WO2021026934A1 - 功率值确定方法、装置及*** - Google Patents

功率值确定方法、装置及*** Download PDF

Info

Publication number
WO2021026934A1
WO2021026934A1 PCT/CN2019/100891 CN2019100891W WO2021026934A1 WO 2021026934 A1 WO2021026934 A1 WO 2021026934A1 CN 2019100891 W CN2019100891 W CN 2019100891W WO 2021026934 A1 WO2021026934 A1 WO 2021026934A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum
value
power
power level
transmit power
Prior art date
Application number
PCT/CN2019/100891
Other languages
English (en)
French (fr)
Inventor
张茜
冯淑兰
邓猛
刘烨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980098988.0A priority Critical patent/CN114175755B/zh
Priority to PCT/CN2019/100891 priority patent/WO2021026934A1/zh
Publication of WO2021026934A1 publication Critical patent/WO2021026934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Definitions

  • This application relates to the field of communications, and in particular to a method, device and system for determining a power value.
  • the transmit power level of terminal equipment can be divided into power class 2 (PC2) and power level 3 (power class 3, PC3) , wherein each transmit power level corresponds to a power P PowerClass power level, the P PowerClass indicated in its corresponding maximum power level of the terminal equipment transmit power on a certain frequency band, the power The P PowerClass corresponding to level 2 is 26 dBm, and the P PowerClass corresponding to power level 3 is 23 dBm.
  • terminal devices that can support PC2 need to perform power level fallback in some cases.
  • SAR absorption rate
  • PC2 corresponds to The fallback value of the maximum transmit power ⁇ P PowerClass is 3dB, that is, the terminal device falls back from PC2 to PC3.
  • the maximum transmit power corresponding to the power level may not need to be backed by 3dB to meet the SAR index.
  • the terminal device still backs down 3dB according to the existing protocol, it will cause the transmission power
  • the excessive backoff of the terminal equipment will result in a reduction in the power gain of the terminal equipment and affect the uplink coverage.
  • the embodiments of the present application provide a method, device, and system for determining a power value, which can increase power gain and thereby enhance uplink coverage.
  • a method for determining a power value and a corresponding device are provided.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level, the backoff value belongs to a first value set, the first value set includes at least two values, and the largest value in the first value set
  • the value is the difference between the maximum transmission power corresponding to the first power level and the maximum transmission power corresponding to the second power level, the minimum value in the first value set is 0, and the first power level is the current power of the terminal device Level, the second power level is a preset power level lower than the first power level;
  • the terminal device determines the maximum configured transmit power according to the backoff value, and the maximum configured transmit power is used to determine that the terminal device performs uplink transmission The transmit power at time.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the backoff value is less than the first value set.
  • the first power level is PC2 and the second power level is PC3
  • the backoff value is less than 3dB, so that the terminal equipment
  • the maximum configured power determined according to the backoff value will not be too low, so the probability of excessive backoff of the transmit power can be reduced, and the power gain can be increased to enhance uplink coverage.
  • the method for determining the power value further includes: the terminal device sends a backoff value of the maximum transmit power corresponding to the first power level to the network device. Based on this solution, since the fallback behavior of the maximum transmit power corresponding to the power level of the terminal device may affect the configuration of certain parameters of the terminal device by the network device, the terminal device can report the fallback value to the network device, So that the network equipment can be configured later.
  • the terminal device determining the backoff value of the maximum transmit power corresponding to the first power level includes: if the maximum transmit power configured by the network device is less than or equal to 23dBm, the terminal device determines that the backoff value is the first The smallest value in the set of values.
  • the terminal device determines the maximum configured transmit power according to the backoff value, including: the terminal device determines the minimum value of the maximum configured transmit power according to the backoff value; the terminal device corresponds to the first power level The maximum transmission power of the network device, the maximum transmission power configured by the network device, and the maximum value of the maximum configured transmission power is determined, or the maximum transmission power of the terminal device corresponding to the first power level, the maximum transmission power configured by the network device, and The backoff value determines the maximum value of the maximum configured transmission power; the terminal device determines the maximum configured transmission power according to the minimum value and the maximum value.
  • the first value set belongs to a second value set
  • the maximum value in the second value set is the maximum transmit power corresponding to the third power level and the maximum value corresponding to the second power level.
  • the third power level is a preset maximum power level
  • the third power level is greater than the first power level
  • the minimum value in the second value set is 0.
  • the communication device determines the backoff value of the maximum transmission power corresponding to the first power level according to the uplink transmission duty cycle information, the uplink transmission duty cycle information has a corresponding relationship with the backoff value, and the uplink transmission duty cycle
  • the ratio information is the maximum uplink transmission duty cycle capability value or the ratio of the maximum uplink transmission duty cycle capability value to the actual uplink transmission duty cycle
  • the first power level is the current power level of the terminal device.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the terminal device determines the backoff value to be less than the maximum transmit power corresponding to the first power level and the maximum transmit power corresponding to the second power level
  • the maximum configured power determined by the terminal device according to the backoff value may not be too low, so the probability of excessive backoff of the transmit power may be reduced, and the power gain may be increased to enhance uplink coverage.
  • the communication device is a terminal device or a network device.
  • ⁇ P PowerClass is the backoff value
  • P HP is the maximum transmit power corresponding to the first power level
  • p HP is the linear value of the maximum transmit power corresponding to the first power level
  • dBm(X) represents The unit of X is converted to milliwatt decibels dBm.
  • the power value determination method further includes: the terminal device determines a maximum configured transmit power according to the backoff value, and the maximum configured transmit power is used to determine that the terminal device performs uplink The transmit power during transmission.
  • the terminal device determines the maximum configured transmit power according to the backoff value, including: the terminal device determines the minimum value of the maximum configured transmit power according to the backoff value; the terminal device corresponds to the first power level The maximum transmission power of the network device, the maximum transmission power configured by the network device, and the maximum value of the maximum configured transmission power is determined, or the maximum transmission power of the terminal device corresponding to the first power level, the maximum transmission power configured by the network device, and The backoff value determines the maximum value of the maximum configured transmission power; the terminal device determines the maximum configured transmission power according to the minimum value and the maximum value.
  • a power value determination method and corresponding device are provided.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level as 0.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level as 0, that is, determines the backoff value to be lower than the maximum transmit power corresponding to the first power level and the maximum transmission power corresponding to the second power level.
  • the difference in transmit power can prevent the maximum configured power determined by the terminal device according to the backoff value from being too low, so that the probability of excessive backoff of the transmit power can be reduced, and the power gain can be increased to enhance uplink coverage.
  • a power value determination method and corresponding device are provided.
  • the terminal device sends instruction information to the network device, and the instruction information indicates whether the terminal device needs to perform power backoff based on the first power level.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level as 0.
  • the maximum transmit power backoff value corresponding to the first power level is determined to be 0, so that the terminal device can determine the backoff value based on the backoff value.
  • the maximum configured power of the ” will not be too low, so the probability of excessive fallback of the transmit power can be reduced, and the power gain can be increased to enhance the uplink coverage.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fourth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fourth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above The communication device in the second aspect, or a device including the above-mentioned communication device, or a device included in the above-mentioned communication device.
  • a communication device including: a processor and an interface circuit, the interface circuit may be a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (the computer-executed instructions are stored in a memory, It may be directly read from the memory, or may be transmitted through other devices) and transmitted to the processor; the processor is used to run the computer-executable instructions to execute the method described in any of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fourth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above The communication device in the second aspect, or a device including the above-mentioned communication device, or a device included in the above-mentioned communication device.
  • a computer program product containing instructions which when running on a communication device, enables the communication device to execute the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect or the third aspect or the fourth aspect, or a device including the terminal device, or a device included in the terminal device, such as a chip; or, the communication device may be the above The communication device in the second aspect, or a device including the above-mentioned communication device, or a device included in the above-mentioned communication device.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought by any of the design methods from the fifth aspect to the eleventh aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect or the third aspect or the fourth aspect. , I won’t repeat it here.
  • a communication system which includes a network device and the terminal device according to the first aspect, the third aspect, or the fourth aspect.
  • a thirteenth aspect provides a communication system.
  • the communication device described in the second aspect is a terminal device
  • the communication system includes a network device and the communication device described in the second aspect.
  • a fourteenth aspect provides a communication system.
  • the communication device described in the second aspect is a network device
  • the communication system includes a terminal device and the communication device described in the second aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of this application;
  • FIG. 3 is a schematic structural diagram of another terminal device provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for determining a power value provided by an embodiment of the application
  • FIG. 5 is a schematic flowchart of another method for determining a power value provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another structure of a terminal device provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another structure of a network device provided by an embodiment of the application.
  • the transmit power level can be used to reflect the maximum transmit power capability of the terminal device under the power level, and it can be reported to the network device by the terminal device with a band as the granularity.
  • the transmission power levels of terminal equipment can be divided into PC2 and PC3.
  • Each transmission power level corresponds to a power level power, which indicates the maximum transmission power of the terminal equipment under its corresponding power level.
  • the maximum transmit power corresponding to each power level in different frequency bands may be as shown in Table 1 below:
  • dBm decibels in milliwatts
  • dB decibels
  • PC1 does not define the maximum transmit power in each frequency band, and PC2 only defines the maximum transmit power in some frequency bands.
  • the tolerance represents the allowable fluctuation value of the maximum transmit power corresponding to the power level, for example,
  • the tolerance corresponding to the maximum transmit power defined by PC2 in the frequency band n79, +2/-3 can mean that the maximum transmit power corresponding to PC2 is allowed to fluctuate up by 2dB and fluctuate down by 3dB, that is, the maximum transmit power of the terminal device can be 23dBm To 28dBm.
  • the maxUplinkDutyCycle capability value defaults, and the actual uplink transmission duty cycle of the terminal device is greater than 50%; or the terminal device reports the maximum uplink transmission duty cycle capability value of the terminal device to the network device, and the terminal device’s
  • the uplink transmission duty cycle is greater than the reported maximum uplink transmission duty cycle capability value; or the maximum transmit power configured by the network device for the terminal device is less than or equal to 23 dBm.
  • the maximum uplink transmission duty cycle capability value indicates the percentage of uplink symbol transmission of a terminal device capable of supporting PC2 when meeting the specific absorption rate index. If the maximum uplink transmission duty cycle capability value of the terminal device defaults, that is, the terminal device is not Report the maximum uplink transmission duty cycle capability value to the network device, and the default maximum uplink transmission duty cycle capability value of the terminal device is 50%.
  • the specific absorption rate is the SAR value, which represents the electromagnetic radiation energy (watts) absorbed per kilogram of human tissue on an average of 6 minutes.
  • SAR refers to the rate at which electromagnetic radiation is absorbed by the soft tissues of the brain. The lower the SAR value, the less the amount of electromagnetic radiation absorbed by the brain.
  • the specific absorption rate means the electromagnetic radiation on the human body.
  • European standard 2w/kg Its specific meaning means that the electromagnetic radiation energy absorbed by each kilogram of human tissue cannot exceed 2 watts per kilogram of human tissue, and the other is the United States.
  • the standard 1.6w/kg its specific meaning means that the electromagnetic radiation energy absorbed per kilogram of human tissue cannot exceed 1.6 watts based on 6 minutes.
  • the terminal device controls (or adjusts) the real-time transmission power when performing uplink transmission on each physical channel.
  • the real-time transmission power of the terminal device is P CMAX ,f,c (i) and The smaller of the two items.
  • P CMAX,f,c (i) is the maximum configured transmit power of the terminal device on the serving cell c and carrier f (referred to as the maximum configured transmit power of the terminal device in the following embodiments);
  • PO_PUSCH,b,f, c (j) is the configuration value of target power spectral density (PSD) with cell or terminal equipment as the granularity, which is configured to terminal equipment through network equipment;
  • PL b, f, c (q d ) is the terminal
  • the downlink path loss value calculated by the device through the reference signal (reference signal, RS) index q d ; f b, f, c are the power adjustments of the closed loop power control issued by the network device through the transmit power control (TPC) command value.
  • TPC transmit power control
  • the maximum configured transmit power of the terminal equipment is between the upper limit P CMAX_H,f,c and the lower limit P CMAX_L,f,c , that is, P CMAX_H,f,c ⁇ P CMAX,f,c ( i) ⁇ P CMAX_L, f, c , that is, the terminal device can select any value between P CMAX_H, f, c and P CMAX_L, f, c as the maximum configured transmit power.
  • the terminal device can determine the upper limit and the lower limit according to the following formula:
  • P CMAX_H,f,c min ⁇ P EMAX,c ,P PowerClass - ⁇ P PowerClass ⁇ ;
  • P CMAX_L,f,c min ⁇ P EMAX,c - ⁇ T C,c ,(P PowerClass - ⁇ P PowerClass )-max(max(MPR c ,A-MPR c )+ ⁇ IB,c + ⁇ T C,c + ⁇ T RxSRS , P-MPR c ) ⁇ ;
  • P EMAX,c is the maximum transmit power configured by the network device
  • P PowerClass is the power level power introduced above
  • ⁇ P PowerClass is the backoff value of the maximum transmit power corresponding to the power level
  • ⁇ T C,c is the transmission at the edge of the frequency band Power relaxation
  • MPR c is the power back-off value under different bandwidth and resource block (resource block, RB) allocations under the requirements of multiple radio indicators
  • A-MPR c is the accessory power back-off value, which indicates that in some networks Under signaling, the power value that can be further backed off based on the MPR c back-off
  • ⁇ IB ,c is the transmit power relaxation considering inter-band carrier aggregation
  • ⁇ T RxSRS is the sounding reference sent by multiple antennas in turn Signal (sounding reference signal, SRS) considers the gain difference between different antenna ports
  • P-MPR c is the power backoff value defined by considering the specific absorption rate.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • orthogonal frequency-division multiple access OFDMA
  • single-carrier frequency-division multiple access single carrier FDMA
  • SC-FDMA single carrier frequency-division multiple access
  • 5G communication system 5G communication system and other systems.
  • the term "system” can be replaced with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • UMTS Universal Mobile Telecommunications System
  • 3rd generation partnership project, 3GPP uses the new version of E-UTRA in the long term evolution (LTE) and various versions based on LTE evolution.
  • LTE long term evolution
  • 5G communication system is the next generation communication system under study.
  • 5G communication systems include non-standalone (NSA) 5G mobile communication systems, standalone (SA) 5G mobile communication systems, or NSA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • NSA non-standalone
  • SA standalone
  • 5G mobile communication systems or SA’s 5G mobile communication systems and SA’s 5G mobile communication systems.
  • Communication Systems may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this, and the description is unified here, and the details are not repeated below.
  • the communication system 10 includes a network device 20 and one or more terminal devices 30 connected to the network device 20.
  • different terminal devices 30 can communicate with each other.
  • the network device 20 in the embodiment of the present application is a device that connects the terminal device 30 to a wireless network, and may be an evolved Node B (eNB or eNodeB) in LTE; or GSM or The base station (base Transceiver Station, BTS) in CDMA; or the base station (NodeB) in the WCDMA system; or the base station in the 5G network or the future evolving public land mobile network (PLMN), the broadband network service gateway ( Broadband network gateway (BNG), convergence switch or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc., which are not specifically limited in the embodiments of this application.
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application .
  • the terminal device 30 in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in an LTE network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • FIG. 2 it is a schematic structural diagram of the network device 20 and the terminal device 30 provided in this embodiment of the application.
  • the terminal device 30 includes at least one processor (in FIG. 2 exemplarily includes a processor 301 as an example for illustration) and at least one transceiver (in FIG. 2 exemplarily includes a transceiver 303 as an example for illustration) ).
  • the terminal device 30 may also include at least one memory (in FIG. 2 exemplarily includes a memory 302 for illustration), at least one output device (in FIG. 2 exemplarily includes an output device 304 as an example) For description) and at least one input device (in FIG. 2 exemplarily, an input device 305 is included as an example for description).
  • the processor 301, the memory 302, and the transceiver 303 are connected through a communication line.
  • the communication line may include a path to transmit information between the aforementioned components.
  • the processor 301 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the application Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 301 may also include multiple CPUs, and the processor 301 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 302 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 302 may exist independently and is connected to the processor 301 through a communication line.
  • the memory 302 may also be integrated with the processor 301.
  • the memory 302 is used to store computer-executed instructions for executing the solution of the present application, and the processor 301 controls the execution.
  • the processor 301 is configured to execute computer-executable instructions stored in the memory 302, so as to implement the power value determination method described in the embodiment of the present application.
  • the processor 301 may also perform processing related functions in the power value determination method provided in the following embodiments of the present application, and the transceiver 303 is responsible for communicating with other devices or communication networks.
  • the embodiment of the application does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 303 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 304 communicates with the processor 301 and can display information in a variety of ways.
  • the output device 304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 305 communicates with the processor 301 and can accept user input in various ways.
  • the input device 305 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 20 includes at least one processor (in FIG. 2 exemplarily includes a processor 201 for illustration), at least one transceiver (in FIG. 2 exemplarily includes a transceiver 203 as an example for illustration), and At least one network interface (in FIG. 2, one network interface 204 is included as an example for illustration).
  • the network device 20 may further include at least one memory (in FIG. 2 exemplarily, a memory 202 is included for illustration).
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected through a communication line.
  • the network interface 204 is used to connect to the core network device through a link (for example, the S1 interface), or to connect to the network interface of other network devices through a wired or wireless link (for example, the X2 interface) (not shown in FIG. 2).
  • the application embodiment does not specifically limit this.
  • the processor 201, the memory 202, and the transceiver 203 refer to the description of the processor 301, the memory 302, and the transceiver 303 in the terminal device 30, which will not be repeated here.
  • FIG. 3 is a specific structural form of the terminal device 30 provided in an embodiment of the application.
  • the function of the transceiver 303 in FIG. 2 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 3.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 30 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 30.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering and amplifying the received electromagnetic waves, and then transmitting them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic waves for radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 30 including wireless local area networks (WLAN) (such as Wi-Fi networks), Bluetooth (bluetooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth blue, BT
  • global navigation satellite system global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared technology
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic wave radiation via the antenna 2.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 30, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 30, which means that the first device includes an electronic tag (such as radio frequency identification (RFID) tags). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 30 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 30 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the input device 305 in FIG. 2 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 3.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • a pressure sensor 180A a pressure sensor 180A
  • a gyroscope sensor 180B an air pressure sensor 180C
  • a magnetic sensor 180D e.g., a MEMS acceleration sensor 180E
  • a distance sensor 180F e.g., a distance sensor 180F
  • a proximity light sensor 180G e.g., a proximity light sensor 180G
  • a fingerprint sensor 180H e.g., a fingerprint sensor 180H.
  • the terminal device 30 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a “speaker”), a receiver 170B (also called a “handset”), a microphone 170C (also called a “microphone”, “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a “speaker”
  • a receiver 170B also called a “handset”
  • a microphone 170C also called a “microphone”, "Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 30.
  • the terminal device 30 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the maximum configured transmit power of the terminal equipment for the terminal equipment supporting PC2, on the one hand, when the P EMAX,c configured by the network equipment is less than or equal to 23 dBm, ⁇ P Power Class The value of is 3dB, considering MPR c or A-MPR c and ⁇ IB , c , ⁇ T C,c and ⁇ T RxSRS together , the minimum value of the maximum configured transmit power will be less than 23dBm. If the terminal device selects the minimum value as the maximum configured transmit power, the maximum configured transmit power will be less than 23dBm. In fact, the maximum configured transmit power of the terminal device at this time can be set to 23dBm. It is not necessary to be less than 23dBm, that is to say , At this time it will cause excessive fallback of the transmit power.
  • the value of ⁇ P PowerClass is 3dB, but in some cases, the value of ⁇ P PowerClass may not be required
  • the terminal equipment can meet the SAR index if it reaches 3dB.
  • the current MPR c is defined as 4.5-6.5dB. If MPR c is set to 6.5dB and ⁇ P PowerClass is set to a value of 3dB, the maximum configuration The minimum value of the transmit power may be 16.5dBm.
  • the transmit power of the terminal device may only be 16.5dBm, that is, excessive backoff of the transmit power will also be caused at this time.
  • an embodiment of the present application provides a method for determining a power value.
  • the maximum transmit power P EMAX,c configured in the network device is less than or equal to 23 dBm, or the maximum uplink transmission duty cycle capability value of the terminal device is less than the actual transmission rate.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the backoff value has at least two possible values.
  • the largest value is the first The difference between the maximum transmit power corresponding to one power level and the maximum transmit power corresponding to the second power level, the smallest value is 0, the first power level is the current power level of the terminal device, and the second power level is the preset A power level lower than the first power level; the terminal device determines the maximum configured transmit power according to the back-off value, and sends the back-off value to the network device.
  • the terminal device may also report the backoff value to the network device so that the network device can perform subsequent configuration.
  • the terminal device can directly report the backoff value to the network device, that is, after the terminal device determines the backoff value, it directly sends the backoff value to the network device; or the terminal device can also report the backoff value to the network device indirectly Backoff value, that is, the terminal device does not send the backoff value to the network device, but sends the maximum uplink transmission duty cycle capability value to the network device, and the network device determines the backoff value according to the maximum uplink transmission duty cycle capability value. Return value.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the terminal device determines the backoff value to be less than the maximum transmit power corresponding to the first power level and the maximum transmit power corresponding to the second power level
  • the maximum configured power determined by the terminal device according to the backoff value may not be too low, so the probability of excessive backoff of the transmit power may be reduced, and the power gain may be increased to enhance uplink coverage.
  • FIG. 1 to FIG. 3, taking the interaction between the network device 20 shown in FIG. 1 and any terminal device 30 as an example to determine the power value provided by the embodiment of the present application Explain the method.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level on the premise that the specific absorption rate index is satisfied, that is, the terminal device determines the first power
  • the backoff value of the maximum transmit power corresponding to the level can meet the specific absorption rate index after power backoff.
  • a method for determining a power value is provided in this embodiment of the present application.
  • the method for determining a power value can be applied to the maximum transmit power P EMAX configured by the network device , c is less than or equal to
  • the power value determination method includes the following steps:
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the terminal device when the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level, it may select a value from the first value set as the backoff value according to its own performance (such as antenna parameters, etc.); Alternatively, when the terminal device determines the maximum transmit power backoff value corresponding to the first power level, if the maximum configured transmit power P EMAX,c configured by the network device is less than or equal to 23 dBm, the terminal device determines that the backoff value is the first value The smallest value in the set.
  • the first value set includes at least two values, the largest value in the first value set is the difference between the maximum transmit power corresponding to the first power level and the maximum transmit power corresponding to the second power level, and the first value
  • the minimum value in the value set is 0, that is, the maximum value of the backoff value is the maximum value in the first value set, and the minimum value of the backoff value is the minimum value in the first value set.
  • the second power level is a preset power level lower than the first power level.
  • the second power level may be a power level stipulated in the agreement that can prevent the specific absorption rate from exceeding the standard.
  • the existing agreement believes that the specific absorption rate will exceed the standard when the average transmit power of the terminal device exceeds 23 dBm in an evaluation period. Therefore, the terminal device can circumvent this problem by falling back to 23dBm, so that the second power level can be specified as PC3.
  • the second power level may also be a higher power level than PC3, which is not specifically limited in the embodiment of the present application.
  • the difference between each value in the first value set and the previous value may be equal to the same constant.
  • the first power level is PC2, and the second power level is PC2.
  • the power level is PC3 as an example. If the constant is 1, the first value set can be [0, 1, 2, 3], and if the constant is 0.5, the first value set can be [0, 0.5, 1, 1.5, 2, 2.5, 3], the embodiment of the application does not specifically limit the value of this constant. It can be understood that when the first value set includes two values, the first value set is [0, 3].
  • the agreement may specify a second value set, and the maximum value in the second value set is the maximum transmit power corresponding to the third power level and the second value set.
  • the difference between the maximum transmission power corresponding to the power level, and the second set of values includes the difference between the maximum transmission power corresponding to the first power level and the maximum transmission power corresponding to the second power level.
  • the third power level is stipulated in the agreement
  • the maximum power level can also be understood as the preset maximum power level).
  • the terminal device may first determine the above-mentioned first value set from the second set according to the first power level and the second power level, and then determine the maximum transmit power corresponding to the first power level from the first value set.
  • the fallback value that is, in this case, the first value set belongs to the second value set.
  • the terminal device determines from the second value set
  • the first set of values for can be [0, 1, 2, 3].
  • the terminal device determines the maximum configured transmission power according to the backoff value of the maximum transmission power corresponding to the first power.
  • the terminal device determines the maximum configured transmit power according to the backoff value, including:
  • the terminal device determines the minimum value of the maximum configured power according to the backoff value.
  • the backoff value For detailed description, please refer to the related description in the brief introduction section of the related technology or name of this application, which will not be repeated here;
  • the terminal device determines the maximum value of the maximum configured transmit power according to the maximum transmit power corresponding to the first power level and the maximum transmit power P EMAX,c configured by the network device.
  • the detailed description can be Refer to the relevant description in the brief introduction part of the relevant technology or name of this application, and will not repeat it here;
  • the terminal device After determining the minimum value of the maximum configuration power and the maximum value of the maximum configuration power, the terminal device determines the maximum configuration power according to the maximum value and the minimum value, that is, the terminal device selects the minimum value of the maximum configuration power and the maximum configuration power One value between the maximum values is used as the maximum configured transmit power.
  • the terminal device determines the maximum configured transmit power, it can determine the transmit power of the terminal device during uplink transmission according to the maximum transmit power.
  • the terminal device determines the transmit power of the terminal device during uplink transmission according to the maximum transmit power.
  • the terminal device sends the backoff value to the network device.
  • the terminal device can report the fallback value to the network device for the network The device performs subsequent configuration.
  • step S402 can be executed first, and then step S403 can be executed, or step S403 can be executed first, and then step S402 can be executed.
  • step S403 can be executed first, and then step S402 can be executed.
  • the embodiment of the present application does not specifically limit this.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the backoff value is less than the first value set.
  • the first power level is PC2 and the second power level is PC3
  • the backoff value is less than 3dB, so that the terminal equipment
  • the maximum configured power determined according to the backoff value will not be too low, so the probability of excessive backoff of the transmit power can be reduced, and the power gain can be increased to enhance uplink coverage.
  • the method for determining a power value can be applied to the maximum transmit power P EMAX configured by the network device , c is less than Or equal to 23 dBm, or the maximum uplink transmission duty cycle capability value of the terminal device is less than the actual uplink transmission duty cycle.
  • the power value determination method includes the following steps:
  • S501 The terminal device obtains uplink transmission duty cycle information.
  • the uplink transmission duty cycle information may be the maximum uplink transmission duty cycle capability value of the terminal device; or, it may also be the ratio of the maximum uplink transmission duty cycle capability value of the terminal device to its actual uplink transmission duty cycle. .
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level according to the uplink transmission duty cycle information.
  • the minimum value of the maximum uplink transmission duty cycle capability value of the terminal device is 50%, and the maximum uplink transmission duty cycle capability value can be taken up to 100% with a granularity of 10%. That is, the maximum uplink transmission duty cycle capability value can be 50%, 60%, 70%, 80%, 90%, 100%. From the foregoing correspondence relationship between the maximum uplink transmission duty cycle capability value and the backoff value, it can be seen that when the maximum uplink transmission duty cycle capability value takes a different value, the backoff value also takes a different value.
  • the linear value of the maximum transmission power of 26dBm corresponding to PC2 is 398mW.
  • the maximum uplink transmission duty cycle capability value is 60%, the backoff value is 2.2dB, and so on, when the maximum uplink transmission duty cycle capability value At 100%, the fallback value is 0. Therefore, it can be understood that the maximum value of the back-off value determined according to the corresponding relationship between the maximum uplink transmission duty cycle capability value and the back-off value is the maximum transmit power corresponding to the first power and the second power level. The difference of the maximum transmit power, the minimum value is 0.
  • the uplink transmission duty cycle information is the ratio of the maximum uplink transmission duty cycle capability value of the terminal equipment to the actual uplink transmission duty cycle. If the ratio is less than 1, the ratio is the same as the aforementioned fallback.
  • the maximum transmit power backoff value corresponding to the first power level is also different.
  • the ratio of the maximum uplink transmission duty cycle capability value to the actual uplink transmission duty cycle takes the maximum value of 1, and the backoff value takes the minimum Value 0;
  • the ratio of the maximum uplink transmission duty cycle capability value to the actual line transmission duty cycle shall be the smallest Value 0.5, the back-off value takes the maximum value of 3.
  • the maximum value of the back-off value determined according to the above-mentioned correspondence with the back-off value is The minimum value of the difference between the maximum transmission power corresponding to the first power and the maximum transmission power corresponding to the second power level is 0.
  • the terminal device determines the maximum configured transmission power according to the backoff value of the maximum transmission power corresponding to the first power.
  • the maximum configured transmit power is used to determine the transmit power of the terminal device when performing uplink transmission. For related description, refer to the foregoing step S402, which is not repeated here.
  • S504 The terminal device sends the maximum uplink transmission duty cycle capability value to the network device.
  • the terminal device sending the maximum uplink transmission duty ratio capability value to the network device can also be understood as the terminal device indirectly reporting the maximum transmit power backoff value corresponding to the first power level to the network device.
  • the network device determines the backoff value of the maximum transmission power corresponding to the first power level according to the uplink transmission duty cycle information.
  • the network device directly according to the maximum uplink transmission duty cycle capability value reported by the terminal device in step S504 and the foregoing maximum uplink transmission The corresponding relationship between the duty cycle capability value and the back-off value is determined, and the back-off value is determined.
  • the relevant description in the foregoing step S502 which is not repeated here.
  • the uplink transmission duty cycle information is the ratio of the maximum uplink transmission duty cycle capability value to the actual uplink transmission duty cycle
  • the network equipment since the uplink transmission of the terminal equipment is scheduled by the network equipment, the network equipment The actual uplink transmission duty cycle of the terminal equipment can be determined, and the uplink transmission duty cycle information can be determined in combination with the maximum uplink transmission duty cycle capability value reported by the terminal equipment in step S504, and then the uplink transmission duty cycle information and the backoff value To determine the backoff value, refer to the relevant description in step S502 for specific descriptions, which will not be repeated here.
  • step S502 may be executed first and then step S504 may be executed, or step S504 may be executed first, and then step S502 may be executed.
  • step S502 may be executed first and then step S504 may be executed, or step S504 may be executed first, and then step S502 may be executed.
  • the embodiment of the present application does not specifically limit this.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level.
  • the terminal device determines the backoff value to be less than the maximum transmit power corresponding to the first power level and the maximum transmit power corresponding to the second power level
  • the maximum configured power determined by the terminal device according to the backoff value may not be too low, so the probability of excessive backoff of the transmit power may be reduced, and the power gain may be increased to enhance uplink coverage.
  • the terminal device may determine the backoff value of the maximum transmit power corresponding to the first power level as 0. At this time , The terminal device does not need to send the backoff value to the network device.
  • the network device can also determine the backoff value of the maximum transmission power corresponding to the first power level to be 0 according to the configured maximum transmission power, and then proceed according to the backoff value 0 Subsequent configuration.
  • the terminal device determines the backoff value of the maximum transmit power corresponding to the first power level as 0, that is, determines the backoff value to be lower than the maximum transmit power corresponding to the first power level and the maximum transmission power corresponding to the second power level.
  • the difference in transmit power can prevent the maximum configured power determined by the terminal device according to the backoff value from being too low, so that the probability of excessive backoff of the transmit power can be reduced, and the power gain can be increased to enhance uplink coverage.
  • the terminal device may notify the network device whether it needs to perform power backoff based on the first power level through the instruction information.
  • the indication information indicates that the terminal device needs to perform power backoff based on the first power level
  • both the terminal device and the network device determine the backoff value of the maximum transmit power corresponding to the first power level as the maximum transmit power corresponding to the first power level The difference of the maximum transmit power corresponding to the second power level.
  • the terminal device and the network device will set the maximum transmit power corresponding to the first power level The fallback value is determined to be 0.
  • the indication information can be represented by a flag bit.
  • the flag bit is "supported”, it means that the terminal device needs to perform power back-off based on the first power level; otherwise, when the flag bit is the default value, it means that the terminal The device does not need to perform power fallback based on the first power level; or, when the flag bit is "supported”, it means that the terminal device does not need to perform power fallback based on the first power level.
  • the flag bit is the default value Indicates that the terminal device needs to perform power fallback based on the first power level.
  • the maximum transmit power backoff value corresponding to the first power level is determined to be 0, so that the terminal device can determine the backoff value based on the backoff value.
  • the maximum configured power of the ” will not be too low, so the probability of excessive fallback of the transmit power can be reduced, and the power gain can be increased to enhance the uplink coverage.
  • the methods and/or steps implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices, and the methods and/or steps implemented by network devices can also It can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or include the foregoing A device of a network device, or a component that can be used in a network device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 6 shows a schematic structural diagram of a terminal device 60.
  • the terminal device 60 includes a processing module 601.
  • the terminal device 60 may further include a transceiver module 602.
  • the transceiver module 602 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 602 may include a receiving module and a sending module, which are respectively used to execute the receiving and sending steps performed by the terminal device in the above method embodiment, and the processing module 601 may be used to perform the terminal device in the above method embodiment. Steps performed by the device except receiving and sending steps.
  • the processing module 601 is configured to determine the backoff value of the maximum transmit power corresponding to the first power level, where the backoff value belongs to a first value set, and the first value set includes at least two values.
  • the maximum value in the first value set is the difference between the maximum transmit power corresponding to the first power level and the maximum transmit power corresponding to the second power level, the minimum value in the first value set is 0, the
  • the first power level is the current power level of the terminal device, and the second power level is a preset power level lower than the first power level;
  • the processing module 601 is further configured to determine the maximum configuration transmission according to the backoff value Power.
  • the maximum configured transmit power is used to determine the transmit power of the terminal device for uplink transmission.
  • the transceiver module 602 is configured to send the maximum transmit power backoff value corresponding to the first power level to the network device.
  • the processing module 601 is configured to determine the fallback value of the maximum transmit power corresponding to the first power level, including: if the maximum transmit power configured by the network device is less than or equal to 23dBm, the processing module 601 is configured to determine the fallback The value is the smallest value in the first set of values.
  • the processing module 601 is further configured to determine the maximum configured transmit power according to the backoff value, including: the processing module 601 is further configured to determine the minimum value of the maximum configured transmit power according to the backoff value; processing The module 601 is further configured to determine the maximum value of the maximum configured transmission power according to the maximum transmission power corresponding to the first power level and the maximum transmission power configured by the network device, or the processing module 601 is further configured to determine the maximum value of the maximum configured transmission power according to the first power level.
  • the maximum transmit power corresponding to a power level, the maximum transmit power configured by the network device, and the backoff value determine the maximum value of the maximum configured transmit power; the processing module 601 is further configured to determine the maximum value of the maximum configured transmit power according to the minimum value and the maximum value To determine the maximum configured transmit power.
  • the processing module 601 is configured to determine the maximum transmit power backoff value corresponding to the first power level according to the uplink transmission duty cycle information, and the uplink transmission duty cycle information is related to the backoff value. There is a corresponding relationship between the values, and the uplink transmission duty cycle information is the maximum uplink transmission duty cycle capability value or the ratio of the maximum uplink transmission duty cycle capability value to the actual uplink transmission duty cycle.
  • the processing module 601 is further configured to determine the maximum configured transmission power according to the backoff value, and the maximum configured transmission power is used to determine the transmission power of the terminal device when performing uplink transmission.
  • the processing module 601 is further configured to determine the maximum configured transmit power according to the back-off value, including: a processing module 601 is further configured to determine the minimum value of the maximum configured transmit power according to the back-off value; processing module 601 is also configured to determine the maximum value of the maximum configured transmission power according to the maximum transmission power corresponding to the first power level and the maximum transmission power configured by the network device, or the processing module 601 is further configured to determine the maximum value of the maximum configured transmission power according to the first power level.
  • the maximum transmit power corresponding to the power level, the maximum transmit power configured by the network device, and the backoff value determine the maximum value of the maximum configured transmit power; the processing module 601 is further configured to determine the maximum value of the maximum configured transmit power according to the minimum value and the maximum value Determine the maximum configured transmit power.
  • the transceiver module 602 is configured to send the maximum uplink transmission duty cycle capability value to the network device.
  • the terminal device 60 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 60 may take the form of the terminal device 30 shown in FIG. 2.
  • the processor 301 in the terminal device 30 shown in FIG. 2 may invoke the computer execution instruction stored in the memory 302 to make the terminal device 30 execute the power value determination method in the foregoing method embodiment.
  • the function/implementation process of the processing module 601 and the transceiver module 602 in FIG. 6 may be implemented by the processor 301 in the terminal device 30 shown in FIG. 2 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 601 in FIG. 6 can be implemented by the processor 301 in the terminal device 30 shown in FIG. 2 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 602 in FIG. 6 /The implementation process can be implemented by the transceiver 303 in the terminal device 30 shown in FIG. 2.
  • the terminal device 60 provided in this embodiment can perform the above-mentioned power value determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • FIG. 7 shows a schematic structural diagram of a network device 70.
  • the network device 70 includes a processing module 701.
  • the network device 70 may further include a transceiver module 702.
  • the transceiver module 702 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the transceiver module 702 may include a receiving module and a sending module, which are respectively used to perform the steps of receiving and sending performed by the network device in the above method embodiment, and the processing module 701 may be used to perform the network device in the above method embodiment. Steps performed by the device except receiving and sending steps.
  • the processing module 701 is configured to determine the maximum transmit power backoff value corresponding to the first power level according to the uplink transmission duty cycle information.
  • the uplink transmission duty cycle information corresponds to the backoff value, and the uplink transmission
  • the duty cycle information is the maximum uplink transmission duty cycle capability value or the ratio of the maximum uplink transmission duty cycle capability value to the actual uplink transmission duty cycle.
  • the transceiver module 702 is configured to receive the maximum uplink transmission duty cycle capability value from the terminal device.
  • the network device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 70 may take the form of the network device 20 shown in FIG. 2.
  • the processor 201 in the network device 20 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 202 to make the network device 20 execute the power value determination method in the foregoing method embodiment.
  • the function/implementation process of the processing module 701 and the transceiver module 702 in FIG. 7 may be implemented by the processor 201 in the network device 20 shown in FIG. 2 calling a computer execution instruction stored in the memory 202.
  • the function/implementation process of the processing module 701 in FIG. 7 can be implemented by the processor 201 in the network device 20 shown in FIG. 2 calling a computer execution instruction stored in the memory 202, and the function of the transceiver module 702 in FIG. 7 /The implementation process can be implemented by the transceiver 203 in the network device 20 shown in FIG. 2.
  • the network device 70 provided in this embodiment can perform the above-mentioned power value determination method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, and will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device further includes an interface circuit, the interface circuit is a code/data read-write interface circuit, and the interface circuit is used to receive computer-executed instructions (computer-executed instructions are stored in the memory and may be directly downloaded from The memory is read, or possibly through other devices) and transferred to the processor.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供功率值确定方法、装置及***,可以降低终端设备的发射功率过度回退的概率,提高功率增益从而增强上行覆盖。该方法中,终端设备确定第一功率等级对应的最大发射功率的回退值,该回退值属于第一数值集合,该第一数值集合包括至少两个数值,该第一数值集合中的最大数值为该第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,该第一数值集合中的最小数值为0,该第一功率等级为该终端设备当前的功率等级,该第二功率等级为预设的低于该第一功率等级的一个功率等级;终端设备根据该回退值确定最大配置发射功率,该最大配置发射功率用于确定该终端设备进行上行传输时的发射功率。

Description

功率值确定方法、装置及*** 技术领域
本申请涉及通信领域,尤其涉及功率值确定方法、装置及***。
背景技术
在新空口(new radio,NR)***(也可以称之为第五代(5th-generation,5G)***)中,终端设备的发射功率等级可以分为功率等级2(power class 2,PC2)和功率等级3(power class 3,PC3),其中,每个发射功率等级对应一个功率等级功率P PowerClass,该P PowerClass指示在其对应的功率等级下终端设备在某个频段上的最大发射功率,功率等级2对应的P PowerClass为26dBm,功率等级3对应的P PowerClass为23dBm。
通常,为了满足比吸收率(specific absorption rate,SAR)指标,能够支持PC2的终端设备在某些情况下需要进行功率等级的回退,在功率等级回退时,现有协议中规定PC2对应的最大发射功率的回退值ΔP PowerClass为3dB,即终端设备从PC2回退到PC3。
然而,当终端设备的性能较好时,功率等级对应的最大发射功率可能不需要回退3dB就能满足SAR指标,此时,若终端设备仍然按照现有协议回退3dB,则会造成发射功率的过度回退,从而导致终端设备的功率增益降低,影响上行覆盖。
发明内容
本申请实施例提供一种功率值确定方法、设备及***,能够提高功率增益从而增强上行覆盖。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种功率值确定方法及相应的装置。该方案中,终端设备确定第一功率等级对应的最大发射功率的回退值,该回退值属于第一数值集合,该第一数值集合包括至少两个数值,该第一数值集合中的最大数值为该第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,该第一数值集合中的最小数值为0,该第一功率等级为该终端设备当前的功率等级,该第二功率等级为预设的低于该第一功率等级的一个功率等级;终端设备根据该回退值确定最大配置发射功率,该最大配置发射功率用于确定该终端设备进行上行传输时的发射功率。
基于该方案,由终端设备确定第一功率等级对应的最大发射功率的回退值,当终端设备不将该回退值确定为第一数值集合中的最大数值时,该回退值即小于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,当第一功率等级为PC2,第二功率等级为PC3时,该回退值即小于3dB,从而使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
在一种可能的设计中,该功率值确定方法还包括:终端设备向网络设备发送第一功率等级对应的最大发射功率的回退值。基于该方案,由于终端设备的功率等级对应的最大发射功率的回退行为可能会影响到网络设备对终端设备的某些参数的配置,因此,终端设备可以将该回退值上报给网络设备,以便网络设备进行后续的配置。
在一种可能的设计中,终端设备确定第一功率等级对应的最大发射功率的回退值,包括:若网络设备配置的最大发射功率小于或者等于23dBm,终端设备确定该回退值为第一数值集合中的最小数值。
在一种可能的设计中,终端设备根据回退值确定最大配置发射功率,包括:终端设备根据该回退值,确定该最大配置发射功率的最小取值;终端设备根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定该最大配置发射功率的最大取值,或者,该终端设备根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及该回退值确定该最大配置发射功率的最大取值;终端设备根据该最小取值和该最大取值,确定该最大配置发射功率。
在一种可能的设计中,所述第一数值集合属于第二数值集合,所述第二数值集合中的最大数值为第三功率等级对应的最大发射功率与所述第二功率等级对应的最大发射功率的差值,所述第三功率等级为预设的最大功率等级,所述第三功率等级大于所述第一功率等级,所述第二数值集合中的最小数值为0。
第二方面,提供了一种功率值确定方法及相应的装置。该方案中,通信装置根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值,该上行传输占空比信息与该回退值存在对应关系,该上行传输占空比信息为最大上行传输占空比能力值或该最大上行传输占空比能力值与实际上行传输占空比的比值,该第一功率等级为终端设备当前的功率等级。
基于该方案,由终端设备确定第一功率等级对应的最大发射功率的回退值,当终端设备将该回退值确定为小于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值时,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
在一种可能的设计中,该通信装置为终端设备或者网络设备。
在一种可能的设计中,上行传输占空比信息为最大上行传输占空比能力值;该最大上行传输占空比能力值与该回退值的对应关系为:ΔP PowerClass=P HP-dBm(p HP*最大上行传输占空比能力值)。其中,ΔP PowerClass为所述回退值,P HP为所述第一功率等级对应的最大发射功率,p HP为所述第一功率等级对应的最大发射功率的线性值,dBm(X)表示将X的单位转换为毫瓦分贝dBm。
在一种可能的设计中,上行传输占空比信息为该最大上行传输占空比能力值与实际上行传输占空比的比值;若该比值小于1,该比值与该回退值的对应关系为:ΔP PowerClass=10*ABS(log 10(最大上行传输占空比能力值/实际上行传输占空比));其中,ΔP PowerClass为该回退值,ABS(X)表示X的绝对值。
在一种可能的设计中,若该通信装置为终端设备,该功率值确定方法还包括:终端设备根据该回退值确定最大配置发射功率,该最大配置发射功率用于确定该终端设备进行上行传输时的发射功率。
在一种可能的设计中,终端设备根据回退值确定最大配置发射功率,包括:终端设备根据该回退值,确定该最大配置发射功率的最小取值;终端设备根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定该最大配置发射功率的最大取值,或者,该终端设备根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功 率、以及该回退值确定该最大配置发射功率的最大取值;终端设备根据该最小取值和该最大取值,确定该最大配置发射功率。
第三方面,提供了一种功率值确定方法及相应的装置。该方案中,当网络设备配置的最大发射功率小于或者等于23dBm时,终端设备将第一功率等级对应的最大发射功率的回退值确定为0。基于该方案,终端设备将第一功率等级对应的最大发射功率的回退值确定为0,即将该回退值确定为低于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
第四方面,提供了一种功率值确定方法及相应的装置。该方案中,终端设备向网络设备发送指示信息,该指示信息指示终端设备是否需要基于第一功率等级进行功率回退。当该指示信息指示终端设备不需要基于第一功率等级进行功率回退时,终端设备将第一功率等级对应的最大发射功率的回退值确定为0。基于该方案,在终端设备确定不需要基于第一功率等级进行功率回退值时,将第一功率等级对应的最大发射功率的回退值确定为0,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
第五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面或第四方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的通信装置,或者包含上述通信装置的装置,或者上述通信装置中包含的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第四方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的通信装置,或者包含上述通信装置的装置,或者上述通信装置中包含的装置。
第七方面,提供了一种通信装置,包括:处理器和接口电路,该接口电路可以为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器;该处理器用于运行所述计算机执行指令以执行上述任一方面所述的方法。
第八方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第四方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的通信装置,或者包含上述通信装置的装置,或者上述通信装置中包含的装置。
第九方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第四方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的通信装置,或者包含上述通信装置的装置,或者上述通信装置中包含的装置。
第十方面,提供了一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面或第四方面中的终端设备,或者包含上述终端设备的装置,或者上述终端设备中包含的装置,比如芯片;或者,该通信装置可以为上述第二方面中的通信装置,或者包含上述通信装置的装置,或者上述通信装置中包含的装置。
第十一方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片***),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片***时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至第十一方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十二方面,提供一种通信***,该通信***包括网络设备和上述第一方面或第三方面或第四方面所述的终端设备。
第十三方面,提供一种通信***,当上述第二方面所述的通信装置为终端设备时,该通信***包括网络设备和上述第二方面所述的通信装置。
第十四方面,提供一种通信***,当上述第二方面所述的通信装置为网络设备时,该通信***包括终端设备和上述第二方面所述的通信装置。
附图说明
图1为本申请实施例提供的一种通信***的结构示意图;
图2为本申请实施例提供的一种终端设备和网络设备的结构示意图;
图3为本申请实施例提供的另一种终端设备的结构示意图;
图4为本申请实施例提供的一种功率值确定方法的流程示意图;
图5为本申请实施例提供的另一种功率值确定方法的流程示意图;
图6为本申请实施例提供的终端设备的另一种结构示意图;
图7为本申请实施例提供的网络设备的另一种结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,功率等级:
发射功率等级可以用于体现终端设备在该功率等级下的最大发射功率能力,其可以由终端设备以频带(band)为粒度上报给网络设备。在NR***中,终端设备的发射功率等级可以分为PC2和PC3,每个发射功率等级对应一个功率等级功率,该功率 等级功率指示在其对应的功率等级下终端设备的最大发射功率。示例性的,每个功率等级在不同的频带上对应的最大发射功率可以如下表1所示:
表1
Figure PCTCN2019100891-appb-000001
其中,dBm表示毫瓦分贝,dB表示为分贝。
由表1可得,目前PC1在各个频带上未定义最大发射功率,PC2只在部分频带上定义了最大发射功率,其中,容差表示功率等级对应的最大发射功率所允许的波动值, 例如以PC2在频带n79上定义的最大发射功率对应的容差为例,+2/-3可以表示允许PC2对应的最大发射功率向上波动2dB,向下波动3dB,即终端设备的最大发射功率可以在23dBm至28dBm之间。
第二:功率等级回退:
目前,协议中规定能够支持PC2的终端设备,在下述情况中需要回退到PC3,即在下述情况中,PC2对应的最大发射功率的回退值ΔP PowerClass为3dB:终端设备的最大上行传输占空比(maxUplinkDutyCycle)能力值缺省,且终端设备的实际上行传输占空比大于50%;或者,终端设备向网络设备上报该终端设备的最大上行传输占空比能力值,且该终端设备的实际上行传输占空比大于上报的该最大上行传输占空比能力值;或者,网络设备为终端设备配置的最大发射功率小于或者等于23dBm。
其中,最大上行传输占空比能力值表示能够支持PC2的终端设备在满足比吸收率指标时的上行符号传输占比,若终端设备的最大上行传输占空比能力值缺省,即终端设备未向网络设备上报最大上行传输占空比能力值,则默认该终端设备的最大上行传输占空比能力值为50%。
其中,比吸收率即SAR值,表示以任意6分钟记时平均,每公斤人体组织吸收的电磁辐射能量(瓦)。以手机辐射为例,SAR指的是电磁辐射被脑部的软组织吸收的比率,SAR值越低,电磁辐射被脑部吸收的量越少,通俗地讲,比吸收率就是表示电磁辐射对人体的影响大小,目前国际通用的标准有两个,一个是欧洲标准2w/kg,其具体含义是指,以6分钟为计时,每公斤人体组织吸收的电磁辐射能量不能超过2瓦,一个是美国标准1.6w/kg,其具体含义是指,以6分钟为计时,每公斤人体组织吸收的电磁辐射能量不能超过1.6瓦。
第三、功率控制:
即终端设备控制(或调整)在各个物理信道进行上行传输时的实时发射功率,示例性的,以物理上行共享信道(physical uplink shared channel,PUSCH)为例,终端设备的实时发射功率为P CMAX,f,c(i)与
Figure PCTCN2019100891-appb-000002
Figure PCTCN2019100891-appb-000003
两项中的较小值。
其中,P CMAX,f,c(i)为终端设备在服务小区c,载波f上的最大配置发射功率(下述实施例中简称终端设备的最大配置发射功率);P O_PUSCH,b,f,c(j)为以小区或者终端设备为粒度的目标功率谱密度(power spectral density,PSD)的配置值,其通过网络设备配置给终端设备;
Figure PCTCN2019100891-appb-000004
为网络设备为终端设备配置的服务小区c,载波f,激活的上行带宽部分(bandwidth part,BWP)b内的传输机会i对应的PUSCH资源大小;PL b,f,c(q d)为终端设备通过参考信号(reference signal,RS)索引q d计算的下行路径损耗值;f b,f,c为网络设备通过发射功率控制(transmit power control,TPC)命令下发的闭环功率控制的功率调整值。
其中,终端设备的最大配置发射功率的取值位于上限值P CMAX_H,f,c与下限值P CMAX_L,f,c之间,即P CMAX_H,f,c≤P CMAX,f,c(i)≤P CMAX_L,f,c,也就是说,终端设备可以选取P CMAX_H,f,c和P CMAX_L,f,c之间的任意值作为最大配置发射功率。
其中,终端设备可以根据如下公式确定该上限值和下限值:
P CMAX_H,f,c=min{P EMAX,c,P PowerClass-ΔP PowerClass};
P CMAX_L,f,c=min{P EMAX,c-ΔT C,c,(P PowerClass-ΔP PowerClass)-max(max(MPR c,A-MPR c)+Δ IB,c+ΔT C,c+ΔT RxSRS,P-MPR c)};
其中,P EMAX,c为网络设备配置的最大发射功率;P PowerClass为上述介绍的功率等级功率;ΔP PowerClass为功率等级对应的最大发射功率的回退值;ΔT C,c为频带边缘处的发射功率放松;MPR c为多重射频指标的要求下,在不同带宽和资源块(resource block,RB)分配下的功率回退值;A-MPR c为附件功率回退值,其表示在某些网络信令下可以在MPR c回退基础上再进一步回退的功率值;Δ IB,c为考虑带间载波聚合(inter band carrier aggregation)的发射功率放松;ΔT RxSRS为多个天线轮流发送探测参考信号(sounding reference signal,SRS)时考虑的不同天线端口之间的增益差;P-MPR c为考虑比吸收率的达标而定义的功率回退值。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可以应用于各种通信***。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)、5G通信***和其它***等。术语“***”可以和“网络”相互替换。OFDMA***可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信***(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,3GPP)在长期演进(long term evolution,LTE)和基于LTE演进的各种版本是使用E-UTRA的新版本。5G通信***是正在研究当中的下一代通信***。其中,5G通信***包括非独立组网(non-standalone,NSA)的5G移动通信***,独立组网(standalone,SA)的5G移动通信***,或者,NSA的5G移动通信***和SA的5G移动通信***。此外,通信***还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信***仅是举例说明,适用本申请的通信***不限于此,在此统一说明,以下不再赘述。
如图1所示,为本申请实施例提供的一种通信***10。该通信***10包括一个 网络设备20,以及与该网络设备20连接的一个或多个终端设备30。可选的,不同的终端设备30之间可以相互通信。
可选的,本申请实施例中的网络设备20,是一种将终端设备30接入到无线网络的设备,可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);或者GSM或CDMA中的基站(base Transceiver Station,BTS);或者WCDMA***中的基站(NodeB);或者5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备30,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是LTE网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备20与终端设备30也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图2所示,为本申请实施例提供的网络设备20和终端设备30的结构示意图。
其中,终端设备30包括至少一个处理器(图2中示例性的以包括一个处理器301为例进行说明)和至少一个收发器(图2中示例性的以包括一个收发器303为例进行说明)。可选的,终端设备30还可以包括至少一个存储器(图2中示例性的以包括一个存储器302为例进行说明)、至少一个输出设备(图2中示例性的以包括一个输出设备304为例进行说明)和至少一个输入设备(图2中示例性的以包括一个输入设备305为例进行说明)。
处理器301、存储器302和收发器303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器301可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器301 也可以包括多个CPU,并且处理器301可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器302可以是独立存在,通过通信线路与处理器301相连接。存储器302也可以和处理器301集成在一起。
其中,存储器302用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。具体的,处理器301用于执行存储器302中存储的计算机执行指令,从而实现本申请实施例中所述的功率值确定方法。
或者,可选的,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的功率值确定方法中的处理相关的功能,收发器303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备304和处理器301通信,可以以多种方式来显示信息。例如,输出设备304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备305和处理器301通信,可以以多种方式接受用户的输入。例如,输入设备305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备20包括至少一个处理器(图2中示例性的以包括一个处理器201为例进行说明)、至少一个收发器(图2中示例性的以包括一个收发器203为例进行说明)和至少一个网络接口(图2中示例性的以包括一个网络接口204为例进行说明)。可选的,网络设备20还可以包括至少一个存储器(图2中示例性的以包括一个存储器202为例进行说明)。其中,处理器201、存储器202、收发器203和网络接口204通过通信线路相连接。网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图2中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收 发器203的相关描述可参考终端设备30中处理器301、存储器302和收发器303的描述,在此不再赘述。
结合图2所示的终端设备30的结构示意图,示例性的,图3为本申请实施例提供的终端设备30的一种具体结构形式。
其中,在一些实施例中,图2中的处理器301的功能可以通过图3中的处理器110实现。
在一些实施例中,图2中的收发器303的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备30中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备30上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备30上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备30是第一设备时,无线通信模块160可以提供应用在终端设备30上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备30是第二设备时,无线通信模块160可以提供应用在终端设备30上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备30的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备30可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code  division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)或星基增强***(satellite based augmentation systems,SBAS)。
在一些实施例中,图2中的存储器302的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图2中的输出设备304的功能可以通过图3中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图2中的输入设备305的功能可以通过鼠标、键盘、触摸屏设备或图3中的传感器模块180来实现。示例性的,如图3所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图3所示,该终端设备30还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图3所示的结构并不构成对终端设备30的具体限定。比如,在本申请另一些实施例中,终端设备30可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
现有技术中,由上述介绍的终端设备的最大配置发射功率的确定方式可知,对于支持PC2的终端设备来说,一方面,当网络设备配置的P EMAX,c小于等于23dBm时,ΔP Power Class的取值为3dB,合并考虑MPR c或A-MPR c以及Δ IB,c、ΔT C,c和ΔT RxSRS,此时最大配置发射功率的最小取值会小于23dBm。若终端设备选择该最小取值作为最大配置发射功率,该最大配置发射功率将会低于23dBm,实际上此时终端设备的最大配置发射功率取23dBm即可,没有必要低于23dBm,也就是说,此时会导致发射功率的过度回退。
另一方面,当实际上行传输占空比大于最大上行传输占空比能力值时,为了防止SAR超标,ΔP PowerClass的取值为3dB,但在某些情况下,ΔP PowerClass的取值可能不需要达到3dB终端设备就能够满足SAR指标。例如,以极端场景256阶正交振幅调制(quadrature amplitude modulation,QAM)为例,目前的MPR c定义为4.5-6.5dB,若取MPR c为6.5dB,ΔP PowerClass取值为3dB,则最大配置发射功率的最小取值可能为16.5dBm,当终端设备选择该最小取值为最大配置发射功率时,终端设备的发射功率 可能只有16.5dBm,即此时也会导致发射功率的过度回退。
基于此,本申请实施例提供一种功率值确定方法,在网络设备配置的最大发射功率P EMAX,c小于或等于23dBm,或者在终端设备的最大上行传输占空比能力值小于实际上行传输占空比时,终端设备确定第一功率等级对应的最大发射功率的回退值,该回退值至少有两个可能的取值,该至少两个可能的取值中,最大的取值为第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,最小的取值为0,该第一功率等级为终端设备当前的功率等级,第二功率等级为预设的低于该第一功率等级的一个功率等级;终端设备根据该回退值确定最大配置发射功率,并将该回退值发送给网络设备。
在本申请实施例提供的功率值确定方法中,终端设备还可以将该回退值上报给网络设备,以便网络设备进行后续配置。可选的,终端设备可以向网络设备直接上报该回退值,即终端设备确定该回退值后,直接将该回退值发送给网络设备;或者,终端设备也可以向网络设备间接上报该回退值,即终端设备不将该回退值发送给网络设备,而是将最大上行传输占空比能力值发送给网络设备,由网络设备根据该最大上行传输占空比能力值确定该回退值。
其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
基于上述方案,由终端设备确定第一功率等级对应的最大发射功率的回退值,当终端设备将该回退值确定为小于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值时,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
上述内容对本申请的发明构思进行了整体说明,下面将结合图1至图3,以图1所示的网络设备20与任一终端设备30进行交互为例,对本申请实施例提供的功率值确定方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的是,本申请下述各个实施例中,终端设备以满足比吸收率指标为前提,确定第一功率等级对应的最大发射功率的回退值,即终端设备根据其确定的第一功率等级对应的最大发射功率的回退值进行功率回退后,可以满足比吸收率指标。
一种可能的实现方式中,如图4所示,为本申请实施例提供的一种功率值确定方法,该功率值确定方法可以应用于网络设备配置的最大发射功率P EMAX,c小于或等于23dBm,或者终端设备的最大上行传输占空比能力值小于实际上行传输占空比的场景,该功率值确定方法包括如下步骤:
S401、终端设备确定第一功率等级对应的最大发射功率的回退值。
其中,第一功率等级为终端设备当前的功率等级。可选的,该第一功率等级可以为现有协议中的较高等级的PC2,也可以为未来可能定义的高于PC2的更高等级,例如PC1。
可选的,终端设备确定第一功率等级对应的最大发射功率的回退值时,可以根据其自身的性能(例如天线参数等),从第一数值集合中选择一个数值作为该回退值; 或者,终端设备确定第一功率等级对应的最大发射功率的回退值时,若网络设备配置的最大配置发射功率P EMAX,c小于或者等于23dBm,则终端设备确定该回退值为第一数值集合中的最小数值。
其中,该第一数值集合包括至少两个数值,该第一数值集合中的最大数值为该第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,该第一数值集合中的最小数值为0,即该回退值的最大取值为该第一数值集合中的最大数值,该回退值的最小取值为该第一数值集合中的最小数值。
其中,第二功率等级为预设的低于第一功率等级的一个功率等级。可选的,该第二功率等级可以为协议规定的可以避免比吸收率超标的功率等级,例如,现有协议认为在一个评估周期内终端设备的平均发射功率超过23dBm时,比吸收率会超标,因此终端设备回退到23dBm可以规避该问题,从而可将该第二功率等级规定为PC3。可以理解的是,随着终端设备性能的提升,该第二功率等级也可以为比PC3更高的功率等级,本申请实施例对此不做具体限定。
可选的,当第一数值集合包括两个以上数值时,第一数值集合中每个数值与其前一个数值的差可以等于同一个常数,示例性的,以第一功率等级为PC2,第二功率等级为PC3为例,若该常数为1,则第一数值集合可以为[0、1、2、3],若该常数为0.5,则第一数值集合可以为[0、0.5、1、1.5、2、2.5、3],本申请实施例对该常数的取值不做具体限定。可以理解的是,当第一数值集合包括两个数值时,第一数值集合即为[0、3]。
可选的,当第一功率等级不是协议中规定的最大功率等级时,协议可以规定一个第二数值集合,该第二数值集合中的最大数值为第三功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,且该第二数值集合中包括第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,该第三功率等级为协议规定的最大功率等级(也可以理解为预设的最大功率等级)。在该情况下,终端设备可以先根据第一功率等级和第二功率等级从第二集合中确定出上述第一数值集合,再从第一数值集合中确定第一功率等级对应的最大发射功率的回退值,也就是说,在该情况下,第一数值集合属于第二数值集合。
示例性的,若第一功率等级为PC2,第二功率等级为PC3,第三功率等级为PC1,PC1对应的最大发射功率为29dBm,则协议规定的第二数值集合可以为[0、1、2、3、4、5、6],此时,第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值为3,因此,终端设备从第二数值集合中确定的第一数值集合可以为[0、1、2、3]。
S402、终端设备根据第一功率对应的最大发射功率的回退值,确定最大配置发射功率。
其中,该最大配置发射功率用于确定终端设备进行上行传输时的发射功率。
可选的,终端设备根据该回退值确定最大配置发射功率,包括:
终端设备根据该回退值,确定最大配置功率的最小取值,详细说明可参考本申请相关技术或名称的简要介绍部分中的相关描述,在此不再赘述;
以及,终端设备根据第一功率等级对应的最大发射功率、网络设备配置的最大发 射功率P EMAX,c,确定最大配置发射功率的最大取值,可选的,该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率满足如下公式:P CMAX_H,f,c=min{P EMAX,c,P PowerClass},也就是说,终端设备在确定最大配置发射功率的最大取值时可以将回退值删除;或者,终端设备根据第一功率等级对应的最大发射功率、网络设备配置的最大发射功率P EMAX,c、以及该回退值确定最大配置发射功率的最大取值,详细说明可参考本申请相关技术或名称的简要介绍部分中的相关描述,在此不再赘述;
确定最大配置功率的最小取值和最大配置功率的最大取值后,终端设备根据该最大取值和最小取值确定最大配置功率,即终端设备选取最大配置功率的最小取值和最大配置功率的最大取值之间的一个值作为最大配置发射功率。
可选的,终端设备确定最大配置发射功率后,可以根据该最大发射功率确定该终端设备进行上行传输时的发射功率,相关实现可参考现有技术,在此不再赘述。
S403、终端设备向网络设备发送该回退值。
其中,由于终端设备的功率等级对应的最大发射功率的回退行为可能会影响到网络设备对终端设备的某些参数的配置,因此,终端设备可以将该回退值上报给网络设备,以便网络设备进行后续的配置。
需要说明的是,上述步骤S402与步骤S403没有必然的先后顺序,可以先执行步骤S402再执行步骤S403,也可以先执行步骤S403,再执行步骤S402,本申请实施例对此不做具体限定。
基于该方案,由终端设备确定第一功率等级对应的最大发射功率的回退值,当终端设备不将该回退值确定为第一数值集合中的最大数值时,该回退值即小于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,当第一功率等级为PC2,第二功率等级为PC3时,该回退值即小于3dB,从而使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
另一种可能的实现方式中,如图5所示,为本申请实施例提供的另一种功率值确定方法,该功率值确定方法可以应用于网络设备配置的最大发射功率P EMAX,c小于或等于23dBm,或者终端设备的最大上行传输占空比能力值小于实际上行传输占空比的场景,该功率值确定方法包括如下步骤:
S501、终端设备获取上行传输占空比信息。
其中,该上行传输占空比信息可以为该终端设备的最大上行传输占空比能力值;或者,也可以为该终端设备的最大上行传输占空比能力值与其实际上行传输占空比的比值。
S502、终端设备根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值。
其中,该上行传输占空比信息与该第一功率等级对应的最大发射功率的回退值存在对应关系。
一种可能的实现方式中,上行传输占空比信息为终端设备的最大上行传输占空比能力值,最大上行传输占空比能力值与该回退值的对应关系为ΔP PowerClass=P HP- dBm(p HP*最大上行传输占空比能力值),其中,ΔP PowerClass为该回退值,P HP为第一功率等级对应的最大发射功率,p HP为第一功率等级对应的最大发射功率的线性值,其单位为毫瓦mW,dBm(X)表示将X的单位转换为dBm,其具体的转换过程为dBm(X)=10log 10(X)。
可选的,本申请实施例中,终端设备的最大上行传输占空比能力值的最小取值为50%,该最大上行传输占空比能力值可以以10%为粒度一直取到100%,即该最大上行传输占空比能力值可以为50%、60%、70%、80%、90%、100%。由上述最大上行传输占空比能力值与该回退值的对应关系可知,当最大上行传输占空比能力值取不同值时,该回退值也取不同值。
示例性的,以第一功率等级为PC2,第二功率等级为PC3为例,PC2对应的最大发射功率26dBm的线性值为398mW,当最大上行传输占空比能力值为50%时,该回退值为26dBm-dBm(398*50%)=3dB,当最大上行传输占空比能力值为60%时,该回退值为2.2dB,依次类推,当最大上行传输占空比能力值为100%时,该回退值为0。因此,可以理解的是,根据最大上行传输占空比能力值与该回退值的对应关系确定的该回退值的最大取值为第一功率对应的最大发射功率与第二功率等级对应的最大发射功率的差值,最小取值为0。
另一种可能的实现方式中,上行传输占空比信息为终端设备的最大上行传输占空比能力值与实际上行传输占空比的比值,若该比值小于1,则该比值与上述回退值的对应关系为:ΔP PowerClass=10*ABS(log 10(最大上行传输占空比能力值/实际上行传输占空比))dB,其中,ΔP PowerClass为该回退值,ABS(X)表示对X取绝对值。
由上述对应关系可知,当最大上行传输占空比能力值与实际上行传输占空比的比值不同时,第一功率等级对应的最大发射功率的回退值也不同。其中,最大上行传输占空比能力值与实际上行传输占空比能力值相同时,最大上行传输占空比能力值与实际上行传输占空比的比值取最大值1,该回退值取最小值0;最大上行传输占空比能力值取最小值50%,且实际上行传输占空比取最大值100%时,最大上行传输占空比能力值与实际上行传输占空比的比值取最小值0.5,该回退值取最大值3,因此,当第一功率等级为PC2,第二功率等级为PC3时,根据上述与回退值的对应关系确定的该回退值的最大取值为第一功率对应的最大发射功率与第二功率等级对应的最大发射功率的差值,最小取值为0。
S503、终端设备根据第一功率对应的最大发射功率的回退值,确定最大配置发射功率。
其中,该最大配置发射功率用于确定终端设备进行上行传输时的发射功率,相关描述可参考上述步骤S402,在此不再赘述。
S504、终端设备向网络设备发送最大上行传输占空比能力值。
其中,终端设备向网络设备发送最大上行传输占空比能力值,也可以理解为终端设备间接向网络设备上报第一功率等级对应的最大发射功率的回退值。
S505、网络设备根据上行传输占空比信息确定第一功率等级对应的最大发射功率的回退值。
一种可能的实现方式中,上行传输占空比信息为最大上行传输占空比能力值时, 网络设备直接根据步骤S504中终端设备上报的最大上行传输占空比能力值、以及上述最大上行传输占空比能力值与该回退值的对应关系,确定该回退值,具体说明可参考上述步骤S502中的相关描述,在此不再赘述。
另一种可能的实现方式中,上行传输占空比信息为最大上行传输占空比能力值与实际上行传输占空比的比值时,由于终端设备的上行传输由网络设备调度,因此,网络设备可以确定终端设备的实际上行传输占空比,并结合步骤S504中终端设备上报的最大上行传输占空比能力值确定上行传输占空比信息,再根据上行传输占空比信息与该回退值的对应关系,确定该回退值,具体说明可参考上述步骤S502中的相关描述,在此不再赘述。
需要说明的是,上述步骤S502与步骤S504没有必然的先后顺序,可以先执行步骤S502再执行步骤S504,也可以先执行步骤S504,再执行步骤S502,本申请实施例对此不做具体限定。
基于该方案,由终端设备确定第一功率等级对应的最大发射功率的回退值,当终端设备将该回退值确定为小于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值时,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
又一种可能的实现方式中,当网络设备配置的最大发射功率P EMAX,c小于或等于23dBm时,终端设备可以将第一功率等级对应的最大发射功率的回退值确定为0,此时,终端设备无需将该回退值发送给网络设备,网络设备根据其配置的最大发射功率也能够确定第一功率等级对应的最大发射功率的回退值为0,进而根据该回退值0进行后续配置。基于该方案,终端设备将第一功率等级对应的最大发射功率的回退值确定为0,即将该回退值确定为低于第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
再一种可能的实现方式中,终端设备可以通过指示信息通知网络设备其是否需要基于第一功率等级进行功率回退。当该指示信息指示终端设备需要基于第一功率等级进行功率回退时,终端设备和网络设备均将第一功率等级对应的最大发射功率的回退值确定为第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,当该指示信息指示终端设备不需要基于第一功率等级进行功率回退时,终端设备和网络设备将第一功率等级对应的最大发射功率的回退值确定为0。
可选的,该指示信息可以通过一个标志位表示,当该标志位为“supported”时,表示终端设备需要基于第一功率等级进行功率回退,反之,当该标志位为默认值时表示终端设备不需要基于第一功率等级进行功率回退;或者,当该标志位为“supported”时,表示终端设备不需要基于第一功率等级进行功率回退,反之,当该标志位为默认值时表示终端设备需要基于第一功率等级进行功率回退。
基于该方案,在终端设备确定不需要基于第一功率等级进行功率回退值时,将第一功率等级对应的最大发射功率的回退值确定为0,可以使得终端设备根据该回退值确定的最大配置功率不会过低,因此可以降低发射功率过度回退的概率,提高功率增益从而增强上行覆盖。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例。图6示出了一种终端设备60的结构示意图。该终端设备60包括处理模块601。可选的,该终端设备60还可以包括收发模块602。所述收发模块602,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块602,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由终端设备执行的接收和发送类的步骤,处理模块601,可以用于执行上述方法实施例中由终端设备执行的除接收和发送类步骤之外的其他步骤。
例如,在一种可能的实现方式中,处理模块601,用于确定第一功率等级对应的最大发射功率的回退值,该回退值属于第一数值集合,该第一数值集合包括至少两个数值,该第一数值集合中的最大数值为该第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,该第一数值集合中的最小数值为0,该第一功率等级为该终端设备当前的功率等级,该第二功率等级为预设的低于该第一功率等级的一个功率等级;处理模块601,还用于根据该回退值确定最大配置发射功率,该最大配置发射功率用于确定该终端设备进行上行传输时的发射功率。
可选的,收发模块602,用于向网络设备发送第一功率等级对应的最大发射功率的回退值。
可选的,处理模块601,用于确定第一功率等级对应的最大发射功率的回退值,包括:若网络设备配置的最大发射功率小于或者等于23dBm,处理模块601,用于确定该回退值为第一数值集合中的最小数值。
可选的,处理模块601,还用于根据所述回退值确定最大配置发射功率,包括:处理 模块601,还用于根据该回退值,确定该最大配置发射功率的最小取值;处理模块601,还用于根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定该最大配置发射功率的最大取值,或者,该处理模块601,还用于根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及该回退值确定该最大配置发射功率的最大取值;处理模块601,还用于根据该最小取值和该最大取值,确定该最大配置发射功率。
在另一种可能的实现方式中,处理模块601,用于根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值,该上行传输占空比信息与该回退值存在对应关系,该上行传输占空比信息为最大上行传输占空比能力值或该最大上行传输占空比能力值与实际上行传输占空比的比值。
可选的,处理模块601,还用于根据该回退值确定最大配置发射功率,该最大配置发射功率用于确定该终端设备进行上行传输时的发射功率。
可选的,处理模块601,还用于根据该回退值确定最大配置发射功率,包括:处理模块601,还用于根据该回退值,确定该最大配置发射功率的最小取值;处理模块601,还用于根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定该最大配置发射功率的最大取值,或者,该处理模块601,还用于根据该第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及该回退值确定该最大配置发射功率的最大取值;处理模块601,还用于根据该最小取值和该最大取值,确定该最大配置发射功率。
可选的,收发模块602,用于向网络设备发送该最大上行传输占空比能力值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备60以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备60可以采用图2所示的终端设备30的形式。
比如,图2所示的终端设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得终端设备30执行上述方法实施例中的功率值确定方法。
具体的,图6中的处理模块601和收发模块602的功能/实现过程可以通过图2所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图6中的处理模块601的功能/实现过程可以通过图2所示的终端设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图6中的收发模块602的功能/实现过程可以通过图2所示的终端设备30中的收发器303来实现。
由于本实施例提供的终端设备60可执行上述的功率值确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图7示出了一种网络设备70的结构示意图。该网络设备70包括处理模块701。可选的,该网络设备70还可以包括收发模块702。所述收发模块702,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,收发模块702,可以包括接收模块和发送模块,分别用于执行上述方法实施例中由网络设备执行的接收和发送类的步骤,处理模块701,可以用于执行上述方法实施例中由网络设备执行的除接收和发送类步骤之外的其他步骤。
例如,处理模块701,用于根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值,该上行传输占空比信息与该回退值存在对应关系,该上行传输占空比信息为最大上行传输占空比能力值或该最大上行传输占空比能力值与实际上行传输占空比的比值。
可选的,收发模块702,用于接收来自终端设备的最大上行传输占空比能力值。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备70可以采用图2所示的网络设备20的形式。
比如,图2所示的网络设备20中的处理器201可以通过调用存储器202中存储的计算机执行指令,使得网络设备20执行上述方法实施例中的功率值确定方法。
具体的,图7中的处理模块701和收发模块702的功能/实现过程可以通过图2所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现。或者,图7中的处理模块701的功能/实现过程可以通过图2所示的网络设备20中的处理器201调用存储器202中存储的计算机执行指令来实现,图7中的收发模块702的功能/实现过程可以通过图2所示的网络设备20中的收发器203来实现。
由于本实施例提供的网络设备70可执行上述的功率值确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片***),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。在另一种可能的设计中,该通信装置还包括接口电路,该接口电路为代码/数据读写接口电路,该接口电路用于接收计算机执行指令(计算机执行指令存储在存储器中,可能直接从存储器读取,或可能经过其他器件)并传输至该处理器。该通信装置是芯片***时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中 心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种功率值确定方法,其特征在于,所述方法包括:
    终端设备确定第一功率等级对应的最大发射功率的回退值,所述回退值属于第一数值集合,所述第一数值集合包括至少两个数值,所述第一数值集合中的最大数值为所述第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,所述第一数值集合中的最小数值为0,所述第一功率等级为所述终端设备当前的功率等级,所述第二功率等级为预设的低于所述第一功率等级的一个功率等级;
    所述终端设备根据所述回退值确定最大配置发射功率,所述最大配置发射功率用于确定所述终端设备进行上行传输时的发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送所述回退值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备确定第一功率等级对应的最大发射功率的回退值,包括:
    若网络设备配置的最大发射功率小于或者等于23dBm,所述终端设备确定所述回退值为所述第一数值集合中的最小数值。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述终端设备根据所述回退值确定最大配置发射功率,包括:
    所述终端设备根据所述回退值,确定所述最大配置发射功率的最小取值;
    所述终端设备根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定所述最大配置发射功率的最大取值,或者,所述终端设备根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及所述回退值确定所述最大配置发射功率的最大取值;
    所述终端设备根据所述最小取值和所述最大取值,确定所述最大配置发射功率。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一数值集合属于第二数值集合,所述第二数值集合中的最大数值为第三功率等级对应的最大发射功率与所述第二功率等级对应的最大发射功率的差值,所述第三功率等级为预设的最大功率等级,所述第三功率等级大于所述第一功率等级,所述第二数值集合中的最小数值为0。
  6. 一种功率值确定方法,其特征在于,所述方法包括:
    通信装置根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值,所述上行传输占空比信息与所述回退值存在对应关系,所述上行传输占空比信息为最大上行传输占空比能力值或所述最大上行传输占空比能力值与实际上行传输占空比的比值,所述第一功率等级为终端设备当前的功率等级。
  7. 根据权利要求6所述的方法,其特征在于,所述上行传输占空比信息为所述最大上行传输占空比能力值;所述最大上行传输占空比能力值与所述回退值的对应关系为:
    ΔP PowerClass=P HP-dBm(p HP*最大上行传输占空比能力值);
    其中,ΔP PowerClass为所述回退值,P HP为所述第一功率等级对应的最大发射功率,p HP为所述第一功率等级对应的最大发射功率的线性值,dBm(X)表示将X的单位转换为毫瓦分贝dBm。
  8. 根据权利要求6所述的方法,其特征在于,所述上行传输占空比信息为所述最大 上行传输占空比能力值与实际上行传输占空比的比值;
    若所述比值小于1,所述比值与所述回退值的对应关系为:ΔP PowerClass=10*ABS(log 10(最大上行传输占空比能力值/实际上行传输占空比));
    其中,ΔP PowerClass为所述回退值,ABS(X)表示X的绝对值。
  9. 根据权利要求6-8任一项所述的方法,其特征在于,若所述通信装置为所述终端设备,所述方法还包括:
    所述终端设备根据所述回退值确定最大配置发射功率,所述最大配置发射功率用于确定所述终端设备进行上行传输时的发射功率。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述回退值确定最大配置发射功率,包括:
    所述终端设备根据所述回退值,确定所述最大配置发射功率的最小取值;
    所述终端设备根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定所述最大配置发射功率的最大取值,或者,所述终端设备根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及所述回退值确定所述最大配置发射功率的最大取值;
    所述终端设备根据所述最小取值和所述最大取值,确定所述最大配置发射功率。
  11. 一种通信装置,其特征在于,所述通信装置包括:处理模块;
    所述处理模块,用于确定第一功率等级对应的最大发射功率的回退值,所述回退值属于第一数值集合,所述第一数值集合包括至少两个数值,所述第一数值集合中的最大数值为所述第一功率等级对应的最大发射功率与第二功率等级对应的最大发射功率的差值,所述第一数值集合中的最小数值为0,所述第一功率等级为所述通信装置当前的功率等级,所述第二功率等级为预设的低于所述第一功率等级的一个功率等级;
    所述处理模块,还用于根据所述回退值确定最大配置发射功率,所述最大配置发射功率用于确定所述通信装置进行上行传输时的发射功率。
  12. 根据权利要求11所述的通信装置,其特征在于,所述通信装置还包括:收发模块;
    所述收发模块,用于向网络设备发送所述回退值。
  13. 根据权利要求11或12所述的通信装置,其特征在于,所述处理模块,用于确定第一功率等级对应的最大发射功率的回退值,包括:
    若网络设备配置的最大发射功率小于或者等于23dBm,所述处理模块,用于确定所述回退值为所述第一数值集合中的最小数值。
  14. 根据权利要求11-13任一项所述的通信装置,其特征在于,所述处理模块,还用于根据所述回退值确定最大配置发射功率,包括:
    所述处理模块,还用于根据所述回退值,确定所述最大配置发射功率的最小取值;
    所述处理模块,还用于根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定所述最大配置发射功率的最大取值,或者,所述处理模块,还用于根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及所述回退值确定所述最大配置发射功率的最大取值;
    所述处理模块,还用于根据所述最小取值和所述最大取值,确定所述最大配置发射功率。
  15. 根据权利要求11-14任一项所述的通信装置,其特征在于,所述第一数值集合属 于第二数值集合,所述第二数值集合中的最大数值为第三功率等级对应的最大发射功率与所述第二功率等级对应的最大发射功率的差值,所述第三功率等级为预设的最大功率等级,所述第三功率等级大于所述第一功率等级,所述第二数值集合中的最小数值为0。
  16. 一种通信装置,其特征在于,所述通信装置包括:处理模块;
    所述处理模块,用于根据上行传输占空比信息,确定第一功率等级对应的最大发射功率的回退值,所述上行传输占空比信息与所述回退值存在对应关系,所述上行传输占空比信息为最大上行传输占空比能力值或所述最大上行传输占空比能力值与实际上行传输占空比的比值,所述第一功率等级为终端设备当前的功率等级。
  17. 根据权利要求16所述的通信装置,其特征在于,所述上行传输占空比信息为所述最大上行传输占空比能力值;所述最大上行传输占空比能力值与所述回退值的对应关系为:
    ΔP PowerClass=P HP-dBm(p HP*最大上行传输占空比能力值);
    其中,ΔP PowerClass为所述回退值,P HP为所述第一功率等级对应的最大发射功率,p HP为所述第一功率等级对应的最大发射功率的线性值,dBm(X)表示将X的单位转换为毫瓦分贝dBm。
  18. 根据权利要求16所述的通信装置,其特征在于,所述上行传输占空比信息为所述最大上行传输占空比能力值与实际上行传输占空比的比值;
    若所述比值小于1,所述比值与所述回退值的对应关系为:ΔP PowerClass=10*ABS(log 10(最大上行传输占空比能力值/实际上行传输占空比));
    其中,ΔP PowerClass为所述回退值,ABS(X)表示X的绝对值。
  19. 根据权利要求16-18任一项所述的通信装置,其特征在于,若所述通信装置为所述终端设备,所述处理模块,还用于根据所述回退值确定最大配置发射功率,所述最大配置发射功率用于确定所述终端设备进行上行传输时的发射功率。
  20. 根据权利要求19所述的通信装置,其特征在于,所述处理模块,还用于根据所述回退值确定最大配置发射功率,包括:
    所述处理模块,还用于根据所述回退值,确定所述最大配置发射功率的最小取值;
    所述处理模块,还用于根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率,确定所述最大配置发射功率的最大取值,或者,所述处理模块,还用于根据所述第一功率等级对应的最大发射功率、网络设备配置的最大发射功率、以及所述回退值确定所述最大配置发射功率的最大取值;
    所述处理模块,还用于根据所述最小取值和所述最大取值,确定所述最大配置发射功率。
  21. 一种通信装置,其特征在于,所述通信装置包括:处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述处理器执行所述计算机执行指令时,以使所述通信装置执行如权利要求1-5中任一项所述的方法,或者,以使所述通信装置执行如权利要求6-10中任一项所述的方法。
  22. 一种通信装置,其特征在于,所述通信装置包括:处理器和接口电路;
    所述接口电路,用于接收计算机执行指令并传输至所述处理器;
    所述处理器用于执行所述计算机执行指令,以使所述通信装置执行如权利要求1-5中任一项所述的方法,或者,以使所述通信装置执行如权利要求6-10中任一项所述的 方法。
  23. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权利要求1-5中任一项所述的方法,或者,使得所述通信装置执行如权利要求6-10中任一项所述的方法。
PCT/CN2019/100891 2019-08-15 2019-08-15 功率值确定方法、装置及*** WO2021026934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980098988.0A CN114175755B (zh) 2019-08-15 2019-08-15 功率值确定方法、装置及***
PCT/CN2019/100891 WO2021026934A1 (zh) 2019-08-15 2019-08-15 功率值确定方法、装置及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100891 WO2021026934A1 (zh) 2019-08-15 2019-08-15 功率值确定方法、装置及***

Publications (1)

Publication Number Publication Date
WO2021026934A1 true WO2021026934A1 (zh) 2021-02-18

Family

ID=74569709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100891 WO2021026934A1 (zh) 2019-08-15 2019-08-15 功率值确定方法、装置及***

Country Status (2)

Country Link
CN (1) CN114175755B (zh)
WO (1) WO2021026934A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726531A (zh) * 2021-07-16 2021-11-30 锐捷网络股份有限公司 电源功率管理方法、装置及存储介质
CN115250133A (zh) * 2021-04-26 2022-10-28 Oppo广东移动通信有限公司 无线通信控制方法及存储介质
WO2023216147A1 (zh) * 2022-05-11 2023-11-16 北京小米移动软件有限公司 一种功率配置方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115968019B (zh) * 2023-03-16 2023-08-01 荣耀终端有限公司 通信参数的处理方法、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158942A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 功率控制方法、网络设备和终端
CN103119992A (zh) * 2010-09-22 2013-05-22 高通股份有限公司 针对无线电共存的降低的发射功率
CN103139891A (zh) * 2011-11-24 2013-06-05 联芯科技有限公司 双模终端的控制方法及***
US20130229998A1 (en) * 2010-07-26 2013-09-05 Lg Electronics Inc. Method and device for transmitting an uplink control signal in a wireless communication system
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备
US20190007910A1 (en) * 2017-06-29 2019-01-03 Qualcomm Incorporated Power reservation for carrier aggregation signaling during shortened transmission time intervals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8831528B2 (en) * 2012-01-04 2014-09-09 Futurewei Technologies, Inc. SAR control using capacitive sensor and transmission duty cycle control in a wireless device
CN109698674A (zh) * 2018-12-11 2019-04-30 四川九洲电器集团有限责任公司 一种功率回退装置和电子设备及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158942A (zh) * 2010-02-12 2011-08-17 华为技术有限公司 功率控制方法、网络设备和终端
US20130229998A1 (en) * 2010-07-26 2013-09-05 Lg Electronics Inc. Method and device for transmitting an uplink control signal in a wireless communication system
CN103119992A (zh) * 2010-09-22 2013-05-22 高通股份有限公司 针对无线电共存的降低的发射功率
CN103139891A (zh) * 2011-11-24 2013-06-05 联芯科技有限公司 双模终端的控制方法及***
US20190007910A1 (en) * 2017-06-29 2019-01-03 Qualcomm Incorporated Power reservation for carrier aggregation signaling during shortened transmission time intervals
CN108702709A (zh) * 2018-05-31 2018-10-23 北京小米移动软件有限公司 控制上行发射功率的方法和装置、基站及用户设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115250133A (zh) * 2021-04-26 2022-10-28 Oppo广东移动通信有限公司 无线通信控制方法及存储介质
CN113726531A (zh) * 2021-07-16 2021-11-30 锐捷网络股份有限公司 电源功率管理方法、装置及存储介质
CN113726531B (zh) * 2021-07-16 2023-10-20 锐捷网络股份有限公司 电源功率管理方法、装置及存储介质
WO2023216147A1 (zh) * 2022-05-11 2023-11-16 北京小米移动软件有限公司 一种功率配置方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114175755A (zh) 2022-03-11
CN114175755B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2021026934A1 (zh) 功率值确定方法、装置及***
WO2019227444A1 (zh) 控制上行发射功率的方法和装置、基站及用户设备
CN112867129B (zh) 功率余量上报发送方法和装置
EP2380387A1 (en) Method and arrangement in a wireless communication system
US20200084730A1 (en) Indication information sending method, indication information receiving method, device, and system
WO2020181441A1 (zh) 通信方法、装置及***
WO2020029298A1 (zh) 一种用于载波聚合的方法、装置及***
WO2023122920A1 (zh) 一种上报或接收用户设备能力的方法、装置及可读存储介质
CN110536400B (zh) 一种发送功率余量报告的方法及装置
US20240154754A1 (en) Uplink Transmission Resource Scheduling Method, Base Station, User Equipment, and Communication System
US20220095248A1 (en) Data transmission method, apparatus, and system
WO2021213116A1 (zh) 功率调整方法、装置及***
CN115085861A (zh) 传输上行mcs指示信息的方法、终端及网络侧设备
WO2020143638A1 (zh) 信号发送方法、装置及***
WO2023226928A1 (zh) 一种功率控制方法以及中继设备
WO2022083456A1 (zh) 用于用户设备的功率余量的上报方法、介质及用户设备
EP4000317A1 (en) Methods and apparatuses of power control for additional srs
WO2021254275A1 (zh) 一种控制天线输出功率的方法、介质及设备
CN113891444B (zh) 一种发射功率确定方法、装置和存储介质
US20230337150A1 (en) Power headroom reporting method, apparatus, and system
WO2023066358A1 (zh) 一种功率分配方法、装置及***
WO2022148235A1 (zh) 功率控制方法和相关设备
WO2023240580A1 (zh) 通信方法、终端设备及网络设备
EP4266768A1 (en) Wireless communication method, terminal device and network device
WO2023284678A1 (zh) 能力上报方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941701

Country of ref document: EP

Kind code of ref document: A1