WO2021025116A1 - Gasification gas generation system - Google Patents

Gasification gas generation system Download PDF

Info

Publication number
WO2021025116A1
WO2021025116A1 PCT/JP2020/030197 JP2020030197W WO2021025116A1 WO 2021025116 A1 WO2021025116 A1 WO 2021025116A1 JP 2020030197 W JP2020030197 W JP 2020030197W WO 2021025116 A1 WO2021025116 A1 WO 2021025116A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cyclone
port
discharge port
gasification
Prior art date
Application number
PCT/JP2020/030197
Other languages
French (fr)
Japanese (ja)
Inventor
志宏 劉
陽介 坪井
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN202080036345.6A priority Critical patent/CN113825824A/en
Priority to JP2021537379A priority patent/JPWO2021025116A1/ja
Publication of WO2021025116A1 publication Critical patent/WO2021025116A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/26Multiple arrangement thereof for series flow
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to a gasification gas generation system that produces gasification gas.
  • This application claims the benefit of priority under Japanese Patent Application No. 2019-146226 filed on August 8, 2019, the contents of which are incorporated herein by reference.
  • a gasification gas generation system has been developed as a technology for gasifying solid fuel (for example, Patent Document 1).
  • the gasification gas generation system includes a gasification furnace and a cyclone.
  • the gasification furnace includes a storage tank in which a high-temperature fluid medium is housed, and a gas introduction section in which the fluidized gas is introduced from the bottom surface of the storage tank.
  • a fluidized bed of the fluidized medium is formed in the accommodating tank.
  • the solid fuel is put into the storage tank, the solid fuel is gasified by the heat of the fluidized bed (fluid medium), and the gasified gas is generated.
  • the gasified gas generated in the gasification furnace is introduced into the cyclone together with a small amount of solid matter (fluid medium and ash), and the solid matter is separated from the gasified gas in the cyclone.
  • the present disclosure aims to provide a gasification gas generation system capable of reducing the content of solid matter in the gasification gas.
  • the gasification gas generation system includes a combustion furnace, a first introduction port connected to the combustion furnace, and a first solid discharge port below the first introduction port.
  • a first cyclone in which a gas is formed to perform solid-gas separation, an upper surface on which one or more medium inlets are formed, and a side surface on which a medium discharge port is formed, and accommodating a fluid medium and raw materials.
  • a gasification furnace including a tank and a gas supply unit for supplying fluidized gas to the lower part of the storage tank, a connecting pipe connecting a first solid discharge port and a medium introduction port, a medium discharge port, and a combustion furnace. It is equipped with a return pipe to connect to.
  • a second introduction port having an upper surface on which one or more passage ports are formed and provided below the passage port and connected to a gasifier, and a second solid provided below the second introduction port.
  • a second cyclone in which a discharge port is formed and solid air separation is further provided, and the connection pipe is branched from the main connection pipe connecting the first solid discharge port and the medium introduction port, and the first connection pipe. It may have a branch pipe connected to a passage port formed on the upper surface of the cyclone of 2.
  • connection pipe has an upper surface on which one or a plurality of passage ports are formed, and is provided with a duct for connecting the second introduction port of the second cyclone and the inside of the gasification furnace, and the connection pipe is a first solid discharge port and the like. It may have a main connecting pipe connecting the medium introduction port and a branch pipe branched from the main connecting pipe and connected to a passing port formed on the upper surface of the duct.
  • the duct may be partially arranged in the gasification furnace, and one or more through holes may be formed in the outer wall of the portion of the duct where the duct is arranged in the gasification furnace.
  • FIG. 1 is a diagram illustrating a gasification gas generation system.
  • FIG. 2 is a diagram illustrating a connecting pipe.
  • FIG. 3 is a diagram illustrating a modified gasification furnace.
  • FIG. 1 is a diagram illustrating a gasification gas generation system 100.
  • the gasification gas generation system 100 includes a combustion furnace 110, a delivery pipe 112, a first cyclone 120, a connection pipe 130, a gasification furnace 140, a return pipe 150, and a duct 160.
  • the solid arrow indicates the flow of a solid such as a fluid medium, a raw material, and a char (residue).
  • the broken line arrow indicates the flow of gas such as gasification gas, combustion exhaust gas, and fluidized gas.
  • the gasification gas generation system 100 is a circulating fluidized bed gasification system.
  • the flow medium circulates as a heat medium in the combustion furnace 110, the delivery pipe 112, the first cyclone 120, the connection pipe 130, the gasification furnace 140, and the return pipe 150.
  • the fluid medium is silica sand having a particle size of about 300 ⁇ m.
  • the combustion furnace 110 is formed in a tubular shape.
  • the delivery pipe 112 is connected to the upper part, and the return pipe 150 is connected to the lower part.
  • Fuel and a fluid medium are introduced into the combustion furnace 110 through the return pipe 150.
  • the fuel is burned and the flow medium is heated to about 900 ° C. to 1000 ° C.
  • the heated flow medium and combustion exhaust gas are delivered to the first cyclone 120 through the delivery pipe 112.
  • the first cyclone 120 solid-gas separates the mixture of the flow medium introduced from the combustion furnace 110 and the combustion exhaust gas through the delivery pipe 112.
  • the first cyclone 120 is formed in a cylindrical shape.
  • the first cyclone 120 includes a reduced diameter portion 120a.
  • the diameter-reduced portion 120a is a portion whose inner diameter gradually decreases from vertically above to vertically downward.
  • a first introduction port 122 is formed on the side surface of the first cyclone 120.
  • the first introduction port 122 is connected to the delivery pipe 112.
  • a first solid discharge port 124 is formed below the first introduction port 122 and at the bottom of the reduced diameter portion 120a.
  • the first solid discharge port 124 is connected to a connecting pipe 130 (main connecting pipe 132 described later).
  • a first gas discharge port 126 is formed on the upper surface of the first cyclone 120. That is, the first gas discharge port 126 is formed above the first introduction port 122.
  • the first gas discharge port 126 is connected to the first exhaust pipe 126a
  • the combustion exhaust gas separated by the first cyclone 120 is introduced into a heat exchanger (boiler) (not shown) through the first gas discharge port 126 and the first exhaust pipe 126a. Then, the combustion exhaust gas is heat-exchanged (cooled) by the heat exchanger and then exhausted to the outside.
  • a heat exchanger not shown
  • the high-temperature fluid medium separated by the first cyclone 120 is introduced into the gasifier 140, the duct 160, and the second cyclone 170 through the connecting pipe 130.
  • the configuration of the connecting pipe 130 will be described in detail later.
  • the flow medium introduced from the first cyclone 120 through the connecting pipe 130 is fluidized by the fluidized gas (for example, steam) in the gasification furnace 140.
  • the gasifier 140 includes a storage tank 210 and a wind box 250 (gas supply unit).
  • the storage tank 210 stores the fluid medium.
  • the storage tank 210 is a hollow container having a rectangular horizontal cross section (XY cross section in FIG. 1) and a vertical cross section (XZ cross section and YZ cross section in FIG. 1).
  • the wind box 250 is provided below the storage tank 210.
  • the upper part of the wind box 250 is composed of a breathable dispersion plate.
  • the upper part of the wind box 250 also functions as the bottom surface 212 of the storage tank 210.
  • Water vapor is supplied to the air box 250 from a water vapor supply unit (not shown).
  • the water vapor supplied to the air box 250 is introduced into the storage tank 210 from the bottom surface 212 (dispersion plate). Therefore, the high-temperature fluidized medium introduced from the first cyclone 120 is fluidized by water vapor, and a bubble fluidized bed is formed in the storage tank 210.
  • a raw material input port 220 is formed on the side surface 214a of the storage tank 210.
  • the raw material input port 220 is connected to the input pipe 180.
  • Raw materials such as coal and biomass are charged into the storage tank 210 through the input pipe 180 and the raw material input port 220.
  • the charged raw material is gasified by the heat of the flow medium at about 700 ° C. to 900 ° C., whereby gasification gas (synthetic gas) is generated.
  • the residence time of the raw material in the storage tank 210 can be lengthened by the configuration in which the raw material input port 220 is formed on the side surface 214a facing the side surface 214b where the medium discharge port 222 described later is formed. This makes it possible to improve the gasification efficiency of the raw material.
  • the gasification gas generated in the storage tank 210 is introduced into the second cyclone 170 through the duct 160 described later.
  • a medium discharge port 222 is formed on the side surface 214b of the storage tank 210 facing the side surface 214a.
  • the medium discharge port 222 is connected to the return pipe 150.
  • the return pipe 150 connects the medium discharge port 222 and the combustion furnace 110.
  • the flow medium fluidized in the gasification furnace 140 is returned to the combustion furnace 110 through the return pipe 150.
  • the flow medium includes the combustion furnace 110, the delivery pipe 112, the first cyclone 120, the connection pipe 130, the gasification furnace 140, and the return pipe 150 in this order. It moves and is introduced into the combustion furnace 110 again. As a result, the fluid medium circulates between them.
  • the residue of the raw material remaining after the raw material was gasified in the gasification furnace 140 is introduced into the combustion furnace 110 through the return pipe 150. Therefore, the residue introduced from the gasification furnace 140 into the combustion furnace 110 is used as fuel in the combustion furnace 110.
  • the duct 160 connects the inside of the storage tank 210 and the second cyclone 170.
  • the second cyclone 170 solid-gas separates the gasified gas introduced from the gasification furnace 140 through the duct 160.
  • the second cyclone 170 is formed in a cylindrical shape.
  • the second cyclone 170 includes a reduced diameter portion 170a.
  • the diameter-reduced portion 170a is a portion whose inner diameter gradually decreases from vertically above to vertically downward.
  • a second introduction port 172 is formed on the side surface of the second cyclone 170.
  • the second introduction port 172 is connected to the duct 160.
  • a second solid discharge port 174 is formed below the second introduction port 172 and at the bottom of the reduced diameter portion 170a.
  • the second solid discharge port 174 is connected to the input pipe 180.
  • a second gas discharge port 176 is formed on the upper surface of the second cyclone 170. That is, the second gas discharge port 176 is formed above the second introduction port 172.
  • the second gas discharge port 176 is connected to the second exhaust pipe 176a.
  • the high-temperature fluid medium separated by the second cyclone 170 is introduced (returned) to the gasifier 140 through the input pipe 180.
  • the gasification gas separated by the second cyclone 170 is introduced into the reformer 190 through the second gas discharge port 176 and the second exhaust pipe 176a.
  • the reforming furnace 190 adds an oxidizing agent to the gasified gas to reform and remove the tar contained in the gasified gas.
  • the heat exchanger 192 recovers the heat of the gasified gas from which tar has been removed.
  • FIG. 2 is a diagram illustrating the connecting pipe 130.
  • the connecting pipe 130 is composed of a main connecting pipe 132 and a plurality of branch pipes 134, 136, and 138.
  • solid arrows indicate the flow of solids such as flow media and raw materials.
  • the broken line arrow indicates the flow of gas such as gasification gas, combustion exhaust gas, and fluidized gas.
  • a plurality of medium introduction ports 224 are formed on the upper surface 216 of the storage tank 210.
  • a plurality of medium introduction ports 224 are provided at predetermined intervals in the X-axis direction in FIG. 2, and a plurality of media introduction ports 224 are provided at predetermined intervals in the Y-axis direction in FIG.
  • the duct 160 has a vertical portion 160a and a horizontal portion 160b.
  • the vertical portion 160a is a portion of the duct 160 extending in the vertical direction.
  • the vertical portion 160a penetrates the upper surface 216 of the storage tank 210.
  • One end of the vertical portion 160a is arranged in the storage tank 210.
  • the other end of the vertical portion 160a is continuous with one end of the horizontal portion 160b.
  • the horizontal portion 160b is a portion of the duct 160 extending in the horizontal direction.
  • the other end of the horizontal portion 160b is connected to the second introduction port 172 of the second cyclone 170.
  • a plurality of passage ports 164 are formed on the upper surface 162 of the horizontal portion 160b.
  • a plurality of passage ports 164 are provided at predetermined intervals in the X-axis direction in FIG.
  • a plurality of passage ports 178 are formed on the upper surface 170b of the second cyclone 170.
  • the plurality of passage ports 178 are provided around the second gas discharge port 176.
  • a plurality of passage ports 178 are provided at a predetermined interval.
  • the main connection pipe 132 connects the first solid discharge port 124 and the medium introduction port 224 of 1.
  • the main connecting pipe 132 is branched into a plurality of branch pipes 134, 136, and 138.
  • the branch pipe 134 (main connection pipe) is branched from the main connection pipe 132 and connected to the medium introduction port 224.
  • the branch pipe 136 is branched from the main connecting pipe 132 and connected to the passage port 164 of the duct 160.
  • the branch pipe 138 is branched from the main connecting pipe 132 and connected to the passage port 178 of the second cyclone 170.
  • the flow medium can be freely dropped from the upper surface 216 of the storage tank 210.
  • the fluidized medium hereinafter referred to as “large particles”
  • the large particles are formed on the freeboard (the space formed above the fluidized bed in the accommodation tank 210) in the accommodation tank 210.
  • a wake is formed on the downstream side of the.
  • the solid matter such as fluid medium and ash (hereinafter referred to as “small particles”) scattered together with the gasified gas in the storage tank 210 is smaller than the large particles. Therefore, the small particles are caught in the wake, and the small particles fall into the fluidized bed. Therefore, the small particles can be separated in the storage tank 210, and the content of solid matter in the gasification gas introduced into the duct 160 (second cyclone 170) can be reduced.
  • the large particles introduced into the duct 160 are introduced into the second cyclone 170 together with the gasified gas. Then, in the second cyclone 170, the gasification gas and the large particles are separated by solid air. The separated large particles are returned to the storage tank 210 through the input pipe 180.
  • a plurality of through holes 166 are formed on the outer wall of the portion arranged in the storage tank 210.
  • the gasification gas generation system 100 of the present embodiment can reduce the content of solid matter in the gasification gas sent to the reforming furnace 190. Therefore, the gasification gas generation system 100 can reduce the amount of solid matter deposited in the heat exchanger 192. As a result, the gasification gas generation system 100 can prevent the heat recovery efficiency from being lowered by the heat exchanger 192.
  • the connecting pipe 130 includes the branch pipes 136 and 138 has been described as an example.
  • the gasification gas generation system 100 may not include one or both of the branch pipe 136 and the branch pipe 138.
  • the configuration in which the second cyclone 170 is provided outside the storage tank 210 has been described as an example.
  • the second cyclone 170 may be provided in the containment tank 210.
  • FIG. 3 is a diagram illustrating a modified gasification furnace 340.
  • the medium introduction port 224 of 1 is formed on the upper surface 216 of the gasification furnace 340.
  • the gasifier 340 includes a disperser 350 on a freeboard in the containment tank 210.
  • the disperser 350 disperses the large particles introduced through the main connecting pipe 132.
  • the disperser 350 is composed of a plurality of umbrella members 352.
  • the umbrella member 352 is formed in a conical shape.
  • the umbrella member 352 (indicated by 352a in FIG. 3) arranged most vertically upward is arranged so that the top thereof faces the medium introduction port 224.
  • An umbrella member 352b is arranged below the umbrella member 352a.
  • the umbrella member 352b is arranged so that the top thereof faces the lower end of the umbrella member 352a. That is, the umbrella member 352 is arranged so that the top thereof faces the lower end of the umbrella member 352 arranged upward.
  • the large particles that have fallen into the storage tank 210 from the medium introduction port 224 through the main connecting pipe 132 collide with the top of the umbrella member 352a and are dispersed outward in the radial direction of the umbrella member 352a.
  • the dispersed large particles flow down the outer wall surface of the umbrella member 352a and fall from the lower end.
  • the large particles that have fallen from the umbrella member 352a collide with the top of the umbrella member 352b located below and are dispersed by the umbrella member 352b.
  • the large particles are dispersed by the umbrella member 352 located below, fall on the freeboard, and finally fall on the fluidized bed.
  • a configuration in which a plurality of passage ports 164 are formed on the upper surface 162 of the duct 160 has been described as an example. However, it is sufficient that one or more passage ports 164 are formed on the upper surface 162 of the duct 160.
  • a configuration in which a plurality of passage ports 178 are formed on the upper surface 170b of the second cyclone 170 has been described as an example. However, it is sufficient that one or more passage ports 178 are formed on the upper surface 170b of the second cyclone 170.
  • the configuration in which the through hole 166 is formed in the vertical portion 160a of the duct 160 has been described as an example.
  • the through hole 166 is not an essential configuration.
  • the configuration in which the raw material input port 220 is formed on the side surface 214a of the storage tank 210 has been described as an example.
  • the position of the raw material input port is not limited.
  • a raw material input port may be formed on the upper surface of the storage tank 210 (for example, the end on the upper surface on the side surface 214b side).
  • the pressure loss when the raw material is charged is small, so that the raw material can be efficiently charged into the storage tank 210.
  • the present disclosure can be used for a gasification gas generation system that generates gasification gas.
  • Gasification gas generation system 110 Combustion furnace 120: 1st cyclone 122: 1st introduction port 124: 1st solid discharge port 130: Connection pipe 132: Main connection pipe 134: Branch pipe (main connection pipe) 136: Branch Pipe 138: Branch pipe 140: Gasification furnace 150: Return pipe 160: Duct 162: Top surface 164: Passage port 166: Through hole 170: Second cyclone 172: Second introduction port 174: Second solid discharge port 178: Passage port 210: Storage tank 214b: Side surface 216: Top surface 222: Medium discharge port 224: Medium introduction port 250: Air box (gas supply unit) 340: Gasification furnace

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Cyclones (AREA)

Abstract

A gasification gas generation system comprises: a combustion furnace; a first cyclone 120 that performs solid–air separation and has formed therein a first introduction port 122 connected to the combustion furnace and a first solids discharge port 124 below the first introduction port 122; a gas furnace 140 including a housing tank 210 and a gas supply unit (wind box 250) that supplies a fluidized gas to the lower section of the housing tank, said housing tank housing a fluid medium and a raw material and having an upper surface 216 and a side surface 214b, said upper surface 216 having at least one medium introduction port 224 formed thereupon and said side surface 214b having a medium discharge port 222 formed therein; a connection pipe 130 that connects the first solids discharge port 124 and the medium introduction ports 224; and a return pipe 150 that connects the medium discharge port 222 and the combustion furnace.

Description

ガス化ガス生成システムGasification gas generation system
 本開示は、ガス化ガスを生成するガス化ガス生成システムに関する。本出願は2019年8月8日に提出された日本特許出願第2019-146226号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to a gasification gas generation system that produces gasification gas. This application claims the benefit of priority under Japanese Patent Application No. 2019-146226 filed on August 8, 2019, the contents of which are incorporated herein by reference.
 固体燃料をガス化する技術として、ガス化ガス生成システムが開発されている(例えば、特許文献1)。ガス化ガス生成システムは、ガス化炉と、サイクロンとを備える。ガス化炉は、高温の流動媒体が収容される収容槽と、収容槽の底面部から流動化ガスを導入するガス導入部とを備える。ガス導入部によって流動化ガスが導入されると、収容槽内において流動媒体の流動層が形成される。そして、収容槽内に固体燃料が投入されると、流動層(流動媒体)が有する熱によって固体燃料がガス化され、ガス化ガスが生成される。ガス化炉で生成されたガス化ガスは、少量の固形物(流動媒体や灰分)とともにサイクロンに導入され、サイクロンにおいてガス化ガスから固形物が分離される。 A gasification gas generation system has been developed as a technology for gasifying solid fuel (for example, Patent Document 1). The gasification gas generation system includes a gasification furnace and a cyclone. The gasification furnace includes a storage tank in which a high-temperature fluid medium is housed, and a gas introduction section in which the fluidized gas is introduced from the bottom surface of the storage tank. When the fluidized gas is introduced by the gas introduction section, a fluidized bed of the fluidized medium is formed in the accommodating tank. Then, when the solid fuel is put into the storage tank, the solid fuel is gasified by the heat of the fluidized bed (fluid medium), and the gasified gas is generated. The gasified gas generated in the gasification furnace is introduced into the cyclone together with a small amount of solid matter (fluid medium and ash), and the solid matter is separated from the gasified gas in the cyclone.
特開2015-87069号公報Japanese Unexamined Patent Publication No. 2015-87069
 上記したようなガス化ガスを生成する技術において、製造されたガス化ガス中の固形物の含有量をさらに低減したいという要望がある。 In the technology for generating gasification gas as described above, there is a desire to further reduce the content of solid matter in the produced gasification gas.
 本開示は、このような課題に鑑み、ガス化ガス中の固形物の含有量を低減することが可能なガス化ガス生成システムを提供することを目的としている。 In view of such problems, the present disclosure aims to provide a gasification gas generation system capable of reducing the content of solid matter in the gasification gas.
 上記課題を解決するために、本開示の一態様に係るガス化ガス生成システムは、燃焼炉と、燃焼炉に接続された第1導入口と、第1導入口の下方に第1固体排出口とが形成され、固気分離を行う第1サイクロンと、1または複数の媒体導入口が形成された上面と、媒体排出口が形成された側面とを有し、流動媒体および原料を収容する収容槽と、収容槽の下部に流動化ガスを供給するガス供給部とを含むガス化炉と、第1固体排出口と、媒体導入口とを接続する接続管と、媒体排出口と燃焼炉とを接続する返送管と、を備える。 In order to solve the above problems, the gasification gas generation system according to one aspect of the present disclosure includes a combustion furnace, a first introduction port connected to the combustion furnace, and a first solid discharge port below the first introduction port. A first cyclone in which a gas is formed to perform solid-gas separation, an upper surface on which one or more medium inlets are formed, and a side surface on which a medium discharge port is formed, and accommodating a fluid medium and raw materials. A gasification furnace including a tank and a gas supply unit for supplying fluidized gas to the lower part of the storage tank, a connecting pipe connecting a first solid discharge port and a medium introduction port, a medium discharge port, and a combustion furnace. It is equipped with a return pipe to connect to.
 また、1または複数の通過口が形成された上面を有し、通過口の下方に設けられガス化炉に接続された第2導入口と、第2導入口の下方に設けられた第2固体排出口とが形成され、固気分離を行う第2サイクロンをさらに備え、接続管は、第1固体排出口と、媒体導入口とを接続する主接続管と、主接続管から分岐され、第2のサイクロンの上面に形成された通過口に接続された分岐管と、を有してもよい。 Further, a second introduction port having an upper surface on which one or more passage ports are formed and provided below the passage port and connected to a gasifier, and a second solid provided below the second introduction port. A second cyclone in which a discharge port is formed and solid air separation is further provided, and the connection pipe is branched from the main connection pipe connecting the first solid discharge port and the medium introduction port, and the first connection pipe. It may have a branch pipe connected to a passage port formed on the upper surface of the cyclone of 2.
 また、1または複数の通過口が形成された上面を有し、第2のサイクロンの第2導入口とガス化炉内とを接続するダクトを備え、接続管は、第1固体排出口と、媒体導入口とを接続する主接続管と、主接続管から分岐され、ダクトの上面に形成された通過口に接続された分岐管と、を有してもよい。 Further, it has an upper surface on which one or a plurality of passage ports are formed, and is provided with a duct for connecting the second introduction port of the second cyclone and the inside of the gasification furnace, and the connection pipe is a first solid discharge port and the like. It may have a main connecting pipe connecting the medium introduction port and a branch pipe branched from the main connecting pipe and connected to a passing port formed on the upper surface of the duct.
 また、ダクトは、一部がガス化炉内に配され、ダクトにおけるガス化炉内に配される箇所の外壁に、1または複数の貫通孔が形成されていてもよい。 Further, the duct may be partially arranged in the gasification furnace, and one or more through holes may be formed in the outer wall of the portion of the duct where the duct is arranged in the gasification furnace.
 本開示によれば、ガス化ガス中の固形物の含有量を低減することが可能となる。 According to the present disclosure, it is possible to reduce the content of solid matter in the gasified gas.
図1は、ガス化ガス生成システムを説明する図である。FIG. 1 is a diagram illustrating a gasification gas generation system. 図2は、接続管を説明する図である。FIG. 2 is a diagram illustrating a connecting pipe. 図3は、変形例のガス化炉を説明する図である。FIG. 3 is a diagram illustrating a modified gasification furnace.
 以下に添付図面を参照しながら、本開示の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 An embodiment of the present disclosure will be described in detail with reference to the accompanying drawings below. The dimensions, materials, other specific numerical values, etc. shown in such an embodiment are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate description, and elements not directly related to the present disclosure are omitted from the illustration. To do.
(ガス化ガス生成システム100)
 図1は、ガス化ガス生成システム100を説明する図である。図1に示すように、ガス化ガス生成システム100は、燃焼炉110と、送出管112と、第1サイクロン120と、接続管130と、ガス化炉140と、返送管150と、ダクト160と、第2サイクロン170と、投入管180と、改質炉190と、熱交換器192とを含む。なお、図1中、実線の矢印は、流動媒体、原料、チャー(残渣)等の固体の流れを示す。また、図1中、破線の矢印は、ガス化ガス、燃焼排ガス、流動化ガス等のガスの流れを示す。
(Gasification gas generation system 100)
FIG. 1 is a diagram illustrating a gasification gas generation system 100. As shown in FIG. 1, the gasification gas generation system 100 includes a combustion furnace 110, a delivery pipe 112, a first cyclone 120, a connection pipe 130, a gasification furnace 140, a return pipe 150, and a duct 160. , The second cyclone 170, the input pipe 180, the reformer 190, and the heat exchanger 192. In FIG. 1, the solid arrow indicates the flow of a solid such as a fluid medium, a raw material, and a char (residue). Further, in FIG. 1, the broken line arrow indicates the flow of gas such as gasification gas, combustion exhaust gas, and fluidized gas.
 本実施形態において、ガス化ガス生成システム100は、循環流動層式ガス化システムである。ガス化ガス生成システム100において流動媒体は、熱媒体として、燃焼炉110、送出管112、第1サイクロン120、接続管130、ガス化炉140、返送管150を循環している。流動媒体は、粒径が300μm程度の珪砂である。 In the present embodiment, the gasification gas generation system 100 is a circulating fluidized bed gasification system. In the gasification gas generation system 100, the flow medium circulates as a heat medium in the combustion furnace 110, the delivery pipe 112, the first cyclone 120, the connection pipe 130, the gasification furnace 140, and the return pipe 150. The fluid medium is silica sand having a particle size of about 300 μm.
 燃焼炉110は、筒形状に形成される。燃焼炉110は、上部に送出管112が接続され、下部に返送管150が接続される。燃焼炉110には、返送管150を通じて燃料および流動媒体が導入される。燃焼炉110では、燃料が燃焼されて、流動媒体が900℃~1000℃程度に加熱される。加熱された流動媒体および燃焼排ガスは、送出管112を通じて第1サイクロン120に送出される。 The combustion furnace 110 is formed in a tubular shape. In the combustion furnace 110, the delivery pipe 112 is connected to the upper part, and the return pipe 150 is connected to the lower part. Fuel and a fluid medium are introduced into the combustion furnace 110 through the return pipe 150. In the combustion furnace 110, the fuel is burned and the flow medium is heated to about 900 ° C. to 1000 ° C. The heated flow medium and combustion exhaust gas are delivered to the first cyclone 120 through the delivery pipe 112.
 第1サイクロン120は、送出管112を通じて燃焼炉110から導入された流動媒体と燃焼排ガスとの混合物を固気分離する。第1サイクロン120は、円筒形状に形成される。第1サイクロン120は、縮径部120aを備える。縮径部120aは、鉛直上方から鉛直下方に向かって内径が漸減する部分である。第1サイクロン120の側面には、第1導入口122が形成される。第1導入口122は、送出管112に接続される。第1導入口122の下方であり、縮径部120aの底部には第1固体排出口124が形成される。第1固体排出口124は、接続管130(後述する主接続管132)に接続される。第1サイクロン120の上面には第1ガス排出口126が形成される。つまり、第1ガス排出口126は、第1導入口122の上方に形成される。第1ガス排出口126は、第1排気管126aに接続される。 The first cyclone 120 solid-gas separates the mixture of the flow medium introduced from the combustion furnace 110 and the combustion exhaust gas through the delivery pipe 112. The first cyclone 120 is formed in a cylindrical shape. The first cyclone 120 includes a reduced diameter portion 120a. The diameter-reduced portion 120a is a portion whose inner diameter gradually decreases from vertically above to vertically downward. A first introduction port 122 is formed on the side surface of the first cyclone 120. The first introduction port 122 is connected to the delivery pipe 112. A first solid discharge port 124 is formed below the first introduction port 122 and at the bottom of the reduced diameter portion 120a. The first solid discharge port 124 is connected to a connecting pipe 130 (main connecting pipe 132 described later). A first gas discharge port 126 is formed on the upper surface of the first cyclone 120. That is, the first gas discharge port 126 is formed above the first introduction port 122. The first gas discharge port 126 is connected to the first exhaust pipe 126a.
 第1サイクロン120によって分離された燃焼排ガスは、第1ガス排出口126、第1排気管126aを通じて、不図示の熱交換器(ボイラ)に導入される。そして、燃焼排ガスは、熱交換器によって熱交換(冷却)された後、外部に排気される。 The combustion exhaust gas separated by the first cyclone 120 is introduced into a heat exchanger (boiler) (not shown) through the first gas discharge port 126 and the first exhaust pipe 126a. Then, the combustion exhaust gas is heat-exchanged (cooled) by the heat exchanger and then exhausted to the outside.
 一方、第1サイクロン120によって分離された高温の流動媒体は、接続管130を通じて、ガス化炉140、ダクト160、第2サイクロン170に導入される。接続管130の構成については後に詳述する。 On the other hand, the high-temperature fluid medium separated by the first cyclone 120 is introduced into the gasifier 140, the duct 160, and the second cyclone 170 through the connecting pipe 130. The configuration of the connecting pipe 130 will be described in detail later.
 接続管130を通じて、第1サイクロン120から導入された流動媒体は、ガス化炉140において、流動化ガス(例えば、水蒸気)によって流動化する。具体的に説明すると、ガス化炉140は、収容槽210と、風箱250(ガス供給部)とを含む。 The flow medium introduced from the first cyclone 120 through the connecting pipe 130 is fluidized by the fluidized gas (for example, steam) in the gasification furnace 140. Specifically, the gasifier 140 includes a storage tank 210 and a wind box 250 (gas supply unit).
 収容槽210は、流動媒体を収容する。収容槽210は、水平断面(図1中XY断面)および鉛直断面(図1中、XZ断面、および、YZ断面)が矩形の中空形状の容器である。風箱250は、収容槽210の下方に設けられる。風箱250の上部は、通気可能な分散板で構成されている。風箱250の上部は、収容槽210の底面212としても機能する。風箱250には、不図示の水蒸気供給部から水蒸気が供給される。風箱250に供給された水蒸気は、底面212(分散板)から収容槽210内に導入される。したがって、第1サイクロン120から導入された高温の流動媒体は、水蒸気によって流動化し、収容槽210内において気泡流動層が形成される。 The storage tank 210 stores the fluid medium. The storage tank 210 is a hollow container having a rectangular horizontal cross section (XY cross section in FIG. 1) and a vertical cross section (XZ cross section and YZ cross section in FIG. 1). The wind box 250 is provided below the storage tank 210. The upper part of the wind box 250 is composed of a breathable dispersion plate. The upper part of the wind box 250 also functions as the bottom surface 212 of the storage tank 210. Water vapor is supplied to the air box 250 from a water vapor supply unit (not shown). The water vapor supplied to the air box 250 is introduced into the storage tank 210 from the bottom surface 212 (dispersion plate). Therefore, the high-temperature fluidized medium introduced from the first cyclone 120 is fluidized by water vapor, and a bubble fluidized bed is formed in the storage tank 210.
 また、収容槽210の側面214aには、原料投入口220が形成されている。原料投入口220は、投入管180に接続される。収容槽210には、投入管180、原料投入口220を通じて、石炭やバイオマス等の原料が投入される。投入された原料は、流動媒体が有する700℃~900℃程度の熱によってガス化され、これによってガス化ガス(合成ガス)が生成される。後述する媒体排出口222が形成される側面214bと対向する側面214aに原料投入口220が形成される構成により、収容槽210内における原料の滞留時間を長くすることができる。これにより、原料のガス化効率を向上させることが可能となる。そして、収容槽210内において生成されたガス化ガスは、後述するダクト160を通じて第2サイクロン170に導入される。 Further, a raw material input port 220 is formed on the side surface 214a of the storage tank 210. The raw material input port 220 is connected to the input pipe 180. Raw materials such as coal and biomass are charged into the storage tank 210 through the input pipe 180 and the raw material input port 220. The charged raw material is gasified by the heat of the flow medium at about 700 ° C. to 900 ° C., whereby gasification gas (synthetic gas) is generated. The residence time of the raw material in the storage tank 210 can be lengthened by the configuration in which the raw material input port 220 is formed on the side surface 214a facing the side surface 214b where the medium discharge port 222 described later is formed. This makes it possible to improve the gasification efficiency of the raw material. Then, the gasification gas generated in the storage tank 210 is introduced into the second cyclone 170 through the duct 160 described later.
 また、収容槽210における側面214aと対向する側面214bには、媒体排出口222が形成されている。媒体排出口222は、返送管150に接続されている。返送管150は、媒体排出口222と燃焼炉110とを接続する。ガス化炉140において流動化された流動媒体は、返送管150を通じて燃焼炉110に返送される。 Further, a medium discharge port 222 is formed on the side surface 214b of the storage tank 210 facing the side surface 214a. The medium discharge port 222 is connected to the return pipe 150. The return pipe 150 connects the medium discharge port 222 and the combustion furnace 110. The flow medium fluidized in the gasification furnace 140 is returned to the combustion furnace 110 through the return pipe 150.
 このように、本実施形態にかかるガス化ガス生成システム100において、流動媒体は、燃焼炉110、送出管112、第1サイクロン120、接続管130、ガス化炉140、返送管150を、この順に移動し、再度燃焼炉110に導入される。これにより、流動媒体は、これらを循環することとなる。 As described above, in the gasification gas generation system 100 according to the present embodiment, the flow medium includes the combustion furnace 110, the delivery pipe 112, the first cyclone 120, the connection pipe 130, the gasification furnace 140, and the return pipe 150 in this order. It moves and is introduced into the combustion furnace 110 again. As a result, the fluid medium circulates between them.
 なお、燃焼炉110には、返送管150を通じて、ガス化炉140において原料がガス化した後に残留した原料の残渣が導入される。したがって、ガス化炉140から燃焼炉110に導入される残渣が、燃焼炉110において燃料として利用される。 The residue of the raw material remaining after the raw material was gasified in the gasification furnace 140 is introduced into the combustion furnace 110 through the return pipe 150. Therefore, the residue introduced from the gasification furnace 140 into the combustion furnace 110 is used as fuel in the combustion furnace 110.
 ダクト160は、収容槽210内と第2サイクロン170とを接続する。 The duct 160 connects the inside of the storage tank 210 and the second cyclone 170.
 第2サイクロン170は、ダクト160を通じてガス化炉140から導入されたガス化ガスを固気分離する。第2サイクロン170は、円筒形状に形成される。第2サイクロン170は、縮径部170aを備える。縮径部170aは、鉛直上方から鉛直下方に向かって内径が漸減する部分である。第2サイクロン170の側面には、第2導入口172が形成される。第2導入口172は、ダクト160に接続される。第2導入口172の下方であり、縮径部170aの底部には第2固体排出口174が形成される。第2固体排出口174は、投入管180に接続される。第2サイクロン170の上面には第2ガス排出口176が形成される。つまり、第2ガス排出口176は、第2導入口172の上方に形成される。第2ガス排出口176は、第2排気管176aに接続される。 The second cyclone 170 solid-gas separates the gasified gas introduced from the gasification furnace 140 through the duct 160. The second cyclone 170 is formed in a cylindrical shape. The second cyclone 170 includes a reduced diameter portion 170a. The diameter-reduced portion 170a is a portion whose inner diameter gradually decreases from vertically above to vertically downward. A second introduction port 172 is formed on the side surface of the second cyclone 170. The second introduction port 172 is connected to the duct 160. A second solid discharge port 174 is formed below the second introduction port 172 and at the bottom of the reduced diameter portion 170a. The second solid discharge port 174 is connected to the input pipe 180. A second gas discharge port 176 is formed on the upper surface of the second cyclone 170. That is, the second gas discharge port 176 is formed above the second introduction port 172. The second gas discharge port 176 is connected to the second exhaust pipe 176a.
 第2サイクロン170によって分離された高温の流動媒体は、投入管180を通じて、ガス化炉140に導入(返送)される。 The high-temperature fluid medium separated by the second cyclone 170 is introduced (returned) to the gasifier 140 through the input pipe 180.
 一方、第2サイクロン170によって分離されたガス化ガスは、第2ガス排出口176、第2排気管176aを通じて、改質炉190に導入される。 On the other hand, the gasification gas separated by the second cyclone 170 is introduced into the reformer 190 through the second gas discharge port 176 and the second exhaust pipe 176a.
 改質炉190は、ガス化ガスに酸化剤を添加し、ガス化ガスに含まれるタールを改質して除去する。熱交換器192は、タールが除去されたガス化ガスが有する熱を回収する。 The reforming furnace 190 adds an oxidizing agent to the gasified gas to reform and remove the tar contained in the gasified gas. The heat exchanger 192 recovers the heat of the gasified gas from which tar has been removed.
 図2は、接続管130を説明する図である。図2に示すように、接続管130は、主接続管132と、複数の分岐管134、136、138とで構成される。なお、図2中、実線の矢印は、流動媒体、原料等の固体の流れを示す。また、図2中、破線の矢印は、ガス化ガス、燃焼排ガス、流動化ガス等のガスの流れを示す。 FIG. 2 is a diagram illustrating the connecting pipe 130. As shown in FIG. 2, the connecting pipe 130 is composed of a main connecting pipe 132 and a plurality of branch pipes 134, 136, and 138. In FIG. 2, solid arrows indicate the flow of solids such as flow media and raw materials. Further, in FIG. 2, the broken line arrow indicates the flow of gas such as gasification gas, combustion exhaust gas, and fluidized gas.
 図2に示すように、収容槽210の上面216には、複数の媒体導入口224が形成されている。媒体導入口224は、図2中X軸方向に所定間隔離隔して複数設けられ、また、図2中Y軸方向に所定間隔離隔して複数設けられる。 As shown in FIG. 2, a plurality of medium introduction ports 224 are formed on the upper surface 216 of the storage tank 210. A plurality of medium introduction ports 224 are provided at predetermined intervals in the X-axis direction in FIG. 2, and a plurality of media introduction ports 224 are provided at predetermined intervals in the Y-axis direction in FIG.
 ダクト160は、鉛直部160aと、水平部160bとを有する。鉛直部160aは、ダクト160のうち、鉛直方向に延在した部分である。鉛直部160aは、収容槽210の上面216を貫通する。鉛直部160aの一端は、収容槽210内に配される。鉛直部160aの他端は、水平部160bの一端に連続する。水平部160bは、ダクト160のうち、水平方向に延在した部分である。水平部160bの他端は、第2サイクロン170の第2導入口172に接続される。水平部160bの上面162には、複数の通過口164が形成されている。通過口164は、図2中X軸方向に所定間隔離隔して複数設けられる。 The duct 160 has a vertical portion 160a and a horizontal portion 160b. The vertical portion 160a is a portion of the duct 160 extending in the vertical direction. The vertical portion 160a penetrates the upper surface 216 of the storage tank 210. One end of the vertical portion 160a is arranged in the storage tank 210. The other end of the vertical portion 160a is continuous with one end of the horizontal portion 160b. The horizontal portion 160b is a portion of the duct 160 extending in the horizontal direction. The other end of the horizontal portion 160b is connected to the second introduction port 172 of the second cyclone 170. A plurality of passage ports 164 are formed on the upper surface 162 of the horizontal portion 160b. A plurality of passage ports 164 are provided at predetermined intervals in the X-axis direction in FIG.
 第2サイクロン170の上面170bには、第2ガス排出口176に加えて、複数の通過口178が形成されている。複数の通過口178は、第2ガス排出口176の周囲に設けられる。通過口178は、所定間隔離隔して複数設けられる。 In addition to the second gas discharge port 176, a plurality of passage ports 178 are formed on the upper surface 170b of the second cyclone 170. The plurality of passage ports 178 are provided around the second gas discharge port 176. A plurality of passage ports 178 are provided at a predetermined interval.
 主接続管132は、第1固体排出口124と、1の媒体導入口224とを接続する。主接続管132は、複数の分岐管134、136、138に分岐される。 The main connection pipe 132 connects the first solid discharge port 124 and the medium introduction port 224 of 1. The main connecting pipe 132 is branched into a plurality of branch pipes 134, 136, and 138.
 分岐管134(主接続管)は、主接続管132から分岐され、媒体導入口224に接続される。分岐管136は、主接続管132から分岐され、ダクト160の通過口164に接続される。分岐管138は、主接続管132から分岐され、第2サイクロン170の通過口178に接続される。 The branch pipe 134 (main connection pipe) is branched from the main connection pipe 132 and connected to the medium introduction port 224. The branch pipe 136 is branched from the main connecting pipe 132 and connected to the passage port 164 of the duct 160. The branch pipe 138 is branched from the main connecting pipe 132 and connected to the passage port 178 of the second cyclone 170.
 主接続管132、分岐管134を備える構成により、収容槽210の上面216から流動媒体を自由落下させることができる。第1サイクロン120によって分離された流動媒体(以下、「大粒子」と称する)が落下すると、収容槽210内のフリーボード(収容槽210における流動層の上方に形成される空間)において、大粒子の下流側にウェイク(Wake:後流)が形成される。収容槽210内でガス化ガスとともに飛散する流動媒体や灰分等の固形物(以下、「小粒子」と称する)は、大粒子より小さい。このため、ウェイクに小粒子が巻き込まれて、小粒子は流動層に落下することになる。したがって、小粒子を収容槽210内で分離することができ、ダクト160(第2サイクロン170)に導入されるガス化ガス中の固形物の含有量を低減させることが可能となる。 With the configuration including the main connection pipe 132 and the branch pipe 134, the flow medium can be freely dropped from the upper surface 216 of the storage tank 210. When the fluidized medium (hereinafter referred to as "large particles") separated by the first cyclone 120 falls, the large particles are formed on the freeboard (the space formed above the fluidized bed in the accommodation tank 210) in the accommodation tank 210. A wake (wake) is formed on the downstream side of the. The solid matter such as fluid medium and ash (hereinafter referred to as “small particles”) scattered together with the gasified gas in the storage tank 210 is smaller than the large particles. Therefore, the small particles are caught in the wake, and the small particles fall into the fluidized bed. Therefore, the small particles can be separated in the storage tank 210, and the content of solid matter in the gasification gas introduced into the duct 160 (second cyclone 170) can be reduced.
 また、分岐管136を備える構成により、ダクト160の上面162から大粒子を落下させることができる。これにより、ダクト160内において、ウェイクを形成することが可能となる。したがって、小粒子をダクト160内で分離することができ、第2サイクロン170に導入されるガス化ガス中の固形物の含有量を低減させることが可能となる。 Further, with the configuration provided with the branch pipe 136, large particles can be dropped from the upper surface 162 of the duct 160. This makes it possible to form a wake in the duct 160. Therefore, the small particles can be separated in the duct 160, and the content of solid matter in the gasification gas introduced into the second cyclone 170 can be reduced.
 さらに、分岐管138を備える構成により、第2サイクロン170の上面170bから大粒子を落下させることができる。これにより、第2サイクロン170内において、ウェイクを形成することが可能となる。したがって、小粒子を第2サイクロン170内で分離することができ、第2サイクロン170から送出されるガス化ガス中の固形物の含有量を低減させることが可能となる。 Further, with the configuration provided with the branch pipe 138, large particles can be dropped from the upper surface 170b of the second cyclone 170. This makes it possible to form a wake in the second cyclone 170. Therefore, the small particles can be separated in the second cyclone 170, and the content of solid matter in the gasification gas delivered from the second cyclone 170 can be reduced.
 なお、ダクト160に導入された大粒子は、ガス化ガスとともに第2サイクロン170に導入される。そして、第2サイクロン170において、ガス化ガスと大粒子とが固気分離される。分離された大粒子は、投入管180を通じて収容槽210に返送される。 The large particles introduced into the duct 160 are introduced into the second cyclone 170 together with the gasified gas. Then, in the second cyclone 170, the gasification gas and the large particles are separated by solid air. The separated large particles are returned to the storage tank 210 through the input pipe 180.
 また、ダクト160の鉛直部160aのうち、収容槽210内に配される箇所の外壁には、複数の貫通孔166が形成されている。これにより、ダクト160に導入されるガス化ガスの流速を低下させることができる。したがって、ガス化ガスとともに、ダクト160に吸入される小粒子を低減することが可能となる。 Further, in the vertical portion 160a of the duct 160, a plurality of through holes 166 are formed on the outer wall of the portion arranged in the storage tank 210. As a result, the flow velocity of the gasified gas introduced into the duct 160 can be reduced. Therefore, it is possible to reduce the small particles sucked into the duct 160 together with the gasification gas.
 以上説明したように、本実施形態のガス化ガス生成システム100は、改質炉190に送出されるガス化ガス中の固形物の含有量を低減することができる。したがって、ガス化ガス生成システム100は、熱交換器192において、固形物の堆積量を低減することが可能となる。これにより、ガス化ガス生成システム100は、熱交換器192による熱回収効率の低下を防止することができる。 As described above, the gasification gas generation system 100 of the present embodiment can reduce the content of solid matter in the gasification gas sent to the reforming furnace 190. Therefore, the gasification gas generation system 100 can reduce the amount of solid matter deposited in the heat exchanger 192. As a result, the gasification gas generation system 100 can prevent the heat recovery efficiency from being lowered by the heat exchanger 192.
 以上、添付図面を参照しながら一実施形態について説明したが、本開示は上記実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although one embodiment has been described above with reference to the attached drawings, it goes without saying that the present disclosure is not limited to the above embodiment. It is clear to those skilled in the art that various modifications or modifications can be conceived within the scope of the claims, and it is understood that they also naturally belong to the technical scope of the present disclosure. Will be done.
 例えば、上述した実施形態において、接続管130が分岐管136、138を備える構成を例に挙げて説明した。しかし、ガス化ガス生成システム100は、分岐管136および分岐管138のいずれか一方または両方を備えずともよい。 For example, in the above-described embodiment, the configuration in which the connecting pipe 130 includes the branch pipes 136 and 138 has been described as an example. However, the gasification gas generation system 100 may not include one or both of the branch pipe 136 and the branch pipe 138.
 また、上記実施形態において、第2サイクロン170が収容槽210の外部に設けられる構成を例に挙げて説明した。しかし、第2サイクロン170は、収容槽210内に設けられてもよい。 Further, in the above embodiment, the configuration in which the second cyclone 170 is provided outside the storage tank 210 has been described as an example. However, the second cyclone 170 may be provided in the containment tank 210.
 また、ガス化ガス生成システム100は、分岐管134に代えて、収容槽210内に分散器を備えてもよい。図3は、変形例のガス化炉340を説明する図である。ガス化炉340の上面216には、1の媒体導入口224が形成される。ガス化炉340は、収容槽210内のフリーボードに分散器350を備える。分散器350は、主接続管132を通じて導入された大粒子を分散させる。分散器350は、複数の傘部材352で構成される。傘部材352は、円錐形状に形成される。最も鉛直上方に配される傘部材352(図3中、352aで示す)は、頂部が媒体導入口224に臨むように配される。傘部材352aの下方には、傘部材352bが配される。傘部材352bは、頂部が傘部材352aの下端に臨むように配される。つまり、傘部材352は、頂部が上方に配される傘部材352の下端に臨むように配される。 Further, the gasification gas generation system 100 may include a disperser in the accommodating tank 210 instead of the branch pipe 134. FIG. 3 is a diagram illustrating a modified gasification furnace 340. The medium introduction port 224 of 1 is formed on the upper surface 216 of the gasification furnace 340. The gasifier 340 includes a disperser 350 on a freeboard in the containment tank 210. The disperser 350 disperses the large particles introduced through the main connecting pipe 132. The disperser 350 is composed of a plurality of umbrella members 352. The umbrella member 352 is formed in a conical shape. The umbrella member 352 (indicated by 352a in FIG. 3) arranged most vertically upward is arranged so that the top thereof faces the medium introduction port 224. An umbrella member 352b is arranged below the umbrella member 352a. The umbrella member 352b is arranged so that the top thereof faces the lower end of the umbrella member 352a. That is, the umbrella member 352 is arranged so that the top thereof faces the lower end of the umbrella member 352 arranged upward.
 したがって、主接続管132を通じて媒体導入口224から収容槽210内に落下した大粒子は、傘部材352aの頂部に衝突し、傘部材352aの径方向外方に分散される。分散された大粒子は、傘部材352aの外壁面を流下し、下端から落下する。そして、傘部材352aから落下した大粒子は、下方に位置する傘部材352bの頂部に衝突し、傘部材352bで分散される。以降、大粒子は、下方に位置する傘部材352によって分散され、フリーボードを落下し、最終的に流動層に落下する。 Therefore, the large particles that have fallen into the storage tank 210 from the medium introduction port 224 through the main connecting pipe 132 collide with the top of the umbrella member 352a and are dispersed outward in the radial direction of the umbrella member 352a. The dispersed large particles flow down the outer wall surface of the umbrella member 352a and fall from the lower end. Then, the large particles that have fallen from the umbrella member 352a collide with the top of the umbrella member 352b located below and are dispersed by the umbrella member 352b. After that, the large particles are dispersed by the umbrella member 352 located below, fall on the freeboard, and finally fall on the fluidized bed.
 分散器350を備える構成により、収容槽210内において大粒子を落下させることができる。これにより、収容槽210内において、ウェイクを形成することが可能となる。したがって、小粒子を収容槽210内で分離することができ、ダクト160(第2サイクロン170)に導入されるガス化ガス中の固形物の含有量を低減させることが可能となる。 With the configuration provided with the disperser 350, large particles can be dropped in the storage tank 210. This makes it possible to form a wake in the containment tank 210. Therefore, the small particles can be separated in the storage tank 210, and the content of solid matter in the gasification gas introduced into the duct 160 (second cyclone 170) can be reduced.
 また、上記実施形態において、ダクト160の上面162に複数の通過口164が形成される構成を例に挙げて説明した。しかし、ダクト160の上面162に1以上の通過口164が形成されていればよい。同様に、上記実施形態において、第2サイクロン170の上面170bに複数の通過口178が形成される構成を例に挙げて説明した。しかし第2サイクロン170の上面170bに1以上の通過口178が形成されていればよい。 Further, in the above embodiment, a configuration in which a plurality of passage ports 164 are formed on the upper surface 162 of the duct 160 has been described as an example. However, it is sufficient that one or more passage ports 164 are formed on the upper surface 162 of the duct 160. Similarly, in the above embodiment, a configuration in which a plurality of passage ports 178 are formed on the upper surface 170b of the second cyclone 170 has been described as an example. However, it is sufficient that one or more passage ports 178 are formed on the upper surface 170b of the second cyclone 170.
 また、上記実施形態において、ダクト160の鉛直部160aに貫通孔166が形成される構成を例に挙げて説明した。しかし、貫通孔166は必須の構成ではない。 Further, in the above embodiment, the configuration in which the through hole 166 is formed in the vertical portion 160a of the duct 160 has been described as an example. However, the through hole 166 is not an essential configuration.
 また、上記実施形態において、収容槽210の側面214aに原料投入口220が形成される構成を例に挙げて説明した。しかし、原料投入口の位置に限定はない。例えば、収容槽210の上面(例えば、上面における側面214b側の端部)に原料投入口が形成されてもよい。収容槽210の上面に原料投入口が形成される場合、原料を投入する際の圧力損失が小さいため、収容槽210に効率よく原料を投入することができる。 Further, in the above embodiment, the configuration in which the raw material input port 220 is formed on the side surface 214a of the storage tank 210 has been described as an example. However, the position of the raw material input port is not limited. For example, a raw material input port may be formed on the upper surface of the storage tank 210 (for example, the end on the upper surface on the side surface 214b side). When the raw material input port is formed on the upper surface of the storage tank 210, the pressure loss when the raw material is charged is small, so that the raw material can be efficiently charged into the storage tank 210.
 本開示は、ガス化ガスを生成するガス化ガス生成システムに利用することができる。 The present disclosure can be used for a gasification gas generation system that generates gasification gas.
100:ガス化ガス生成システム 110:燃焼炉 120:第1サイクロン 122:第1導入口 124:第1固体排出口 130:接続管 132:主接続管 134:分岐管(主接続管) 136:分岐管 138:分岐管 140:ガス化炉 150:返送管 160:ダクト 162:上面 164:通過口 166:貫通孔 170:第2サイクロン 172:第2導入口 174:第2固体排出口 178:通過口 210:収容槽 214b:側面 216:上面 222:媒体排出口 224:媒体導入口 250:風箱(ガス供給部) 340:ガス化炉 100: Gasification gas generation system 110: Combustion furnace 120: 1st cyclone 122: 1st introduction port 124: 1st solid discharge port 130: Connection pipe 132: Main connection pipe 134: Branch pipe (main connection pipe) 136: Branch Pipe 138: Branch pipe 140: Gasification furnace 150: Return pipe 160: Duct 162: Top surface 164: Passage port 166: Through hole 170: Second cyclone 172: Second introduction port 174: Second solid discharge port 178: Passage port 210: Storage tank 214b: Side surface 216: Top surface 222: Medium discharge port 224: Medium introduction port 250: Air box (gas supply unit) 340: Gasification furnace

Claims (4)

  1.  燃焼炉と、
     前記燃焼炉に接続された第1導入口と、前記第1導入口の下方に第1固体排出口とが形成され、固気分離を行う第1サイクロンと、
     1または複数の媒体導入口が形成された上面と、媒体排出口が形成された側面とを有し、流動媒体および原料を収容する収容槽と、前記収容槽の下部に流動化ガスを供給するガス供給部とを含むガス化炉と、
     前記第1固体排出口と、前記媒体導入口とを接続する接続管と、
     前記媒体排出口と前記燃焼炉とを接続する返送管と、
    を備えるガス化ガス生成システム。
    Combustion furnace and
    A first cyclone connected to the combustion furnace and a first solid discharge port formed below the first introduction port to perform solid-air separation.
    It has an upper surface on which one or a plurality of medium introduction ports are formed, and a side surface on which a medium discharge port is formed, and supplies fluidized gas to a storage tank for accommodating a fluid medium and raw materials and a lower portion of the storage tank. A gasifier including a gas supply unit and
    A connection pipe connecting the first solid discharge port and the medium introduction port,
    A return pipe connecting the medium discharge port and the combustion furnace,
    Gasification gas generation system equipped with.
  2.  1または複数の通過口が形成された上面を有し、前記通過口の下方に設けられ前記ガス化炉に接続された第2導入口と、前記第2導入口の下方に設けられた第2固体排出口とが形成され、固気分離を行う第2サイクロンをさらに備え、
     前記接続管は、
     前記第1固体排出口と、前記媒体導入口とを接続する主接続管と、
     前記主接続管から分岐され、前記第2のサイクロンの上面に形成された通過口に接続された分岐管と、
    を有する請求項1に記載のガス化ガス生成システム。
    A second introduction port having an upper surface on which one or a plurality of passage ports are formed and provided below the passage port and connected to the gasifier, and a second introduction port provided below the second introduction port. A solid outlet is formed, and a second cyclone for solid air separation is further provided.
    The connecting pipe
    A main connection pipe connecting the first solid discharge port and the medium introduction port,
    A branch pipe branched from the main connecting pipe and connected to a passage port formed on the upper surface of the second cyclone.
    The gasification gas generation system according to claim 1.
  3.  1または複数の通過口が形成された上面を有し、前記第2のサイクロンの第2導入口と前記ガス化炉内とを接続するダクトを備え、
     前記接続管は、
     前記第1固体排出口と、前記媒体導入口とを接続する主接続管と、
     前記主接続管から分岐され、前記ダクトの上面に形成された通過口に接続された分岐管と、
    を有する請求項1または2に記載のガス化ガス生成システム。
    It has an upper surface on which one or more passage ports are formed, and is provided with a duct connecting the second introduction port of the second cyclone and the inside of the gasification furnace.
    The connecting pipe
    A main connection pipe connecting the first solid discharge port and the medium introduction port,
    A branch pipe branched from the main connecting pipe and connected to a passage port formed on the upper surface of the duct.
    The gasification gas generation system according to claim 1 or 2.
  4.  前記ダクトは、一部が前記ガス化炉内に配され、
     前記ダクトにおける前記ガス化炉内に配される箇所の外壁に、1または複数の貫通孔が形成されている請求項3に記載のガス化ガス生成システム。
    A part of the duct is arranged in the gasification furnace.
    The gasification gas generation system according to claim 3, wherein one or a plurality of through holes are formed in an outer wall of a portion of the duct arranged in the gasification furnace.
PCT/JP2020/030197 2019-08-08 2020-08-06 Gasification gas generation system WO2021025116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080036345.6A CN113825824A (en) 2019-08-08 2020-08-06 Gasification gas generation system
JP2021537379A JPWO2021025116A1 (en) 2019-08-08 2020-08-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019146226 2019-08-08
JP2019-146226 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025116A1 true WO2021025116A1 (en) 2021-02-11

Family

ID=74503853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030197 WO2021025116A1 (en) 2019-08-08 2020-08-06 Gasification gas generation system

Country Status (3)

Country Link
JP (1) JPWO2021025116A1 (en)
CN (1) CN113825824A (en)
WO (1) WO2021025116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229990A1 (en) * 2020-05-12 2021-11-18 株式会社Ihi Gasified gas production device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004758A1 (en) * 2008-07-11 2010-01-14 株式会社Ihi Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
JP2013136655A (en) * 2011-12-28 2013-07-11 Ihi Corp Circulating fluidized bed gasifier
JP2015091908A (en) * 2013-11-08 2015-05-14 株式会社Ihi Temperature increasing method and device for gasification gas
JP2015155506A (en) * 2014-02-20 2015-08-27 国立研究開発法人産業技術総合研究所 circulating fluidized bed gasification system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2031012A (en) * 1978-10-10 1980-04-16 Continental Oil Co Improved Operation of Slagging Gasifiers
JP2010269210A (en) * 2009-05-19 2010-12-02 Tosei Kk Cyclone dust collector
DE102009032524B3 (en) * 2009-07-10 2011-02-03 Highterm Research Gmbh Reactor for producing a product gas by allothermic gasification of carbonaceous feedstocks
CN202072674U (en) * 2011-05-20 2011-12-14 国电长源电力股份有限公司 High-speed biomass circulating fluidized bed gasifier
CN104888556B (en) * 2014-03-07 2020-07-17 常涛涛 Pollutant cleaning and purifying device in gas
CN203852978U (en) * 2014-04-22 2014-10-01 浙江尔乐干燥设备有限公司 Cyclone separator for processing tail gas of spray drying system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004758A1 (en) * 2008-07-11 2010-01-14 株式会社Ihi Method and device for controlling retention time of fluid medium in fluidized-bed gasification furnace in gasification facility
JP2013136655A (en) * 2011-12-28 2013-07-11 Ihi Corp Circulating fluidized bed gasifier
JP2015091908A (en) * 2013-11-08 2015-05-14 株式会社Ihi Temperature increasing method and device for gasification gas
JP2015155506A (en) * 2014-02-20 2015-08-27 国立研究開発法人産業技術総合研究所 circulating fluidized bed gasification system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229990A1 (en) * 2020-05-12 2021-11-18 株式会社Ihi Gasified gas production device

Also Published As

Publication number Publication date
JPWO2021025116A1 (en) 2021-02-11
CN113825824A (en) 2021-12-21

Similar Documents

Publication Publication Date Title
USRE37300E1 (en) Pressurized internal circulating fluidized-bed boiler
JP4888551B2 (en) Fluidized bed gasification method
US20130312328A1 (en) Method and apparatus for particle recycling in multiphase chemical reactors
CZ302537B6 (en) Apparatus for producing heating gas from carbon-containing, particularly biogenic feed materials
JP5256802B2 (en) Gasification furnace structure of gasification equipment
WO2021025116A1 (en) Gasification gas generation system
US20200024531A1 (en) Gasification system and method
WO2018135610A1 (en) Cyclone integrated type storage device, gasified combined power generating device, and method for isolating particles
JP6607817B2 (en) Gasification furnace device and gasification combined power generation facility
JP2004212032A (en) Fluidized bed gasification furnace
JP7134637B2 (en) Gasification furnace equipment, integrated gasification combined cycle equipment equipped with the same, method for manufacturing gasification furnace equipment, and method for discharging generated gas
JP7467888B2 (en) Fluidized Bed Systems
JP7311044B2 (en) Gasification gas production equipment
WO2015033022A1 (en) Arrangement and method for burning fuel
JP7286504B2 (en) Gasification facility and gasification combined cycle facility equipped with the same
CN216480991U (en) Hazardous waste processing system
CN113265273B (en) Double fluidized bed coal gasification system and control method thereof
JP6822025B2 (en) Tar reformer
CN108626719A (en) Double bed synchronous biological matter gasification-coal combustion composite boiler
JPS58225191A (en) Coal gasification by fluidized bed and its apparatus
JP2019137817A (en) Synthetic gas generation system
JP2013167380A (en) Fluidized bed drying device and gasification complex power generation system using coal
JP2013044461A (en) Fluidized bed drying device
JP2011219521A (en) Gasification furnace and boiler facility
JPS61143610A (en) Multi-stage fluidized-bed boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849299

Country of ref document: EP

Kind code of ref document: A1