WO2021027033A1 - 一种用于离子迁移谱仪的离子门控制方法 - Google Patents

一种用于离子迁移谱仪的离子门控制方法 Download PDF

Info

Publication number
WO2021027033A1
WO2021027033A1 PCT/CN2019/108753 CN2019108753W WO2021027033A1 WO 2021027033 A1 WO2021027033 A1 WO 2021027033A1 CN 2019108753 W CN2019108753 W CN 2019108753W WO 2021027033 A1 WO2021027033 A1 WO 2021027033A1
Authority
WO
WIPO (PCT)
Prior art keywords
grid electrode
push
open
ion
shear
Prior art date
Application number
PCT/CN2019/108753
Other languages
English (en)
French (fr)
Inventor
倪凯
陈海
余泉
钱翔
王晓浩
Original Assignee
清华大学深圳国际研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳国际研究生院 filed Critical 清华大学深圳国际研究生院
Publication of WO2021027033A1 publication Critical patent/WO2021027033A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates

Definitions

  • the invention relates to the field of ion mobility spectroscopy, in particular to an ion gate control method for ion mobility spectrometers.
  • IMS Ion mobility spectroscopy
  • the switching of the state of the ion gate is usually realized by changing the voltage of the first grid electrode G1 and the second grid electrode G2: when the voltage difference between the first grid electrode G1 and the second grid electrode G2 is small, the ion When the gate is opened, ions can pass through; when the voltage difference between the first grid electrode G1 and the second grid electrode G2 is large, the ion gate is closed, and the ions near the ion gate will be hit on the ion gate with lower voltage, and the ions cannot Pass to achieve closure.
  • a large number of ions will accumulate near the low-voltage ion gate, and a blank area will be formed near the high-voltage ion gate due to lack of ions, resulting in uneven rear edges of the ion clusters.
  • the traditional ion gate timing control method is to apply a pulse signal of fixed width and amplitude on the ion gate grid.
  • the main problem of this control method is that the cutting shape of the ion cluster trailing edge is not ideal.
  • the main purpose of the present invention is to overcome the shortcomings of the prior art and propose an improved ion gate control method for ion mobility spectrometers to improve the flatness of the trailing edge of ion clusters, thereby improving the resolution of ion mobility spectra .
  • the ion gate includes a first grid electrode and a second grid electrode insulated from each other in an ion migration tube, the first grid electrode and the second grid electrode
  • the plane on which the two grid electrodes are located is perpendicular to the ion migration direction, wherein the first grid electrode and the second grid electrode are coplanar or the first grid electrode is opposite to the second grid electrode
  • the control method includes controlling a complete working cycle of the ion gate to go through the following stages:
  • Door opening stage keep the voltage of the first grid electrode at V 1 open , and keep the voltage of the second grid electrode at V 2 open , where the selection of V 1 open and V 2 open satisfies: The voltage difference allows ions in the ionization zone to pass through the ion gate and enter the migration zone;
  • Shearing stage the voltage of the first grid electrode is maintained at V 1 shear , and the voltage of the second grid electrode is maintained at V 2 shear , where the selection of V 1 shear and V 2 shear satisfies:
  • Repulsion stage maintain the voltage of the first grid electrode at V 1 push , and keep the voltage of the second grid electrode at V 2 push , where the selection of V 1 push and V 2 push satisfies: V 1 Push- V 2 push and V 1 cut- V 2 cut have the opposite sign, or V 1 push + V 2 push > V 1 open + V 2 open ;
  • the voltage of the first grid electrode is maintained at V 1 off
  • the voltage of the second grid electrode is maintained at V 2 off , where the selection of V 1 off and V 2 off meets:
  • the voltage difference prevents ions in the ionization zone from passing through the ion gate and entering the migration zone.
  • V 1 cut V 1 open ;
  • V 1 push V 1 open ;
  • V 1 off V 1 on ;
  • V 1 push V 1 close ;
  • V 2 push V 2 close .
  • the ion gate includes a first grid electrode and a second grid electrode insulated from each other in an ion migration tube, the first grid electrode and the second grid electrode
  • the plane on which the two grid electrodes are located is perpendicular to the ion migration direction, wherein the first grid electrode and the second grid electrode are coplanar or the first grid electrode is opposite to the second grid electrode
  • the control method includes controlling a complete working cycle of the ion gate to go through the following stages:
  • Door opening stage keep the voltage of the first grid electrode at V 1 open , and keep the voltage of the second grid electrode at V 2 open , where the selection of V 1 open and V 2 open satisfies: The voltage difference allows ions in the ionization zone to pass through the ion gate and enter the migration zone;
  • Shearing stage the voltage of the first grid electrode is maintained at V 1 shear , and the voltage of the second grid electrode is maintained at V 2 shear , where the selection of V 1 shear and V 2 shear satisfies:
  • Repulsion stage maintain the voltage of the first grid electrode at V 1 push , and keep the voltage of the second grid electrode at V 2 push , where the selection of V 1 push and V 2 push satisfies: V 1 Push- V 2 push has the opposite sign of V 1 cut- V 2 cut , or V 1 push + V 2 push ⁇ V 1 open + V 2 open ;
  • the voltage of the first grid electrode is maintained at V 1 off
  • the voltage of the second grid electrode is maintained at V 2 off , where the selection of V 1 off and V 2 off meets:
  • the voltage difference prevents ions in the ionization zone from passing through the ion gate and entering the migration zone.
  • the shear stage -1000 ⁇ V 1 -V 2 Shear Shear ⁇ -50, preferably -600 ⁇ V 1 -V 2 Shear Shear ⁇ -200.
  • V 1 cut V 1 open ;
  • V 1 push V 1 open ;
  • V 1 off V 1 on ;
  • V 1 push V 1 close ;
  • V 2 push V 2 close .
  • the present invention provides an improved ion gate control method.
  • a shearing phase and a repulsive phase are added between the opening and closing phases of the ion gate,
  • the electric field is used to influence the spatial distribution and temporal motion characteristics of ions.
  • the shearing stage realizes the rapid cutting of the trailing edge of the ion group
  • the repulsion stage realizes the overall shift of the ion group in the migration direction.
  • the ion gate control method of the present invention can make the shape of the trailing edge of the ion cluster more smooth, thereby improving the resolution of the ion mobility spectrum.
  • Figure 1a is a front view of a first grid electrode and a second grid electrode of an ion gate structure in an ion mobility spectrometer;
  • Figure 1b is a side view of a first grid electrode and a second grid electrode of an ion gate structure in an ion mobility spectrometer
  • Figure 1c is a side view of the first grid electrode and the second grid electrode of another ion gate structure in the ion mobility spectrometer;
  • FIG. 2 is a voltage timing diagram of a specific embodiment of the ion gate control method according to the present invention.
  • Fig. 3 is a voltage timing diagram of another specific embodiment of the ion gate control method according to the present invention.
  • the ion gate control method of the present invention is used to control the ion gate of an ion mobility spectrometer.
  • the ion mobility spectrometer includes an ion mobility tube (not shown), and ionization is sequentially formed inside the ion mobility tube along the ion migration direction. Zone, ion gate zone, migration zone.
  • the ion gate is located in the ion gate area, and includes a first grid electrode G1 and a second grid electrode G2 insulated from each other in the ion transfer tube, as shown in FIG. 1a.
  • the plane on which the first grid electrode G1 and the second grid electrode G2 are located is perpendicular to the ion migration direction.
  • first grid electrode G1 and the second grid electrode G2 are coplanar, as shown in FIG. 1b.
  • first grid electrode G1 is close to the ionization source (not shown) in the ion mobility spectrometer
  • the second grid electrode G2 is close to the detector (not shown) in the ion mobility spectrometer, as shown in FIG. 1c.
  • the first grid electrode G1 and the second grid electrode G2 are electrodes that can penetrate ions; the distance d between the first grid electrode G1 and the second grid electrode G2 usually satisfies 0 ⁇ d ⁇ 2mm, where d is 0 It shows that the first grid electrode G1 and the second grid electrode G2 are coplanar and are formed into a BN (Bradbury-Nielson) ion gate structure.
  • the ion transfer tube works in a positive polarity mode or a negative polarity mode.
  • the ion gate control method includes controlling a complete working cycle of the ion gate to go through four stages: a door opening phase, a shearing phase, a repulsion phase, and a door closing phase.
  • a shearing phase and a repulsive phase are added between the opening phase and the closing phase of the ion gate, that is, the sequence of a complete working cycle of the ion gate is: opening phase, shearing phase, pushing Repel stage, closing stage.
  • the shearing stage realizes the rapid cutting of the trailing edge of the ion group, while reducing the forward migration speed of the ion group, and even temporarily stops the forward migration of the ion group, reducing the axial stretching of the ion group during the shearing process;
  • the repulsion stage realizes the overall movement of the ion cluster along the migration direction, and uses the non-uniformity of the repelling electric field to realize the axial compression of the ion cluster.
  • the voltage applied to the ion gate grid during the repulsion phase and the closing phase can be the same, and its voltage must meet the constraints of the repulsion phase and the closing phase at the same time, which can combine the repulsion phase and the closing phase into one.
  • the method can realize separate and independent control of ion cluster cutting and separation processes, and on the other hand, it can reduce trailing edge tailing caused by ion gate cutting ion clusters, which is beneficial to improve the resolution ability of the ion mobility spectrometer.
  • an ion gate control method for an ion mobility spectrometer wherein the ion mobility tube operates in a positive polarity mode, that is, the direction of the electric field lines in the migration region is directed from the ionization source to the detector.
  • the ion gate control method includes controlling a complete working cycle of the ion gate to go through the following four stages:
  • V 1 shear + V 2 shear ⁇ V 1 open + V 2 open so that the average potential of the ion gate region in the shear phase is lower than the average potential of the ion gate region in the opening phase, and the ion clusters on the side of the migration region are subjected to the reverse of the migration electric field It slows down due to the applied force, stops the movement or even moves in the opposite direction, reducing the stretching of the ion clusters in the migration direction during the shearing stage. Therefore, the shearing stage realizes the rapid cutting of the trailing edge of the ion group, and some ions at the end of the ion group are annihilated on the ion gate with a lower voltage. At the same time, the forward migration speed of the ion group is reduced, and the forward migration of the ion group is even temporarily stopped. Even make it move in the opposite direction to reduce the axial stretching of ion clusters in the shearing process.
  • the selection of push and V 2 push satisfies: ⁇ V push has the opposite sign of ⁇ V shear , or V 1 push + V 2 push > V 1 open + V 2 open ; in the shearing stage, when the voltage of the first grid electrode G1 is less than the first
  • the potential of the second grid electrode G2 the positive ions will be gathered and annihilated at the first grid electrode G1, and the sign of ⁇ V push and ⁇ V shear is opposite, which means that the potential of the first grid electrode G1 is greater than the second grid electrode G1 at this time
  • the potential of the electrode G2 so the ions originally gathered near the first grid electrode G1 will be pushed to the second grid electrode G2 to achieve the purpose of repelling ion clusters
  • V 1 push + V 2 push > V 1 open + V 2 open it means that the average potential of the ion gate area in the repulsion phase is higher than the average potential of the ion gate area in the opening phase, and the ion clusters are subjected to the electric field line during the repulsion phase.
  • the positive thrust in the direction achieves the purpose of repelling ion clusters. Therefore, in the repulsion stage, a positive thrust is applied to the ion cluster in the direction of ion migration, and the ion cluster as a whole leaves the ion gate area and enters the migration zone; the repulsion stage realizes the overall movement of the ion cluster in the migration direction.
  • the inhomogeneity of the repulsive electric field is used to achieve axial compression of ion clusters.
  • V 1 and V 2 meet the following requirements: It can prevent ions in the ionization zone from passing through the ion gate and entering the migration zone. If it has been kept in the closing phase, after a long enough time (more than 1 second), the door into the ionization region through the ion drift region of ions striking the detector current generated in the absolute value
  • a voltage gradient different from the ion migration direction is formed to prevent ions in the ion gate region from entering the migration region.
  • E d is the electric field strength of the migration zone.
  • 50 ⁇ V shear ⁇ 1000 Preferably, 50 ⁇ V shear ⁇ 1000, more preferably, 200 ⁇ V shear ⁇ 600.
  • -1000 ⁇ V push ⁇ -50 Preferably, -600 ⁇ V push ⁇ -200.
  • -1000 ⁇ V off ⁇ -50 Preferably, -400 ⁇ V off ⁇ -80.
  • V 1 cut V 1 open .
  • V 1 push V 1 open .
  • V 1 off V 1 on .
  • the selection of V 1 push and V 1 off should meet the voltage selection conditions of the repulsion phase and the closing phase. This can combine the repulsion phase and the closing phase of the first grid electrode into one, further simplifying the control sequence.
  • the selection of V 2 push and V 2 close should meet the voltage selection conditions of the repulsion phase and the closing phase. This can combine the repulsion phase and the closing phase of the second grid electrode into one, further simplifying the control sequence.
  • an ion gate control method for an ion mobility spectrometer wherein the ion mobility tube operates in a negative polarity mode, that is, the direction of the electric field lines in the migration region is directed from the detector to the ionization source.
  • the difference between negative polarity mode and positive polarity mode is that positive ions move in positive polarity mode, and negative ions move in negative polarity mode.
  • the ion gate control method includes controlling a complete working cycle of the ion gate to go through the following four stages:
  • ⁇ V push has the opposite sign of ⁇ V shear , or V 1 push + V 2 push ⁇ V 1 open + V 2 open ; in the shearing stage, when the potential of the first grid electrode G1 is greater than the second The potential of the grid electrode G2, the negative ions will be gathered and annihilated at the first grid electrode G1, and the sign of ⁇ V push and ⁇ V shear is opposite, which means that the electric potential of the first grid electrode G1 is smaller than the second grid electrode G2 at this time, so The ions originally gathered near the first grid electrode G1 will be pushed to the second grid electrode G2 to achieve the purpose of repelling ion clusters.
  • V 1 push + V 2 push ⁇ V 1 open + V 2 open which means that the average potential of the ion gate area in the repulsion phase is less than the average potential of the ion gate area in the opening phase, and the ion clusters are subjected to the migration direction during the repulsion phase.
  • Forward thrust to achieve the purpose of repelling ion clusters Therefore, in the repulsion stage, a positive thrust is applied to the ion cluster in the direction of ion migration, and the ion cluster as a whole leaves the ion gate area and enters the migration zone; the repulsion stage realizes the overall movement of the ion cluster in the migration direction.
  • the inhomogeneity of the repulsive electric field is used to achieve axial compression of ion clusters.
  • V 1 and V 2 meet the following requirements: It can prevent ions in the ionization zone from passing through the ion gate and entering the migration zone. If it has been kept in the closing phase, after a long enough time (more than 1 second), the door into the ionization region through the ion drift region of ions striking the detector current generated in the absolute value
  • ) ⁇ V ⁇ ⁇ 0 where d is the distance between the first grid electrode G1 and the second grid electrode G2, and E d is the intensity of the migration electric field;
  • -1000 ⁇ V shear ⁇ -50 Preferably, -600 ⁇ V shear ⁇ -200.
  • 50 ⁇ V push ⁇ 1000 Preferably, 50 ⁇ V push ⁇ 1000, more preferably, 200 ⁇ V push ⁇ 600.
  • 50 ⁇ V off ⁇ 1000 Preferably, 50 ⁇ V off ⁇ 1000, more preferably, 80 ⁇ V off ⁇ 400.
  • V 1 cut V 1 open .
  • V 1 push V 1 open .
  • V 1 off V 1 on .
  • the selection of V 1 push and V 1 off should meet the voltage selection conditions of the repulsion phase and the closing phase. This can combine the repulsion phase and the closing phase of the first grid electrode into one, further simplifying the control sequence.
  • the selection of V 2 push and V 2 close should meet the voltage selection conditions of the repulsion phase and the closing phase. This can combine the repulsion phase and the closing phase of the second grid electrode into one, further simplifying the control sequence.
  • the shape of the first grid electrode G1 and the second grid electrode G2 may be one or more of a mesh electrode, a concentric ring electrode, a grid electrode, and a spiral wire electrode. The combination.
  • the parameters and conditions of the ion mobility spectrometer are respectively composed of a set of metal wire meshes parallel to each other and at equal distances.
  • the distance between adjacent metal wires is 2mm; the first grid electrode G1 and the second grid electrode G2 have the same wire diameter It is 0.1mm; the first grid electrode G1 and the second grid electrode G2 are coplanar and the distance between adjacent metal wires is 1mm.
  • the ion mobility spectrometer is working in positive polarity mode.
  • the method of the present invention is used to shape the trailing edge of ion clusters.
  • the timing diagram of the first grid electrode G1 and the second grid electrode G2 is shown in Fig. 2, and the specific parameters are as follows:
  • the voltage at each stage of the first grid electrode G1 and the second grid electrode G2 meets the following conditions, and the units are all volts (V):
  • V 2 cut V 2 open -400
  • V 2 push V 2 open +300;
  • V 2 off V 2 on +100
  • the duration of the repulsion phase ⁇ push 30 ⁇ s.
  • the parameters and conditions of the ion mobility spectrometer are respectively composed of a set of metal wire meshes parallel to each other and at equal distances.
  • the distance between adjacent metal wires is 2mm; the first grid electrode G1 and the second grid electrode G2 have the same wire diameter It is 0.1mm; the first grid electrode G1 and the second grid electrode G2 are coplanar and the distance between adjacent metal wires is 1mm.
  • the ion mobility spectrometer is working in positive polarity mode.
  • the method of the present invention is used to shape the trailing edge of ion clusters.
  • the timing diagram of the first grid electrode G1 and the second grid electrode G2 is shown in FIG. 3, and the specific parameters are as follows:
  • the voltage at each stage of the first grid electrode G1 and the second grid electrode G2 meets the following conditions, and the units are all volts (V):
  • V 2 cut V 2 open -400

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种用于离子迁移谱仪的离子门控制方法,包括通过第一栅网电极(G1)和第二栅网电极(G2)的电压,控制离子门的一个完整工作周期经历开门阶段、剪切阶段、推斥阶段、关门阶段。其中,剪切阶段实现对离子团后沿的快速切断,减小离子团在剪切过程中的轴向拉伸;推斥阶段实现对离子团在沿迁移方向上的整体推移,利用推斥电场的非均匀性实现离子团轴向压缩。有益效果:一方面可以实现对离子团切割和分离过程的分别独立控制,另一方面可以减小离子门切割离子团造成的后沿拖尾,有利于提高离子迁移谱仪的分辨能力。

Description

一种用于离子迁移谱仪的离子门控制方法 技术领域
本发明涉及离子迁移谱领域,特别是一种用于离子迁移谱仪的离子门控制方法。
背景技术
离子迁移谱(IMS)是一种痕量物质快检技术,具有结构简单、灵敏度高、检测速度快、常压下工作的优点。离子迁移谱仪通过开关离子门的方式控制带电粒子以特定的模式进入漂移区,经分离后被检测器探测到。
离子门开关门状态的切换通常是通过改变第一栅网电极G1和第二栅网电极G2的电压来实现的:当第一栅网电极G1和第二栅网电极G2电压相差较小时,离子门打开,离子得以通过;当第一栅网电极G1和第二栅网电极G2电压相差较大时,离子门关闭,离子门附近的离子将被打到电压较低的离子门上,离子不能通过,从而实现关闭。在低电压的离子门附近会聚集大量的离子,高电压的离子门附近因缺少离子而形成空白区,从而导致离子团后沿的不平齐。
传统的离子门时序控制方式是在离子门栅网上施加固定宽度和幅值的脉冲信号,这种控制方式的主要问题在于离子团后沿切割形状不理想。
以上背景技术内容的公开仅用于辅助理解本申请的发明构思及技术方案,其并不必然属于本专利申请的现有技术,在没有明确的证据表明上述内容在本专利申请的申请日前已经公开的情况下,上述背景技术不应用于评价本申请的新颖性和创造性。
发明内容
本发明的主要目的在于克服现有技术的不足,提出一种用于离子迁移谱仪的改进的离子门控制方法,以提高离子团后沿形状的平整性,从而提高离子迁移谱图的分辨力。
为实现上述目的,本发明采用以下技术方案:
一种用于离子迁移谱仪的离子门控制方法,所述离子门包括在离子迁移管内相互绝缘设置的第一栅网电极和第二栅网电极,所述第一栅网电极和所述第二栅网电极所处的平面与离子迁移方向相垂直,其中所述第一栅 网电极与所述第二栅网电极共面或所述第一栅网电极相对于所述第二栅网电极更靠近离子门的电离区,所述离子迁移管工作在正极性模式,所述控制方法包括控制所述离子门的一个完整工作周期经历以下阶段:
开门阶段:将所述第一栅网电极的电压保持为V 1开,将所述第二栅网电极的电压保持为V 2开,其中V 1开和V 2开的选取满足:所产生的电压差允许电离区中的离子穿过离子门进入迁移区;
剪切阶段:将所述第一栅网电极的电压保持为V 1剪,将所述第二栅网电极的电压保持为V 2剪,其中V 1剪和V 2剪的选取满足:|V 1剪-V 2剪|>|V 1开-V 2 |,且V 1剪+V 2剪<V 1开+V 2开
推斥阶段:将所述第一栅网电极的电压保持为V 1推,将所述第二栅网电极的电压保持为V 2推,其中V 1推和V 2推的选取满足:V 1推-V 2推与V 1剪-V 2剪的符号相反,或V 1推+V 2推>V 1开+V 2开
关门阶段,将所述第一栅网电极的电压保持为V 1关,将所述第二栅网电极的电压保持为V 2关,其中V 1关和V 2关的选取满足:所产生的电压差阻止电离区中的离子穿过离子门进入迁移区。
进一步地:
在所述开门阶段,0≤V 1开-V 2开≤d×|E d|,其中d为所述第一栅网电极和所述第二栅网电极的间距,E d为迁移区电场强度。
在所述剪切阶段,50≤V 1剪-V 2剪≤1000,优选200≤V 1剪-V 2剪≤600。
在所述推斥阶段,-1000≤V 1推-V 2推≤-50,优选-600≤V 1推-V 2推
-200。
在所述关门阶段,-1000≤V 1关-V 2关≤-50,优选-400≤V 1关-V 2关≤-80。
所述工作周期中满足以下条件中的一个或多个:
V 1剪=V 1开
V 1推=V 1开
V 1关=V 1开
V 1开=V 1剪=V 1推=V 1关
V 1开=V 1剪=V 1推=V 1关=V 2开
V 1推=V 1关
V 2推=V 2关
一种用于离子迁移谱仪的离子门控制方法,所述离子门包括在离子迁移管内相互绝缘设置的第一栅网电极和第二栅网电极,所述第一栅网电极和所述第二栅网电极所处的平面与离子迁移方向相垂直,其中所述第一栅 网电极与所述第二栅网电极共面或所述第一栅网电极相对于所述第二栅网电极更靠近离子门的电离区,所述离子迁移管工作在负极性模式,所述控制方法包括控制所述离子门的一个完整工作周期经历以下阶段:
开门阶段:将所述第一栅网电极的电压保持为V 1开,将所述第二栅网电极的电压保持为V 2开,其中V 1开和V 2开的选取满足:所产生的电压差允许电离区中的离子穿过离子门进入迁移区;
剪切阶段:将所述第一栅网电极的电压保持为V 1剪,将所述第二栅网电极的电压保持为V 2剪,其中V 1剪和V 2剪的选取满足:|V 1剪-V 2剪|>|V 1开-V 2 |,且V 1剪+V 2剪>V 1开+V 2开
推斥阶段:将所述第一栅网电极的电压保持为V 1推,将所述第二栅网电极的电压保持为V 2推,其中V 1推和V 2推的选取满足:V 1推-V 2推与V 1剪-V 2剪的符号相反,或V 1推+V 2推<V 1开+V 2开
关门阶段,将所述第一栅网电极的电压保持为V 1关,将所述第二栅网电极的电压保持为V 2关,其中V 1关和V 2关的选取满足:所产生的电压差阻止电离区中的离子穿过离子门进入迁移区。
进一步地:
在所述开门阶段,-(d×|E d|)≤V 1开-V 2开≤0,其中d为所述第一栅网电极和所述第二栅网电极的间距,E d为迁移区电场强度。
在所述剪切阶段,-1000≤V 1剪-V 2剪≤-50,优选-600≤V 1剪-V 2剪≤-200。
在所述推斥阶段,50≤V 1推-V 2推≤1000,优选200≤V 1推-V 2推≤600。
在所述关门阶段,50≤V 1关-V 2关≤1000,优选80≤V 1关-V 2关≤400。
所述工作周期中满足以下条件中的一个或多个:
V 1剪=V 1开
V 1推=V 1开
V 1关=V 1开
V 1开=V 1剪=V 1推=V 1关
V 1开=V 1剪=V 1推=V 1关=V 2开
V 1推=V 1关
V 2推=V 2关
本发明具有如下有益效果:
本发明提出一种改进的离子门控制方法,通过第一栅网电极和第二栅网电极的电压,在离子门的开门阶段和关门阶段之间,增加一个剪切阶段 和一个推斥阶段,利用电场影响离子空间分布和时域运动特性。其中,剪切阶段实现对离子团后沿的快速切断,推斥阶段实现对离子团在迁移方向上的整体推移,一方面可以实现对离子门切割离子团过程的独立控制,另一方面可以改善离子门切割离子团后沿造成的拖尾,有利于离子迁移谱仪分辨能力的提高。本发明的离子门控制方法可以使得离子团后沿形状更为平整,从而提高离子迁移谱图的分辨力。
前述已经相当广泛地阐述了本发明的特征和技术优势,以便能够更好地理解本发明的详细描述。本发明的其它特征和优势将在以下描述。
附图说明
图1a是离子迁移谱仪中的离子门结构的第一栅网电极和第二栅网电极的主视图;
图1b是离子迁移谱仪中的一种离子门结构的第一栅网电极和第二栅网电极的侧视图;
图1c是离子迁移谱仪中的另一种离子门结构的第一栅网电极和第二栅网电极的侧视图;
图2是根据本发明离子门控制方法的一个具体实施例的电压时序图;
图3是根据本发明离子门控制方法的另一个具体实施例的电压时序图。
具体实施方式
以下对本发明的实施方式作详细说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。
本发明的离子门控制方法用于控制离子迁移谱仪的离子门,所述离子迁移谱仪包括离子迁移管(未示出),在所述离子迁移管内部沿离子迁移方向上依次形成有电离区、离子门区、迁移区。所述离子门位于所述离子门区,包括在离子迁移管内相互绝缘设置的第一栅网电极G1和第二栅网电极G2,如图1a所示。所述第一栅网电极G1和所述第二栅网电极G2所处的平面与离子迁移方向相垂直。可选的,所述第一栅网电极G1与所述第二栅网电极G2共面,如图1b所示。或者,第一栅网电极G1靠近离子迁移谱仪中的电离源(未示出),第二栅网电极G2靠近离子迁移谱仪中的检测器(未示出),如图1c所示。第一栅网电极G1和第二栅网电极G2为可以透过离子的电极;第一栅网电极G1和第二栅网电极G2的间距d通常满足0≤d≤2mm,其中d为0时表示第一栅网电极G1和第二栅网电极G2共面,形 成为BN(Bradbury-Nielson)离子门结构。
所述离子迁移管工作在正极性模式或负极性模式。所述离子门控制方法包括控制所述离子门的一个完整工作周期经历四个阶段:开门阶段、剪切阶段、推斥阶段和关门阶段。
根据本发明的离子门控制方法,在离子门的开门阶段和关门阶段之间增加一个剪切阶段和一个推斥阶段,即离子门一个完整工作周期的时序为:开门阶段、剪切阶段、推斥阶段、关门阶段。其中,剪切阶段实现对离子团后沿的快速切断,同时降低离子团向前的迁移速度,甚至暂时停止离子团向前迁移,减小离子团在剪切过程中的轴向拉伸;推斥阶段实现对离子团在沿迁移方向上的整体推移,利用推斥电场的非均匀性实现离子团轴向压缩。特别的,推斥阶段和关门阶段施加在离子门栅网上的电压可以相同,其电压需同时满足推斥阶段和关门阶段的约束条件,这可以使推斥阶段和关门阶段合二为一,进一步简化控制时序。本方法一方面可以实现对离子团切割和分离过程的分别独立控制,另一方面可以减小离子门切割离子团造成的后沿拖尾,有利于提高离子迁移谱仪的分辨能力。
在一种实施例中,一种用于离子迁移谱仪的离子门控制方法,其中离子迁移管工作在正极性模式,即迁移区内电场线方向从电离源指向检测器。
所述离子门控制方法包括控制所述离子门的一个完整工作周期经历以下四个阶段:
开门阶段:第一栅网电极G1的电压保持为V 1开,第二栅网电极G2电压保持为V 2开,记ΔV =V 1开-V 2开;在开门阶段,V 1开和V 2开的选取满足:能够让电离区中的离子穿过离子门进入迁移区,若一直保持在开门阶段,经过足够长的时间(大于1秒)后,从电离区穿过离子门进入迁移区的离子撞击在探测器上产生的电流的绝对值|I |≥10pA。一般而言,|ΔV |≤50。
剪切阶段:第一栅网电极G1的电压保持为V 1剪,第二栅网电极G2电压保持为V 2剪,记ΔV =V 1剪-V 2剪;在剪切阶段,V 1剪和V 2剪的选取满足:|ΔV |>|ΔV |,且V 1剪+V 2剪<V 1开+V 2开;|ΔV |>|ΔV |保证第一栅网电极G1和第二栅网电极G2之间的压差不能使离子正常通过,达到切断离子团的目的。V 1剪+V 2剪<V 1开+V 2开使剪切阶段离子门区的平均电势低于开门阶段离子门区的平均电势,位于迁移区一侧的离子团受到与迁移电场 反向的作用力而减速,停止运动甚至反向运动,减小剪切阶段离子团在迁移方向上的拉伸。因此,剪切阶段实现对离子团后沿的快速切断,离子团末尾部分离子湮灭在电压较低的离子门上,同时降低离子团向前的迁移速度,甚至暂时停止离子团向前迁移,更甚至使其反向运动,减小离子团在剪切过程中的轴向拉伸。
推斥阶段:第一栅网电极G1的电压保持为V 1推,第二栅网电极G2电压保持为V 2推,记ΔV =V 1推-V 2推;在推斥阶段,V 1推和V 2推的选取满足:ΔV 与ΔV 符号相反,或V 1推+V 2推>V 1开+V 2开;在剪切阶段,当第一栅网电极G1的电压小于第二栅网电极G2的电势,则正离子将聚集并湮灭在第一栅网电极G1,而ΔV 与ΔV 符号相反,则意味着此时第一栅网电极G1的电势大于第二栅网电极G2的电势,因此原本聚集在第一栅网电极G1附近离子将被推向第二栅网电极G2,达到推斥离子团的目的。而V 1推+V 2推>V 1开+V 2开,则意味着推斥阶段离子门区的平均电势高于开门阶段离子门区的平均电势,离子团在推斥阶段受到沿电场线方向的正向推力,达到推斥离子团的目的。因此,在推斥阶段,对离子团整体施加沿离子迁移方向上的正向推力,离子团整体离开离子门区进入到迁移区;推斥阶段实现对离子团在沿迁移方向上的整体推移,利用推斥电场的非均匀性实现离子团轴向压缩。
关门阶段:第一栅网电极G1的电压保持为V 1关,第二栅网电极G2电压保持为V 2关,记ΔV =V 1关-V 2关。在关门阶段,V 1关和V 2关的选取满足:能够阻止电离区中的离子穿过离子门进入迁移区,若一直保持在关门阶段,经过足够长的时间(大于1秒)后,从电离区穿过离子门进入迁移区的离子撞击在探测器上产生的电流的绝对值|I |≤0.9*|I |。一般而言,|ΔV |>50。在关门阶段,形成与离子迁移方向不同向的电压梯度,阻止离子门区中的离子进入到迁移区。
优选地,0≤ΔV ≤d×|E d|,其中d为第一栅网电极G1和第二栅网电极G2间距,E d为迁移区电场强度。
优选地,50≤ΔV ≤1000,更优选地,200≤ΔV ≤600。
优选地,-1000≤ΔV ≤-50,更优选地,-600≤ΔV ≤-200。
优选地,-1000≤ΔV ≤-50,更优选地,-400≤ΔV ≤-80。
可选地,V 1剪=V 1开
可选地,V 1推=V 1开
可选地,V 1关=V 1开
可选地,V 1开=V 1剪=V 1推=V 1关
可选地,V 1开=V 1剪=V 1推=V 1关=V 2开
可选地,第一栅网电极G1在推斥阶段和关门阶段的电压相同,V 1推=V 1 。V 1推、V 1关的选取应同时满足推斥阶段和关门阶段的电压选择条件。这可以使第一栅网电极的推斥阶段和关门阶段合二为一,进一步简化控制时序。
可选地,第二栅网电极G2在推斥阶段和关门阶段的电压相同,V 2推=V 2 。V 2推、V 2关的选取应同时满足推斥阶段和关门阶段的电压选择条件。这可以使第二栅网电极的推斥阶段和关门阶段合二为一,进一步简化控制时序。
在一个优选的实施例中,推斥阶段和关门阶段电压相同,即V 1推=V 1关且V 2推=V 2关;V 1推、V 2推、V 1关、V 2关的选取应同时满足推斥阶段和关门阶段的电压选择条件;V 1开=V 1剪=V 1关=V 2开,且50≤ΔV ≤1000,更优选地200≤ΔV ≤600,且-1000<ΔV ≤-50,更优选地-400≤ΔV ≤-80。
在另一种实施例中,一种用于离子迁移谱仪的离子门控制方法,其中离子迁移管工作在负极性模式,即迁移区内电场线方向从检测器指向电离源。负极性模式和正极性模式的区别在于,正极性模式下运动的是正离子,负极性模式下运动的是负离子。
所述离子门控制方法包括控制所述离子门的一个完整工作周期经历以下四个阶段:
开门阶段:第一栅网电极G1电压保持为V 1开,第二栅网电极G2电压保持为V 2开,记ΔV =V 1开-V 2开;在开门阶段,V 1开和V 2开的选取满足:能够让电离区中的离子穿过离子门进入迁移区,若一直保持在开门阶段,经过足够长的时间(大于1秒)后,从电离区穿过离子门进入迁移区的离子撞击在探测器上产生的电流的绝对值|I |≥10pA。一般而言,|ΔV |≤50。
剪切阶段:第一栅网电极G1电压保持为V 1剪,第二栅网电极G2电压保持为V 2剪,记ΔV =V 1剪-V 2剪;在剪切阶段,V 1剪和V 2剪的选取满足:|ΔV |>|ΔV |,且V 1剪+V 2剪>V 1开+V 2开。|ΔV |>|ΔV |保证第一栅网电极G1和第二栅网电极G2之间的压差不能使离子正常通过,达到切断离 子团的目的。V 1剪+V 2剪>V 1开+V 2开使剪切阶段离子门区的平均电势高于开门阶段离子门区的平均电势,位于迁移区一侧的离子团受到与迁移电场反向的作用力而减速,停止运动甚至反向运动,减小剪切阶段离子团在迁移方向上的拉伸。因此,剪切阶段实现对离子团后沿的快速切断,离子团末尾部分离子湮灭在电压较低的离子门上,同时降低离子团向前的迁移速度,甚至暂时停止离子团向前迁移,更甚至使其反向运动,减小离子团在剪切过程中的轴向拉伸。
推斥阶段:第一栅网电极G1电压保持为V 1推,第二栅网电极G2电压保持为V 2推,记ΔV =V 1推-V 2推;在推斥阶段,V 1推和V 2推的选取满足:ΔV 与ΔV 符号相反,或V 1推+V 2推<V 1开+V 2开;在剪切阶段,当第一栅网电极G1的电势大于第二栅网电极G2的电势,则负离子将聚集并湮灭在第一栅网电极G1,而ΔV 与ΔV 符号相反,意味着此时第一栅网电极G1电势小于第二栅网电极G2,因此原本聚集在第一栅网电极G1附近的离子将被推向第二栅网电极G2,达到推斥离子团的目的。而V 1推+V 2推<V 1开+V 2开,则意味着推斥阶段离子门区的平均电势小于开门阶段离子门区的平均电势,离子团在推斥阶段受到沿迁移方向的正向推力,达到推斥离子团的目的。因此,在推斥阶段,对离子团整体施加沿离子迁移方向上的正向推力,离子团整体离开离子门区进入到迁移区;推斥阶段实现对离子团在沿迁移方向上的整体推移,利用推斥电场的非均匀性实现离子团轴向压缩。
关门阶段:第一栅网电极G1电压保持为V 1关,第二栅网电极G2电压保持为V 2关,记ΔV =V 1关-V 2关。在关门阶段,V 1关和V 2关的选取满足:能够阻止电离区中的离子穿过离子门进入迁移区,若一直保持在关门阶段,经过足够长的时间(大于1秒)后,从电离区穿过离子门进入迁移区的离子撞击在探测器上产生的电流的绝对值|I |≤0.9*|I |。一般而言,|ΔV |>50;在关门阶段,形成与离子迁移方向不同向的电压梯度,阻止离子门区中的离子进入到迁移区。
优选地,-(d×|E d|)≤ΔV ≤0,其中d为第一栅网电极G1和第二栅网电极G2间距,E d为迁移电场强度;
优选地,-1000≤ΔV ≤-50,更优选地,-600≤ΔV ≤-200。
优选地,50≤ΔV ≤1000,更优选地,200≤ΔV ≤600。
优选地,50≤ΔV ≤1000,更优选地,80≤ΔV ≤400。
可选地,V 1剪=V 1开
可选地,V 1推=V 1开
可选地,V 1关=V 1开
可选地,V 1开=V 1剪=V 1推=V 1关
可选地,V 1开=V 1剪=V 1推=V 1关=V 2开
可选地,第一栅网电极G1在推斥阶段和关门阶段的电压相同,V 1推=V 1 。V 1推、V 1关的选取应同时满足推斥阶段和关门阶段的电压选择条件。这可以使第一栅网电极的推斥阶段和关门阶段合二为一,进一步简化控制时序。
可选地,第二栅网电极G2在推斥阶段和关门阶段的电压相同,V 2推=V 2 。V 2推、V 2关的选取应同时满足推斥阶段和关门阶段的电压选择条件。这可以使第二栅网电极的推斥阶段和关门阶段合二为一,进一步简化控制时序。
在一个优选的实施例中,推斥阶段和关门阶段电压相同,即V 1推=V 1关且V 2推=V 2关;V 1推、V 2推、V 1关、V 2关的选取应同时满足推斥阶段和关门阶段的电压选择条件;V 1开=V 1剪=V 1关=V 2开,且-1000≤ΔV ≤-50,更优选地-600≤ΔV ≤-200,且50≤ΔV ≤1000,更优选地80≤ΔV ≤400。
在具体的实施例中,第一栅网电极G1和第二栅网电极G2的形状可以为网状电极、同心环状电极、栅格状电极、螺旋线状电极中的一种或两种以上的组合。
应用例1
离子迁移谱仪的参数和条件:迁移管长度10.5cm,迁移电场强度50V/mm;检测样品为丙酮,浓度为10ppm;载气流速为10ml/min,漂移气流速600ml/min;第一栅网电极G1和第二栅网电极G2分别由一组相互平行且距离相等的金属丝网组成,相邻金属丝之间距离为2mm;第一栅网电极G1和第二栅网电极G2丝径均为0.1mm;第一栅网电极G1和第二栅网电极G2共面且相邻金属丝之间距离为1mm。本例中,离子迁移谱仪工作在正极性模式。
采用本发明的方法,来进行离子团后沿整形,第一栅网电极G1和第二栅网电极G2的时序图如图2所示,具体参数如下:
第一栅网电极G1和第二栅网电极G2各阶段电压满足下列条件,单位均为伏特(V):
V 1开=V 1剪=V 1推=V 1关=V 2开
V 2剪=V 2开-400;
V 2推=V 2开+300;
V 2关=V 2开+100;
剪切阶段持续时间τ =18μs;
推斥阶段持续时间τ =30μs。
应用例2
离子迁移谱仪的参数和条件:迁移管长度10.5cm,迁移电场强度50V/mm;检测样品为丙酮,浓度为10ppm;载气流速为10ml/min,漂移气流速600ml/min;第一栅网电极G1和第二栅网电极G2分别由一组相互平行且距离相等的金属丝网组成,相邻金属丝之间距离为2mm;第一栅网电极G1和第二栅网电极G2丝径均为0.1mm;第一栅网电极G1和第二栅网电极G2共面且相邻金属丝之间距离为1mm。本例中,离子迁移谱仪工作在正极性模式。
采用本发明的方法,来进行离子团后沿整形,第一栅网电极G1和第二栅网电极G2的时序图如图3所示,具体参数如下:
第一栅网电极G1和第二栅网电极G2各阶段电压满足下列条件,单位均为伏特(V):
V 1开=V 1剪=V 1推=V 1关=V 2开
V 2剪=V 2开-400;
V 2推=V 2关=V 2开+100;
剪切阶段持续时间τ =18μs。
实验测得,整形前,谱图的半峰宽为153.4μs,分辨率为64.5;整形后,谱图的半峰宽为101.7μs,分辨率为100。可见本发明能够改善离子团后沿的形变,抑制离子团的展宽,从而提高谱图的分辨力。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。在本说明书的描述中,参考术语“一种实施例”、“一些实施例”、“优选实施例”、“示例”、“具体示例”、或“一些示例” 等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。尽管已经详细描述了本发明的实施例及其优点,但应当理解,在不脱离由所附权利要求限定的范围的情况下,可以在本文中进行各种改变、替换和变更。此外,本发明的范围不旨在限于说明书中所述的过程、机器、制造、物质组成、手段、方法和步骤的特定实施例。本领域普通技术人员将容易理解,可以利用执行与本文所述相应实施例基本相同功能或获得与本文所述实施例基本相同结果的目前存在的或稍后要开发的上述披露、过程、机器、制造、物质组成、手段、方法或步骤。因此,所附权利要求旨在将这些过程、机器、制造、物质组成、手段、方法或步骤包含在其范围内。

Claims (12)

  1. 一种用于离子迁移谱仪的离子门控制方法,所述离子门包括在离子迁移管内相互绝缘设置的第一栅网电极和第二栅网电极,所述第一栅网电极和所述第二栅网电极所处的平面与离子迁移方向相垂直,其中所述第一栅网电极与所述第二栅网电极共面或所述第一栅网电极相对于所述第二栅网电极更靠近所述离子门的电离区,所述离子迁移管工作在正极性模式,其特征在于,所述控制方法包括控制所述离子门的一个完整工作周期经历以下阶段:
    开门阶段:将所述第一栅网电极的电压保持为V 1开,将所述第二栅网电极的电压保持为V 2开,其中V 1开和V 2开的选取满足:所产生的电压差允许电离区中的离子穿过离子门进入迁移区;
    剪切阶段:将所述第一栅网电极的电压保持为V 1剪,将所述第二栅网电极的电压保持为V 2剪,其中V 1剪和V 2剪的选取满足:|V 1剪-V 2剪|>|V 1开-V 2 |,且V 1剪+V 2剪<V 1开+V 2开
    推斥阶段:将所述第一栅网电极的电压保持为V 1推,将所述第二栅网电极的电压保持为V 2推,其中V 1推和V 2推的选取满足:V 1推-V 2推与V 1剪-V 2剪的符号相反,或V 1推+V 2推>V 1开+V 2开
    关门阶段,将所述第一栅网电极的电压保持为V 1关,将所述第二栅网电极的电压保持为V 2关,其中V 1关和V 2关的选取满足:所产生的电压差阻止电离区中的离子穿过离子门进入迁移区。
  2. 如权利要求1所述的离子门控制方法,其特征在于,在所述开门阶段,0≤V 1开-V 2开≤d×|E d|,其中d为所述第一栅网电极和所述第二栅网电极的间距,E d为迁移区电场强度。
  3. 如权利要求1或2所述的离子门控制方法,其特征在于,在所述剪切阶段,50≤V 1剪-V 2剪≤1000,优选200≤V 1剪-V 2剪≤600。
  4. 如权利要求1至3任一项所述离子门控制方法,其特征在于,在所述推斥阶段,-1000≤V 1推-V 2推≤-50,优选-600≤V 1推-V 2推≤-200。
  5. 如权利要求1至4任一项所述的离子门控制方法,其特征在于,在所述关门阶段,-1000≤V 1关-V 2关≤-50,优选-400≤V 1关-V 2关≤-80。
  6. 如权利要求1至5任一项所述的离子门控制方法,其特征在于,所述工作周期中满足以下条件中的一个或多个:
    V 1剪=V 1开
    V 1推=V 1开
    V 1关=V 1开
    V 1开=V 1剪=V 1推=V 1关
    V 1开=V 1剪=V 1推=V 1关=V 2开
    V 1推=V 1关
    V 2推=V 2关
  7. 一种用于离子迁移谱仪的离子门控制方法,所述离子门包括在离子迁移管内相互绝缘设置的第一栅网电极和第二栅网电极,所述第一栅网电极和所述第二栅网电极所处的平面与离子迁移方向相垂直,其中所述第一栅网电极与所述第二栅网电极共面或所述第一栅网电极相对于所述第二栅网电极更靠近所述离子门的电离区,所述离子迁移管工作在负极性模式,其特征在于,所述控制方法包括控制所述离子门的一个完整工作周期经历以下阶段:
    开门阶段:将所述第一栅网电极的电压保持为V 1开,将所述第二栅网电极的电压保持为V 2开,其中V 1开和V 2开的选取满足:所产生的电压差允许电离区中的离子穿过离子门进入迁移区;
    剪切阶段:将所述第一栅网电极的电压保持为V 1剪,将所述第二栅网电极的电压保持为V 2剪,其中V 1剪和V 2剪的选取满足:|V 1剪-V 2剪|>|V 1开-V 2 |,且V 1剪+V 2剪>V 1开+V 2开
    推斥阶段:将所述第一栅网电极的电压保持为V 1推,将所述第二栅网电极的电压保持为V 2推,其中V 1推和V 2推的选取满足:V 1推-V 2推与V 1剪-V 2剪的符号相反,或V 1推+V 2推<V 1开+V 2开
    关门阶段,将所述第一栅网电极的电压保持为V 1关,将所述第二栅网电极的电压保持为V 2关,其中V 1关和V 2关的选取满足:所产生的电压差阻止电离区中的离子穿过离子门进入迁移区。
  8. 如权利要求7所述的离子门控制方法,其特征在于,在所述开门阶段,-(d×|E d|)≤V 1开-V 2开≤0,其中d为所述第一栅网电极和所述第二栅网电极的间距,E d为迁移区电场强度。
  9. 如权利要求7或8所述的离子门控制方法,其特征在于,在所述剪切阶段,-1000≤V 1剪-V 2剪≤-50,优选-600≤V 1剪-V 2剪≤-200。
  10. 如权利要求7至9任一项所述离子门控制方法,其特征在于,在所述推斥阶段,50≤V 1推-V 2推≤1000,优选200≤V 1推-V 2推≤600。
  11. 如权利要求7至10任一项所述的离子门控制方法,其特征在于,在所述关门阶段,50≤V 1关-V 2关≤1000,优选80≤V 1关-V 2关≤400。
  12. 如权利要求7至11任一项所述的离子门控制方法,其特征在于,所述工作周期中满足以下条件中的一个或多个:
    V 1剪=V 1开
    V 1推=V 1开
    V 1关=V 1开
    V 1开=V 1剪=V 1推=V 1关
    V 1开=V 1剪=V 1推=V 1关=V 2开
    V 1推=V 1关
    V 2推=V 2关
PCT/CN2019/108753 2019-08-09 2019-09-27 一种用于离子迁移谱仪的离子门控制方法 WO2021027033A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910735917 2019-08-09
CN201910735917.9 2019-08-09
CN201910745716.7A CN110571126B (zh) 2019-08-09 2019-08-13 一种用于离子迁移谱仪的离子门控制方法
CN201910745716.7 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021027033A1 true WO2021027033A1 (zh) 2021-02-18

Family

ID=68775430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108753 WO2021027033A1 (zh) 2019-08-09 2019-09-27 一种用于离子迁移谱仪的离子门控制方法

Country Status (2)

Country Link
CN (1) CN110571126B (zh)
WO (1) WO2021027033A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490108B (zh) * 2020-11-24 2021-07-27 中国科学院大连化学物理研究所 一种自动富集离子的离子门控制方法
CN113539781B (zh) * 2021-07-01 2023-07-25 中国科学院大连化学物理研究所 一种施加在bn型离子门上的脉冲电压波形

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098528A (zh) * 2016-06-14 2016-11-09 清华大学深圳研究生院 一种减小离子迁移谱仪离子门感应冲击的装置和方法
CN106783506A (zh) * 2016-12-08 2017-05-31 中国科学院合肥物质科学研究院 一种利用双脉冲、非对称电压控制离子门的离子迁移谱仪及检测方法
CN108072690A (zh) * 2016-11-17 2018-05-25 中国科学院大连化学物理研究所 一种离子迁移谱和离子阱质谱联用装置及分析方法
CN207474410U (zh) * 2017-11-30 2018-06-08 北京市北分仪器技术有限责任公司 一种双极性可控脉冲电晕放电电离源及其离子迁移谱仪
US20180372684A1 (en) * 2006-02-14 2018-12-27 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372684A1 (en) * 2006-02-14 2018-12-27 Excellims Corporation Practical ion mobility spectrometer apparatus and methods for chemical and/or biological detection
CN106098528A (zh) * 2016-06-14 2016-11-09 清华大学深圳研究生院 一种减小离子迁移谱仪离子门感应冲击的装置和方法
CN108072690A (zh) * 2016-11-17 2018-05-25 中国科学院大连化学物理研究所 一种离子迁移谱和离子阱质谱联用装置及分析方法
CN106783506A (zh) * 2016-12-08 2017-05-31 中国科学院合肥物质科学研究院 一种利用双脉冲、非对称电压控制离子门的离子迁移谱仪及检测方法
CN207474410U (zh) * 2017-11-30 2018-06-08 北京市北分仪器技术有限责任公司 一种双极性可控脉冲电晕放电电离源及其离子迁移谱仪

Also Published As

Publication number Publication date
CN110571126A (zh) 2019-12-13
CN110571126B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2021027033A1 (zh) 一种用于离子迁移谱仪的离子门控制方法
US10060879B2 (en) Ion storage for a mobility separator of a mass spectrometric system
EP2124246B1 (en) Mass spectrometer
CA2364676A1 (en) Ion mobility spectrometer incorporating an ion guide in combination with an ms device
CN108133877B (zh) 一种具有离子束缚功能的高灵敏离子迁移谱仪及方法
JP4957805B2 (ja) Ms/ms型質量分析装置
CN104849342A (zh) 离子迁移谱仪及其方法
CN104321127B (zh) 包含减速离子门的离子迁移谱仪
CN110310882B (zh) 一种改善离子迁移谱中bn门歧视效应的离子门控制方法
CN106783506B (zh) 一种利用双脉冲、非对称电压控制离子门的离子迁移谱仪及检测方法
Audinot et al. Highest resolution chemical imaging based on secondary ion mass spectrometry performed on the helium ion microscope
CN111199865A (zh) 一种两级压缩离子门及控制方法
CN110491765B (zh) 一种离子迁移谱中离子门的控制方法
Jacquet et al. Cluster impacts on solids
CN213988814U (zh) 一种用于离子迁移谱仪的离子门、离子迁移管及离子迁移谱仪
CN110534395B (zh) 一种用于离子迁移谱仪的离子门控制方法
CN111199867A (zh) 一种低歧视离子门及控制方法
JP4688504B2 (ja) タンデム飛行時間型質量分析装置
Wada et al. Observation of Low-Energy Positron Diffraction Patterns with a Linac-Based Slow-Positron Beam
CN112331550A (zh) 一种用于离子迁移谱仪的离子门及其控制方法
Kasai et al. Effect of molecular orientation on indirect ionization by electron impact of CH 3 Cl in the‖ 111> eigenstate
CN217768295U (zh) 一种提高离子迁移谱峰峰分离度的离子迁移管
RU2585249C2 (ru) Способ управления длительностью прошедшего ионного пакета (импульса) через затвор бредбери-нильсена
EP1817788A2 (de) Flugzeit-massenspektrometer
CN113345791B (zh) 一种用于离子迁移谱的多次切换脉冲电压波形

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941285

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19941285

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19941285

Country of ref document: EP

Kind code of ref document: A1