WO2021024868A1 - エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法 - Google Patents

エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法 Download PDF

Info

Publication number
WO2021024868A1
WO2021024868A1 PCT/JP2020/028953 JP2020028953W WO2021024868A1 WO 2021024868 A1 WO2021024868 A1 WO 2021024868A1 JP 2020028953 W JP2020028953 W JP 2020028953W WO 2021024868 A1 WO2021024868 A1 WO 2021024868A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
energy conversion
stretching
resin film
resin
Prior art date
Application number
PCT/JP2020/028953
Other languages
English (en)
French (fr)
Inventor
小池 弘
祐太郎 菅俣
誠一郎 飯田
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2021537251A priority Critical patent/JP7240504B2/ja
Publication of WO2021024868A1 publication Critical patent/WO2021024868A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials

Definitions

  • the present invention relates to an energy conversion film, an energy conversion element, and a method for manufacturing an energy conversion film.
  • a porous resin film having piezoelectricity has been used as an energy conversion film that converts mechanical energy into electrical energy.
  • a dielectric film in which a plastic film having air bubbles inside is pulled two-dimensionally and the surface thereof is coated with a conductive layer is applied to a microphone or the like (see Patent Document 1).
  • the energy conversion film described in Patent Document 2 exhibits excellent piezoelectric performance, for example, when electrodes or the like are arranged on both sides and applied to a large-area sensor or the like, in the plane of the energy conversion film. Piezoelectric performance may vary, and there is room for improvement in terms of obtaining elements of stable quality.
  • an object of the present invention is to provide a method for producing an energy conversion film in order to obtain an energy conversion film having no in-plane variation in piezoelectric performance and excellent in-plane piezoelectric performance uniformity.
  • the present inventors when producing an energy conversion film, when the kneaded product of the resin composition is filtered using a specific filtration filter and the resin film is stretched.
  • the energy conversion film obtained by the manufacturing method can solve the above-mentioned problems by loosening the degree of stretching the resin film in the stretching axis direction in the middle of the stretching step and performing the stress relaxation treatment at a specific stretching degree.
  • the present invention has been completed. That is, the present invention is as follows.
  • a method for producing an energy conversion film which is a porous resin film.
  • a kneading step of kneading a resin composition containing a thermoplastic resin and a pore-forming agent and extruding the obtained kneaded product An extrusion step of forming a non-stretched resin film by extruding the kneaded product into a film, and A stretching step of stretching the unstretched resin film in at least a uniaxial direction is included.
  • At least one of the kneading step and the extrusion step comprises a step of filtering the kneaded product using a filtration filter having a filtration particle size of 40 to 300 ⁇ m.
  • the stretching step includes a stress relaxation treatment that loosens the degree to which the resin film is stretched in the stretching axis direction in the middle of the stretching step.
  • the following formula (1) is used using the maximum value (A) of the degree of stretching when the resin film is stretched in the stretching axis direction and the value (B) of the degree of stretching when the degree of stretching is reduced by the stress relaxation treatment. ) Satisfies -10.0 to -0.1%.
  • (BA) / A A method for producing an energy conversion film, which is characterized in that. [2] The method for producing an energy conversion film according to the above [1], wherein the filtration filter is a plain weave wire mesh, a twill weave wire mesh, a flat woven wire mesh, or a twill woven wire mesh.
  • an electrode is formed on at least one surface of the energy conversion film.
  • a method for manufacturing an energy conversion element An energy conversion film composed of a porous resin film containing a thermoplastic resin and a pore-forming agent, and having a fluctuation value of a voltage generated by a ball drop test of 7 or less.
  • the present invention it is possible to provide a method for producing an energy conversion film for obtaining an energy conversion film having no in-plane variation in piezoelectric performance and excellent in-plane piezoelectric performance uniformity.
  • (meth) acrylic indicates both acrylic and methacrylic.
  • the present invention defines a method for producing an energy conversion film which is a porous resin film.
  • the method for producing an energy film of the present invention includes a kneading step, an extrusion step, and a stretching step.
  • the method for producing an energy film of the present invention includes a step of filtering the kneaded product using a filtration filter having a filtration particle size of 40 to 300 ⁇ m in at least one of a kneading step and an extrusion step.
  • the method for producing an energy film of the present invention includes a stress relaxation treatment in which the stretching step relaxes the degree of stretching the resin film in the stretching axis direction in the middle of the stretching step.
  • the maximum value (A) of the degree of stretching when the resin film is stretched in the stretching axis direction and the value of the degree of stretching (B) when the degree of stretching is reduced by stress relaxation treatment. ) Is calculated by the following formula (1), which satisfies -10.0 to -0.1%. (1) (BA) / A
  • the manufacturing method of the present invention will be described in detail later. First, the energy conversion film which is the target of the production method of the present invention will be described.
  • the energy conversion film according to the present invention is a porous resin film having a large number of pores inside.
  • An energy conversion film having an electro-mechanical energy conversion performance can be obtained by subjecting the porous resin film to an electretization treatment in which an electric charge is injected.
  • the electrical-mechanical energy conversion performance includes not only the ability to convert mechanical energy (kinetic energy) into electrical energy, but also the ability to convert electrical energy into mechanical energy (kinetic energy).
  • the energy conversion film according to the present invention may be a porous resin film before the electretization treatment or a porous resin film after the electretization treatment.
  • the porous resin film after the electretization treatment is a film into which charges are intentionally injected, and has a large amount of electric charges as compared with those before the electretization treatment.
  • the porous resin film according to the present invention is a layer containing at least one porous resin layer, and the porous resin layer is obtained by film-molding a resin composition containing a thermoplastic resin and a pore-forming agent. Be done.
  • the porous resin film may have a single-layer structure containing only the porous resin layer described below, or may have a multilayer structure having at least one of the porous resin layers.
  • the porous resin film is preferably a stretched film containing a pore-forming agent because it is easy to form the desired pores.
  • the shape and size of the pores in the porous resin film may be appropriately set according to the required performance and the like, and are not particularly limited. It is considered that different charges are held in pairs on the opposite inner surfaces of the individual pores inside the porous resin film, as in the case of a single-plate capacitor. Therefore, in order to accumulate electric charges inside like a single plate type capacitor, it is preferable that the pores of the porous resin film have an area and a height of a certain value or more. If the area of the pores is a certain amount or more, a sufficient capacitance can be obtained and an electret having excellent performance can be easily obtained.
  • the "area” of the pores means the maximum value of the pore area in the cross section parallel to the surface of the porous resin layer, and the "height" of the pores is in the thickness direction of the porous resin layer. It means the maximum value of the pore diameter. From these points, it can be said that the larger the size (area) of the individual pores inside the porous resin film, the more effective the function, but the discharge (short circuit) generated by the communication between the adjacent pores is reduced and accumulated. From the viewpoint of increasing the electric charge, the size of the pores is preferably not more than a certain value. Further, when the height (distance) of the pores is equal to or less than a certain value, the electric charge is easily polarized and an electret having excellent charge stability is easily obtained.
  • the porous resin film preferably has a specific amount of pores of a specific size effective for accumulating electric charges.
  • the height of the film in the thickness direction is 3 to 30 ⁇ m
  • the diameter of the film in the surface direction is 50 to 50. It is preferable to have 100 / mm 2 or more of pores having a size of 500 ⁇ m, more preferably 150 / mm 2 or more, further preferably 200 / mm 2 or more, and particularly preferably 300 / mm 2 or more.
  • the porous resin film has a height of 3 to 30 ⁇ m in the thickness direction of the film and a diameter of the film in the surface direction.
  • pores is 50 ⁇ 500 [mu] m, preferably has 3,000 / mm 2 or less, and more preferably has 2,500 / mm 2 or less, further preferably has 2,000 / mm 2 or less, It is particularly preferable to have 1,500 pieces / mm 2 or less.
  • the charge storage capacity tends to improve and the energy conversion efficiency tends to improve.
  • the number of holes of the specific size is smaller, it is possible to prevent the adjacent holes from communicating with each other and causing a discharge (short circuit) between the adjacent holes.
  • the porosity of the porous resin film may be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 20 to 80%. Such a vacancy rate correlates with the number of valid vacancy described above.
  • the porosity of the porous resin film means the ratio (volume fraction) of the volume occupied by the pores in the film to the total volume of the film.
  • the pore ratio of the porous resin film is equal to the ratio of the area occupied by the pores (area ratio) in the cross section of the film in the thickness direction on the premise that the pores are uniformly distributed throughout the film.
  • the porosity of the porous resin film in the present invention was calculated by observing the cross section of the material in the thickness direction with a scanning electron microscope, capturing the observation image into an image analyzer, and analyzing the observation area. , Can be obtained as the area ratio of the pores on the cross section.
  • a sample for cross-section observation is prepared from the porous resin film by a method such as a gallium focused ion beam so that the pores are not crushed. The cross-sectional observation of this sample is performed at an appropriate magnification (for example, 2000 times, etc.) using a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-6490) or the like.
  • the ratio (area ratio) of the area occupied by the pores in the sample cross section was calculated. This can be used as the porosity.
  • the porosity of the porous resin film is preferably 20% or more, preferably 25% or more, from the viewpoint of ensuring the charge storage capacity by providing a large number of pores having a size suitable for accumulating charges inside the film. % Or more, more preferably 30% or more, and particularly preferably 35% or more.
  • the porosity of the porous resin film is 80 from the viewpoint of suppressing short circuits due to the communication of pores, reducing the elastic modulus of the porous resin film, and suppressing the decrease in durability due to the decrease in compression recovery in the thickness direction. It is preferably% or less, more preferably 70% or less, further preferably 60% or less, and particularly preferably 55% or less.
  • the porous resin layer contains a thermoplastic resin and a pore forming agent. From the viewpoint of pore-forming property, it is preferable to contain a pore-forming agent, and from the viewpoint of improving chargeability and heat resistance, it is preferable to contain a metal soap.
  • Thermoplastic resin is a matrix resin having a porous resin layer, and imparts a piezoelectric effect and compression recovery.
  • an insulating polymer material that does not easily conduct electricity can be preferably used.
  • thermoplastic resins include polyethylene-based resins, polypropylene-based resins, polybutenes, and polyolefin-based resins such as 4-methyl-1-pentene (co) copolymers; ethylene-vinyl acetate copolymers and ethylene- (meth).
  • functional group-containing olefin resins such as maleic acid-modified polyethylene and maleic acid-modified polypropylene; aromatic polyesters (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), aliphatic polyesters (polybutylene succinate, polylactic acid, etc.) ) Etc.
  • Polyester resin Nylon-6, Nylon-6,6, Nylon-6,10, Nylon-6,12, etc.
  • Polyethylene resin Syndiotactic polystyrene, tactic polystyrene, acrylonitrile-styrene (AS) Examples thereof include styrene resins such as polymers, styrene-butadiene (SBR) copolymers and acrylonitrile-butadiene-styrene (ABS) copolymers; polyvinyl chloride resins; polycarbonate resins; polyphenylene sulfides and the like.
  • SBR styrene-butadiene
  • ABS acrylonitrile-butadiene-styrene
  • polyethylene-based resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, low-crystalline or amorphous ethylene / ⁇ -olefin copolymer, and ethylene-cyclic olefin copolymer. And so on.
  • polypropylene-based resins examples include crystalline polypropylene, low-crystalline polypropylene, amorphous polypropylene, propylene / ethylene copolymer (random copolymer or block copolymer), propylene / ⁇ -olefin copolymer, propylene / (Ethylene / ⁇ -olefin copolymer, etc.) and the like.
  • the ⁇ -olefin is not particularly limited as long as it can be copolymerized with ethylene and propylene.
  • ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1 -Heptene, 1-octene, etc. can be mentioned.
  • polyolefin-based resins or functional group-containing olefin-based resins having excellent insulating properties and processability are preferable.
  • thermoplastic resin one type may be selected from the above-mentioned thermoplastic resins and used alone, or two or more types may be selected and used in combination.
  • polypropylene resins are particularly preferable from the viewpoints of insulation, processability, water resistance, chemical resistance, cost and the like.
  • the polypropylene-based resin preferably contains a resin having a melting point lower than that of the propylene homopolymer in an amount of 2 to 25% by mass based on the total amount of the thermoplastic resin.
  • a resin having a low melting point include polyethylene-based resins, and among them, high-density or low-density polyethylene is preferable.
  • the content (content rate) of the thermoplastic resin in the porous resin layer is not particularly limited, and for example, as a matrix resin of the porous resin layer, communication between the pores is formed while forming a sufficient pore interface in the same layer. It may be appropriately set from the viewpoint of suppressing the above and ensuring the mechanical strength of the porous resin film.
  • the thermoplastic resin is preferably contained in an amount of 50% by mass or more, more preferably 60% by mass or more, further preferably 65% by mass or more, and 70% by mass. It is particularly preferable to contain more than mass%.
  • the thermoplastic resin is preferably contained in an amount of 98% by mass or less, more preferably 97% by mass or less, further preferably 96% by mass or less, and particularly preferably 85% by mass or less.
  • Pore-forming agent examples include fillers and foaming agents.
  • the filler examples include an inorganic filler and an organic filler.
  • the filler can function as a support in the pores even after the pores are formed, the pores are not easily crushed, and the obtained electret is likely to exhibit sufficient compression recovery even if a compressive force is repeatedly applied. Furthermore, stabilization of piezoelectric performance (pillar effect) can be expected.
  • the content of the filler in the porous resin layer is preferably 2% by mass or more, more preferably 4% by mass or more, further preferably 10% by mass or more, and 14% by mass from the viewpoint of forming sufficient pores. % Or more is particularly preferable.
  • the content is preferably 50% by mass or less, more preferably 40% by mass or less, further preferably 30% by mass or less, 25. Mass% or less is particularly preferable.
  • the content of the filler is equal to or higher than the lower limit of the above-mentioned preferable range, it is easy to obtain pores of a size suitable for accumulating a sufficient number of charges in the stretching step described later, and desired piezoelectric performance can be obtained. Easy to get.
  • the content of the filler is not more than the upper limit of the above-mentioned preferable range, the decrease in film strength due to the formation of excessive pores is likely to be suppressed. In the obtained energy conversion film, sufficient compression recovery is likely to be exhibited even if a compressive force is repeatedly applied, and it can be expected that the piezoelectric performance will be stable.
  • the inorganic filler can be used alone, the organic filler can be used alone, or the inorganic filler and the organic filler can be combined.
  • the content ratio of each is not particularly limited.
  • the content ratio of the inorganic filler can be 10 to 99% by mass, 20 to 90% by mass, or 30 to 80% by mass with respect to the total amount of the pore forming agent. Good.
  • the inorganic filler is preferable because a large number of products having different particle sizes are commercially available at low cost.
  • Specific examples of usable inorganic fillers include heavy calcium carbonate, light calcium carbonate, calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide, barium sulfate, alumina, zeolite, mica, sericite, bentonite, etc. Examples thereof include sepiolite, vermiculite, dolomite, wallastonite, glass fiber and the like, but the present invention is not particularly limited thereto. Of these, heavy calcium carbonate, light calcium carbonate or titanium oxide is preferable, and heavy calcium carbonate is more preferable, from the viewpoint of pore forming property and cost. These inorganic fillers can be used alone or in combination of two or more.
  • Organic Filler is available as spherical particles having a uniform particle size, and the pores formed in the porous resin layer also tend to have a uniform size and shape.
  • the organic filler it is preferable to select resin particles of a type different from that of the thermoplastic resin which is the main component of the porous resin layer.
  • the thermoplastic resin is a polyolefin-based resin
  • preferable organic fillers include resin particles that are incompatible with polyolefin and do not have fluidity during kneading and stretching molding of the polyolefin-based resin.
  • Specific examples thereof include crosslinked acrylic resin, crosslinked methacrylic resin, crosslinked styrene resin, and crosslinked urethane resin, but the present invention is not particularly limited thereto.
  • the resin particles made of these crosslinked resins are available as spherical particles having a uniform particle size in advance, and are particularly preferably used because the size of the pores can be easily adjusted.
  • the organic filler is incompatible with the thermoplastic resin, which is the main component of the porous resin layer, but is melt-kneaded together with the thermoplastic resin to form a sea-island structure, and the organic filler, which is an island, is empty during stretch molding. It may become the core of the hole and form the desired hole.
  • the thermoplastic resin is a polyolefin resin
  • specific examples of such an organic filler include polyethylene terephthalate, polybutylene terephthalate, polycarbonate, nylon-6, nylon-6,6, cyclic olefin polymer, and polystyrene.
  • Polymethacrylate, etc. which has a melting point higher than the melting point of the polyolefin resin (for example, 170 to 300 ° C.) or a glass transition temperature (for example, 170 to 280 ° C.), and is a matrix resin by melt-kneading. Examples thereof include resin particles that can be finely dispersed in the based resin.
  • the organic filler may be used alone or in combination of two or more.
  • the volume average particle size of the inorganic filler or organic filler (median diameter (D 50 ) measured by a particle size distribution meter by laser diffraction) is appropriately selected in consideration of forming pores of a size suitable for accumulating electric charges.
  • the volume average particle size of the inorganic filler is preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more, and 5 ⁇ m or more. It is more preferable to have.
  • the volume average particle size of the inorganic filler is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less.
  • the volume average particle diameter may be a combination of the inorganic filler and the organic filler having individual particle diameters within the same range, or the inorganic filler and the organic filler are mixed.
  • a particle size having the same volume average particle size as measured by a particle size distribution meter by laser diffraction may be used.
  • a foaming agent can be used instead of the above filler or together with the filler.
  • the foaming agent include a thermal decomposition type foaming agent.
  • gas may be generated by decomposition, for example, azodicarbonamide, benzenesulfonylhydrazide, dinitrosopentamethylenetetramine, toluenesulfonylhydrazide, 4,4-oxybis (benzenesulfonylhydrazide) and the like. Can be mentioned.
  • a resin composition containing a thermoplastic resin and a pyrolysis foaming agent is melt-kneaded, and then extruded into a sheet to obtain a foamable resin film, and the foamable resin film is above the decomposition temperature of the pyrolysis foaming agent.
  • a porous resin film can be produced by heating and foaming.
  • the content of the foaming agent in the porous resin layer is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, from the viewpoint of forming sufficient pores.
  • the content is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the porous resin film preferably contains a metal soap from the viewpoint of further enhancing the charge retention performance of the energy conversion film and suppressing the deterioration of the piezoelectric performance even when stored or used in a high temperature environment.
  • the metal soap used in the present invention the metal soap which is melted and uniformly dispersed in the thermoplastic resin at the kneading stage of the raw material and which is solid at the environmental temperature after the formation of the porous resin layer has high charge retention performance. Easy to exert and preferable. Therefore, assuming that the melting point of the thermoplastic resin is Tm (° C.), the melting point of the metal soap is preferably in the range of 50 ° C. or higher and (Tm + 50) ° C. or lower, and is in the range of 70 ° C. or higher and (Tm + 40) ° C. or lower. It is more preferably within the range of 100 ° C. or higher and (Tm + 30) ° C. or lower.
  • thermoplastic resin when a polypropylene resin (melting point 160 to 170 ° C.) is used as the thermoplastic resin, it is preferable to use a metal soap having a melting point of 50 to 220 ° C., and it is preferable to use a metal soap having a melting point of 70 to 210 ° C. It is more preferable to use a metal soap having a melting point of 100 to 200 ° C.
  • the porous resin layer contains two or more kinds of thermoplastic resins, the melting point of the thermoplastic resin contained most in the layer is Tm.
  • the metal soap Since the metal soap has a melting point in the above temperature range, it melts and uniformly disperses in the thermoplastic resin during layer molding of the porous resin layer, and maintains its dispersed state in the thermoplastic resin after layer molding. It solidifies as it is and becomes difficult to flow. At the time of electretization treatment, the metal soap is oriented by the dipoles in the molecule, and it is presumed that the orientation of the metal soap enhances the charge retention performance.
  • the metal soap is preferably a metal salt of a fatty acid, and more preferably a metal salt of a higher fatty acid.
  • fatty acids include saturated fatty acids, unsaturated fatty acids and structural isomers thereof.
  • the number of carbon atoms per fatty acid molecule is usually 5 to 30, preferably 6 to 28 carbon atoms, more preferably 8 to 24 carbon atoms, and further preferably 10 to 20 carbon atoms.
  • the metal salt of saturated fatty acid is preferable because it has a high melting point and tends to obtain a porous resin film having excellent heat resistance.
  • the metal element of the metal soap is not particularly limited as long as it is a metal that forms a stable salt with a fatty acid.
  • sodium (Group 1), magnesium (Group 2), calcium (Group 2), barium (Group 2), zinc (Group 12) and aluminum (Group 12) At least one of Group 13) is more preferred.
  • at least one of calcium, zinc and aluminum is particularly preferable from the viewpoint of safety, calcium or aluminum is particularly preferable, and aluminum is most preferable from the viewpoint of further enhancing the charge retention performance.
  • the metal soap may be a basic salt.
  • the most preferably used metal soap is a saturated higher fatty acid aluminum salt.
  • the saturated higher fatty acid aluminum salt include dihydroxyaluminum octadecanoate, hydroxyaluminum dioctadecanoate, aluminum trioctadecanoate, dihydroxyaluminum dodecanoate, hydroxyaluminum didodecanoate, aluminum tridodecanoate, dihydroxyaluminum 2-ethylhexanoate, and di-2. Examples thereof include hydroxyaluminum ethylhexanate and aluminum tri-2-ethylhexanoate.
  • the above-mentioned metal soaps are generally used in the plastic industry as various additives (for example, stabilizers, lubricants, filler dispersants, anti-shear agents, fluidity improvers, nucleating agents or anti-blocking agents). ing.
  • the metal soap in the porous resin film is added to enhance the chargeability of the film, and is added as a functional agent for suppressing the deterioration of the piezoelectric performance especially in a high temperature environment. Therefore, from the viewpoint of suppressing the deterioration of the piezoelectric performance of the energy conversion element, the amount of metal is relatively larger than the blending amount (for example, 0.01% by mass) when used as the above-mentioned general various additives. It is preferable to add soap.
  • the content of the metal soap in the porous resin layer is 0.02% by mass with respect to 100% by mass of the composition composed of the thermoplastic resin and the metal soap constituting the porous resin layer from the viewpoint of charge retention ability. % Or more is preferable, 0.03% by mass or more is more preferable, 0.05% by mass or more is further preferable, 0.1% by mass or more is particularly preferable, and 0.2% by mass or more is most preferable.
  • the metal soap is made up of 100% by mass of the composition composed of the thermoplastic resin constituting the porous resin layer and the metal soap. On the other hand, it is preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, particularly preferably 3% by mass or less, and most preferably 0.7% by mass or less.
  • the porous resin layer can contain additives such as a dispersant, a heat stabilizer (antioxidant), and a light stabilizer, if necessary.
  • the content of the dispersant in the porous resin layer is preferably 0.01% by mass or more from the viewpoint of improving the dispersibility of the pore-forming agent and suppressing the generation of coarse pores or communication pores. 03% by mass or more is more preferable, and 0.05% by mass or more is further preferable. On the other hand, from the viewpoint of moldability and charge retention of the porous resin layer, the content is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less.
  • dispersant examples include, but are not limited to, dispersants such as fatty acids, glycerin fatty acids, polyglycerin fatty acid esters, sorbitan fatty acid esters, silane coupling agents, poly (meth) acrylic acid or salts thereof.
  • the content of the heat stabilizer in the porous resin layer is usually 0.001 to 1% by mass.
  • the heat stabilizer include, but are not limited to, steric hindrance phenol-based, phosphorus-based, amine-based and other heat stabilizers.
  • the melting point of the heat stabilizer is preferably high from the viewpoint of charge retention performance, but from the viewpoint of uniformly dispersing the heat stabilizer in the porous resin layer, the melting point of the heat stabilizer is preferably low. Therefore, it is preferable that the melting point of the heat stabilizer has a melting point in the same temperature range as that of metal soap.
  • the content of the light stabilizer in the porous resin layer is usually 0.001 to 1% by mass.
  • the light stabilizer include, but are not limited to, steric hindrance amine-based, benzotriazole-based, and benzophenone-based light stabilizers.
  • the energy conversion film may have a single-layer structure consisting of only a porous resin layer having the above composition, or may have a multilayer structure having at least one porous resin layer.
  • the porous resin film preferably has a multi-layered structure having at least a core layer and a skin layer, and preferably has a three-layer structure of a skin layer / core layer / skin layer. More preferred.
  • the multi-layered energy conversion film is more preferably provided with a skin layer made of a stretched resin film on at least one surface of the core layer made of the porous resin film described above, and on both sides of the core layer made of the porous resin film described above. It is more preferable to provide a skin layer made of a stretched resin film.
  • FIG. 1 shows a configuration example of an energy conversion film 1 having a multilayer structure as an embodiment of the energy conversion film according to the present invention.
  • the energy conversion film 1 includes a core layer 2 and a skin layer 3 provided on one surface of the core layer 2.
  • the energy conversion film 1 may also include a skin layer 4 on the other surface of the core layer 2, if necessary.
  • the multilayer structure of the core layer and the skin layer can be formed by using the above-mentioned porous resin layer as the core layer and providing the skin layer on the surface of the core layer.
  • the skin layer is preferably laminated on at least one surface of the core layer (porous resin layer), and more preferably laminated on both sides of the core layer.
  • the surface of the core layer By covering the surface of the core layer with the skin layer, it is possible to prevent the electric charges stored inside through the pores in the core layer from being discharged to the atmosphere.
  • the surface strength of the film can be improved, and by smoothing the surface, the adhesiveness with the electrode is likely to be improved.
  • the skin layer is preferably a resin film containing a thermoplastic resin.
  • the skin layer may be a porous resin film like the core layer.
  • the thermoplastic resin constituting the skin layer for example, it can be selected from the resins listed as the thermoplastic resin of the porous resin film and used.
  • the skin layer may or may not contain metal soap like the core layer. From the viewpoint of using the skin layer as a protective layer for the core layer, it is preferable that the skin layer does not contain metal soap. When the skin layer contains metal soap, it is preferable that the content thereof is lower than that of the core layer.
  • the skin layer has a composition that makes it more difficult to form pores than the core layer, or that the pore ratio is lower than that of the core layer.
  • the formation of such a skin layer is a method of reducing the content of the pore-forming agent from that of the core layer, and the volume average particle diameter of the pore-forming agent used for the skin layer is used for the core layer. This can be achieved by a method of making the particle size smaller than the volume average particle size, a method of forming the core layer by biaxial stretching, and a method of forming the skin layer by uniaxial stretching to make a difference in the draw ratios between the two.
  • the skin layer contains a filler.
  • An undulating structure can be formed on the surface of the skin layer by the filler, and an anchoring effect that enhances the adhesion to the electrodes can be obtained.
  • the dielectric constant of the skin layer can be improved and the electrical characteristics of the core layer can be modified.
  • the filler of the skin layer the fillers listed in the above-mentioned section of the porous resin layer can be used.
  • the filler of the skin layer may be of the same type as the pore-forming agent of the porous resin layer, or may be of a different type. Among the pore-forming agents, the inorganic filler is preferable because it is easy to obtain an anchoring effect.
  • the skin layer When the pore forming agent is contained in the skin layer, it is preferable to use the same dispersant as the dispersant used for the porous resin layer. From the viewpoint of improving the physical strength of the skin layer and improving the durability of the core layer, it is preferable that the skin layer does not contain a pore-forming agent.
  • the skin layer is preferably a stretched film.
  • the uniformity of the thickness (film thickness) of the skin layer and the uniformity of electrical characteristics such as dielectric strength can be improved. If the thickness of the skin layer is highly uniform, local discharge concentration in the thin part of the skin layer is unlikely to occur during charge injection using a high voltage, so high voltage application for effective charge injection is applied. Easy to do.
  • the skin layer may have a single layer structure or a multi-layer structure having two or more layers.
  • a multi-layer structure by changing the type and content of the thermoplastic resin, pore-forming agent, and dispersant used for each layer, it is possible to design a multi-layer porous resin film with higher charge retention performance. It will be easy.
  • the types, contents, thicknesses, etc. of the components constituting each skin layer may be the same or different.
  • the thickness of the core layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and particularly preferably 40 ⁇ m or more.
  • the thickness of the core layer is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 120 ⁇ m or less.
  • the thickness of the skin layer is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more, further preferably 0.5 ⁇ m or more, and 0.7 ⁇ m or more. Is particularly preferable. When it is 0.1 ⁇ m or more, the thickness of the skin layer can be easily made uniform, the charge injection amount can be made uniform, and the dielectric strength can be easily improved. On the other hand, the thickness of the skin layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less. When the thickness of the skin layer is 100 ⁇ m or less, when the electric charge is injected into the porous resin film having a multilayer structure, the electric charge can easily reach the core layer inside the film.
  • the skin layer is preferably thinner than the core layer. Since the skin layer is a layer that is relatively less likely to be elastically deformed in the thickness direction than the core layer, by suppressing the thickness of the skin layer, the compressive elastic modulus of the porous resin film or the like does not decrease, and the energy conversion efficiency is improved. It will be easier to maintain.
  • the ratio of the thickness of the core layer to the thickness of the skin layer is preferably 1.1 to 1000, more preferably 2 to 300, and preferably 5 to 150. More preferably, it is particularly preferably 10 to 50. The same ratio when there are a plurality of skin layers is calculated using the total thickness of each layer.
  • the thickness of the single-layer structure porous resin film can be in the same range as that of the core layer.
  • the film thickness is a value obtained by measuring the total film thickness using a thickness gauge based on JIS K7130: 1999 “Plastic-Film and Sheet-Thickness Measuring Method”.
  • the thickness of each layer constituting the multi-layered film is measured as follows. The sample to be measured is cooled to a temperature of ⁇ 60 ° C. or lower with liquid nitrogen, and a razor blade is applied at a right angle to the sample placed on the glass plate to cut the sample to prepare a sample for cross-sectional measurement.
  • the cross-sectional observation of the obtained sample is performed with a scanning electron microscope, the boundary line of each layer is discriminated from the pore shape and the appearance of the composition, and the ratio of each layer thickness obtained from the observation image to the total thickness of the film is determined.
  • the thickness of each layer is defined as a value calculated by multiplying the total thickness of the film obtained by using a thickness gauge by the above ratio of the thickness of each layer.
  • the energy conversion film is preferably insulating, and the surface resistivity of at least one surface is preferably 1 ⁇ 10 13 ⁇ / ⁇ or more, and more preferably 5 ⁇ 10 13 ⁇ / ⁇ or more.
  • the surface resistivity of at least one surface of the energy conversion film is preferably 9 ⁇ 10 17 ⁇ / ⁇ or less, and more preferably 5 ⁇ 10 16 ⁇ / ⁇ or less.
  • the surface resistivity By setting the surface resistivity to the above upper limit or less, it is possible to prevent the adhesion of foreign matter such as dust and dirt, and it is possible to prevent the electretization treatment from being generated by local discharge through the foreign matter during the electretization treatment. Easy to suppress.
  • the surface resistivity of the film is measured under the conditions of a temperature of 23 ° C. and a relative humidity of 50% using a double ring method electrode according to JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. The value is calculated based on the following formula (2) from the surface resistivity measured in the above.
  • Kf RS ⁇ ⁇ ⁇ (D + d) / (Dd)
  • Kf Surface resistivity ( ⁇ / ⁇ )
  • RS Surface resistance ( ⁇ ) ⁇ : Pi d: Outer diameter (cm) of the inner circle of the surface electrode
  • D Inner diameter (cm) of the annular electrode on the surface
  • the production method of the present invention is a production method for an energy conversion film which is a porous resin film.
  • an energy conversion film is produced through a kneading step, an extrusion step, and a stretching step.
  • the kneading step refers to a step of kneading a resin composition containing at least a thermoplastic resin and a pore-forming agent and extruding the obtained kneaded product.
  • the extrusion step is a step of forming a non-stretched resin film by extruding the kneaded product into a film.
  • the stretching step refers to a step of stretching a non-stretched resin film in at least a uniaxial direction.
  • a preferred embodiment of the energy conversion film manufacturing process in the present invention includes, for example, the following manufacturing process (i).
  • (I) A resin composition containing at least a thermoplastic resin and a pore-forming agent is melt-kneaded by an extrusion kneader, and the obtained kneaded product is extruded into an extruder in an extrusion step (kneading step).
  • the kneaded product is extruded from the T-die with an extruder to eject a film-like unstretched resin film from the die (extrusion step).
  • the unstretched resin film is stretched with a roll, a tenter, or the like (stretching step).
  • the kneaded product that has undergone the kneading step may be produced as pellets, and the pellets may be subjected to the extrusion step.
  • the following manufacturing step (ii) can be mentioned.
  • a resin composition containing at least a thermoplastic resin and a pore-forming agent is melt-kneaded by an extrusion kneader, and the obtained kneaded product is extruded into a strand shape (kneading step), cooled, and then cut with a cutter. To make pellets.
  • the obtained pellets are put into a feeder of an extruder, melt-kneaded, and then the kneaded product is extruded against a T-die by an extruder to discharge a film-like unstretched resin film from the die. (Extrusion process). Next, the unstretched resin film is stretched with a roll, a tenter, or the like (stretching step).
  • an energy conversion film having energy conversion performance by subjecting an energy conversion film obtained through a kneading step, an extrusion step, and a stretching step to an electretization treatment. Further, in the present invention, the energy conversion film after the stretching step may be subjected to a step of oxidizing at least one surface.
  • the resin composition containing the above raw materials may be melt-kneaded, extruded from a single die, and stretched if necessary.
  • each layer is laminated by a coextrusion method using a multi-layer die using a feed block or a multi-manifold, an extrusion lamination method using a plurality of dies, or the like.
  • the film can be produced.
  • a coextrusion method using a multilayer die and an extrusion lamination method may be combined.
  • One of the features of the production method of the present invention is that the kneaded product is filtered using a filtration filter having a filtration particle size of 40 to 300 ⁇ m in at least one of the kneading step and the extrusion step.
  • a filtration filter showing a specific filtration particle size can effectively remove coarse particles, foreign substances, agglomerates of pore-forming agents, and the like from the kneaded product. By removing these coarse particles and the like, it is possible to make the performance of the resin film uniform in the plane.
  • the filtration particle size of the filtration filter used in the present invention is 40 ⁇ m or more, but from the viewpoint of reducing pressure fluctuation due to the load of the filtration filter itself and reducing pressure fluctuation due to clogging of the filtration filter, the filtration particle size is 50 ⁇ m. The above is preferable, and 100 ⁇ m or more is more preferable.
  • the filtration particle size is 300 ⁇ m or less, but from the viewpoint of removing coarse particles and the like, 200 ⁇ m or less is preferable, and 160 ⁇ m or less is more preferable.
  • the filter has no particular limitation on the material and shape as long as it exhibits the desired filtration particle size, and can be selected according to the purpose. For example, it has heat resistance such as metallic or ceramic.
  • a filtration filter made of a material is preferable.
  • a woven wire mesh having high uniformity of filtration accuracy specifically, a plain woven wire mesh, a twill woven wire mesh, a flat woven wire mesh, or a twill woven wire mesh is preferably used.
  • the filtration particle size of the filtration filter can be determined by the bubble point test described in JIS K3832-1990 (ASTM316-86). For example, specifically, it can be obtained as follows. The filter element soaked in isopropyl alcohol (surface tension at 25 ° C., 21 dyne / cm) for 10 minutes or more in advance is placed horizontally in a tank containing isopropyl alcohol, and first continuously by the bubble point method conforming to JIS K3832. the pressure P a (bubble point pressure) when the bubble is generated in the measuring. Request filter particle size from the measured pressure P A by Washburn equation represented by the following formula (3).
  • the filtration filter showing a specific filtration particle size may be provided in at least one of the kneading step and the extrusion step.
  • a filtration filter can be provided only in the kneading step, a filtration filter can be provided only in the extrusion step, or a filtration filter can be provided in both the kneading step and the extrusion step.
  • a filtration filter having a filtration particle size of 40 to 300 ⁇ m specified in the present invention is used in one of the steps, the other In the step, a filtration filter having a filtration particle size outside the range of 40 to 300 ⁇ m may be used.
  • the energy conversion film is a multi-layered porous resin film having a core layer and a skin layer
  • both the core layer and the skin layer are formed by using a filtration filter showing the specific filtration particle size. It is more preferable that at least the core layer is formed by using a filtration filter exhibiting the above-mentioned specific filtration particle size.
  • the location of the filtration filter in the kneading step and the extrusion step is not particularly limited as long as coarse particles, foreign substances, agglomerates of the pore forming agent, etc. are effectively removed from the kneaded product, and should be appropriately set according to the purpose. Can be done.
  • the installation location of the filtration filter in the kneading step includes the front of the breaker plate of the extrusion kneader.
  • the location of the filtration filter in the extrusion process includes the front of the breaker plate installed at the outlet of the extruder, the back of the outlet of the extruder, or the front of the die or feed block.
  • FIG. 2 A schematic view of the extrusion kneader 21 is shown in FIG. 2 in order to explain the arrangement location of the filtration filter in the kneading step.
  • the material 22 of the resin composition is extruded from the nozzle die 25 through the breaker plate 24 while being kneaded through the screw portion 23.
  • the filtration filter 26 can be installed in front of the breaker plate 24.
  • the porous resin film is preferably a stretched film stretched at least in the uniaxial direction. Stretching improves the uniformity of the thickness of the porous resin film and facilitates the formation of a large number of pores inside. Further, in the case of a multi-layered porous resin film having a core layer and a skin layer, it is preferable that the skin layer is laminated on the core layer and then stretched at least in the uniaxial direction. By laminating the skin layer on the core layer and then stretching the film, the uniformity of the film thickness is improved as compared with the case where the stretched films are laminated, and as a result, the electrical characteristics are improved.
  • the pores formed in the porous resin film by stretching have a relatively large volume, a relatively large number of pores, and independent shapes from the viewpoint of retaining electric charges.
  • the size of the pores tends to be larger when stretched in the biaxial direction than when stretched only in the uniaxial direction.
  • MD Machine Direction
  • TD Transverse Direction
  • the disk-shaped pores are stretched in the plane direction around the pore forming agent. Can be formed, so that positively and negatively polarized charges can be easily accumulated in the pores by electretization treatment, and the charge retention performance is improved. Therefore, the porous resin film is preferably a biaxially stretched film.
  • Stretching can be performed by various known methods. Specifically, a longitudinal stretching method using the difference in peripheral speed of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method in which the longitudinal stretching and the transverse stretching are performed in the forward or reverse order, a rolling method, Examples include a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor, a simultaneous biaxial stretching method using a combination of a tenter oven and a pantograph, and the like. In addition, a simultaneous biaxial stretching method by the tubular method, which is a stretching method of an inflation film, can be mentioned.
  • Stress relaxation treatment is performed in which the degree of stretching the resin film in the stretching axis direction is loosened in the middle of the stretching step.
  • the stress relaxation treatment is a treatment for reducing the residual strain generated in the resin film by stretching by applying heat to loosen the tension.
  • the stress relaxation treatment the residual strain localized in the vertical direction and / or the horizontal direction of the resin film can be reduced, and the in-plane piezoelectric performance of the obtained energy conversion film can be improved and made uniform.
  • it has the effect of reducing the increase in strain generated by repeating processing such as electrode forming processing and charge injection processing on the energy conversion film.
  • the natural relaxation of the strain generated in the stretching process is added to the residual stress generated in the winding process, and the film uniformity is obtained. It is desirable that the stress relaxation treatment be performed before the winding process, because the stress tends to decrease.
  • the ratio of loosening the degree of stretching is the maximum value (A) of the degree of stretching when the resin film is stretched in the stretching axis direction and the degree of stretching when the degree of stretching is reduced by the stress relaxation treatment.
  • the result calculated by the following formula (1) using the value (B) of -10.0 to -0.1% is satisfied.
  • (BA) / A The value represented by the above formula (1) represents the rate of change in the stretching dimension before and after the stress relaxation treatment.
  • the value represented by the above formula (1) may be referred to as a relaxation machine magnification.
  • the relaxation mechanical magnification represented by the above formula (1) is -10.0%, but the stress relaxation treatment is performed so that the stress relaxation treatment is uniformly performed and the piezoelectric performance of the obtained energy conversion film does not vary. From the viewpoint of maintaining the tension applied to the film, -8.0% or more is preferable, and -5.0% or more is more preferable.
  • the relaxation machine magnification is -0.1% or less, but it depends on the treatment temperature and the treatment time, but in order to obtain a sufficient effect, it is preferably -1.0% or less, preferably -1.5%. The following is more preferable.
  • the stretching treatment is tenter stretching
  • the maximum width of stretching in the stretching zone is the above-mentioned value (A)
  • the width of stretching at the end of the relaxation treatment in the relaxation zone is described above in the stretching performed using the tenter oven.
  • the above equation (1) is calculated as the value (B).
  • the stretching treatment is roll stretching
  • the above formula (1) is calculated with the maximum speed of the stretched roll as the above value (A) and the speed of the roll at the end of the relaxation treatment as the above value (B). ..
  • the stress relaxation treatment may be performed in at least one of the longitudinal stretching step and the transverse stretching step. ..
  • the stress relaxation treatment may be performed in the longitudinal stretching step, the stress relaxation treatment may be performed in the transverse stretching step, or the stress relaxation treatment may be performed in both the longitudinal stretching step and the transverse stretching step.
  • the method shown in the following (v) can be mentioned.
  • the kneaded product is extruded by three extruders, and in the feed block, the skin layer, the core layer, and the skin layer are laminated in this order and co-extruded from the T die.
  • the co-extruded laminated film of the skin layer / core layer / skin layer is stretched in the longitudinal direction (MD) by a stretching device such as a roll, and then further stretched in the transverse direction (TD) by a stretching device such as a tenter. ..
  • the stress relaxation treatment may be performed in a longitudinal stretching step using a roll, in a transverse stretching step using a tenter, or in both a roll and a tenter step. From the viewpoint of ease of adjustment of stress relaxation treatment, it is preferable to perform stress relaxation treatment in the transverse stretching step using a tenter.
  • the resin film having a multilayer structure is a laminated film of a skin layer (uniaxially stretched) / core layer (biaxially stretched) / skin layer (uniaxially stretched)
  • a preferred embodiment of the stretching method is for example, the method shown in the following (vi) can be mentioned.
  • the kneaded product forming the core layer is extruded from the T-die by an extruder to form a resin film (core layer).
  • the resin film (core layer) is stretched in the longitudinal direction (MD) by a stretching device such as a roll.
  • the kneaded product forming the skin layer is extruded from the T-die by two extruders, and the extruded resin film (skin layer) is applied to both surfaces of the stretched resin film (core layer) described above. Stacked.
  • the obtained laminated film of the skin layer / core layer / skin layer is stretched in the lateral direction (TD) by a stretching device such as a tenter.
  • the stress relaxation treatment may be performed in a longitudinal stretching step using a roll, in a transverse stretching step using a tenter, or in both a roll and a tenter step. From the viewpoint of ease of adjustment of stress relaxation treatment, it is preferable to perform stress relaxation treatment in the transverse stretching step of the tenter.
  • the stress relaxation treatment in tenter stretching will be described in more detail.
  • the resin film is stretched using a tenter oven as shown in FIG.
  • a tenter oven for example, a plurality of zones are connected in the longitudinal direction of the resin film, and the resin film is preheated, stretched, relaxed, cooled, etc. while being held at a predetermined temperature in each zone. It is configured to perform processing.
  • the above zone is a section corresponding to processing processes such as preheating, stretching, relaxation, and cooling, and is composed of a preheating zone a, a stretching zone b, a relaxation zone c, and a cooling zone d as shown in FIG. ing.
  • Both ends of the resin film are supported by left and right clips installed in the width direction (horizontal direction), and the resin film is stretched in the lateral direction through the preheating zone a and the stretching zone b.
  • the relaxation zone c stress relaxation treatment is performed, and the tensile strength is relaxed as compared with the case of the maximum stretched width, so that the stretched width is narrowed.
  • the rail pattern of the tenter oven for example, the five rail patterns A to E shown in Table 1 below can be mentioned.
  • the rail patterns A to E in Table 1 are graphed with the rail width / 2 (mm) on the vertical axis and the distance (zone length) (mm) from the entrance where the preheating zone started on the horizontal axis. Shown in. In the examples described later, experiments were conducted using the five rail patterns A to E shown in Table 1 and FIG.
  • the rail pattern of B shown in Table 1 above will be described in detail below.
  • the maximum width of the stretched resin film in the stretch zone (corresponding to t2 in FIG. 3) is 1,215 mm.
  • the stretching width when the degree of stretching is reduced by stress relaxation treatment (stretching width at the end of the relaxation zone (corresponding to t3 in FIG. 3)) is 1,195 mm. Therefore, when the equation (1) is calculated using these values, it becomes as follows.
  • This stretching machine magnification indicates the ratio of the resin width at the outlet (corresponding to t4 in FIG. 3) to the resin width at the inlet (corresponding to t1 in FIG. 3) of the tenter oven.
  • the temperature during stretching is preferably 1 to 70 ° C. lower than the melting point Tm of the crystal portion of the main thermoplastic resin from the glass transition point of the main (mostly used in terms of mass ratio) thermoplastic resin used for the resin film.
  • the main thermoplastic resin is a propylene homopolymer (melting point 155 to 167 ° C.)
  • it is preferably in the range of 100 to 166 ° C.
  • high-density polyethylene melting point 121 to 136 ° C.
  • it is preferably in the range of 70 to 135 ° C.
  • the stretching efficiency of the layer having the largest set basis weight (usually the core layer) or the layer having the highest set porosity (usually the core layer) is taken into consideration. It is preferable to set the temperature. Of course, if the stretching temperature is determined by using thermoplastic resins having different melting points or glass transition points for the core layer and the skin layer, the porosity of each layer can be adjusted.
  • the treatment temperature of the resin film in the stretching step, particularly in the stress relaxation treatment is Tma-20 ° C. when the melting point Tm of the thermoplastic resin having the highest content among the thermoplastic resins constituting the resin film is Tma. It is preferable that the temperature range is equal to or higher than the temperature and lower than the temperature of Tma + 10 ° C. The higher the temperature of the stress relaxation treatment, the easier it is to obtain the effect. Therefore, the temperature of Tma-15 ° C. or higher is more preferable, Tma-10 ° C. or higher is further preferable, and the temperature of Tma-5 ° C. or higher is particularly preferable.
  • the treatment temperature of the stress relaxation treatment is more preferably Tma + 8 ° C. or lower, further preferably Tma + 5 ° C. or lower, and particularly preferably Tma + 3 ° C. or lower.
  • the processing time of the resin film in the stress relaxation treatment is preferably in the range of 1 to 300 seconds.
  • the draw ratio is not particularly limited, and may be appropriately determined in consideration of the draw characteristics of the thermoplastic resin used for the resin film, the desired porosity, and the like.
  • the draw ratio is preferably 1.2 times or more, more preferably 2 times or more when stretched in the uniaxial direction.
  • the draw ratio is preferably 12 times or less, more preferably 10 times or less.
  • the area stretching ratio (product of the longitudinal magnification and the horizontal magnification) is preferably 1.5 times or more, and more preferably 4 times or more.
  • the same area stretching ratio is preferably 60 times or less, more preferably 50 times or less.
  • the draw ratio is preferably 1.2 times or more, more preferably 2 times or more when stretching in the uniaxial direction.
  • the draw ratio is preferably 10 times or less, more preferably 5 times or less.
  • the area stretching ratio is preferably 1.5 times or more, more preferably 4 times or more.
  • the same area stretching ratio is preferably 20 times or less, more preferably 12 times or less.
  • the ratio of the vertical magnification to the horizontal magnification is preferably 0.40 or more, more preferably 0.45 or more, and 0. It is particularly preferably .50 or more.
  • the ratio of the vertical magnification to the horizontal magnification is preferably 2.5 or less, more preferably 2.0 or less, and further preferably 1.5 or less. , 1.3 or less is particularly preferable.
  • the stretching speed is preferably 10 to 350 m / min from the viewpoint of stable stretch molding.
  • the method for producing an energy conversion film of the present invention includes a filtration step of filtering a kneaded product of a resin composition using a specific filtration filter, and a stress relaxation treatment for relaxing the degree of stretching to a specific ratio when the resin film is stretched. It is a feature to do both of. As shown in the following examples, by performing both of these treatments, it is possible to produce an energy conversion film in which the effects of both are combined, there is no variation in the in-plane piezoelectric performance, and the in-plane performance uniformity is excellent. it can.
  • one surface or both sides of the porous resin film may be oxidized. Further, a step of performing a washing treatment after the oxidation treatment and a step of performing a washing treatment and then a drying treatment may be performed.
  • the oxidation treatment is not particularly limited as long as the oxygen atom concentration on the surface can be increased, and a known oxidation treatment can be used. Specific examples of the oxidation treatment include dielectric barrier discharge treatment, frame treatment, ozone treatment and the like.
  • FIG. 5 shows an example of the manufacturing process of the energy conversion film 1. This manufacturing process is an example, and the process differs depending on the layer structure of the film, the number of stretched axes, and the like.
  • the resin composition is kneaded and extruded by three kneading extruders 29 to 31.
  • the three-layer structure energy conversion film 1 can be manufactured by the extruders 32 to 34.
  • the kneaded product of the resin composition of each layer is extruded by three extruders 32 to 34, and the skin layer, the core layer, and the skin layer are laminated in this order in the feed block 35 and co-extruded from the T die 36.
  • the co-extruded skin layer / core layer / skin layer laminated film is cooled by the cooling roll 37, stretched in the longitudinal direction (MD) by the stretching device 38, and then further laterally (TD) by the stretching device 39. It is stretched.
  • the stretched film is wound as a take-up roll 41 via an oxidation treatment device 40 which may be appropriately set.
  • the pores inside the porous resin film can be further expanded by pressure treatment.
  • a porous resin film is placed in a pressure vessel, and the inside of the vessel is pressurized with a non-reactive gas to allow the non-reactive gas to permeate into the pores, and then the porous resin film is placed under non-pressurization. Do it by releasing it.
  • the non-reactive gas used include an inert gas such as argon and helium, nitrogen, carbon dioxide or a mixed gas thereof, air and the like.
  • an inert gas such as argon and helium, nitrogen, carbon dioxide or a mixed gas thereof, air and the like.
  • the processing pressure during the pressurization treatment is not particularly limited, but is preferably in the range of 0.2 to 10 MPa, more preferably 0.3 to 8 MPa, and even more preferably 0.4 to 6 MPa. When it is 0.2 MPa or more, the pressure is sufficient and a sufficient expansion effect can be easily obtained.
  • the treatment time of the pressurization treatment is not particularly limited, but is preferably in the range of 1 hour or more, more preferably 1 to 50 hours.
  • the porous resin film of the present invention if the treatment time is 1 hour or more, the pores can be sufficiently filled with the non-reactive gas.
  • the non-reactive gas is dissipated during the heat treatment described later, and a stable expansion effect is obtained. Tends to be difficult to obtain.
  • the take-up roll of the porous resin film When the take-up roll of the porous resin film is pressure-treated, it is desirable to take it together with a buffer sheet and then pressurize it so that the non-reactive gas easily permeates into the inside of the take-up roll.
  • the cushioning sheet include a foamed polystyrene sheet, a foamed polyethylene sheet, a foamed polypropylene sheet, a non-woven fabric, a woven fabric, a sheet having a communication gap such as paper.
  • the pressure-treated porous resin film is preferably heat-treated from the viewpoint of maintaining its expansion effect.
  • the porous resin film expands by performing a pressure treatment and releasing it under non-pressurization. However, if left as it is, the non-reactive gas that has permeated into the pores will gradually escape, and the porous resin film may return to its original thickness. Therefore, it is desirable to heat-treat the expanded porous resin film to promote the crystallization of the thermoplastic resin so that the expansion effect can be maintained even after the inside of the pores drops to atmospheric pressure.
  • the heat treatment can be performed within a temperature range equal to or higher than the glass transition point of the main thermoplastic resin of the porous resin film and lower than the melting point of the crystal part.
  • the main thermoplastic resin is a propylene homopolymer (melting point 155 to 167 ° C.)
  • it is in the range of 80 to 160 ° C.
  • a known method can be used as a heating method. Specific examples include, but are not limited to, hot air heating by hot air from a nozzle, radiant heating by an infrared heater, contact heating by a roll with a temperature control function, and the like.
  • non-contact heat treatment such as hot air heating or radiant heating tends to maintain a high expansion ratio. There is a tendency.
  • the electretization process is a process of injecting an electric charge into an energy conversion film.
  • the electretization process there are several processing methods. For example, there are known an electro-electret method in which both sides of a film are held by a conductor and a DC high voltage or a pulsed high voltage is applied, and a radio electret method in which the film is irradiated with ⁇ -rays or electron beams to form an electret. Is.
  • the electro-electretization method using DC high-voltage discharge has a small device, a small load on workers and the environment, and is suitable for electretization of polymer materials such as porous resin films. It is preferable.
  • FIG. 6 shows an electretizing device by DC high voltage discharge as an example of the electretizing device.
  • the energy conversion film 1 is fixed between the needle-shaped electrode 11 and the ground electrode 12 connected to the DC high-voltage power supply 10 and a predetermined voltage is applied. By applying a voltage, the energy conversion film 1 can accumulate a large amount of electric charges inside the film.
  • the applied voltage during the electretization process is the film thickness, pore ratio, material of the thermoplastic resin or pore forming agent used, processing speed, shape and material of the electrode used, size, and the amount of charge desired for the energy conversion film. It may be set appropriately in consideration of the above.
  • the applied voltage is not particularly limited, but is preferably 5 kV or higher, more preferably 6 kV or higher, and even more preferably 7 kV or higher. By setting the value to the above lower limit or more, a sufficient amount of electric charge can be injected, and the desired piezoelectric performance tends to be easily exhibited.
  • the applied voltage of the electret formation treatment is preferably 100 kV or less, more preferably 70 kV or less, and further preferably 50 kV or less.
  • the treatment temperature at the time of electrification treatment may be appropriately set and is not particularly limited, but it is preferably performed at the glass transition point or higher and the melting point of the crystal portion or lower of the main thermoplastic resin used for the energy conversion film.
  • the treatment temperature is above the glass transition point, the molecular motion of the amorphous part of the thermoplastic resin is active, and the molecular arrangement is suitable for the given charge, so that efficient electrification processing becomes possible. ..
  • the energy conversion film contains metal soap
  • the processing temperature is equal to or higher than the melting point of the metal soap, the metal soap molecules also form an arrangement suitable for the given electric charge, so that more efficient electrifying treatment is possible. It becomes.
  • the processing temperature does not exceed the melting point of the main thermoplastic resin used for the energy conversion film. ..
  • an excessive charge may be injected into the energy conversion film intentionally or unintentionally.
  • the static elimination treatment a known method using a voltage application type static eliminator (ionizer), a self-discharge type static eliminator, or the like can be used.
  • the surface charge of the energy conversion film can be removed, but the charge accumulated inside the film, particularly in the pores of the core layer, cannot be completely removed. Therefore, the static elimination treatment does not significantly reduce the performance of the electret material. Therefore, it is possible to prevent the discharge phenomenon of the energy conversion film by performing such a static elimination treatment to remove the excess charge on the film surface.
  • the method for manufacturing an energy conversion element of the present invention is a method for forming electrodes on at least one surface of the energy conversion film manufactured by the above method for manufacturing an energy conversion film.
  • the energy conversion element according to the present invention includes the above-mentioned energy conversion film and electrodes provided on at least one surface of the energy conversion film.
  • the energy conversion element according to the present invention inputs / outputs electric power or an electric signal, and from the viewpoint of more efficient input / output, usually a pair of electrodes are provided on both sides of the energy conversion film. preferable.
  • FIG. 7 shows the configuration of the energy conversion element 5 including the energy conversion film 1 shown in FIG. 1 as an embodiment of the energy conversion element according to the present invention.
  • the energy conversion element 5 includes an energy conversion film 1 and an electrode 6 on one surface thereof.
  • the energy conversion element 5 can include an electrode 7 on the other surface of the energy conversion film 1.
  • the timing of installing the electrodes is not particularly limited, and may be, for example, before or after the electretization process. After the electretization process, it is possible to prevent a part of the injected charge from being dissipated through the electrodes during the electretization process. However, when a load such as heat is applied to the film during the subsequent electrode installation, a part of the injected charge is dissipated, and the piezoelectric performance may be slightly deteriorated. At present, judging from the performance of the energy conversion element finally obtained, an electrode is provided in advance on at least one surface of the energy conversion film before the electretization treatment, and then the above-mentioned electretization treatment is performed. Is preferable.
  • Examples of the electrode include a thin film formed of a known conductive material such as metal particles, conductive metal oxide particles, carbon-based particles, or a conductive resin.
  • Examples of the electrode include a coating film obtained by printing or coating a conductive paint, a metal vapor deposition film, and the like.
  • the conductive material examples include metal particles such as gold, silver, platinum, copper, and silicon; tin-doped indium oxide (ITO), antimon-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide, and the like.
  • Conductive metal oxide particles examples thereof include materials obtained by mixing carbon-based particles such as graphite, carbon black, Ketjen black, carbon nanofiller, and carbon nanotubes with a solution or dispersion of a binder resin component.
  • binder resin component examples include acrylic resin, urethane resin, ether resin, ester resin, epoxy resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, amide resin, and melamine resin.
  • binder resin component examples include acrylic resin, urethane resin, ether resin, ester resin, epoxy resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer, amide resin, and melamine resin.
  • examples thereof include phenol resin, vinyl alcohol resin, and modified polyolefin resin.
  • the conductive material examples include a solution or dispersion of a conductive resin such as a polyaniline resin, a polypyrrole resin, and a polythiophene resin.
  • Examples of the printing method when the electrode is provided by printing using the ink of the conductive material include screen printing, flexo printing, gravure printing, inkjet printing, letterpress printing, offset printing and the like.
  • a coating device when an electrode is provided by coating using a paint of a conductive material for example, a die coater, a bar coater, a comma coater, a lip coater, a roll coater, a curtain coater, a gravure coater, a spray coater, and a blade.
  • Examples include coaters, reverse coaters, and air knife coaters.
  • a metal such as aluminum, zinc, gold, silver, platinum, nickel is vaporized under reduced pressure and vapor-deposited on the surface of the energy conversion film, and a metal thin film formed directly on the surface is used, as well as polyethylene terephthalate.
  • PET polyethylene terephthalate
  • the electrode is a laminate in which an electrode such as a coating film of the conductive paint or a metal vapor deposition film is previously formed on a dielectric film such as a polyethylene terephthalate film or a polypropylene film, and an energy conversion film so that the electrode is on the outside. It may be provided by laminating. Examples of the laminating method include known methods such as dry laminating, wet laminating, and extruded laminating.
  • the thickness of the electrode is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more.
  • the thickness of the electrode is preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the surface resistivity of the electrode is preferably 1 ⁇ 10 -3 ⁇ / ⁇ or more, and preferably 1 ⁇ 10 -1 or more, for the purpose of easily inputting and outputting electric power.
  • an electrode of 1 ⁇ 10 -3 ⁇ / ⁇ or more is provided and the electrode is provided by coating, it is not necessary to provide the electrode thickly, and it is porous due to the heat of drying and sintering after coating. Deformation such as crushing of pores in the resin film and heat shrinkage of the porous resin film can be suppressed. Further, when the electrodes are provided by metal vapor deposition, it is possible to suppress film deformation due to the heat of the deposited metal.
  • the surface resistivity of the electrode is preferably 9 ⁇ 10 7 ⁇ / ⁇ or less, and more preferably 9 ⁇ 10 4 ⁇ / ⁇ or less.
  • the resistance value of the electrode is 9 ⁇ 10 7 ⁇ / ⁇ or less, the transmission efficiency of the electric signal is high, and the performance as a material for electric and electronic input / output devices tends to be improved.
  • the resistivity of the electrode surface is calculated by the following formula (4) from the resistivity value measured by the four-probe method according to JIS K7194: 1994 "Resistance test method by the four-probe method of conductive plastic". The value calculated based on this.
  • (4) Ke F ⁇ R Ke: Surface resistivity ( ⁇ / ⁇ )
  • F Correction coefficient (described in JIS K7194)
  • R Resistance value ( ⁇ )
  • the energy conversion film and the energy conversion element according to the present invention use a porous resin film, they are relatively inexpensive, unlike semiconductor materials that have been widely used as materials for electric-mechanical energy conversion. For example, it is easy to increase the area of the film by about 10 to 50,000 cm 2 in a plan view.
  • the plan-viewing area thereof may be appropriately set in consideration of desired performance, physical restrictions on the installation location, etc., and is not particularly limited, but 20 to 20 to 30,000 cm 2 is preferable, and 50 to 25,000 cm 2 is more preferable.
  • the voltage (average value) generated by the impact of the energy conversion element is preferably 10 mV or more, more preferably 30 mV or more, and more preferably 50 mV or more from the viewpoint of practical performance of the energy conversion element. Is more preferable, and 100 mV or more is particularly preferable.
  • the upper limit is not particularly limited, but is preferably 1000 mV or less, more preferably 700 mV or less, further preferably 500 mV or less, and particularly preferably 300 mV or less.
  • the generated voltage can be measured by a ball drop test. Specifically, an iron ball having a height of 8 mm in the vertical direction, a diameter of 9.5 mm, and a mass of 3.5 g is placed on an energy conversion element placed on a horizontal plane in an environment of a temperature of 23 ° C. and a relative humidity of 50%. The generated voltage generated by the impact when naturally dropped is measured 10 times, and the value obtained by calculating the average value of the generated voltage is defined as the generated voltage.
  • the energy conversion film of the present invention has no in-plane variation in piezoelectric performance and has high in-plane piezoelectric performance uniformity. Specifically, an energy conversion film having a fluctuation value of the voltage generated by the falling ball test of 7 or less can be obtained.
  • the fluctuation value of the voltage generated by the falling ball test of the energy conversion film of the present invention is preferably less than 5.
  • the fluctuation value of the generated voltage is preferably low, but the lower limit is usually about 1.
  • the method of measuring the fluctuation value of the generated voltage is as described in Examples described later. As a result, by using the energy conversion film of the present invention, it is possible to obtain an energy conversion element having no in-plane performance variation and no piezoelectric performance variation even when an energy conversion element having a large area is formed, for example. Can be done.
  • the resin composition a was extruded into a strand shape with a kneading extruder set at 230 ° C., cooled, and then cut with a strand cutter to prepare pellets of the resin composition a.
  • a filtration filter having a filtration particle size of 360 ⁇ m was installed in front of the breaker plate of the kneading extruder.
  • the resin composition b was extruded into a strand shape with a kneading extruder set at 230 ° C., cooled, and then cut with a strand cutter to prepare pellets of the resin composition b.
  • a filtration filter having a filtration particle size of 125 ⁇ m was installed in front of the breaker plate of the kneading extruder.
  • the resin composition c was extruded into a strand shape with a kneading extruder set at 230 ° C., cooled, and then cut with a strand cutter to prepare pellets of the resin composition c.
  • a filtration filter having a filtration particle size of 150 ⁇ m was installed in front of the breaker plate of the kneading extruder.
  • Table 2 shows the specifications of the composition of the resin compositions a to c and the specifications of the filtration filter used when the kneaded product of the resin compositions a to c was filtered.
  • a screen changer was installed between the extruder of the core layer and the feed block, and the extrusion process filtration filter shown in Table 3 was arranged. Further, a flat weave # 120 was arranged as an extrusion process filtration filter in front of the breaker plate in front of the outlet of the extruder of the skin layer 1 and the skin layer 2.
  • the obtained unstretched sheet is heated to the temperature in the vertical direction shown in Table 3 using a heating roll, and the vertical direction shown in Table 3 is used in the vertical direction (MD direction) by utilizing the peripheral speed difference of the roll group.
  • a uniaxially stretched sheet was obtained by stretching at a magnification of.
  • the obtained uniaxially stretched sheet was cooled to 60 ° C. and set to the stretching temperature and rail pattern (corresponding to the rail pattern shown in Table 1) shown in Table 3 in the lateral direction (TD direction) using a tenter. It was stretched at the lateral magnification shown in Table 3.
  • stress relaxation treatment was performed at the relaxation temperature and relaxation machine magnification shown in Table 3 to obtain a biaxially stretched sheet.
  • the obtained biaxially stretched sheet was cooled to 60 ° C., the ears were slit, and then both sides were subjected to surface oxidation treatment by dielectric barrier discharge, and Examples 1 to 5 having the physical characteristics shown in Table 3 and Comparative Examples. Energy conversion films 1 to 4 were obtained.
  • Example 1 An energy conversion element was manufactured as follows. ⁇ Manufacturing of energy conversion elements> Thickness 12 ⁇ m PET film (trade name: E5200, manufactured by Toyobo Co., Ltd.) using a vacuum vapor deposition apparatus of roll-to-roll process in a vacuum condition of 1 ⁇ 10 -2 Pa, as the thickness of the deposited film is 30nm Aluminum vapor deposition was performed to prepare a metal vapor deposition film having a surface resistance of 1 ⁇ / ⁇ on the vapor deposition surface.
  • a gravure coater 44 was used on the surface of the previously produced metal-deposited film 42 that had not been vapor-deposited so that the coating amount after drying was 2 g / m 2.
  • the adhesive paint was applied, dried in an oven 46 at 80 ° C., and then pressure-bonded to the energy conversion film 41 with nip rolls (47 and 48) to obtain an energy conversion film 43 having a conductive layer on one side.
  • the energy conversion film 43 having the conductive layer on one side is unwound, and the corona processing apparatus 49 is used on the surface on which the conductive layer is not installed to use a DC type corona.
  • a charge injection process by discharge was carried out to obtain an electretized energy conversion film 51.
  • the distance between the needle-shaped electrode 50 and the counter electrode roll 45 in FIG. 9 was set to 1 cm
  • the discharge voltage was set to 12 kV
  • the processing width was set to 300 mm
  • the processing speed was set to 10 m / min.
  • the gravure coater 44 was used on the surface of the previously prepared metal-deposited film 42 that had not been vapor-deposited so that the coating amount after drying was 2 g / m 2.
  • the electrified energy conversion film 51 is pressure-bonded to the surface of the energy conversion film 51 not provided with the metal-deposited film with nip rolls (47 and 48) to form conductive layers on both sides.
  • An energy conversion film 52 provided was obtained.
  • the energy conversion film 52 provided with the obtained conductive layer was cut out to a width of 300 mm and a length of 3 m to prepare a sample for performance evaluation.
  • Examples 2 to 5, Comparative Examples 1 to 4 In the same manner as in Example 1, for the energy conversion films of Examples 2 to 5 and Comparative Examples 1 to 4, an electretized energy conversion film having conductive layers on both sides was obtained, and further for performance evaluation. A sample was prepared.
  • the performance evaluation sample 20 was placed on the insulating sheet 15 (soft vinyl chloride sheet, thickness 1 mm) of the ball drop test apparatus shown in FIG. 11 with the surface facing up.
  • a glass plate 14 (thickness 8 mm) was placed on the upper surface of the sample 20, and an iron ball 16 having a diameter of 9.5 mm and a mass of 3.5 g was placed on the glass plate 14.
  • the iron ball 16 is naturally dropped from the glass plate 14 onto the performance evaluation sample 20 from a height of 8 mm in the vertical direction, and the voltage signal from the performance evaluation sample 20 is taken into the high-speed recorder 19 and generated by the impact of the falling ball.
  • Table 4 shows the evaluation results of measuring the generated voltage of the energy conversion elements of Examples 1 to 5 and Comparative Examples 1 to 4.
  • the volatility CV was evaluated according to the following criteria. ⁇ Less than 5 ⁇ 5-7 Greater than x7
  • the energy conversion film of the example has no in-plane performance variation and excellent in-plane performance uniformity even when a large-area energy conversion element is formed. It turned out to be a good thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

面内における圧電性能のばらつきがなく、面内における圧電性能の均一性に優れたエネルギー変換フィルムを得るための、エネルギー変換フィルムの製造方法を提供する。 多孔性樹脂フィルムであるエネルギー変換フィルムの製造方法であって、熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を混練し、得られた混練物を押し出す混練工程と、前記混練物をフィルム状に押し出すことで無延伸の樹脂フィルムを形成する押出工程と、前記無延伸の樹脂フィルムを、少なくとも一軸方向に延伸する延伸工程と、を含み、前記混練工程及び前記押出工程の少なくとも一方が、濾過粒度が40~300μmである濾過フィルターを用いて、前記混練物を濾過する工程を含み、前記延伸工程が、延伸軸方向に樹脂フィルムを延伸させる度合いを、前記延伸工程の途中で緩める、応力緩和処理を含み、前記延伸軸方向に樹脂フィルムを延伸させた際の延伸度合いの最大値(A)と、前記応力緩和処理により延伸度合いを低下させたときの延伸度合いの値(B)を用いて下記式(1)により計算した結果が、-10.0~-0.1%を満たす、エネルギー変換フィルムの製造方法である。 (1) (B-A)/A

Description

エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法
 本発明は、エネルギー変換フィルム、エネルギー変換素子及びエネルギー変換フィルムの製造方法に関する。
 従来、圧電性を有する多孔性の樹脂フィルムが、機械エネルギーを電気エネルギーに変換するエネルギー変換フィルムとして利用されている。例えば、内部に気泡を有するプラスチックフィルムを2次元に引っ張り、その表面を導電層で被覆した誘電体フィルムが、マイクロフォン等に応用されている(特許文献1参照)。
 また、フィルム内部の空孔に多くの電荷を保持することにより、多孔性樹脂フィルムの圧電性能と安定性を高めることができるため、空孔形成核剤を使用した空孔のサイズや数の最適化が提案されている(特許文献2参照)。
特開昭61-148044号公報 特開2011-84735号公報
 しかし、特許文献2に記載のエネルギー変換フィルムは、優れた圧電性能を示すものではあるが、例えば両面に電極等を配置して大面積のセンサーなどに適用した場合、エネルギー変換フィルムの面内において圧電性能がばらつく場合があり、安定した品質の素子を得るという点では改良の余地があった。
 そこで、本発明は、面内における圧電性能のばらつきがなく、面内における圧電性能の均一性に優れたエネルギー変換フィルムを得るための、エネルギー変換フィルムの製造方法を提供することを目的とする。
 本発明者らが上記課題を解決すべく鋭意検討を重ねた結果、エネルギー変換フィルムを製造する際、特定の濾過フィルターを用いて樹脂組成物の混練物を濾過し、樹脂フィルムを延伸するときに、延伸軸方向に樹脂フィルムを延伸させる度合いを、延伸工程の途中で緩める、応力緩和処理を特定の延伸度合いで行うことで、その製造方法により得られたエネルギー変換フィルムが、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
[1]多孔性樹脂フィルムであるエネルギー変換フィルムの製造方法であって、
 熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を混練し、得られた混練物を押し出す混練工程と、
 前記混練物をフィルム状に押し出すことで無延伸の樹脂フィルムを形成する押出工程と、
 前記無延伸の樹脂フィルムを、少なくとも一軸方向に延伸する延伸工程と、を含み、
 前記混練工程及び前記押出工程の少なくとも一方が、濾過粒度が40~300μmである濾過フィルターを用いて、前記混練物を濾過する工程を含み、
 前記延伸工程が、延伸軸方向に樹脂フィルムを延伸させる度合いを、前記延伸工程の途中で緩める、応力緩和処理を含み、
 前記延伸軸方向に樹脂フィルムを延伸させた際の延伸度合いの最大値(A)と、前記応力緩和処理により延伸度合いを低下させたときの延伸度合いの値(B)を用いて下記式(1)により計算した結果が、-10.0~-0.1%を満たす、
 (1)  (B-A)/A
 ことを特徴とする、エネルギー変換フィルムの製造方法。
[2]前記濾過フィルターが、平織金網、綾織金網、平たたみ織金網、又は綾たたみ織金網である、前記[1]に記載のエネルギー変換フィルムの製造方法。
[3]前記応力緩和処理における樹脂フィルムの処理温度が、Tma-20℃の温度以上、Tma+10℃の温度以下である、前記[1]または[2]に記載のエネルギー変換フィルムの製造方法。但し、前記樹脂フィルムを構成する前記熱可塑性樹脂のうち、最も含有量が多い熱可塑性樹脂の融点TmをTmaとする。
[4]前記応力緩和処理における樹脂フィルムの処理時間が、1~300秒である、前記[1]~[3]のいずれかに記載のエネルギー変換フィルムの製造方法。
[5]前記空孔形成剤が、フィラー又は発泡剤である、前記[1]~[4]のいずれかに記載のエネルギー変換フィルムの製造方法。
[6]前記[1]~[5]のいずれかに記載のエネルギー変換フィルムの製造方法により製造されたエネルギー変換フィルムに対し、前記エネルギー変換フィルムの少なくとも一方の面に電極を形成することを特徴とするエネルギー変換素子の製造方法。
[7]熱可塑性樹脂と空孔形成剤と含む多孔性樹脂フィルムからなり、落球試験による発生電圧の変動値が7以下である、エネルギー変換フィルム。
 本発明によれば、面内における圧電性能のばらつきがなく、面内における圧電性能の均一性に優れたエネルギー変換フィルムを得るためのエネルギー変換フィルムの製造方法を提供することができる。
本実施形態のエネルギー変換フィルムの構成例を示す断面図である。 混練工程において濾過フィルターの配置の一例を示す概略図である。 テンター延伸で使用するテンターオーブンにおける予熱、延伸、緩和、及び冷却の各ゾーンの一例を示す概略図である。 実施例のテンター延伸で使用したテンターオーブンのレールパターンを示すグラフである。 エネルギー変換フィルムの製造工程の一例を示す模式図である。 エレクトレット化装置の一例を示す模式図である。である。 エネルギー変換素子の一例を示す断面図である。 実施例で作製した片面に導電層を備えたエネルギー変換フィルムの製造工程を示す模式図である。 実施例で作製したエレクトレット化されたエネルギー変換フィルムの製造工程を示す模式図である。 実施例で作製した両面に導電層を備えたエネルギー変換フィルムの製造工程を示す模式図である。 落球試験装置を示す模式図である。
 以下、本発明のエネルギー変換フィルムの製造方法、及びエネルギー変換素子の製造方法について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例(代表例)であり、これらの内容に特定されるものではない。また、図面の寸法比率は、図示の比率に限定されるものではない。
 なお、本明細書において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。
[エネルギー変換フィルムの製造方法]
 本発明は、多孔性樹脂フィルムであるエネルギー変換フィルムを製造する方法について規定する。
 本発明のエネルギーフィルムの製造方法は、混練工程と押出工程と延伸工程とを含む。
 本発明のエネルギーフィルムの製造方法は、混練工程及び押出工程の少なくとも一方が、濾過粒度が40~300μmである濾過フィルターを用いて混練物を濾過する工程を含む。
 本発明のエネルギーフィルムの製造方法は、延伸工程が、延伸軸方向に樹脂フィルムを延伸させる度合いを、延伸工程の途中で緩める、応力緩和処理を含む。
 本発明のエネルギーフィルムの製造方法は、延伸軸方向に樹脂フィルムを延伸させた際の延伸度合いの最大値(A)と、応力緩和処理により延伸度合いを低下させたときの延伸度合いの値(B)を用いて下記式(1)により計算した結果が、-10.0~-0.1%を満たす。
 (1)  (B-A)/A
 本発明の製造方法については、後で詳しく説明する。まず先に本発明の製造方法の対象であるエネルギー変換フィルムについて説明する。
(エネルギー変換フィルム)
 本発明に係るエネルギー変換フィルムは、内部に多数の空孔を有する多孔性樹脂フィルムである。多孔性樹脂フィルムに電荷を注入するエレクトレット化処理を施すことにより、電気-機械エネルギー変換性能を有するエネルギー変換フィルムを得ることができる。電気-機械エネルギー変換性能とは、機械エネルギー(運動エネルギー)を電気エネルギーに変換する能力のみならず、電気エネルギーを機械エネルギー(運動エネルギー)に変換する能力も含む。
 本発明に係るエネルギー変換フィルムとは、エレクトレット化処理前の多孔性樹脂フィルムであってもよいし、エレクトレット化処理後の多孔性樹脂フィルムであってもよい。エレクトレット化処理後の多孔性樹脂フィルムは、意図的に電荷が注入されたフィルムであり、エレクトレット化処理前に比して多量の電荷を帯びている。
<多孔性樹脂フィルム>
 本発明に係る多孔性樹脂フィルムは、少なくとも1層の多孔性樹脂層を含む層であり、該多孔質樹脂層は熱可塑性樹脂と空孔形成剤を含む樹脂組成物をフィルム成形することにより得られる。多孔性樹脂フィルムは、以下に述べる多孔性樹脂層のみの単層構造であってもよいし、当該多孔性樹脂層を少なくとも1層有する多層構造であってもよい。
 多孔性樹脂フィルムは、目的の空孔の形成が容易である点から、空孔形成剤を含有する延伸フィルムであることが好ましい。
<空孔の形状及びサイズ>
 多孔性樹脂フィルム中(より具体的には多孔性樹脂層中)の空孔の形状及びサイズは、要求性能等に応じて適宜設定すればよく、特に限定されない。
 なお、多孔性樹脂フィルム内部の個々の空孔には、単板型コンデンサのように、その相対する内面に異なる電荷が対で保持されると考えられる。したがって、単板型コンデンサと同様に内部に電荷を蓄積するには、多孔性樹脂フィルムの空孔が一定以上の面積と高さを有することが好ましい。空孔の面積が一定以上であれば、十分な静電容量が得られ性能の優れたエレクトレットが得られやすい。また、空孔の高さ(距離)が一定以上であれば、空孔内部での放電(短絡)を抑え、電荷を蓄積しやすい。ここで空孔の「面積」とは、多孔性樹脂層の表面と平行な断面における空孔面積の最大値を意味し、空孔の「高さ」とは、多孔性樹脂層の厚み方向における空孔径の最大値を意味する。これらの点からは、多孔性樹脂フィルム内部の個々の空孔のサイズ(面積)は大きいほど有効に機能するといえるが、隣接する空孔同士が連通して発生する放電(短絡)を減らし、蓄積される電荷を増やす観点からは、空孔のサイズは一定以下にすることが好ましい。また、空孔の高さ(距離)が一定以下であれば、電荷が分極しやすく、帯電安定性に優れたエレクトレットが得られやすい。
 したがって、多孔性樹脂フィルムは、より多くの電荷を安定して蓄積する観点から、電荷の蓄積に有効な特定サイズの空孔を特定量有することが好ましい。具体的には、多孔性樹脂フィルムを任意の断面で観察をした場合の観察像上において、同フィルムの厚み方向の高さが3~30μmであり、かつ同フィルムの面方向の径が50~500μmである空孔を、100個/mm以上有することが好ましく、150個/mm以上がより好ましく、200個/mm以上がさらに好ましく、300個/mm以上が特に好ましい。
 一方、隣接する空孔同士の連通による短絡の抑制及びフィルム強度の観点から、多孔性樹脂フィルムは、同フィルムの厚み方向の高さが3~30μmであり、かつ同フィルムの面方向の径が50~500μmである空孔を、3,000個/mm以下有することが好ましく、2,500個/mm以下有することがより好ましく、2,000個/mm以下有することがさらに好ましく、1,500個/mm以下有することが特に好ましい。
 上記特定サイズの空孔の数が多いほど、電荷の蓄積能力が向上し、エネルギー変換効率が向上する傾向にある。一方、上記特定サイズの空孔の数が少ないほど、隣接する空孔同士が連通して隣接空孔間で放電(短絡)が発生することを抑えることができる。またフィルム自体の強度低下により生じる、圧縮等の外部応力に対する復元力低下を抑えることができる。多孔性樹脂フィルムの圧縮回復性の不足は、フィルムの圧縮と復元を繰り返し行っているうちに復元率が低下する等の弊害を招く。そのため、例えばエネルギー変換フィルムを、圧電素子などのエネルギー変換素子として用いる場合には、製品寿命が短命化する可能性がある。これらのバランスを考慮して、多孔性樹脂フィルム中の空孔のサイズを上記範囲内で調整することが好ましい。
<空孔率>
 多孔性樹脂フィルムの空孔率は、要求性能等に応じて適宜設定すればよく、特に限定されないが、20~80%であることが好ましい。このような空孔率は上記の有効な空孔の数と相関がある。なお、多孔性樹脂フィルムの空孔率とは、同フィルムの全体積に対して同フィルム中の空孔が占める体積の割合(体積率)を意味する。多孔性樹脂フィルムの空孔率は、空孔が同フィルム全体に均一に分布している前提で、同フィルムの厚み方向の断面において、空孔が占める面積の割合(面積率)と等しい。
 そのため本発明における多孔性樹脂フィルムの空孔率は、同材料の厚み方向の断面を走査型電子顕微鏡により観察し、画像解析装置に観察画像を取り込み、同観察領域を画像解析することによって算出した、断面上の空孔の面積率として得ることができる。具体的には、多孔性樹脂フィルムからガリウム収束イオンビーム等の手法によって空孔が潰れないように断面観察用の試料を作製する。この試料の断面観察を、走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)等を使用して適切な倍率(例えば2000倍等)で行う。得られた断面写真の観察領域を画像解析装置((株)ニレコ製、商品名:LUZEX AP)等を使用して、試料断面中の空孔が占める面積の割合(面積率)を算出し、これを空孔率とすることができる。
 フィルム内部に電荷を蓄積するのに適したサイズの空孔を数多く設けて、電荷の蓄積容量を確保する観点から、多孔性樹脂フィルムの空孔率は、20%以上であることが好ましく、25%以上であることがより好ましく、30%以上であることがさらに好ましく、35%以上であることが特に好ましい。一方、空孔の連通による短絡の抑制、多孔性樹脂フィルムの弾性率の低下、厚み方向の圧縮回復性の低下による耐久性の低下を抑える観点から、多孔性樹脂フィルムの空孔率は、80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることがさらに好ましく、55%以下であることが特に好ましい。
<多孔性樹脂層の使用原料>
 上述のように、多孔性樹脂層は、熱可塑性樹脂および空孔形成剤を含有する。空孔の形成性の観点からは空孔形成剤を含有することが好ましく、帯電性及び耐熱性の向上の観点からは、金属石鹸を含有することが好ましい。
<<熱可塑性樹脂>>
 熱可塑性樹脂は、多孔性樹脂層のマトリクス樹脂であり、圧電効果及び圧縮回復性を付与する。
 エネルギー変換フィルムの熱可塑性樹脂としては、電気を通しにくい絶縁性の高分子材料を、好ましく使用できる。そのような熱可塑性樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン、4-メチル-1-ペンテン(共)重合体等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸共重合体の金属塩(アイオノマー)、エチレン-(メタ)アクリル酸アルキルエステル共重合体(アルキル基の炭素数は1~8であることが好ましい)、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有オレフィン系樹脂;芳香族ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、脂肪族ポリエステル(ポリブチレンサクシネート、ポリ乳酸等)等のポリエステル系樹脂;ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;シンジオタクティックポリスチレン、アタクティックポリスチレン、アクリロニトリル-スチレン(AS)共重合体、スチレン-ブタジエン(SBR)共重合体、アクリロニトリル-ブタジエン-スチレン(ABS)共重合体等のスチレン系樹脂 ;ポリ塩化ビニル樹脂;ポリカーボネート樹脂;ポリフェニレンスルフィド等が挙げられる。
 ポリエチレン系樹脂としては、例えば低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、低結晶性又は非晶性のエチレン・α-オレフィン共重合体、エチレン-環状オレフィン共重合体等が挙げられる。
 ポリプロピレン系樹脂としては、例えば結晶性ポリプロピレン、低結晶性ポリプロピレン、非晶性ポリプロピレン、プロピレン・エチレン共重合体(ランダム共重合体又はブロック共重合体)、プロピレン・α-オレフィン共重合体、プロピレン・エチレン・α-オレフィン共重合体等)等が挙げられる。
 なお前記α-オレフィンとしては、エチレン及びプロピレンと共重合可能であれば特に限定されず、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン等を挙げることができる。
 これら熱可塑性樹脂のなかでも、絶縁性と加工性に優れるポリオレフィン系樹脂又は官能基含有オレフィン系樹脂が好ましい。
 熱可塑性樹脂としては、上記熱可塑性樹脂の中から1種を選択して単独で使用してもよいし、2種以上を選択して組み合わせて使用してもよい。
 また、上述したポリオレフィン系樹脂のなかでも、ポリプロピレン系樹脂が、絶縁性、加工性、耐水性、耐薬品性、コスト等の観点から特に好ましい。ポリプロピレン系樹脂には、フィルム成形性の観点からプロピレン単独重合体よりも融点が低い樹脂を、熱可塑性樹脂全量に対して2~25質量%配合して使用することが好ましい。そのような融点が低い樹脂としてはポリエチレン系樹脂が挙げられ、なかでも高密度又は低密度のポリエチレンが好ましい。
 多孔性樹脂層における熱可塑性樹脂の含有量(含有率)は、特に限定されず、例えば多孔性樹脂層のマトリクス樹脂として同層中に十分な空孔界面を形成しつつ、空孔間の連通を抑え、多孔性樹脂フィルムの機械強度を確保する等の観点から、適宜設定すればよい。具体的には、多孔性樹脂層の総質量を基準として、熱可塑性樹脂を50質量%以上含むことが好ましく、60質量%以上含むことがより好ましく、65質量%以上含むことがさらに好ましく、70質量%以上含むことが特に好ましい。一方、熱可塑性樹脂を98質量%以下含むことが好ましく、97質量%以下含むことがより好ましく、96質量%以下含むことがさらに好ましく、85質量%以下含むことが特に好ましい。
<<空孔形成剤>>
 空孔形成剤としては、例えば、フィラー又は発泡剤が挙げられる。
 フィラーとしては、無機フィラー及び有機フィラーが挙げられる。
 フィラーを含有するフィルム(層)の延伸により、フィルムの内部にフィラーを始点(核)とした多数の空孔を形成することが容易となる。フィラーの含有量又は延伸条件を制御することによって、空孔のサイズ又は存在頻度を制御することが可能であり、また、フィラーの粒子径又は延伸条件を制御することによって、空孔のサイズ(高さ及び径)を制御することが可能である。また、空孔形成後もフィラーが空孔の中で支柱として機能し得るため、空孔が潰れにくく、得られるエレクトレットにおいては繰り返し圧縮力を作用させても十分な圧縮回復性が発現され易く、さらには圧電性能の安定化(ピラー効果)が期待できる。
 多孔性樹脂層中のフィラーの含有量は、十分な空孔を形成する観点から、2質量%以上であることが好ましく、4質量%以上がより好ましく、10質量%以上がさらに好ましく、14質量%以上が特に好ましい。一方、多孔性樹脂層中の空孔間の連通を抑える観点から、同含有量は、50質量%以下であることが好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましく、25質量%以下が特に好ましい。
 フィラーの含有量が上記の好ましい範囲の下限値以上であれば、後述する延伸工程で、十分な数の電荷を蓄積するのに適したサイズの空孔が得られやすく、所望の圧電性能が得られやすい。一方、フィラーの含有量が上記の好ましい範囲の上限値以下であれば、過多な空孔形成によるフィルム強度の低下が抑制されやすい。得られるエネルギー変換フィルムにおいては、繰り返し圧縮力を作用させても十分な圧縮回復性が発現されやすく、さらには圧電性能が安定することが期待できる。
 空孔形成剤として、例えば、フィラーを用いる場合、無機フィラーを単独で、または有機フィラーを単独で、または無機フィラーと有機フィラーを組み合せることができる。無機フィラーと有機フィラーを組み合せて用いる場合の各々の含有比率は、特に限定されない。例えば無機フィラーの含有比率は、空孔形成剤の総量に対して、10~99質量%であることができ、20~90質量%であってもよいし、30~80質量%であってもよい。
<<<無機フィラー>>>
 空孔形成剤のなかでも、無機フィラーは、低コストで粒子径が異なる多数の製品が商業的に入手可能な点で好ましい。使用可能な無機フィラーの具体例としては、重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレー、シリカ、けいそう土、白土、タルク、酸化チタン、硫酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、ガラスファイバー等が挙げられるが、これらに特に限定されない。なかでも、空孔形成性及びコストの観点から、重質炭酸カルシウム、軽質炭酸カルシウム又は酸化チタンが好ましく、重質炭酸カルシウムがより好ましい。これらの無機フィラーは、1種を単独で又は2種以上を組み合わせて使用することができる。
<<<有機フィラー>>>
 空孔形成剤のなかでも、有機フィラーは粒子径の整った球状の粒子として入手可能であり、多孔性樹脂層中に形成される空孔もサイズや形状が均一になりやすい。
 有機フィラーとしては、多孔性樹脂層の主成分である熱可塑性樹脂とは異なる種類の樹脂粒子を選択することが好ましい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合、好ましい有機フィラーとしては、ポリオレフィンとは非相溶であり、ポリオレフィン系樹脂の混練、延伸成形の際に流動性を有しない樹脂粒子が挙げられる。具体的には、架橋アクリル樹脂、架橋メタクリル樹脂、架橋スチレン樹脂、架橋ウレタン樹脂等が挙げられるが、これらに特に限定されない。これらの架橋樹脂からなる樹脂粒子は、あらかじめ粒子径の整った球状の粒子として入手可能であり、空孔のサイズを調整しやすいことから、特に好ましく用いられる。
 また、有機フィラーは、多孔性樹脂層の主成分である熱可塑性樹脂に非相溶であるが、熱可塑性樹脂とともに溶融混練されて海島構造を形成し、島である有機フィラーが延伸成形時に空孔の核となって、所望の空孔を成形してもよい。例えば、熱可塑性樹脂がポリオレフィン系樹脂である場合の、このような有機フィラーの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ナイロン-6、ナイロン-6,6、環状オレフィン重合体、ポリスチレン、ポリメタクリレート等の重合体であって、ポリオレフィン系樹脂の融点よりも高い融点(例えば170~300℃)又はガラス転移温度(例えば170~280℃)を有し、溶融混練によりマトリクス樹脂であるポリオレフィン系樹脂中に微分散させることができる樹脂粒子が挙げられる。有機フィラーは、1種を単独で又は2種以上を組み合わせて使用することができる。
 無機フィラー又は有機フィラーの体積平均粒径(レーザー回折による粒度分布計で測定したメディアン径(D50))は、電荷を蓄積するのに適したサイズの空孔を成形すること考慮して適宜選択することができ、特に限定されない。適切なサイズの空孔が得られやすく、所望の圧電性能が得られやすい観点から、無機フィラーの体積平均粒径は3μm以上であることが好ましく、4μm以上であることがより好ましく、5μm以上であることがさらに好ましい。一方、粗大空孔の形成によって、空孔が連通して帯電性が低下することを抑制するとともにフィルム強度の低下を抑制し、繰り返し圧縮力を作用させても十分な圧縮回復性を発現させ、圧電性能の安定化を期待できる等の観点から、無機フィラーの体積平均粒径は、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。
 無機フィラーと有機フィラーとを併用する場合の体積平均粒径は、個別に同範囲内の粒径を有する無機フィラーと有機フィラーとを組み合わせて使用してもよく、無機フィラーと有機フィラーとを混合した状態をレーザー回折による粒度分布計で測定した体積平均粒径が同範囲のものを使用してもよい。
<<<発泡剤>>>
 空孔形成剤として、上記フィラーに変えて、あるいはフィラーとともに発泡剤を使用することもできる。
 発泡剤としては、例えば、熱分解型発泡剤を挙げることができる。熱分解型発泡剤としては、分解によってガスを発生させればよく、例えば、アゾジカルボンアミド、ベンゼンスルホニルヒドラジド、ジニトロソペンタメチレンテトラミン、トルエンスルホニルヒドラジド、4,4-オキシビス(ベンゼンスルホニルヒドラジド)等が挙げられる。
 例えば、熱可塑性樹脂と熱分解型発泡剤とを含む樹脂組成物を溶融混練し、その後シート状に押し出し発泡性樹脂フィルムを得て、係る発泡性樹脂フィルムを熱分解型発泡剤の分解温度以上に加熱して発泡させることにより、多孔性の樹脂フィルムを製造することができる。
 多孔性樹脂層中の発泡剤の含有量は、十分な空孔を形成する観点から、1質量%以上であることが好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。一方、フィルム中の空孔間の連通を抑える観点から、同含有量は、25質量%以下であることが好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
<<金属石鹸>>
 エネルギー変換フィルムの電荷保持性能をより高め、高温環境下で保管又は使用されても圧電性能の低下を抑える観点からは、多孔性樹脂フィルムは金属石鹸を含有することが好ましい。
 本発明に用いる金属石鹸としては、原料の混練段階では溶融して熱可塑性樹脂中に均一に分散し、多孔性樹脂層形成後はその環境温度において固体である金属石鹸が、高い電荷保持性能を発揮しやすく、好ましい。そのため、熱可塑性樹脂の融点をTm(℃)とすると、金属石鹸の融点は、50℃以上、(Tm+50)℃以下の範囲内であることが好ましく、70℃以上、(Tm+40)℃以下の範囲内であることがより好ましく、100℃以上、(Tm+30)℃以下の範囲内であることがさらに好ましい。例えば熱可塑性樹脂としてポリプロピレン系樹脂(融点160~170℃)を用いる場合は、融点が50~220℃である金属石鹸を用いることが好ましく、融点が70~210℃である金属石鹸を用いることがより好ましく、融点が100~200℃である金属石鹸を用いることがさらに好ましい。なお多孔性樹脂層が2種以上の熱可塑性樹脂を含有する場合には、該層中に最も多く含まれる熱可塑性樹脂の融点をTmとする。
 金属石鹸が上述した温度範囲の融点を有することで、多孔性樹脂層の層成形時には溶融して熱可塑性樹脂中に均一に分散し、層成形後には熱可塑性樹脂中でその分散状態を保ったまま固化して流動しにくくなっている。そしてエレクトレット化処理時には、その分子内の双極子によって金属石鹸が配向し、この金属石鹸の配向によって電荷保持性能が高まると推定される。
 金属石鹸は、脂肪酸の金属塩であることが好ましく、高級脂肪酸の金属塩であることがより好ましい。脂肪酸としては、例えば飽和脂肪酸、不飽和脂肪酸及びこれらの構造異性体が挙げられる。脂肪酸1分子当たりの炭素数は通常5~30であり、好ましくは炭素数6~28であり、より好ましくは炭素数8~24であり、さらに好ましくは炭素数10~20である。
 なかでも、飽和脂肪酸の金属塩は、融点が高く、耐熱性に優れた多孔性樹脂フィルムが得られやすい傾向があることから、好ましい。
 また、金属石鹸の金属元素は、脂肪酸と安定な塩を形成する金属であれば特に限定されない。金属石鹸の融点と電荷保持性能の観点からは、ナトリウム(第1族)、マグネシウム(第2族)、カルシウム(第2族)、バリウム(第2族)、亜鉛(第12族)及びアルミニウム(第13族)の少なくとも1種がさらに好ましい。なかでも、安全性の観点から、カルシウム、亜鉛及びアルミニウムの少なくとも1種が特に好ましく、電荷の保持性能をより高める観点から、カルシウム又はアルミニウムが特に好ましく、アルミニウムが最も好ましい。また、金属石鹸は塩基性塩であってもよい。
 最も好ましく用いられる金属石鹸は、飽和高級脂肪酸アルミニウム塩である。飽和高級脂肪酸アルミニウム塩としては、例えばオクタデカン酸ジヒドロキシアルミニウム、ジオクタデカン酸ヒドロキシアルミニウム、トリオクタデカン酸アルミニウム、ドデカン酸ジヒドロキシアルミニウム、ジドデカン酸ヒドロキシアルミニウム、トリドデカン酸アルミニウム、2-エチルヘキサン酸ジヒドロキシアルミニウム、ジ-2-エチルヘキサン酸ヒドロキシアルミニウム、トリ-2-エチルヘキサン酸アルミニウム等が挙げられる。
 上記のような金属石鹸は、プラスチック業界において各種添加剤(例えば、安定剤、滑剤、フィラー分散剤、メヤニ防止剤、流動性改善剤、造核剤又はアンチブロッキング剤)として、一般的に利用されている。しかしながら、多孔性樹脂フィルムにおける金属石鹸は、フィルムの帯電性を増補するために添加するのであって、特に高温環境下における圧電性能低下を抑制する機能剤として添加する。したがって、エネルギー変換素子の圧電性能低下を抑制する観点からは、上述した従来の一般的な各種添加剤として使用する場合の配合量(例えば、0.01質量%)よりも比較的多い量の金属石鹸を添加することが好ましい。
 よって、多孔性樹脂層中における金属石鹸の含有量は、電荷保持能力の観点から、多孔性樹脂層を構成する熱可塑性樹脂と金属石鹸よりなる組成物100質量%に対して、0.02質量%以上であることが好ましく、0.03質量%以上がより好ましく、0.05質量%以上がさらに好ましく、0.1質量%以上が特に好ましく、0.2質量%以上が最も好ましい。
 一方、金属石鹸は過剰に添加しても効果が頭打ちであり、ブリードアウト等を避ける観点から、金属石鹸は、多孔性樹脂層を構成する熱可塑性樹脂と金属石鹸よりなる組成物100質量%に対して、20質量%以下であることが好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましく、0.7質量%以下が最も好ましい。
<<添加剤>>
 多孔性樹脂層は、必要に応じて分散剤、熱安定剤(酸化防止剤)、光安定剤等の添加剤を含有することができる。
 多孔性樹脂層中の分散剤の含有量は、空孔形成剤の分散性を向上させ、粗大空孔又は連通空孔の発生を抑制する観点から、0.01質量%以上が好ましく、0.03質量%以上がより好ましく、0.05質量%以上がさらに好ましい。一方、多孔性樹脂層の成形性や電荷保持性の観点から、同含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がさらに好ましい。分散剤としては、例えば脂肪酸、グリセリン脂肪酸、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、シランカップリング剤、ポリ(メタ)アクリル酸又はそれらの塩等の分散剤が挙げられるが、これらに特に限定されない。
 多孔性樹脂層中の熱安定剤の含有量は、通常0.001~1質量%である。熱安定剤としては、例えば立体障害フェノール系、リン系、アミン系等の熱安定剤が挙げられるが、これらに特に限定されない。
 本来、熱安定剤の融点は、電荷保持性能の観点から高い方が好ましいが、多孔性樹脂層中に熱安定剤を均一に分散させる観点からは、熱安定剤の融点は低い方が好ましい。したがって、熱安定剤の融点は、金属石鹸と同様の温度範囲の融点を有することが好ましい。
 多孔性樹脂層中の光安定剤の含有量は、通常0.001~1質量%である。光安定剤としては、例えば立体障害アミン系、ベンゾトリアゾール系、ベンゾフェノン系等の光安定剤が挙げられるが、これらに特に限定されない。
<エネルギー変換フィルムの層構造>
 エネルギー変換フィルムは、上記組成を有する多孔性樹脂層のみの単層構造であってもよいし、当該多孔性樹脂層を少なくとも1層有する多層構造であってもよい。エネルギー変換性能を高める観点からは、多孔性樹脂フィルムは、少なくともコア層とスキン層を有する多層構造の積層体であることが好ましく、スキン層/コア層/スキン層の3層構造であることがより好ましい。
 多層構造のエネルギー変換フィルムは、上述した多孔性樹脂フィルムからなるコア層の少なくとも一方の表面に延伸樹脂フィルムからなるスキン層を備えることがより好ましく、上記多孔性樹脂フィルムからなるコア層の両面に延伸樹脂フィルムからなるスキン層を備えることがさらに好ましい。
 図1は、本発明に係るエネルギー変換フィルムの一実施形態として、多層構造のエネルギー変換フィルム1の構成例を示す。
 図1に示すように、エネルギー変換フィルム1は、コア層2と、コア層2の一方の表面に設けられたスキン層3とを備える。エネルギー変換フィルム1は、必要に応じてコア層2のもう一方の表面にもスキン層4を備えることができる。
<<コア層>>
 コア層及びスキン層の多層構造は、コア層として上述した多孔性樹脂層を用い、このコア層表面にスキン層を設けることで形成することができる。
<<スキン層>>
 スキン層は、コア層を保護する観点から、コア層(多孔性樹脂層)の少なくとも一方の表面上に積層されることが好ましく、コア層の両面上に積層されることがより好ましい。スキン層がコア層の表面を覆うことにより、コア層中の空孔が外部と通じて内部に蓄えた電荷が大気放電することを抑えられる。また、フィルムの表面強度を向上させることができ、表面を平滑にすることで電極との接着性が向上しやすい。
 スキン層は、熱可塑性樹脂を含む樹脂フィルムであることが好ましい。スキン層は、コア層と同様に多孔性樹脂フィルムであってもよい。スキン層を構成する熱可塑性樹脂としては、例えば、多孔性樹脂フィルムの熱可塑性樹脂として列挙した樹脂から選択して用いることができる。
 スキン層は、コア層と同様に金属石鹸を含んでいてもよく、含んでいなくてもよい。スキン層をコア層の保護層とする趣旨からは、スキン層は金属石鹸を含まないことが好ましい。スキン層が金属石鹸を含む場合は、その含有量をコア層よりも少なくすることが好ましい。
 スキン層は、コア層よりも空孔を形成し難い組成とするか、コア層よりも空孔率が低いことが好ましい。このようなスキン層の形成は、空孔形成剤の含有量をコア層よりも少なくする手法、スキン層に使用する空孔形成剤の体積平均粒径をコア層に使用する空孔形成剤の体積平均粒径より小さくする手法、コア層を二軸延伸により形成し、かつスキン層を一軸延伸で形成する等して両者の延伸倍率に差異をつける手法等により達成できる。
 本発明のエネルギー変換フィルムをエネルギー変換素子として使用する場合、スキン層表面には電極が設けられる。電極との密着性向上の観点から、スキン層にはフィラーを含有することが好ましい。フィラーによりスキン層の表面に起伏構造を形成でき、電極との密着性を高める投錨効果を得ることができる。また、スキン層の誘電率を向上させ、コア層の電気的特性を改質できる。スキン層のフィラーとしては、上述した多孔性樹脂層の項で列挙したフィラーを使用することができる。なお、スキン層のフィラーは、多孔性樹脂層の空孔形成剤と同種であってもよいし、異種であってもよい。空孔形成剤のなかでも、無機フィラーは、投錨効果が得られやすく好ましい。
 スキン層に空孔形成剤を含有させる場合は、多孔性樹脂層に使用する分散剤と同様の分散剤を使用することが好ましい。
 なお、スキン層の物理的強度を向上し、コア層の耐久性を向上させるという観点からは、スキン層は、空孔形成剤を含有しないことが好ましい。
 スキン層は、延伸フィルムであることが好ましい。延伸によって、スキン層の厚み(膜厚)の均一性や絶縁耐圧性等の電気特性の均一性を向上することができる。スキン層の厚みの均一性が高いと、高電圧を用いた電荷注入時に、スキン層の薄い部分での局所的な放電集中が発生しにくいため、効果的に電荷注入するための高電圧印加を行いやすい。
 スキン層は、単層構造であってもよいし、2層以上の多層構造であってもよい。多層構造の場合は、各層に使用する熱可塑性樹脂、空孔形成剤、分散剤の種類や含有量を変更することにより、より高い電荷保持性能を備えた多層構造の多孔性樹脂フィルムの設計が容易となる。
 スキン層をコア層の両面に設ける場合は、各スキン層を構成する成分の種類、含有量、厚み等は同一でもよいし、異なっていてもよい。
<厚み>
 コア層の厚みは、10μm以上であることが好ましく、20μm以上であることがより好ましく、30μm以上であることがさらに好ましく、40μm以上であることが特に好ましい。コア層の厚みを下限値以上とすることにより、エネルギー変換に有効に機能する内部電荷の蓄積に必要な容積を確保しやすく、特に多孔性樹脂層の内部電荷の蓄積に適切な大きさの空孔を所望の数量で均一に形成しやすい。一方、コア層の厚みは、500μm以下であることが好ましく、300μm以下であることがより好ましく、150μm以下であることがさらに好ましく、120μm以下であることが特に好ましい。コア層の厚みを上限値以下とすることにより、後述するエレクトレット処理の際に、層内部まで電荷を到達させることが可能となり、本発明のエネルギー変換フィルムが所期の性能を発揮しやすい。
 
 スキン層の厚みは、特に限定されないが、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.5μm以上であることがさらに好ましく、0.7μm以上であることが特に好ましい。0.1μm以上であれば、スキン層の厚みを均一化しやすく、電荷注入量の均一化及び絶縁耐圧性の向上も容易になる。一方、スキン層の厚みは、100μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましく、10μm以下であることが特に好ましい。スキン層の厚みが100μm以下であれば、多層構造の多孔性樹脂フィルムに電荷注入する際に、フィルム内部のコア層にまで電荷を到達させやすくなる。
 スキン層は、コア層よりも薄いことが好ましい。スキン層はコア層よりも相対的に厚み方向の弾性変形がしにくい層であるため、スキン層の厚みを抑えることで、多孔性樹脂フィルム等の圧縮弾性率が低下せず、エネルギー変換効率を維持しやすくなる。
 そのため、コア層の厚みとスキン層の厚みの比率(コア層/スキン層)は、1.1~1000であることが好ましく、2~300であることがより好ましく、5~150であることがさらに好ましく、10~50であることが特に好ましい。なお、スキン層が複数層の場合の同比率は、各層の厚みの合計値を用いて計算される。
 なお、単層構造の多孔性樹脂フィルムの厚みは、コア層と同様の範囲とすることができる。
 本明細書において、フィルムの厚みは、JIS K7130:1999「プラスチック-フィルム及びシート-厚み測定方法」に基づいて、厚み計を用いてフィルム総厚みを測定した値とする。
 また、多層構造のフィルムを構成する各層の厚みは次のように測定する。測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃を直角に当て切断し断面測定用の試料を作製する。得られた試料の断面観察を走査型電子顕微鏡により行い、空孔形状及び組成外観から各層の境界線を判別して、観察像から求められる各層厚みがフィルムの総厚みに占める割合を決定する。厚み計を用いて求めた上記フィルム総厚みに、各層厚みの上記割合を乗じて算出した値を各層の厚みとする。
<フィルムの表面抵抗率>
 エネルギー変換フィルムは絶縁性であることが好ましく、少なくとも一方の表面の表面抵抗率が1×1013Ω/□以上であることが好ましく、5×1013Ω/□以上であることがより好ましい。表面抵抗率を上記下限値以上とすることによりエレクトレット化処理を施す際に、注入した電荷が表面を伝って逃げにくく、効率的な電荷注入を行いやすい。一方、エネルギー変換フィルムの少なくとも一方の表面の表面抵抗率が、9×1017Ω/□以下であることが好ましく、5×1016Ω/□以下であることがより好ましい。表面抵抗率を上記上限値以下とすることにより、ゴミや埃の異物の付着を防止することができ、エレクトレット化処理の際に異物を伝って局所放電が発生しエレクトレット化処理を阻害することを抑制しやすい。
 本明細書において、フィルムの表面抵抗率は、JIS K6911:1995「熱硬化性プラスチック一般試験方法」にしたがって、2重リング法の電極を用いて、温度23℃、相対湿度50%の条件下にて測定した表面抵抗から下記式(2)に基づいて算出した値とする。
(2) Kf=RS×π×(D+d)/(D-d)
 Kf:表面抵抗率(Ω/□)
 RS:表面抵抗(Ω)
 π :円周率
 d :表面電極の内円の外径(cm)
 D :表面の環状電極の内径(cm)
(エネルギー変換フィルムの製造方法)
 本発明の製造方法は、多孔性樹脂フィルムであるエネルギー変換フィルムについての製造方法である。
 本発明では、混練工程、押出工程、及び延伸工程を経て、エネルギー変換フィルムを製造する。
 混練工程は、少なくとも熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を混練し、得られた混練物を押し出す工程をいう。
 押出工程は、混練物をフィルム状に押し出すことで無延伸の樹脂フィルムを形成する工程をいう。
 延伸工程は、無延伸の樹脂フィルムを、少なくとも一軸方向に延伸する工程をいう。
 本発明におけるエネルギー変換フィルムの製造工程の好ましい態様としては、例えば、下記(i)の製造工程が挙げられる。
 (i)少なくとも熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を押出混練機にて溶融混練し、得られた混練物を押し出し工程の押出機へ押し出す(混練工程)。次いで押出機でTダイに対して混練物を押し出すことにより、ダイからフィルム状の無延伸の樹脂フィルムを吐出させる(押出工程)。次に無延伸の樹脂フィルムをロールやテンター等にて延伸する(延伸工程)。
 また、上記(i)の製造方法において、混練工程を経た混練物をペレットとして作製し、係るペレットを押出工程に供してもよい。その場合は、好ましい態様として、例えば、下記(ii)の製造工程が挙げられる。
 (ii)少なくとも熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を押出混練機にて溶融混練し、得られた混練物をストランド状に押し出して(混練工程)、冷却後にカッターで切断して、ペレットを作製する。次に、得られたペレットを、押出機のフィーダーに投入し、溶融混練した後、押出機でTダイに対して混練物を押し出すことにより、ダイからフィルム状の無延伸の樹脂フィルムを吐出させる(押出工程)。次に無延伸の樹脂フィルムをロールやテンター等にて延伸する(延伸工程)。
 本発明では、混練工程、押出工程、及び延伸工程を経て得られたエネルギー変換フィルムに対して、エレクトレット化処理を施すことで、エネルギー変換性能を有するエネルギー変換フィルムを提供できる。
 また、本発明では、延伸工程後のエネルギー変換フィルムに対して、少なくとも一方の表面を酸化処理する工程を施してもよい。
 多孔性樹脂フィルムの製造には、従来公知の種々の方法が使用できる。例えば、単層構造の多孔性樹脂フィルムの場合、上記原料を含む樹脂組成物を溶融混練し単一のダイから押し出して、必要に応じて延伸すればよい。また、コア層とスキン層を有する多層構造の多孔性樹脂フィルムの場合、フィードブロック又はマルチマニホールドを使用した多層ダイを用いる共押出方式、複数のダイを使用する押出ラミネーション方式等により、各層が積層したフィルムを製造することができる。多層ダイによる共押出方式と押出ラミネーション方式を組み合わせてもよい。
<濾過工程>
 本発明の製造方法の特徴の一つに、混練工程及び押出工程の少なくとも一方において、濾過粒度が40~300μmである濾過フィルターを用いて混練物を濾過することが挙げられる。
 特定の濾過粒度を示す濾過フィルターは、混練物から、粗大粒子、異物、空孔形成剤の凝集物等を有効に取り除くことができる。これら粗大粒子等の除去により、樹脂フィルムの面内における性能の均一化を図ることができる。
 ダイから混練物が押し出される際に圧力変動が発生すると、吐出量が変動して得られるフィルムの厚みの均一性が低下し、エネルギー変換フィルムの性能にばらつきが発生する傾向がある。本発明にて使用する濾過フィルターの濾過粒度は、40μm以上であるが、濾過フィルター自体の負荷による圧力変動の低減、及び濾過フィルターの目詰まりによる圧力変動の低減の観点からは、濾過粒度は50μm以上が好ましく、100μm以上がより好ましい。一方、濾過粒度は、300μm以下であるが、粗大粒子等の除去の観点からは、200μm以下が好ましく、160μm以下がより好ましい。
 濾過フィルターとしては、上記所望の濾過粒度を示すものであれば、材質や形状に特に制限はなく、目的に応じて選択することができるが、例えば、金属性、セラミック製等の耐熱性がある素材からなる濾過フィルターが好ましく挙げられる。また、濾過精度の均一性が高い織金網、具体的には平織金網、綾織金網、平たたみ織金網、又は綾たたみ織金網が好ましく用いられる。
 濾過フィルターの濾過粒度は、JIS K3832-1990(ASTM316-86)に記載のバブルポイント試験により求めることができる。
 例えば、具体的には、以下のようにして求めることができる。
 予め10分以上イソプロピルアルコール(25℃での表面張力21dyne/cm)に浸漬したフィルターエレメントを水平にして、イソプロピルアルコールの入ったタンクに入れ、JIS K3832に準拠したバブルポイント法により、最初に連続的にバブルが発生した時の圧力P(バブルポイント圧)を測定する。測定した圧力Pから下記式(3)で表されるWashburn式により濾過粒度を求める。
(3) D=4Scosθ/P
 D:濾過粒度(μm)
 S:イソプロピルアルコールの表面張力
 θ:接触角(尚、イソプロピルアルコールは接触角が十分低いので、ここでは、θ=0、cosθ=1)
 特定の濾過粒度を示す濾過フィルターは、混練工程及び押出工程のうち、少なくともいずれか一方に設ければよい。混練工程のみに濾過フィルターを設けることもできるし、押出工程のみに濾過フィルターを設けることもできるし、混練工程及び押出工程の両方に濾過フィルターを設けることもできる。
 また、混練工程及び押出工程の両方に濾過フィルターを設ける場合であっても、いずれか一方の工程において、本発明で規定する濾過粒度が40~300μmである濾過フィルターを用いていれば、他方の工程において、濾過粒度が40~300μmの範囲を外れる濾過フィルターを用いていても、構わない。
 本発明において、エネルギー変換フィルムが、コア層とスキン層を有する多層構造の多孔性樹脂フィルムである場合、コア層及びスキン層の両層とも、上記特定の濾過粒度を示す濾過フィルターを用いて形成されることがより好ましいが、少なくともコア層が上記特定の濾過粒度を示す濾過フィルターを用いて形成されているとよい。
 混練工程及び押出工程における濾過フィルターの設置場所は、混練物から、粗大粒子、異物、空孔形成剤の凝集物等が有効に取り除ければ、特に制限はなく、目的に応じて適宜設定することができる。
 例えば、上記(i)や(ii)の製造工程において、混練工程における濾過フィルターの設置場所としては、押出混練機のブレーカープレートの手前が挙げられる。また、押出工程における濾過フィルターの設置場所としては、押出機の出口に設置されるブレーカープレートの手前、押出機の出口の後、あるいはダイまたはフィードブロックの手前が挙げられる。
 混練工程における濾過フィルターの配置場所を説明するため、押出混練機21の概略図を図2に示す。図2において、樹脂組成物の材料22は、スクリュー部23を通り混練されながら、ブレーカープレート24を通ってノズルダイ25から押し出される。ここで、濾過フィルター26は、ブレーカープレート24の手前に設置することができる。
<延伸工程>
 多孔性樹脂フィルムは、少なくとも一軸方向に延伸された延伸フィルムであることが好ましい。延伸により、多孔性樹脂フィルムの厚みの均一性が向上し、内部に多数の空孔が形成されやすくなる。また、コア層とスキン層を有する多層構造の多孔性樹脂フィルムの場合は、スキン層をコア層上に積層した後に、少なくとも一軸方向に延伸することが好ましい。スキン層をコア層上に積層した後に延伸することによって、延伸フィルム同士を積層するよりも、膜厚の均一性が向上し、結果的に電気特性が向上する。
 延伸により多孔性樹脂フィルム中に形成される空孔は、電荷を保持する観点から個々の体積が比較的大きく、その数が比較的多く、かつ互いに独立した形状であることが望ましい。空孔のサイズは、一軸方向にのみ延伸するよりも、二軸方向に延伸した方が大きくなりやすい。特にフィルムの縦方向(MD:Machine Direction)及び横方向(TD:Transverse Direction)の二軸方向に延伸することにより、空孔形成剤を中心に面方向に引き延ばされた円盤状の空孔を形成できるので、エレクトレット化処理により空孔内に正負分極した電荷を蓄積しやすく、電荷の保持性能が向上する。したがって、多孔性樹脂フィルムは、二軸延伸フィルムであることが好ましい。
 延伸は、公知の種々の方法によって行うことができる。具体的には、ロール群の周速差を利用した縦延伸方法、テンターオーブンを使用した横延伸方法、上記縦延伸と横延伸とを正順又は逆順に行う逐次二軸延伸方法、圧延方法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸方法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸方法等を挙げることができる。また、インフレーションフィルムの延伸方法であるチューブラー法による同時二軸延伸方法を挙げることができる。
<<応力緩和処理>>
 本発明の製造方法の特徴の一つに、延伸工程において、延伸軸方向に樹脂フィルムを延伸させる度合いを、延伸工程の途中で緩める、応力緩和処理を行うことが挙げられる。
 応力緩和処理は、延伸によって樹脂フィルムに発生した残留ひずみを、熱を加え張力を緩めることにより低下させる処理である。
 応力緩和処理により、樹脂フィルムの縦方向及び/又は横方向で局在する残留ひずみを減らすことができ、得られるエネルギー変換フィルムの面内における圧電性能の向上、及び均一化を図ることができる。またエネルギー変換フィルムに対する電極の形成加工や電荷注入加工など、加工を繰り返す事により発生するひずみの増大を軽減する効果がある。なお得られた樹脂フィルムを、延伸工程で発生したひずみが存在したまま巻き取ると、巻取工程により発生する残量応力に、延伸工程で発生したひずみの自然緩和が加算されて、フィルム均一性が低下する傾向があるため、応力緩和処理は巻取工程の前に行うことが望ましい。
 応力緩和処理において、延伸の度合いを緩める割合としては、延伸軸方向に樹脂フィルムを延伸させた際の延伸度合いの最大値(A)と、応力緩和処理により延伸度合いを低下させたときの延伸度合いの値(B)を用いて下記式(1)により計算した結果が、-10.0~-0.1%を満たすようにする。
 (1)  (B-A)/A
 上記式(1)で表される値は、応力緩和処理前後の延伸寸法の変化の割合を表したものである。以降において、上記式(1)で表される値を緩和機械倍率と称することがある。
 上記式(1)で表される緩和機械倍率は、-10.0%であるが、応力緩和処理を均一に行い、得られるエネルギー変換フィルムの圧電性能にばらつきを発生させないために、応力緩和処理中もフィルムにかかる張力を維持する観点からは、-8.0%以上が好ましく、-5.0%以上がより好ましい。一方、緩和機械倍率は、-0.1%以下であるが、処理温度と処理時間にもよるが、十分な効果を得るためには、-1.0%以下が好ましく、-1.5%以下がより好ましい。
 上記式(1)を求める際のより具体的な態様としては、例えば、下記(iii)や(iv)の場合等が挙げられる。
 (iii)延伸処理がテンター延伸である場合、テンターオーブンを用いて行う延伸において、延伸ゾーンにおける延伸の最大幅を上記(A)値、緩和ゾーンにおいて緩和処理の終了した時点における延伸の幅を上記(B)値として、上記式(1)を計算する。
 (iv)延伸処理がロール延伸である場合、延伸ロールの最大速度を上記(A)値、緩和処理の終了した時点におけるロールの速度を上記(B)値として、上記式(1)を計算する。
 延伸工程が、例えば、縦延伸と横延伸の二軸延伸方法を用いて行う場合には、応力緩和処理は、縦延伸工程か横延伸工程のうち、少なくともいずれか一方の延伸工程で行えばよい。縦延伸工程において応力緩和処理を行っても、横延伸工程において応力緩和処理を行っても、縦延伸工程及び横延伸工程の両方で応力緩和処理を行ってもよい。
 本発明において、多層構造の樹脂フィルムを縦延伸と横延伸の二軸延伸方法を用いて延伸する場合の好ましい態様としては、例えば、下記(v)で示す方法が挙げられる。
 (v)混練物が3つの押出機によって、それぞれ押し出され、フィードブロックにおいて、スキン層、コア層、スキン層の順に積層されてTダイから共押出しされる。共押出しされたスキン層/コア層/スキン層の積層フィルムは、ロール等の延伸装置により縦方向(MD)に延伸された後、さらにテンター等の延伸装置により横方向(TD)に延伸される。
 この場合、応力緩和処理は、ロールを用いた縦延伸工程において行っても、テンターを用いた横延伸工程において行っても、ロール及びテンターの両方の工程で行ってもよい。応力緩和処理の調整の容易性等の観点からは、テンターを用いた横延伸工程において、応力緩和処理を行うことが好ましい。
 また、本発明において、多層構造の樹脂フィルムが、スキン層(一軸延伸)/コア層(二軸延伸)/スキン層(一軸延伸)の積層フィルムである場合には、延伸方法の好ましい態様としては、例えば、下記(vi)で示す方法が挙げられる。
 (vi)コア層を形成する混練物が、押出機によってTダイから押し出され、樹脂フィルム(コア層)を形成する。樹脂フィルム(コア層)は、ロール等の延伸装置により縦方向(MD)に延伸される。次に、スキン層を形成する混練物が、2つの押出機によってそれぞれTダイから押し出され、押し出された樹脂フィルム(スキン層)は、上述した延伸済みの樹脂フィルム(コア層)の両面にそれぞれ積層される。得られたスキン層/コア層/スキン層の積層フィルムは、テンター等の延伸装置により横方向(TD)に延伸される。
 この場合、応力緩和処理は、ロールを用いた縦延伸工程において行っても、テンターを用いた横延伸工程において行っても、ロール及びテンターの両方の工程で行ってもよい。応力緩和処理の調整の容易性等の観点からは、テンターの横延伸工程において、応力緩和処理を行うことが好ましい。
<<<テンター延伸における応力緩和処理>>>
 テンター延伸における応力緩和処理について、より詳しく説明する。
 テンター延伸を行う場合、例えば、図3で示すようなテンターオーブンを用いて、樹脂フィルムを延伸する。テンターオーブンは、例えば、複数のゾーンが樹脂フィルム長手方向に連結してなり、各ゾーン内において樹脂フィルムを所定の温度に保持しながら、該樹脂フィルムに対して予熱、延伸、緩和、冷却などの処理を施すように構成されている。上記ゾーンとは、予熱、延伸、緩和、冷却などの処理工程に対応した区間のことであり、図3で示すように、予熱ゾーンa、延伸ゾーンb、緩和ゾーンc、冷却ゾーンdで構成されている。
 樹脂フィルムは、幅方向(横方向)に設置された左右のクリップに両端を担持され、予熱ゾーンa、延伸ゾーンbを経て、横方向に延伸される。次に緩和ゾーンcにおいて、応力緩和処理が施され、延伸された最大幅のときより引っ張り強度が緩められることで、延伸幅が狭まる。緩和ゾーンcが終了したときの延伸の幅で、冷却ゾーンdを経て、その後クリップが樹脂フィルムから放され、樹脂フィルムの横延伸処理が終了する。
 テンターオーブンのレールパターンとして、例えば、下記表1に記載のA~Eの5つのレールパターンを挙げることができる。表1のA~Eのレールパターンについて、縦軸にレール幅/2(mm)、横軸に予熱ゾーンが始まった入り口からの距離(ゾーン長)(mm)をとりグラフ化したものを図4に示す。尚、後述する実施例では、表1及び図4で示されるA~Eの5つのレールパターンを用いて実験を行った。
Figure JPOXMLDOC01-appb-T000001
 上記表1で示されるBのレールパターンについて、以下詳しく説明する。
 Bのレールパターンを用いて樹脂フィルムを延伸させた場合、延伸ゾーンにおいて延伸された樹脂フィルムの最大幅(図3中、t2に対応)は、1,215mmである。そして応力緩和処理により延伸度合いを低下させたときの延伸幅(緩和ゾーン終了の際の延伸幅(図3中、t3に対応))は、1,195mmである。そこで、これらの値を用いて式(1)を計算すると、以下のようになる。
 (t3-t2)/t2×100(%)=
 (1,195-1,215)/1,215×100(%)=
 -1.65%(小数点以下2桁表示)
 つまり、Bのレールパターンの緩和機械倍率は、-1.65%であり、Bのレールパターンで延伸すると、本発明で規定する-10.0~-0.1%の緩和機械倍率の要件を満足することができる。A、及びCからEの他のレールパターンについても同様に緩和機械倍率を求めることができる(表1に記載の緩和機械倍率の値参照)。
 尚、表1において、延伸を始める前と後とでどのくらい樹脂フィルムの幅が変化したかを示す延伸機械倍率も参考に記載しておく。この延伸機械倍率は、テンターオーブンの入り口(図3中、t1に対応)における樹脂幅に対する出口(図3中、t4に対応)における樹脂幅の割合を示す。
 表1のBのレールパターンで説明すると、予熱ゾーンaに入いる際の入り口における樹脂幅(160mm)と出口における冷却ゾーンdの樹脂幅(1,195mm)を用いて、以下のように求められる。
 t4/t1=1,195/160=7.47(小数点以下2桁表示)
 延伸時の温度は、樹脂フィルムに用いる主要な(質量比で最も多く用いる)熱可塑性樹脂のガラス転移点から、主要な熱可塑性樹脂の結晶部の融点Tmより1~70℃低い温度が好ましい。具体的には、主要な熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)である場合は100~166℃の範囲内であることが好ましく、高密度ポリエチレン(融点121~136℃)である場合は70~135℃の範囲内であることが好ましい。また、多層構造の樹脂フィルムを延伸する場合は、設定坪量の最も多い層(通常はコア層)又は設定空孔率の最も高い層(通常はコア層)の延伸効率を考慮して、延伸温度を設定するのが好ましい。もちろん、コア層とスキン層にそれぞれ融点又はガラス転移点の異なる熱可塑性樹脂を用いて延伸温度を決定すれば、それぞれの層の空孔率を調整することが可能である。
 延伸工程において、特に応力緩和処理における樹脂フィルムの処理温度としては、樹脂フィルムを構成する熱可塑性樹脂のうち、最も含有量が多い熱可塑性樹脂の融点TmがTmaである場合、Tma-20℃の温度以上、Tma+10℃の温度以下の温度範囲であることが、好ましい。応力緩和処理の処理温度は高温にする程、その効果を得やすいためTma-15℃の温度以上がより好ましく、Tma-10℃以上がさらに好ましく、Tma-5℃の温度以上が特に好ましい。一方樹脂フィルムが融解してしまうと樹脂フィルムの厚みの均一性が損なわれたり、形成した空孔が潰れてしまいエネルギー変換フィルムとしての性能の均一性が低下してしまうが、延伸された樹脂フィルムの融点は、延伸されるまでの熱履歴と延伸配向による結晶化により、これを構成する熱可塑性樹脂の一般的な融点(JIS K7121-1987による測定)よりも、高い融点となっている場合があるため、応力緩和処理の処理温度はTma+8℃の温度以下がより好ましく、Tma+5℃の温度以下がさらに好ましく、Tma+3℃の温度以下が特に好ましい。また、応力緩和処理における樹脂フィルムの処理時間としては、1~300秒の範囲であることが好ましい。
 延伸倍率は、特に限定されず、樹脂フィルムに用いる熱可塑性樹脂の延伸特性や目的の空孔率等を考慮して適宜決定すればよい。例えば主要な熱可塑性樹脂としてプロピレン単独重合体又はその共重合体を使用する場合の延伸倍率は、一軸方向に延伸する場合は1.2倍以上が好ましく、2倍以上がより好ましい。一方、同延伸倍率は、12倍以下が好ましく、10倍以下がより好ましい。また、二軸方向に延伸する場合には、面積延伸倍率(縦倍率と横倍率の積)で1.5倍以上が好ましく、4倍以上がより好ましい。一方、同面積延伸倍率は、60倍以下が好ましく、50倍以下がより好ましい。
 その他の熱可塑性樹脂を使用する場合の延伸倍率は、一軸方向に延伸する場合は1.2倍以上が好ましく、2倍以上がより好ましい。一方、同延伸倍率は、10倍以下が好ましく、5倍以下がより好ましい。また、二軸方向に延伸する場合には面積延伸倍率で1.5倍以上が好ましく、4倍以上がより好ましい。一方、同面積延伸倍率は、20倍以下が好ましく、12倍以下がより好ましい。
 多孔性樹脂フィルムにおいて二軸方向に延伸する場合には、縦倍率と横倍率をできる限り同倍率に設定することが、電荷の蓄積をしやすい円盤状の空孔を形成し、任意方向の断面で観察した空孔の形状又は頻度を上述した好ましい範囲に調整しやすい。そのため二軸方向に延伸する場合には、縦倍率と横倍率との比(縦倍率/横倍率)が、0.40以上であることが好ましく、0.45以上であることがより好ましく、0.50以上であることが特に好ましい。一方、縦倍率と横倍率との比(縦倍率/横倍率)は、2.5以下であることが好ましく、2.0以下であることがより好ましく、1.5以下であることがさらに好ましく、1.3以下であることが特に好ましい。また延伸速度は、安定な延伸成形の観点から、10~350m/分であることが好ましい。
 本発明のエネルギー変換フィルムの製造方法は、特定の濾過フィルターを用いて樹脂組成物の混練物を濾過する濾過工程、及び樹脂フィルムを延伸するときに、延伸度合いを特定の割合に緩める応力緩和処理の両方を行うことが特徴である。下記実施例でも示す通り、これらの処理を両方行うことで、両方の効果が相まって、面内における圧電性能のばらつきがなく、面内における性能の均一性に優れたエネルギー変換フィルムを製造することができる。
<酸化処理>
 本発明においては、多孔性樹脂フィルムの一方の表面又は両面に酸化処理を行ってもよい。また、酸化処理した後、洗浄処理する工程、及び洗浄後乾燥処理する工程を施してもよい。
 酸化処理としては、表面の酸素原子濃度を高めることができるのであれば特に限定されず、公知の酸化処理を用いることができる。具体的な酸化処理としては、例えば誘電体バリア放電処理、フレーム処理、オゾン処理等が挙げられる。
 図5は、エネルギー変換フィルム1の製造工程の一例を示す。なお、この製造工程は一例であり、フィルムの層構成、延伸軸数等によって工程が異なる。
 図5に示す例によれば、3つの混練押出機29~31により、樹脂組成物が混練されて押し出される。次に押出機32~34により3層構造のエネルギー変換フィルム1を製造できる。例えば、各層の樹脂組成物の混練物が3つの押出機32~34によってそれぞれ押し出され、フィードブロック35においてスキン層、コア層、スキン層の順に積層されてTダイ36から共押出しされる。
 共押出しされたスキン層/コア層/スキン層の積層フィルムは、冷却ロール37により冷却され、延伸装置38により縦方向(MD)に延伸された後、さらに延伸装置39により横方向(TD)に延伸される。延伸されたフィルムは、適宜設定されてもよい酸化処理装置40を経由して、巻取ロール41として巻き取られる。
<加圧処理>
 多孔性樹脂フィルムは加圧処理によって、内部の空孔をさらに膨張させることが可能である。加圧処理は多孔性樹脂フィルムを圧力容器に入れて、容器内を非反応性ガスで加圧することにより空孔内に非反応性ガスを浸透させた後、多孔性樹脂フィルムを非加圧下に解放することで行う。
 使用する非反応性ガスの具体的な例としては、アルゴン、ヘリウム等の不活性ガス、窒素、二酸化炭素又はこれらの混合ガス、空気等が挙げられる。非反応性ガス以外の気体を使用した場合でも膨張効果は得られるが、加圧処理中の安全性及び多孔性樹脂フィルムの安全性の観点から、非反応性ガスを用いることが望ましい。加圧処理時の処理圧力は、特に限定されないが、好ましくは0.2~10MPa、より好ましくは0.3~8MPa、さらに好ましくは0.4~6MPaの範囲である。0.2MPa以上であると圧力が十分であり、十分な膨張効果が得られやすい。一方、10MPa以下であると多孔性樹脂フィルムを非加圧下に解放する際に、空孔壁が内圧に耐え切れず破断することを抑えて、空孔が独立孔の状態を保ちやすい。加圧処理の処理時間は、特に限定されないが、好ましくは1時間以上、より好ましくは1~50時間の範囲である。本発明の多孔性樹脂フィルムの場合、処理時間が1時間以上であると空孔内に非反応性ガスを充分に充満させることができる。なお、1時間未満で空孔内に非反応性ガスが充分に充満するような多孔性樹脂フィルムでは、後述の加熱処理を施している間に非反応性ガスが散逸してしまい安定した膨張効果が得られ難い傾向にある。
 多孔性樹脂フィルムの巻取りロールを加圧処理する場合は、非反応性ガスが巻取りロール内部まで浸透しやすいように、緩衝シートと一緒に巻取ってから加圧処理することが望ましい。緩衝シートとしては、例えば発泡ポリスチレンシート、発泡ポリエチレンシート、発泡ポリプロピレンシート、不織布、織布、紙等の連通した空隙を持つシートが挙げられる。
<加熱処理>
 加圧処理を施した多孔性樹脂フィルムは、その膨張効果を維持する観点から、加熱処理を施すことが好ましい。加圧処理を行い非加圧下に解放することにより多孔性樹脂フィルムは膨張する。しかしながら、そのまま放置すると、空孔内に浸透した非反応性ガスが次第に抜けてしまい、多孔性樹脂フィルムは元の厚みに戻ってしまう場合がある。そこで、膨張した多孔性樹脂フィルムに加熱処理を行って熱可塑性樹脂の結晶化を促進することにより、空孔内部が大気圧に下がった後でも、その膨張効果を維持させることが望ましい。
 加熱処理は、多孔性樹脂フィルムの主要な熱可塑性樹脂のガラス転移点以上、結晶部の融点以下の温度範囲内で行うことができる。具体的には、例えば主要な熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)の場合は80~160℃の範囲内である。また、加熱方法は、公知の手法を用いることができる。具体的な例としては、ノズルからの熱風による熱風加熱、赤外線ヒーターによる輻射加熱、温調機能付きのロールによる接触加熱等が挙げられるが、これらに特に限定されない。なお、加熱処理中は多孔性樹脂フィルムの弾性率が低下し加重がかかると空孔が潰れやすいことから、熱風加熱や輻射加熱等の非接触方式の加熱処理が、高い膨張倍率を維持しやすい傾向にある。
<エレクトレット化処理>
 エレクトレット化処理は、エネルギー変換フィルムに対し、電荷を注入する処理である。
 エレクトレット化処理としては、いくつかの処理方法が挙げられる。例えば、フィルムの両面を導電体で保持し、直流高電圧又はパルス状高電圧を加えるエレクトロエレクトレット化法方法や、フィルムにγ線や電子線を照射してエレクトレット化するラジオエレクトレット化法等が公知である。
 これらのなかでも、直流高電圧放電を用いたエレクトロエレクトレット化法は装置が小型であり、かつ作業者や環境への負荷が小さく、多孔性樹脂フィルムのような高分子材料のエレクトレット化処理に適しており、好ましい。
 図6は、エレクトレット化装置の一例として、直流高電圧放電によるエレクトレット化装置を示す。図6に示すように、このエレクトレット化装置は、直流高圧電源10に接続された針状電極11とアース電極12の間に、エネルギー変換フィルム1を固定し所定の電圧を印加する。電圧の印加により、エネルギー変換フィルム1は、フィルム内部に多くの電荷を蓄積することができる。
 エレクトレット化処理時の印加電圧は、フィルムの厚み、空孔率、用いる熱可塑性樹脂や空孔形成剤の材質、処理速度、用いる電極の形状や材質、大きさ、エネルギー変換フィルムにおいて所望する帯電量等を考慮して適宜設定すればよい。印加電圧としては、特に限定されないが、5kV以上が好ましく、6kV以上がより好ましく、7kV以上がさらに好ましい。上記下限値以上とすることにより、十分な電荷量が注入でき、望ましい圧電性能が発揮されやすい傾向にある。一方、エレクトレット化処理の印加電圧は、100kV以下が好ましく、70kV以下がより好ましく、50kV以下がさらに好ましい。上記上限値以下とすることにより、エレクトレット化処理時に局所的な火花放電が発生してフィルムにピンホール等の部分的な破壊が発生する現象や、エレクトレット化処理時にフィルム表面から端面を伝いアース電極へ電流が流れてエレクトレット化処理の効率が悪化する現象を回避しやすい傾向にある。
 エレクトレット化処理時の処理温度は、適宜設定すればよく、特に限定されないが、エネルギー変換フィルムに用いる主要な熱可塑性樹脂のガラス転移点以上、結晶部の融点以下で行うことが好ましい。処理温度がガラス転移点以上であれば、熱可塑性樹脂の非晶質部分の分子運動が活発であり、与えられた電荷に適した分子配列をなすため、効率が良いエレクトレット化処理が可能となる。またエネルギー変換フィルムが金属石鹸を含有する場合、処理温度が金属石鹸の融点以上であれば、金属石鹸分子もまた与えられた電荷に適した配列をなすため、より効率が良いエレクトレット化処理が可能となる。一方、エネルギー変換フィルム自体がその構造を維持できず、目的の性能を得ることが困難になることを避けるため、処理温度はエネルギー変換フィルムに用いる主要な熱可塑性樹脂の融点を超えないことが好ましい。
 エレクトレット化処理においては、意図して又は意図せずに、エネルギー変換フィルムに過剰の電荷を注入する場合がある。この場合は、エレクトレット化処理後にエネルギー変換フィルムが放電を起こし、後加工プロセスで不都合を引き起こすことを防ぐ観点から、エレクトレット化処理後に余剰電荷の除電処理を行うことが好ましい。
 除電処理としては、電圧印加式除電器(イオナイザ)や自己放電式除電器等を利用した公知の手法を用いることができる。これら一般的な除電器を用いた除電処理では、エネルギー変換フィルムの表面電荷は除去できるが、フィルム内部、特にコア層の空孔内に蓄積した電荷までは完全に除去することはできない。したがって、除電処理によりエレクトレット材料の性能が大きく低下することはない。そのため、このような除電処理を行なってフィルム表面の余剰電荷を除去することにより、エネルギー変換フィルムの放電現象の防止が可能となる。
[エネルギー変換素子の製造方法]
 本発明のエネルギー変換素子の製造方法は、上記エネルギー変換フィルムの製造方法により製造されたエネルギー変換フィルムに対し、少なくとも一方の面に電極を形成する方法である。
(エネルギー変換素子)
 本発明に係るエネルギー変換素子は、上述したエネルギー変換フィルムと、当該エネルギー変換フィルムの少なくとも一方の表面に設けられた電極とを備える。本発明に係るエネルギー変換素子は、電力又は電気信号の入出力を行うが、この入出力をより効率的に行う観点からは、通常、エネルギー変換フィルムの両面に1対の電極が設けられることが好ましい。
 図7は、本発明に係るエネルギー変換素子の一実施形態として、図1に示すエネルギー変換フィルム1を含むエネルギー変換素子5の構成を示す。
 図7に示すように、エネルギー変換素子5は、エネルギー変換フィルム1と、その一方の表面に電極6とを備える。エネルギー変換素子5は、エネルギー変換フィルム1のもう一方の表面に電極7を備えることができる。
 電極の設置タイミングは、特に限定されず、例えばエレクトレット化処理の前でも後でもよい。エレクトレット化処理後の場合、エレクトレット化処理時の、電極を介した注入電荷の一部放散を防ぐことが可能である。しかしながら、その後の電極設置の際に、フィルムに熱等の負荷が加わると注入電荷の一部が放散し、圧電性能が若干低下する場合がある。現状では最終的に得られるエネルギー変換素子の性能から判断して、エレクトレット化処理前のエネルギー変換フィルムに対して、該フィルムの少なくとも一方の表面にあらかじめ電極を設けて、その後に上述のエレクトレット化処理を行うことが好ましい。
<電極の種類及び電極の形成方法>
 電極としては、金属粒子、導電性金属酸化物粒子、カーボン系粒子、又は導電性樹脂等の公知の導電性材料によって形成された薄膜が挙げられる。また、電極としては、導電性塗料の印刷又は塗工による塗膜、金属蒸着膜等が挙げられる。
 導電性材料としては、例えば金、銀、白金、銅、ケイ素等の金属粒子;スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、フッ素ドープ酸化スズ(FTO)、アルミニウムドープ酸化亜鉛等の導電性金属酸化物粒子;グラファイト、カーボンブラック、ケッチェンブラック、カーボンナノフィラー、カーボンナノチューブ等のカーボン系粒子等を、バインダー樹脂成分の溶液又は分散液に混合した材料が挙げられる。バインダー樹脂成分としては、例えばアクリル系樹脂、ウレタン系樹脂、エーテル系樹脂、エステル系樹脂、エポキシ系樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合体、アミド樹脂、メラミン樹脂、フェノール樹脂、ビニルアルコール樹脂、変性ポリオレフィン樹脂等が挙げられる。また、導電性材料としては、ポリアニリン系樹脂、ポリピロール系樹脂、ポリチオフェン系樹脂等の導電性樹脂の溶液又は分散液等も挙げられる。
 導電性材料のインクを用い、印刷により電極を設ける場合の印刷方式としては、例えばスクリーン印刷、フレキソ印刷、グラビア印刷、インクジェット印刷、凸版印刷、オフセット印刷等が挙げられる。また、導電性材料の塗料を用い、塗工により電極を設ける場合の塗工装置としては、例えばダイコーター、バーコーター、コンマコーター、リップコーター、ロールコーター、カーテンコーター、グラビアコーター、スプレーコーター、ブレードコーター、リバースコーター、エアーナイフコーター等が挙げられる。
 金属蒸着膜としては、例えばアルミニウム、亜鉛、金、銀、白金、ニッケル等の金属を減圧下で気化してエネルギー変換フィルムの表面に蒸着させ、当該表面に直接形成した金属薄膜の他、ポリエチレンテレフタレート(PET)フィルム等の担体上にアルミニウム、亜鉛、金、銀、白金、ニッケル等の金属を蒸着して形成された金属薄膜であって、エネルギー変換フィルムの表面に転写された金属薄膜等が挙げられる。
 電極は、ポリエチレンテレフタレートフィルムやポリプロピレンフィルム等の誘電体フィルム上に上記導電性塗料の塗膜や金属蒸着膜等の電極があらかじめ形成された積層体を、電極が外側となるようにエネルギー変換フィルムと貼合することによって、設けられてもよい。貼合方式としては、例えばドライラミネート、ウエットラミネート、押出しラミネート等の公知の方法が挙げられる。
 電極の厚みは、特に限定されないが、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましい。また、電極の厚みは、200μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることさらに好ましい。
<電極の表面抵抗率>
 電極の表面抵抗率は、電力の入出力を容易に行う趣旨から、1×10-3Ω/□以上であることが好ましく、1×10-1以上が好ましい。1×10-3Ω/□以上の電極を設ける場合であって、電極を塗工で設ける場合は、電極を厚く設ける必要がなく、塗工した後の乾燥、焼結時の熱によって多孔性樹脂フィルムの空孔が潰れたり、多孔性樹脂フィルムが熱収縮したりする変形を抑えることができる。また、電極を金属蒸着で設ける場合も、蒸着される金属の熱によるフィルム変形を抑えることができる。一方、電極の表面抵抗率は、9×10Ω/□以下であることが好ましく、9×10Ω/□以下がより好ましい。電極の抵抗値が9×10Ω/□以下であれば、電気信号の伝達効率が高く、電気及び電子入出力装置用材料としての性能が上昇する傾向にある。
 本明細書において、電極の表面抵抗率は、JIS K7194:1994「導電性プラスチックの4探針法による抵抗率試験方法」にしたがって、4探針法により測定した抵抗値から下記式(4)に基づいて算出した値とする。
(4) Ke=F×R
 Ke:表面抵抗率(Ω/□)
 F :補正係数(JIS K7194に記載)
 R :抵抗値(Ω)
<平面視面積>
 本発明に係るエネルギー変換フィルム及びエネルギー変換素子は、多孔性樹脂フィルムを用いているため、電気-機械エネルギー変換用材料として従来から汎用されている半導体材料等とは異なり、比較的に低コストであり、例えばフィルムの平面視で10~50,000cm程度の大面積化も容易である。大面積のエネルギー変換フィルム及びエネルギー変換素子を構成する場合、その平面視面積は、所望する性能や設置箇所の物理的な制約等を考慮して適宜設定すればよく、特に限定されないが、20~30,000cmが好ましく、50~25,000cmがより好ましい。
<発生電圧>
 エネルギー変換素子は、衝撃により発生する発生電圧(平均値)が、エネルギー変換素子の実用性能面の観点から、10mV以上であることが好ましく、30mV以上であることがより好ましく、50mV以上であることがさらに好ましく、100mV以上であることが特に好ましい。上限値は特に限定されないが、1000mV以下であることが好ましく、700mV以下であることがより好ましく、500mV以下であることがさらに好ましく、300mV以下であることが特に好ましい。
 上記発生電圧は、落球試験により測定することができる。具体的には、温度23℃、相対湿度50%の環境下で、水平面上に静置したエネルギー変換素子上に、垂直方向8mmの高さから直径9.5mm、質量3.5gの鉄球を自然落下させたときの衝撃により発生する発生電圧を10回測定して、その発生電圧の平均値を算出した値を発生電圧とする。
 本発明のエネルギー変換フィルムは、面内における圧電性能のばらつきがなく、面内における圧電性能の均一性が高い。具体的には、落球試験による発生電圧の変動値が7以下のエネルギー変換フィルムが得られる。本発明のエネルギー変換フィルムの、落球試験による発生電圧の変動値は、好ましくは5未満である。発生電圧の変動値は低いほうが好ましいが、下限値は通常1程度である。なお発生電圧の変動値の測定方法は、後述する実施例に記載の通りである。
 結果として、本発明のエネルギー変換フィルムを用いることにより、例えば大面積のエネルギー変換素子を形成した場合であっても、面内における性能のばらつきがなく圧電性能のばらつきがないエネルギー変換素子を得ることができる。
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。
った。
(樹脂組成物a)
 プロピレン単独重合体(日本ポリプロ株式会社製、商品名:ノバテックPP FY4、MFR(230℃、2.16kg荷重):5g/10分、融点:162℃、密度:0.91g/cm)71.8質量部、高密度ポリエチレン(日本ポリエチレン株式会社製、商品名:ノバテックHD HJ360、MFR(190℃、2.16kg荷重):5.5g/10分、融点:131℃、密度:0.95g/cm)10質量部、重質炭酸カルシウム粉末(備北粉化工業株式会社製、商品名:BF100、平均粒径10.1μm(メディアン径D50)、密度:2.7g/cm)18質量部、及び分散剤としてオレイン酸(商品名:ルナックOA、花王株式会社製)0.2質量部を混合し、210℃に設定した二軸混練機にて溶融混練した。次いで、230℃に設定した混練押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して、樹脂組成物aのペレットを作製した。
 尚、上記混練押出機のブレーカープレートの手前には、濾過粒度が360μmの濾過フィルターを設置した。
(樹脂組成物b)
 プロピレン単独重合体(日本ポリプロ株式会社製、商品名:ノバテックPP FY4、MFR(230℃、2.16kg荷重):5g/10分、融点:162℃、密度:0.91g/cm)71.8質量部、高密度ポリエチレン(日本ポリエチレン株式会社製、商品名:ノバテックHD HJ360、MFR(190℃、2.16kg荷重):5.5g/10分、融点:131℃、密度:0.95g/cm)10質量部、重質炭酸カルシウム粉末(備北粉化工業株式会社製、商品名:BF100、平均粒径10.1μm(メディアン径D50)、密度:2.7g/cm)18質量部、及び分散剤としてオレイン酸(商品名:ルナックOA、花王株式会社製)0.2質量部を混合し、210℃に設定した二軸混練機にて溶融混練した。次いで、230℃に設定した混練押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して、樹脂組成物bのペレットを作製した。
 尚、上記混練押出機のブレーカープレートの手前には、濾過粒度が125μmの濾過フィルターを設置した。
(樹脂組成物c)
 プロピレン単独重合体(日本ポリプロ株式会社製、商品名:ノバテックPP FY4、MFR(230℃、2.16kg荷重):5g/10分、融点:162℃、密度:0.91g/cm)99質量部、及び重質炭酸カルシウム粉末(備北粉化工業株式会社製、商品名:BF100、平均粒径10.1μm(メディアン径D50)、密度:2.7g/cm)1質量部を混合し、210℃に設定した二軸混練機にて溶融混練した。次いで、230℃に設定した混練押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して、樹脂組成物cのペレットを作製した。
 尚、上記混練押出機のブレーカープレートの手前には、濾過粒度が150μmの濾過フィルターを設置した。
 下記表2に、樹脂組成物a~cの組成、及び樹脂組成物a~cの混練物を濾過した際に使用した濾過フィルターの仕様を示す。
Figure JPOXMLDOC01-appb-T000002
(多孔性樹脂フィルムの製造例)
 下記表3に記載のスキン層1用の樹脂組成物、コア層用の樹脂組成物、及びスキン層2用の樹脂組成物のペレットを、3台の押出機のフィーダーにそれぞれ投入し、230℃で溶融混練した後、250℃に設定したフィードブロック式多層ダイに供給して、スキン層/コア層/スキン層の積層順となるように積層してシート状に押し出した。これを冷却装置により60℃まで冷却して、3層構成の無延伸シートを得た。尚、コア層の押出機とフィードブロックの間にスクリーンチェンジャーを設置し、表3に記載の押出工程濾過フィルターを配置した。またスキン層1およびスキン層2の押出機の出口手前にあるブレーカープレート手前に、押出工程濾過フィルターとして平たたみ織#120を配置した。
 得られた無延伸シートを、加熱ロールを用いて表3に記載の縦方向の温度に加熱し、ロール群の周速差を利用して縦方向(MD方向)に表3に記載の縦方向の倍率で延伸して一軸延伸シートを得た。次いで、得られた一軸延伸シートを60℃まで冷却し、表3に記載の延伸温度とレールパターン(表1に記載のレールパターンに対応)に設定した、テンターを用いて横方向(TD方向)に表3に記載の横方向の倍率で延伸した。その後、表3に記載の緩和温度と緩和機械倍率で応力緩和処理を行い二軸延伸シートを得た。
 得られた二軸延伸シートを60℃まで冷却し、耳部をスリットした後、両面に誘電体バリア放電による表面酸化処理を施し、表3に記載の物性を有する実施例1~5、比較例1~4のエネルギー変換フィルムを得た。
Figure JPOXMLDOC01-appb-T000003
(実施例1)
 以下のようにして、エネルギー変換素子を作製した。
<エネルギー変換素子の製造>
 厚みが12μmのPETフィルム(商品名:E5200、東洋紡社製)にロールトゥロール方式の真空蒸着装置を用いて、1×10-2Paの真空条件で、蒸着膜の厚みが30nmになる様にアルミニウム蒸着を行い、蒸着面の表面抵抗率が1Ω/□の金属蒸着フィルムを作製した。一方、ポリエステル系接着剤(商品名:ROBOND L-292、東洋モートン社製、固形分濃度45質量%)100部と、イソシアネート系硬化剤(商品名:ROBOND CR3A、東洋モートン社製、固形分濃度100質量%)2部と、水55部とを混合して、固形分濃度が30質量%の接着剤塗料を作製した。
 図8に記載の貼合装置を用いて、先に作製した金属蒸着フィルム42の蒸着処理がされていない面にグラビアコーター44を用いて乾燥後の塗工量が2g/mとなるように接着剤塗料を塗工し80℃のオーブン46で乾燥後、エネルギー変換フィルム41とニップロール(47及び48)で圧着して、片面に導電層を備えたエネルギー変換フィルム43を得た。
 図9の概略図で示す製造装置を用い、上記片面に導電層を備えたエネルギー変換フィルム43を巻き出し、導電層を設置していない面に、コロナ処理装置49を用いて、直流式のコロナ放電による電荷注入処理を実施して、エレクトレット化されたエネルギー変換フィルム51を得た。
 電荷注入処理の条件としては、図9中の針状電極50と対電極ロール45の距離を1cmに設定し、放電電圧を12kVとし、処理幅を300mmとし、処理速度を10m/minとした。
 図10に記載の貼合装置を用いて、先に作製した金属蒸着フィルム42の蒸着処理がされていない面にグラビアコーター44を用いて乾燥後の塗工量が2g/mとなるように接着剤塗料を塗工し80℃のオーブン46で乾燥後、エレクトレット化されたエネルギー変換フィルム51の金属蒸着フィルムを設けていない面とニップロール(47及び48)で圧着して、両面に導電層を備えたエネルギー変換フィルム52を得た。
 得られた導電層を備えたエネルギー変換フィルム52を幅300mm、長さ3mに切り出して、性能評価用サンプルを作製した。
(実施例2~5、比較例1~4)
 実施例1と同様にして、実施例2~5及び比較例1~4のエネルギー変換フィルムに対しても、両面に導電層を備えたエレクトレット化されたエネルギー変換フィルムを得て、さらに性能評価用サンプルを作製した。
(エネルギー変換素子に使用したときの性能)
 各実施例及び比較例のエネルギー変換素子を製造し、エネルギー変換素子の発電性能を評価した。
<発生電圧>
 図11に示す落球試験装置を用いて、温度23℃、相対湿度50%環境下で、発生電圧を測定した。まず、横30cm×縦3mの性能評価用サンプル20(エネルギー変換フィルム5)の表裏面の電極に、導電性テープ(商品名:AL-25BT、住友スリーエム社製)を使用してリード線17及び18の一端をそれぞれ貼り付け、リード線17及び18の他端を高速レコーダー19(商品名:GR-7000、キーエンス社製)に接続した。
 次いで、図11に示す落球試験装置の絶縁性シート15(軟質塩化ビニルシート、厚み1mm)の上に表面を上にして性能評価用サンプル20を設置した。同試料20の上面にガラス板14(厚み8mm)を乗せ、同ガラス板14上に直径9.5mm、質量3.5gの鉄球16を乗せた。
 次いでガラス板14上から鉄球16を性能評価用サンプル20上に垂直方向8mmの高さから自然落下させ、同性能評価用サンプル20からの電圧信号を高速レコーダー19に取り込み、落球の衝撃により発生した発生電圧を1測定点あたり5回測定して、その発生電圧(mV)の平均値を1測定点の代表値として用いた。この測定を性能評価用サンプルの幅方向3点、流方向30点の計90点を測定し、90点の平均値(Ave)、標準偏差(σ)、変動率(CV=σ/Ave*100)を算出した。
 表4は、実施例1~5及び比較例1~4のエネルギー変換素子の発生電圧を測定した評価結果を示す。
 変動率CVは、下記判定基準により評価した。
  ◎  5未満
  〇  5~7
  ×  7より大きい
Figure JPOXMLDOC01-appb-T000004
 表4で示すように、実施例のエネルギー変換フィルムであれば、大面積のエネルギー変換素子を形成した場合であっても、面内における性能のばらつきがなく、面内における性能の均一性に優れたものとなることがわかった。
 本出願は、2019年8月2日に出願された日本特許出願である特願2019-143297号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。
1・・・エネルギー変換フィルム、2・・・コア層、3,4・・・スキン層、5・・・エネルギー変換素子、6,7・・・電極

 

Claims (7)

  1.  多孔性樹脂フィルムであるエネルギー変換フィルムの製造方法であって、
     熱可塑性樹脂と空孔形成剤とを含む樹脂組成物を混練し、得られた混練物を押し出す混練工程と、
     前記混練物をフィルム状に押し出すことで無延伸の樹脂フィルムを形成する押出工程と、
     前記無延伸の樹脂フィルムを、少なくとも一軸方向に延伸する延伸工程と、を含み、
     前記混練工程及び前記押出工程の少なくとも一方が、濾過粒度が40~300μmである濾過フィルターを用いて、前記混練物を濾過する工程を含み、
     前記延伸工程が、延伸軸方向に樹脂フィルムを延伸させる度合いを、前記延伸工程の途中で緩める、応力緩和処理を含み、
     前記延伸軸方向に樹脂フィルムを延伸させた際の延伸度合いの最大値(A)と、前記応力緩和処理により延伸度合いを低下させたときの延伸度合いの値(B)を用いて下記式(1)により計算した結果が、-10.0~-0.1%を満たす、
     (1)  (B-A)/A
     ことを特徴とする、エネルギー変換フィルムの製造方法。
  2.  前記濾過フィルターが、平織金網、綾織金網、平たたみ織金網、又は綾たたみ織金網である、請求項1に記載のエネルギー変換フィルムの製造方法。
  3.  前記応力緩和処理における樹脂フィルムの処理温度が、Tma-20℃の温度以上、Tma+10℃の温度以下である、請求項1または2に記載のエネルギー変換フィルムの製造方法。但し、前記樹脂フィルムを構成する前記熱可塑性樹脂のうち、最も含有量が多い熱可塑性樹脂の融点TmをTmaとする。
  4.  前記応力緩和処理における樹脂フィルムの処理時間が、1~300秒である、請求項1~3のいずれか一項に記載のエネルギー変換フィルムの製造方法。
  5.  前記空孔形成剤が、フィラー又は発泡剤である、請求項1~4のいずれか一項に記載のエネルギー変換フィルムの製造方法。
  6.  請求項1~5のいずれか一項に記載のエネルギー変換フィルムの製造方法により製造されたエネルギー変換フィルムに対し、前記エネルギー変換フィルムの少なくとも一方の面に電極を形成することを特徴とするエネルギー変換素子の製造方法。
  7.  熱可塑性樹脂と空孔形成剤と含む多孔性樹脂フィルムからなり、落球試験による発生電圧の変動値が7以下である、エネルギー変換フィルム。

     
PCT/JP2020/028953 2019-08-02 2020-07-29 エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法 WO2021024868A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537251A JP7240504B2 (ja) 2019-08-02 2020-07-29 エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019143297 2019-08-02
JP2019-143297 2019-08-02

Publications (1)

Publication Number Publication Date
WO2021024868A1 true WO2021024868A1 (ja) 2021-02-11

Family

ID=74503635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028953 WO2021024868A1 (ja) 2019-08-02 2020-07-29 エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法

Country Status (2)

Country Link
JP (1) JP7240504B2 (ja)
WO (1) WO2021024868A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192889A (ja) * 2004-12-14 2006-07-27 Toray Ind Inc 二軸配向白色ポリプロピレンフィルムおよびそれを用いた感熱転写記録用受容シート
WO2010001634A1 (ja) * 2008-07-03 2010-01-07 コニカミノルタエムジー株式会社 有機圧電材料、超音波振動子及び超音波医用画像診断装置
JP2015111641A (ja) * 2013-10-29 2015-06-18 ダイキン工業株式会社 有機圧電フィルム
JP2017055114A (ja) * 2015-09-09 2017-03-16 東レ株式会社 圧縮性ポリオレフィンフィルム、圧電素子、振動素子およびセンサー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192889A (ja) * 2004-12-14 2006-07-27 Toray Ind Inc 二軸配向白色ポリプロピレンフィルムおよびそれを用いた感熱転写記録用受容シート
WO2010001634A1 (ja) * 2008-07-03 2010-01-07 コニカミノルタエムジー株式会社 有機圧電材料、超音波振動子及び超音波医用画像診断装置
JP2015111641A (ja) * 2013-10-29 2015-06-18 ダイキン工業株式会社 有機圧電フィルム
JP2017055114A (ja) * 2015-09-09 2017-03-16 東レ株式会社 圧縮性ポリオレフィンフィルム、圧電素子、振動素子およびセンサー

Also Published As

Publication number Publication date
JP7240504B2 (ja) 2023-03-15
JPWO2021024868A1 (ja) 2021-02-11

Similar Documents

Publication Publication Date Title
JP6771591B2 (ja) エネルギー変換フィルム、及びこれを用いたエネルギー変換素子
JP5638326B2 (ja) エネルギー変換用フィルム
JP6931660B2 (ja) 圧電素子および楽器
JP6205375B2 (ja) 部分的なコーティングを備えた高多孔性セパレータフィルム
KR100927570B1 (ko) 적층 다공성 필름 및 전지용 세퍼레이터
JP5506298B2 (ja) エレクトレット化フィルム
US20140057057A1 (en) Process for producing a laminated porous film
JP5638211B2 (ja) エレクトレット化フィルム
DE102011120474A1 (de) Hochporöse Separator- Folie mit Beschichtung
CN102150225A (zh) 驻极体化薄膜及含有其的驻极体
WO2019189349A1 (ja) エレクトレット化シート及びフィルター
KR20130081645A (ko) 고다공성 분리막 포일
JP2016039275A (ja) エレクトレット材料及びその使用方法、並びにセンサー及びその使用方法
WO2021024868A1 (ja) エネルギー変換フィルム及びその製造方法、並びにエネルギー変換素子の製造方法
CN108623876B (zh) 聚烯烃微多孔膜及聚烯烃微多孔膜的制备方法
WO2021020427A1 (ja) エネルギー変換フィルム、エネルギー変換素子及びエネルギー変換フィルムの製造方法
JP2017071079A (ja) 熱伝導シート、熱伝導シート積層体及び熱伝導シート成形体
WO2010030011A1 (ja) エレクトレット化フィルム及びそれを含むエレクトレット
JP6331556B2 (ja) 積層多孔性フィルム、その製造方法および蓄電デバイス用セパレータ
KR20180069050A (ko) 입자-함유 다공성 층 및 무기 코팅을 갖는 이축 배향 다공성 필름
JP2023094422A (ja) エレクトレット化フィルム及び圧電フィルム
JP2022133991A (ja) エレクトレットフィルムの製造方法及び製造装置
US20220267564A1 (en) Thermoplastic resin film, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851089

Country of ref document: EP

Kind code of ref document: A1