WO2021026916A1 - 通信方法、装置及设备 - Google Patents

通信方法、装置及设备 Download PDF

Info

Publication number
WO2021026916A1
WO2021026916A1 PCT/CN2019/100867 CN2019100867W WO2021026916A1 WO 2021026916 A1 WO2021026916 A1 WO 2021026916A1 CN 2019100867 W CN2019100867 W CN 2019100867W WO 2021026916 A1 WO2021026916 A1 WO 2021026916A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
side link
uplink
actual
sub
Prior art date
Application number
PCT/CN2019/100867
Other languages
English (en)
French (fr)
Inventor
王婷
唐浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980098640.1A priority Critical patent/CN114175760B/zh
Priority to EP19941550.6A priority patent/EP3993516A4/en
Priority to PCT/CN2019/100867 priority patent/WO2021026916A1/zh
Publication of WO2021026916A1 publication Critical patent/WO2021026916A1/zh
Priority to US17/591,749 priority patent/US12010635B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device and equipment.
  • the sidelink communication refers to the communication between terminal equipment and terminal equipment.
  • the channels in the sidelink communication include a physical sidelink shared channel (PSSCH) and a physical sidelink control channel (PSCCH).
  • PSSCH is used to carry data signals
  • PSCCH is used to carry control signals.
  • the first transmission power of the PSCCH and the second transmission power of the PSSCH are usually calculated separately, and the control signal is transmitted according to the first transmission power ,
  • the data signal is transmitted according to the second transmission power.
  • PSSCH and PSCCH may occupy resources on different symbols in the same time slot, resulting in different transmission powers of side link signals on different symbols in a time slot for terminal equipment. This results in poor signal performance at the receiving end.
  • the embodiments of the present application provide a communication method, device, and equipment, which improve the performance of receiving signals at the receiving end.
  • an embodiment of the present application provides a communication method to obtain the side link transmission power and the uplink transmission power, and determine the side link in the first time unit according to the side link transmission power, the uplink transmission power and the maximum transmission power The actual transmission power; where the side link transmission power is the transmission power of the side link in the first time unit, and the uplink transmission power is the uplink transmission power in the first time unit; the first time unit includes N first time units.
  • Sub-time unit M second sub-time units of the N first sub-time units overlap with uplink resources, N is an integer greater than 1, M is a positive integer less than or equal to N, and N first sub-time units are The sub-time unit used for side link transmission in the first time unit, and the actual transmission power of the side link is the same on the N first sub-time units.
  • the execution subject of the communication method may be a terminal device (for example, the first terminal device shown in the embodiment), or may be a device (for example, a processor, or a chip, etc.) provided in the terminal device.
  • the time unit may be a time slot, and the sub-time unit may be a symbol.
  • the time unit may be a sub-frame, and the sub-time unit may be a time slot or a symbol.
  • the side link signal before the side link signal is transmitted on the N first symbols of the first time slot, if the M second symbols of the N first symbols overlap with the uplink resource, then the The transmission power of the side link in the first time slot and the uplink transmission power of the uplink in the first time slot, and determine the side link in the first time slot according to the side link transmission power, the uplink transmission power and the maximum transmission power
  • the actual transmission power of the side link is the same on the N first symbols, so that power switching is not required in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or it is not necessary to
  • the symbols required for power switching are reserved in a time slot, which reduces resource waste and improves signal transmission performance.
  • the second terminal device Since the actual transmission power of the side links on the N first symbols is the same, the change of the signal phase caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate.
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the transmission power of the side link includes a first transmission power and a second transmission power.
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission power is the transmission power of the side link. Transmission power of the second channel.
  • the first channel may be PSCCH
  • the second channel may be PSSCH.
  • the actual transmission power of the side link in the first time unit can be determined according to the side link transmission power, the uplink transmission power, and the maximum transmission power in the following manner: according to the first transmission power and the first transmission power Second transmission power, determining the third transmission power of the side link in the first time unit; and determining the actual transmission power according to the third transmission power, uplink transmission power and maximum transmission power; where the third transmission power of the side link is The N first sub-time units are the same.
  • the actual transmission power is such that the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, thereby reducing resource waste and improving signal transmission performance.
  • the signal phase change caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the first transmission power or the second transmission power
  • the third transmission power is the maximum value of the first transmission power and the second transmission power
  • the third transmission power is the minimum value of the first transmission power and the second transmission power; or,
  • the third transmission power has a first corresponding relationship with the first transmission power and the second transmission power.
  • the third transmission power of the side link can be determined to be the same on the N first symbols through the above method.
  • the third transmission power is less than or equal to the maximum transmission power, and the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the first channel and the second channel occupy different frequency domain resources
  • the third transmission power is: the sum of the first transmission power and the second transmission power.
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the N first sub-time units include N1 third sub-time units and N2 fourth sub-time units, where the sum of N1 and N2 is N, and N1 is a positive integer less than N , N2 is a positive integer less than N;
  • the first channel occupies N1 third sub-time units, and the second channel occupies N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the second transmission power includes the fourth transmission power and the fifth transmission power.
  • the fourth transmission power is the transmission power of the second channel in N1 third sub-time units, and the fifth transmission power is the second channel in the N2 fourth sub-units. Transmission power on time unit;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the fifth transmission power or the sixth transmission power, and the sixth transmission power is the sum of the first transmission power and the fourth transmission power;
  • the third transmission power is the maximum value of the fifth transmission power and the sixth transmission power
  • the third transmission power is the minimum value of the fifth transmission power and the sixth transmission power; or,
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the actual transmission power of the side link can be determined according to the third transmission power, the uplink transmission power, and the maximum transmission power in the following manner:
  • the actual transmission power of the side link is the third transmission power
  • the actual transmission power of the uplink is the uplink transmission power
  • the actual transmission power of the side link can be determined by one of the following possible implementation methods:
  • a possible implementation is to determine the actual transmission power of the side link according to the priority of the side link signal, the priority of the uplink signal, the third transmission power, the uplink transmission power and the maximum transmission power.
  • the priority of the side link signal is greater than or equal to (or greater than) the priority of the uplink signal, it is determined that the actual transmission power of the side link is the third transmission power. It can also be determined that the actual transmission power of the uplink is the difference between the maximum transmission power and the third transmission power.
  • the priority of the side link signal is less than (or less than or equal to) the priority of the uplink signal, it is determined that the actual transmission power of the side link is the difference between the maximum transmission power and the uplink transmission power. It can also be determined that the actual uplink transmission power is the uplink transmission power.
  • the transmission power of the signal with higher priority can be guaranteed first, so that the transmission performance of the signal with higher priority is better.
  • the transmission accuracy of high-priority signals can be made higher, and the transmission requirements of high-priority services, such as low latency and high reliability, can be guaranteed.
  • the actual transmission power of the side link is the first product of the third transmission power and the first weight value. It is determined that the actual transmission power of the uplink is the second product of the uplink transmission power and the second weight value. Wherein, the uplink signal corresponds to the second weight value, and the sum of the first product and the second product is less than or equal to the maximum transmission power.
  • the third transmission power is reduced according to a preset ratio to obtain the actual transmission power of the side link, and the uplink transmission power is reduced according to the preset ratio to obtain the actual transmission power of the uplink. In this way, it is possible to avoid The actual transmission power of the side link or the actual transmission power of the uplink is too small.
  • the actual transmission power of the side link is the third transmission power or the first difference.
  • the first difference is the difference between the maximum transmission power and the uplink transmission power.
  • the actual transmission power of the side link and the actual transmission power of the uplink are indicated by predefined or indication information, and the actual transmission power of the side link and the actual uplink transmission power can be quickly determined. Transmission power.
  • the actual transmission power of the side link in the first time unit can be determined according to the side link transmission power, the uplink transmission power and the maximum transmission power in the following manner: according to the first transmission power, the second transmission power Transmission power, uplink transmission power and maximum transmission power, determine the seventh transmission power corresponding to the first transmission power, and the eighth transmission power corresponding to the second transmission power; determine the side chain according to the seventh transmission power and the eighth transmission power The actual transmission power of the road.
  • the seventh transmission power corresponding to the first transmission power and the eighth transmission power corresponding to the second transmission power are determined,
  • the total transmission power corresponding to each first symbol is less than or equal to the maximum transmission power, and the actual transmission power is determined according to the seventh transmission power and the eighth transmission power, so that the actual transmission power is constant on the N first symbols.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, reducing resource waste and improving signal transmission performance .
  • the phase change of the signal caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation according to the received pilot, and then The side link signal sent by the first terminal device on the N first symbols can be accurately received, which improves the signal reception performance of the second terminal device.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the seventh transmission power or the eighth transmission power
  • the actual transmission power is the maximum value of the seventh transmission power and the eighth transmission power
  • the actual transmission power is the minimum value of the seventh transmission power and the eighth transmission power; or,
  • the actual transmission power of the determined side link can be made the same on the N first symbols through the above method, and
  • the foregoing method of determining the actual transmission power of the side link is simple and convenient, so that the efficiency of determining the actual transmission power of the side link is relatively high.
  • the first channel and the second channel occupy different frequency domain resources
  • the actual transmission power is the sum of the seventh transmission power and the eighth transmission power.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the N first sub-time units include N3 fifth sub-time units and N4 sixth sub-time units, where the sum of N3 and N4 is N, and N3 is a positive integer less than N , N4 is a positive integer less than N;
  • the first channel occupies N3 fifth sub-time units, and the second channel occupies N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the eighth transmission power includes the ninth transmission power and the tenth transmission power.
  • the ninth transmission power is the transmission power of the second channel in N3 fifth sub time units, and the tenth transmission power is the second channel in the N4 sixth sub time unit. Transmission power on time unit;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the tenth transmission power or the eleventh transmission power, and the eleventh transmission power is the sum of the seventh transmission power and the ninth transmission power;
  • the actual transmission power is the maximum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power is the minimum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power has a fourth correspondence relationship with the seventh transmission power, the ninth transmission power, and the tenth transmission power.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the embodiments of the present application provide a communication method.
  • the second terminal device receives the side link signal from the first terminal device on the first sub-time unit of the first time unit, and the actual transmission power of the side link signal Related to the side link transmission power, uplink transmission power and maximum transmission power, the side link transmission power is the side link transmission power of the first terminal device in the first time unit, and the uplink transmission power is the first terminal device in the first time unit.
  • the uplink transmission power in a time unit, the first time unit includes N first sub-time units, M second sub-time units out of the N first sub-time units overlap the uplink resource, and N is greater than 1.
  • M is a positive integer less than or equal to N, and the actual transmission power of the side link signal is the same on the N first sub-time units; the second terminal device processes the side link signal.
  • the first terminal device before the sidelink signal is transmitted on the N first symbols of the first time slot, if M second symbols of the N first symbols overlap with the uplink resources, the first terminal device first acquires the The transmission power of the side link in a time slot and the uplink transmission power of the uplink in the first time slot, and the transmission power of the side link, the uplink transmission power and the maximum transmission power are used to determine the The actual transmission power of the side link, and according to the actual transmission power, the side link signal is sent to the second terminal device on the first sub-time unit of the first time unit, so that the actual transmission power of the side link is within N first symbols.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the execution subject of the communication method may be a terminal device (for example, the second terminal device shown in the embodiment), or a device (for example, a processor, or a chip, etc.) provided in the terminal device.
  • a terminal device for example, the second terminal device shown in the embodiment
  • a device for example, a processor, or a chip, etc.
  • the transmission power of the side link includes a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission power is the transmission power of the side link. Transmission power of the second channel.
  • an embodiment of the present application provides a communication device, which is configured to execute the method described in the first aspect and any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication device configured to execute the second aspect and the method described in any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a communication device, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor , So that the apparatus executes the method described in the first aspect and any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a communication device, which is characterized by comprising: a processor, the processor is coupled with a memory, the memory is used to store a program or an instruction, when the program or instruction is When the processor is executed, the apparatus is caused to execute the method described in the second aspect and any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a storage medium on which a computer program or instruction is stored, characterized in that, when the computer program or instruction is executed, the computer executes the first aspect and any possible aspect of the first aspect. Implement the method described in the mode.
  • an embodiment of the present application provides a storage medium on which a computer program or instruction is stored, characterized in that, when the computer program or instruction is executed, the computer executes the second aspect and any possible aspect of the second aspect. Implement the method described in the mode.
  • an embodiment of the present application provides a communication system, including: the device described in the third aspect, and/or the device described in the fourth aspect.
  • an embodiment of the present application provides a communication system, including: the device described in the fifth aspect, and/or the device described in the sixth aspect.
  • the power determination method, device, and device provided in the embodiments of the present application before the sidelink signal is transmitted on the N first symbols of the first time slot, if the M second symbols of the N first symbols overlap with the uplink resource , First obtain the transmission power of the side link in the first time slot and the uplink transmission power of the uplink in the first time slot, and according to the side link transmission power, the uplink transmission power and the maximum transmission power, Determine the actual transmission power of the side link in the first time slot so that the actual transmission power of the side link is the same on the N first symbols, so that power switching is not required in the first time slot, thereby reducing the complexity of terminal equipment processing Therefore, there is no need to reserve symbols required for power switching in the first time slot, thereby reducing resource waste and improving signal transmission performance.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • FIG. 1 is a schematic diagram of side link communication provided by an embodiment of the application
  • Figure 2 is a schematic diagram of a resource provided by an embodiment of this application.
  • Figure 3 is a schematic diagram of another resource provided by an embodiment of the application.
  • FIG. 4A is a schematic diagram of Uu air interface communication provided by an embodiment of this application.
  • FIG. 4B is a schematic diagram of a possible time domain resource provided by an embodiment of this application.
  • 5A-5C are usage scenarios of several BWPs provided by the embodiments of this application.
  • FIG. 6 is a schematic diagram of a possible communication scenario provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9A-FIG. 9G, FIG. 10A-FIG. 10G, FIG. 11A-FIG. 11B, and FIG. 12A-FIG. 12C are schematic diagrams of several resource overlap modes provided by embodiments of this application;
  • FIG. 13 is a schematic flowchart of a method for determining the actual transmission power of a side link according to an embodiment of this application;
  • FIG. 14 is a schematic flowchart of another method for determining the actual transmission power of a side link according to an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a device provided by this application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 17 is a schematic structural diagram of another device provided by an embodiment of the application.
  • Terminal equipment a device with wireless transceiver function. Terminal devices can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships); they can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an industrial Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • Network equipment It is a device with wireless transceiver function. Including but not limited to: Evolutional Node B (eNB or eNodeB) in long term evolution (LTE), base station (gNodeB or gNB) or transceiving point (gNodeB or gNB) in new radio (NR) transmission receiving point/transmission reception poin, TRP), the base station in the subsequent evolution system, the access node in the wireless fidelity (wireless fidelity, WiFi) system, the wireless relay node, the wireless backhaul node, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network equipment may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal, and can also communicate with the terminal through a relay station.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with a base station that supports an LTE network, or can communicate with a base station that supports a 5G network, and can also support dual connections with a base station of an LTE network and a base station of a 5G network. , It can also support dual connections with 5G network base stations, etc.
  • Time unit refers to time domain resources.
  • a time unit can include multiple sub-time units.
  • the time unit may be a time slot, and the sub-time unit may be a symbol.
  • the time unit may be a sub-frame, and the sub-time unit may be a time slot or a symbol.
  • the time unit is the time slot and the sub-time unit is the symbol as an example.
  • Sideline communication refers to the communication between terminal equipment and terminal equipment.
  • the link between the terminal device and the terminal device is called a side link.
  • the side link may also be referred to as a device-to-device (D2D) link, side link, side link, etc., which is not limited in this application.
  • D2D device-to-device
  • FIG. 1 is a schematic diagram of side link communication provided by an embodiment of the application. See Figure 1, including:
  • the network device configures side link resources for UE1 and UE2 respectively.
  • the channels of the side link may include multiple channels.
  • the channels of the side link may include a first channel and a second channel.
  • the first channel may be a physical sidelink control channel (PSCCH), or a physical sidelink shared channel (PSSCH), or a sidelink feedback channel (physical sidelink feedback channel).
  • channel, PSFCH) the second channel can be PSCCH, or, PSSCH, or, PSFCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • PSFCH sidelink feedback channel
  • the second channel can be PSCCH, or, PSSCH, or, PSFCH.
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • PSFCH sidelink feedback channel
  • the side link resources include PSSCH resources and PSCCH resources.
  • PSSCH is used to carry data (data) information, that is, PSSCH resources are used to transmit data information.
  • PSCCH is used to carry sidelink control information (SCI), that is, PSCCH resources are used to transmit SCI.
  • SA scheduling assignment
  • SA refers to related information used for data scheduling. For example, SA may be used to indicate PSSCH resource allocation and modulation and coding mode.
  • PSSCH resources may also be referred to as data resources (data resources), and PSCCH resources may also be referred to as SA resources.
  • the network device can configure resources for the UE in the following two possible implementation manners.
  • the following manners are only examples and do not limit this application:
  • the SA resource and the data resource configured by the network device for the UE are adjacent in the frequency domain.
  • the network device is configured with one or more of the following information: the starting resource block (RB) of the subchannel (subchannel), the number of consecutive RBs included in the subchannel, and The number of channels.
  • Resource pools can be understood as candidate time-frequency resources for side link communication, where time-domain resources can be configured with one or more of symbols, time slots, mini-slots, or subframes, and frequency domain resources can be It is configured with one or more of resource blocks, resource block groups, or subbands.
  • a resource block group may include one or more resource blocks.
  • One subband may include one or more resource blocks.
  • the above configuration information may also be referred to as the configuration information of the resource pool.
  • the resources in the resource pool can be determined. Among them, the SA resource and the data resource are adjacent, and a predefined SA resource (resource for transmitting one SA) may be the bottom two RBs of the subchannel.
  • FIG. 2 is a schematic diagram of a resource provided by an embodiment of the application.
  • the network device configures 4 subchannels for the UE, namely subchannel 1, subchannel 2, subchannel 3, and subchannel 4.
  • UE1 occupies the resources of subchannel 4
  • UE2 occupies the resources of subchannel 1, subchannel 2, and subchannel 3.
  • Figure 2 Show.
  • UE1 occupies the resources of subchannel 1.
  • UE2 occupies the resources of sub-channel 3 and sub-channel 4, then at time t2, the resources occupied by UE1 and UE2 for sending data and SA are shown in Figure 2.
  • the SA resource and the data resource configured by the network device for the UE are not adjacent in the frequency domain.
  • the network device configures one or more of the following information: the starting RB of the SA resource, the starting RB of the subchannel, the number of consecutive RBs included in the subchannel, and the number of subchannels.
  • the total number of RBs of SA resources may be twice the number of subchannels.
  • the resources in the resource pool can be determined.
  • the SA resource and the data resource are not adjacent, a predefined SA resource (resource for transmitting one SA) may include 2 RBs, and the SA resource and the subchannel may have an association relationship.
  • FIG. 3 is a schematic diagram of another resource provided by an embodiment of the application.
  • the network device configures 4 subchannels for the UE, namely subchannel 1, subchannel 2, subchannel 3, and subchannel 4.
  • Each sub-channel has a corresponding SA resource, and the corresponding relationship between the sub-channel and the SA resource is shown by the arrow in FIG. 3.
  • UE1 occupies the resources of subchannel 4
  • UE2 occupies the resources of subchannel 1, subchannel 2 and subchannel 3.
  • the resources occupied by UE1 and UE2 for sending data and SA are shown in FIG.
  • UE1 occupies the resources of subchannel 1.
  • UE2 occupies the resources of sub-channel 3 and sub-channel 4, then at time t2, the resources occupied by UE1 and UE2 for sending data and SA are shown in Figure 2.
  • the network device can configure whether the SA resource and the data resource are adjacent in the frequency domain through the following signaling:
  • the value corresponding to the above signaling is TRUE, it means that the SA resource and the data resource allocated for the UE are adjacent in the frequency domain, that is, the UE transmits PSSCH and PSCCH on adjacent RBs. If the value corresponding to the foregoing signaling is FALSE, it means that the SA resource and the data resource allocated to the UE are not adjacent in the frequency domain, that is, the UE can transmit PSSCH and PSCCH on non-adjacent RBs.
  • the UE1 determines the side link transmission resource according to the side link resource configured by the network device.
  • the side link transmission resources may be all or part of the side link resources.
  • UE1 sends SCI and data to UE2 according to the side link sending resource.
  • UE1 sends SCI to UE2 on the SA resource, and sends data to UE2 on the data resource.
  • UE2 determines the side link receiving resource according to the configured side link resource, and receives the SCI and data on the side link receiving resource.
  • UE2 sends at least one of channel state information (channel state information, CSI) and hybrid automatic repeat request (HARQ) information to UE1.
  • channel state information channel state information, CSI
  • HARQ hybrid automatic repeat request
  • the HARQ information may include acknowledgement information (acknowledgement, ACK) or negative acknowledgement (negtive acknowledgement, NACK).
  • acknowledgement information acknowledgement, ACK
  • NACK negative acknowledgement
  • S105 in the foregoing process may be before step S104, or may be after step S105, or may be an independent step, which is not limited in this application.
  • PSFCH can also be called physical sidelink uplink control channel (PSUCCH)
  • PSUCCH physical sidelink uplink control channel
  • the channel of the sending end UE (such as UE1).
  • the sending end and the receiving end are described from the data channel PSSCH transceiver end.
  • PSUCCH the UE sending PSUCCH is UE2, and the UE receiving PSUCCH is UE1.
  • UE1 when UE1 and UE2 are in sidelink communication, UE1 can send SCI and data to UE2, and UE2 can feed back ACK/NACK etc. after receiving the signal sent by UE1.
  • UE2 may feed back CSI to UE1, and UE1 performs data scheduling and transmission according to the CSI fed back by UE2.
  • Uu air interface communication refers to the communication between terminal equipment and network equipment.
  • the Uu air interface can be understood as a universal UE to network interface (universal UE to network interface).
  • FIG. 4A is a schematic diagram of Uu air interface communication provided by an embodiment of this application.
  • the network device can send downlink control information (DCI) and data to the terminal device.
  • DCI downlink control information
  • the downlink control information is related information used for data scheduling, such as indicating the resource allocation of the data channel. Modulation coding method, etc.
  • the channel sent by the network device to the terminal device is called the downlink (DL) channel
  • the channel sent by the terminal device to the network device is called the uplink (UL) channel
  • the downlink channel may include a downlink data channel and a downlink control channel.
  • the uplink channel may include an uplink data channel and an uplink control channel.
  • the uplink control channel can be used to carry information fed back by the terminal device, called uplink control information (UCI), for example, the uplink control channel can carry CSI and/or ACK/NACK fed back by the terminal device.
  • UCI uplink control information
  • Air interface resources refers to the resources used for data transmission between two devices.
  • the two devices can refer to a terminal device and a network device, or two terminal devices.
  • Air interface resources may include time domain resources and frequency domain resources, and time domain resources and frequency domain resources may also be referred to as time-frequency resources.
  • the frequency domain resource may be located in a set or predefined frequency range.
  • the frequency range may also be referred to as a band or frequency band, and the size of the frequency domain resource in the frequency domain may be referred to as bandwidth (BW) for short.
  • BW bandwidth
  • the time-frequency resource can specifically be a resource grid, including time domain and frequency domain.
  • the time domain unit can be a symbol
  • the frequency domain unit can be a subcarrier
  • the smallest resource unit in the resource grid can be called Resource element (resource element, RE).
  • RE Resource element
  • One RB may include one or more subcarriers in the frequency domain, for example, it may be 12 subcarriers.
  • a time slot can include one or more symbols in the time domain.
  • a time slot can include 14 symbols (under the common cyclic prefix (CP)) or 12 symbols (under the extended cyclic prefix) ).
  • CP common cyclic prefix
  • multiple frame structures which may include multiple sub-carrier intervals
  • a resource grid can be defined for one frame structure parameter.
  • the defined resource grid includes Subcarriers and OFDM symbols. among them, refers to the size of the resource grid, such as the number of resource blocks RB included.
  • a resource grid may include X2 PRBs, and X2 is an integer greater than or equal to 1.
  • PRBs can be numbered sequentially from 0 to X2-1 based on the direction of frequency increase to obtain the number value of the RB.
  • the term "number value" may also be referred to as "identification” or "index.”
  • the number of subcarriers included in a resource block for example, it may be 12 subcarriers.
  • a subframe may include several time slots (slots).
  • slots refers to the number of time slots contained in a subframe under the subcarrier spacing configuration ⁇ . Refers to the number of symbols contained in a slot, such as 14.
  • a resource grid can be defined in the carrier, where the starting position of the resource grid in the carrier is It can also be described as the starting position of the first subcarrier in the resource grid as This value can be indicated by higher layer signaling.
  • the system parameters can be described as frame structure parameters.
  • the system parameters can include subcarrier spacing and/or CP.
  • Table 1 shows the frame structure parameters supported in NR:
  • the network equipment can schedule the terminal equipment, and the network equipment can allocate data channels for the terminal equipment from the resource grid through control information (such as physical downlink shared channel, PDSCH) ,
  • control information such as physical downlink shared channel, PDSCH
  • the frequency domain resources and/or time domain resources of the physical uplink shared channel (PUSCH) may indicate the symbol and/or RB to which the data channel is mapped, and the network equipment and terminal equipment
  • the allocated time-frequency resources are used for data transmission through the data channel.
  • the above-mentioned data transmission may include downlink data transmission and/or uplink data transmission
  • downlink data (such as data carried in PDSCH) transmission may refer to network equipment sending data to the terminal
  • uplink data (such as data carried in PUSCH) transmission may refer to terminal Send data to network devices.
  • Data can be data in a broad sense, such as user data, system information, broadcast information, or other information.
  • the data is data carried on the PDSCH.
  • the bandwidth part is a group of continuous RB resources on the carrier.
  • a serving cell can be configured with 4 BWPs at most, and one BWP can be activated within a given time (such as a time slot, a subframe, etc.).
  • the UE transmits and receives data on the activated BWP.
  • BWP is defined on a given carrier, that is, the resources of one BWP are located in one carrier resource.
  • FIG. 5A is a usage scenario of BWP provided by an embodiment of the application.
  • the carrier bandwidth is greater than or equal to the bandwidth capability of the terminal device (UE bandwidth capability), and the UE bandwidth capability is greater than or equal to the BWP bandwidth.
  • Fig. 5B is another BWP usage scenario provided by the application embodiment.
  • BWP1 and BWP2 are configured in the carrier, and BWP1 and BWP2 overlap, so that UE energy saving can be realized.
  • the UE can switch from BWP2 to BWP1 to save energy.
  • Fig. 5C is another BWP usage scenario provided by the application embodiment.
  • BWP1 and BWP2 are configured in the carrier
  • the parameter of BWP1 is numerology1
  • the parameter of BWP2 is numerology2.
  • Different BWP configures different parameters.
  • a resource element may refer to an element of the resource grid of antenna port p, which is identified by frequency domain and time domain coordinates (k, l), Represents the number of subcarriers in an RB, Represents the number of symbols in a slot.
  • the number of orthogonal frequency division multiplexing (OFDM) symbols in a slot depends on the cyclic prefix length and subcarrier spacing, for example, it can be as shown in Table 2:
  • a resource block is a concept in the frequency domain.
  • one RB includes 12 subcarriers in the frequency domain.
  • the concept of RB is the concept of time-frequency domain.
  • one RB includes 12 subcarriers in the frequency domain and one symbol in the time domain.
  • the time domain unit in wireless communication can be a wireless frame, subframe, time slot, mini time slot (mini time slot), or symbol.
  • the duration of a radio frame may be 10 milliseconds (ms).
  • One radio frame may include one or more subframes. For example, if the duration of one subframe is 1 millisecond, one radio frame may include 10 subframes.
  • One subframe may include one or more time slots.
  • a slot can include one or more symbols. For example, the next time slot of the normal CP may include 14 symbols, and the next time slot of the extended CP may include 12 symbols.
  • FIG. 4B is a schematic diagram of a possible time domain resource provided by an embodiment of this application.
  • a radio frame includes multiple subframes, one subframe includes one slot, and one slot includes multiple symbols.
  • a slot can include one or more mini-slots (also called mini-slots), and a mini-slot can include one or more symbols.
  • a mini-slot can include 2 symbols or 4 symbols. Or 7 symbols.
  • Side link transmission power refers to the power at which a terminal device sends a side link channel and/or a side link signal.
  • the side link channel may include one or more of PSCCH, PSSCH, or PSFCH.
  • the side link signal may include SA carried by the PSCCH and/or data carried by the PSSCH, and a signal carried by the PSFCH, for example, a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the side link transmission power may be one or more.
  • the side link transmission power may include the first transmission power of the PSCCH and/or the second transmission power of the PSSCH.
  • Uplink transmission power refers to the power at which a terminal device sends an uplink channel and/or an uplink signal.
  • the uplink channel may include an uplink data channel and/or an uplink control channel, the uplink data channel may be a PUSCH, and the uplink control channel may be a physical uplink control channel (PUCCH).
  • the uplink signal may include one or more of an uplink control signal, an uplink data signal, and SRS.
  • Fig. 6 is a schematic diagram of a possible communication scenario provided by an embodiment of the application.
  • FIG. 6 which includes a network device 601, a terminal device 602, and a terminal device 603.
  • the link between the terminal device 602 and the terminal device 603 is a side link
  • the link between the terminal device 602 and the network device 601 and the link between the terminal device 603 and the network device 601 is a Uu air interface link.
  • the terminal device shown in the embodiment of the present application has the ability to communicate with network devices and other terminal devices at the same time, that is, at the same time or at the same time period, the terminal device can send uplink signals to the network device and other terminal devices Send side link signal.
  • Fig. 6 only illustrates a scenario in the form of an example.
  • the method shown in this application may also be applied to other communication scenarios.
  • other communication scenarios may include more network devices and/or more terminal devices.
  • the embodiments of this application do not specifically limit the applicable communication scenarios.
  • the determined transmission power of PSSCH and PSCCH may be different.
  • PSSCH and PSCCH may occupy different symbols in the same time slot, resulting in The transmission power of side link signals on different symbols in a time slot may be different.
  • the transmission powers of the side link signals on different symbols in a time slot are different, it takes a certain time for the transmission power to switch, which makes it necessary to reserve a part of the symbols in a time slot for power switching, resulting in time-domain resources waste.
  • the sending end usually sends a pilot to the receiving end, so that the receiving end can estimate the channel according to the pilot, and then receive the signal according to the channel estimation.
  • the embodiment of the application provides a communication method.
  • the terminal device can determine the actual transmission power of the side link in a time slot, and can make the side chain
  • the actual transmission power of the channel remains constant on the symbols sent by the side link signal in a time slot, that is, the actual transmission power of the side link is the same on multiple symbols in a time slot, which can reduce resource waste and improve the receiving end.
  • the performance of the received signal can be determined.
  • FIG. 7 is a schematic flowchart of a communication method provided by an embodiment of this application. Referring to Figure 7, the method may include:
  • the first terminal device obtains the side link transmission power and the uplink transmission power.
  • the side link transmission power is the transmission power of the side link in the first time slot
  • the uplink transmission power is the transmission power of the uplink in the first time slot
  • the first time slot includes N first symbols, M second symbols of the N first symbols overlap the uplink resource, N is an integer greater than 1, M is a positive integer less than or equal to N, and the Nth symbol A symbol is a symbol used for side link transmission in the first time slot.
  • the N first symbols may be all symbols in the first time slot, or may be part of the symbols in the first time slot.
  • the PSCCH resource and the PSSCH resource can be time-division multiplexed or frequency-division multiplexed.
  • the multiplexing mode of the PSCCH resource and the PSSCH resource will be introduced with reference to Figs. 8A-8E.
  • FIG. 8A is a schematic diagram of a resource reuse manner provided by an embodiment of this application. Referring to FIG. 8A, PSCCH and PSSCH occupy different symbols among the N first symbols, and PSCCH and PSSCH occupy the same frequency domain resources.
  • FIG. 8B is a schematic diagram of another resource reuse manner provided by an embodiment of this application.
  • PSCCH and PSSCH occupy different symbols among the N first symbols
  • PSCCH and PSSCH occupy different frequency domain resources (the frequency domain resources occupied by PSCCH and PSSCH may partially overlap).
  • FIG. 8C is a schematic diagram of another resource reuse manner provided by an embodiment of this application.
  • the N first symbols include N1 third symbols and N2 fourth symbols, where the sum of N1 and N2 is N, N1 is a positive integer less than N, and N2 is a positive integer less than N.
  • the PSCCH occupies N1 third symbols
  • the PSSCH occupies N first symbols
  • the frequency domain resources of the PSCCH overlap with part of the frequency domain resources of the PSSCH.
  • FIG. 8D is a schematic diagram of yet another resource reuse manner provided by an embodiment of the application.
  • PSCCH and PSSCH occupy different frequency domain resources
  • PSCCH and PSSCH occupy the same symbol among the N first symbols.
  • FIG. 8E is a schematic diagram of another resource reuse manner provided by an embodiment of the application.
  • PSCCH and PSSCH occupy different frequency domain resources
  • PSSCH occupies N first symbols
  • PSCCH occupies part of N first symbols.
  • Figures 8A to 8E are only examples of how PSCCH resources and PSSCH resources are multiplexed, and are not a limitation on the multiplexing methods of PSCCH resources and PSSCH resources. In actual applications, PSCCH resources and PSSCH can be determined according to actual needs.
  • the resource reuse mode is not specifically limited in the embodiment of this application.
  • the overlap mode of the N first symbols (sidelink resources) and the uplink resource can be as shown in FIGS. 9A to 9G.
  • FIG. 9A is a schematic diagram of a resource overlap manner provided by an embodiment of this application. Referring to FIG. 9A, the uplink resource overlaps with all the symbols in the N first symbols. It can also be understood that the uplink resource overlaps with the PSCCH resource and the PSSCH resource.
  • FIG. 9B is a schematic diagram of another resource overlap manner provided by an embodiment of the application.
  • the uplink resource overlaps the first symbol occupied by the PSSCH among the N first symbols, which can also be understood as the uplink resource overlaps the PSSCH resource.
  • FIG. 9C is a schematic diagram of another resource overlap manner provided by an embodiment of this application.
  • the uplink resource overlaps a part of the first symbol occupied by the PSSCH among the N first symbols. It can also be understood that the uplink resource overlaps a part of the PSSCH resource.
  • FIG. 9D is a schematic diagram of yet another resource overlap manner provided by an embodiment of this application.
  • the uplink resource overlaps the first symbol occupied by the PSCCH among the N first symbols. It can also be understood that the uplink resource overlaps the PSCCH resource.
  • FIG. 9E is a schematic diagram of another resource overlap manner provided by an embodiment of this application.
  • the uplink resource overlaps a part of the first symbol occupied by the PSCCH among the N first symbols. It can also be understood that the uplink resource overlaps a part of the PSCCH resource.
  • FIG. 9F is a schematic diagram of another resource overlap manner provided by an embodiment of the application.
  • the uplink resource overlaps with the first symbol occupied by the PSCCH among the N first symbols and a part of the first symbol occupied by the PSSCH. It can also be understood that the uplink resource overlaps with the PSCCH resource and part of the PSSCH resource.
  • FIG. 9G is a schematic diagram of another resource overlap manner provided by an embodiment of the application.
  • the uplink resource overlaps with the part of the first symbol occupied by the PSCCH and the part of the first symbol occupied by the PSSCH among the N first symbols. It can also be understood as the uplink resource and part of the PSCCH resource and part of the PSSCH resource overlapping.
  • the resource multiplexing mode of PSCCH resources and PSSCH resources is the resource multiplexing mode shown in FIG. 8B
  • the overlap mode of the N first symbols (sidelink resources) and the uplink resources overlaps with the resources shown in FIGS. 9A-9G
  • the method is similar and will not be repeated here.
  • the overlap mode of the N first symbols (sidelink resources) and the uplink resource may be as shown in FIGS. 10A-10G.
  • FIG. 10A is a schematic diagram of a resource overlap manner provided by an embodiment of this application. Referring to FIG. 10A, the uplink resource overlaps with all symbols in the N first symbols.
  • FIG. 10B is a schematic diagram of another resource overlap manner provided by an embodiment of this application. Referring to FIG. 10B, the uplink resources overlap with N2 fourth symbols.
  • FIG. 10C is a schematic diagram of another resource overlap manner provided by an embodiment of the application. Referring to Figure 10C, the upstream resource overlaps with part of the N2 fourth symbols.
  • FIG. 10D is a schematic diagram of yet another resource overlap manner provided by an embodiment of this application. Referring to Figure 10D, the uplink resource overlaps with N1 third symbols.
  • FIG. 10E is a schematic diagram of another resource overlap manner provided by an embodiment of this application. Referring to FIG. 10E, the uplink resource overlaps with part of the N1 third symbols.
  • FIG. 10F is a schematic diagram of another resource overlap manner provided by an embodiment of this application. Referring to FIG. 10F, the uplink resource overlaps with part of N1 third symbols and N2 fourth symbols.
  • FIG. 10G is a schematic diagram of another resource overlap manner provided by an embodiment of this application.
  • the uplink resource overlaps with a part of N1 third symbols and a part of N2 fourth symbols.
  • the overlap mode of the N first symbols (sidelink resources) and the uplink resource may be as shown in FIGS. 11A-11B.
  • FIG. 11A is a schematic diagram of a resource overlap method provided by an embodiment of this application. Referring to FIG. 11A, the uplink resource overlaps with all symbols in the N first symbols.
  • FIG. 11B is a schematic diagram of another resource overlap manner provided by an embodiment of the application. Referring to FIG. 11B, the uplink resources overlap part of the N first symbols.
  • the overlap mode of N first symbols (sidelink resources) and uplink resources is similar to the resource overlap mode shown in FIGS. 11A-11B. I will not repeat it here.
  • the N first symbols may be part of the symbols in the first time slot, or may be all symbols in the first time slot .
  • the N first symbols are part of the symbols in the first time slot, there may be some symbols in the symbols occupied by the uplink resources that do not belong to the N first symbols.
  • FIG. 12A to FIG. 12C several possible resource overlap methods are introduced.
  • FIG. 12A is a schematic diagram of a resource overlap method provided by an embodiment of this application. Referring to FIG. 12A, N first symbols occupy part of the symbols in the first time slot, and uplink resources occupy all symbols in the first time slot.
  • FIG. 12B is a schematic diagram of another resource overlap manner provided by an embodiment of this application. Referring to FIG. 12B, N first symbols occupy part of symbols in the first time slot, uplink resources occupy part of symbols in the first time slot, and uplink resources overlap with symbols occupied by PSCCH in the N first symbols.
  • FIG. 12C is a schematic diagram of another resource overlap manner provided by an embodiment of this application.
  • N first symbols occupy part of the symbols in the first time slot
  • uplink resources occupy part of the symbols in the first time slot
  • uplink resources and the first symbol occupied by PSCCH among the N first symbols and PSSCH The occupied part of the first symbol overlaps.
  • FIG. 9A-FIG. 9G, FIG. 10A-FIG. 10G, FIG. 11A-FIG. 11B, and FIG. 12A-FIG. 12C are just examples to illustrate the overlapping manner of side-link resources and uplink resources, and are not related to side-link resources and uplink resources.
  • the overlap mode of the side link resource and the uplink resource can be determined according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the transmission power of the side link may be calculated according to a preset formula corresponding to the side link.
  • the side link transmission power may include the first transmission power of the PSCCH and the second transmission power of the PSSCH.
  • the first transmission power may be calculated using a preset formula corresponding to the PSCCH
  • the second transmission power may be calculated using a preset formula corresponding to the PSSCH.
  • the number of the second transmission power may be one or multiple. For example, when the resource multiplexing mode of the PSCCH resource and the PSSCH resource is as shown in FIG. 8A-FIG. 8B and FIG. 8D-FIG. 8E, the number of the second transmission power is one.
  • the number of second transmission power is two
  • the second transmission power includes the fourth transmission power and the fifth transmission power
  • the fourth transmission power is PSSCH
  • the fifth transmission power is the transmission power of PSSCH on N2 fourth symbols.
  • the first terminal device may calculate the transmission power of the side link according to a preset formula corresponding to the side link, or another device may calculate the transmission power of the side link according to a preset formula corresponding to the side link, and the first terminal device may Other devices obtain the side link transmission power calculated by other devices.
  • the transmission power of the side link can be determined in the following manner.
  • the network device is the base station and the terminal device is the UE as an example for description:
  • the transmission power of data information can be determined by the following methods:
  • the transmission power of the data information is also referred to as the transmission power of the PSSCH.
  • the transmission power of the PSSCH is represented by PPSSCH.
  • Example 1 For SL transmission based on the base station scheduling mode, the terminal device can calculate the PSSCH transmission power according to the following process:
  • the power control signaling in the side link scheduling configured by the base station (or received by the UE) is set to 0, then the PPSSCH satisfies the following formula:
  • P PSSCH P CMAX, PSSCH .
  • the power control signaling field in the side link scheduling configured by the base station (or received by the UE) is set to 1, then the PPSSCH satisfies the following formula:
  • P CMAX and PSSCH are the maximum transmission power of the PSSCH transmission of the UE, and may also refer to the maximum transmission power of the side link transmission of the UE, which can be configured through high-level parameters.
  • M PSSCH is the bandwidth of the PSSCH resource allocated to the sending end UE (or the bandwidth of the PSSCH resource allocated by the base station to the sending end UE.
  • the sending end UE can determine the resource allocated to the sending end UE for sending PSSCH according to the allocation of the base station.
  • the bandwidth that is, the bandwidth of the resource occupied by the PSSCH, can be characterized by the number of resource blocks.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH,1 is configured through high-level parameters, and is associated with the configuration of PSSCH resources. They can be high-level parameters sent by the base station or the operator for the UE.
  • Example 2 For the SL mode independently selected by the UE, the transmitting UE can calculate the PSSCH transmit power according to the following process:
  • P CMAX and PSSCH are the maximum transmission power of the PSSCH transmission of the UE, and may also refer to the maximum transmission power of the side link transmission of the UE, which can be configured through high-level parameters.
  • the M PSSCH is the bandwidth of the PSSCH resource allocated to the UE at the transmitting end, that is, the bandwidth of the resource occupied by the PSSCH, which can be characterized by the number of resource blocks.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH, 2 are configured through high-level parameters, which are related to the configuration of PSSCH resources, and they can be high-level parameters sent by the base station or the operator for the UE.
  • Example 3 For SL transmission based on the base station scheduling mode, the transmitting UE can calculate the PSSCH transmit power according to the following process:
  • P CMAX is the maximum transmission power of the UE.
  • M PSSCH is the bandwidth of the PSSCH resource allocated to the sending end UE (or the bandwidth of the PSSCH resource allocated by the base station to the sending end UE, and the sending end UE can determine the bandwidth allocated by the sending end UE for sending PSSCH resources according to the allocation of the base station), That is, the bandwidth of the resources occupied by the PSSCH can be characterized by the number of resource blocks.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH,3 are configured through high-level parameters and are associated with the configuration of PSSCH resources. They can be high-level parameters sent by the base station or the operator for the UE.
  • Example 4 For the SL mode independently selected by the UE, the transmitting UE can calculate the PSSCH transmit power according to the following process:
  • P CMAX is the maximum transmission power of the UE.
  • the M PSSCH is the bandwidth of the PSSCH resource allocated to the UE at the transmitting end, that is, the bandwidth of the resource occupied by the PSSCH, which can be characterized by the number of resource blocks.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH, 4 are configured through high-level parameters, which are related to the configuration of PSSCH resources, and they can be high-level parameters sent by the base station or the operator for the UE.
  • the UE is configured with a high-level parameter maxTxpower, that is, the high-level parameter indicates the maximum transmit power of the UE, then otherwise,
  • P MAX_CBR is based on the PSSCH priority level and the measured channel busy ratio (CBR) interval can be set to the value of maxTxpower, CBR can refer to the signal power on the available resources exceeding the threshold within a certain period of time The ratio of the value of resources to the total available resources.
  • CBR channel busy ratio
  • the transmission power of SA can be determined in the following ways:
  • the transmission power of the SA can also be referred to as calculating the transmission power of the PSCCH.
  • Example 1 Based on SL transmission in the base station scheduling mode, the transmitting UE can calculate the PSCCH transmission power according to the following process:
  • the power control signaling field in side link scheduling configured by the base station (or received by the UE) is set to 1, then:
  • P CMAX, PSCCH are the maximum transmission power of the PSCCH transmission of the UE, and may also refer to the maximum transmission power of the side link transmission of the UE, which can be configured through high-level parameters.
  • M PSCCH 1.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSCCH,1 is configured through high-level parameters and is associated with the configuration of PSCCH resources. They may be high-level parameters sent by the base station or the operator.
  • Example 2 In the SL mode independently selected by the UE, the transmitting UE can calculate the PSCCH transmit power according to the following process:
  • P CMAX, PSCCH are the maximum transmission power of the PSCCH transmission of the UE, and may also refer to the maximum transmission power of the side link transmission of the UE, which can be configured through high-level parameters.
  • M PSCCH 1.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSCCH,2 are configured through high-level parameters, which are related to the configuration of PSCCH resources, and they can be high-level parameters sent by the base station or the operator.
  • Example 3 Based on the SL transmission scheduled by the base station, the PSSCH and PSCCH are frequency-divided in V2X, so the PSCCH power needs to be considered when determining the PSCCH power.
  • the transmitting UE can calculate the PSCCH transmission power according to the following process:
  • M PSSCH is the bandwidth of the PSSCH resource allocated to the sending end UE (or the bandwidth of the PSSCH resource allocated by the base station to the sending end UE, and the sending end UE can determine the bandwidth allocated by the sending end UE for sending PSSCH resources according to the allocation of the base station), That is, the bandwidth of the resources occupied by the PSSCH can be characterized by the number of resource blocks.
  • M PSCCH 2.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH,3 are configured through high-level parameters, which are related to the configuration of PSSCH resources, and they can be high-level parameters sent by base stations or operators.
  • Example 4 The SL mode independently selected by the UE, the transmitting UE can calculate the PSCCH transmit power according to the following process:
  • P CMAX is the maximum transmission power of PSSCH transmission.
  • PL PL C
  • PL C is the path loss on the carrier C (pathloss).
  • ⁇ PSSCH, 4 are configured through high-level parameters, which are related to the configuration of PSSCH resources, and they can be high-level parameters sent by base stations or operators.
  • the UE is configured with a high-level parameter maxTxpower, that is, the high-level parameter indicates the maximum transmit power of the UE, then
  • P MAX_CBR can be set to the value of maxTxpower according to the priority level of the PSSCH and the measured CBR (channel busy ratio) interval.
  • the obtained side link transmission power and uplink transmission power are both less than or equal to the maximum transmission power of the first terminal device.
  • the total transmission power on any symbol is less than or equal to the maximum transmission power.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is as shown in FIG. 8A-8B
  • the obtained side link transmission power and uplink transmission power are both less than or equal to the maximum transmission power.
  • the sum of the first transmission power and the fourth transmission power is less than or equal to the maximum transmission power
  • the fifth transmission power is less than or equal to the maximum transmission power.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is as shown in FIG. 8D-8E
  • the sum of the first transmission power and the second transmission power is less than or equal to the maximum transmission power.
  • the maximum transmission power of the terminal device in the embodiment of the present application may refer to the maximum transmission power of the terminal device’s uplink transmission, and/or the maximum transmission power of the side link transmission of the terminal device, and/or the terminal The maximum transmission power of the total transmission of the device.
  • the maximum transmission power of the uplink transmission of the terminal device may mean that the transmission power of the uplink transmission cannot be greater than the maximum transmission power of the uplink transmission when the terminal device is performing uplink transmission.
  • the maximum transmission power of the side link transmission of the terminal device may mean that when the terminal device is performing side link transmission, the transmission power of the side link transmission cannot be greater than the maximum transmission power of the side link transmission.
  • the total maximum transmission power of the terminal device may refer to that when the terminal device is transmitting, the total transmission power cannot be greater than the maximum transmission power of the total transmission, for example, when the terminal device has sidelink transmission at the same time
  • the total transmission power of the side link transmission and the uplink transmission cannot be greater than the maximum transmission power of the total transmission. That is, the sum of the power of the side link transmission and the uplink transmission cannot be greater than the maximum transmission power of the total transmission.
  • the maximum transmission power of the terminal device in the embodiment of the present application may be a capability of the terminal device, and the terminal device may report the capability to the network device.
  • the maximum transmission power of the terminal device in the embodiment of the present application may be notified by the network device to the terminal device through signaling, and the transmission power of the terminal device during transmission cannot be greater than the network device notifying the terminal device through signaling Maximum transmission power.
  • the uplink transmission power may be calculated according to a preset formula corresponding to the uplink.
  • the first terminal device may calculate the uplink transmission power according to a preset formula corresponding to the uplink, or another device may calculate the uplink transmission power according to a preset formula corresponding to the uplink, and the first terminal device may Other devices obtain the uplink transmission power calculated by other devices.
  • the uplink transmission power can be determined in the following manner.
  • the network device is the base station and the terminal device is the UE as an example for description:
  • the transmission power of data information can be determined by the following methods:
  • the transmission power of the uplink information may also be referred to as the transmission power of the PUSCH and/or the transmission power of the PUCCH.
  • Example 1 Calculate the transmission power of PUSCH:
  • the parameter set configuration identifier is j
  • the PUSCH power control adjustment status identifier is 1
  • the UE transmission power of the PUSCH at PUSCH transmission time i is P PUSCH, b,f,c (i,j,q d ,l) are:
  • P CMAX,f,c (i) is the configured maximum transmission power to the UE on PUSCH transmission time i, serving cell c, and carrier f;
  • P O_PUSCH,b,f,c (j) is determined by PO_NOMINAL_PUSCH, A parameter composed of the sum of f,c (j) and PO_UE_PUSCH,b,f,c (j), where j ⁇ 0,1,...,J-1 ⁇ .
  • the parameter indicates the p0-PUSCH-AlphaSetId of the uplink BWP b activated by the serving cell c and carrier f of.
  • this set of parameters ⁇ b, f, c (j) is the parameter set corresponding to the identifier P0-PUSCH-AlphaSetId configured to the UE by the base station to activate the uplink BWP b for the serving cell c carrier f
  • the parameter alpha in P0-PUSCH-AlphaSet is determined.
  • PL b, f, c (q d ) is the downlink path loss, in dB, which is calculated by the UE according to the reference signal identifier q d in the active DL BWP of the serving cell c.
  • the downlink reference signal can be SS/PBCH, or CSI-RS, etc.
  • K S 1.25
  • carrier f activates uplink BWP b , BPRE and The calculation is as follows:
  • c is the number of coding blocks
  • K r is the size of coding block r
  • N RE is the number of resource units, which is determined as follows among them, Is the number of PUSCH symbols on the PUSCH transmission time i when the uplink BWP b is activated for the serving cell c carrier f, Is the number of subcarriers on PUSCH symbol j except for DMRS subcarriers and PTRS (phase-tracking RS) subcarriers
  • CSI feedback for no uplink data on PUSCH Q m is the modulation order
  • R is the target code rate, which can be obtained through the indication in the DCI.
  • carrier f activates the uplink BWP b
  • the PUSCH power control adjustment state f b, f, c (i, l) at PUSCH transmission time i: ⁇ PUSCH, b, f, c (i, l) is for The value of the power control command field (a TPC command value) in the DCI at the time i of PUSCH transmission is scheduled on the carrier f of the serving cell c and the uplink BWP b .
  • f b, f, c (i, l) ⁇ PUSCH, b, f, c (i, l) is the active uplink BWP b for serving cell c, carrier f, and PUSCH
  • the PUSCH power control adjustment state at transmission time i. ⁇ PUSCH, b, f, c are the absolute values in Table 3.
  • Table 3 Correspondence between the value of the power control command field in DCI and the absolute value or cumulative value (value of ⁇ PUSCH, b, f, c or value of ⁇ SRS, b, f, c )
  • the UE If the UE transmits PUCCH on the uplink BWP b activated on carrier f of the serving cell c, the UE will use the PUCCH power control modulation status identifier 1, and determine the transmission power of the PUCCH at the time of PUCCH transmission as follows:
  • P CMAX, f, c (i) is the configured maximum transmission power of the UE at the time i of PUCCH transmission on carrier f of the serving cell c.
  • P O_PUCCH, b, f, c (q u ) is a sum of two parts.
  • -PL b, f, c (q d ) is the downlink path loss, in dB, which is calculated by the UE according to the downlink reference signal resource identifier q d in the activated downlink BWP of the serving cell c carrier f.
  • the downlink reference signal can be SS/PBCH, or CSI-RS, etc.
  • the parameter ⁇ F_PUCCH (F) if it is PUCCH format 0, it is determined according to the high layer parameter deltaF-PUCCH-f0. If it is PUCCH format 1, it is determined according to the high layer parameter deltaF-PUCCH-f1. If it is PUCCH format 2, it is determined according to the high layer parameter deltaF-PUCCH-f2. If it is PUCCH format 3, it is determined according to the high layer parameter deltaF-PUCCH-f3. If it is PUCCH format 4, it is determined according to the high layer parameter deltaF-PUCCH-f4.
  • the high-level parameters are sent by the base station to the UE.
  • - ⁇ TF ,b,f,c (i) is the PUCCH transmission power adjustment component on the activated uplink BWP b of carrier f in the serving cell c.
  • ⁇ TF, b, f, c (i) 10 log 10 (K 1 ⁇ (n HARQ-ACK (i)+ O SR (i)+O CSI (i))/N RE (i)), where,
  • -n HARQ-ACK (i) is the number of bits of HARQ-ACK information.
  • -O CSI (i) is the number of bits of CSI information.
  • -N RE (i) is the number of resource units determined by the UE, which is determined as follows: for the serving cell c, carrier f activates the uplink BWP b , among them It is the number of subcarriers in each resource block except the subcarriers transmitted by DMRS. It is the number of symbols other than those transmitted by DMRS.
  • -O ACK (i) is the number of bits of HARQ-ACK information.
  • -O SR (i) is the number of bits of SR (scheduling request) information.
  • -O CSI (i) is the number of bits of CSI information.
  • -O CRC (i) is the number of bits of CRC (cyclic redundancy check) information.
  • -N RE (i) is the number of resource units determined by the UE, which is determined as follows: for the serving cell c, carrier f activates the uplink BWP b , among them It is the number of subcarriers in each resource block except the subcarriers transmitted by DMRS. It is the number of symbols other than those transmitted by DMRS.
  • carrier f activates the uplink BWP b , the PUCCH transmission time i is scheduled, and the PUCCH power control adjustment state g b, f, c (i, l).
  • - ⁇ PUCCH, b, f, c (i, l) is the value of the power control command field (a TPC command value) in the DCI at the scheduling PUCCH transmission time i on the activated uplink BWP b for the serving cell c carrier f.
  • ⁇ PUCCH, b, f, and c are determined in Table 4 below. Is the sum of the values of the power control command field.
  • the base station configures the value of the parameter P O_PUCCH, b, f, c (q u ) to the UE through the higher layer, then
  • carrier f activates the value in the power control command field of PRACH transmission on the uplink BWP b .
  • ⁇ P rampuprequ ested, b, f, and c are provided by high-level parameters, corresponding to the total power of the power ramp from the first sequence to the last sequence transmission, and ⁇ F_PUCCH (F) corresponds to PUCCH format 0 or PUCCH format 1.
  • TPC Command Field Accumulated value (Accumulated ⁇ PUCCH, b, f, c ) [dB] 0 -1 1 0 2 1 3 3
  • the obtained uplink transmission power is less than or equal to the maximum transmission power.
  • the first terminal device determines the actual transmission power of the side link in the first time slot according to the side link transmission power, the uplink transmission power, and the maximum transmission power.
  • the maximum transmission power is the maximum transmission power supported by the terminal device.
  • the actual transmission power of the uplink may also be determined, and the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link may be 0, which means that no side link signal is sent.
  • the actual transmission power of the uplink may be 0, which means that no uplink signal is sent.
  • the actual transmission power of the side link is less than or equal to A times the transmission power of the side link, or the actual transmission power of the side link is greater than or equal to C times the transmission power of the side link
  • the actual transmission of the side link is The power can be 0, where A is a number less than or equal to 1, and C is a number greater than 1, which means that when the actual transmission power scaling of the side link is too large, if the side link signal is transmitted with a smaller power This may result in poor reception performance, so the side link signal may not be sent at this time.
  • the actual transmission power of the uplink is less than or equal to B times the transmission power of the uplink, or the actual transmission power of the side link is greater than or equal to D times the transmission power of the side link
  • the actual transmission of the side link The power can be 0, where B is a number less than or equal to 1, and D is a number greater than 1, which means that when the actual transmission power scaling of the uplink is too large, if the uplink signal is transmitted with a smaller power, it will cause The receiving performance is poor, so the uplink signal may not be sent at this time.
  • the value of A and/or B may be predefined, or may be notified to the terminal device by the network device through signaling, or may be determined in other ways, specifically, this application does not limit this.
  • the transmission power of the side link may include a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission power is The transmission power of the second channel of the side link.
  • the actual transmission power of the side link in the first time slot can be determined by the following two possible implementation modes:
  • the side link transmission power includes the first transmission power of PSCCH and the second transmission power of PSSCH. According to the first transmission power and the second transmission power, determine the third transmission power of the side link in the first time slot; and determine the actual transmission power according to the third transmission power, the uplink transmission power and the maximum transmission power; among them, the side chain
  • the third transmission power of the channel is the same on the N first symbols.
  • the third transmission power is first determined according to the first transmission power and the second transmission power, so that the third transmission power is constant on the N first symbols, and then according to the third transmission power and the maximum transmission power Determine the actual transmission power of the side link so that the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link be constant on the N first symbols, but also the sum of the actual transmission power of the side link and the actual transmission power of the uplink can be less than or equal to the maximum transmission power.
  • the side link transmission power includes the first transmission power of PSCCH and the second transmission power of PSSCH. According to the first transmission power, the second transmission power, the uplink transmission power and the maximum transmission power, determine the seventh transmission power corresponding to the first transmission power and the eighth transmission power corresponding to the second transmission power; according to the seventh transmission power And the eighth transmission power determine the actual transmission power of the side link.
  • the number of the second transmission power may be one or multiple
  • the number of the eighth transmission power corresponding to the second transmission power may also be one or multiple.
  • the eighth transmission power is one.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is shown in Fig. 8C
  • the number of the eighth transmission power is two.
  • the N first symbols include N1 third symbols and N2 fourth symbols, wherein the sum of N1 and N2 is the N, and the N1 is a positive value smaller than the N.
  • the eighth transmission power includes the ninth transmission power corresponding to the fourth transmission power and the tenth transmission power corresponding to the fifth transmission power.
  • the ninth transmission power is the PSSCH in the N1 third symbol (can also be recorded as N3 fifth symbols)
  • the tenth transmission power is the transmission power of the PSSCH on N2 fourth symbols (can also be recorded as N4 sixth symbols).
  • the sum of the ninth transmission power, the tenth transmission power and the uplink transmission power is less than or equal to the maximum transmission power.
  • the seventh transmission power corresponding to the first transmission power and the second transmission power corresponding to the second transmission power are determined.
  • Eight transmission power so that the sum of the transmission power corresponding to each first symbol of the N first symbols is less than or equal to the maximum transmission power, and then the actual transmission power is determined according to the seventh transmission power and the eighth transmission power, so that the actual transmission power is at N
  • the first symbol is constant. In this way, not only can the actual transmission power of the side link be constant on the N first symbols, but also the sum of the actual transmission power of the side link and the actual transmission power of the uplink can be less than or equal to the maximum transmission power.
  • S703 The first terminal device sends the side link signal to the second terminal device according to the actual transmission power of the side link.
  • the sidelink signal may include at least one of SA signal (also called SA), data signal (also called data or data), sidelink feedback signal (also called sidelink feedback information, SFI), SRS, etc. .
  • SA signal also called SA
  • data signal also called data or data
  • sidelink feedback signal also called sidelink feedback information, SFI
  • SRS sidelink feedback information
  • PSCCH is used to carry SA signals
  • PSSCH is used to carry data signals
  • PSFCH is used to carry SFI signals.
  • the first terminal device transmits the SA signal by the actual transmission power, and transmits the data signal by the actual transmission power, that is, the first terminal The device uses the same transmission power to send the SA signal and the data signal, so that the transmission power of the first terminal device on the N first symbols is the same.
  • the first terminal device may also determine the actual transmission power of the uplink, and send an uplink signal to the network device according to the actual transmission power of the uplink.
  • the uplink signal may include one or more of an uplink control signal, an uplink data signal, and SRS.
  • the second terminal device processes the side link signal.
  • the second terminal device may receive the side link signal sent by the first terminal device.
  • the second terminal device may receive the SRS signal sent by the first terminal device, and perform channel estimation according to the SRS signal to obtain channel characteristics.
  • the second terminal device may receive the SFI signal sent by the first terminal device, and determine the feedback information according to the SFI signal, such as determining channel state information and/or ACK/NACK information.
  • the second terminal device may determine the PSSCH resource and the modulation and coding mode according to the SA signal. Furthermore, the second terminal device may demodulate and decode the data signal, and then receive the data signal.
  • the The transmission power of the side link in the first time slot and the uplink transmission power of the uplink in the first time slot, and the first time slot is determined based on the side link transmission power, the uplink transmission power and the maximum transmission power
  • the actual transmission power of the mid-side link makes the actual transmission power of the side link the same on the N first symbols, so that power switching is not required in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or , There is no need to reserve symbols required for power switching in the first time slot, which reduces resource waste and improves signal transmission performance.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • FIG. 13 is a schematic flowchart of a method for determining the actual transmission power of a side link according to an embodiment of the application. Referring to Figure 13, the method may include:
  • the third transmission power of the side link is the same on the N first symbols.
  • the execution subject of the embodiments of the present application may be a terminal device (for example, the first terminal device), or may be a device (for example, a processor, or a chip, etc.) provided in the terminal device.
  • a terminal device for example, the first terminal device
  • a device for example, a processor, or a chip, etc.
  • the methods for determining the third transmission power are different.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is shown in Figs. 8A-8B, that is, the PSCCH and the PSSCH occupy different symbols among the N first symbols.
  • the frequency domain resources of PSCCH and PSSCH may be the same (shown in FIG. 8A), and the frequency domain resources of PSCCH and PSSCH may also be different (shown in FIG. 8B).
  • the third transmission power satisfies one of the following:
  • the third transmission power can be the first transmission power or the second transmission power.
  • the third transmission power may be predefined as the first transmission power or the second transmission power, or the first indication information may be used to indicate that the third transmission power is the first transmission power or the second transmission power.
  • the first indication information may be sent by the network device to the first terminal device.
  • the third transmission power may be the maximum value of the first transmission power and the second transmission power.
  • the third transmission power can be the minimum value of the first transmission power and the second transmission power.
  • the third transmission power may have a first corresponding relationship with the first transmission power and the second transmission power.
  • the weight value of a2 is the weight value of the second transmission power
  • a1 and a2 are numbers between 0 and 1 respectively.
  • a1+a2 1, for example, a1 and a2 may be 0.5 respectively.
  • the third transmission power of the determined side link can be made the same on the N first symbols through the above method, and the third transmission power It is less than or equal to the maximum transmission power, and the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • N first symbols include N1 third symbols and N2 fourth symbols, where the sum of N1 and N2 is N, and N1 is less than N N2 is a positive integer less than N; PSCCH occupies N1 third symbols, and PSSCH occupies N first symbols.
  • the frequency domain resources of the PSCCH overlap with part of the frequency domain resources of the PSSCH.
  • the second transmission power includes the fourth transmission power and the fifth transmission power.
  • the fourth transmission power is the transmission power of the PSSCH on the N1 third symbols
  • the fifth transmission power is the PSSCH on the N2 symbols. Transmission power on the fourth symbol.
  • the third transmission power satisfies one of the following:
  • the third transmission power is the fifth transmission power or the sixth transmission power
  • the sixth transmission power is the sum of the first transmission power and the fourth transmission power.
  • the sixth transmission power is the sum of the transmission power of the PSCCH and the transmission power of the PSSCH on the N1 third symbols.
  • the third transmission power may be predefined as the fifth transmission power or the sixth transmission power, or the second indication information may be used to indicate that the third transmission power is the fifth transmission power or the sixth transmission power.
  • the second indication information may be sent by the network device to the first terminal device.
  • the third transmission power is the maximum value of the fifth transmission power and the sixth transmission power.
  • the third transmission power is the minimum value of the fifth transmission power and the sixth transmission power.
  • There is a second correspondence between the third transmission power and the first transmission power, the fourth transmission power and the fifth transmission power.
  • a1+a5 1.
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is shown in Figure 8D-8E, that is, the PSCCH and the PSSCH occupy different frequency domain resources.
  • the PSCCH and the PSSCH may respectively occupy all of the N first symbols (shown in FIG. 8D), or the PSCCH and/or PSSCH may occupy part of the N first symbols (shown in FIG. 8E).
  • the third transmission power is: the sum of the first transmission power and the second transmission power.
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the uplink transmission power and the maximum transmission power determine the actual transmission power of the side link.
  • the actual transmission power of the side link is the third transmission power
  • the actual transmission power of the uplink is the uplink transmission power
  • the actual transmission power of the side link can be determined by one of the following possible implementation methods:
  • the priority of the uplink signal determines the actual transmission power of the side link, which can include the following two situations:
  • the priority of the side link signal is greater than or equal to (or greater than) the priority of the uplink signal, it is determined that the actual transmission power of the side link is the third transmission power. It can also be determined that the actual transmission power of the uplink is the difference between the maximum transmission power and the third transmission power.
  • the priority of the side link signal is less than (or less than or equal to) the priority of the uplink signal, it is determined that the actual transmission power of the side link is the difference between the maximum transmission power and the uplink transmission power. It can also be determined that the actual uplink transmission power is the uplink transmission power.
  • the transmission power of the signal with higher priority can be guaranteed first, so that the transmission performance of the signal with higher priority is better.
  • the transmission accuracy of high-priority signals can be made higher, and the transmission requirements of high-priority services, such as low latency and high reliability, can be guaranteed.
  • the actual transmission power of the side link is the first product of the third transmission power and the first weight value. It may also be determined that the actual uplink transmission power is the second product of the uplink transmission power and the second weight value. Wherein, the uplink signal corresponds to the second weight value, and the sum of the first product and the second product is less than or equal to the maximum transmission power.
  • the first weight value and the second weight value may be the same or different.
  • the sum of the first weight value and the second weight value is less than 1.
  • the first weight value and the second weight value may be predefined or generated according to the third transmission power and the uplink transmission power.
  • the first weight value and the second weight value can be initialized first (for example, the first weight value and the second weight value are respectively The value is initialized to 1 or 0.5, etc.), and the first weight value and the second weight value are gradually reduced until the sum of the first product and the second product is less than or equal to the maximum transmission power.
  • the third transmission power is reduced according to a preset ratio to obtain the actual transmission power of the side link, and the uplink transmission power is reduced according to the preset ratio to obtain the actual transmission power of the uplink. In this way, it can avoid The actual transmission power of the side link or the actual transmission power of the uplink is too small.
  • the actual transmission power of the side link is the third transmission power or the first difference.
  • the first difference is the difference between the maximum transmission power and the uplink transmission power.
  • the actual transmission power of the side link may be predefined as the third transmission power or the first difference value, or the indication information may be used to indicate that the actual transmission power of the side link is the third transmission power or the first difference value.
  • the instruction information may be sent by the network device to the first terminal device.
  • the actual transmission power of the uplink is the uplink transmission power or the second difference.
  • the second difference is the difference between the maximum transmission power and the third transmission power.
  • the actual uplink transmission power may be predefined as the uplink transmission power or the second difference, or the indication information may be used to indicate that the actual uplink transmission power is the uplink transmission power or the second difference.
  • the instruction information may be sent by the network device to the first terminal device.
  • the actual transmission power of the side link and the actual transmission power of the uplink are indicated by predefined or indication information, and the actual transmission power of the side link and the actual uplink transmission power can be quickly determined. Transmission power.
  • the third transmission power is first determined according to the first transmission power and the second transmission power, so that the third transmission power is constant on the N first symbols, and then according to the third transmission power and the maximum transmission power.
  • the power determines the actual transmission power of the side link so that the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, thereby reducing resource waste and improving signal transmission performance.
  • the signal phase change caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • FIG. 14 is a schematic flowchart of another method for determining the actual transmission power of a side link according to an embodiment of the application. Referring to Figure 14, the method may include:
  • S1401 according to the first transmission power, the second transmission power, the uplink transmission power, and the maximum transmission power, determine the seventh transmission power corresponding to the first transmission power and the eighth transmission power corresponding to the second transmission power.
  • the execution subject of the embodiments of the present application may be a terminal device (for example, the first terminal device), or may be a device (for example, a processor, or a chip, etc.) provided in the terminal device.
  • a terminal device for example, the first terminal device
  • a device for example, a processor, or a chip, etc.
  • the method of determining the seventh transmission power is also different, which may include the following possible implementation modes:
  • a possible implementation manner the first symbol occupied by the PSCCH does not overlap with the uplink resource.
  • the seventh transmission power is the same as the first transmission power.
  • the first symbol occupied by the PSCCH does not overlap with the uplink resource, and the seventh transmission power is the same as the first transmission power.
  • Another possible implementation manner the first symbol occupied by the PSCCH overlaps with the uplink resource.
  • the seventh transmission power is the same as the first transmission power . If the sum of the first transmission power and the uplink transmission power is greater than the maximum transmission power, the seventh transmission power may be determined by referring to any one of the three possible implementation manners shown in S1302, which will not be repeated here.
  • the seventh transmission power is the same as the first transmission power. If the sum of the first transmission power, the fourth transmission power, and the uplink transmission power is greater than the maximum transmission power, the seventh transmission power can be determined by referring to any one of the three possible implementation manners shown in S1302. Let me repeat.
  • the seventh transmission power Same as the first transmission power. If the sum of the first transmission power, the second transmission power, and the uplink transmission power is greater than the maximum transmission power, the seventh transmission power can be determined by referring to any one of the three possible implementation manners shown in S1302. Let me repeat.
  • the method of determining the eighth transmission power is also different, which may include one of the following possible implementation modes:
  • a possible implementation manner the first symbol occupied by the PSCCH does not overlap with the uplink resource.
  • the eighth transmission power is the same as the second transmission power.
  • the eighth transmission power is the same as the second transmission power.
  • Another possible implementation manner the first symbol occupied by the PSCCH overlaps with the uplink resource.
  • the eighth transmission power is the same as the second transmission power . If the sum of the second transmission power and the uplink transmission power is greater than the maximum transmission power, the eighth transmission power may be determined by referring to any one of the three possible implementation manners shown in S1302, which will not be repeated here.
  • the second transmission power includes the fourth transmission power and the fifth transmission power
  • the eighth transmission power includes the ninth transmission power and the tenth transmission power (see S701 Description in)
  • the ninth transmission power is the same as the fourth transmission power. If the sum of the first transmission power, the fourth transmission power, and the uplink transmission power is greater than the maximum transmission power, the ninth transmission power can be determined by referring to any one of the three possible implementation manners shown in S1302. Let me repeat.
  • the tenth transmission power is the same as the fifth transmission power. If the sum of the fifth transmission power and the uplink transmission power is greater than the maximum transmission power, the tenth transmission power may be determined by referring to any one of the three possible implementation manners shown in S1302, which will not be repeated here.
  • the eighth transmission power and The second transmission power is the same. If the sum of the first transmission power, the second transmission power, and the uplink transmission power is greater than the maximum transmission power, the eighth transmission power can be determined by referring to any one of the three possible implementation manners shown in S1302. Let me repeat.
  • the actual transmission power of the uplink may also be determined. If in the above process of determining the seventh transmission power and determining the eighth transmission power, the total transmission power on the first symbol of the N first symbols (the transmission power of the side link and the uplink transmission power) can be made without reducing the uplink transmission power. If the sum of transmission power is less than or equal to the maximum transmission power, it can be determined that the actual transmission power of the uplink is the uplink transmission power.
  • the uplink transmission power needs to be adjusted so that the total transmission power on each first symbol in the N first symbols is less than or equal to the maximum transmission power, then the uplink The actual transmission power of the channel is the adjusted uplink transmission power.
  • the adjusted uplink transmission power is the difference between the maximum transmission power and the seventh transmission power
  • the adjusted uplink transmission power is the difference between the maximum transmission power and the eighth transmission power
  • the adjusted uplink transmission power It is the difference between the maximum transmission power and the sum of the seventh transmission power and the eighth transmission power.
  • S1402 Determine the actual transmission power of the side link according to the seventh transmission power and the eighth transmission power.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is shown in Figs. 8A-8B, that is, the PSCCH and the PSSCH occupy different symbols among the N first symbols.
  • the frequency domain resources of PSCCH and PSSCH may be the same (shown in FIG. 8A), and the frequency domain resources of PSCCH and PSSCH may also be different (shown in FIG. 8B).
  • the actual transmission power of the side link meets one of the following:
  • the actual transmission power is the seventh transmission power or the eighth transmission power.
  • the actual transmission power may be predefined as the seventh transmission power or the eighth transmission power, or the third indication information may be used to indicate that the actual transmission power is the seventh transmission power or the eighth transmission power.
  • the third indication information may be sent by the network device to the first terminal device.
  • the actual transmission power is the maximum value of the seventh transmission power and the eighth transmission power.
  • the actual transmission power is the minimum value of the seventh transmission power and the eighth transmission power.
  • There is a third correspondence between the actual transmission power and the seventh transmission power and the eighth transmission power.
  • the weight value a8 is the weight value of the eighth transmission power
  • a7 and a8 are numbers between 0 and 1 respectively.
  • a7+a8 1, for example, a7 and a8 may be 0.5 respectively.
  • the actual transmission power of the determined side link can be made the same on the N first symbols through the above method, and the above determined side chain
  • the way of the actual transmission power of the road is simple and convenient, which makes the determination of the actual transmission power of the side link more efficient.
  • N first symbols include N3 fifth symbols and N4 sixth symbols, where the sum of N3 and N4 is N, and N3 is less than N N4 is a positive integer less than N; PSCCH occupies N3 fifth symbols, and PSSCH occupies N first symbols.
  • the frequency domain resources of the PSCCH overlap with part of the frequency domain resources of the PSSCH.
  • the eighth transmission power includes the ninth transmission power and the tenth transmission power
  • the ninth transmission power is the second channel on N3 fifth symbols (can also be recorded as N1 third symbols)
  • the tenth transmission power is the transmission power of the second channel on N4 sixth symbols (can also be recorded as N2 fourth symbols).
  • the actual transmission power of the side link meets one of the following:
  • the actual transmission power is the tenth transmission power or the eleventh transmission power
  • the eleventh transmission power is the sum of the seventh transmission power and the ninth transmission power; for example, the actual transmission power can be predefined as the tenth transmission power or the tenth transmission power.
  • Transmission power Alternatively, the fourth indication information may indicate that the actual transmission power is the tenth transmission power or the eleventh transmission power. The fourth indication information may be sent by the network device to the first terminal device.
  • the actual transmission power is the maximum value of the tenth transmission power and the eleventh transmission power.
  • the actual transmission power is the minimum value of the tenth transmission power and the eleventh transmission power.
  • a7 is equal to a9
  • a7+a10 1.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the resource multiplexing mode of the PSCCH resource and the PSSCH resource is shown in Figure 8D-8E, that is, the PSCCH and the PSSCH occupy different frequency domain resources.
  • the PSCCH and the PSSCH may respectively occupy all of the N first symbols (shown in FIG. 8D), or the PSCCH and/or PSSCH may occupy part of the N first symbols (shown in FIG. 8E).
  • the actual transmission power is the sum of the seventh transmission power and the eighth transmission power.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the seventh transmission power corresponding to the first transmission power and the seventh transmission power corresponding to the second transmission power are determined according to the first transmission power, the second transmission power, the uplink transmission power, and the maximum transmission power. Eighth transmission power, so that the total transmission power corresponding to each first symbol is less than or equal to the maximum transmission power, and then the actual transmission power is determined according to the seventh transmission power and the eighth transmission power, so that the actual transmission power is on the N first symbols Constant.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, reducing resource waste and improving signal transmission performance .
  • the phase change of the signal caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation according to the received pilot, and then The side link signal sent by the first terminal device on the N first symbols can be accurately received, which improves the signal reception performance of the second terminal device.
  • the terminal device can determine the actual transmission power of the side link by using the method shown in the embodiment of FIG. 13 or FIG. 14.
  • the method for determining the actual transmission power of the side link is selected according to the PSCCH resource and the resource multiplexing mode of the PSCCH resource.
  • the resource multiplexing mode is shown in FIG. 8A to FIG. 8B
  • the actual transmission power of the side link is determined by the method shown in the embodiment of FIG. 14.
  • the resource multiplexing mode is as shown in FIG. 8C to FIG. 8E
  • the actual transmission power of the side link is determined by the method shown in the embodiment of FIG. 13. This can improve the performance of power adjustment and reduce processing complexity.
  • a method for determining the actual transmission power of the side link is selected according to the resource overlap of the side link resource and the uplink resource. For example, when the uplink resource overlaps with one of the PSCCH resource and the PSSCH resource, the actual transmission power of the side link is determined by the method shown in the embodiment of FIG. 14. When the uplink resource overlaps the PSCCH resource and the PSSCH resource, the actual transmission power of the side link is determined by the method shown in the embodiment of FIG. 13. It can improve the performance of power adjustment and reduce processing complexity.
  • the method for determining the actual transmission power of the side link is selected according to the transmission mode.
  • the transmission mode is side link unicast transmission
  • the actual transmission power of the side link is determined by the method shown in the embodiment of FIG. 14.
  • the transmission mode is side-link multicast transmission or side-link broadcast transmission
  • the actual transmission power of the side-link is determined by the method shown in the embodiment of FIG. 13.
  • the transmission type of the side link may include one or more of unicast, multicast and broadcast.
  • unicast transmission may refer to communication between one terminal and another terminal.
  • Multicast (groupcast) transmission may refer to communication between a terminal and a group of terminals.
  • Broadcast transmission may refer to communication between one terminal and multiple terminals.
  • broadcast may refer to communication between one terminal and all terminals in a cell, or understood as communication between one terminal and multiple groups of terminals.
  • the transmission type of the side link may also correspond to the service type, for example, it may include one or more of unicast service, multicast service and broadcast service.
  • the method for determining the actual transmission power of the side link is selected according to the path loss calculation method.
  • the side link path loss calculation method may refer to determining the transmission power of the side link signal according to the path loss between the transmitting end UE and the base station, or determining the side link signal according to the path loss between the transmitting end UE and the receiving end UE The transmit power of the signal.
  • the actual transmission power of the side link may be determined according to the method shown in the embodiment of FIG. 14.
  • the transmission of the side link signal is to determine the transmission power of the side link signal according to the path loss between the sending end UE and the receiving end UE
  • the actual transmission power of the side link can be determined according to the method shown in the embodiment of FIG. 13.
  • the method of determining the actual transmission power of the side link can be selected according to the resource multiplexing method and the transmission method.
  • the resource multiplexing mode is shown in FIGS. 8A to 8B and the transmission mode is unicast transmission
  • the actual transmission power of the side link is determined according to the method shown in the embodiment of FIG. 14.
  • the resource multiplexing mode is shown in FIG. 8C to FIG. 8E and the transmission mode is unicast
  • the actual transmission power of the side link is determined according to the method shown in the embodiment of FIG. 13.
  • the resource multiplexing mode is shown in FIGS.
  • the actual transmission power of the side link is determined according to the method shown in the embodiment of FIG. 13.
  • the resource multiplexing mode is shown in FIG. 8C to FIG. 8E and the transmission mode is multicast or broadcast
  • the actual transmission power of the side link is determined according to the method shown in the embodiment of FIG. 13. It can improve the performance of power adjustment and reduce processing complexity.
  • the terminal device sends to the network device the method used by the terminal device to determine the actual transmission power of the side link, so that the network device can determine the received power of the received side link signal.
  • the terminal device may report to the network device that it uses the method shown in the embodiment of FIG. 13 to determine the actual transmission power of the side link, or the terminal device may report to the network device that it uses the method shown in the embodiment of FIG. The actual transmission power of the road.
  • the terminal device sends to the network device: whether the terminal device supports the ability to determine the actual transmission power of the side link using the method shown in the above embodiment of FIG. 13 and whether the terminal device supports the use of the method shown in the above embodiment of FIG. 14
  • the method determines the ability of the actual transmission power of the side link. For example, when the terminal device reports that it supports the ability to determine the actual transmission power of the side link using the method shown in the above-mentioned embodiment of FIG. 13, the terminal device can determine the actual transmission power of the side link using the method shown in the above-mentioned embodiment of FIG. 13 power. When the terminal device reports its ability to support the determination of the actual transmission power of the side link by using the method shown in the above embodiment of FIG.
  • the terminal device can determine the actual transmission power of the side link by using the method shown in the above embodiment of FIG. 14.
  • the network device can determine the processing mode and ability of the terminal for the uplink and the side link, obtain the received power of the received side link signal and/or better realize the scheduling of the uplink and the side link And communication.
  • the terminal device sends to the network device: the terminal device supports the ability to simultaneously send the uplink signal and the side link signal when the uplink resource and the side link resource do not completely overlap, or the terminal device does not support the ability to transmit the uplink signal and the side link signal at the same time.
  • the terminal device can simultaneously transmit uplink signals when the uplink resources and sidelink resources do not completely overlap. Signal and side link signal.
  • the terminal device can only transmit at the same time when uplink resources and sidelink resources completely overlap.
  • Uplink signal and side link signal can determine the processing mode and ability of the terminal for the uplink and the side link, obtain the received power of the received side link signal and/or better realize the scheduling of the uplink and the side link And communication.
  • the terminal device sends to the network device: the resource multiplexing mode supported by the terminal device (for example, one or more of the resource multiplexing modes shown in FIG. 8A-8E), and the resource overlap supported by the terminal device Circumstances (one or more of FIGS. 9A-9G, 10A-10G, 11A-11B, and 12A-12C).
  • the network device can determine the processing mode and ability of the terminal for the uplink and the side link, obtain the received power of the received side link signal and/or better realize the scheduling of the uplink and the side link And communication.
  • the actual transmission power of the side link and/or the actual transmission power of the uplink may be determined according to the priority transmission principle.
  • this embodiment may be independent of other embodiments, or may also be combined with other embodiments. Specifically, this application does not limit this.
  • the actual transmission power of the side link is equal to the third transmission power
  • the third transmission power is based on the first transmission power.
  • the smaller value of the first difference where the first difference is the difference between the maximum transmission power of the terminal device and the uplink transmission power.
  • the side link signal in the first time slot, may be transmitted first, and then the uplink signal, for example, as shown in FIG. 9B-FIG. 9C.
  • the first time slot assuming that the side link signal has been transmitted according to the third transmission power before the uplink signal is transmitted, it can be determined that the actual transmission power of the side link is equal to the third transmission power.
  • the determination method of the third transmission power refer to S1301, which will not be repeated here. In this way, power switching in the first time slot can be avoided.
  • the uplink signal in the first time slot, may be transmitted first, and then the side link signal may be transmitted, for example, as shown in FIGS. 12A-12C.
  • the actual transmission power of the side link is equal to the smaller of the third transmission power and the first difference.
  • the first difference is the difference between the maximum transmission power and the uplink transmission power, so that power switching in the first time slot can be avoided.
  • the actual transmission power of the side link can also be determined according to the priority of the uplink and the priority of the side link.
  • the actual transmission power of the side link is equal to the third transmission power. If the priority of the side link is less than the priority of the uplink, the actual transmission power of the side link is equal to zero, or the actual transmission power of the side link is equal to the smaller of the third transmission power and the first difference,
  • the first difference is the difference between the maximum transmission power of the terminal device and the uplink transmission power.
  • one or more of the uplink transmission power or the side link transmission power may be adjusted to make the total transmission power on the N first symbols in one time slot constant.
  • the total transmission power on the first symbol may be made smaller than or equal to the maximum transmission power of the terminal device.
  • the uplink transmission power or the side link transmission power can be adjusted according to the priority of the uplink signal and the priority of the side link signal. For example, when the priority of the uplink signal is greater than or equal to the priority of the side link signal, Then the side link transmission power is reduced first, and when the priority of the uplink signal is less than the priority of the side link signal, the uplink transmission power is reduced first.
  • the transmission power of PSSCH or PSCCH can be reduced, so that the transmission power of PSSCH and uplink transmission power It is equal to the transmission power of the PSCCH, so that the total transmission power on the N first symbols is constant.
  • the transmission power of the PSSCH on the overlapped symbols can be reduced, so that the uplink transmission power on the overlapped symbols and the PSSCH
  • the sum of the transmission power is equal to the transmission power of the PSSCH on the non-overlapping symbols and equal to the transmission power of the PSCCH, thereby making the total transmission power on the N first symbols constant.
  • the transmission power of PSCCH can be reduced, so that the sum of the transmission power of the uplink and the transmission power of PSCCH is equal to the transmission of PSSCH Power, thereby making the total transmission power constant on the N first symbols.
  • the time domain resources for uplink transmission and the time domain resources for side link transmission may be predefined to completely overlap (ie, the resource overlap situation shown in FIG. 9A or FIG. 10A or FIG. 11A). That is, in one time slot, the symbol position occupied by uplink transmission is the same as the symbol position occupied by side link transmission.
  • the pre-definition in this application can be understood as definition, pre-defined, protocol pre-defined, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-burning.
  • the embodiments of the present application also provide corresponding devices, and the devices include corresponding modules for executing the foregoing embodiments.
  • the module can be software, hardware, or a combination of software and hardware.
  • FIG. 15 is a schematic structural diagram of a device provided by this application.
  • the apparatus 1500 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. Or processor, etc.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the apparatus 1500 may include one or more processors 1501, and the processor 1501 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 1501 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Software program data.
  • the processor 1501 may also store instructions and/or data 1503, and the instructions and/or data 1503 may be executed by the processor, so that the apparatus 1500 executes the above method embodiments. Described method.
  • the processor 1501 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and sending functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the apparatus 1500 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the device 1500 may include one or more memories 1502, on which instructions 1504 may be stored, and the instructions may be executed on the processor, so that the device 1500 executes the foregoing method embodiments Described method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together. For example, the corresponding relationship described in the foregoing method embodiment may be stored in a memory or in a processor.
  • the device 1500 may further include a transceiver 1505 and/or an antenna 1506.
  • the processor 1501 may be called a processing unit, and controls the device 1500.
  • the transceiver 1505 may be called a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., for implementing the transceiver function.
  • an apparatus 1500 may include a processor 1501.
  • the processor 1501 is configured to obtain side link transmission power and uplink transmission power, where the side link transmission power is the transmission power of the side link in the first time unit, and the uplink transmission power is the transmission power in the first time unit. Uplink transmission power; and, according to the side link transmission power, the uplink transmission power, and the maximum transmission power, determine the actual transmission power of the side link in the first time unit; wherein, the The first time unit includes N first sub-time units, and M second sub-time units in the N first sub-time units overlap with uplink resources, where N is an integer greater than 1, and M is less than Or a positive integer equal to N, the N first sub-time units are sub-time units used for the side link transmission in the first time unit, and the actual transmission power of the side link is The N first sub-time units are the same.
  • the side link signal before the side link signal is transmitted on the N first symbols of the first time slot, if the M second symbols of the N first symbols overlap with the uplink resource, then the The transmission power of the side link in the first time slot and the uplink transmission power of the uplink in the first time slot, and determine the side link in the first time slot according to the side link transmission power, the uplink transmission power and the maximum transmission power
  • the actual transmission power of the side link is the same on the N first symbols, so that power switching is not required in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or it is not necessary to
  • the symbols required for power switching are reserved in a time slot, which reduces resource waste and improves signal transmission performance.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the side link transmission power includes a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission power is the transmission power of the second channel of the side link.
  • the processor 1501 is specifically configured to: determine the third transmission power of the side link in the first time unit according to the first transmission power and the second transmission power; And, determining the actual transmission power according to the third transmission power, the uplink transmission power and the maximum transmission power; wherein the third transmission power of the side link is in the N first The same in sub-time units.
  • the actual transmission power is such that the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, thereby reducing resource waste and improving signal transmission performance.
  • the signal phase change caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the first transmission power or the second transmission power
  • the third transmission power is the maximum value of the first transmission power and the second transmission power
  • the third transmission power is the minimum value of the first transmission power and the second transmission power; or,
  • the third transmission power has a first corresponding relationship with the first transmission power and the second transmission power.
  • the third transmission power of the determined side link can be made the same on the N first symbols through the above method, and the third transmission power It is less than or equal to the maximum transmission power, and the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the first channel and the second channel occupy different frequency domain resources
  • the third transmission power is: the sum of the first transmission power and the second transmission power.
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the N first sub-time units include N1 third sub-time units and N2 fourth sub-time units, where the sum of N1 and N2 is the N ,
  • the N1 is a positive integer less than the N
  • the N2 is a positive integer less than the N;
  • the first channel occupies the N1 third sub-time units, and the second channel occupies the N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the second transmission power includes a fourth transmission power and a fifth transmission power, the fourth transmission power is the transmission power of the second channel on the N1 third sub-time units, and the fifth transmission power Is the transmission power of the second channel on the N2 fourth sub-time units;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the fifth transmission power or the sixth transmission power, and the sixth transmission power is the sum of the first transmission power and the fourth transmission power;
  • the third transmission power is the maximum value of the fifth transmission power and the sixth transmission power
  • the third transmission power is the minimum value of the fifth transmission power and the sixth transmission power; or,
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the processor 1501 is specifically configured to:
  • a seventh transmission power corresponding to the first transmission power and a seventh transmission power corresponding to the second transmission power are determined Corresponding eighth transmission power; determining the actual transmission power of the side link according to the seventh transmission power and the eighth transmission power.
  • the seventh transmission power corresponding to the first transmission power and the eighth transmission power corresponding to the second transmission power are determined,
  • the total transmission power corresponding to each first symbol is less than or equal to the maximum transmission power, and the actual transmission power is determined according to the seventh transmission power and the eighth transmission power, so that the actual transmission power is constant on the N first symbols.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, reducing resource waste and improving signal transmission performance .
  • the phase change of the signal caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation according to the received pilot, and then The side link signal sent by the first terminal device on the N first symbols can be accurately received, which improves the signal reception performance of the second terminal device.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the seventh transmission power or the eighth transmission power
  • the actual transmission power is the maximum value of the seventh transmission power and the eighth transmission power
  • the actual transmission power is the minimum value of the seventh transmission power and the eighth transmission power; or,
  • the actual transmission power of the determined side link can be made the same on the N first symbols through the above method, and the above determined side chain
  • the way of the actual transmission power of the road is simple and convenient, which makes the determination of the actual transmission power of the side link more efficient.
  • the first channel and the second channel occupy different frequency domain resources
  • the actual transmission power is: the sum of the seventh transmission power and the eighth transmission power.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the N first sub-time units include N3 fifth sub-time units and N4 sixth sub-time units, where the sum of N3 and N4 is the N ,
  • the N3 is a positive integer less than the N
  • the N4 is a positive integer less than the N;
  • the first channel occupies the N3 fifth sub-time units, and the second channel occupies the N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the eighth transmission power includes a ninth transmission power and a tenth transmission power, the ninth transmission power is the transmission power of the second channel on the N3 fifth sub-time units, and the tenth transmission power Is the transmission power of the second channel on the N4 sixth sub-time units;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the tenth transmission power or the eleventh transmission power, and the eleventh transmission power is the sum of the seventh transmission power and the ninth transmission power;
  • the actual transmission power is the maximum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power is the minimum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • an apparatus 500 may include a processor 501 and a transceiver 505.
  • the apparatus 1500 can also implement the methods shown in the embodiments of FIG. 7, FIG. 13, and FIG. 14 in the embodiments of the present application.
  • an apparatus 1500 may include a processor 1501 and a transceiver 1502.
  • the transceiver 1502 is configured to receive the side link signal from the first terminal device on the first sub-time unit of the first time unit, the actual transmission power of the side link signal, the side link transmission power, and the uplink transmission power Related to the maximum transmission power, the side link transmission power is the side link transmission power of the first terminal device in the first time unit, and the uplink transmission power is the transmission power of the first terminal device in the first time unit.
  • the uplink transmission power in the first time unit where the first time unit includes N first sub-time units, and M second sub-time units among the N first sub-time units and uplink resources Overlap, the N is an integer greater than 1, the M is a positive integer less than or equal to the N, and the actual transmission power of the side link signal is the same in the N first sub-time units.
  • the processor 1501 is configured to process the side link signal.
  • the first terminal device before the sidelink signal is transmitted on the N first symbols of the first time slot, if M second symbols of the N first symbols overlap with the uplink resources, the first terminal device first acquires the The transmission power of the side link in a time slot and the uplink transmission power of the uplink in the first time slot, and the transmission power of the side link, the uplink transmission power and the maximum transmission power are used to determine the The actual transmission power of the side link, and according to the actual transmission power, the side link signal is sent to the second terminal device on the first sub-time unit of the first time unit, so that the actual transmission power of the side link is within N first symbols.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the side link transmission power includes a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission The power is the transmission power of the second channel of the side link.
  • the device 1500 may also implement the method shown in the embodiment of FIG. 7 in the embodiment of the present application.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the device described in the above embodiment may be a network device or a terminal device, but the scope of the device described in this application is not limited to this, and the structure of the device may not be limited by FIG. 15.
  • the device can be a standalone device or can be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 16 is a schematic structural diagram of a terminal device provided by this application.
  • the terminal device can be applied to the scenario shown in FIG. 1 or FIG. 2.
  • FIG. 16 only shows the main components of the terminal device.
  • the terminal device 1600 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 16 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 16 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiving function can be regarded as the transceiving unit 1611 of the terminal device 1600
  • the processor with the processing function can be regarded as the processing unit 1612 of the terminal device 1600.
  • the terminal device 1600 includes a transceiver unit 1611 and a processing unit 1612.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1611 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1611 as the sending unit, that is, the transceiver unit 1611 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • FIG. 17 is a schematic structural diagram of another device provided by an embodiment of the application.
  • the device 1700 may be a terminal or a component of the terminal (for example, an integrated circuit, a chip, etc.).
  • the device may also be a network device, or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the device may also be another communication module, which is used to implement the method in the method embodiment of the present application.
  • the apparatus 1700 may include: a processing module 1702 (processing unit).
  • it may also include a transceiver module 1701 (transceiver unit) and a storage module 1703 (storage unit).
  • one or more modules as shown in Figure 17 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors It can be implemented with a transceiver; or implemented by one or more processors, memories, and transceivers, which is not limited in the embodiment of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the device has the function of realizing the terminal device described in the embodiment of this application.
  • the device includes a terminal device to execute the module or unit or means corresponding to the step related to the terminal device described in the embodiment of this application.
  • the function Or a unit or means (means) can be implemented by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • a unit or means can be implemented by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • the device has the function of implementing the network device described in the embodiment of this application.
  • the device includes the module or unit or means corresponding to the network device executing the steps involved in the network device described in the embodiment of this application.
  • the functions or units or means (means) can be realized by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • each module in the device 1700 in the embodiment of the present application may be used to execute the method described in FIG. 7, FIG. 13, or FIG. 14 in the embodiment of the present application.
  • an apparatus 1700 may include a processing module 1702.
  • the processing module 1702 is configured to obtain side link transmission power and uplink transmission power, where the side link transmission power is the transmission power of the side link in the first time unit, and the uplink transmission power is the transmission power in the first time unit. Uplink transmission power; and, according to the side link transmission power, the uplink transmission power, and the maximum transmission power, determine the actual transmission power of the side link in the first time unit; wherein, the The first time unit includes N first sub-time units, and M second sub-time units in the N first sub-time units overlap with uplink resources, where N is an integer greater than 1, and M is less than Or a positive integer equal to N, the N first sub-time units are sub-time units used for the side link transmission in the first time unit, and the actual transmission power of the side link is The N first sub-time units are the same.
  • the side link signal before the side link signal is transmitted on the N first symbols of the first time slot, if the M second symbols of the N first symbols overlap with the uplink resource, then the The transmission power of the side link in the first time slot and the uplink transmission power of the uplink in the first time slot, and determine the side link in the first time slot according to the side link transmission power, the uplink transmission power and the maximum transmission power
  • the actual transmission power of the side link is the same on the N first symbols, so that power switching is not required in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or it is not necessary to
  • the symbols required for power switching are reserved in a time slot, which reduces resource waste and improves signal transmission performance.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the side link transmission power includes a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission power is the transmission power of the second channel of the side link.
  • the processing module 1702 is specifically configured to: determine the third transmission power of the side link in the first time unit according to the first transmission power and the second transmission power; And, determining the actual transmission power according to the third transmission power, the uplink transmission power and the maximum transmission power; wherein the third transmission power of the side link is in the N first The same in sub-time units.
  • the actual transmission power is such that the sum of the actual transmission power of the side link and the actual transmission power of the uplink is less than or equal to the maximum transmission power.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, thereby reducing resource waste and improving signal transmission performance.
  • the signal phase change caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the first transmission power or the second transmission power
  • the third transmission power is the maximum value of the first transmission power and the second transmission power
  • the third transmission power is the minimum value of the first transmission power and the second transmission power; or,
  • the third transmission power has a first corresponding relationship with the first transmission power and the second transmission power.
  • the third transmission power of the determined side link can be made the same on the N first symbols through the above method, and the third transmission power It is less than or equal to the maximum transmission power, and the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the first channel and the second channel occupy different frequency domain resources
  • the third transmission power is: the sum of the first transmission power and the second transmission power.
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • the N first sub-time units include N1 third sub-time units and N2 fourth sub-time units, where the sum of N1 and N2 is the N ,
  • the N1 is a positive integer less than the N
  • the N2 is a positive integer less than the N;
  • the first channel occupies the N1 third sub-time units, and the second channel occupies the N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the second transmission power includes a fourth transmission power and a fifth transmission power, the fourth transmission power is the transmission power of the second channel on the N1 third sub-time units, and the fifth transmission power Is the transmission power of the second channel on the N2 fourth sub-time units;
  • the third transmission power satisfies one of the following:
  • the third transmission power is the fifth transmission power or the sixth transmission power, and the sixth transmission power is the sum of the first transmission power and the fourth transmission power;
  • the third transmission power is the maximum value of the fifth transmission power and the sixth transmission power
  • the third transmission power is the minimum value of the fifth transmission power and the sixth transmission power; or,
  • the determined third transmission power of the side link can be made the same on the N first symbols through the above method, and the third transmission power is less than or equal to the maximum transmission power, and
  • the foregoing method of determining the third transmission power is simple and convenient, so that the efficiency of determining the third transmission power is relatively high.
  • processing module 1702 is specifically configured to:
  • a seventh transmission power corresponding to the first transmission power and a seventh transmission power corresponding to the second transmission power are determined Corresponding eighth transmission power; determining the actual transmission power of the side link according to the seventh transmission power and the eighth transmission power.
  • the seventh transmission power corresponding to the first transmission power and the eighth transmission power corresponding to the second transmission power are determined,
  • the total transmission power corresponding to each first symbol is less than or equal to the maximum transmission power, and the actual transmission power is determined according to the seventh transmission power and the eighth transmission power, so that the actual transmission power is constant on the N first symbols.
  • the actual transmission power of the side link can be made constant on the N first symbols, so that There is no need to perform power switching in the first time slot, thereby reducing the processing complexity of the terminal equipment, and/or there is no need to reserve symbols required for power switching in the first time slot, reducing resource waste and improving signal transmission performance .
  • the phase change of the signal caused by the power jump is avoided, so that the second terminal device can accurately perform channel estimation according to the received pilot, and then The side link signal sent by the first terminal device on the N first symbols can be accurately received, which improves the signal reception performance of the second terminal device.
  • the first channel and the second channel occupy different sub-time units among the N first sub-time units;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the seventh transmission power or the eighth transmission power
  • the actual transmission power is the maximum value of the seventh transmission power and the eighth transmission power
  • the actual transmission power is the minimum value of the seventh transmission power and the eighth transmission power; or,
  • the actual transmission power of the determined side link can be made the same on the N first symbols through the above method, and the above determined side chain
  • the way of the actual transmission power of the road is simple and convenient, which makes the determination of the actual transmission power of the side link more efficient.
  • the first channel and the second channel occupy different frequency domain resources
  • the actual transmission power is: the sum of the seventh transmission power and the eighth transmission power.
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • the N first sub-time units include N3 fifth sub-time units and N4 sixth sub-time units, where the sum of N3 and N4 is the N ,
  • the N3 is a positive integer less than the N
  • the N4 is a positive integer less than the N;
  • the first channel occupies the N3 fifth sub-time units, and the second channel occupies the N first sub-time units;
  • the frequency domain resources of the first channel overlap with part of the frequency domain resources of the second channel;
  • the eighth transmission power includes a ninth transmission power and a tenth transmission power, the ninth transmission power is the transmission power of the second channel on the N3 fifth sub-time units, and the tenth transmission power Is the transmission power of the second channel on the N4 sixth sub-time units;
  • the actual transmission power satisfies one of the following:
  • the actual transmission power is the tenth transmission power or the eleventh transmission power, and the eleventh transmission power is the sum of the seventh transmission power and the ninth transmission power;
  • the actual transmission power is the maximum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power is the minimum value of the tenth transmission power and the eleventh transmission power
  • the actual transmission power of the side link obtained by the above method can be made the same on the N first symbols, and the above method of determining the actual transmission power of the side link is simple Convenient, so that the efficiency of determining the actual transmission power of the side link is higher.
  • an apparatus 500 may include a processor 501 and a transceiver 505.
  • the apparatus 1700 may also implement the methods shown in the embodiments of FIG. 7, FIG. 13, and FIG. 14 in the embodiments of the present application.
  • an apparatus 1500 may include: a processing module 1702 and a transceiver 1502.
  • the transceiver 1502 is configured to receive the side link signal from the first terminal device on the first sub-time unit of the first time unit, the actual transmission power of the side link signal, the side link transmission power, and the uplink transmission power Related to the maximum transmission power, the side link transmission power is the side link transmission power of the first terminal device in the first time unit, and the uplink transmission power is the transmission power of the first terminal device in the first time unit.
  • the uplink transmission power in the first time unit where the first time unit includes N first sub-time units, and M second sub-time units among the N first sub-time units and uplink resources Overlap, the N is an integer greater than 1, the M is a positive integer less than or equal to the N, and the actual transmission power of the side link signal is the same in the N first sub-time units.
  • the processing module 1702 is configured to process the side link signal.
  • the first terminal device before the sidelink signal is transmitted on the N first symbols of the first time slot, if M second symbols of the N first symbols overlap with the uplink resources, the first terminal device first acquires the The transmission power of the side link in a time slot and the uplink transmission power of the uplink in the first time slot, and the transmission power of the side link, the uplink transmission power and the maximum transmission power are used to determine the The actual transmission power of the side link, and according to the actual transmission power, the side link signal is sent to the second terminal device on the first sub-time unit of the first time unit, so that the actual transmission power of the side link is within N first symbols.
  • the signal phase change caused by power switching is avoided, so that the second terminal device can accurately perform channel estimation based on the received pilot, and thus can be accurate
  • the reception of the side link signal sent by the first terminal device on the N first symbols improves the performance of the second terminal device for receiving signals.
  • the side link transmission power includes a first transmission power and a second transmission power
  • the first transmission power is the transmission power of the first channel of the side link
  • the second transmission The power is the transmission power of the second channel of the side link.
  • the apparatus 1700 may also implement the method shown in the embodiment of FIG. 7 in the embodiment of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • processing units used to execute these technologies at communication devices can be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone In the three cases of B, A can be singular or plural, and B can be singular or plural.
  • the character "/" generally indicates that the associated objects are in an "or” relationship.
  • At least one of or “at least one of” herein means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B alone exists, C exists alone, A and B exist at the same time, B and C exist at the same time, and there are six cases of A, B and C at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example and can be configured to other values, which is not limited in this application.
  • it is not necessarily required to configure all the correspondences indicated in the tables.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-burning.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及设备,该方法包括:获取旁链路传输功率和上行传输功率,旁链路传输功率为第一时间单元中旁链路的传输功率,上行传输功率为第一时间单元中上行链路的传输功率;以及根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时间单元中旁链路的实际传输功率;其中,第一时间单元包括N个第一子时间单元,N个第一子时间单元中的M个第二子时间单元与上行资源重叠,N为大于1的整数,M为小于或等于N的正整数,N个第一子时间单元为第一时间单元中用于旁链路传输的子时间单元,旁链路的实际传输功率在N个第一子时间单元上相同。提高了接收端接收信号的性能。

Description

通信方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
旁链路(sidelink)通信是指终端设备与终端设备之间的通信。旁链路通信中的信道包括物理旁链路共享信道(physical sidelink shared channel,PSSCH)和物理旁链路控制信道(physical sidelink control channel,PSCCH)。PSSCH用于承载数据信号,PSCCH用于承载控制信号。
在实际应用过程中,终端设备传输旁链路信号(包括数据信号和控制信号)之前,通常分别计算PSCCH的第一传输功率,以及PSSCH的第二传输功率,并根据第一传输功率传输控制信号,根据第二传输功率传输数据信号。在新空口(new radio,NR)***中,PSSCH和PSCCH可能占用同一时隙中的不同符号上的资源,导致终端设备在一个时隙中不同符号上的旁链路信号的传输功率可能不同,导致接收端接收信号的性能较差。
发明内容
本申请实施例提供一种通信方法、装置及设备,提高了接收端接收信号的性能。
第一方面,本申请实施例提供一种通信方法,获取旁链路传输功率和上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时间单元中旁链路的实际传输功率;其中,旁链路传输功率为第一时间单元中旁链路的传输功率,上行传输功率为第一时间单元中上行链路的传输功率;第一时间单元包括N个第一子时间单元,N个第一子时间单元中的M个第二子时间单元与上行资源重叠,N为大于1的整数,M为小于或等于N的正整数,N个第一子时间单元为第一时间单元中用于旁链路传输的子时间单元,旁链路的实际传输功率在N个第一子时间单元上相同。
该通信方法的执行主体可以为终端设备(例如,实施例中所示的第一终端设备),也可以为设置在终端设备中的装置(例如处理器、或芯片等)。
本申请中,时间单元可以为时隙,子时间单元可以为符号。或者,时间单元可以为子帧,子时间单元可以为时隙或符号。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,则先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同, 避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实现方式中,旁链路传输功率包括第一传输功率和第二传输功率,第一传输功率为旁链路的第一信道的传输功率,第二传输功率为旁链路的第二信道的传输功率。
第一信道可以为PSCCH,第二信道可以为PSSCH。
在一种可能的实现方式中,可以通过如下实现方式根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时间单元中旁链路的实际传输功率:根据第一传输功率和第二传输功率,确定第一时间单元中旁链路的第三传输功率;以及根据第三传输功率、上行传输功率和最大传输功率,确定实际传输功率;其中,旁链路的第三传输功率在N个第一子时间单元上相同。
在上述过程中,先根据第一传输功率和第二传输功率确定第三传输功率,使得第三传输功率在N个第一符号上恒定,再根据第三传输功率和最大传输功率确定旁链路的实际传输功率,使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免功率跳变导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实现方式中,第一信道和第二信道占用N个第一子时间单元中不同的子时间单元;
第三传输功率满足如下中的一种:
第三传输功率为第一传输功率或第二传输功率;
第三传输功率为第一传输功率和第二传输功率中的最大值;
第三传输功率为第一传输功率和第二传输功率中的最小值;或者,
第三传输功率与第一传输功率和第二传输功率存在第一对应关系。
在上述过程中,当第一信道和第二信道占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实现方式中,第一信道和第二信道占用不同的频域资源;
第三传输功率为:第一传输功率和第二传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实现方式中,N个第一子时间单元包括N1个第三子时间单元和N2个第四子时间单元,其中,N1与N2之和为N,N1为小于N的正整数,N2为小于N的正整数;
第一信道占用N1个第三子时间单元,第二信道占用N个第一子时间单元;
第一信道的频域资源与第二信道的部分频域资源重叠;
第二传输功率包括第四传输功率和第五传输功率,第四传输功率为第二信道在N1个第三子时间单元上的传输功率,第五传输功率为第二信道在N2个第四子时间单元上的传输功率;
第三传输功率满足如下中的一种:
第三传输功率为第五传输功率或第六传输功率,第六传输功率为第一传输功率和第四传输功率之和;
第三传输功率为第五传输功率和第六传输功率中的最大值;
第三传输功率为第五传输功率和第六传输功率中的最小值;或者,
第三传输功率与第一传输功率、第四传输功率和第五传输功率存在第二对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实现方式中,可以通过如下方式根据第三传输功率、上行传输功率和最大传输功率,确定旁链路的实际传输功率:
在第三传输功率和上行传输功率之和小于或等于最大传输功率时,确定旁链路的实际传输功率为第三传输功率,上行链路的实际传输功率为上行传输功率。
在第三传输功率和上行传输功率之和大于最大传输功率时,可以通过如下可能的实现方式中的一种确定旁链路的实际传输功率:
一种可能的实现方式,根据旁链路信号的优先级、上行信号的优先级、第三传输功率、上行传输功率和最大传输功率,确定旁链路的实际传输功率。在旁链路信号的优先级大于或等于(或者,大于)上行信号的优先级时,确定旁链路的实际传输功率为第三传输功率。还可以确定上行链路的实际传输功率为最大传输功率与第三传输功率的差值。在旁链路信号的优先级小于(或者,小于或等于)上行信号的优先级时,确定旁链路的实际传输功率为最大传输功率和上行传输功率的差值。还可以确定上行链路的实际传输功率为上行传输功率。
在该种可能的实现方式中,根据旁链路信号的优先级、上行信号的优先级,可以优先保证优先级较高的信号的传输功率,进而使得优先级较高的信号的传输性能较好。例如,可以使得优先级高的信号的传输正确性较高,可以保证优先级高的业务的传输需求,比如低时延高可靠性等需求。
另一种可能的实现方式,旁链路的实际传输功率为第三传输功率与第一权重值的第一乘积。确定上行链路的实际传输功率为上行传输功率与第二权重值的第二乘积。其中,上行信号对应第二权重值,第一乘积与第二乘积之和小于或等于最大传输功率。
在该种可能的实现方式中,按照预设比例减小第三传输功率得到旁链路的实际传输功率,以及按照预设比例减少上行传输功率得到上行链路的实际传输功率,这样, 可以避免旁链路的实际传输功率或者上行链路的实际传输功率过小的情况。
再一种可能的实现方式,旁链路的实际传输功率为第三传输功率或者第一差值。第一差值为最大传输功率与上行传输功率的差值。
在该种可能的实现方式中,通过预定义或者指示信息指示旁链路的实际传输功率和上行链路的实际传输功率,可以快速的确定得到旁链路的实际传输功率和上行链路的实际传输功率。
在一种可能的实现方式中,可以通过如下方式根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时间单元中旁链路的实际传输功率:根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率;根据第七传输功率和第八传输功率确定旁链路的实际传输功率。
在上述过程中,根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率,使得每个第一符号对应的传输功率总和小于或等于最大传输功率,再根据第七传输功率和第八传输功率确定实际传输功率,使得实际传输功率在N个第一符号上恒定。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率跳变导致的信号的相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实现方式中,第一信道和第二信道占用N个第一子时间单元中不同的子时间单元;
实际传输功率满足如下中的一种:
实际传输功率为第七传输功率或第八传输功率;
实际传输功率为第七传输功率和第八传输功率中的最大值;
实际传输功率为第七传输功率和第八传输功率中的最小值;或者,
实际传输功率与第七传输功率和第八传输功率存在第三对应关系。
在上述过程中,当第一信道和第二信道占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实现方式中,第一信道和第二信道占用不同的频域资源;
实际传输功率为:第七传输功率和第八传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实现方式中,N个第一子时间单元包括N3个第五子时间单元和N4个第六子时间单元,其中,N3与N4之和为N,N3为小于N的正整数,N4为小于N的正整数;
第一信道占用N3个第五子时间单元,第二信道占用N个第一子时间单元;
第一信道的频域资源与第二信道的部分频域资源重叠;
第八传输功率包括第九传输功率和第十传输功率,第九传输功率为第二信道在N3个第五子时间单元上的传输功率,第十传输功率为第二信道在N4个第六子时间单元上的传输功率;
实际传输功率满足如下中的一种:
实际传输功率为第十传输功率或者第十一传输功率,第十一传输功率为第七传输功率和第九传输功率之和;
实际传输功率为第十传输功率和第十一传输功率中的最大值;
实际传输功率为第十传输功率和第十一传输功率中的最小值;
实际传输功率与第七传输功率、第九传输功率和第十传输功率存在第四对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
第二方面,本申请实施例提供一种通信方法,第二终端设备在第一时间单元的第一子时间单元上接收来自第一终端设备的旁链路信号,旁链路信号的实际传输功率与旁链路传输功率、上行传输功率和最大传输功率相关,旁链路传输功率为第一终端设备在第一时间单元中的旁链路的传输功率,上行传输功率为第一终端设备在第一时间单元中的上行链路的传输功率,第一时间单元包括N个第一子时间单元,N个第一子时间单元中的M个第二子时间单元与上行资源重叠,N为大于1的整数,M为小于或等于N的正整数,旁链路信号的实际传输功率在N个第一子时间单元上相同;第二终端设备处理旁链路信号。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,第一终端设备先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,以及根据实际传输功率在第一时间单元的第一子时间单元上向第二终端设备发送旁链路信号,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
该通信方法的执行主体可以为终端设备(例如,实施例中所示的第二终端设备),也可以为设置在终端设备中的装置(例如处理器、或芯片等)。
在一种可能的实现方式中,旁链路传输功率包括第一传输功率和第二传输功率, 第一传输功率为旁链路的第一信道的传输功率,第二传输功率为旁链路的第二信道的传输功率。
第三方面,本申请实施例提供一种通信装置,所述装置用于执行第一方面以及第一方面任一可能的实现方式中所述的方法。
第四方面,本申请实施例提供一种通信装置,所述装置用于执行第二方面以及第二方面任一可能的实现方式中所述的方法。
第五方面,本申请实施例提供一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如第一方面以及第一方面任一可能的实现方式中所述的方法。
第六方面,本申请实施例提供一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行第二方面以及第二方面任一可能的实现方式中所述的方法。
第七方面,本申请实施例提供一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行第一方面以及第一方面任一可能的实现方式中所述的方法。
第八方面,本申请实施例提供一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行第二方面以及第二方面任一可能的实现方式中所述的方法。
第九方面,本申请实施例提供一种通信***,包括:如第三方面中所述的装置,和/或,第四方面中所述的装置。
第十方面,本申请实施例提供一种通信***,包括:如第五方面中所述的装置,和/或,第六方面中所述的装置。
本申请实施例提供的功率确定方法、装置及设备,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,则先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
附图说明
图1为本申请实施例提供的旁链路通信的示意图;
图2为本申请实施例提供的一种资源示意图;
图3为本申请实施例提供的另一种资源示意图;
图4A为本申请实施例提供的Uu空口通信的示意图;
图4B为本申请实施例提供的一种可能的时域资源示意图;
图5A-图5C为本申请实施例提供的几种BWP的使用场景;
图6为本申请实施例提供的一种可能的通信场景的示意图;
图7为本申请实施例提供的一种通信方法的流程示意图;
图8A-图8E为本申请实施例提供的几种资源复用方式的示意图;
图9A-图9G、图10A-图10G、图11A-图11B、以及图12A-图12C为本申请实施例提供的几种资源重叠方式的示意图;
图13为本申请实施例提供的一种确定旁链路的实际传输功率方法的流程示意图;
图14为本申请实施例提供的另一种确定旁链路的实际传输功率方法的流程示意图;
图15为本申请提供的一种装置的结构示意图;
图16为本申请提供的一种终端设备的结构示意图;
图17为本申请实施例提供的另一种装置的结构示意图。
具体实施方式
为了便于理解,首先,对本申请所涉及的概念进行说明。
终端设备:是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:是一种具有无线收发功能的设备。包括但不限于:长期演进(long term evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),新空口技术(new radio,NR)中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception poin,TRP),后续演进***中的基站,无线保真(wireless fidelity,WiFi)***中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端进行通信, 也可以通过中继站与终端进行通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接,还可以支持与5G网络的基站的双连接等。
时间单元:是指时域资源,一个时间单元中可以包括多个子时间单元。例如,时间单元可以为时隙,子时间单元可以为符号。又例如,时间单元可以为子帧,子时间单元可以为时隙或符号。为了便于描述,在下文中,以时间单元为时隙,子时间单元为符号为例进行说明。
旁链路(sideline)通信:是指终端设备与终端设备之间的通信。终端设备与终端设备之间的链路称为旁链路。其中,旁链路也可以称为设备到设备(device-to-device,D2D)链路、边链路、侧链路等,本申请对此不做限定。下面,结合图1,以UE1和UE2之间的旁链路通信为例,对旁链路通信进行说明。图1为本申请实施例提供的旁链路通信的示意图。请参见图1,包括:
S101、网络设备分别为UE1和UE2配置旁链路资源。
旁链路的信道可以包括多条,例如,旁链路的信道可以包括第一信道和第二信道。例如,第一信道可以为物理旁链路控制信道(physical sidelink control channel,PSCCH),或者,物理旁链路共享信道(physical sidelink shared channel,PSSCH),或者,旁链路反馈信道(physical sidelink feedback channel,PSFCH),第二信道可以为PSCCH,或,PSSCH,或,PSFCH。为了便于描述,下文以第一信道为PSCCH,第二信道为PSSCH为例进行说明。
旁链路资源包括PSSCH资源和PSCCH资源。PSSCH用于承载数据(data)信息,即,PSSCH资源用于传输数据信息。PSCCH用于承载旁链路控制信息(sidelink control information,SCI),即,PSCCH资源用于传输SCI。SCI中的信息可以称为SA(调度分配,scheduling assignment),SA是指用于进行数据调度的相关信息,例如,SA可以用于指示PSSCH的资源分配、调制编码方式。PSSCH资源还可以称为数据资源(data资源),PSCCH资源还可以称为SA资源。
可选的,网络设备可以按照如下两种可能的实现方式为UE配置资源,下述方式仅为举例,并不对本申请进行限制:
一种可能的实现方式:网络设备为UE配置的SA资源和data资源在频域相邻。
在该种可能的实现方式中,网络设备配置如下信息中的一种或多种:子信道(subchannel)的起始资源块(resource block,RB),子信道包括的连续的RB个数,子信道的数量。资源池可以理解为用于旁链路通信的候选时频资源,其中,时域资源可以以符号,时隙,微时隙,或子帧中的一种或多种进行配置,频域资源可以以资源块,资源块组,或子带中的一种或多种进行配置。一个资源块组可以包括一个或多个资源块。一个子带可以包括一个或多个资源块。上述配置信息也可以称为资源池的配置信息。根据网络设备配置的上述信息,可以确定资源池中的资源。其中,SA资源和data资源相邻,预定义一个SA资源(传输一个SA的资源)可以为子信道的最下面的2个RB。
下面,结合图2,对该种资源分配方式进行说明。图2为本申请实施例提供的一种资源示意图。请参见图2,网络设备给UE配置了4个子信道,分别为子信道1、子信道2、子信道3和子信道4。例如,假设在t1时刻,UE1占用子信道4的资源,UE2占用子信道1、子信道2和子信道3的资源,则在t1时刻,UE1和UE2发送数据和SA所占用的资源如图2所示。假设 在t2时刻,UE1占用子信道1的资源。UE2占用子信道3和子信道4的资源,则在t2时刻,UE1和UE2发送数据和SA所占用的资源如图2所示。
另一种可能的实现方式:网络设备为UE配置的SA资源和data资源在频域不相邻。
在该种实现方式中,网络设备配置如下信息中的一种或多种:SA资源的起始RB,子信道的起始RB,子信道包括的连续的RB个数,子信道的数量。其中,SA资源的总的RB个数可以为子信道的数量的2倍。根据网络设备配置的上述信息,可以确定资源池中的资源。其中,SA资源和data资源不相邻,预定义一个SA资源(传输一个SA的资源)可以包括2个RB,SA资源与子信道可以具有关联关系。
下面,结合图3,对该种资源分配方式进行说明。图3为本申请实施例提供的另一种资源示意图。请参见图3,网络设备为UE配置了4个子信道,分别为子信道1、子信道2、子信道3和子信道4。每个子信道有对应的SA资源,子信道和SA资源的对应关系如图3中的箭头所示。假设在t1时刻,UE1占用子信道4的资源,UE2占用子信道1、子信道2和子信道3的资源,则在t1时刻,UE1和UE2发送数据和SA所占用的资源如图2所示。假设在t2时刻,UE1占用子信道1的资源。UE2占用子信道3和子信道4的资源,则在t2时刻,UE1和UE2发送数据和SA所占用的资源如图2所示。
可选的,网络设备可以通过如下信令配置SA资源和data资源在频域是否相邻:
Adjacency PSCCH-PSSCH-r14 BOOLEAN;
如果上述信令对应的值为TRUE,则表示为UE分配的SA资源和data资源在频域相邻,即,UE在相邻的RB上传输PSSCH和PSCCH。如果上述信令对应的值为FALSE,则表示为UE分配的SA资源和data资源在频域不相邻,即,UE可以在非相邻的RB上传输PSSCH和PSCCH。
S102、UE1根据网络设备为其配置的旁链路资源,确定旁链路发送资源。
旁链路发送资源可以为旁链路资源中的全部或部分资源。
S103、UE1根据旁链路发送资源,向UE2发送SCI和数据。
UE1在SA资源上向UE2发送SCI,在data资源上向UE2发送数据。
S104、UE2根据配置的旁链路资源,确定旁链路接收资源,并在旁链路接收资源上接收SCI和数据。
S105、UE2向UE1发送信道状态信息(channel state information,CSI)、混合自动重传请求(hybrid automatic repeat request,HARQ)信息中的至少一种。
HARQ信息可以包括确认信息(acknowledgement,ACK)或否定性确认(negtive acknowledgement,NACK)。
其中,上述过程中的S105可以在S104步骤之前,或者可以在S105步骤之后,或者,可以是一个独立的步骤,本申请对此不做限定。
UE2可以通过PSFCH,(PSFCH也可以称为物理旁链路上行控制信道(physical sidelink uplink control channel,PSUCCH),向UE1发送CSI和/或HARQ信息。PSUCCH可以是接收端UE(比如UE2)发送至发送端UE(比如UE1)的信道。这里的发送端和接收端是从数据信道PSSCH的收发端来描述的。对于PSUCCH,发送PSUCCH的UE是UE2,接收PSUCCH的UE是UE1。
在上述过程中,在UE1和UE2进行旁链路通信时,UE1可以向UE2发送SCI和data,UE2 可以在接收到UE1发送的信号后,反馈ACK/NACK等。可选的,为了获得准确的信道信息,便于确定发送端UE1的调度,UE2可以向UE1反馈CSI,UE1根据UE2反馈的CSI进行数据调度和发送。
Uu空口通信:是指终端设备与网络设备之间的通信。Uu空口可以理解为通用的UE和网络之间的接口(universal UE to network interface)。下面,结合图4A,对Uu空口通信的过程进行说明。图4A为本申请实施例提供的Uu空口通信的示意图。请参见图4A,网络设备可以向终端设备发送下行控制信息(downlink control information,DCI)和数据(data),下行控制信息是用于数据调度的相关信息,比如用于指示数据信道的资源分配,调制编码方式等。在Uu空口通信中,网络设备向终端设备发送的信道称为下行(downlink,DL)信道,终端设备向网络设备发送的信道称为上行(uplink,UL)信道。下行信道可以包括下行数据信道和下行控制信道。上行信道可以包括上行数据信道和上行控制信道。其中,上行控制信道可以用于承载终端设备反馈的信息,称为上行控制信息(uplink control information,UCI),比如上行控制信道可以承载终端设备反馈的CSI和/或ACK/NACK等。
空口资源:是指两个设备之间进行数据传输所使用的资源,其中两个设备可以是指终端设备和网络设备,也可以是指两个终端设备等。空口资源可以包括时域资源和频域资源,时域资源和频域资源还可以称为时频资源。频域资源可以位于设置的或者预定义的频率范围,频率范围还可以称为频带(band)或频段,频域资源在频域上的大小可以简称为带宽(bandwidth,BW)。时频资源具体可以是资源栅格,包括时域和频域,比如时域单位可以为符号(symbol),频域单位可以为子载波(subcarrier),资源栅格中最小的资源单位可以称为资源单元(resource element,RE)。一个RB在频域可以包括一个或多个子载波,比如可以是12个子载波。一个时隙在时域可以包括一个或多个符号,比如,在NR***中,一个时隙可以包括14个符号(普通循环前缀(cyclic prefix,CP)下)或者12个符号(扩展循环前缀下)。在NR中,引入了多种帧结构(可以包括多种子载波间隔),因此定义资源栅格(resource grid)的时候可以是针对一种帧结构参数定义一个资源栅格。例如:
对于一个子载波间隔和载波,定义的资源栅格包括
Figure PCTCN2019100867-appb-000001
个子载波和
Figure PCTCN2019100867-appb-000002
个OFDM符号。其中,
Figure PCTCN2019100867-appb-000003
是指资源栅格的大小,比如可以是指包括的资源块RB的个数。比如一个资源栅格可以包括X2个PRB,X2为大于或等于1的整数。比如可以基于频率增长的方向从0至X2-1为PRB依次进行编号,得到RB的编号值。在本申请实施例中,术语“编号值”也可以称作“标识”或“索引”。
Figure PCTCN2019100867-appb-000004
是指一个资源块中包括的子载波的个数,比如可以是12个子载波。
Figure PCTCN2019100867-appb-000005
是指在子载波间隔配置μ下,一个子帧包含的符号的个数。下标x表示下行或者上行。进一步地,一个子帧中可以包括若干个时隙(slot)。示例性地,
Figure PCTCN2019100867-appb-000006
是指在子载波间隔配置μ下,一个子帧包含的时隙slot的个数。
Figure PCTCN2019100867-appb-000007
是指在一个slot包含的符号的个数,比如可以是14。
对于一个***参数(numerology)和一个载波,在该载波中可以定义资源栅格,其中,资源栅格在载波中的起始位置为
Figure PCTCN2019100867-appb-000008
还可以描述为资源栅格中的第一个子载波在载波中的起始位置为
Figure PCTCN2019100867-appb-000009
该值可以通过高层信令指示。其中,比如***参数可以描述为帧结构参数,示例性地,***参数可以包括子载波间隔和/或CP,例如,如下表1所示为NR中支持的帧结构参数:
表1
μ Δf=2 μ·15[kHz] CP
0 15 普通
1 30 普通
2 60 普通,扩展
3 120 普通
4 240 普通
网络设备和终端设备进行数据传输时,网络设备可以对终端设备进行调度,网络设备可以通过控制信息从资源栅格中为终端设备分配数据信道(如物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行共享信道(physical uplink shared channel,PUSCH))的频域资源和/或时域资源,比如该控制信息可以指示数据信道所映射至的符号和/或RB,网络设备和终端设备在该分配的时频资源通过数据信道进行数据传输。其中,上述数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH携带的数据)传输可以指网络设备向终端发送数据,上行数据(如PUSCH携带的数据)传输可以是指终端向网络设备发送数据。数据可以是广义的数据,比如可以是用户数据,也可以是***信息,广播信息,或其他的信息等。示例性地,该数据是PDSCH上携带的数据。
带宽部分(bandwidth part,BWP)是载波上一组连续的RB资源。例如,一个服务小区最多可以配置4个BWP,在一个给定的时间内(比如一个时隙,一个子帧等)可激活一个BWP。UE在激活的BWP上进行数据的收发。BWP是定义在一个给定的载波上的,即,一个BWP的资源位于一个载波资源内。下面,结合图5A-图5C,介绍几种可能的BWP的使用场景。
图5A为本申请实施例提供的一种BWP的使用场景。请参见图5A,载波带宽大于或等于终端设备的带宽能力(UE带宽能力),UE带宽能力大于或等于BWP带宽。
图5B为申请实施例提供的另一种BWP的使用场景。请参见图5B,在载波内配置BWP1和BWP2,且BWP1和BWP2重叠,这样可以实现UE节能。比如UE可以从BWP2切换到BWP1进行节能。
图5C为申请实施例提供的另一种BWP的使用场景。请参见图5C,在载波内配置BWP1和BWP2,BWP1的参数为numerology1,BWP2的参数为numerology2。不同BWP配置不同的参数。
资源单元(RE)可以指天线端口p的资源栅格的一个元素,由频域和时域坐标(k,l)进行标识,
Figure PCTCN2019100867-appb-000010
表示一个RB中的子载波的个数,
Figure PCTCN2019100867-appb-000011
表示一个时隙中的符号的个数。一个时隙中正交频分复用(orthogonal frequency division multiplexing,OFDM)符号个数取决于循环前缀长度和子载波间隔,例如,可以如表2所示:
表2
Figure PCTCN2019100867-appb-000012
在NR***中,资源块(RB)是频域上的概念,比如一个RB包括频域上12个子载波。或者,在LTE***中,RB的概念是时频域的概念,比如一个RB在频域上包括12个子载波,在时域上包括一个符号。
无线通信中的时域单元可以为无线帧、子帧、时隙、微时隙(迷你时隙)、或符号等。一个无线帧的持续时长可以是10毫秒(ms)。一个无线帧可以包括一个或多个子帧,比如如果一个子帧的持续时长是1毫秒,则一个无线帧可以包括10个子帧。一个子帧可以包括一个或者多个时隙。针对不同的子载波间隔可以有不同的时隙长度。比如子载波间隔为15kHz时,一个时隙可以为1ms;子载波间隔为30kHz时,一个时隙可以为0.5ms。一个时隙可以包括一个或多个符号。比如正常CP下一个时隙可以包括14个符号,扩展CP下一个时隙可以包括12个符号。
下面,结合图4B,以子载波间隔为15kHz为例,对时域资源进行说明。图4B为本申请实施例提供的一种可能的时域资源示意图。请参见图4B,无线帧中包括多个子帧,一个子帧包括一个时隙,一个时隙中包括多个符号。一个时隙中可以包括一个或多个微时隙(还可以称为迷你时隙),一个微时隙包括一个或多个符号,例如,一个微时隙可以包括2个符号、或者4个符号或者7个符号。
旁链路传输功率:是指终端设备发送旁链路信道和/或旁链路信号的功率。旁链路信道可以包括PSCCH、PSSCH或PSFCH中的一种或多种。旁链路信号可以包括PSCCH承载的SA和/或PSSCH承载的数据(data),PSFCH承载的信号,例如,探测参考信号(sounding reference signal,SRS)等。旁链路传输功率可以为一个或多个,例如,旁链路传输功率可以包括PSCCH的第一传输功率和/或PSSCH的第二传输功率。
上行传输功率:是指终端设备发送上行信道和/或上行信号的功率。上行信道可以包括上行数据信道和/或上行控制信道,上行数据信道可以为PUSCH,上行控制信道可以为物理上行控制信道(physical uplink control channel,PUCCH)。上行信号可以包括上行控制信号、上行数据信号、SRS等中的一种或多种。
下面,结合图6,对本申请中的通信方法所适用的场景进行说明。
图6为本申请实施例提供的一种可能的通信场景的示意图。请参见图6,包括网络设备601、终端设备602和终端设备603。终端设备602和终端设备603之间的链路为旁链路,终端设备602与网络设备601,以及终端设备603与网络设备601之间的链路为Uu空口链路。本申请实施例所示的终端设备同时具有与网络设备进行通信、以及与其它终端设备通信的能力,即,在同一时刻或同一时段,终端设备可以向网络设备发送上行信号、以及向其它终端设备发送旁链路信号。
图6只是以示例的形式示意一种场景,本申请所示的方法还可以应用于其它通信场景, 例如,其它通信场景中可能包括更多个网络设备和/或更多个终端设备。本申请实施例对适用的通信场景不作具体限定。
目前的技术中,由于PSSCH的传输功率和PSCCH的传输功率是分别确定的,确定得到的PSSCH的传输功率和PSCCH的传输功率可能不同,PSSCH和PSCCH可能占用同一时隙中的不同符号,进而导致一个时隙中不同符号上的旁链路信号的传输功率可能不同。在一个时隙中不同符号上的旁链路信号的传输功率不同时,传输功率的切换需要一定的时间,使得需要在一个时隙中预留出一部分符号进行功率的切换,导致时域资源的浪费。在通信过程中,发送端通常会向接收端发送导频,以使接收端根据导频进行信道估计,进而根据信道估计接收信号,当传输功率发生变化时,信号的相位发生变化,使得接收端根据接收到的导频无法进行正确的信道估计,使得接收端无法准确的接收信号,导致接收端接收信号的性能较差。为了解决该技术问题,本申请实施例提供一种通信方法,通过本申请实施例所示的方法,终端设备可以确定得到在一个时隙中的旁链路的实际传输功率,且可以使得旁链路的实际传输功率在一个时隙中旁链路信号发送的符号上保持恒定,即,旁链路的实际传输功率在一个时隙的多个符号上相同,进而可以减少资源浪费以及提高接收端接收信号的性能。
下面,通过具体实施例对本申请所示的技术方案进行详细说明。下面几个实施例可以单独存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图7为本申请实施例提供的一种通信方法的流程示意图。请参见图7,该方法可以包括:
S701、第一终端设备获取旁链路传输功率和上行传输功率。
其中,旁链路传输功率为第一时隙中旁链路的传输功率,上行传输功率为第一时隙中上行链路的传输功率。
其中,第一时隙包括N个第一符号,N个第一符号中的M个第二符号与上行资源重叠,N为大于1的整数,M为小于或等于N的正整数,N个第一符号为第一时隙中用于旁链路传输的符号。N个第一符号可以为第一时隙中的所有符号,也可以为第一时隙中的部分符号。
在第一时隙中,PSCCH资源和PSSCH资源可以时分复用,也可以频分复用,下面,结合图8A-图8E,介绍PSCCH资源和PSSCH资源的复用方式。
图8A为本申请实施例提供的一种资源复用方式的示意图。请参见图8A,PSCCH和PSSCH占用N个第一符号中不同的符号,且PSCCH和PSSCH占用相同的频域资源。
图8B为本申请实施例提供的另一种资源复用方式的示意图。请参见图8B,PSCCH和PSSCH占用N个第一符号中不同的符号,且PSCCH和PSSCH占用不完全相同的频域资源(PSCCH和PSSCH占用的频域资源可以部分重叠)。
图8C为本申请实施例提供的又一种资源复用方式的示意图。请参见图8C,N个第一符号包括N1个第三符号和N2个第四符号,其中,N1与N2之和为N,N1为小于N的正整数,N2为小于N的正整数。PSCCH占用N1个第三符号,PSSCH占用N个第一符号,PSCCH的频域资源与PSSCH的部分频域资源重叠。
图8D为本申请实施例提供的再一种资源复用方式的示意图。请参见图8D,PSCCH和PSSCH占用不同的频域资源,PSCCH和PSSCH占用N个第一符号中相同的符号。
图8E为本申请实施例提供的又一种资源复用方式的示意图。请参见图8E,PSCCH和PSSCH占用不同的频域资源,PSSCH占用N个第一符号,PSCCH占用的N个第一符号中的一部分。
图8A-图8E只是以示例的形式示意PSCCH资源和PSSCH资源的复用方式,并非对PSCCH资源和PSSCH资源的复用方式的限定,在实际应用过程中,可以根据实际需要确定PSCCH资源和PSSCH资源的复用方式,本申请实施例对此不作具体限定。
当PSCCH资源和PSSCH资源的资源复用方式为图8A所示时,N个第一符号(旁链路资源)和上行资源的重叠方式可以如图9A-图9G所示。
图9A为本申请实施例提供的一种资源重叠方式的示意图。请参见图9A,上行资源与N个第一符号中的所有符号重叠,也可理解为,上行资源与PSCCH资源和PSSCH资源重叠。
图9B为本申请实施例提供的另一种资源重叠方式的示意图。请参见图9B,上行资源与N个第一符号中PSSCH所占的第一符号重叠,也可理解为,上行资源与PSSCH资源重叠。
图9C为本申请实施例提供的又一种资源重叠方式的示意图。请参见图9C,上行资源与N个第一符号中PSSCH所占的部分第一符号重叠,也可理解为,上行资源与部分PSSCH资源重叠。
图9D为本申请实施例提供的再一种资源重叠方式的示意图。请参见图9D,上行资源与N个第一符号中PSCCH所占的第一符号重叠,也可理解为,上行资源与PSCCH资源重叠。
图9E为本申请实施例提供的另一种资源重叠方式的示意图。请参见图9E,上行资源与N个第一符号中PSCCH所占的部分第一符号重叠,也可理解为,上行资源与部分PSCCH资源重叠。
图9F为本申请实施例提供的另一种资源重叠方式的示意图。请参见图9F,上行资源与N个第一符号中PSCCH所占的第一符号、以及PSSCH所占的部分第一符号重叠,也可理解为,上行资源与PSCCH资源、以及部分PSSCH资源重叠。
图9G为本申请实施例提供的又一种资源重叠方式的示意图。请参见图9G,上行资源与N个第一符号中PSCCH所占的部分第一符号、以及PSSCH所占的部分第一符号重叠,也可理解为,上行资源与部分PSCCH资源、以及部分PSSCH资源重叠。
当PSCCH资源和PSSCH资源的资源复用方式为图8B所示的资源复用方式时,N个第一符号(旁链路资源)和上行资源的重叠方式与图9A-图9G所示资源重叠方式类似,此处不再进行赘述。
当PSCCH资源和PSSCH资源的资源复用方式为图8C所示时,N个第一符号(旁链路资源)和上行资源的重叠方式可以如图10A-图10G所示。
图10A为本申请实施例提供的一种资源重叠方式的示意图。请参见图10A,上行资源与N个第一符号中的所有符号重叠。
图10B为本申请实施例提供的另一种资源重叠方式的示意图。请参见图10B,上行资源与N2个第四符号重叠。
图10C为本申请实施例提供的又一种资源重叠方式的示意图。请参见图10C,上行资 源与N2个第四符号中的一部分重叠。
图10D为本申请实施例提供的再一种资源重叠方式的示意图。请参见图10D,上行资源与N1个第三符号重叠。
图10E为本申请实施例提供的另一种资源重叠方式的示意图。请参见图10E,上行资源与N1个第三符号中的一部分重叠。
图10F为本申请实施例提供的另一种资源重叠方式的示意图。请参见图10F,上行资源与N1个第三符号、以及N2个第四符号中的一部分重叠。
图10G为本申请实施例提供的又一种资源重叠方式的示意图。请参见图10G,上行资源与N1个第三符号中的一部分、以及N2个第四符号中的一部分重叠。
当PSCCH资源和PSSCH资源的资源复用方式为图8D所示时,N个第一符号(旁链路资源)和上行资源的重叠方式可以如图11A-图11B所示。
图11A为本申请实施例提供的一种资源重叠方式的示意图。请参见图11A,上行资源与N个第一符号中的所有符号重叠。
图11B为本申请实施例提供的另一种资源重叠方式的示意图。请参见图11B,上行资源与N个第一符号中的部分符号重叠。
当PSCCH资源和PSSCH资源的资源复用方式为图8E所示时,N个第一符号(旁链路资源)和上行资源的重叠方式与图11A-图11B所示的资源重叠方式类似,此处不再进行赘述。
在图9A-图9G、图10A-图10G、以及图11A-图11B任意示例中,N个第一符号可以为第一时隙中的部分符号,也可以为第一时隙中的全部符号。当N个第一符号为第一时隙中的部分符号时,上行资源占用的符号中可能会存在一部分符号不属于N个第一符号。下面,结合图12A至图12C,介绍几种可能的资源重叠方式。
图12A为本申请实施例提供的一种资源重叠方式的示意图。请参见图12A,N个第一符号占用第一时隙中的部分符号,上行资源占用第一时隙中的全部符号。
图12B为本申请实施例提供的另一种资源重叠方式的示意图。请参见图12B,N个第一符号占用第一时隙中的部分符号,上行资源占用第一时隙中的部分符号,上行资源与N个第一符号中PSCCH占用的符号重叠。
图12C为本申请实施例提供的另一种资源重叠方式的示意图。请参见图12C,N个第一符号占用第一时隙中的部分符号,上行资源占用第一时隙中的部分符号,上行资源与N个第一符号中PSCCH占用的第一符号、以及PSSCH占用的部分第一符号重叠。
图9A-图9G、图10A-图10G、图11A-图11B、以及图12A-图12C只是以示例的形式示意旁链路资源和上行资源的重叠方式,并非对旁链路资源和上行资源的重叠方式的限定,在实际应用过程中,可以根据实际需要确定旁链路资源和上行资源的重叠方式,本申请实施例对此不作具体限定。
旁链路传输功率可以为根据旁链路对应的预设公式计算得到的。旁链路传输功率可以包括PSCCH的第一传输功率和PSSCH的第二传输功率,可以分别通过PSCCH对应的预设公式计算第一传输功率,通过PSSCH对应的预设公式计算第二传输功率。第二传输功率的个数可以为1个,也可以为多个。例如,当PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B、图8D-图8E所示时,第二传输功率的个数为1个。当PSCCH资源和 PSSCH资源的资源复用方式如图8C所示时,第二传输功率的个数为2个,第二传输功率包括第四传输功率和第五传输功率,第四传输功率为PSSCH在N1个第三符号上的传输功率,第五传输功率为PSSCH在N2个第四符号上的传输功率。
例如,第一终端设备可以根据旁链路对应的预设公式计算旁链路传输功率,或者,可以由其它设备根据旁链路对应的预设公式计算旁链路传输功率,第一终端设备从其它设备获取其它设备计算得到的旁链路传输功率。
可以通过如下方式确定旁链路传输功率,在如下过程中,以网络设备为基站,终端设备为UE为例进行说明:
1、可以通过如下方式确定数据信息的传输功率:
由于PSSCH用于传输数据信息,因此数据信息的传输功率,也称为PSSCH的传输功率,以下用PPSSCH表示PSSCH的传输功率。
示例一、对于基于基站调度模式的SL传输,终端设备可以按照如下过程计算PSSCH的传输功率:
如果对于PSSCH周期i,基站配置的(或UE接收的)旁链路调度中的功率控制信令设置为0,则PPSSCH满足以下公式:
P PSSCH=P CMAX,PSSCH
如果对于PSSCH周期i,基站配置的(或UE接收的)旁链路调度中的功率控制信令域设置为1,则PPSSCH满足以下公式:
Figure PCTCN2019100867-appb-000013
其中,P CMAX,PSSCH为UE的PSSCH传输的最大传输功率,也可以是指UE的旁链路传输的最大传输功率,可以通过高层参数配置。M PSSCH是为发送端UE分配的发送PSSCH的资源的带宽(或基站分配给发送端UE的PSSCH资源的带宽,发送端UE根据基站的分配可以确定为发送端UE分配的用于发送PSSCH的资源的带宽),即PSSCH占用的资源的带宽,可以用资源块的个数表征。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000014
和α PSSCH,1是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商为UE发送的高层参数。
示例二、对于UE自主选择的SL模式,发送端UE可以按照如下过程计算PSSCH的发送功率:
Figure PCTCN2019100867-appb-000015
其中,P CMAX,PSSCH是UE的PSSCH传输的最大传输功率,也可以是指UE的旁链路传输的最大传输功率,可以通过高层参数配置。M PSSCH是为发送端UE分配的PSSCH资源的带宽,即PSSCH占用的资源的带宽,可以用资源块的个数表征。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000016
和α PSSCH,2是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商为UE发送的高层参数。
示例三、对于基于基站调度模式的SL传输,发送端UE可以按照如下过程计算PSSCH的发送功率:
Figure PCTCN2019100867-appb-000017
其中,P CMAX是UE的最大传输功率。M PSSCH是为发送端UE分配的PSSCH资源的带宽(或基站分配给发送端UE的PSSCH资源的带宽,发送端UE根据基站的分配可以确定发送端UE分配的用于发送PSSCH资源的带宽),即PSSCH占用的资源的带宽,可以用资源块的个数表征。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000018
和α PSSCH,3是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商为UE发送的高层参数。
示例四,对于UE自主选择的SL模式,发送端UE可以按照如下过程计算PSSCH的发送功率:
Figure PCTCN2019100867-appb-000019
其中,P CMAX是UE的最大传输功率。M PSSCH是为发送端UE分配的PSSCH资源的带宽,即PSSCH占用的资源的带宽,可以用资源块的个数表征。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000020
和α PSSCH,4是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商为UE发送的高层参数。
其中,如果UE被配置了高层参数maxTxpower,即该高层参数指示UE的最大发送功率,则
Figure PCTCN2019100867-appb-000021
否则,
Figure PCTCN2019100867-appb-000022
其中P MAX_CBR是根据PSSCH的优先级等级和测量的信道拥堵率(channel busy ratio,CBR)区间可以设置为maxTxpower的值,CBR可以是指在一定时间内,可用资源上的信号的功率超过门限值的资源占总的可用资源的比例。
2、可以通过如下方式确定SA的传输功率:
由于SA在PSCCH中发送,SA的传输功率也可称为计算PSCCH的传输功率。
示例一,基于基站调度模式的SL传输,发送端UE可以按照如下过程计算PSCCH的发送功率:
如果对于PSCCH周期i,基站配的(或UE接收的)旁链路调度中的功率控制信令域设置为0,则P PSCCH=P CMAX,PSCCH
如果对于PSCCH周期i,基站配置的(或UE接收的)旁链路调度中的功率控制信令域设置为1,则:
Figure PCTCN2019100867-appb-000023
其中,P CMAX,PSCCH为UE的PSCCH传输的最大传输功率,也可以是指UE的旁链路传输的最大传输功率,可以通过高层参数配置。M PSCCH=1。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000024
和α PSCCH,1是通过高层参数配置的,与PSCCH资源的配置相关联, 它们可以是基站或运营商发送的高层参数。
示例二,UE自主选择的SL模式,发送端UE可以按照如下过程计算PSCCH的发送功率:
Figure PCTCN2019100867-appb-000025
其中,P CMAX,PSCCH是UE的PSCCH传输的最大传输功率,也可以是指UE的旁链路传输的最大传输功率,可以通过高层参数配置。M PSCCH=1。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000026
和α PSCCH,2是通过高层参数配置的,与PSCCH资源的配置相关联,它们可以是基站或运营商发送的高层参数。
示例三,基于基站调度的SL传输,由于V2X中,PSSCH和PSCCH是频分的,因此在确定PSCCH的功率时需要考虑PSSCH的功率,发送端UE可以按照如下过程计算PSCCH的发送功率:
Figure PCTCN2019100867-appb-000027
其中,P CMAX是UE的最大传输功率。M PSSCH是为发送端UE分配的PSSCH资源的带宽(或基站分配给发送端UE的PSSCH资源的带宽,发送端UE根据基站的分配可以确定发送端UE分配的用于发送PSSCH资源的带宽),即PSSCH占用的资源的带宽,可以用资源块的个数表征。M PSCCH=2。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000028
和α PSSCH,3是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商发送的高层参数。
示例四,UE自主选择的SL模式,发送端UE可以按照如下过程计算PSCCH的发送功率:
Figure PCTCN2019100867-appb-000029
其中,P CMAX是PSSCH传输的最大传输功率。M PSSCH是为发送端UE分配的PSSCH资源的带宽,即PSSCH占用的资源的带宽,可以用资源块的个数表征。M PSCCH=2。PL=PL C,PL C是载波C上的路径损耗(pathloss)。
Figure PCTCN2019100867-appb-000030
和α PSSCH,4是通过高层参数配置的,与PSSCH资源的配置相关联,它们可以是基站或运营商发送的高层参数。
如果UE被配置了高层参数最大传输功率(maxTxpower),即该高层参数指示UE的最大发送功率,则
Figure PCTCN2019100867-appb-000031
否则,
Figure PCTCN2019100867-appb-000032
其中,P MAX_CBR,根据PSSCH的优先级等级和测量的CBR(信道拥堵率,channel busy ratio)区间可以设置为maxTxpower的值。在该步骤中,获取得到的旁链路传输功率和上行传输功率均小于或等于第一终端设备的最大传输功率。且任意符号上的总传输功率小于或等于最大传输功率。例如,当PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所 示时,获取到的旁链路传输功率和上行传输功率均小于或等于最大传输功率。当PSCCH资源和PSSCH资源的资源复用方式如图8C所示时,第一传输功率和第四传输功率之和小于或等于最大传输功率,第五传输功率小于或等于最大传输功率。当PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示时,第一传输功率和第二传输功率之和小于或等于最大传输功率。
可选的,本申请实施例中的终端设备的最大传输功率可以是指终端设备的上行传输的最大传输功率,和/或,终端设备的旁链路传输的最大传输功率,和/或,终端设备的总的传输的最大传输功率。
其中,所述终端设备的上行传输的最大传输功率可以是指终端设备在进行上行传输时,所述上行传输的传输功率不能大于所述上行传输的最大传输功率。
其中,所述终端设备的旁链路传输的最大传输功率可以是指终端设备在进行旁链路传输时,所述旁链路传输的传输功率不能大于所述旁链路传输的最大传输功率。
其中,所述终端设备的总的传输的最大传输功率可以是指终端设备在进行传输时,总的传输功率不能大于所述总的传输的最大传输功率,比如当终端设备同时有旁链路传输和上行传输时,所述旁链路传输和上行传输的总的传输功率不能大于所述总的传输的最大传输功率。即所述旁链路传输和上行传输的功率之和不能大于所述总的传输的最大传输功率。
可选的,本申请实施例中的终端设备的最大传输功率可以是终端设备的一种能力,终端设备可以将该能力上报给网络设备。
可选的,本申请实施例中的终端设备的最大传输功率可以是网络设备通过信令告知终端设备的,终端设备在进行传输时的传输功率不能大于所述网络设备通过信令告知终端设备的最大传输功率。
可选的,上行传输功率可以为根据上行链路对应的预设公式计算得到的。
例如,第一终端设备可以根据上行链路对应的预设公式计算上行链路传输功率,或者,可以由其它设备根据上行链路对应的预设公式计算上行链路传输功率,第一终端设备从其它设备获取其它设备计算得到的上行链路传输功率。
可以通过如下方式确定上行链路传输功率,在如下过程中,以网络设备为基站,终端设备为UE为例进行说明:
1、可以通过如下方式确定数据信息的传输功率:
由于上行信息在PUSCH中传输,和/或PUCCH中传输,因此上行信息的传输功率,也可称为PUSCH的传输功率和/或PUCCH的传输功率。
示例一,计算PUSCH的传输功率:
如果UE在服务小区c载波f的激活上行BWP b中传输PUSCH,参数集合配置的标识为j,PUSCH功控控制调整状态的标识为l,UE在PUSCH传输时刻i的PUSCH的传输功率P PUSCH,b,f,c(i,j,q d,l)为:
Figure PCTCN2019100867-appb-000033
其中,P CMAX,f,c(i)是配置的在PUSCH传输时刻i,服务小区c,载波f上到UE的最大传输功率;P O_PUSCH,b,f,c(j)是由P O_NOMINAL_PUSCH,f,c(j)和P O_UE_PUSCH,b,f,c(j)之和组成的一个参数,其中,j∈{0,1,...,J-1}。对于服务小区c载波f,如果基站没有通知UE高层参数 P0-PUSCH-AlphaSet,则j=0,P O_UE_PUSCH,b,f,c(0)=0,并且P O_NOMINAL_PUSCH,f,c(0)=P O_PREPREAMBLE_Msg3,其中,高层参数preambleReceivedTargetPower用于确定P O_PRE,高层参数msg3-DeltaPreamble用于确定Δ PREAMBLE_Msg3
对于服务小区c载波f,对于j∈{2,...,J-1}=S J,如果基站提供给UE参数p0-NominalWithGrant,则P O_NOMINAL_PUSCH,f,c(j)的值可以应用于所有的j∈S J;如果没有提供该参数,则P O_NOMINAL_PUSCH,f,c(j)=P O_NOMINAL_PUSCH,f,c(0)。如果P O_UE_PUSCH,b,f,c(j)的一组值是在参数P0-PUSCH-AlphaSet中的一组p0值,该参数通过服务小区c载波f激活上行BWP b的p0-PUSCH-AlphaSetId指示的。
对于α b,f,c(j),对于j=0,α b,f,c(0)是参数msg3-Alpha的值,如果基站通知UE了该参数的话;否则α b,f,c(0)=1;对于j=1,α b,f,c(1)是从参数p0-PUSCH-Alpha中获取的alpha的值,该参数是基站向UE配置的ConfiguredGrantConfig中的标识P0-PUSCH-AlphaSetId对应的对于服务小区c载波f激活上行BWP b的参数集中参数。
对于j∈S J,这一组参数α b,f,c(j)的值,是通过基站向UE配置的标识P0-PUSCH-AlphaSetId对应的对于服务小区c载波f激活上行BWP b的参数集P0-PUSCH-AlphaSet中的参数alpha确定的。
Figure PCTCN2019100867-appb-000034
是在服务小区c载波f激活BWP b上的PUSCH传输时刻上PUSCH资源分配的带宽,可以标识成资源块RB的个数,μ是子载波间隔配置。
PL b,f,c(q d)是下行路损,单位为dB,是UE根据服务小区c的激活DL BWP中的参考信号标识q d计算得到的。下行参考信号可以是SS/PBCH,或CSI-RS等。
对于K S=1.25
Figure PCTCN2019100867-appb-000035
对于K S=0 Δ TF,b,f,c(i)=0 where K S是通过基站配置的参数deltaMCS确定。如果PUSCH传输的层数大于1层,则Δ TF,b,f,c(i)=0。对于服务小区c载波f激活上行BWP b,BPRE和
Figure PCTCN2019100867-appb-000036
计算如下:
对于PUSCH有上行数据,则
Figure PCTCN2019100867-appb-000037
对于PUSCH上没有上行数据有CSI反馈,则BPRE=Q m·R/X,X的取值为
Figure PCTCN2019100867-appb-000038
c是编码块的个数,K r是编码块 r的大小,N RE是资源单元的个数,根据如下确定
Figure PCTCN2019100867-appb-000039
其中,
Figure PCTCN2019100867-appb-000040
是对于服务小区c载波f激活上行BWP b在PUSCH传输时刻i上PUSCH的符号的个数,
Figure PCTCN2019100867-appb-000041
是在PUSCH符号j上除了DMRS子载波和PTRS(phase-tracking RS)子载波之外的子载波的个数
Figure PCTCN2019100867-appb-000042
当PUSCH上包括上行数据时,
Figure PCTCN2019100867-appb-000043
对于PUSCH上没有上行数据有CSI反馈
Figure PCTCN2019100867-appb-000044
Q m是调制阶数,R是目标码率,可以通过DCI中的指示获得。对于服务小区c载波f激活上行BWP b上,在PUSCH传输时刻i的PUSCH功率控制调整状态f b,f,c(i,l):δ PUSCH,b,f,c(i,l)是对于服务小区c载波f激活上行BWP b上,调度PUSCH传输时刻i的DCI中的功率控制命令域的值(a TPC command value)。如果基站向UE发送了高层参数twoPUSCH-PC-AdjustmentStates,则l∈{0,1};否则l=0。如果UE没有被配置高层 参数tpc-Accumulation,
Figure PCTCN2019100867-appb-000045
是对于服务小区c载波f激活上行BWP b上,在PUSCH传输时刻i的PUSCH功率控制调整状态l,其中,δ PUSCH,b,f,c的值通过如下表1确定,
Figure PCTCN2019100867-appb-000046
是功率控制命令域的值之和,对于服务小区c载波f激活上行BWP b上,如果UE在PUSCH传输时刻i-i 0已经达到UE的最大传输功率,并且
Figure PCTCN2019100867-appb-000047
则f b,f,c(i,l)=f b,f,c(i-i 0,l)。对于服务小区c载波f激活上行BWP b上,如果UE在PUSCH传输时刻i-i 0已经达到UE的最大传输功率,并且
Figure PCTCN2019100867-appb-000048
则f b,f,c(i,l)=f b,f,c(i-i 0,l)。对于服务小区c载波f激活上行BWP b上,UE会重设PUSCH功率控制调整状态l的累积为f b,f,c(0,l)=0。如果基站通过高层向UE提供了参数P O_UE_PUSCH,b,f,c(j)的值。如果基站通过高层向UE提供了参数α b,f,c(j)的值。如果UE被配置高层参数tpc-Accumulation,f b,f,c(i,l)=δ PUSCH,b,f,c(i,l)是对于服务小区c载波f激活上行BWP b上,在PUSCH传输时刻i的PUSCH功率控制调整状态。δ PUSCH,b,f,c是表3中的绝对值。
表3:DCI中的功率控制命令域的取值到绝对值或累计值的对应关系(δ PUSCH,b,f,c的值或δ SRS,b,f,c的值)
Figure PCTCN2019100867-appb-000049
示例二,计算PUCCH的发射功率
如果UE在服务小区c载波f激活上行BWP b上传输PUCCH,UE会用PUCCH功率控制调制状态的标识l,在PUCCH传输时刻确定PUCCH的传输功率如下:
Figure PCTCN2019100867-appb-000050
其中,P CMAX,f,c(i)是配置的UE在服务小区c载波f上PUCCH传输时刻i的最大传输功率。
P O_PUCCH,b,f,c(q u)是由两部分组成的和,第一部分为P O_NOMINAL_PUCCH,如果基站向UE提供了参数p0-nominal,则即为该参数的值。否则P O_NOMINAL_PUCCH=0dBm。第二部分:对于服务小区c载波f激活上行BWP b,如果基站向UE提供了参数p0-PUCCH-Value,则即为参数值P O_UE_PUCCH(q u),其中0≤q u<Q u.Q u是P O_UE_PUCCH的值的集合的大小,可以通过参数maxNrofPUCCH-P0-PerSet.提供。P O_UE_PUCCH的值通过参数p0-Set确定。如果参数p0-Set没有配置给UE,则P O_UE_PUCCH(q u)=0,0≤q u<Q u
-
Figure PCTCN2019100867-appb-000051
是服务小区c载波f激活上行BWP b上的PUCCH传输时刻i的PUCCH资源分配的带宽,可以用RB的个数表示。
-PL b,f,c(q d)是下行路损,单位为dB,即UE根据服务小区c载波f的激活下行BWP 中的下行参考信号资源标识q d计算得到的。其中下行参考信号可以是SS/PBCH,或CSI-RS等。
-参数Δ F_PUCCH(F),如果是PUCCH格式0,则根据高层参数deltaF-PUCCH-f0确定。如果是PUCCH格式1,则根据高层参数deltaF-PUCCH-f1确定。如果是PUCCH格式2,则根据高层参数deltaF-PUCCH-f2确定。如果是PUCCH格式3,则根据高层参数deltaF-PUCCH-f3确定。如果是PUCCH格式4,则根据高层参数deltaF-PUCCH-f4确定。高层参数是基站向UE发送的。
TF,b,f,c(i)是在服务小区c载波f激活上行BWP b上的PUCCH传输功率调整成分。
-对于PUCCH格式0或PUCCH格式1,PUCCH传输的参数取值为
Figure PCTCN2019100867-appb-000052
其中,
Figure PCTCN2019100867-appb-000053
是PUCCH格式0或PUCCH格式1的符号的个数。
Figure PCTCN2019100867-appb-000054
对于PUCCH格式0。
Figure PCTCN2019100867-appb-000055
对于PUCCH格式1。Δ UCI(i)=0对于PUCCH格式0。Δ UCI(i)=10 log 10(O UCI(i))对于PUCCH格式1,其中O UCI(i)是在PUCCH传输时刻i上UCI的比特数。
对于PUCCH格式2或PUCCH格式3或PUCCH格式3,并且UCI比特数小于或等于11,Δ TF,b,f,c(i)=10 log 10(K 1·(n HARQ-ACK(i)+O SR(i)+O CSI(i))/N RE(i)),其中,
-K 1=6。
-n HARQ-ACK(i)是HARQ-ACK信息的比特数。
-O SR(i)SR(scheduling request,调度请求)信息的比特数。
-O CSI(i)是CSI信息的比特数。
-N RE(i)是UE确定的资源单元的个数,确定如下,对于服务小区c载波f激活上行BWP b
Figure PCTCN2019100867-appb-000056
其中
Figure PCTCN2019100867-appb-000057
是每个资源块中除了DMRS传输的子载波之外的子载波的个数。
Figure PCTCN2019100867-appb-000058
是除了DMRS传输的符号之外的符号的个数。
对于PUCCH格式2或PUCCH格式3或PUCCH格式4,并且UCI比特数大于11,则
Figure PCTCN2019100867-appb-000059
其中:
-K 2=2.4
-BPRE(i)=(O ACK(i)+O SR(i)+O CSI(i)+O CRC(i))/N RE(i)
-O ACK(i)是HARQ-ACK信息的比特数。
-O SR(i)是SR(scheduling request,调度请求)信息的比特数。
-O CSI(i)是CSI信息的比特数。
-O CRC(i)是CRC(cyclic redundancy check,循环冗余校验)信息的比特数。
-N RE(i)是UE确定的资源单元的个数,确定如下,对于服务小区c载波f激活上行BWP b
Figure PCTCN2019100867-appb-000060
其中
Figure PCTCN2019100867-appb-000061
是每个资源块中除了DMRS传输的子载波之外的子载波的个数。
Figure PCTCN2019100867-appb-000062
是除了DMRS传输的符号之外的符号的个数。
对于服务小区c载波f激活上行BWP b上,调度PUCCH传输时刻i,PUCCH功控控制调整状态g b,f,c(i,l)。
PUCCH,b,f,c(i,l)是对于服务小区c载波f激活上行BWP b上,调度PUCCH传输时 刻i的DCI中的功率控制命令域的值(a TPC command value)。
-如果基站向UE发送了高层参数twoPUSCH-PC-AdjustmentStates,则l∈{0,1};否则l=0。
-
Figure PCTCN2019100867-appb-000063
是对于服务小区c载波f激活上行BWP b上,调度PUCCH传输时刻i的当前PUCCH功率控制调整状态l。
其中δ PUCCH,b,f,c的值通过如下表4确定。
Figure PCTCN2019100867-appb-000064
是功率控制命令域的值之和。对于服务小区c载波f激活上行BWP b上,如果UE在PUCCH传输时刻i-i 0已经达到UE的最大传输功率,并且
Figure PCTCN2019100867-appb-000065
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。对于服务小区c载波f激活上行BWP b上,如果UE在PUCCH传输时刻i-i 0已经达到UE的最大传输功率,并且
Figure PCTCN2019100867-appb-000066
则g b,f,c(i,l)=g b,f,c(i-i 0,l)。
对于服务小区c载波f激活上行BWP b上,如果基站通过高层向UE配置了参数P O_PUCCH,b,f,c(q u)的值,则
-g b,f,c(0,l)=0
-否则
-g b,f,c(0,l)=ΔP rampup,b,f,cmsg2,b,f,c,其中δ msg2,b,f,c是在随机接入相应许可中对应的在服务小区c载波f激活上行BWP b上PRACH传输的功率控制命令域中的的值,并且
如果UE传输PUCCH,则
Figure PCTCN2019100867-appb-000067
否则
Figure PCTCN2019100867-appb-000068
其中ΔP rampuprequ ested,b,f,c是通过高层参数提供的,对应着从第一次序列到最后一次序列传输的功率爬升的总功率,Δ F_PUCCH(F)对应PUCCH格式0或PUCCH格式1。
表4:DCI中的功率控制命令域的取值到累计值的对应关系(δ PUCCH,b,f,c的取值)
功率控制命令域(TPC Command Field) 累计值(Accumulated δ PUCCH,b,f,c)[dB]
0 -1
1 0
2 1
3 3
在该步骤中,获取得到的上行传输功率小于或等于最大传输功率。
S702、第一终端设备根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率。
其中,旁链路的实际传输功率在N个第一符号上相同。最大传输功率为终端设备所支持的最大的传输功率。
可选的,还可以确定上行链路的实际传输功率,旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。
可选的,旁链路的实际传输功率可以是0,此时即表明不发送旁链路信号。
可选的,上行链路的实际传输功率可以是0,此时即表明不发送上行信号。
比如,当旁链路的实际传输功率小于或等于旁链路传输功率的A倍,或者,旁链路的实际传输功率大于或等于旁链路传输功率的C倍时,旁链路的实际传输功率可以为0,其中A为小于或等于1的数,C为大于1的数,即表明当旁链路的实际传输功率缩放的程度太大时,如果以较小的功率传输旁链路信号会导致接收性能较差,因此此时可以不发送所述旁链路信号。
比如,当上行链路的实际传输功率小于或等于上行链路传输功率的B倍,或者,旁链路的实际传输功率大于或等于旁链路传输功率的D倍时,旁链路的实际传输功率可以为0,其中B为小于或等于1的数,D为大于1的数,即表明当上行链路的实际传输功率缩放的程度太大时,如果以较小的功率传输上行信号会导致接收性能较差,因此此时可以不发送所述上行信号。
其中,A和/或B的取值可以是预定义的,也可以是网络设备通过信令告知终端设备的,或者也可以是通过其他方式确定的,具体的,本申请对此不做限定。
其中,可选的,旁链路传输功率可以包括第一传输功率和第二传输功率,所述第一传输功率为所述旁链路的第一信道的传输功率,所述第二传输功率为所述旁链路的第二信道的传输功率。
以下以第一信道为PSCCH,第二信道为PSSCH为例进行方案说明,其他情况与之类似,具体的,不再赘述。
可以通过如下两种可能的实现方式确定第一时隙中旁链路的实际传输功率:
一种可能的实现方式:
旁链路传输功率包括PSCCH的第一传输功率和PSSCH的第二传输功率。根据第一传输功率和第二传输功率,确定第一时隙中旁链路的第三传输功率;以及根据第三传输功率、上行传输功率和最大传输功率,确定实际传输功率;其中,旁链路的第三传输功率在N个第一符号上相同。
在该种可能的实现方式中,先根据第一传输功率和第二传输功率确定第三传输功率,使得第三传输功率在N个第一符号上恒定,再根据第三传输功率和最大传输功率确定旁链路的实际传输功率,使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。这样,不但可以使得旁链路的实际传输功率在N个第一符号上恒定,还可以使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。
另一种可能的实现方式:
旁链路传输功率包括PSCCH的第一传输功率和PSSCH的第二传输功率。根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率;根据第七传输功率和第八传输功率确定所述旁链路的实际传输功率。
由于第二传输功率的个数可能为1个,也可能为多个,因此,第二传输功率对应的第 八传输功率的个数也可能为1个,或者为多个。例如,当PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B、图8D-图8E时,第八传输功率为1个。当PSCCH资源和PSSCH资源的资源复用方式如图8C时,第八传输功率的个数为2个。可选的,所述N个第一符号包括N1个第三符号和N2个第四符号,其中,所述N1与所述N2之和为所述N,所述N1为小于所述N的正整数,所述N2为小于所述N的正整数;所述第一信道占用所述N1个第三子时间单元,所述第二信道占用所述N个第一子时间单元。第八传输功率包括第四传输功率对应的第九传输功率和第五传输功率对应的第十传输功率,第九传输功率为PSSCH在N1个第三符号(还可以记为N3个第五符号)上的传输功率,第十传输功率为PSSCH在N2个第四符号(还可以记为N4个第六符号)上的传输功率。
当PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所示时,若PSCCH资源与上行资源存在重叠,则第七传输功率与上行传输功率之和小于或等于最大传输功率。若PSSCH资源与上行资源存在重叠,则第八传输功率与上行传输功率之和小于或等于最大传输功率。
当PSCCH资源和PSSCH资源的资源复用方式如图8C所示时,若第三符号(还可以记为第五符号)与上行资源存在重叠,则第七传输功率、第九传输功率和上行传输功率之和小于或等于最大传输功率。若第四符号(还可以记为第六符号)与上行资源存在重叠,则第十传输功率和上行传输功率之和小于或等于最大传输功率。
当PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示时,第九传输功率、第十传输功率和上行传输功率之和小于或等于最大传输功率。
在该种可能的实现方式中,根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率,使得N个第一符号的每个第一符号对应的传输功率总和小于或等于最大传输功率,再根据第七传输功率和第八传输功率确定实际传输功率,使得实际传输功率在N个第一符号上恒定。这样,不但可以使得旁链路的实际传输功率在N个第一符号上恒定,还可以使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。
S703、第一终端设备根据旁链路的实际传输功率,向第二终端设备发送旁链路信号。
旁链路信号可以包括SA信号(还可以称为SA)、数据信号(还可以称为数据或者data)、旁链路反馈信号(还可以简称sidelink feedback information,SFI)、SRS等中的至少一个。PSCCH用于承载SA信号,PSSCH用于承载数据信号,PSFCH用于承载SFI信号。
可选的,当SA和data采用时分方式复用时,即SA和data占用不同符号时,第一终端设备通过实际传输功率发送SA信号,以及通过实际传输功率发送数据信号,即,第一终端设备采用相同的传输功率发送SA信号和数据信号,使得第一终端设备在N个第一符号上的传输功率相同。
第一终端设备还可以确定上行链路的实际传输功率,并根据上行链路的实际传输功率向网络设备发送上行信号。上行信号可以包括上行控制信号、上行数据信号、SRS等中的一个或多个。
S704、第二终端设备处理旁链路信号。
可选的,第二终端设备可以接收第一终端设备发送的旁链路信号。
比如,第二终端设备可以接收第一终端设备发送的SRS信号,根据SRS信号进行信 道估计获得信道特征。
比如,第二终端设备可以接收第一终端设备发送的SFI信号,根据SFI信号确定反馈信息,比如确定信道状态信息和/或ACK/NACK信息。
可选的,在第二终端设备获取得到SA信号后,第二终端设备可以根据SA信号确定PSSCH资源以及调制编码方式。进而第二终端设备可以对data信号进行解调,解码等,进而接收所述data信号。
本申请实施例提供的通信方法,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,则先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
下面,结合图13-图14,对确定第一时隙中旁链路的实际传输功率的过程进行说明。
图13为本申请实施例提供的一种确定旁链路的实际传输功率方法的流程示意图。请参见图13,该方法可以包括:
S1301、根据第一传输功率和第二传输功率,确定第一时隙中旁链路的第三传输功率。
其中,旁链路的第三传输功率在N个第一符号上相同。
本申请实施例的执行主体可以为终端设备(例如,第一终端设备),与可以为设置在终端设备中的装置(例如处理器、或芯片等)。
当PSCCH资源和PSSCH资源的资源复用方式不同时,确定第三传输功率的方式不同,下面,介绍在不同的资源复用方式下确定第三传输功率的方式:
可选的,采用如下实现方式中的一种。
一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所示,即,PSCCH和PSSCH占用N个第一符号中不同的符号。PSCCH和PSSCH的频域资源可以相同(图8A所示),PSCCH和PSSCH的频域资源也可以不同(图8B所示)。
在该种可能的实现方式中,第三传输功率满足如下中的一种:
●第三传输功率可以为第一传输功率或第二传输功率。例如,可以预定义第三传输功率为第一传输功率或第二传输功率,或者,可以通过第一指示信息指示第三传输功率为第一传输功率或第二传输功率。第一指示信息可以为网络设备向第一终端设备发送的。
●第三传输功率可以为第一传输功率和第二传输功率中的最大值。
●第三传输功率可以为第一传输功率和第二传输功率中的最小值。
●第三传输功率可以与第一传输功率和第二传输功率存在第一对应关系。例如,假设第三传输功率为P3,第一传输功率为P1,第二传输功率为P2,则第一对应关 系可以为:P3=a1*P1+a2*P2,其中,a1为第一传输功率的权重值,a2为第二传输功率的权重值,a1和a2分别为0至1之间的数。可选的,a1+a2=1,例如,a1和a2可以分别为0.5。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
另一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8C所示,即,N个第一符号包括N1个第三符号和N2个第四符号,其中,N1与N2之和为N,N1为小于N的正整数,N2为小于N的正整数;PSCCH占用N1个第三符号,第PSSCH占用N个第一符号。PSCCH的频域资源与PSSCH的部分频域资源重叠。
在该种可能的实现方式中,第二传输功率包括第四传输功率和第五传输功率,第四传输功率为PSSCH在N1个第三符号上的传输功率,第五传输功率为PSSCH在N2个第四符号上的传输功率。第三传输功率满足如下中的一种:
●第三传输功率为第五传输功率或第六传输功率,第六传输功率为第一传输功率和第四传输功率之和。第六传输功率为N1个第三符号上的PSCCH的传输功率和PSSCH的传输功率之和。例如,可以预定义第三传输功率为第五传输功率或第六传输功率,或者,可以通过第二指示信息指示第三传输功率为第五传输功率或第六传输功率。第二指示信息可以为网络设备向第一终端设备发送的。
●第三传输功率为第五传输功率和第六传输功率中的最大值。
●第三传输功率为第五传输功率和第六传输功率中的最小值。
●第三传输功率与第一传输功率、第四传输功率和第五传输功率存在第二对应关系。例如,假设第三传输功率为P3,第一传输功率为P1,第四传输功率为P4,第五传输功率为P5,则第二对应关系可以为:P3=a1*P1+a4*P4+a5*P5,其中,a1为第一传输功率的权重值,a4为第四传输功率的权重值,a5为第五传输功率的权重值,a1、a4和a5分别为0至1之间的数,a1可以等于a4。可选的,当a1等于a4时,a1+a5=1。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
再一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示,即,PSCCH和PSSCH占用不同的频域资源。PSCCH和PSSCH可以分别占用N个第一符号中的全部符号(图8D所示),或者,PSCCH和/或PSSCH可以占用N个第一符号中的部分符号(图8E所示)。
在该种可能的实现方式中,第三传输功率为:第一传输功率和第二传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
S1302、根据第三传输功率、上行传输功率和最大传输功率,确定旁链路的实际传输功率。
在第三传输功率和上行传输功率之和小于或等于最大传输功率时,可以确定旁链路的实际传输功率为第三传输功率,上行链路的实际传输功率为上行传输功率。
在第三传输功率和上行传输功率之和大于最大传输功率时,可以通过如下可能的实现方式中的一种确定旁链路的实际传输功率:
一种可能的实现方式:
根据旁链路信号的优先级、上行信号的优先级、第三传输功率、上行传输功率和最大传输功率,确定旁链路的实际传输功率,可以包括如下两种情况:
在旁链路信号的优先级大于或等于(或者,大于)上行信号的优先级时,确定旁链路的实际传输功率为第三传输功率。还可以确定上行链路的实际传输功率为最大传输功率与第三传输功率的差值。
在旁链路信号的优先级小于(或者,小于或等于)上行信号的优先级时,确定旁链路的实际传输功率为最大传输功率和上行传输功率的差值。还可以确定上行链路的实际传输功率为上行传输功率。
在该种可能的实现方式中,根据旁链路信号的优先级、上行信号的优先级,可以优先保证优先级较高的信号的传输功率,进而使得优先级较高的信号的传输性能较好。例如,可以使得优先级高的信号的传输正确性较高,可以保证优先级高的业务的传输需求,比如低时延高可靠性等需求。
另一种可能的实现方式:
旁链路的实际传输功率为第三传输功率与第一权重值的第一乘积。还可以确定上行链路的实际传输功率为上行传输功率与第二权重值的第二乘积。其中,上行信号对应第二权重值,第一乘积与第二乘积之和小于或等于最大传输功率。
第一权重值和第二权重值可以相同,也可以不同。第一权重值和第二权重值之和小于1,第一权重值和第二权重值可以为预定义的,也可以为根据第三传输功率和上行传输功率的大小生成的。当第一权重值和第二权重值为根据第三传输功率和上行传输功率的大小生成时,可以先初始化第一权重值和第二权重值(例如,分别将第一权重值和第二权重值初始化为1或0.5等),并逐步减小第一权重值和第二权重值,直至第一乘积与第二乘积之和小于或等于最大传输功率。
在该种可能的实现方式中,按照预设比例减小第三传输功率得到旁链路的实际传输功率,以及按照预设比例减少上行传输功率得到上行链路的实际传输功率,这样,可以避免旁链路的实际传输功率或者上行链路的实际传输功率过小的情况。
再一种可能的实现方式:
旁链路的实际传输功率为第三传输功率或者第一差值。第一差值为最大传输功率与上行传输功率的差值。例如,可以预定义旁链路的实际传输功率为第三传输功率或者第一差值,或者,可以通过指示信息指示旁链路的实际传输功率为第三传输功率或者第一差值。该指示信息可以为网络设备向第一终端设备发送的。
上行链路的实际传输功率为上行传输功率或者第二差值。第二差值为最大传输功率与第三传输功率的差值。例如,可以预定义上行链路的实际传输功率为上行传输功率或者第 二差值,或者,可以通过指示信息指示上行链路的实际传输功率为上行传输功率或者第二差值。该指示信息可以为网络设备向第一终端设备发送的。
在该种可能的实现方式中,通过预定义或者指示信息指示旁链路的实际传输功率和上行链路的实际传输功率,可以快速的确定得到旁链路的实际传输功率和上行链路的实际传输功率。
在图13所示的实施例中,先根据第一传输功率和第二传输功率确定第三传输功率,使得第三传输功率在N个第一符号上恒定,再根据第三传输功率和最大传输功率确定旁链路的实际传输功率,使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免功率跳变导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
图14为本申请实施例提供的另一种确定旁链路的实际传输功率方法的流程示意图。请参见图14,该方法可以包括:
S1401、根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率。
本申请实施例的执行主体可以为终端设备(例如,第一终端设备),与可以为设置在终端设备中的装置(例如处理器、或芯片等)。
PSCCH资源和PSSCH资源的资源复用方式不同,以及旁链路资源与上行资源的重叠情况不同时,确定第七传输功率的方式也不同,可以包括如下可能的实现方式:
一种可能的实现方式:PSCCH占用的第一符号与上行资源不存在重叠。
在该种资源重叠情况下,第七传输功率与第一传输功率相同。例如,请参见图9B、图9C、图10B、图10C,PSCCH占用的第一符号与上行资源没有重叠,则第七传输功率与第一传输功率相同。
另一种可能的实现方式:PSCCH占用的第一符号与上行资源存在重叠。
在PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所示时,若第一传输功率和上行传输功率之和小于或等于最大传输功率,则第七传输功率与第一传输功率相同。若第一传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第七传输功率,此处不再进行赘述。
在PSCCH资源和PSSCH资源的资源复用方式如图8C所示时,若第一传输功率、第四传输功率(第四传输功率可以参见S701中的描述)和上行传输功率之和小于或等于最大传输功率,则第七传输功率与第一传输功率相同。若第一传输功率、第四传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第七传输功率,此处不再进行赘述。
在PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示时,若第一传输功率、第二传输功率和上行传输功率之和小于或等于最大传输功率时,则第七传输功率与第 一传输功率相同。若第一传输功率、第二传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第七传输功率,此处不再进行赘述。
PSCCH资源和PSSCH资源的资源复用方式不同,以及旁链路资源与上行资源的重叠情况不同时,确定第八传输功率的方式也不同,可以包括如下可能的实现方式中的一种:
一种可能的实现方式:PSCCH占用的第一符号与上行资源不存在重叠。
在该种资源重叠情况下,第八传输功率与第二传输功率相同。例如,请参见图9D、图9E、图10D、图10E,PSSCH占用的第一符号与上行资源没有重叠时,则第八传输功率与第二传输功率相同。
另一种可能的实现方式:PSCCH占用的第一符号与上行资源存在重叠。
在PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所示时,若第二传输功率和上行传输功率之和小于或等于最大传输功率,则第八传输功率与第二传输功率相同。若第二传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第八传输功率,此处不再进行赘述。
在PSCCH资源和PSSCH资源的资源复用方式如图8C所示时,第二传输功率包括第四传输功率和第五传输功率,第八传输功率包括第九传输功率和第十传输功率(参见S701中的描述),若第一传输功率、第四传输功率和上行传输功率之和小于或等于最大传输功率,则第九传输功率与第四传输功率相同。若第一传输功率、第四传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第九传输功率,此处不再进行赘述。若第五传输功率和上行传输功率之和小于或等于最大传输功率,则第十传输功率与第五传输功率相同。若第五传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第十传输功率,此处不再进行赘述。
在PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示时,若第一传输功率、第二传输功率和上行传输功率之和小于或等于最大传输功率,则第八传输功率与第二传输功率相同。若第一传输功率、第二传输功率和上行传输功率之和大于最大传输功率,则可以参见S1302所示的三种可能的实现方式中的任意一种实现方式确定第八传输功率,此处不再进行赘述。
在上述确定第七传输功率和确定第八传输功率的过程中,还可以确定上行链路的实际传输功率。若在上述确定第七传输功率和确定第八传输功率的过程中,不降低上行传输功率即可使得N个第一符号中的第一符号上的总传输功率(旁链路的传输功率与上行传输功率之和)小于或等于最大传输功率,则可以确定上行链路的实际传输功率为上行传输功率。若在上述确定第七传输功率和确定第八传输功率的过程中,需要调整上行传输功率以使得N个第一符号中各第一符号上的总传输功率小于或等于最大传输功率,则上行链路的实际传输功率为调整后的上行传输功率。具体的,比如调整后的上行传输功率为最大传输功率与第七传输功率的差值,或者调整后的上行传输功率为最大传输功率与第八传输功率的差值,或者调整后的上行传输功率为最大传输功率与第七传输功率和第八传输功率的功率之和的差值。
S1402、根据第七传输功率和第八传输功率确定旁链路的实际传输功率。
当PSCCH资源和PSSCH资源的资源复用方式不同时,确定第三传输功率的方式不同,下面,介绍在不同的资源复用方式下确定实际传输功率的方式:
可选的,可以采用如下实现方式中的一种。
一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8A-图8B所示,即,PSCCH和PSSCH占用N个第一符号中不同的符号。PSCCH和PSSCH的频域资源可以相同(图8A所示),PSCCH和PSSCH的频域资源也可以不同(图8B所示)。
在该种可能的实现方式中,旁链路的实际传输功率满足如下中的一种:
●实际传输功率为第七传输功率或第八传输功率。例如,可以预定义实际传输功率为第七传输功率或第八传输功率,或者,可以通过第三指示信息指示实际传输功率为第七传输功率或第八传输功率。第三指示信息可以为网络设备向第一终端设备发送的。
●实际传输功率为第七传输功率和第八传输功率中的最大值。
●实际传输功率为第七传输功率和第八传输功率中的最小值。
●实际传输功率与第七传输功率和第八传输功率存在第三对应关系。例如,假设实际传输功率为P,第七传输功率为P7,第八传输功率为P8,则第三对应关系可以为:P=a7*P7+a8*P8,其中,a7为第七传输功率的权重值,a8为第八传输功率的权重值,a7和a8分别为0至1之间的数。可选的,a7+a8=1,例如,a7和a8可以分别为0.5。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
另一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8C所示,即,N个第一符号包括N3个第五符号和N4个第六符号,其中,N3与N4之和为N,N3为小于N的正整数,N4为小于N的正整数;PSCCH占用N3个第五符号,第PSSCH占用N个第一符号。PSCCH的频域资源与PSSCH的部分频域资源重叠。
在该种可能的实现方式中,第八传输功率包括第九传输功率和第十传输功率,第九传输功率为第二信道在N3个第五符号(还可以记为N1个第三符号)上的传输功率,第十传输功率为第二信道在N4个第六符号(还可以记为N2个第四符号)上的传输功率。旁链路的实际传输功率满足如下中的一种:
●实际传输功率为第十传输功率或者第十一传输功率,第十一传输功率为第七传输功率和第九传输功率之和;例如,可以预定义实际传输功率为第十传输功率或者第十一传输功率,或者,可以通过第四指示信息指示实际传输功率为第十传输功率或者第十一传输功率。第四指示信息可以为网络设备向第一终端设备发送的。
●实际传输功率为第十传输功率和第十一传输功率中的最大值。
●实际传输功率为第十传输功率和第十一传输功率中的最小值。
●实际传输功率与第七传输功率、第九传输功率和第十传输功率存在第四对应关系。例如,假设实际传输功率为P,第七传输功率为P7,第九传输功率为P9,第十传 输功率为P10,则第四对应关系可以为:P=a7*P7+a9*P9+a10*P10,其中,a7为第七传输功率的权重值,a9为第九传输功率的权重值,a10为第十传输功率的权重值,a7、a9和a10分别为0至1之间的数,a7可以等于a9。可选的,当a7等于a9时,a7+a10=1。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
再一种可能的实现方式:
PSCCH资源和PSSCH资源的资源复用方式如图8D-图8E所示,即,PSCCH和PSSCH占用不同的频域资源。PSCCH和PSSCH可以分别占用N个第一符号中的全部符号(图8D所示),或者,PSCCH和/或PSSCH可以占用N个第一符号中的部分符号(图8E所示)。
实际传输功率为:第七传输功率和第八传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在图14所示的实施例中,根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率,使得每个第一符号对应的传输功率总和小于或等于最大传输功率,再根据第七传输功率和第八传输功率确定实际传输功率,使得实际传输功率在N个第一符号上恒定。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率跳变导致的信号的相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在实际应用过程中,终端设备可以通过图13或者图14实施例所示的方法确定旁链路的实际传输功率。
可选的,根据PSCCH资源和PSCCH资源的资源复用方式选择确定旁链路的实际传输功率的方式。例如,当资源复用方式为图8A-图8B所示时,则通过图14实施例所示的方法确定旁链路的实际传输功率。当资源复用方式为图8C-图8E所示时,则通过图13实施例所示的方法确定旁链路的实际传输功率。这样可以提高功率调整的性能,降低处理复杂度。
可选的,根据旁链路资源和上行资源的资源重叠情况选择确定旁链路的实际传输功率的方式。例如,当上行资源与PSCCH资源和PSSCH资源中的一种资源存在重叠时,则通过图14实施例所示的方法确定旁链路的实际传输功率。当上行资源与PSCCH资源和PSSCH资源均存在重叠,则通过图13实施例所示的方法确定旁链路的实际传输功率。可以提高功率调整的性能,降低处理复杂度。
可选的,根据传输方式选择确定旁链路的实际传输功率的方式。例如,当传输方式为旁链路单播传输时,则通过图14实施例所示的方法确定旁链路的实际传输功率。当传输方 式为旁链路组播传输或旁链路广播传输时,则通过图13实施例所示的方法确定旁链路的实际传输功率。
本申请中,旁链路的传输类型可以包括单播、组播和广播中的一种或多种。其中,单播(unicast)传输可以是指一个终端与另一个终端之间的通信。组播(groupcast)传输可以是指一个终端与一组终端之间的通信。广播(broadcast)传输可以是指一个终端与多个终端之间的通信。可选的,广播可以是指一个终端与小区中的所有终端之间的通信,或者理解为一个终端与多组终端之间的通信。本申请中,旁链路的传输类型也可以对应业务类型,比如可以包括单播业务、组播业务和广播业务中的一种或多种。可选的,根据路损计算方法选择确定旁链路的实际传输功率的方式。其中,旁链路路损计算方法可以是指根据发送端UE和基站之间的路损确定旁链路信号的发送功率,或者根据发送端UE和接收端UE之间的路损确定旁链路信号的发送功率。例如,当旁链路信号的发送是根据发送端UE和基站之间的路损确定旁链路信号的发送功率时,可以根据图14实施例所示的方法确定旁链路的实际传输功率。当旁链路信号的发送是根据发送端UE和接收端UE之间的路损确定旁链路信号的发送功率,可以根据图13实施例所示的方法确定旁链路的实际传输功率。
可选的,根据资源复用方式、资源重叠情况、传输方式、路损计算方法中的多种选择确定旁链路的实际传输功率的方式。例如,可以根据资源复用方式和传输方式选择确定旁链路的实际传输功率的方式。例如,当资源复用方式如图8A-图8B所示,传输方式为单播传输方式时,根据图14实施例所示的方法确定旁链路的实际传输功率。当资源复用方式如图8C-图8E所示,传输方式为单播方式时,根据图13实施例所示的方法确定旁链路的实际传输功率。当资源复用方式如图8A-图8B所示,传输方式为组播或广播传输方式时,根据图13实施例所示的方法确定旁链路的实际传输功率。当资源复用方式如图8C-图8E所示,传输方式为组播或广播方式是,根据图13实施例所示的方法确定旁链路的实际传输功率。可以提高功率调整的性能,降低处理复杂度。
可选的,终端设备向网络设备发送终端设备确定旁链路的实际传输功率所采用的方法,使得网络设备可以确定接收旁链路信号的接收功率。例如,终端设备可以向网络设备上报其采用图13实施例所示的方法确定旁链路的实际传输功率,或者,终端设备可以向网络设备上报其采用图14实施例所示的方法确定旁链路的实际传输功率。
可选的,终端设备向网络设备发送:终端设备是否支持采用上述图13实施例所示的方法确定旁链路的实际传输功率的能力,以及终端设备是否支持采用上述图14实施例所示的方法确定旁链路的实际传输功率的能力。例如,当终端设备上报其支持采用上述图13实施例所示的方法确定旁链路的实际传输功率的能力,则终端设备可以采用上述图13实施例所示的方法确定旁链路的实际传输功率。当终端设备上报其支持采用上述图14实施例所示的方法确定旁链路的实际传输功率的能力,则终端设备可以采用上述图14实施例所示的方法确定旁链路的实际传输功率。通过上述方法,使得网络设备可以确定终端对于上行链路和旁链路的处理方式和能力,可以获得接收旁链路信号的接收功率和/或更好的实现上行链路和旁链路的调度和通信。
可选的,终端设备向网络设备发送:终端设备支持在上行资源和旁链路资源不完全重叠时同时发送上行信号和旁链路信号的能力,或者,终端设备不支持在上行资源和旁链路资源不完全重叠时同时发送上行信号和旁链路信号的能力。当终端设备上报其支持在上行 资源和旁链路资源不完全重叠时同时发送上行信号和旁链路信号的能力时,在上行资源和旁链路资源不完全重叠时,终端设备可以同时发送上行信号和旁链路信号。当终端设备上报其不支持在上行资源和旁链路资源不完全重叠时同时发送上行信号和旁链路信号的能力时,终端设备仅可以在上行资源和旁链路资源完全重叠时,同时发送上行信号和旁链路信号。通过上述方法,使得网络设备可以确定终端对于上行链路和旁链路的处理方式和能力,可以获得接收旁链路信号的接收功率和/或更好的实现上行链路和旁链路的调度和通信。
可选的,终端设备向网络设备发送:终端设备支持的资源复用方式(例如,图8A-图8E所示的资源复用方式中的一种或多种),以及终端设备支持的资源重叠情况(图9A-图9G、图10A-图10G、图11A-图11B、图12A-图12C中的一种或多种)。通过上述方法,使得网络设备可以确定终端对于上行链路和旁链路的处理方式和能力,可以获得接收旁链路信号的接收功率和/或更好的实现上行链路和旁链路的调度和通信。
可选的,作为另一种实施例,可以根据优先传输原则确定旁链路的实际传输功率,和/或,上行链路的实际传输功率。
可选的,本实施例可以与其他实施例相互独立,或者也可以与其他实施例相结合,具体的,本申请对此不做限定。
比如,在所述终端设备已按照第三传输功率传输所述旁链路信号时,所述旁链路的实际传输功率等于所述第三传输功率,所述第三传输功率是根据所述第一传输功率和所述第二传输功率确定的;和/或,在所述终端设备已按照所述上行传输功率传输所述上行信号时,所述旁链路的实际传输功率等于第三传输功率与第一差值中的较小值,所述第一差值为所述终端设备的最大传输功率与所述上行传输功率的差值。
在实际应用过程中,在第一时隙中,可以先传输旁链路信号,再传输上行信号,例如,图9B-图9C。在第一时隙中,假设在传输上行信号之前,已按照第三传输功率传输旁链路信号,则可以确定旁链路的实际传输功率等于第三传输功率。其中,第三传输功率的确定方式可以参见S1301,此处不再进行赘述。这样,可以避免在第一时隙中进行功率切换。
在实际应用过程中,在第一时隙中,可以先传输上行信号,再传输旁链路信号,例如,图12A-图12C。在第一时隙中,假设在传输旁链路信号之前,已按照上行传输功率传输上行信号时,则旁链路的实际传输功率等于第三传输功率与第一差值中的较小值,第一差值为最大传输功率与上行传输功率的差值,这样,可以避免在第一时隙中进行功率切换。或者,还可以根据上行链路的优先级和旁链路的优先级确定旁链路的实际传输功率。例如,若旁链路的优先级大于或等于上行链路的优先级,则旁链路的实际传输功率等于第三传输功率。若旁链路的优先级小于上行链路的优先级,则旁链路的实际传输功率等于零,或者,旁链路的实际传输功率等于第三传输功率与第一差值中的较小值,第一差值为终端设备的最大传输功率与上行传输功率的差值。其中,第三传输功率的确定方式可以参见S1301,此处不再进行赘述。
可选的,可以对上行传输功率或旁链路传输功率中的一种或多种进行调节,以使一个时隙中N个第一符号上的总传输功率恒定。可选的,还可以使得第一符号上的总传输功率小于或等于终端设备的最大传输功率。可选的,可以根据上行信号的优先级和旁链路信号的优先级,调整上行传输功率或者旁链路传输功率,例如,当上行信号的优先级大于或等于旁链路信号的优先级,则优先降低旁链路传输功率,当上行信号的优先级小于旁链路信 号的优先级,则优先降低上行传输功率。
例如,假设上行信号的优先级大于旁链路信号的优先级,在资源重叠情况如图9A所示,可以降低PSSCH的传输功率或者PSCCH的传输功率,以使的PSSCH的传输功率和上行传输功率等于PSCCH的传输功率,进而使得N个第一符号上总传输功率恒定。
例如,假设上行信号的优先级大于旁链路信号的优先级,在资源重叠情况如图9B所示,可以降低重叠符号上的PSSCH的传输功率,以使得重叠符号上的上行传输功率和PSSCH的传输功率之和等于非重叠符号上的PSSCH的传输功率并且等于PSCCH的传输功率,进而使得N个第一符号上总传输功率恒定。
例如,假设上行信号的优先级大于旁链路信号的优先级,在资源重叠情况如图9D所示,可以降低PSCCH的传输功率,以使得上行传输功率和PSCCH的传输功率之和等于PSSCH的传输功率,进而使得N个第一符号上总传输功率恒定。
可选的,为了保证N个第一符号上的总传输功率恒定,并且N个第一符号上的旁链路传输功率不发生变化,以及N个第一符号上的上行传输功率不发生变化,可以预定义上行传输的时域资源和旁链路传输的时域资源完全重叠(即,图9A或图10A或图11A所示的资源重叠情况)。即,在一个时隙中,上行传输占用的符号位置与旁链路传输占用的符号位置相同。
本申请中的预定义可以理解为定义、预先定义、协议预定义、存储、预存储、预协商、预配置、固化、或预烧制。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图15为本申请提供的一种装置的结构示意图。所述装置1500可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置1500可以包括一个或多个处理器1501,所述处理器1501也可以称为处理单元,可以实现一定的控制功能。所述处理器1501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1501也可以存有指令和/或数据1503,所述指令和/或数据1503可以被所述处理器运行,使得所述装置1500执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1501中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置1500中可以包括一个或多个存储器1502,其上可以存有指令1504,所述指令可在所述处理器上被运行,使得所述装置1500执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置1500还可以包括收发器1505和/或天线1506。所述处理器1501可以称为处理单元,对所述装置1500进行控制。所述收发器1505可以称为收发单元、收发机、收发电路或者收发器等,用于实现收发功能。
在第一种可能的设计中,一种装置1500(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:处理器1501。
处理器1501用于,获取旁链路传输功率和上行传输功率,所述旁链路传输功率为第一时间单元中旁链路的传输功率,所述上行传输功率为所述第一时间单元中上行链路的传输功率;以及,根据所述旁链路传输功率、所述上行传输功率和最大传输功率,确定所述第一时间单元中所述旁链路的实际传输功率;其中,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于N的正整数,所述N个第一子时间单元为所述第一时间单元中用于所述旁链路传输的子时间单元,所述旁链路的所述实际传输功率在所述N个第一子时间单元上相同。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,则先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为所述旁链路的第一信道的传输功率,所述第二传输功率为所述旁链路的第二信道的传输功率。
在一种可能的实施方式中,处理器1501具体用于:根据所述第一传输功率和所述第二传输功率,确定所述第一时间单元中所述旁链路的第三传输功率;以及,根据所述第三传输功率、所述上行传输功率和所述最大传输功率,确定所述实际传输功率;其中,所述旁链路的所述第三传输功率在所述N个第一子时间单元上相同。
在上述过程中,先根据第一传输功率和第二传输功率确定第三传输功率,使得第三传输功率在N个第一符号上恒定,再根据第三传输功率和最大传输功率确定旁链路的实际传输功率,使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最 大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免功率跳变导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述第一信道和所述第二信道占用所述N个第一子时间单元中不同的子时间单元;
所述第三传输功率满足如下中的一种:
所述第三传输功率为所述第一传输功率或所述第二传输功率;
所述第三传输功率为所述第一传输功率和所述第二传输功率中的最大值;
所述第三传输功率为所述第一传输功率和所述第二传输功率中的最小值;或者,
所述第三传输功率与所述第一传输功率和所述第二传输功率存在第一对应关系。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,所述第一信道和所述第二信道占用不同的频域资源;
所述第三传输功率为:所述第一传输功率和所述第二传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,所述N个第一子时间单元包括N1个第三子时间单元和N2个第四子时间单元,其中,所述N1与所述N2之和为所述N,所述N1为小于所述N的正整数,所述N2为小于所述N的正整数;
所述第一信道占用所述N1个第三子时间单元,所述第二信道占用所述N个第一子时间单元;
所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
所述第二传输功率包括第四传输功率和第五传输功率,所述第四传输功率为所述第二信道在所述N1个第三子时间单元上的传输功率,所述第五传输功率为所述第二信道在所述N2个第四子时间单元上的传输功率;
所述第三传输功率满足如下中的一种:
所述第三传输功率为所述第五传输功率或第六传输功率,所述第六传输功率为所述第一传输功率和所述第四传输功率之和;
所述第三传输功率为所述第五传输功率和所述第六传输功率中的最大值;
所述第三传输功率为所述第五传输功率和所述第六传输功率中的最小值;或者,
所述第三传输功率与所述第一传输功率、所述第四传输功率和所述第五传输功率存在第二对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的 第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,处理器1501具体用于:
根据所述第一传输功率、所述第二传输功率、所述上行传输功率和所述最大传输功率,确定与所述第一传输功率对应的第七传输功率,以及与所述第二传输功率对应的第八传输功率;根据所述第七传输功率和所述第八传输功率确定所述旁链路的实际传输功率。
在上述过程中,根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率,使得每个第一符号对应的传输功率总和小于或等于最大传输功率,再根据第七传输功率和第八传输功率确定实际传输功率,使得实际传输功率在N个第一符号上恒定。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率跳变导致的信号的相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述第一信道和第二信道占用所述N个第一子时间单元中不同的子时间单元;
所述实际传输功率满足如下中的一种:
所述实际传输功率为所述第七传输功率或所述第八传输功率;
所述实际传输功率为所述第七传输功率和所述第八传输功率中的最大值;
所述实际传输功率为所述第七传输功率和所述第八传输功率中的最小值;或者,
所述实际传输功率与所述第七传输功率和所述第八传输功率存在第三对应关系。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实施方式中,所述第一信道和所述第二信道占用不同的频域资源;
所述实际传输功率为:所述第七传输功率和所述第八传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实施方式中,所述N个第一子时间单元包括N3个第五子时间单元和N4个第六子时间单元,其中,所述N3与所述N4之和为所述N,所述N3为小于所述N的正整数,所述N4为小于所述N的正整数;
所述第一信道占用所述N3个第五子时间单元,所述第二信道占用所述N个第一子时间单元;
所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
所述第八传输功率包括第九传输功率和第十传输功率,所述第九传输功率为所述第二 信道在所述N3个第五子时间单元上的传输功率,所述第十传输功率为所述第二信道在所述N4个第六子时间单元上的传输功率;
所述实际传输功率满足如下中的一种:
所述实际传输功率为第十传输功率或者第十一传输功率,所述第十一传输功率为所述第七传输功率和所述第九传输功率之和;
所述实际传输功率为所述第十传输功率和第十一传输功率中的最大值;
所述实际传输功率为所述第十传输功率和所述第十一传输功率中的最小值;
所述实际传输功率与所述第七传输功率、所述第九传输功率和所述第十传输功率存在第四对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在第二种可能的设计中,一种装置500(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:处理器501和收发器505。
可选的,该装置1500还可以实现本申请实施例中的图7、图13、以及图14实施例所示方法。
在第二种可能的设计中,一种装置1500(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:处理器1501和收发器1502。
收发器1502用于,在第一时间单元的第一子时间单元上接收来自第一终端设备的旁链路信号,所述旁链路信号的实际传输功率与旁链路传输功率、上行传输功率和最大传输功率相关,所述旁链路传输功率为所述第一终端设备在所述第一时间单元中的旁链路的传输功率,所述上行传输功率为所述第一终端设备在所述第一时间单元中的上行链路的传输功率,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于所述N的正整数,所述旁链路信号的所述实际传输功率在所述N个第一子时间单元上相同。所述处理器1501用于,处理所述旁链路信号。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,第一终端设备先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,以及根据实际传输功率在第一时间单元的第一子时间单元上向第二终端设备发送旁链路信号,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为旁链路的第一信道的传输功率,所述第二传输功率为旁链路的第二信 道的传输功率。
可选的,该装置1500还可以实现本申请实施例中的图7实施例所示方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图15的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图16为本申请提供的一种终端设备的结构示意图。该终端设备可适用于图1或图2所示出的场景中。为了便于说明,图16仅示出了终端设备的主要部件。如图16所示,终端设备1600包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图16仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制, 执行软件程序,处理软件程序的数据。图16中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1600的收发单元1611,将具有处理功能的处理器视为终端设备1600的处理单元1612。如图16所示,终端设备1600包括收发单元1611和处理单元1612。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1611中用于实现接收功能的器件视为接收单元,将收发单元1611中用于实现发送功能的器件视为发送单元,即收发单元1611包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
图17为本申请实施例提供的另一种装置的结构示意图。请参见图17,,该装置1700可以是终端,也可以是终端的部件(例如,集成电路,芯片等等)。该装置还可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置1700可以包括:处理模块1702(处理单元)。可选的,还可以包括收发模块1701(收发单元)和存储模块1703(存储单元)。
在一种可能的设计中,如图17中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端设备的功能,比如,所述装置包括终端设备执行本申请实施例描述的终端设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
或者所述装置具备实现本申请实施例描述的网络设备的功能,比如,所述装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的装置1700中各个模块可以用于执行本申请实施例中图7、图13、或图14描述的方法。
在一种可能的实施方式中,一种装置1700可包括处理模块1702。
处理模块1702用于,获取旁链路传输功率和上行传输功率,所述旁链路传输功率为第一时间单元中旁链路的传输功率,所述上行传输功率为所述第一时间单元中上行链路的传输功率;以及,根据所述旁链路传输功率、所述上行传输功率和最大传输功率,确定所述第一时间单元中所述旁链路的实际传输功率;其中,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于N的正整数,所述N个第一子时间单元为所述第一时间单元中用于所述旁链路传输的子时间单元,所述旁链路的所述实际传输功率在所述N个第一子时间单元上相同。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,则先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为所述旁链路的第一信道的传输功率,所述第二传输功率为所述旁链路的第二信道的传输功率。
在一种可能的实施方式中,处理模块1702具体用于:根据所述第一传输功率和所述第二传输功率,确定所述第一时间单元中所述旁链路的第三传输功率;以及,根据所述第三传输功率、所述上行传输功率和所述最大传输功率,确定所述实际传输功率;其中,所述旁链路的所述第三传输功率在所述N个第一子时间单元上相同。
在上述过程中,先根据第一传输功率和第二传输功率确定第三传输功率,使得第三传输功率在N个第一符号上恒定,再根据第三传输功率和最大传输功率确定旁链路的实际传输功率,使得旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率。这样,在保证旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免功率跳变导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述第一信道和所述第二信道占用所述N个第一子时间单元中不同的子时间单元;
所述第三传输功率满足如下中的一种:
所述第三传输功率为所述第一传输功率或所述第二传输功率;
所述第三传输功率为所述第一传输功率和所述第二传输功率中的最大值;
所述第三传输功率为所述第一传输功率和所述第二传输功率中的最小值;或者,
所述第三传输功率与所述第一传输功率和所述第二传输功率存在第一对应关系。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,所述第一信道和所述第二信道占用不同的频域资源;
所述第三传输功率为:所述第一传输功率和所述第二传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,所述N个第一子时间单元包括N1个第三子时间单元和N2个第四子时间单元,其中,所述N1与所述N2之和为所述N,所述N1为小于所述N的正整数,所述N2为小于所述N的正整数;
所述第一信道占用所述N1个第三子时间单元,所述第二信道占用所述N个第一子时间单元;
所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
所述第二传输功率包括第四传输功率和第五传输功率,所述第四传输功率为所述第二信道在所述N1个第三子时间单元上的传输功率,所述第五传输功率为所述第二信道在所述N2个第四子时间单元上的传输功率;
所述第三传输功率满足如下中的一种:
所述第三传输功率为所述第五传输功率或第六传输功率,所述第六传输功率为所述第一传输功率和所述第四传输功率之和;
所述第三传输功率为所述第五传输功率和所述第六传输功率中的最大值;
所述第三传输功率为所述第五传输功率和所述第六传输功率中的最小值;或者,
所述第三传输功率与所述第一传输功率、所述第四传输功率和所述第五传输功率存在第二对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的第三传输功率在N个第一符号上相同,第三传输功率小于或等于最大传输功率,且上述确定第三传输功率的方式简单方便,使得确定第三传输功率的效率较高。
在一种可能的实施方式中,处理模块1702具体用于:
根据所述第一传输功率、所述第二传输功率、所述上行传输功率和所述最大传输功率,确定与所述第一传输功率对应的第七传输功率,以及与所述第二传输功率对应的第八传输功率;根据所述第七传输功率和所述第八传输功率确定所述旁链路的实际传输功率。
在上述过程中,根据第一传输功率、第二传输功率、上行传输功率和最大传输功率,确定与第一传输功率对应的第七传输功率,以及与第二传输功率对应的第八传输功率,使得每个第一符号对应的传输功率总和小于或等于最大传输功率,再根据第七传输功率和第八传输功率确定实际传输功率,使得实际传输功率在N个第一符号上恒定。这样,在保证 旁链路的实际传输功率与上行链路的实际传输功率之和小于或等于最大传输功率的基础上,可以使得旁链路的实际传输功率在N个第一符号上恒定,使得在第一时隙中无需进行功率切换,进而降低终端设备的处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率跳变导致的信号的相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述第一信道和第二信道占用所述N个第一子时间单元中不同的子时间单元;
所述实际传输功率满足如下中的一种:
所述实际传输功率为所述第七传输功率或所述第八传输功率;
所述实际传输功率为所述第七传输功率和所述第八传输功率中的最大值;
所述实际传输功率为所述第七传输功率和所述第八传输功率中的最小值;或者,
所述实际传输功率与所述第七传输功率和所述第八传输功率存在第三对应关系。
在上述过程中,当PSCCH和PSSCH占用N个第一符号中不同的符号时,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实施方式中,所述第一信道和所述第二信道占用不同的频域资源;
所述实际传输功率为:所述第七传输功率和所述第八传输功率之和。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在一种可能的实施方式中,所述N个第一子时间单元包括N3个第五子时间单元和N4个第六子时间单元,其中,所述N3与所述N4之和为所述N,所述N3为小于所述N的正整数,所述N4为小于所述N的正整数;
所述第一信道占用所述N3个第五子时间单元,所述第二信道占用所述N个第一子时间单元;
所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
所述第八传输功率包括第九传输功率和第十传输功率,所述第九传输功率为所述第二信道在所述N3个第五子时间单元上的传输功率,所述第十传输功率为所述第二信道在所述N4个第六子时间单元上的传输功率;
所述实际传输功率满足如下中的一种:
所述实际传输功率为第十传输功率或者第十一传输功率,所述第十一传输功率为所述第七传输功率和所述第九传输功率之和;
所述实际传输功率为所述第十传输功率和第十一传输功率中的最大值;
所述实际传输功率为所述第十传输功率和所述第十一传输功率中的最小值;
所述实际传输功率与所述第七传输功率、所述第九传输功率和所述第十传输功率存在第四对应关系。
在上述过程中,在上述资源复用方式下,通过上述方法可以使得确定得到的旁链路的 实际传输功率在N个第一符号上相同,且上述确定旁链路的实际传输功率的方式简单方便,使得确定旁链路的实际传输功率的效率较高。
在第二种可能的设计中,一种装置500(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:处理器501和收发器505。
可选的,该装置1700还可以实现本申请实施例中的图7、图13、以及图14实施例所示方法。
在第二种可能的设计中,一种装置1500(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:处理模块1702和收发器1502。
收发器1502用于,在第一时间单元的第一子时间单元上接收来自第一终端设备的旁链路信号,所述旁链路信号的实际传输功率与旁链路传输功率、上行传输功率和最大传输功率相关,所述旁链路传输功率为所述第一终端设备在所述第一时间单元中的旁链路的传输功率,所述上行传输功率为所述第一终端设备在所述第一时间单元中的上行链路的传输功率,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于所述N的正整数,所述旁链路信号的所述实际传输功率在所述N个第一子时间单元上相同。所述处理模块1702用于,处理所述旁链路信号。
在上述过程中,在第一时隙的N个第一符号上传输旁链路信号之前,若N个第一符号中的M个第二符号与上行资源重叠,第一终端设备先获取在第一时隙中的旁链路的传输功率、以及在第一时隙中的上行链路的上行传输功率,并根据旁链路传输功率、上行传输功率和最大传输功率,确定第一时隙中旁链路的实际传输功率,以及根据实际传输功率在第一时间单元的第一子时间单元上向第二终端设备发送旁链路信号,使得旁链路的实际传输功率在N个第一符号上相同,使得在第一时隙中无需进行功率切换,进而可以降低终端设备处理复杂度,和/或,无需在第一时隙中预留进行功率切换所需的符号,减少了资源浪费,提高信号传输性能。由于在N个第一符号上的旁链路的实际传输功率相同,避免因为功率切换导致的信号相位的变化,使得第二终端设备根据接收到的导频可以准确的进行信道估计,进而可以准确的接收第一终端设备在N个第一符号上发送的旁链路信号,提高了第二终端设备接收信号的性能。
在一种可能的实施方式中,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为旁链路的第一信道的传输功率,所述第二传输功率为旁链路的第二信道的传输功率。
可选的,该装置1700还可以实现本申请实施例中的图7实施例所示方法。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被 理解为超出本申请实施例保护的范围。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另 一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。
字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固 化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    获取旁链路传输功率和上行传输功率,所述旁链路传输功率为第一时间单元中旁链路的传输功率,所述上行传输功率为所述第一时间单元中上行链路的传输功率;以及
    根据所述旁链路传输功率、所述上行传输功率和最大传输功率,确定所述第一时间单元中所述旁链路的实际传输功率;
    其中,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于N的正整数,所述N个第一子时间单元为所述第一时间单元中用于所述旁链路传输的子时间单元,所述旁链路的所述实际传输功率在所述N个第一子时间单元上相同。
  2. 根据权利要求1所述的方法,其特征在于,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为所述旁链路的第一信道的传输功率,所述第二传输功率为所述旁链路的第二信道的传输功率。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述旁链路传输功率、所述上行传输功率和最大传输功率,确定所述第一时间单元中所述旁链路的实际传输功率,包括:
    根据所述第一传输功率和所述第二传输功率,确定所述第一时间单元中所述旁链路的第三传输功率;以及
    根据所述第三传输功率、所述上行传输功率和所述最大传输功率,确定所述实际传输功率;
    其中,所述旁链路的所述第三传输功率在所述N个第一子时间单元上相同。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信道和所述第二信道占用所述N个第一子时间单元中不同的子时间单元;
    所述第三传输功率满足如下中的一种:
    所述第三传输功率为所述第一传输功率或所述第二传输功率;
    所述第三传输功率为所述第一传输功率和所述第二传输功率中的最大值;
    所述第三传输功率为所述第一传输功率和所述第二传输功率中的最小值;或者,
    所述第三传输功率与所述第一传输功率和所述第二传输功率存在第一对应关系。
  5. 根据权利要求3所述的方法,其特征在于,所述第一信道和所述第二信道占用不同的频域资源;
    所述第三传输功率为:所述第一传输功率和所述第二传输功率之和。
  6. 根据权利要求3所述的方法,其特征在于,
    所述N个第一子时间单元包括N1个第三子时间单元和N2个第四子时间单元,其中,所述N1与所述N2之和为所述N,所述N1为小于所述N的正整数,所述N2为小于所述N的正整数;
    所述第一信道占用所述N1个第三子时间单元,所述第二信道占用所述N个第一子时间单元;
    所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
    所述第二传输功率包括第四传输功率和第五传输功率,所述第四传输功率为所述第二 信道在所述N1个第三子时间单元上的传输功率,所述第五传输功率为所述第二信道在所述N2个第四子时间单元上的传输功率;
    所述第三传输功率满足如下中的一种:
    所述第三传输功率为所述第五传输功率或第六传输功率,所述第六传输功率为所述第一传输功率和所述第四传输功率之和;
    所述第三传输功率为所述第五传输功率和所述第六传输功率中的最大值;
    所述第三传输功率为所述第五传输功率和所述第六传输功率中的最小值;或者,
    所述第三传输功率与所述第一传输功率、所述第四传输功率和所述第五传输功率存在第二对应关系。
  7. 根据权利要求2所述的方法,其特征在于,所述根据所述旁链路传输功率、所述上行传输功率和最大传输功率,确定所述第一时间单元中所述旁链路的实际传输功率,包括:
    根据所述第一传输功率、所述第二传输功率、所述上行传输功率和所述最大传输功率,确定与所述第一传输功率对应的第七传输功率,以及与所述第二传输功率对应的第八传输功率;
    根据所述第七传输功率和所述第八传输功率确定所述旁链路的实际传输功率。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信道和第二信道占用所述N个第一子时间单元中不同的子时间单元;
    所述实际传输功率满足如下中的一种:
    所述实际传输功率为所述第七传输功率或所述第八传输功率;
    所述实际传输功率为所述第七传输功率和所述第八传输功率中的最大值;
    所述实际传输功率为所述第七传输功率和所述第八传输功率中的最小值;或者,
    所述实际传输功率与所述第七传输功率和所述第八传输功率存在第三对应关系。
  9. 根据权利要求7所述的方法,其特征在于,所述第一信道和所述第二信道占用不同的频域资源;
    所述实际传输功率为:所述第七传输功率和所述第八传输功率之和。
  10. 根据权利要求7所述的方法,其特征在于,
    所述N个第一子时间单元包括N3个第五子时间单元和N4个第六子时间单元,其中,所述N3与所述N4之和为所述N,所述N3为小于所述N的正整数,所述N4为小于所述N的正整数;
    所述第一信道占用所述N3个第五子时间单元,所述第二信道占用所述N个第一子时间单元;
    所述第一信道的频域资源与所述第二信道的部分频域资源重叠;
    所述第八传输功率包括第九传输功率和第十传输功率,所述第九传输功率为所述第二信道在所述N3个第五子时间单元上的传输功率,所述第十传输功率为所述第二信道在所述N4个第六子时间单元上的传输功率;
    所述实际传输功率满足如下中的一种:
    所述实际传输功率为第十传输功率或者第十一传输功率,所述第十一传输功率为所述第七传输功率和所述第九传输功率之和;
    所述实际传输功率为所述第十传输功率和第十一传输功率中的最大值;
    所述实际传输功率为所述第十传输功率和所述第十一传输功率中的最小值;
    所述实际传输功率与所述第七传输功率、所述第九传输功率和所述第十传输功率存在第四对应关系。
  11. 一种通信方法,其特征在于,包括:
    第二终端设备在第一时间单元的第一子时间单元上接收来自第一终端设备的旁链路信号,所述旁链路信号的实际传输功率与旁链路传输功率、上行传输功率和最大传输功率相关,所述旁链路传输功率为所述第一终端设备在所述第一时间单元中的旁链路的传输功率,所述上行传输功率为所述第一终端设备在所述第一时间单元中的上行链路的传输功率,所述第一时间单元包括N个第一子时间单元,所述N个第一子时间单元中的M个第二子时间单元与上行资源重叠,所述N为大于1的整数,所述M为小于或等于所述N的正整数,所述旁链路信号的所述实际传输功率在所述N个第一子时间单元上相同;
    所述第二终端设备处理所述旁链路信号。
  12. 根据权利要求11所述的方法,其特征在于,所述旁链路传输功率包括第一传输功率和第二传输功率,所述第一传输功率为旁链路的第一信道的传输功率,所述第二传输功率为旁链路的第二信道的传输功率。
  13. 一种通信装置,其特征在于,所述装置用于执行如权利要求1至10中任一项所述的方法。
  14. 一种通信装置,其特征在于,所述装置用于执行如权利要求11或12所述的方法。
  15. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至10中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求11或12所述的方法。
  17. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至10中任一项所述的方法。
  18. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求11或12所述的方法。
  19. 一种通信***,包括:如权利要求13中所述的装置,和/或,权利要求14中所述的装置。
  20. 一种通信***,包括:如权利要求15中所述的装置,和/或,权利要求16中所述的装置。
PCT/CN2019/100867 2019-08-15 2019-08-15 通信方法、装置及设备 WO2021026916A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980098640.1A CN114175760B (zh) 2019-08-15 2019-08-15 通信方法、装置及设备
EP19941550.6A EP3993516A4 (en) 2019-08-15 2019-08-15 METHOD, APPARATUS, AND COMMUNICATION DEVICE
PCT/CN2019/100867 WO2021026916A1 (zh) 2019-08-15 2019-08-15 通信方法、装置及设备
US17/591,749 US12010635B2 (en) 2019-08-15 2022-02-03 Communication method and apparatus, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100867 WO2021026916A1 (zh) 2019-08-15 2019-08-15 通信方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/591,749 Continuation US12010635B2 (en) 2019-08-15 2022-02-03 Communication method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2021026916A1 true WO2021026916A1 (zh) 2021-02-18

Family

ID=74569385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100867 WO2021026916A1 (zh) 2019-08-15 2019-08-15 通信方法、装置及设备

Country Status (4)

Country Link
US (1) US12010635B2 (zh)
EP (1) EP3993516A4 (zh)
CN (1) CN114175760B (zh)
WO (1) WO2021026916A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11937277B2 (en) * 2019-12-20 2024-03-19 Qualcomm Incorporated Concurrent sidelink and uplink transmission
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
US11683793B2 (en) * 2020-06-11 2023-06-20 Qualcomm Incorporated Sidelink power control using shared resources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936126A (zh) * 2014-03-21 2015-09-23 上海交通大学 功率控制方法和用户设备
CN106375930A (zh) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 一种设备到设备通信方法及装置
CN108174438A (zh) * 2016-12-07 2018-06-15 普天信息技术有限公司 一种p-ue的信号发送方法
WO2018199707A1 (ko) * 2017-04-28 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 단말

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047753A1 (ja) * 2014-09-26 2016-03-31 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN107211377B (zh) * 2015-01-27 2020-10-09 Lg电子株式会社 在无线通信***中由终端执行传输功率控制的方法及使用该方法的终端
JP6759695B2 (ja) * 2016-05-11 2020-09-23 ソニー株式会社 端末装置、基地局装置、通信方法、及びプログラム
CN109803363B (zh) * 2017-11-17 2022-11-08 华为技术有限公司 通信方法、通信装置和***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936126A (zh) * 2014-03-21 2015-09-23 上海交通大学 功率控制方法和用户设备
CN106375930A (zh) * 2015-07-22 2017-02-01 中兴通讯股份有限公司 一种设备到设备通信方法及装置
CN108174438A (zh) * 2016-12-07 2018-06-15 普天信息技术有限公司 一种p-ue的信号发送方法
WO2018199707A1 (ko) * 2017-04-28 2018-11-01 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 신호 전송 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink physical layer procedures for NR V2X", 3GPP DRAFT; R1-1906008, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 23, XP051708050 *
NEC: "Physical layer structure for NR V2X", 3GPP DRAFT; R1-1812648 PHYSICAL LAYER STRUCTURE FOR NR V2X, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 2 November 2018 (2018-11-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051478889 *
See also references of EP3993516A4 *

Also Published As

Publication number Publication date
US12010635B2 (en) 2024-06-11
CN114175760A (zh) 2022-03-11
US20220159588A1 (en) 2022-05-19
EP3993516A4 (en) 2022-07-13
EP3993516A1 (en) 2022-05-04
CN114175760B (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN110035550B (zh) 上行控制信息传输方法和通信装置
US11552749B2 (en) Data transmission method and terminal device
CN111385862B (zh) 一种功率控制方法及装置
US12010635B2 (en) Communication method and apparatus, and device
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2021237721A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2021237702A1 (zh) Harq-ack码本的反馈方法和终端设备
WO2018165987A1 (zh) 上行传输方法、装置、终端设备、接入网设备及***
US20240064655A1 (en) Power Control Method and Apparatus
WO2017139969A1 (zh) 频带配置装置、方法以及通信***
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
US20230345426A1 (en) Resource determination method, first terminal device, and second terminal device
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2022141580A1 (zh) 一种通信方法及装置
WO2020192360A1 (zh) 通信方法及装置
CN113891462B (zh) 副链路反馈资源配置方法、信息处理方法和设备
CN115996457A (zh) 通信方法和装置
CN111511025A (zh) 功率控制方法及终端设备
WO2023065892A1 (zh) 通信方法及装置
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
WO2021204261A1 (zh) 上行传输方法和装置
WO2023060731A1 (zh) 无线通信的方法和终端
US20230319788A1 (en) Wireless communication method and terminal
WO2023202420A1 (zh) 一种通信方法及相关装置
WO2023160460A1 (zh) 一种频域密度确定方法、装置、芯片及模组设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019941550

Country of ref document: EP

Effective date: 20220127

NENP Non-entry into the national phase

Ref country code: DE