment can be used to heat the substrate.
  • step 3 please refer to step S3 in FIG. 2 in conjunction with FIG. 1, and use the driving device to drive at least one of the worktable 2 and the baffle 3 to move horizontally or rotate to a preset position , In order to deposit a thin film on another area of the substrate.
  • the particles generated by the material source may be deposited on another area of the substrate to form a thin film.
  • the material source while using the material source to generate particles, it also includes passing a reactive gas between the through hole 31 and the substrate, and the reactive gas reacts with the particles to form the thin film.
  • the reaction gas supply system 82 described in the first embodiment may be used to pass the reaction gas between the through hole 31 and the substrate.
  • forming and depositing a thin film on the surface of the substrate also includes the step of heating the substrate.
  • the heating device as described in the first embodiment can be used to heat the substrate.
  • step 4 please refer to step S4 in FIG. 2 in conjunction with FIG. 1, and repeat step 3) at least once to perform film deposition on multiple different areas of the substrate.
  • the present invention provides a high-throughput thin film deposition equipment and a thin film deposition method.
  • the high-throughput thin film deposition equipment includes: a reaction chamber; a workbench, located in the reaction chamber, for supporting a substrate Baffle, located in the reaction chamber and above the workbench, with a distance from the workbench; the baffle is provided with at least one through hole penetrating in the thickness direction of the baffle;
  • the driving device is connected to at least one of the workbench and the baffle, and is used to drive at least one of the workbench and the baffle to move or rotate horizontally to change the The relative position of the through hole and the substrate; the material source is located in the reaction chamber and above the baffle, and has a distance from the baffle; the material source is used to produce the required deposition particle.
  • the high-throughput thin-film deposition equipment of the present invention has simple structure, few horizontal moving parts and low cost; the substrate on the working platform can not move horizontally, which can realize the heating of the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种高通量薄膜沉积设备包括:反应腔室(1);工作台(2),位于反应腔室内(1);挡板(3),位于反应腔室(1)内,且位于工作台(2)的上方,与工作台(2)具有间距;挡板(3)上设有沿挡板(3)的厚度方向贯穿的通孔(31);驱动装置,与工作台(2)及挡板(3)二者中的至少一者相连接;材料源,位于反应腔室(1)内,且位于挡板(3)的上方,与挡板(3)具有间距。还包括一种薄膜沉积方法。

Description

高通量薄膜沉积设备及薄膜沉积方法 技术领域
本发明属于气相沉积技术领域,特别是涉及一种高通量薄膜沉积设备及薄膜沉积方法。
背景技术
一个二元系材料A xB 1-x(其中x为元素A的成分比例),如果选择x从0到1的10种成分组合,则可以基本获得材料A xB 1-x的性能。如果是一个三元系的材料A xB yC 1-x-y,如果要比较全面的研究,需要x,y各自独立的选取0到1的10个值,这就产生10×10=100种组合,才能比较全面的获得A xB yC 1-x-y的性能。同样的推理,一个四元系材料A xB yC zD 1-x-y-z,需要1000种组合的研究才能比较全面的获得材料的性能。需要说明的是,上述的A、B、C及D为材料中的元素名称。
100和1000个材料成分组合的制备和测试实验需要花费大量的时间和成本。因此,采用高通量实验设备是必要的。高通量薄膜沉积设备用于制造多元素材料薄膜,可以在短时间内实现大量的元素成分组合,进而可以对多元素材料体系做更全面的研究,并可以根据应用的需求选出最优成分组合。
然而,现有的高通薄膜沉积设备存在结构复杂、成本高、不易加热、移动部件多及工作效率低等问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高通量薄膜沉积设备及薄膜沉积方法,用于解决现有技术中的高通薄膜沉积设备存在结构复杂、成本高、不易加热、移动部件多及工作效率低等问题。
为实现上述目的及其他相关目的,本发明提供一种高通量薄膜沉积设备,所述高通量薄膜沉积设备包括:
反应腔室;
工作台,位于所述反应腔室内,用于承载衬底;
挡板,位于所述反应腔室内,且位于所述工作台的上方,与所述工作台具有间距;所述挡板上设有至少一个沿所述挡板的厚度方向贯穿的通孔;
驱动装置,与所述工作台及所述挡板二者中的至少一者相连接,用于驱动所述工作台及 所述挡板二者中的至少一者水平移动或旋转,以改变所述通孔与所述衬底的相对位置;
材料源,位于所述反应腔室内,且位于所述挡板的上方,与所述挡板具有间距;所述材料源用于产生沉积所需的粒子。
可选地,所述材料源包括至少一个靶枪。
可选地,所述驱动装置与所述挡板相连接,用于驱动所述挡板沿水平和垂直方向移动。
可选地,所述通孔中心偏离所述衬底的中心;所述驱动装置与所述工作台相连接,用于驱动所述工作台旋转。
可选地,所述通孔的中心偏离所述衬底的中心;所述驱动装置与所述挡板相连接,用于驱动所述挡板旋转。
可选地,所述驱动装置包括:
第一驱动装置,与所述工作台相连接,用于驱动所述工作台旋转;
第二驱动装置,与所述挡板相连接,用于驱动所述挡板沿水平和垂直方向移动。
可选地,所述通孔的中心偏离所述衬底的中心;所述驱动装置包括:
第一驱动装置,与所述工作台相连接,用于驱动所述工作台旋转;
第二驱动装置,与所述挡板相连接,用于驱动所述挡板旋转。
可选地,所述材料源包括靶枪,所述高通量薄膜沉积设备还包括:
角度调整装置,所述角度调整装置与所述靶枪相连接,用于调整所述靶枪的溅射面相较于所述挡板的角度。
可选地,所述高通量薄膜沉积设备还包括高度调节装置,与所述靶枪相连接,用于驱动所述靶枪竖直移动。
可选地,所述高通量薄膜沉积设备还包括:
传送腔室,位于所述反应腔室的一侧;
机械手臂,位于所述传送腔室内,用于在所述传送腔室与所述反应腔室之间传送所述衬底;所述传送腔室在所述机械手臂传送所述衬底时与所述反应腔室相连通。
可选地,所述高通量薄膜沉积设备还包括加热装置,所述加热装置位于所述工作台的底部或位于所述工作台的***,用于为所述工作台上的所述衬底进行加热。
可选地,所述高通量薄膜沉积设备还包括定位传感器,与所述驱动装置相连接,用于侦测并控制所述驱动装置驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转至预设位置。
可选地,所述高通量薄膜沉积设备还包括:
保护气体供给***,包括保护气体源、第一流量计及第一供给管路;所述第一供给管路一端与所述保护气体源相连接,另一端延伸至所述反应腔室内;所述第一流量计位于所述第一供给管路上;
反应气体供给***,包括反应气体源、第二流量计及第二供给管路;所述第二供给管路一端与所述反应气体源相连接,另一端延伸至所述反应腔室内,且延伸至所述通孔与所述衬底之间;所述第二流量计位于所述第二供给管路上。
可选地,所述高通量薄膜沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述工作台与所述衬底之间。
本发明还提供一种薄膜沉积方法,所述薄膜沉积方法包括如下步骤:
1)提供如上述任一方案中所述的高通量薄膜沉积设备;
2)使用所述材料源产生粒子,所述粒子经过所述通孔于所述衬底的一区域进行薄膜沉积;
3)使用所述驱动装置驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转至预设位置,以于所述衬底的另一区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
可选地,步骤2)中还包括向所述通孔与所述衬底之间通入反应气体,所述反应气体与所述粒子反应形成所述薄膜。
可选地,于所述衬底的表面形成进行薄膜沉积的同时还包括对所述衬底进行加热的步骤。
如上所述,本发明的高通量薄膜沉积设备及薄膜沉积方法具有以下有益效果:
本发明的高通量薄膜沉积设备结构简单、水平移动部件少、成本较低;位于工作平台上的衬底可以不水平移动,可以实现对衬底进行加热;易于集成在线测试装置及其他外部装备。
附图说明
图1显示为本发明实施例一中提供的高通量薄膜沉积设备的结构示意图。
图2显示为本发明实施例二中提供的薄膜沉积方法的流程图。
元件标号说明
1            反应腔室
2            工作台
3            挡板
31           通孔
4            靶枪
5            传送腔室
6            机械手臂
7            定位传感器
81           保护气体供给***
811          第一流量计
812          第一供给管路
82           反应气体供给***
821          第二流量计
822          第二供给管路
9            实时测量装置
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。
请参阅图1至图2。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
实施例一
请参阅图1,本发明还提供一种高通量薄膜沉积设备,所述高通量薄膜沉积设备包括:反应腔室1;工作台2,所述工作台2位于所述反应腔室1内,所述工作台2用于承载衬底(未示出);挡板3,所述挡板3位于所述反应腔室1内,且所述挡板3位于所述工作台2的上方,并与所述工作台2具有间距;所述挡板3上设有至少一个沿所述挡板3的厚度方向贯穿的通孔31;驱动装置(未示出),所述驱动装置与所述工作台2及所述挡板3二者中的至少一者相连接,所述驱动装置用于驱动所述工作台2及所述挡板3二者中的至少一者水平移动 或旋转,以改变所述通孔31与所述衬底的相对位置;材料源,所述材料源位于所述反应腔室1内,且所述材料源位于所述挡板3的上方,并与所述挡板3具有间距;所述材料源用于产生沉积所需的粒子。
在一示例中,可以为所述驱动装置与所述挡板3相连接,所述驱动装置用于驱动所述挡板3沿水平方向和垂直方向移动。又所述材料源产生的粒子需要经过所述通孔31才能在所述衬底的表面沉积形成薄膜,通过驱动所述挡板3沿水平方向和垂直方向移动,可以改变所述通孔31与位于所述工作台2上的所述衬底的相对位置,即可以实现在所述衬底不同位置上进行薄膜沉积。具体的,该示例中,所述驱动装置可以包括驱动杆及驱动马达,所述驱动杆一端与所述挡板3相连接,另一端与所述驱动马达相连接,所述驱动马达驱动所述驱动杆运动以带动所述挡板3沿水平方向和垂直方向移动。在该示例中,由于所述工作台2不需要沿水平方向移动,即所述衬底不需要沿水平方向移动,可以很轻易地实现对所述衬底进行加热。
在另一示例中,所述通孔31的中心偏离所述衬底的中心;所述驱动装置可以与所述工作台2相连接,所述驱动装置用于驱动所述工作台2旋转。通过驱动所述工作台2旋转,又所述通孔31的中心偏离所述衬底的中心,可以改变所述通孔31与位于所述工作台2上的所述衬底的相对位置,即可实现在所述衬底不同位置上进行薄膜沉积。具体的,在该示例中,所述驱动装置可以包括驱动马达。在该示例中,由于所述工作台2不需要沿水平方向移动,即所述衬底不需要沿水平方向移动,可以很轻易地实现对所述衬底进行加热。
在又一示例中,所述通孔31的中心偏离所述衬底的中心;所述驱动装置可以与所述挡板3相连接,所述驱动装置用于驱动所述挡板3旋转。通过驱动所述挡板3旋转,又所述通孔3的中心偏离所述衬底的中心,可以改变所述通孔31与位于所述工作台2上的所述衬底的相对位置,即可实现在所述衬底不同位置上进行薄膜沉积。具体的,该示例中,所述驱动装置可以包括驱动杆及驱动马达,所述驱动杆一端与所述挡板3相连接,另一端与所述驱动马达相连接,所述驱动马达驱动所述驱动杆运动以带动所述挡板3旋转。在该示例中,由于所述工作台2不需要沿水平方向移动,即所述衬底不需要沿水平方向移动,可以很轻易地实现对所述衬底进行加热。
在又一示例中,所述驱动装置还可以包括:第一驱动装置,所述第一驱动装置可以与所述工作台2相连接,所述第一驱动装置用于驱动所述工作台2旋转;第二驱动装置,所述第二驱动装置可以与所述挡板3相连接,所述第二驱动装置用于驱动所述挡板3沿水平方向和垂直方向移动。通过驱动所述工作台2旋转并驱动所述挡板3沿水平方向和垂直方向移动,可以改变所述通孔31与位于所述工作台2上的所述衬底的相对位置,即可实现在所述衬底不 同位置上进行薄膜沉积。在该示例中,由于所述工作台2不需要沿水平方向移动,即所述衬底不需要沿水平方向移动,可以很轻易地实现对所述衬底进行加热。
在又一示例中,所述通孔31的中心偏离所述衬底的中心;所述驱动装置包括:第一驱动装置,所述第一驱动装置与所述工作台2相连接,所述第一驱动装置用于驱动所述工作台2旋转;第二驱动装置,所述第二驱动装置与所述挡板3相连接,所述第二驱动装置用于驱动所述挡板3旋转。通过驱动所述工作台2旋转,并驱动所述挡板3旋转,又所述通孔31的中心偏离所述衬底的中心,可以改变所述通孔31与位于所述工作台2上的所述衬底的相对位置,即可实现在所述衬底不同位置上进行薄膜沉积。在该示例中,由于所述工作台2不需要沿水平方向移动,即所述衬底不需要沿水平方向移动,可以很轻易地实现对所述衬底进行加热。
在上述各示例中,仅有所述挡板3需要沿水平方向和垂直方向移动,甚至所述挡板3及所述工作台2均不需要沿水平方向移动,整个设备中水平移动部件少,旋转比沿水平方向移动容易实现,整个设备的结构比较简单。
作为示例,所述挡板3在所述衬底所在平面的正投影可以覆盖所述衬底。
作为示例,所述材料源包括至少一个靶枪4,所述靶枪4的数量可以根据实际需要进行设置,图1中仅以四个所述靶枪4作为示例,但在实际示例中并不以此为限;所述高通量薄膜沉积设备还包括:角度调整装置(未示出),所述角度调整装置与所述靶枪4相连接,所述角度调整装置用于调整所述靶枪4的溅射面相较于所述挡板3的角度。通过调整所述靶枪4的溅射面相较于所述挡板3的角度,可以确保各所述靶枪4的溅射路径均始终穿过所述通孔31,以确保所述靶枪4溅射的粒子可以穿过所述通孔31在所述衬底的表面沉积形成薄膜。所述角度调整装置可以包括驱动杆及驱动马达,所述驱动杆一端与所述驱动马达相连接,另一端与所述靶枪4相连接,所述驱动马达驱动所述驱动杆运动以带动所述靶枪翻转所需的角度。当然,任何一种可以实现所述靶枪4角度调整的装置均可用于此处。
作为示例,所述高通量薄膜沉积设备还包括高度调节装置(未示出),所述高度调节装置与所述靶枪4相连接,所述高度调节装置用于驱动所述靶枪4竖直移动。所述高度调节装置可以包括但不仅限于调节杆,所述调节杆的具体结构为本领域技术人员所知晓,此处不再累述。
作为示例,所述高通量薄膜沉积设备还包括:传送腔室5,所述传送腔室5位于所述反应腔室1的一侧;机械手臂6,所述机械手臂6位于所述传送腔室5内,所述机械手臂6用于在所述传送腔室5与所述反应腔室1之间传送所述衬底;所述传送腔室5在所述机械手臂6传送所述衬底时与所述反应腔室1相连通。
作为示例,所述高通量薄膜沉积设备还包括加热装置(未示出),所述加热装置位于所述工作台2的底部或位于所述工作台2的***,所述加热装置用于为所述工作台2上的所述衬底进行加热。用于为所述工作台2上的所述衬底进行加热的所述加热装置的具体结构为本领域技术人员所知晓,此处不再累述。
作为示例,所述高通量薄膜沉积设备还包括定位传感器7,所述定位传感器7与所述驱动装置相连接,所述定位传感器7用于侦测并控制所述驱动装置驱动所述工作台2及所述挡板3二者中的至少一者水平移动或旋转至预设位置。具体的,所述定位传感器7可以包括侦测模块(未示出)及处理模块(未示出),其中,所述侦测模块用于侦测所述工作台2及所述挡板3二者中的至少一者的位置(即所述侦测模块用于侦测所述工作台2及所述挡板3二者中需要水平移动或旋转者的位置),所述处理模块与所述侦测模块及所述驱动装置相连接,用于将所述侦测模块侦测的位置信息与目标信息进行比对,并在所述工作台2及搜索挡板3二者移动至预设位置时向所述驱动装置发送控制信号,控制所述驱动装置停止驱动。
作为示例,所述高通量薄膜沉积设备还包括:保护气体供给***81,所述保护气体供给***81包括保护气体源(未示出)、第一流量计811及第一供给管路812;所述第一供给管路812一端与所述保护气体源相连接,另一端延伸至所述反应腔室1内;所述第一流量计811位于所述第一供给管路812上;反应气体供给***82,所述反应气体供给***82包括反应气体源(未示出)、第二流量计821及第二供给管路822;所述第二供给管路822一端与所述反应气体源相连接,另一端延伸至所述反应腔室1内,且延伸至所述通孔31与所述衬底之间;所述第二流量计821位于所述第二供给管路822上。所述第二供给管路822提供的反应气体可以与所述材料源产生的所述粒子反应以于所述衬底的表面形成所述薄膜。所述反应气体通过所述挡板3的下部通入到所述通孔31的附近,可以避免对所述材料源造成污染。
具体的,所述第一供给管路812远离所述保护气体源的一端可以延伸至所述挡板3的上方,也可以延伸至所述挡板3的下方。
具体的,所述保护气体源、所述第一流量计811、所述第一供给管路812、所述反应气体源、所述第二流量计821及所述第二供给管路822的数量可以根据实际需要进行设定,图1中仅以所述保护气体源、所述第一流量计811、所述第一供给管路812、所述反应气体源、所述第二流量计821及所述第二供给管路822的数量均为两个作为示例。
作为示例,所述高通量薄膜沉积设备还包括实时测量装置9,所述实时测量装置9用于对所述衬底的上表面沉积的薄膜进行包括但不仅限于元素成分、薄膜厚度及微观结构的表征;所述实时测量装置9的测量端位于所述反应腔室1内,且位于所述工作台2与所述衬底之间。 具体的,所述实时测量装置9可以包括但不仅限于俄歇电子谱仪(AES)。
本发明所述的高通量薄膜沉积设备的工作原理为:首先,将所述挡板3或所述工作台2进行调整,使得所述通孔31对准所述衬底的第一个沉积区域,使用所述材料源产生粒子以在所述第一沉积区域进行薄膜沉积;然后,驱动所述工作台2及所述挡板3二者中的至少一者水平移动或旋转,使得所述通孔31对准所述衬底的第二个沉积区域,使用所述材料源产生粒子以在所述第二沉积区域进行薄膜沉积….重复上述步骤直至薄膜沉积完毕。
本发明的高通量薄膜沉积设备结构简单、水平移动部件少、成本较低;位于工作平台上的衬底可以不水平移动,可以实现对衬底进行加热。
实施例二
请结合图1参阅图2,本发明提供一种薄膜沉积方法,所述薄膜沉积方法包括如下步骤:
1)提供如实施例一种所述的高通量薄膜沉积设备;
2)使用所述材料源产生粒子,所述粒子经过所述通孔与所述衬底的一区域进行薄膜沉积;
3)使用所述驱动装置驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转至预设位置,以于所述衬底的另一区域进行薄膜沉积;
4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
在步骤1)中,请结合图1参阅图2中的S1步骤,提供如实施例一种所述的高通量薄膜沉积设备。所述高通量薄膜沉积设备的具体结构请参阅实施例一,此处不再累述。
在步骤2)中,请结合图1参阅图2中的S2步骤,使用所述材料源产生粒子,所述粒子经过所述通孔31于所述衬底的一区域进行薄膜沉积。
在一示例中,可以通过所述材料源产生的所述粒子在所述衬底的一区域进行沉积以形成薄膜。
在另一示例中,使用所述材料源产生粒子的同时,还包括向所述通孔31与所述衬底之间通入反应气体,所述反应气体与所述粒子反应形成所述薄膜。具体的,可以采用实施例一中所述的反应气体供给***82向所述通孔31与所述衬底之间通入所述反应气体。
作为示例,于所述衬底的表面形成进行薄膜沉积的同时还包括对所述衬底进行加热的步骤。具体的,可以采用如实施例一中所述的加热装置对所述衬底进行加热。
在步骤3)中,请结合图1参阅图2中的S3步骤,使用所述驱动装置驱动所述工作台2及所述挡板3二者中的至少一者水平移动或旋转至预设位置,以于所述衬底的另一区域进行薄膜沉积。
在一示例中,可以通过所述材料源产生的所述粒子在所述衬底的另一区域进行沉积以形 成薄膜。
在另一示例中,使用所述材料源产生粒子的同时,还包括向所述通孔31与所述衬底之间通入反应气体,所述反应气体与所述粒子反应形成所述薄膜。具体的,可以采用实施例一中所述的反应气体供给***82向所述通孔31与所述衬底之间通入所述反应气体。
作为示例,于所述衬底的表面形成进行薄膜沉积的同时还包括对所述衬底进行加热的步骤。具体的,可以采用如实施例一中所述的加热装置对所述衬底进行加热。
在步骤4)中,请结合图1参阅图2中的S4步骤,重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
综上所述,本发明提供一种高通量薄膜沉积设备及薄膜沉积方法,所述高通量薄膜沉积设备包括:反应腔室;工作台,位于所述反应腔室内,用于承载衬底;挡板,位于所述反应腔室内,且位于所述工作台的上方,与所述工作台具有间距;所述挡板上设有至少一个沿所述挡板的厚度方向贯穿的通孔;驱动装置,与所述工作台及所述挡板二者中的至少一者相连接,用于驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转,以改变所述通孔与所述衬底的相对位置;材料源,位于所述反应腔室内,且位于所述挡板的上方,与所述挡板具有间距;所述材料源用于产生沉积所需的粒子。本发明的高通量薄膜沉积设备结构简单、水平移动部件少、成本较低;位于工作平台上的衬底可以不水平移动,可以实现对衬底进行加热;易于集成在线测试装置及其他外部装备。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (17)

  1. 一种高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备包括:
    反应腔室;
    工作台,位于所述反应腔室内,用于承载衬底;
    挡板,位于所述反应腔室内,且位于所述工作台的上方,与所述工作台具有间距;所述挡板上设有至少一个沿所述挡板的厚度方向贯穿的通孔;
    驱动装置,与所述工作台及所述挡板二者中的至少一者相连接,用于驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转,以改变所述通孔与所述衬底的相对位置;
    材料源,位于所述反应腔室内,且位于所述挡板的上方,与所述挡板具有间距;所述材料源用于产生沉积所需的粒子。
  2. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述材料源包括至少一个靶枪。
  3. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述驱动装置与所述挡板相连接,用于驱动所述挡板沿水平和垂直方向移动。
  4. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述通孔的中心偏离所述衬底的中心;所述驱动装置与所述工作台相连接,用于驱动所述工作台旋转。
  5. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述通孔的中心偏离所述衬底的中心;所述驱动装置与所述挡板相连接,用于驱动所述挡板旋转。
  6. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述驱动装置包括:
    第一驱动装置,与所述工作台相连接,用于驱动所述工作台旋转;
    第二驱动装置,与所述挡板相连接,用于驱动所述挡板沿水平和垂直方向移动。
  7. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述通孔的中心偏离所述衬底的中心;所述驱动装置包括:
    第一驱动装置,与所述工作台相连接,用于驱动所述工作台旋转;
    第二驱动装置,与所述挡板相连接,用于驱动所述挡板旋转。
  8. 根据权利要求4至7中任一项所述的高通量薄膜沉积设备,其特征在于,所述材料源包括靶枪,所述高通量薄膜沉积设备还包括:
    角度调整装置,所述角度调整装置与所述靶枪相连接,用于调整所述靶枪的溅射面相较于所述挡板的角度。
  9. 根据权利要求8所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括高度调节装置,与所述靶枪相连接,用于驱动所述靶枪竖直移动。
  10. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括:
    传送腔室,位于所述反应腔室的一侧;
    机械手臂,位于所述传送腔室内,用于在所述传送腔室与所述反应腔室之间传送所述衬底;所述传送腔室在所述机械手臂传送所述衬底时与所述反应腔室相连通。
  11. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括加热装置,所述加热装置位于所述工作台的底部或位于所述工作台的***,用于为所述工作台上的所述衬底进行加热。
  12. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括定位传感器,与所述驱动装置相连接,用于侦测并控制所述驱动装置驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转至预设位置。
  13. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括:
    保护气体供给***,包括保护气体源、第一流量计及第一供给管路;所述第一供给管路一端与所述保护气体源相连接,另一端延伸至所述反应腔室内;所述第一流量计位于所述第一供给管路上;
    反应气体供给***,包括反应气体源、第二流量计及第二供给管路;所述第二供给管路一端与所述反应气体源相连接,另一端延伸至所述反应腔室内,且延伸至所述通孔与所述衬底之间;所述第二流量计位于所述第二供给管路上。
  14. 根据权利要求1所述的高通量薄膜沉积设备,其特征在于,所述高通量薄膜沉积设备还包括实时测量装置,用于对所述衬底的上表面沉积的薄膜进行包括元素成分、薄膜厚度、微观结构的表征;所述实时测量装置的测量端位于所述反应腔室内,且位于所述工作台与所述衬底之间。
  15. 一种薄膜沉积方法,其特征在于,所述薄膜沉积方法包括如下步骤:
    1)提供如权利要求1至14中任一项所述的高通量薄膜沉积设备;
    2)使用所述材料源产生粒子,所述粒子经过所述通孔于所述衬底的一区域进行薄膜沉积;
    3)使用所述驱动装置驱动所述工作台及所述挡板二者中的至少一者水平移动或旋转至预设位置,以于所述衬底的另一区域进行薄膜沉积;
    4)重复步骤3)至少一次,以于所述衬底的多个不同区域分别进行薄膜沉积。
  16. 根据权利要求15所述的薄膜沉积方法,其特征在于,步骤2)中还包括向所述通孔与所述衬底之间通入反应气体,所述反应气体与所述粒子反应形成所述薄膜。
  17. 根据权利要求15所述的薄膜沉积方法,其特征在于,于所述衬底的表面形成进行薄膜沉积的同时还包括对所述衬底进行加热的步骤。
PCT/CN2019/119931 2019-08-09 2019-11-21 高通量薄膜沉积设备及薄膜沉积方法 WO2021027173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910734707.8A CN110306160A (zh) 2019-08-09 2019-08-09 高通量薄膜沉积设备及薄膜沉积方法
CN201910734707.8 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021027173A1 true WO2021027173A1 (zh) 2021-02-18

Family

ID=68083176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119931 WO2021027173A1 (zh) 2019-08-09 2019-11-21 高通量薄膜沉积设备及薄膜沉积方法

Country Status (2)

Country Link
CN (1) CN110306160A (zh)
WO (1) WO2021027173A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110306160A (zh) * 2019-08-09 2019-10-08 中国科学院上海微***与信息技术研究所 高通量薄膜沉积设备及薄膜沉积方法
CN112962067A (zh) * 2021-02-01 2021-06-15 北京中科泰龙电子技术有限公司 一种高通量薄膜的制备装置及方法
CN113862625B (zh) * 2021-09-27 2022-11-22 上海集成电路材料研究院有限公司 高通量薄膜沉积设备及薄膜沉积方法
CN113862624B (zh) * 2021-09-27 2023-03-21 上海集成电路材料研究院有限公司 溅射沉积设备及溅射沉积方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768944B1 (ko) * 2006-02-15 2007-10-19 재단법인 한국원자력의학원 열분산 고선속 중성자 표적시스템
CN104404468A (zh) * 2014-12-04 2015-03-11 宁波英飞迈材料科技有限公司 一种高通量组合材料制备装置及制备方法
CN105154843A (zh) * 2015-10-22 2015-12-16 宁波英飞迈材料科技有限公司 高通量组合材料芯片前驱体沉积设备及其沉积方法
CN207567338U (zh) * 2017-09-08 2018-07-03 深圳市矩阵多元科技有限公司 一种用于制备组合材料的高通量磁控溅射***
CN208008884U (zh) * 2018-03-27 2018-10-26 合肥科晶材料技术有限公司 一种用于高通量镀膜工艺的五靶磁控溅射镀膜仪
CN110306160A (zh) * 2019-08-09 2019-10-08 中国科学院上海微***与信息技术研究所 高通量薄膜沉积设备及薄膜沉积方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101634011B (zh) * 2008-07-21 2011-04-27 中国科学院宁波材料技术与工程研究所 一种实现工件外表面均匀镀膜的磁控溅射装置及方法
CN101709455A (zh) * 2009-12-17 2010-05-19 王君 多功能磁控溅射镀膜装置
CN202246839U (zh) * 2011-08-30 2012-05-30 欧阳俊 一种反应溅射真空腔室***
CN103849843B (zh) * 2014-01-17 2016-05-18 中国科学院上海技术物理研究所 一种具有五靶头的磁控共溅射设备
WO2019047167A1 (zh) * 2017-09-08 2019-03-14 深圳市矩阵多元科技有限公司 一种用于制备组合材料的高通量磁控溅射***
CN109487219A (zh) * 2018-07-24 2019-03-19 深圳市矩阵多元科技有限公司 脉冲激光沉积***及其薄膜制备方法
CN109355621B (zh) * 2018-12-21 2024-03-22 深圳市矩阵多元科技有限公司 一种配比可控的大面积高通量复合薄膜合成装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100768944B1 (ko) * 2006-02-15 2007-10-19 재단법인 한국원자력의학원 열분산 고선속 중성자 표적시스템
CN104404468A (zh) * 2014-12-04 2015-03-11 宁波英飞迈材料科技有限公司 一种高通量组合材料制备装置及制备方法
CN105154843A (zh) * 2015-10-22 2015-12-16 宁波英飞迈材料科技有限公司 高通量组合材料芯片前驱体沉积设备及其沉积方法
CN207567338U (zh) * 2017-09-08 2018-07-03 深圳市矩阵多元科技有限公司 一种用于制备组合材料的高通量磁控溅射***
CN208008884U (zh) * 2018-03-27 2018-10-26 合肥科晶材料技术有限公司 一种用于高通量镀膜工艺的五靶磁控溅射镀膜仪
CN110306160A (zh) * 2019-08-09 2019-10-08 中国科学院上海微***与信息技术研究所 高通量薄膜沉积设备及薄膜沉积方法

Also Published As

Publication number Publication date
CN110306160A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021027173A1 (zh) 高通量薄膜沉积设备及薄膜沉积方法
TWI669776B (zh) 用於在處理室中沉積層時支撐基板載體及遮罩載體的固持裝置、用於在基板上沉積層的設備、及用於對準支撐基板之基板載體與遮罩載體的方法
US10636634B2 (en) Sputtering apparatus, film deposition method, and control device
CN102787299B (zh) 一种真空镀膜装置、真空镀膜控制***及控制方法
WO2023045052A1 (zh) 高通量薄膜沉积设备及薄膜沉积方法
JP6411975B2 (ja) 成膜装置及び成膜基板製造方法
CN106555166B (zh) 一种超薄膜制备、界面表征及调控集成***及应用方法
GB2518085A (en) Ion beam processing method and ion beam processing device
CN101709455A (zh) 多功能磁控溅射镀膜装置
Suram et al. Combinatorial thin film composition mapping using three dimensional deposition profiles
US6491759B1 (en) Combinatorial synthesis system
CN112458407B (zh) 一种晶振测量***及测量方法和装置
JP2018538429A (ja) 堆積速度を測定するための測定アセンブリ、蒸発源、堆積装置及びそのための方法
WO2023045051A1 (zh) 溅射沉积设备及溅射沉积方法
US20170167012A1 (en) Off-axis magnetron sputtering with real-time reflection high energy electron diffraction analysis
CN103290379A (zh) 多功能磁控溅射镀膜装置
CN105755433B (zh) 一种薄膜蒸镀方法及装置
WO2021031425A1 (zh) 高通量气相沉积设备及气相沉积方法
US20160216143A1 (en) Deposition rate measuring apparatus
KR100821810B1 (ko) 기판상의 막형성 방법
CN101487113A (zh) 掩模限位连续组分扩展薄膜材料库制备方法
US20150203955A1 (en) Apparatus and method for making composition spread alloy films
CN210176949U (zh) 蒸发镀膜设备和蒸发镀膜***
CN202595269U (zh) 一种真空镀膜装置及真空镀膜控制***
JP7229015B2 (ja) 成膜装置、成膜方法、および電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941200

Country of ref document: EP

Kind code of ref document: A1