WO2021024615A1 - Readily adhering polyamide film - Google Patents

Readily adhering polyamide film Download PDF

Info

Publication number
WO2021024615A1
WO2021024615A1 PCT/JP2020/023106 JP2020023106W WO2021024615A1 WO 2021024615 A1 WO2021024615 A1 WO 2021024615A1 JP 2020023106 W JP2020023106 W JP 2020023106W WO 2021024615 A1 WO2021024615 A1 WO 2021024615A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
film
resin
layer
acid
Prior art date
Application number
PCT/JP2020/023106
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 遠藤
貢介 濱
考道 後藤
茂知 山本
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020555087A priority Critical patent/JPWO2021024615A1/ja
Publication of WO2021024615A1 publication Critical patent/WO2021024615A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Definitions

  • the present invention relates to a carbon-neutral easy-adhesive polyamide film using a biomass-derived raw material, which is excellent in impact resistance, bending pinhole resistance, friction pinhole resistance, and water adhesion strength with a sealant film. It is a thing.
  • the easy-adhesive polyamide film of the present invention is suitably used for food packaging films and the like.
  • a biaxially stretched film made of an aliphatic polyamide typified by polyamide 6 has excellent impact resistance and bending pinhole resistance, and is widely used as various packaging material films.
  • a film in which a polyamide-based elastomer is mixed with an aliphatic polyamide is known as a means for improving the above-mentioned bending pinhole resistance (see, for example, Patent Document 1).
  • This film has good bending pinhole resistance and impact resistance in a low temperature environment, and pinholes due to bending fatigue are unlikely to occur even in a low temperature environment.
  • pinholes are generated not only by bending but also by friction (rubbing). Pinholes due to bending and methods for improving pinholes due to friction often conflict with each other. For example, when the flexibility of the film is increased, bending pinholes are less likely to occur, but the softening tends to cause pinholes due to friction.
  • a surface coating agent on the outer surface of the biaxially stretched polyamide film, a laminated body for packaging having excellent bending resistance and abrasion resistance pinhole resistance has been proposed (see, for example, Patent Document 2). .. However, this method has little effect of preventing the occurrence of friction pinholes. In addition, a coating process is required.
  • the polyamide-based elastomer added at the time of film production is thermally deteriorated, so that a deteriorated product called eye tar is likely to be generated at the lip outlet of the die. Then, it was found that the deteriorated product causes deterioration of the accuracy of the film thickness. In addition, there is a problem that the deteriorated product itself drops to produce a defective product, which lowers the production efficiency during continuous film production.
  • the adhesive strength between the laminated films (also referred to as laminating strength) is required to be sufficiently high.
  • Biomass is an organic compound photosynthesized from carbon dioxide and water, and by using it, it becomes carbon dioxide and water again, so-called carbon neutral (the amount of carbon dioxide emitted and absorbed in the environment is the same). Therefore, it is a raw material that can suppress the increase of carbon dioxide, which is a greenhouse gas.
  • the practical use of biomass plastics made from these biomass raw materials has been rapidly progressing, and attempts have been made to produce polyester, which is a general-purpose polymer material, from these biomass raw materials.
  • Patent Document 3 in the field of polyester film, a resin composition containing a polyester composed of a diol unit and a dicarboxylic acid unit, wherein the diol component unit is ethylene glycol derived from biomass and the dicarboxylic acid component unit.
  • resin compositions and films characterized by containing 50 to 95% by mass of polyester, which is a dicarboxylic acid derived from petroleum, with respect to the entire resin composition. According to such a technique, even a polyester produced by using biomass-derived ethylene glycol instead of ethylene glycol obtained from the conventional fossil fuel is equivalent to the case where the conventional fossil fuel-derived ethylene glycol is used. The mechanical properties of are obtained.
  • a carbon-neutral material using a biomass-derived raw material is also required for a polyamide film.
  • the present invention was devised in view of the problems of the prior art.
  • An object of the present invention is that it is excellent in impact resistance, bending resistance, pinhole resistance and friction pinhole resistance, and also has excellent water adhesion resistance to a sealant film, and carbon-neutral easy adhesion using a biomass-derived raw material.
  • the present invention is to provide an axially stretched polyamide film.
  • the present invention has the following configuration.
  • the base material layer (A layer) contains 99 to 70% by mass of the polyamide 6 resin and 1 to 30% by mass of the polyamide resin in which at least a part of the raw material is derived from biomass, and the functional layer (B layer) contains 70% by mass of the polyamide 6 resin. Including the above.
  • the content of biomass-derived carbon as measured by radiocarbon (C 14 ) is 1 to 15% of the total carbon in the biaxially stretched polyamide film [1] or [2]. ]
  • the polyamide resin from which at least a part of the raw material is derived from biomass is at least one polyamide resin selected from the group consisting of polyamide 11, polyamide 410, polyamide 610, and polyamide 1010 [1].
  • the easily adhesive polyamide film according to any one of. [5] The easily adhesive polyamide film according to any one of [1] to [4], which satisfies the following (a) and (b).
  • the distance to the occurrence of a pinhole in the friction-resistant pinhole test is 2900 cm or more.
  • the easily adhesive polyamide film of the present invention has impact resistance by blending a polyamide resin polymerized from a specific biomass-derived raw material with a polyamide 6 resin as a main component and adopting specific film forming conditions.
  • a carbon-neutral polyamide film can be obtained while exhibiting bending-resistant pinhole resistance, abrasion-resistant pinhole resistance, and adhesion to a sealant film.
  • the polyamide-based elastomer unlike the conventional polyamide-based elastomer added to improve the bending pinhole resistance, the polyamide-based elastomer does not deteriorate inside the die, so that the deterioration on the inner surface of the die takes a long time. It is possible to suppress the adhesion of objects and the adhesion of pinholes to the die slip outlet.
  • the easy-adhesive polyamide film of the present invention can enable continuous production for a long time. Further, an adhesive modification layer made of any one of a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content is applied to at least one surface of the biaxially stretched polyamide film.
  • the adhesive strength between the laminated films (also called laminating strength) is high, so a packaging bag with less tearing of the bag can be used. Can be provided.
  • the water-resistant laminate strength laminate strength under water adhesion conditions
  • the easy-adhesive polyamide film of the present invention is a biaxially stretched polyamide film or polyamide 6 resin 99 to 70 composed of 99 to 70% by mass of polyamide 6 resin and 1 to 30% by mass of polyamide resin in which at least a part of the raw material is derived from biomass.
  • an adhesive modification layer made of any one of a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content on at least one surface of the above. It is an adhesive polyamide film.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention contains 70% by mass or more of the polyamide 6 resin, so that the biaxially stretched polyamide film made of the polyamide 6 resin originally has excellent impact strength and the like. Mechanical strength and gas barrier properties such as oxygen can be obtained.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention contains 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass, so that the bending pinhole resistance is improved.
  • a polyamide-based elastomer or a polyolefin-based elastomer which is a conventionally used improving agent for bending pinhole resistance
  • the bending pinhole resistance is improved, but the friction pinhole resistance is deteriorated.
  • a biaxially stretched polyamide film having excellent bending pinhole resistance and friction pinhole resistance can be obtained at the same time.
  • a carbon-neutral film that has little effect on the increase or decrease of carbon dioxide on the ground can be obtained.
  • the polyamide 6 resin used in the present invention is usually produced by ring-opening polymerization of ⁇ -caprolactam.
  • the polyamide 6 resin obtained by ring-opening polymerization is usually melt-extruded by an extruder after removing the lactam monomer with hot water and then drying.
  • the relative viscosity of the polyamide 6 resin is preferably 1.8 to 4.5, more preferably 2.6 to 3.2. If the relative viscosity is less than 1.8, the impact strength of the film is insufficient. If it is larger than 4.5, the load on the extruder becomes large and it becomes difficult to obtain an unstretched film before stretching.
  • Polyamide resin at least part of which is derived from biomass
  • examples of the polyamide resin used in the present invention in which at least a part of the raw material is derived from biomass include polyamide 11, polyamide 410, polyamide 610, polyamide 1010, polyamide MXD10 resin, and polyamide 11.6T copolymer resin. Be done.
  • Polyamide 11 is a polyamide resin having a structure in which a monomer having 11 carbon atoms is bonded via an amide bond.
  • Polyamide 11 is usually obtained by using aminoundecanoic acid or undecanelactam as a monomer.
  • aminoundecanoic acid is desirable from the viewpoint of carbon neutrality because it is a monomer obtained from castor oil.
  • the structural unit derived from the monomer having 11 carbon atoms is preferably 50% or more, more preferably 80% or more, and may be 100% of all the structural units in the polyamide 11.
  • the above-mentioned polyamide 11 is usually produced by the polymerization of the above-mentioned aminoundecanoic acid.
  • the polyamide 11 obtained by polymerization has lactam removed with hot water, dried, and then melt-extruded by an extruder.
  • the relative viscosity of the polyamide 11 is preferably 1.8 to 4.5, more preferably 2.4 to 3.2. If the relative viscosity is less than 1.8, the impact strength of the film is insufficient. If it is larger than 4.5, the load on the extruder becomes large and it becomes difficult to obtain an unstretched film before stretching.
  • the above-mentioned polyamide 610 is a polyamide resin having a structure in which a diamine having 6 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized. Hexamethylenediamine and sebacic acid are usually used. Of these, sebacic acid is desirable from the viewpoint of carbon neutrality because it is a monomer obtained from castor oil.
  • the total of the structural units derived from the monomer having 6 carbon atoms and the structural units derived from the monomer having 10 carbon atoms is 50% of the total structural units in PA610. The above is preferable, 80% or more is more preferable, and it may be 100%.
  • the above-mentioned polyamide 1010 is a polyamide resin having a structure in which a diamine having 10 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized.
  • 1,10-decanediamine (decamethylenediamine) and sebacic acid are used for the polyamide 1010.
  • Decamethylenediamine and sebacic acid are desirable from the viewpoint of carbon neutrality because they are monomers obtained from castor oil.
  • the total of the structural units derived from diamine having 10 carbon atoms and the structural units derived from dicarboxylic acid having 10 carbon atoms is preferably 50% or more of all the structural units in PA1010. , 80% or more is more preferable, and it may be 100%.
  • the above-mentioned polyamide 410 is a polyamide resin having a structure in which a monomer having 4 carbon atoms and a diamine having 10 carbon atoms are copolymerized.
  • sebacic acid and tetramethylenediamine are used for the polyamide 410.
  • the sebacic acid those made from castor oil, which is a vegetable oil, are preferable from the viewpoint of the environment.
  • the sebacic acid used here one obtained from castor oil is desirable from the viewpoint of environmental protection (particularly from the viewpoint of carbon neutrality).
  • the upper limit of the content of the polyamide resin in which at least a part of the raw material is derived from biomass in the biaxially stretched polyamide film or the base material layer (A layer) in the present invention is 30% by mass, more preferably 20% by mass. If the content of the polyamide resin in which at least a part of the raw material is derived from biomass exceeds 30% by mass, the molten film becomes unstable when casting the molten film, and it becomes difficult to obtain a homogeneous unstretched film.
  • the biaxially stretched polyamide film or base material layer (layer A) in the present invention includes other thermoplastic resins, lubricants, heat stabilizers, antioxidants, antistatic agents and antifogging agents, ultraviolet absorbers, dyes, and pigments.
  • Various additives such as the above can be contained as needed.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention has heat in addition to the above-mentioned polyamide 6 and a polyamide resin in which at least a part of the raw material is derived from biomass, as long as the object of the present invention is not impaired.
  • a plastic resin can be included.
  • polyamide-based resins such as polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, polyamide 6/66 copolymer resin, and polyamide MXD6 resin can be mentioned.
  • thermoplastic resin other than polyamide-based for example, a polyester-based polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyolefin-based polymer such as polyethylene or polypropylene may be contained. Good. It is preferable that the raw materials of these thermoplastic resins are derived from biomass because they do not affect the increase or decrease of carbon dioxide on the ground and can reduce the environmental load.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention preferably contains an organic lubricant such as fine particles or fatty acid amide as a lubricant in order to improve slipperiness and facilitate handling.
  • the biaxially stretched polyamide film in the present invention also has the effect of reducing the breakage of the packaging bag due to friction by improving the slipperiness.
  • inorganic fine particles such as silica, kaolin and zeolite, and polymer organic fine particles such as acrylic and polystyrene can be appropriately selected and used. From the viewpoint of transparency and slipperiness, it is preferable to use silica fine particles.
  • the average particle size of the fine particles is preferably 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m. If the average particle size is less than 0.5 ⁇ m, a large amount of addition is required to obtain good slipperiness. On the other hand, if it exceeds 5.0 ⁇ m, the surface roughness of the film tends to be too large and the appearance tends to be deteriorated.
  • the range of the pore volume of silica is preferably 0.5 to 2.0 ml / g, and more preferably 0.8 to 1.6 ml / g. If the pore volume is less than 0.5 ml / g, voids are likely to occur and the transparency of the film deteriorates, and if the pore volume exceeds 2.0 ml / g, surface protrusions due to fine particles are less likely to occur. Tend.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention may contain fatty acid amide and / or fatty acid bisamide for the purpose of improving slipperiness.
  • the fatty acid amide and / or the fatty acid bisamide include erucic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene bisbehenic acid amide, and ethylene bisoleic acid amide.
  • the content of fatty acid amide and / or fatty acid bisamide in the biaxially stretched polyamide film in the present invention is preferably 0.01 to 0.40% by mass, and more preferably 0.05 to 0.30% by mass.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention has a polyamide MXD6 resin, a polyamide 12 resin, a polyamide 66 resin, a polyamide 6/12 copolymer resin, and a polyamide 6.66 for the purpose of improving slipperiness.
  • a polyamide resin such as a copolymer resin can be added.
  • polyamide MXD6 resin is preferable, and 1 to 10% by mass is preferably added.
  • the biaxially stretched polyamide film or the base material layer (layer A) in the present invention may contain an antioxidant.
  • an antioxidant a phenolic antioxidant is preferable.
  • the phenolic antioxidant is preferably a fully hindered phenolic compound or a partially hindered phenolic compound. For example, tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxy).
  • Phenyl) propionate, 3,9-bis [1,1-dimethyl-2- [ ⁇ - (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] 2,4,8,10- Tetraoxaspiro [5,5] undecane and the like can be mentioned.
  • the film-forming operability of the biaxially stretched polyamide film is improved.
  • thermal deterioration of the resin is likely to occur, which causes poor film formation operation and tends to increase the production cost.
  • thermal deterioration of the resin is suppressed and operability is improved.
  • the functional layer (B layer) can be laminated on at least one surface of the base material layer (A layer) to improve the surface characteristics.
  • the B layer is a layer containing 70% by mass or more of the polyamide 6 resin.
  • the B layer contains 70% by mass or more of the polyamide 6 resin, a biaxially stretched polyamide film having excellent mechanical strength such as impact strength and gas barrier property such as oxygen can be obtained.
  • the polyamide 6 resin the same one as the polyamide 6 resin used in the A layer can be used.
  • the B layer is provided with various additives such as other thermoplastic resins, lubricants, heat stabilizers, antioxidants, antistatic agents and antifogging agents, ultraviolet absorbers, dyes, pigments, etc. on the surface of the B layer. It can be contained according to the function.
  • a soft resin such as a polyamide-based elastomer or a polyolefin-based elastomer or a substance that generates a large amount of voids.
  • the layer B may contain a thermoplastic resin in addition to the above-mentioned polyamide 6 as long as the object of the present invention is not impaired.
  • a thermoplastic resin such as polyamide MXD6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, and polyamide 6/66 copolymer resin can be mentioned.
  • a thermoplastic resin other than polyamide-based for example, a polyester-based polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyolefin-based polymer such as polyethylene or polypropylene may be contained. Good.
  • the B layer contains fine particles, an organic lubricant, or the like as a lubricant in order to improve the slipperiness of the film.
  • an organic lubricant or the like as a lubricant in order to improve the slipperiness of the film.
  • the fine particles it is possible to appropriately select and use from inorganic fine particles such as silica, kaolin and zeolite, and polymer organic fine particles such as acrylic and polystyrene. From the viewpoint of transparency and slipperiness, it is preferable to use silica fine particles.
  • the average particle size of the fine particles is preferably 0.5 to 5.0 ⁇ m, more preferably 1.0 to 3.0 ⁇ m. If the average particle size is less than 0.5 ⁇ m, a large amount of addition is required to obtain good slipperiness. On the other hand, if it exceeds 5.0 ⁇ m, the surface roughness of the film tends to be too large and the appearance tends to be deteriorated.
  • the range of the pore volume of silica is preferably 0.5 to 2.0 ml / g, and more preferably 0.8 to 1.6 ml / g. If the pore volume is less than 0.5 ml / g, voids are likely to occur and the transparency of the film deteriorates. When the pore volume exceeds 2.0 ml / g, surface protrusions due to fine particles tend to be difficult to form.
  • fatty acid amide and / or fatty acid bisamide can be contained.
  • the fatty acid amide and / or the fatty acid bisamide include erucic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene bisbehenic acid amide, and ethylene bisoleic acid amide.
  • the content of the fatty acid amide and / or the fatty acid bisamide added to the layer B is preferably 0.01 to 0.40% by mass, and more preferably 0.05 to 0.30% by mass.
  • the B layer contains polyamide resins other than polyamide 6, such as polyamide MXD6 resin, polyamide 11, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, and polyamide 6.
  • polyamide MXD6 resin is preferable, and 1 to 10% by mass is preferably added. If it is less than 1% by mass, the effect of improving the slipperiness of the film is small. If it is more than 10% by mass, the slipperiness improving effect of the film is saturated.
  • Polyamide MXD6 resin is produced by polycondensation of methylylenediamine and adipic acid.
  • the relative viscosity of the polyamide MXD6 is preferably 1.8 to 4.5, more preferably 2.0 to 3.2. If the relative viscosity is less than 1.8 or greater than 4.5, it may be difficult to knead with the polyamide resin in the extruder.
  • an organic lubricant, or a polyamide resin such as a polyamide MXD6 resin is added to the B layer for the purpose of improving the slipperiness of the film, if the amount of these additions to the base material layer (A layer) is reduced, It is preferable because a film having excellent transparency and excellent slipperiness can be obtained.
  • a polyamide resin other than polyamide 6 can be added to the B layer for the purpose of improving the adhesiveness.
  • a copolymerized polyamide resin such as a polyamide 6/12 copolymer resin and a polyamide 6/66 copolymer resin is preferable.
  • the B layer of the biaxially stretched polyamide film in the present invention can contain an antioxidant in the same manner as the A layer described above.
  • a resin polymerization or an extruder is used as a method of adding an auxiliary material such as a lubricant or an antioxidant or an additive to the biaxially stretched polyamide film or the base material layer (A layer) and the functional layer (B layer) in the present invention. It can be added at the time of melt extrusion in. A high concentration masterbatch may be prepared and the masterbatch may be added to the polyamide resin during film production. This can be done by such a known method.
  • the thickness of the biaxially stretched polyamide film in the present invention is not particularly limited, but when used as a packaging material, it is usually 100 ⁇ m or less, and generally 5 to 50 ⁇ m thick is used, and particularly 8 to 8 to 50 ⁇ m. The one of 30 ⁇ m is used.
  • the thickness of the A layer is preferably 50 to 93%, particularly 70 to 93% of the total thickness of the A layer and the B layer.
  • the easy-adhesive polyamide film of the present invention is adhesively modified by any resin such as a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content on at least one side.
  • the adhesive modification layer is preferably provided by applying and drying a coating liquid before winding the film as a mill roll in the film manufacturing process.
  • the coating liquid can be applied to an unstretched film, a uniaxially stretched film, and / or a biaxially stretched film. When the film is sequentially produced by the biaxial stretching method, the coating liquid is usually applied to the uniaxially stretched film and dried. When the film is produced by simultaneous biaxial stretching, the coating liquid is usually applied to the non-axially stretched film and dried.
  • the coating liquid for providing the adhesive modification layer in the present invention is applied and dried before winding the film as a mill roll in the film manufacturing process to provide the coating film, thus ensuring safety and hygiene in manufacturing. Therefore, it is preferable to use an aqueous dispersion of the resin.
  • a copolymerized polyester resin can be selected as the polyester resin.
  • the copolymerized polyester resin is a polycondensate of a dicarboxylic acid component, a diol component, and other ester-forming components.
  • the dicarboxylic acid component contained in the copolymerized polyester resin as a component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenylenedicarboxylic acid, 5-sodium sulfoisophthalic acid and the like.
  • Aromatic dicarboxylic acids such as succinic acid, succinic acid, adipic acid, azelaic acid, and sebacic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,2-cyclohexanedicarboxylic acid, maleic acid, Examples thereof include unsaturated dicarboxylic acids such as fumaric acid and tetrahydrophthalic acid.
  • 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfoisophthalic acid, 4-sulfonaphthalene-2,6-dicarboxylic acid, 5 (4-sulfophenoxy) are used to impart water dispersibility.
  • Isophthalic acid salts can be used. Among them, it is preferable to use 5-sodium sulfoisophthalic acid in the range of 1 to 10 mol%.
  • diol component contained in the copolymerized polyester resin examples include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, and polyethylene glycol.
  • the polyester resin is preferably used as a coating liquid for the aqueous dispersion.
  • the acrylic graft copolymerized polyester described later is particularly preferable as the polyester resin because it can increase the water resistance laminating strength.
  • examples of the polyurethane resin include those obtained by reacting polyols having two or more active hydrogens with an organic polyisocyanate.
  • examples of the polyols include saturated polyester polyols; polyether polyols (for example, polyethylene glycol, polytetramethylene glycol, etc.); amino alcohols (for example, ethanolamine, diethanolamine, triethanolamine, etc.); unsaturated polyester polyols (for example, unsaturated polyester polyols).
  • unsaturated polyvalent carboxylic acid alone or a mixture thereof and a saturated polyvalent carboxylic acid and a mixture of saturated polyvalent alcohols and unsaturated polyvalent alcohols are polycondensed), polybutadiene polyols.
  • polybutadiene polyols for example, 1,2-polybutadiene polyol, 1,4-polybutadiene polyol, etc.
  • acrylic polyols variantous acrylic monomers and acrylic acid-based monomers having a hydroxyl group are copolymerized to have a hydroxyl group in the side chain.
  • Acrylic polyols and other polyols having unsaturated double bonds can be mentioned.
  • organic polyisocyanate examples include aromatic polyisocyanates (for example, diphenylmethane diisocyanate, toluene diisocyanate, etc.), aliphatic polyisocyanates (for example, hexamethylene diisocyanate, etc.), alicyclic polyisocyanates (for example, isophorone diisocyanate, etc.), and the like.
  • aromatic polyisocyanates for example, diphenylmethane diisocyanate, toluene diisocyanate, etc.
  • aliphatic polyisocyanates for example, hexamethylene diisocyanate, etc.
  • alicyclic polyisocyanates for example, isophorone diisocyanate, etc.
  • examples thereof include aromatic / aliphatic polyisocyanates (for example, killylene diisocyanate), and polyisocyanates obtained by reacting these isocyanates with a low molecular weight polyol in advance.
  • the polyurethane resin can be produced by a known method. During production, it is necessary to make sure that two or more unreacted isocyanate groups are present in the produced prepolymer. This isocyanate group is preferably blocked, and this blocking is indispensable especially when preparing an aqueous coating solution. This blocking is well known as the blocking of isocyanates, and the free isocyanate groups can be regenerated by heating. Examples of the blocking agent include heavy sulfites, alcohols, oximes, active methylene compounds, imidazoles, lactams, imine compounds, amide compounds, and imide compounds.
  • the reaction between these blocking agents and the isocyanate groups in the polyurethane prepolymer can be carried out at a temperature of room temperature to 100 ° C., and a urethanization catalyst can be used if necessary.
  • a hydrophilic group into the molecule in order to impart stable water dispersibility and water solubility to the polyurethane prepolymer.
  • the hydrophilic groups include -SO 3 M (where M is an alkali metal and an alkaline earth metal), -OH and -COOR (where R is a residue of ammonia and a tertiary amine). Etc. are exemplified.
  • a carboxyl group neutralized with ammonia or a tertiary amine is particularly preferable.
  • a method using a carboxyl group-containing polyhydroxy compound as one of the reaction raw materials during the synthesis of the polyurethane prepolymer, unreacted is particularly preferable.
  • a hydroxyl group-containing carboxylic acid or an amino group-containing carboxylic acid is reacted with the isocyanate group of a polyurethane prepolymer having an isocyanate group, and then the reaction product is added to aqueous ammonia or a tertiary amine aqueous solution under high-speed stirring to neutralize the reaction product.
  • the polyurethane resin is preferably used as a coating liquid for an aqueous dispersion.
  • ⁇ Polyacrylic resin used for adhesive modification layer> examples of the polyacrylic resin include an acrylic polymer obtained by polymerizing acrylic acid or methacrylic acid, or salts or esters thereof.
  • examples of the acrylate-based and methacrylic acid ester-based monomers include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, glycidyl acrylate, and methyl methacrylate.
  • acrylic acid-based monomers such as acrylamide, methacrylamide, aminoethyl methacrylate, aminomethyl methacrylate, N-methylolacrylamide, and N-methoxymethylacrylamide may be added.
  • a monomer such as vinyl chloride, vinyl acetate, styrene, vinyl ether, butadiene, isoprene, and sodium vinyl sulfonic acid can be used as the copolymerization component in the polyacrylic resin.
  • the acrylic polymer contains hydrophilic components such as an acrylic acid salt component, a methacrylic acid salt component, an acrylic acid component, an acrylamide component, a 2-hydroxyethyl acrylate component, and an N-methylol acrylamide component as a copolymerization component. It is preferable to enhance the functionality of the coating film. Further, it may be a copolymer having a functional group in the molecular side chain.
  • this acrylic polymer can also be obtained by using a hard component such as methyl methacrylate or ethyl methacrylate as a main component and copolymerizing a soft component such as an acrylic acid ester as a copolymerization component.
  • the polyacrylic resin is preferably used as a coating liquid for an aqueous dispersion.
  • ⁇ Acrylic graft copolymerized polyester resin used for adhesive modification layer> a polyester resin is provided as the adhesive modification layer in the present invention, a copolymerized polyester obtained by graft-polymerizing a polyacrylic resin onto a polyester resin is particularly preferable, and will be described in detail below.
  • the coating liquid for forming the adhesive modification layer an aqueous dispersion of a copolymerized polyester obtained by graft-polymerizing a polyacrylic resin onto a polyester resin is particularly preferable.
  • the average particle size of the acrylic graft copolymerized polyester particles in the acrylic graft copolymerized polyester aqueous dispersion measured by the laser light scattering method is 500 nm or less, preferably 10 nm to 500 nm, and more preferably 10 nm to 300 nm. If the average particle size exceeds 500 nm, the strength of the coating film after coating may decrease.
  • the content of the acrylic graft copolymerized polyester particles in the acrylic graft copolymerized polyester aqueous dispersion is usually 1% by mass to 50% by mass, preferably 3% by mass to 30% by mass.
  • the particles in the acrylic graft copolymerized polyester aqueous dispersion that can be used in the present invention have a core-shell structure having a polyester main chain as a core in an aqueous dispersion medium.
  • the coating film obtained from the acrylic graft copolymerized polyester aqueous dispersion has excellent adhesiveness to the polyamide film. Furthermore, since it has very excellent blocking resistance, it can be used without problems even on a film substrate having a relatively low glass transition point. Further, in the case of a laminated body, the adhesiveness with the adhesive used when laminating the printing ink or the sealant layer is also very good.
  • the obtained laminated film (also referred to as a laminated film) has significantly improved durability in retort treatment and boiling water treatment.
  • the polyester that can be used as the main chain of the grafted polyester in the present invention is preferably a saturated or unsaturated polyester synthesized from at least a dicarboxylic acid component and a diol component, and the obtained polyester is one kind of polymer or 2 It can be a mixture of polymers of more than one species. And polyester which is originally not dispersed or dissolved in water by itself is preferable.
  • the weight average molecular weight of the polyester that can be used in the present invention is 5000 to 10000, preferably 5000 to 50000. If the weight average molecular weight is less than 5000, the physical properties of the coating film such as post-processability of the dry coating film deteriorate.
  • the polyester itself as the main chain is easily solubilized, so that the grafted polyester to be formed cannot form the core-shell structure described later. If the weight average molecular weight of polyester exceeds 100,000, water dispersion becomes difficult. From the viewpoint of water dispersion, 100,000 or less is preferable.
  • the glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.
  • the dicarboxylic acid component includes at least one aromatic dicarboxylic acid, at least one aliphatic and / or alicyclic dicarboxylic acid, and at least one dicarboxylic acid having a radically polymerizable unsaturated double bond.
  • a mixture of dicarboxylic acids is preferred.
  • the aromatic dicarboxylic acid contained in this dicarboxylic acid mixture is 30 to 99.5 mol%, preferably 40 to 99.5 mol%, and the aliphatic and / or alicyclic dicarboxylic acid is 0 to 70 mol%.
  • the dicarboxylic acid having a radically polymerizable unsaturated double bond is preferably 0.5 to 10 mol%, preferably 2 to 7 mol%, and more preferably 3 to 6 mol%.
  • the content of the dicarboxylic acid containing a radically polymerizable unsaturated double bond is less than 0.5 mol%, it is difficult to effectively graft the radically polymerizable monomer to the polyester, and it is difficult to effectively graft the radically polymerizable monomer to the polyester.
  • the dispersed particle size tends to be large, and the dispersion stability tends to decrease.
  • aromatic dicarboxylic acid terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid and the like can be used.
  • sodium 5-sulfoisophthalate may be used if desired.
  • succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandioic acid, dimer acid, acid anhydrides thereof and the like can be used.
  • 1,4-cyclohexanedicarboxylic acid 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, acid anhydrides thereof and the like can be used.
  • dicarboxylic acid containing a radically polymerizable unsaturated double bond examples include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and a fat containing an unsaturated double bond as ⁇ , ⁇ -unsaturated dicarboxylic acids.
  • cyclic dicarboxylic acid 2,5-norbornenedicarboxylic acid anhydride, tetrahydrophthalic acid anhydride and the like can be used. Of these, fumaric acid, maleic acid and 2,5-norbornenedicarboxylic acid (endo-bicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid) are preferred.
  • the diol component comprises at least one of an aliphatic glycol having 2 to 10 carbon atoms, an alicyclic glycol having 6 to 12 carbon atoms, and an ether bond-containing glycol.
  • Aliphatic glycols having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6. -Hexanediol or the like can be used.
  • 1,4-cyclohexanedimethanol or the like can be used as the alicyclic glycol having 6 to 12 carbon atoms.
  • ether bond-containing glycol examples include glycols obtained by adding 1 to several mols of ethylene oxide or propylene oxide to each of two phenolic hydroxyl groups of diethylene glycol, triethylene glycol, dipropylene glycol, and bisphenols, for example, 2,2. -Bis (4-hydroxyethoxyphenyl) propane or the like can be used. Polyethylene glycol, polypropylene glycol, and polytetramethylene glycol may also be used as needed.
  • a trifunctional or higher functional polycarboxylic acid and / or polyol can be copolymerized.
  • trifunctional or higher functional polycarboxylic acids include (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethyleneglucolbis (anhydrotrimeritate), and glycerol tris (an). Hydrotrimellitic) and the like can be used.
  • trifunctional or higher functional polyol glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and the like can be used.
  • trifunctional or higher functional polycarboxylic acid (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenonetetracarboxylic acid, trimesic acid and the like can be used.
  • glycerin, trimethylolethane, trimethylolpropane and the like can be used.
  • the trifunctional or higher functional polycarboxylic acid and / or polyol is 0 to 5 mol%, preferably 0 to 3 mol%, based on the total polycarboxylic acid component containing the dicarboxylic acid component or the total polyol component containing the diol component. Can be used in the range of.
  • the graft portion of the acrylic graft copolymerized polyester that can be used in the present invention is a single amount containing at least one radical polymerizable monomer having a hydrophilic group or having a group that can be changed to a hydrophilic group later. It is an acrylic polymer derived from a body mixture.
  • the weight average molecular weight of the polymer constituting the graft portion is 500 to 50,000, preferably 4000 to 50,000.
  • the graft portion forms a hydrated layer of dispersed particles. In order to allow the particles to have a hydration layer having a sufficient thickness and to obtain a stable dispersion, it is desirable that the weight average molecule of the graft portion derived from the radically polymerizable monomer is 500 or more.
  • the upper limit of the weight average molecular weight of the graft portion of the radically polymerizable monomer is preferably 50,000 as described above in terms of polymerizability in solution polymerization.
  • the amount of the polymerization initiator, the monomer dropping time, the polymerization time, the reaction solvent, and the monomer composition are appropriately selected, and a chain transfer agent or a polymerization inhibitor is appropriately combined as necessary. Get it done.
  • the glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.
  • hydrophilic group of the radically polymerizable monomer a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide group, a quaternary ammonium salt, a phosphoric acid group or the like can be used.
  • group that can be changed to a hydrophilic group acid anhydride, glycidyl, chlor and the like can be used.
  • the hydrophilicity introduced into the polyester by grafting can control the dispersibility of the grafted polyester in water.
  • the carboxyl group controls the dispersibility of the grafted polyester in water because the amount of the carboxyl group introduced into the grafted polyester can be accurately determined using an acid value known in the art. It is preferable to do so.
  • carboxyl group-containing radically polymerizable monomer examples include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid, and maleic anhydride which easily generates a carboxylic acid in contact with water / amine.
  • a product, itaconic acid anhydride, methacrylic acid anhydride and the like can be used.
  • Preferred carboxyl group-containing radically polymerizable monomers are acrylic anhydride, methacrylic anhydride and maleic anhydride.
  • hydrophilic group-containing radical polymerizable monomer it is preferable to copolymerize at least one hydrophilic group-free radical polymerizable monomer.
  • hydrophilic group-containing monomer grafting to the polyester main chain does not occur smoothly, and it is difficult to obtain a good copolymerized polyester aqueous dispersion.
  • Highly efficient grafting can only be achieved by copolymerizing a radically polymerizable monomer that does not contain at least one hydrophilic group.
  • the radically polymerizable monomer containing no hydrophilic group one or more combinations of monomers having an ethylenically unsaturated bond and not containing a hydrophilic group as described above are used.
  • a monomer include acrylic acid esters such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydrokipropyl acrylate;
  • Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxylpropyl methacrylate; acrylamide.
  • Vinyl compounds such as vinyl chloride, vinyl den, vinyl bromide, vinyl fluoride; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, t-butylstyrene, vinyltoluene, vinylnaphthalin; be able to. These monomers may be used alone or in combination of two or more.
  • the ratio of the hydrophilic group-containing monomer to the hydrophilic group-free monomer used is determined in consideration of the amount of the hydrophilic group introduced into the grafted polyester, but is usually determined by the mass ratio (hydrophilic group).
  • the content of the monomer (monomer containing no hydrophilic group) is in the range of 95: 5 to 5:95, preferably 90:10 to 10:90, and more preferably 80:20 to 40:60.
  • the total acid value of the grafted polyester is 600 to 4000 eq. / 10 6 g, preferably 700-3000 eq. / 10 6 g, most preferably 800-2500 eq. / 10 6 g.
  • the acid value is 600 eq.
  • the amount is 1/10 6 g or less, it is difficult to obtain a copolymerized polyester aqueous dispersion having a small particle size when the grafted polyester is dispersed in water, and the dispersion stability of the copolymerized polyester aqueous dispersion is further lowered.
  • the acid value is 4000 eq. When the amount is 1/10 6 g or more, the water resistance of the adhesive modified layer formed from the copolymerized polyester aqueous dispersion becomes low.
  • the mass ratio (polyester: radically polymerizable monomer) of the polyester main chain to the graft portion in the acrylic graft copolymerized polyester is 40:60 to 95: 5, preferably 55:45 to 93: 7, and more preferably 60. : The range is 40 to 90:10.
  • the mass ratio of the polyester main chain is 40% by mass or less, the excellent performance of the base polyester described above, that is, high processability, excellent water resistance, and excellent adhesion to various substrates can be sufficiently exhibited. On the contrary, it adds undesired performance of acrylic resin, that is, low workability, gloss, water resistance and the like.
  • the mass ratio of the polyester is 95% by mass or more, the amount of hydrophilic groups in the graft portion that imparts hydrophilicity to the grafted polyester is insufficient, and a good aqueous dispersion cannot be obtained.
  • the solvent for the grafting reaction is preferably composed of an aqueous organic solvent having a boiling point of 50 to 250 ° C.
  • the aqueous organic solvent means an organic solvent having a solubility in water at 20 ° C. of at least 10 g / L or more, preferably 20 g / L or more.
  • An aqueous organic solvent having a boiling point of more than 250 ° C. is unsuitable because it cannot be sufficiently removed even by high-temperature baking of the coating film after the coating film is formed because the evaporation rate is slow.
  • an initiator that decomposes into radicals at a temperature of 50 ° C. or lower when carrying out the grafting reaction using it as a solvent, an initiator that decomposes into radicals at a temperature of 50 ° C. or lower must be used, which increases the risk of handling and is preferable. Absent.
  • esters As an aqueous organic solvent (group 1) that dissolves polyester well and dissolves a hydrophilic group, particularly a polymerizable monomer containing a carboxyl group-containing polymerizable monomer and a polymer thereof relatively well, esters , For example ethyl acetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ethers such as tetrahydrofuran, dioxane, and 1,3-dioxolane; glycol ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, Propropylene glycol propyl ether, ethylene glycol ethyl ether, and ethylene glycol butyl ether; carbitols such as methyl carbitol, ethyl carbitol, and butyl carbitol; lower esters of glycols or glycol ethers such
  • a hydrophilic group particularly a polymerizable monomer containing a carboxyl group-containing polymerizable monomer and a polymer thereof.
  • one of the first group of aqueous organic solvents can be used.
  • a mixed solvent a plurality of types of the first group of aqueous organic solvents or at least one of the first group of aqueous organic solvents and at least one of the second group of aqueous organic solvents may be used.
  • the grafting reaction can be carried out in either a single solvent from the aqueous organic solvent of the first group or a mixed solvent consisting of one of the aqueous organic solvents of the first group and the second group.
  • a solvent from the viewpoint of the progress behavior of the grafting reaction, the appearance and properties of the grafting reaction product and the aqueous dispersion derived from the grafting reaction product, a mixture of the first group and the second group of aqueous organic solvents, respectively. It is preferable to use a solvent. The reason for this is that in the polyester grafting reaction, gelation of the system is likely to occur due to cross-linking between polyester molecules, but gelation can be prevented by using a mixed solvent as described below.
  • the polyester molecular chain In the solvent of the first group, the polyester molecular chain is in a stretched state with a wide spread, while in the mixed solvent of the first group / the second group, the polyester molecular chain is entangled in a thread-like shape with a small spread. It was confirmed by measuring the viscosity of the polyester in these solutions that it was in a state. In the extended state of the polyester molecular chain, all the reaction points in the polyester main chain can contribute to the grafting reaction, so that the polyester grafting rate is high, but at the same time, the rate of intermolecular cross-linking is also high.
  • the state of the polyester molecule can be adjusted by selecting the type of solvent, thereby adjusting the grafting rate and the intermolecular cross-linking due to the grafting reaction.
  • the optimum mixing ratio of the mixed solvent of the first group / the second group may vary depending on the solubility of the polyester used, etc., but usually, the mass ratio of the mixed solvent of the first group / the second group is 95: 5 to 95: 5. It is in the range of 10:90, preferably 90:10 to 20:80, and more preferably 85:15 to 30:70.
  • radical polymerization initiator and chain transfer agent for acrylic graft copolymerized polyester As a radical polymerization initiator that can be used, organic peroxides and organic azo compounds known to those skilled in the art can be used. As an organic peroxide, benzoyl peroxide, t-butylpa-oxypivalate, and as an organic azo compound, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), etc. Can be mentioned.
  • the amount of the radical polymerization initiator used for carrying out the grafting reaction is at least 0.2% by mass or more, preferably 0.5% by mass or more, based on the radically polymerizable monomer.
  • a chain transfer agent for adjusting the chain length of the graft portion for example, octyl mercaptan, mercaptoethanol, 3-t-butyl-4-hydroxyanisole and the like can be used as required. In this case, it is desirable to add it in the range of 0 to 5% by mass with respect to the radically polymerizable monomer.
  • the graft portion is formed by the polymerization of the radically polymerizable unsaturated double bond and the radically polymerizable monomer in the polyester and / or the radically polymerizable unsaturated double bond and the above radically polymerizable monomer. It proceeds by reacting with the active end of the polymer of.
  • the reaction product after completion of the grafting reaction contains, in addition to the target grafted polyester, a polyester having no graft portion and a polymer of a radically polymerizable monomer not grafted with the polyester.
  • the grafting reaction can be carried out by adding the radically polymerizable monomer and the radical initiator to the solution containing the polyester under heating at one time, or separately for a certain period of time. After the dropping, the reaction can be carried out by continuing heating with stirring for a certain period of time. Alternatively, if necessary, a part of the radically polymerizable monomer is added first, and then the remaining radically polymerizable monomer and the polymerization initiator are separately added dropwise over a certain period of time, and then further constant. The grafting reaction can be carried out by continuing heating under stirring for hours.
  • the mass ratio at which the reaction proceeds uniformly during the polymerization step is selected in consideration of the reactivity of polyester and radically polymerizable monomer and the solvent solubility of polyester. It is usually in the range of 70:30 to 10:90, preferably 50:50 to 15:85.
  • the grafted polyester that can be used in the present invention can be water-dispersed by being put into an aqueous medium in a solid state or by being dissolved in a hydrophilic solvent and then being put into an aqueous medium.
  • a monomer having an acidic group such as a sulfonic acid group and a carboxyl group
  • the grafted polyester is neutralized with a basic compound.
  • the grafted polyester can be easily dispersed in water as fine particles having an average particle diameter of 500 nm or less to prepare a copolymerized polyester aqueous dispersion.
  • the basic compound a compound that volatilizes at the time of forming a coating film or, when a curing agent described below is blended, at the time of baking curing is desirable.
  • ammonia, organic amines and the like are preferable.
  • organic amines include triethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, Examples thereof include 3-ethoxypropylamine.
  • the amount of the basic compound used is preferably an amount in which the carboxyl group contained in the graft portion is at least partially neutralized or completely neutralized so that the pH value of the aqueous dispersion is in the range of 5.0 to 9.0. ..
  • aqueous dispersion can be prepared by the one-pot method.
  • the one-pot method is preferable from the viewpoint of convenience. In this case, if the boiling point of the solvent used in the grafting reaction is 100 ° C. or lower, part or all of the solvent can be easily removed by distillation.
  • ⁇ Crosslinking agent added to the coating liquid> By further adding a cross-linking agent (curing resin) to the coating liquid of any of the above polyester resin, polyurethane resin, and / or polyacrylic resin and curing the resin, the adhesive modification layer is highly advanced. Water resistance can be imparted.
  • the cross-linking agent include phenol-formaldehyde resins obtained by condensing alkylated phenols, cresols and the like with formaldehyde; additions of urea, melamine, benzoguanamine and the like with formaldehyde, and alcohols having 1 to 6 carbon atoms with these additions.
  • Amino resins such as alkyl ether compounds composed of; polyfunctional epoxy compounds; polyfunctional isocyanate compounds; blocked isocyanate compounds; polyfunctional aziridine compounds; oxazoline compounds and the like can be used.
  • These cross-linking agents may be used alone or in admixture of two or more.
  • the blending amount of the cross-linking agent is preferably 5% by mass to 40% by mass with respect to the grafted polyester.
  • cross-linking agent (1) when the cross-linking agent is water-soluble, it is directly dissolved or dispersed in the aqueous dispersion, or (2) when the cross-linking agent is oil-soluble, after the completion of the grafting reaction.
  • a method of adding a cross-linking agent before or after water dispersion and allowing the core portion to coexist with polyester can be used. These methods can be appropriately selected depending on the type and properties of the cross-linking agent. Further, a curing agent or an accelerator may be used in combination with the cross-linking agent.
  • the adhesive modification layer used in the present invention contains additives such as an antistatic agent, an inorganic lubricant, and an organic lubricant in order to impart antistatic properties and slipperiness to the extent that the effects of the present invention are not impaired. be able to.
  • additives such as an antistatic agent, an inorganic lubricant, an organic lubricant or the like
  • an antistatic agent, an inorganic lubricant, an organic lubricant or the like is applied to the film surface, it is preferable to include these additives in the adhesive modification layer in order to prevent detachment of these additives.
  • the easy-adhesive polyamide film of the present invention is produced by forming an adhesive modification layer on the biaxially stretched polyamide film of the present invention by the method described later.
  • the biaxially stretched polyamide film in the present invention can be produced by a known production method. For example, a sequential biaxial stretching method and a simultaneous biaxial stretching method can be mentioned.
  • the sequential biaxial stretching method is preferable because the film forming speed can be increased and it is advantageous in terms of manufacturing cost.
  • the method for producing the biaxially stretched polyamide film in the present invention will be further described.
  • the raw material resin is melt-extruded using an extruder, extruded into a film from a T-die, cast on a cooling roll and cooled to obtain an unstretched film.
  • the melting temperature of the resin is preferably 200 to 300 ° C. If it is less than the above, unmelted matter or the like may be generated, and appearance defects such as defects may occur. If it exceeds the above, deterioration of the resin or the like may be observed, and molecular weight or appearance may be deteriorated.
  • the cooling roll temperature is preferably ⁇ 30 to 80 ° C., more preferably 0 to 50 ° C.
  • a method using an air knife or an electrostatic adhesion method for imprinting an electrostatic charge is preferably applied. it can. In particular, the latter is preferably used.
  • the unstretched film thus obtained is stretched in the biaxial direction to obtain a biaxially stretched polyamide film.
  • multi-step stretching such as one-step stretching or two-step stretching can be used.
  • multi-stage stretching in the MD direction such as two-stage stretching, is preferable in terms of physical properties and uniformity (isotropy) of physical properties in the MD and TD directions, rather than one-stage stretching.
  • Roll stretching is preferable for stretching in the MD direction in the sequential biaxial stretching method.
  • the lower limit of the stretching temperature in the MD direction is preferably 50 ° C., more preferably 55 ° C., and even more preferably 60 ° C. If the temperature is lower than 50 ° C., the resin does not soften and stretching may be difficult.
  • the upper limit of the stretching temperature in the MD direction is preferably 120 ° C., more preferably 115 ° C., and even more preferably 110 ° C. If the temperature exceeds 120 ° C., the resin may become too soft and stable stretching may not be possible.
  • the lower limit of the stretching ratio in the MD direction is preferably 2.2 times, more preferably 2.5 times, and further preferably 2. It is eight times. If it is less than 2.2 times, the thickness accuracy in the MD direction is lowered, and the crystallinity is too low, so that the impact strength may be lowered.
  • the upper limit of the draw ratio in the MD direction is preferably 5.0 times, more preferably 4.5 times, and most preferably 4.0 times. If it exceeds 5.0 times, subsequent stretching may be difficult.
  • the stretching in the MD direction is performed in multiple stages, the stretching as described above is possible in each stretching, but the product of the stretching magnifications in all MD directions is 5.0 or less. It is necessary to adjust the draw ratio.
  • the first-stage stretching is preferably 1.5 to 2.1 times, and the second-stage stretching is preferably 1.5 to 1.8 times.
  • the film stretched in the MD direction is stretched in the TD direction with a tenter, heat-fixed, and relaxed (also referred to as relaxation treatment).
  • the lower limit of the stretching temperature in the TD direction is preferably 50 ° C., more preferably 55 ° C., and even more preferably 60 ° C. If the temperature is lower than 50 ° C., the resin does not soften and stretching may be difficult.
  • the upper limit of the stretching temperature in the TD direction is preferably 190 ° C., more preferably 185 ° C., and even more preferably 180 ° C. If it exceeds 190 ° C., it may crystallize and stretching may become difficult.
  • the lower limit of the draw ratio in the TD direction is preferably 2.8, more preferably 3.2 times, still more preferably 3.5. It is double, and particularly preferably 3.8 times. If it is less than 2.8, the thickness accuracy in the TD direction is lowered, and the crystallinity is too low, so that the impact strength may be lowered.
  • the upper limit of the draw ratio in the TD direction is preferably 5.5 times, more preferably 5.0 times, further preferably 4.7, particularly preferably 4.5, and most preferably 4. It is three times. If it exceeds 5.5 times, the productivity may decrease significantly.
  • the selection of the heat fixing temperature is an important factor in the present invention. As the heat fixing temperature is increased, the film crystallizes and the orientation is relaxed, the impact strength is improved, and the heat shrinkage rate can be reduced. On the other hand, when the heat fixing temperature is low, crystallization and orientation relaxation are insufficient, and the heat shrinkage rate cannot be sufficiently reduced. ) Further, if the heat fixing temperature becomes too high, the resin deteriorates and the toughness of the film such as impact strength is rapidly lost.
  • the lower limit of the heat fixing temperature is preferably 180 ° C., more preferably 200 ° C.
  • the upper limit of the heat fixing temperature is preferably 230 ° C., more preferably 220 ° C. If the heat fixing temperature is too high, the impact strength tends to decrease.
  • the heat fixing time is preferably 0.5 to 20 seconds. Furthermore, it takes 1 to 15 seconds.
  • the heat fixing time can be set to an appropriate time in consideration of the heat fixing temperature and the wind speed in the heat fixing zone. If the heat fixing conditions are too weak, crystallization and orientation relaxation will be insufficient, and the above problems will occur. If the heat fixing conditions are too strong, the film toughness will decrease.
  • the temperature for the relaxing treatment can be selected in the range from the heat fixing treatment temperature to the glass transition temperature (Tg) of the resin, but the heat fixing treatment temperature is preferably ⁇ 10 ° C. to Tg + 10 ° C. If the relaxation temperature is too high, the contraction speed is too fast and causes distortion and the like, which is not preferable. On the contrary, if the relaxing temperature is too low, the relaxing treatment is not performed, the heat shrinkage is not lowered, and the dimensional stability is deteriorated.
  • the lower limit of the relaxation rate of the relaxation treatment is preferably 0.5%, more preferably 1%. If it is less than 0.5%, the heat shrinkage rate may not be sufficiently lowered.
  • the upper limit of the relaxation rate is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, slack will occur in the tenter, which may make production difficult.
  • the surface of the laminated stretched polyamide film and / or the surface of the adhesive modification layer may be subjected to corona treatment, flame treatment, or the like. Further, in order to increase the adhesive strength between the laminated stretched polyamide film and the adhesive modified layer, the surface of the laminated stretched polyamide film on the adhesive modified layer side may be subjected to corona treatment, flame treatment or the like.
  • a coating agent containing any resin of polyester resin, polyurethane resin, and / or polyacrylic resin is laminated on a stretched polyamide film by a gravure method, a reverse method, a die method, or the like.
  • a known coating method such as a bar method or a dip method can be used.
  • the amount of the coating agent applied is preferably 0.01 to 3 g / m 2 as a solid content with respect to the polyamide film after biaxial stretching. More preferably, it is applied so as to be 0.04 to 0.5 g / m 2 . With the above coating amount, sufficient adhesive strength between the adhesive modification layer and another layer can be obtained, and the occurrence of blocking between films can be suppressed.
  • the adhesive modification layer in the present invention is dried after applying a coating agent to a biaxially stretched polyamide film base material or an unstretched or uniaxially stretched polyamide film base material, and if necessary. Further, uniaxial stretching or biaxial stretching can be followed by thermal fixation.
  • the drying temperature after application of the coating agent is 180 ° C. or higher, preferably 200 ° C. or higher, to strengthen the coating film and improve the adhesiveness between the adhesive modification layer and the polyamide film base material. To do.
  • the easy-adhesive polyamide film of the present invention prevents the film from being scraped due to friction with the transportation packaging such as corrugated cardboard during transportation of the bag-making product, thereby preventing the bag from breaking. it can. In addition, it is possible to prevent the bags from breaking due to bending fatigue due to the contact between the bags. In addition, since the water-resistant adhesive strength between the polyamide film and the sealant film is high, high bag breakage prevention property is exhibited.
  • the easy-adhesive polyamide film of the present invention has 10 or less pinhole defects when a twist bending test using a gelboflex tester according to the measurement method described in Examples is performed 1000 times at a temperature of 1 ° C. More preferably, the number is 5 or less. The smaller the number of pinhole defects after the bending test, the better the bending pinhole resistance. If the number of pinholes is 10 or less, pinholes are less likely to occur even if the packaging bag is loaded during transportation. A packaging bag is obtained.
  • the easily adhesive polyamide film of the present invention has a pinhole resistance distance of 2900 cm or more in the abrasion resistance pinhole test. It is more preferably 3100 cm or more, still more preferably 3300 cm or more. The longer the distance where pinholes occur, the better the resistance to friction pinholes. If the distance where pinholes occur is 2900 cm or more, pinholes will occur even if the packaging bag rubs against a cardboard box during transportation. A packaging bag that is difficult to obtain can be obtained.
  • the easy-adhesive polyamide film of the present invention is characterized in that it is excellent in both the above-mentioned bending-resistant pinhole resistance and friction-resistant pinhole resistance.
  • the easy-adhesive polyamide film of the present invention having these characteristics is extremely useful as a packaging film because pinholes are less likely to occur during transportation.
  • the easy-adhesive polyamide film of the present invention has a heat shrinkage rate at 160 ° C. for 10 minutes of 0.6 to 3.0 in both the flow direction (hereinafter abbreviated as MD direction) and the width direction (hereinafter abbreviated as TD direction). It is in the range of%, preferably 0.6 to 2.5%. If the heat shrinkage rate exceeds 3.0%, curling or shrinkage may occur when heat is applied in the next process such as laminating or printing. In addition, the lamination strength with the sealant film may be weakened. Although it is possible to set the heat shrinkage rate to less than 0.6%, it may become mechanically brittle. Moreover, it is not preferable because the productivity deteriorates.
  • the impact strength of the easily adhesive polyamide film of the present invention is preferably 0.7 J / 15 ⁇ m or more.
  • a more preferable impact strength is 0.9 J / 15 ⁇ m or more.
  • the haze value of the easily adhesive polyamide film of the present invention is preferably 10% or less. It is more preferably 7% or less, still more preferably 5% or less. When the haze value is small, the transparency and gloss are good, so when used in a packaging bag, it can print beautifully and increase the commercial value. Since the haze value increases when fine particles are added to improve the slipperiness of the film, the haze value can be reduced by adding the fine particles only to the B layer of the functional layer.
  • the easy-adhesive polyamide film of the present invention has a biomass-derived carbon content (also referred to as biomass degree) measured by ASTM D6866-16 for radiocarbon (C 14 ), which is 1 to 15 with respect to the total carbon in the polyamide film.
  • % Is preferably contained. Since carbon dioxide in the atmosphere contains C 14 at a fixed ratio (105.5 pMC), the content of C 14 in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. Is known to be. Moreover, C 14 are also known that do not contain little in fossil fuels. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of C 14 contained in all carbon atoms in the polyamide.
  • the easy-adhesive polyamide film of the present invention has a lamination strength of 4.0 N / 15 mm or more after being bonded to the polyethylene-based sealant described in Examples.
  • the easy-adhesive polyamide film of the present invention is usually laminated with a sealant film and then processed into a packaging bag.
  • the above-mentioned lamination strength is 4.0 N / 15 mm or more
  • sufficient strength of the sealing portion can be obtained when a packaging bag is produced using the easily adhesive polyamide film of the present invention in various laminated configurations.
  • a strong packaging bag that is hard to tear can be obtained.
  • the easily adhesive polyamide film of the present invention can be subjected to corona treatment, coating treatment, flame treatment and the like.
  • the easily adhesive polyamide film of the present invention can be subjected to heat treatment or humidity control treatment in order to improve dimensional stability depending on the application.
  • a thin-film film formed by the thin-film deposition process a thin-film film of aluminum and a thin-film film of a single substance or a mixture of silicon oxide and aluminum oxide are preferably used. Further, by coating a protective layer or the like on these thin-film deposition films, oxygen and hydrogen barrier properties can be improved.
  • the easy-adhesive polyamide film of the present invention is made into a laminated film in which a sealant film or the like is laminated, and then a packaging bag such as a bottom seal bag, a side seal bag, a three-way seal bag, a pillow bag, a standing pouch, a gusset bag, or a square bottom bag. Is processed into.
  • a packaging bag such as a bottom seal bag, a side seal bag, a three-way seal bag, a pillow bag, a standing pouch, a gusset bag, or a square bottom bag.
  • the sealant film include an unstretched linear low-density polyethylene film, an unstretched polypropylene film, and an ethylene-vinyl alcohol copolymer resin film.
  • the layer structure of the laminated film using the easily adhesive polyamide film of the present invention is not particularly limited as long as the easily adhesive polyamide film of the present invention is contained in the laminated film.
  • the film used for the laminated film may be a petrochemical-derived raw material or a biomass-derived raw material, but those such as polylactic acid, polyethylene terephthalate, polybutylene succinate, polyethylene, and polyethylene furanoate polymerized using the biomass-derived raw material. Is preferable in terms of reducing the environmental load.
  • the boundary of the layer is represented by /, for example, ONY / contact / LLDPE, ONY / contact / CPP, ONY / contact / Al / contact / CPP, ONY / contact / Al / Contact / LLDPE, ONY / PE / Al / Contact / LLDPE, ONY / Contact / Al / PE / LLDPE, PET / Contact / ONY / Contact / LLDPE, PET / Contact / ONY / PE / LLDPE, PET / Contact / ONY / PE / LLDPE, PET / Contact / ONY / Contact / Al / Contact / LLDPE, PET / Contact / Al / Contact / ONY / Contact / LLDPE, PET / Contact / Al / Contact / ONY / Contact / LLDPE, PET / Contact / Al / Contact / ONY / Contact / LLDPE, PET / Contact / Al /
  • the film was evaluated by the following measurement method. Unless otherwise specified, the measurement was carried out in a measurement room in an environment of 23 ° C. and 65% relative humidity.
  • the film is cut out and conditioned for 2 hours or more in an environment with a temperature of 23 ° C. and a relative humidity of 65%.
  • the thickness at the center of each sample was measured with a thickness measuring device manufactured by Tester Sangyo, and the average value was taken as the thickness.
  • Bending resistance pinhole resistance of the film The number of bending fatigue pinholes was measured by the following method using a gelboflex tester manufactured by Rigaku Kogyo Co., Ltd. After applying a polyester adhesive to the film produced in the examples, a linear low-density polyethylene film (L-LDPE film: manufactured by Toyobo Co., Ltd., L4102) having a thickness of 40 ⁇ m is dry-laminated and aged in an environment of 40 ° C. for 3 days. Was performed to obtain a laminated film.
  • L-LDPE film manufactured by Toyobo Co., Ltd., L4102
  • the obtained laminated film is cut into a cylinder of 12 inches x 8 inches to form a cylinder with a diameter of 3.5 inches, and one end of the cylindrical film is on the fixed head side of the Gelboflex tester and the other end is on the movable head side.
  • the initial gripping interval was 7 inches.
  • the first 3.5 inches of the stroke gives a 440 degree twist, then the 2.5 inches is subjected to flexion fatigue at a speed of 40 times / minute, such as finishing the entire stroke in a straight horizontal motion, and the laminated film.
  • the test film was placed on a filter paper (Advantech, No.
  • Ink pilot ink (product number INK-350-blue) diluted 5 times with pure water was applied on a test film and spread over one surface using a rubber roller. After wiping off unnecessary ink, the test film was removed and the number of ink dots on the filter paper was counted.
  • Friction resistance of film Pinhole resistance Using a fastness tester (Toyo Seiki Seisakusho), a friction test was conducted by the following method, and the pinhole occurrence distance was measured.
  • a test sample similar to that produced in the above bending pinhole resistance evaluation was folded in four to prepare a test sample with sharp corners, and an amplitude: 25 cm, an amplitude speed: 30 times / with a fastness tester. Minutes, weight: 100 g weight, rubbed against the inner surface of the cardboard.
  • K280 ⁇ P180 ⁇ K210 (AF) (surface material liner ⁇ core material ⁇ back material liner (type of flute)) was used.
  • the pinhole occurrence distance was calculated according to the following procedure.
  • a friction test was performed with an amplitude of 100 times and a distance of 2500 cm.
  • the friction test was performed by increasing the number of amplitudes by 20 times and increasing the distance by 500 cm.
  • the friction test was performed by further increasing the number of amplitudes by 20 times and the distance by 500 cm. This was repeated and the distance at which the pinhole was opened was marked with a cross to make it level 1.
  • a friction test was performed by reducing the number of amplitudes of 20 times by a distance of 500 cm.
  • the friction test was performed by further reducing the number of amplitudes by 20 times and the distance by 500 cm. This was repeated and the distance at which the pinhole did not open was marked with a circle to make it level 1.
  • level 2 if the last was ⁇ at level 1, the number of amplitudes was increased 20 times and a friction test was performed. If the pinhole did not open, it was marked with ⁇ , and if it opened, it was marked with ⁇ . If the last was x at level 1, the number of amplitudes was reduced 20 times and a friction test was performed. If the pinhole did not open, a circle was added, and if the pinhole opened, a cross was added.
  • the level is 3 to 20
  • the previous level is ⁇
  • the number of amplitudes is increased 20 times and a friction test is performed. If the pinhole does not open, ⁇ is added, and if the pinhole opens, ⁇ is added. If it was x at the previous level, reduce the number of amplitudes by 20 times and perform a friction test. If the pinhole does not open, mark ⁇ , and if the pinhole opens, mark x. This is repeated, and levels 3 to 20 are marked with ⁇ or ⁇ . For example, the results shown in Table 1 were obtained. A method of obtaining the pinhole generation distance will be described using Table 1 as an example. Count the number of ⁇ and ⁇ tests for each distance.
  • the median is the distance with the most tests, and the coefficient is zero.
  • the coefficients are set to +1, +2, +3 ... Every 500 cm, and when the distance is short, the coefficients are set to -1, -2, -3 ... Every 500 cm.
  • the number of tests without holes and the number of tests with holes were compared, and the friction pinhole occurrence distance was calculated by each formula for the following cases A and B. ..
  • Friction pinhole generation distance median + 500 x ( ⁇ (coefficient x number of tests without holes) / hole Number of tests that did not open) + 1/2)
  • Friction pinhole generation distance median + 500 x ( ⁇ (coefficient x number of tests with holes) / hole Number of open tests) -1 / 2)
  • Lamination strength with polyethylene-based sealant A laminate film produced in the same manner as described in the description of evaluation of bending pinhole resistance is cut into strips having a width of 15 mm and a length of 200 mm, and one end of the laminate film is cut into two. Peeled at the interface between the axially stretched polyamide film and the linear low-density polyethylene film, and used (manufactured by Shimadzu Corporation, Autograph) at a temperature of 23 ° C, a relative humidity of 50%, a tensile speed of 200 mm / min, and a peeling angle of 90 °. Under the above conditions, the lamination strength was measured three times in each of the MD direction and the TD direction, and evaluated by the average value.
  • the weight before and after wiping was measured with a precision balance (AUW120D manufactured by Shimadzu Corporation).
  • the coating amount (g / m 2 ) was calculated by converting the measured weight difference into square meters.
  • Example 1-1 Using a device consisting of an extruder and a T-die with a width of 380 mm, the following resin composition melted from the T-die is extruded into a film, cast on a cooling roll whose temperature has been adjusted to 20 ° C., and electrostatically adhered to a thickness of 200 ⁇ m. An unstretched film was obtained.
  • Resin composition Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 97 parts by mass, and polyamide 11 (manufactured by Alchema, relative viscosity 2.5, melting point 186 ° C., biomass degree 100%) 3 .0 parts by mass, porous silica fine particles (manufactured by Fuji Silicia Chemical Co., Ltd., average particle diameter 2.0 ⁇ m, pore volume 1.6 ml / g) 0.45 parts by mass and fatty acid bisamide (manufactured by Kyoeisha Chemical Co., Ltd. Stearate amide) A resin composition consisting of 0.15 parts by mass.
  • the obtained unstretched film was guided to a roll-type stretcher, stretched 1.73 times in the MD direction at 80 ° C. using the difference in peripheral speeds of the rolls, and then further stretched 1.85 times at 70 ° C.
  • the following coating liquid (A) was applied to this uniaxially stretched film with a roll coater, and then continuously guided to a tenter type stretching machine while being dried with warm air at 70 ° C., preheated at 110 ° C., and then TD. Stretched 1.2 times at 120 ° C., 1.7 times at 130 ° C., 2.0 times at 160 ° C., heat-fixed at 215 ° C., 7% relaxation treatment at 215 ° C., and then wound.
  • a biaxially stretched polyamide film on which an adhesive modification layer (AEG) was laminated was obtained. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 2.
  • the obtained polyester was pale yellow and transparent, had a glass transition temperature of 60 ° C., and had a weight average molecular weight of 12000.
  • the composition obtained by NMR measurement and the like was as follows.
  • Dicarboxylic acid component terephthalic acid 48 mol% Isophthalic acid 48 mol% Fumaric acid 4 mol% ⁇ Diol component
  • Neopentyl glycol 50 mol% Ethylene glycol 50 mol% 75 parts by mass of the polyester resin, 56 parts by mass of methyl ethyl ketone and 19 parts by mass of isopropyl alcohol were placed in a reactor equipped with a stirrer, a thermometer, a reflux device and a quantitative dropping device, and heated at 65 ° C. to stir to dissolve the resin. ..
  • a solution prepared by dissolving a mixture of 17.5 parts by mass of methacrylic acid and 7.5 parts by mass of ethyl acrylate and 1.2 parts by mass of azobisdimethylvaleronitrile in 25 parts by mass of methyl ethyl ketone is 0.
  • the mixture was added dropwise to the polyester solution at 2 ml / min, and stirring was continued for another 2 hours after the addition was completed.
  • sampling (5 g) for analysis from the reaction solution 300 parts by mass of water and 25 parts by mass of triethylamine were added to the reaction solution, and the mixture was stirred for 1 hour to prepare a dispersion of the grafted polyester.
  • the temperature of the obtained dispersion was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off by distillation to obtain a copolymerized polyester aqueous dispersion.
  • the obtained dispersion was white, had an average particle diameter of 300 nm, and had a B-type viscosity at 25 ° C. of 50 centipoise.
  • DSS was added and 125 MHz 13C-NMR was measured.
  • the half width of the carbonyl carbon signal (160-175 ppm) of the polyester backbone was ⁇ (no signal was detected), and the half width of the carbonyl carbon signal of methacrylic acid (181-186 ppm) in the graft portion was 110 Hz. ..
  • the solution sampled at the end of the grafting reaction was dried at 100 ° C.
  • the molecular weight of the graft portion was a weight average molecular weight of 10000. After that, the aqueous dispersion obtained as described above was diluted with water so as to have a solid content concentration of 5% by mass to obtain a coating liquid (A).
  • Examples 1-2 to 1-9 A biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 1-1 except that the resin composition of the raw material was changed as shown in Table 2. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 2. However, in Examples 1-6 and 1-7, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid, and an easily adhesive polyamide film on which an adhesive modifying layer (PU) was laminated was used.
  • the coating liquid (B) an aqueous dispersion of a polyurethane resin was used as the coating liquid, and an easily adhesive polyamide film on which an adhesive modifying layer (PU) was laminated was used.
  • Comparative Example 1-4 since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, so that a homogeneous unstretched film could not be obtained, and the biaxially stretched polyamide film could not be obtained. Was not obtained.
  • Comparative Example 1-5 a conventionally used polyamide elastomer (nylon 12 / polytetramethylene glycol copolymer manufactured by Arkema, trade name “Pebox SA01”) was used as a material for modifying bending pinhole resistance. However, although the bending pinhole resistance was good, the friction pinhole resistance was inferior.
  • the biaxially stretched polyamide film of the present invention was not provided with the adhesive modification layer, but instead was subjected to corona treatment to improve the adhesiveness.
  • the bending-resistant pinhole resistance and the friction-resistant pinhole resistance were good, but the laminating strength and the water-resistant laminating strength were low.
  • Example 2-1 An easily adhesive biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 1-1 except that the heat fixing treatment temperature and the relaxation treatment temperature were set to 218 ° C.
  • the evaluation results of the obtained easily adhesive polyamide film are shown in Table 3.
  • Example 2-2 to 2-10 and Comparative Examples 2-1 to 2-5) An easily adhesive polyamide film having an adhesive modification layer was obtained in the same manner as in Example 2-1 except that the resin composition of the raw material was changed as shown in Table 3. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 3.
  • the polyamide 410, the polyamide 610, and the polyamide 1010 which are polyamide resins whose at least a part is made of a biomass-derived raw material, the following ones were used.
  • Polyamide 410 (manufactured by DSM, ECOPaXX Q150-E, melting point 250 ° C., biomass degree 71%)
  • Polyamide 610 (manufactured by Arkema, RilsanS SMNO, melting point 222 ° C., biomass degree 62.5%)
  • Polyamide 1010 (manufactured by Arkema, RilsanT TMNO, melting point 202 ° C., biomass degree 50%)
  • Comparative Example 2-3 with a biaxially stretched polyamide film containing no polyamide resin in which at least a part of the raw material is derived from biomass, which has the effect of modifying the bending pinhole resistance of Comparative Example 2-1 and Comparative Example 2-2.
  • the biaxially stretched polyamide film containing too little polyamide 11 was inferior in bending pinhole resistance.
  • Comparative Example 2-4 since the content of the polyamide 11 was too large, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained. No film was obtained.
  • Comparative Example 2-5 when the above-mentioned polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
  • Example 3-1 Using a device consisting of two extruders and a co-extruded T-die with a width of 380 mm, the molten resin is extruded into a film from the T-die by laminating in a B layer / A layer / B layer configuration by the feed block method, and the temperature is 20 ° C. An unstretched film having a thickness of 200 ⁇ m was obtained by casting it on a cooling roll whose temperature was adjusted to 2 and electrostatically adhering it.
  • the resin compositions of the A layer and the B layer are as follows.
  • Resin composition constituting layer A Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 97 parts by mass, and polyamide 11 (manufactured by Shuseisha, relative viscosity 2.5, melting point 186 ° C.) Polyamide resin composition consisting of 3.0 parts by mass (biomass degree 100%).
  • Resin composition constituting layer B Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 95 parts by mass, and polyamide MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., relative viscosity 2.1, melting point 237) °C) 5.0 parts by mass, porous silica fine particles (manufactured by Fuji Silysia Chemical Ltd., average particle diameter 2.0 ⁇ m, pore volume 1.6 ml / g) 0.54 parts by mass and fatty acid bisamide (manufactured by Kyoeisha Chemical Co., Ltd.) Ethienbis stearate amide) A resin composition consisting of 0.15 parts by mass.
  • the biaxially stretched polyamide film is fed so that the total thickness is 15 ⁇ m, the thickness of the base material layer (A layer) is 12 ⁇ m, and the thickness of the front and back functional layers (B layer) is 1.5 ⁇ m.
  • the block configuration and the discharge rate of the extruder were adjusted.
  • the obtained unstretched film was guided to a roll-type stretcher, stretched 1.73 times in the MD direction at 80 ° C. using the difference in peripheral speeds of the rolls, and then further stretched 1.85 times at 70 ° C.
  • the film is continuously guided to a tenter type stretching machine while being dried with warm air at 70 ° C., preheated at 110 ° C., and then in the TD direction.
  • the film was stretched 1.2 times at 120 ° C, 1.7 times at 130 ° C, 2.0 times at 160 ° C, heat-fixed at 215 ° C, and then wound up after 7% relaxation treatment at 215 ° C.
  • a biaxially stretched polyamide film on which an adhesive modification layer (AEG) was laminated was obtained.
  • the evaluation results of the obtained easily adhesive polyamide film are shown in Table 4.
  • Examples 3-2 to 3-9 A biaxially stretched polyamide film having an adhesive modification layer was obtained in the same manner as in Example 3-1 except that the resin compositions of the A layer and the B layer were changed as shown in Table 4. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 4. However, in Examples 3-8 and 3-9, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid, and the adhesive modification layer (PU) was laminated for easy adhesion. A polyamide film was obtained.
  • Comparative Examples 3-1 to 3-5 Using the raw material resin composition shown in Table 4, instead of forming an adhesive modification layer in order to improve the adhesiveness, heat fixing treatment and relaxation treatment are performed, and then dry lamination is performed with the linear low density polyethylene film. The surface of the film on the side was subjected to corona discharge treatment. The evaluation results are shown in Table 4. However, in Comparative Example 3-3, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, and a homogeneous unstretched film could not be obtained. I could't.
  • the film of the example a film having good bending pinhole resistance and friction pinhole resistance was obtained.
  • the haze was low, the transparency was good, and the slipperiness was also good. It had strong impact strength and high lamination strength with a sealant film, and was excellent as a packaging film. Further, due to the presence of the adhesive modification layer, the water resistance laminate strength was excellent. Further, from the values of the haze and the dynamic friction coefficient of the films obtained in Examples 3-2, 3-6, and 3-7, it is determined that the B layer (functional layer) contains fine particles, an organic lubricant, and polyamide MXD6. It can be seen that a biaxially stretched polyamide film having excellent both transparency and slipperiness properties can be obtained.
  • the biaxially stretched polyamide film containing no polyamide 11 of Comparative Example 3-1 and the biaxially stretched polyamide film having a small content of the polyamide 11 of Comparative Example 3-2 were inferior in bending pinhole resistance. Moreover, since there was no adhesive modification layer, the water resistance laminate strength was also low. In Comparative Example 3-3, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, so that a homogeneous unstretched film could not be obtained, and the biaxially stretched polyamide film could not be obtained. Was not obtained.
  • Comparative Example 3-4 when the polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
  • Comparative Example 3-5 the biaxially stretched polyamide film of the present invention was not provided with the adhesive modification layer, but instead was treated with a corona to improve the adhesiveness. The bending-resistant pinhole resistance and the friction-resistant pinhole resistance were good, but the water-resistant laminate strength was low.
  • Example 4-1 An easily adhesive biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 3-1 except that the heat fixing treatment temperature and the relaxation treatment temperature were set to 218 ° C. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 5.
  • Examples 4-2 to 4-11 and Comparative Examples 4-1 to 4-7) An easily adhesive polyamide film was obtained in the same manner as in Example 4-1 except that the film forming conditions such as the resin composition of the A layer and the B layer and the heat fixing temperature were changed as shown in Table 5. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 5. However, in Examples 4-8, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid to obtain an easily adhesive polyamide film on which the adhesive modifying layer (PU) was laminated. The heat fixing treatment and relaxation treatment of Examples 4-6 and Comparative Example 4-2 were carried out at 210 ° C.
  • Comparative Example 4-4 since the content of the polyamide 11 in the base material layer was too large, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained. Therefore, biaxial stretching was not possible.
  • Comparative Example 4-4 since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, and a homogeneous unstretched film could not be obtained. Therefore, the biaxially stretched polyamide film could not be obtained. I wouldn't get it.
  • Comparative Example 4-5 since the thickness and thickness ratio of the A layer were small, the bending pinhole resistance of the film was inferior.
  • Comparative Example 4-6 since the amount of the polyamide 6 resin in the B layer was small, the bending pinhole resistance and the friction pinhole resistance of the film were inferior.
  • Comparative Example 4-7 when the above-mentioned polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
  • the easily adhesive polyamide film of the present invention is excellent in impact resistance, bending pinhole resistance, and friction pinhole resistance at the same time, it can be suitably used for packaging materials such as food packaging. Further, since the laminating strength and the water resistant laminating strength are strong, it is possible to provide various packaging bags that are not easily torn during transportation or boiling treatment. Furthermore, since a resin originally polymerized from a biomass-derived raw material on the ground is used, it is a carbon-neutral film and can reduce the environmental load in that it has little influence on the increase and decrease of carbon dioxide on the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a carbon-neutral, readily adhering polyamide film that has excellent resistance to impact, resistance to pinholes caused by bending, and resistance to pinholes caused by friction, also has excellent water-resistant adhesive strength with respect to a sealant film, and uses a raw material derived from a biomass. [Solution] The invention provides a readily adhering polyamide film characterized by having an adhesive modifying layer comprising any resin from among a polyester resin, a polyurethane resin, and/or a polyacrylic resin coated in an amount of 0.01 to 3 g/m2 as solid content on at least one surface of a biaxially stretched polyamide film containing 99 to 70% by mass of a polyamide 6 resin and 1 to 30% by mass of a polyamide resin for which the raw material is at least partially derived from a biomass.

Description

易接着性ポリアミドフィルムEasy-adhesive polyamide film
 本発明は、耐衝撃性及び耐屈曲ピンホール性と耐摩擦ピンホール性に優れ、かつシーラントフィルムとの耐水接着強度にも優れ、バイオマス由来の原料を用いたカーボンニュートラルな易接着性ポリアミドフィルムに関するものである。本発明の易接着性ポリアミドフィルムは、食品包装用フィルムなどに好適に使用される。 The present invention relates to a carbon-neutral easy-adhesive polyamide film using a biomass-derived raw material, which is excellent in impact resistance, bending pinhole resistance, friction pinhole resistance, and water adhesion strength with a sealant film. It is a thing. The easy-adhesive polyamide film of the present invention is suitably used for food packaging films and the like.
 従来から、ポリアミド6に代表される脂肪族ポリアミドからなる二軸延伸フィルムは、耐衝撃性と耐屈曲ピンホール性に優れており、各種の包装材料フィルムとして広く使用されている。 Conventionally, a biaxially stretched film made of an aliphatic polyamide typified by polyamide 6 has excellent impact resistance and bending pinhole resistance, and is widely used as various packaging material films.
 また、スープ、調味料等の液体充填包装向けに、耐屈曲ピンホール性、耐衝撃性をさらに向上させるため、脂肪族ポリアミドに各種エラストマー(ゴム成分)を混合し、より柔軟化して耐屈曲ピンホール性を向上した二軸延伸ポリアミドフィルムが広く使用されている。 In addition, for liquid-filled packaging such as soups and seasonings, in order to further improve bending pinhole resistance and impact resistance, various elastomers (rubber components) are mixed with aliphatic polyamide to make them more flexible and bending resistant pins. Biaxially stretched polyamide films with improved hole properties are widely used.
 上記の耐屈曲ピンホール性を向上させる手段として脂肪族ポリアミドにポリアミド系エラストマーを混合したフィルムが知られている(例えば、特許文献1参照)。このフィルムは、低温環境下での耐屈曲ピンホール性、耐衝撃性が良好であり、低温環境下でも屈曲疲労によるピンホールが発生にくい。 A film in which a polyamide-based elastomer is mixed with an aliphatic polyamide is known as a means for improving the above-mentioned bending pinhole resistance (see, for example, Patent Document 1). This film has good bending pinhole resistance and impact resistance in a low temperature environment, and pinholes due to bending fatigue are unlikely to occur even in a low temperature environment.
 しかし、ピンホールは、屈曲によって発生する他に摩擦(擦れ)によっても発生する。屈曲によるピンホールと摩擦によるピンホールの改善方法は相反する場合が多い。例えば、フィルムの柔軟性を高くすると、屈曲ピンホールは発生しにくくなるが、柔らかくなった分だけ摩擦によるピンホールが生じ易くなる傾向がある。これに対して二軸延伸ポリアミドフィルムの外面に表面コート剤を設けることによって、耐屈曲性や耐摩擦ピンホール性に優れた包装用の積層体が提案されている(例えば、特許文献2参照)。しかし、この方法では摩擦ピンホールの発生防止効果が少ない。また、コーティング工程が必要となる。
 更に、脂肪族ポリアミドにポリアミド系エラストマーを混合したフィルムの場合、フィルム製造時に添加したポリアミド系エラストマーが熱劣化するために、ダイスのリップ出口に目ヤニと呼ばれる劣化物を生成しやすい。そして、劣化物はフィルム厚みの精度を悪化させる原因になることがわかった。また、劣化物はそれ自体が落下することで不良製品を生み、フィルム連続生産時の生産効率を低下させる問題があった。
However, pinholes are generated not only by bending but also by friction (rubbing). Pinholes due to bending and methods for improving pinholes due to friction often conflict with each other. For example, when the flexibility of the film is increased, bending pinholes are less likely to occur, but the softening tends to cause pinholes due to friction. On the other hand, by providing a surface coating agent on the outer surface of the biaxially stretched polyamide film, a laminated body for packaging having excellent bending resistance and abrasion resistance pinhole resistance has been proposed (see, for example, Patent Document 2). .. However, this method has little effect of preventing the occurrence of friction pinholes. In addition, a coating process is required.
Further, in the case of a film in which a polyamide-based elastomer is mixed with an aliphatic polyamide, the polyamide-based elastomer added at the time of film production is thermally deteriorated, so that a deteriorated product called eye tar is likely to be generated at the lip outlet of the die. Then, it was found that the deteriorated product causes deterioration of the accuracy of the film thickness. In addition, there is a problem that the deteriorated product itself drops to produce a defective product, which lowers the production efficiency during continuous film production.
 また、ポリアミドフィルムをシーラントフィルムとラミネートしたフィルムを液体スープ袋や水物用袋に使用する場合、ラミネートしたフィルム間の接着強度(ラミネート強度とも言う)が十分に高いことが要求される。 Further, when a film obtained by laminating a polyamide film with a sealant film is used for a liquid soup bag or a water bag, the adhesive strength between the laminated films (also referred to as laminating strength) is required to be sufficiently high.
 一方、近年、循環型社会の構築のため、材料分野において化石燃料の原料に代わりバイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラル(環境中での二酸化炭素の排出量と吸収量が同じであるので温室効果ガスである二酸化炭素の増加を抑制できる)な原料である。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、汎用高分子材料であるポリエステルをこれらバイオマス原料から製造する試みも行われている。 On the other hand, in recent years, in order to build a recycling-oriented society, the use of biomass instead of fossil fuel raw materials has been attracting attention in the material field. Biomass is an organic compound photosynthesized from carbon dioxide and water, and by using it, it becomes carbon dioxide and water again, so-called carbon neutral (the amount of carbon dioxide emitted and absorbed in the environment is the same). Therefore, it is a raw material that can suppress the increase of carbon dioxide, which is a greenhouse gas. In recent years, the practical use of biomass plastics made from these biomass raw materials has been rapidly progressing, and attempts have been made to produce polyester, which is a general-purpose polymer material, from these biomass raw materials.
 例えば、特許文献3では、ポリエステルフィルムの分野において、ジオール単位とジカルボン酸単位とからなるポリエステルを含んでなる樹脂組成物であって、ジオール成分単位がバイオマス由来のエチレングリコールであり、ジカルボン酸成分単位が石油由来のジカルボン酸であるポリエステルを、樹脂組成物全体に対して、50~95質量%含んでなることを特徴とする樹脂組成物及びフィルムが開示されている。
 かかる技術によれば、従来の化石燃料から得られるエチレングリコールに代えて、バイオマス由来のエチレングリコールを用いて製造されたポリエステルであっても、従来の化石燃料由来のエチレングリコールを用いた場合と同等の機械的特性が得られるというものである。
 このような背景の中、ポリアミドフィルムにおいても、バイオマス由来の原料を用いたカーボンニュートラルな素材が求められている。
For example, in Patent Document 3, in the field of polyester film, a resin composition containing a polyester composed of a diol unit and a dicarboxylic acid unit, wherein the diol component unit is ethylene glycol derived from biomass and the dicarboxylic acid component unit. Disclosed are resin compositions and films characterized by containing 50 to 95% by mass of polyester, which is a dicarboxylic acid derived from petroleum, with respect to the entire resin composition.
According to such a technique, even a polyester produced by using biomass-derived ethylene glycol instead of ethylene glycol obtained from the conventional fossil fuel is equivalent to the case where the conventional fossil fuel-derived ethylene glycol is used. The mechanical properties of are obtained.
Against this background, a carbon-neutral material using a biomass-derived raw material is also required for a polyamide film.
特開平11-254615号公報JP-A-11-254615 特開2001-205761号公報Japanese Unexamined Patent Publication No. 2001-205761 特開2012―097163号公報Japanese Unexamined Patent Publication No. 2012-097163
 本発明は、かかる従来技術の問題点に鑑み創案されたものである。本発明の目的は、耐衝撃性及び耐屈曲ピンホール性と耐摩擦ピンホール性に優れ、かつシーラントフィルムとの耐水接着強度にも優れ、バイオマス由来の原料を用いたカーボンニュートラルな易接着性二軸延伸ポリアミドフィルムを提供することにある。 The present invention was devised in view of the problems of the prior art. An object of the present invention is that it is excellent in impact resistance, bending resistance, pinhole resistance and friction pinhole resistance, and also has excellent water adhesion resistance to a sealant film, and carbon-neutral easy adhesion using a biomass-derived raw material. The present invention is to provide an axially stretched polyamide film.
 即ち、本発明は、以下の構成よりなる。
[1] ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含む二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有することを特徴とする易接着性ポリアミドフィルム。
[2] 下記の基材層(A層)の少なくとも片面に下記の機能層(B層)が積層された二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有することを特徴とする易接着性ポリアミドフィルム。
 基材層(A層)はポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含み、機能層(B層)はポリアミド6樹脂70質量%以上を含む。
[3] 前記二軸延伸ポリアミドフィルム中の全炭素に対して、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が1~15%であることを特徴とする[1]又は[2]に記載の易接着性ポリアミドフィルム。
[4] 少なくとも原料の一部がバイオマス由来であるポリアミド樹脂が、ポリアミド11、ポリアミド410、ポリアミド610、及びポリアミド1010からなる群から選ばれる少なくとも1種のポリアミド樹脂であることを特徴とする[1]~[3]いずれかに記載の易接着性ポリアミドフィルム。
[5] 下記の(a)及び(b)を満足することを特徴とする[1]~[4]いずれかに記載の易接着性ポリアミドフィルム。
 (a)ゲルボフレックステスターを用いたひねり屈曲試験を温度1℃で1000回実施した時のゲルボピンホール欠点数が10個以下、
 (b)耐摩擦ピンホールテストでピンホール発生までの距離が2900cm以上。
[6] ポリエチレン系シーラントフィルムと貼り合わせた後のラミネート強度が4.0N/15mm以上であることを特徴とする[1]~[5]いずれかに記載の易接着性ポリアミドフィルム。
[7] [1]~[6]いずれかに記載の易接着性ポリアミドフィルムにシーラントフィルムを積層した積層フィルム。
[8] [7]に記載された積層フィルムを用いた包装袋。
That is, the present invention has the following configuration.
[1] A coating amount of 0.01 to 70% as a solid content on at least one side of a biaxially stretched polyamide film containing 99 to 70% by mass of a polyamide 6 resin and 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass. An easily adhesive polyamide film having an adhesive modification layer made of any of 3 g / m 2 polyester resin, polyurethane resin, and / or polyacrylic resin.
[2] A coating amount of 0.01 to 3 g / m as a solid content on at least one side of a biaxially stretched polyamide film in which the following functional layer (B layer) is laminated on at least one side of the following base material layer (A layer). 2 of polyester resin, easily adhesive polyamide film characterized in that an adhesive modifying layer made of either a resin of the polyurethane resin, and / or polyacrylic resins.
The base material layer (A layer) contains 99 to 70% by mass of the polyamide 6 resin and 1 to 30% by mass of the polyamide resin in which at least a part of the raw material is derived from biomass, and the functional layer (B layer) contains 70% by mass of the polyamide 6 resin. Including the above.
[3] The content of biomass-derived carbon as measured by radiocarbon (C 14 ) is 1 to 15% of the total carbon in the biaxially stretched polyamide film [1] or [2]. ] The easy-adhesive polyamide film described in.
[4] The polyamide resin from which at least a part of the raw material is derived from biomass is at least one polyamide resin selected from the group consisting of polyamide 11, polyamide 410, polyamide 610, and polyamide 1010 [1]. ] To [3] The easily adhesive polyamide film according to any one of.
[5] The easily adhesive polyamide film according to any one of [1] to [4], which satisfies the following (a) and (b).
(A) The number of defects of gelbo pinholes when the twist bending test using a gelboflex tester was performed 1000 times at a temperature of 1 ° C. was 10 or less.
(B) The distance to the occurrence of a pinhole in the friction-resistant pinhole test is 2900 cm or more.
[6] The easily adhesive polyamide film according to any one of [1] to [5], wherein the laminate strength after being bonded to the polyethylene-based sealant film is 4.0 N / 15 mm or more.
[7] A laminated film in which a sealant film is laminated on the easily adhesive polyamide film according to any one of [1] to [6].
[8] A packaging bag using the laminated film according to [7].
 本発明の易接着性ポリアミドフィルムは、ポリアミド6樹脂を主成分とし、特定のバイオマス由来の原料から重合されたポリアミド樹脂をブレンドすることおよび特定の製膜条件を採用することで、耐衝撃性、耐屈曲ピンホール性、耐摩擦ピンホール性、シーラントフィルムとの接着性が発現するとともに、カーボンニュートラルなポリアミドフィルムが得られる。
 また、本発明ではさらに、従来の耐屈曲ピンホール性を向上のために添加したポリアミド系エラストマーと異なり、ダイス内部でポリアミド系エラストマーが劣化することがないので、長時間にわたり、ダイス内面への劣化物の付着やダイスリップ出口への目ヤニの付着を抑制できる。それによって、フィルムの厚み斑の悪化を防止できる。
 また、ダイス内面やダイスリップ出口へ劣化物が付着すると厚み斑が悪化するので、生産を止めてダイスのリップを掃除する必要がある。本発明の易接着性ポリアミドフィルムは、長時間の連続生産を可能にすることができる。
 更に、二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を積層することで、シーラントフィルムとラミネートしたフィルムを液体スープ袋や水物用袋に使用する場合、ラミネートしたフィルム間の接着強度(ラミネート強度とも言う)が高いので、袋の破れの少ない包装袋が提供できる。特に耐水ラミネート強度(水付着条件下でのラミネート強度)が高いのでボイル処理やレトルト処理に使用しても袋の破れの少ない包装袋が提供できる。
The easily adhesive polyamide film of the present invention has impact resistance by blending a polyamide resin polymerized from a specific biomass-derived raw material with a polyamide 6 resin as a main component and adopting specific film forming conditions. A carbon-neutral polyamide film can be obtained while exhibiting bending-resistant pinhole resistance, abrasion-resistant pinhole resistance, and adhesion to a sealant film.
Further, in the present invention, unlike the conventional polyamide-based elastomer added to improve the bending pinhole resistance, the polyamide-based elastomer does not deteriorate inside the die, so that the deterioration on the inner surface of the die takes a long time. It is possible to suppress the adhesion of objects and the adhesion of pinholes to the die slip outlet. Thereby, deterioration of the thickness unevenness of the film can be prevented.
In addition, if deteriorated substances adhere to the inner surface of the die or the outlet of the die slip, the thickness unevenness worsens, so it is necessary to stop production and clean the lip of the die. The easy-adhesive polyamide film of the present invention can enable continuous production for a long time.
Further, an adhesive modification layer made of any one of a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content is applied to at least one surface of the biaxially stretched polyamide film. When a film laminated with a sealant film is used for a liquid soup bag or a water bag by laminating, the adhesive strength between the laminated films (also called laminating strength) is high, so a packaging bag with less tearing of the bag can be used. Can be provided. In particular, since the water-resistant laminate strength (lamination strength under water adhesion conditions) is high, it is possible to provide a packaging bag with less tearing even when used for boiling treatment or retort treatment.
耐摩擦ピンホール性評価装置の概略図Schematic diagram of friction-resistant pinhole resistance evaluation device
 1:堅牢度試験機のヘッド部
 2:段ボール板
 3:サンプル保持用の台紙
 4:4つ折りしたフィルムサンプル
 5:擦る振幅方向
1: Robustness tester head 2: Corrugated cardboard 3: Sample holding mount 4: Four-folded film sample 5: Rubbing amplitude direction
 以下、本発明の易接着性ポリアミドフィルムを詳細に説明する。
 本発明の易接着性ポリアミドフィルムは、ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%からなる二軸延伸ポリアミドフィルム又はポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%からなる基材層(A層)の少なくとも片面に下記の機能層(B層)が積層された二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有することを特徴とする易接着性ポリアミドフィルムである。
Hereinafter, the easily adhesive polyamide film of the present invention will be described in detail.
The easy-adhesive polyamide film of the present invention is a biaxially stretched polyamide film or polyamide 6 resin 99 to 70 composed of 99 to 70% by mass of polyamide 6 resin and 1 to 30% by mass of polyamide resin in which at least a part of the raw material is derived from biomass. A biaxially stretched polyamide film in which the following functional layer (B layer) is laminated on at least one side of a base material layer (A layer) composed of 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass. It is characterized by having an adhesive modification layer made of any one of a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content on at least one surface of the above. It is an adhesive polyamide film.
[二軸延伸ポリアミドフィルム又は基材層(A層)]
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)は、ポリアミド6樹脂を70質量%以上含むことで、ポリアミド6樹脂からなる二軸延伸ポリアミドフィルムが本来持つ、優れた衝撃強度などの機械的強度や酸素などのガスバリア性が得られる。
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)は、少なくとも原料の一部がバイオマス由来であるポリアミド樹脂を1~30質量%含むことで、耐屈曲ピンホール性が向上する。従来使用されている耐屈曲ピンホール性の改良剤であるポリアミド系エラストマーやポリオレフィン系エラストマーの場合、耐屈曲ピンホール性は向上するが、耐摩擦ピンホール性が悪くなる。少なくとも原料の一部がバイオマス由来であるポリアミド樹脂を1~30質量%含むことで、耐屈曲ピンホール性と耐摩擦ピンホール性が同時に優れた二軸延伸ポリアミドフィルムが得られる。また、カーボンニュートラルな地上の二酸化炭素の増減に影響が少ないフィルムが得られる。
[Biaxially stretched polyamide film or base material layer (A layer)]
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention contains 70% by mass or more of the polyamide 6 resin, so that the biaxially stretched polyamide film made of the polyamide 6 resin originally has excellent impact strength and the like. Mechanical strength and gas barrier properties such as oxygen can be obtained.
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention contains 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass, so that the bending pinhole resistance is improved. In the case of a polyamide-based elastomer or a polyolefin-based elastomer, which is a conventionally used improving agent for bending pinhole resistance, the bending pinhole resistance is improved, but the friction pinhole resistance is deteriorated. By containing 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass, a biaxially stretched polyamide film having excellent bending pinhole resistance and friction pinhole resistance can be obtained at the same time. In addition, a carbon-neutral film that has little effect on the increase or decrease of carbon dioxide on the ground can be obtained.
[ポリアミド6樹脂]
 本発明に使用するポリアミド6樹脂は、通常、ε-カプロラクタムの開環重合によって製造される。開環重合で得られたポリアミド6樹脂は、通常、熱水でラクタムモノマーを除去した後、乾燥してから押出し機で溶融押出しされる。
 ポリアミド6樹脂の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.6~3.2である。相対粘度が1.8より小さい場合は、フィルムの衝撃強度が不足する。4.5より大きい場合は、押出機の負荷が大きくなり延伸前の未延伸フィルムを得るのが困難になる。
[Polyamide 6 resin]
The polyamide 6 resin used in the present invention is usually produced by ring-opening polymerization of ε-caprolactam. The polyamide 6 resin obtained by ring-opening polymerization is usually melt-extruded by an extruder after removing the lactam monomer with hot water and then drying.
The relative viscosity of the polyamide 6 resin is preferably 1.8 to 4.5, more preferably 2.6 to 3.2. If the relative viscosity is less than 1.8, the impact strength of the film is insufficient. If it is larger than 4.5, the load on the extruder becomes large and it becomes difficult to obtain an unstretched film before stretching.
[少なくとも原料の一部がバイオマス由来であるポリアミド樹脂]
 本発明に使用する、少なくとも原料の一部がバイオマス由来であるポリアミド樹脂としては、例えば、ポリアミド11、ポリアミド410、ポリアミド610、及びポリアミド1010、ポリアミドMXD10樹脂、ポリアミド11・6T共重合樹脂などが挙げられる。
[Polyamide resin, at least part of which is derived from biomass]
Examples of the polyamide resin used in the present invention in which at least a part of the raw material is derived from biomass include polyamide 11, polyamide 410, polyamide 610, polyamide 1010, polyamide MXD10 resin, and polyamide 11.6T copolymer resin. Be done.
 ポリアミド11は、炭素原子数11である単量体がアミド結合を介して結合された構造を有するポリアミド樹脂である。通常、ポリアミド11は、アミノウンデカン酸又はウンデカンラクタムを単量体として用いて得られる。とりわけアミノウンデカン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数が11である単量体に由来する構成単位は、ポリアミド11内において全構成単位のうちの50%以上が好ましく、80%以上が更に好ましく、100%であってもよい。 Polyamide 11 is a polyamide resin having a structure in which a monomer having 11 carbon atoms is bonded via an amide bond. Polyamide 11 is usually obtained by using aminoundecanoic acid or undecanelactam as a monomer. In particular, aminoundecanoic acid is desirable from the viewpoint of carbon neutrality because it is a monomer obtained from castor oil. The structural unit derived from the monomer having 11 carbon atoms is preferably 50% or more, more preferably 80% or more, and may be 100% of all the structural units in the polyamide 11.
 上記ポリアミド11としては、通常、前述したアミノウンデカン酸の重合によって製造される。重合で得られたポリアミド11は、場合によって熱水でラクタムを除去した後、乾燥してから押出し機で溶融押出しされる。
 ポリアミド11の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.4~3.2である。相対粘度が1.8より小さい場合は、フィルムの衝撃強度が不足する。4.5より大きい場合は、押出機の負荷が大きくなり延伸前の未延伸フィルムを得るのが困難になる。
The above-mentioned polyamide 11 is usually produced by the polymerization of the above-mentioned aminoundecanoic acid. In some cases, the polyamide 11 obtained by polymerization has lactam removed with hot water, dried, and then melt-extruded by an extruder.
The relative viscosity of the polyamide 11 is preferably 1.8 to 4.5, more preferably 2.4 to 3.2. If the relative viscosity is less than 1.8, the impact strength of the film is insufficient. If it is larger than 4.5, the load on the extruder becomes large and it becomes difficult to obtain an unstretched film before stretching.
 上記ポリアミド610は、炭素原子数6であるジアミンと炭素原子数10であるジカルボン酸とが重合された構造を有するポリアミド樹脂である。通常、ヘキサメチレンジアミンとセバシン酸が利用される。このうちセバシン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数6である単量体に由来する構成単位と、炭素原子数10である単量体に由来する構成単位とは、PA610内においてその合計が、全構成単位のうちの50%以上が好ましく、80%以上が更に好ましく、100%であってもよい。 The above-mentioned polyamide 610 is a polyamide resin having a structure in which a diamine having 6 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized. Hexamethylenediamine and sebacic acid are usually used. Of these, sebacic acid is desirable from the viewpoint of carbon neutrality because it is a monomer obtained from castor oil. The total of the structural units derived from the monomer having 6 carbon atoms and the structural units derived from the monomer having 10 carbon atoms is 50% of the total structural units in PA610. The above is preferable, 80% or more is more preferable, and it may be 100%.
 上記ポリアミド1010は、炭素原子数10であるジアミンと炭素原子数10であるジカルボン酸とが重合された構造を有するポリアミド樹脂である。通常、ポリアミド1010には、1,10-デカンジアミン(デカメチレンジアミン)とセバシン酸とが利用される。デカメチレンジアミン及びセバシン酸は、ヒマシ油から得られる単量体であるため、カーボンニュートラルの観点から望ましい。これらの炭素原子数10であるジアミンに由来する構成単位と、炭素原子数10であるジカルボン酸に由来する構成単位とは、PA1010内においてその合計が、全構成単位のうちの50%以上が好ましく、80%以上が更に好ましく、100%であってもよい。 The above-mentioned polyamide 1010 is a polyamide resin having a structure in which a diamine having 10 carbon atoms and a dicarboxylic acid having 10 carbon atoms are polymerized. Usually, 1,10-decanediamine (decamethylenediamine) and sebacic acid are used for the polyamide 1010. Decamethylenediamine and sebacic acid are desirable from the viewpoint of carbon neutrality because they are monomers obtained from castor oil. The total of the structural units derived from diamine having 10 carbon atoms and the structural units derived from dicarboxylic acid having 10 carbon atoms is preferably 50% or more of all the structural units in PA1010. , 80% or more is more preferable, and it may be 100%.
 上記ポリアミド410は、炭素数4である単量体と炭素原子数10であるジアミンとが共重合された構造を有するポリアミド樹脂である。通常ポリアミド410には、セバシン酸とテトラメチレンジアミンとが利用される。セバシン酸としては、環境面から植物油のヒマシ油を原料とするものが好ましい。ここで用いるセバシン酸としては、ヒマシ油から得られるものが環境保護の観点(特にカーボンニュートラルの観点)から望ましい。 The above-mentioned polyamide 410 is a polyamide resin having a structure in which a monomer having 4 carbon atoms and a diamine having 10 carbon atoms are copolymerized. Usually, sebacic acid and tetramethylenediamine are used for the polyamide 410. As the sebacic acid, those made from castor oil, which is a vegetable oil, are preferable from the viewpoint of the environment. As the sebacic acid used here, one obtained from castor oil is desirable from the viewpoint of environmental protection (particularly from the viewpoint of carbon neutrality).
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)における、少なくとも原料の一部がバイオマス由来であるポリアミド樹脂の含有量の上限は30質量%であり、20質量%がより好ましい。少なくとも原料の一部がバイオマス由来であるポリアミド樹脂の含有量が30質量%を超えると、溶融フィルムをキャスティングする時に溶融フィルムが安定しなくなり均質な未延伸フィルムを得るのが難しくなる。 The upper limit of the content of the polyamide resin in which at least a part of the raw material is derived from biomass in the biaxially stretched polyamide film or the base material layer (A layer) in the present invention is 30% by mass, more preferably 20% by mass. If the content of the polyamide resin in which at least a part of the raw material is derived from biomass exceeds 30% by mass, the molten film becomes unstable when casting the molten film, and it becomes difficult to obtain a homogeneous unstretched film.
[副材料、添加剤]
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、他の熱可塑性樹脂、滑剤、熱安定剤、酸化防止剤、帯電防止剤や防曇剤、紫外線吸収剤、染料、顔料等の各種の添加剤を必要に応じて含有させることができる。
[Secondary materials, additives]
The biaxially stretched polyamide film or base material layer (layer A) in the present invention includes other thermoplastic resins, lubricants, heat stabilizers, antioxidants, antistatic agents and antifogging agents, ultraviolet absorbers, dyes, and pigments. Various additives such as the above can be contained as needed.
<他の熱可塑性樹脂>
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、本発明の目的を損なわない範囲で、上記のポリアミド6と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂の他に熱可塑性樹脂を含むことができる。例えば、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂、ポリアミドMXD6樹脂、などのポリアミド系樹脂が挙げられる。
 必要に応じてポリアミド系以外の熱可塑性樹脂、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系重合体、ポリエチレン、ポリプロピレン等のポリオレフィン系重合体等を含有させてもよい。
 これらの熱可塑性樹脂の原料はバイオマス由来であると、地上の二酸化炭素の増減に影響を与えないので、環境負荷を低減できるので好ましい。
<Other thermoplastic resins>
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention has heat in addition to the above-mentioned polyamide 6 and a polyamide resin in which at least a part of the raw material is derived from biomass, as long as the object of the present invention is not impaired. A plastic resin can be included. For example, polyamide-based resins such as polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, polyamide 6/66 copolymer resin, and polyamide MXD6 resin can be mentioned.
If necessary, a thermoplastic resin other than polyamide-based, for example, a polyester-based polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyolefin-based polymer such as polyethylene or polypropylene may be contained. Good.
It is preferable that the raw materials of these thermoplastic resins are derived from biomass because they do not affect the increase or decrease of carbon dioxide on the ground and can reduce the environmental load.
<滑剤>
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くして取扱い易くするために、滑剤として微粒子や脂肪酸アミドなどの有機潤滑剤を含有させることが好ましい。
 本発明における二軸延伸ポリアミドフィルムは、滑り性を良くすることで、摩擦による包装袋の破袋を減少させる効果もある。
<Glidant>
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention preferably contains an organic lubricant such as fine particles or fatty acid amide as a lubricant in order to improve slipperiness and facilitate handling.
The biaxially stretched polyamide film in the present invention also has the effect of reducing the breakage of the packaging bag due to friction by improving the slipperiness.
 前記微粒子としては、シリカ、カオリン、ゼオライト等の無機微粒子、アクリル系、ポリスチレン系等の高分子系有機微粒子等の中から適宜選択して使用することができる。なお、透明性と滑り性の面から、シリカ微粒子を用いることが好ましい。
 前記微粒子の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。平均粒子径が0.5μm未満であると、良好な滑り性を得るのに多量の添加量が要求される。一方、5.0μmを超えると、フィルムの表面粗さが大きくなりすぎて外観が悪くなる傾向がある。
As the fine particles, inorganic fine particles such as silica, kaolin and zeolite, and polymer organic fine particles such as acrylic and polystyrene can be appropriately selected and used. From the viewpoint of transparency and slipperiness, it is preferable to use silica fine particles.
The average particle size of the fine particles is preferably 0.5 to 5.0 μm, more preferably 1.0 to 3.0 μm. If the average particle size is less than 0.5 μm, a large amount of addition is required to obtain good slipperiness. On the other hand, if it exceeds 5.0 μm, the surface roughness of the film tends to be too large and the appearance tends to be deteriorated.
 前記シリカ微粒子を使用する場合、シリカの細孔容積の範囲は、0.5~2.0ml/gであると好ましく、0.8~1.6ml/gであるとより好ましい。細孔容積が0.5ml/g未満であると、ボイドが発生し易くなりフィルムの透明性が悪化し、細孔容積が2.0ml/gを超えると、微粒子による表面の突起ができにくくなる傾向がある。 When the silica fine particles are used, the range of the pore volume of silica is preferably 0.5 to 2.0 ml / g, and more preferably 0.8 to 1.6 ml / g. If the pore volume is less than 0.5 ml / g, voids are likely to occur and the transparency of the film deteriorates, and if the pore volume exceeds 2.0 ml / g, surface protrusions due to fine particles are less likely to occur. Tend.
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くする目的で脂肪酸アマイド及び/又は脂肪酸ビスアマイドを含有させることができる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドとしては、エルカ酸アマイド、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスオレイン酸アマイドなどが挙げられる。
 本発明における二軸延伸ポリアミドフィルムの脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量は、好ましくは0.01~0.40質量%であり、さらに好ましくは0.05~0.30質量%である。脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量が上記範囲未満となると、滑り性が悪くなる傾向がある。一方、上記範囲を越えると、濡れ性が悪くなる傾向がある。
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention may contain fatty acid amide and / or fatty acid bisamide for the purpose of improving slipperiness. Examples of the fatty acid amide and / or the fatty acid bisamide include erucic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene bisbehenic acid amide, and ethylene bisoleic acid amide.
The content of fatty acid amide and / or fatty acid bisamide in the biaxially stretched polyamide film in the present invention is preferably 0.01 to 0.40% by mass, and more preferably 0.05 to 0.30% by mass. When the content of fatty acid amide and / or fatty acid bisamide is less than the above range, slipperiness tends to deteriorate. On the other hand, if it exceeds the above range, the wettability tends to deteriorate.
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、滑り性を良くする目的でポリアミドMXD6樹脂、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂などのポリアミド樹脂を添加することができる。特にポリアミドMXD6樹脂が好ましく、1~10質量%添加することが好ましい。 The biaxially stretched polyamide film or the base material layer (layer A) in the present invention has a polyamide MXD6 resin, a polyamide 12 resin, a polyamide 66 resin, a polyamide 6/12 copolymer resin, and a polyamide 6.66 for the purpose of improving slipperiness. A polyamide resin such as a copolymer resin can be added. In particular, polyamide MXD6 resin is preferable, and 1 to 10% by mass is preferably added.
<酸化防止剤>
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)には、酸化防止剤を含有させることができる。
 酸化防止剤としては、フェノール系酸化防止剤が好ましい。フェノール系酸化防止剤は、完全ヒンダードフェノール系化合物又は部分ヒンダードフェノール系化合物が好ましい。例えば、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス〔1,1-ジメチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル〕2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン等が挙げられる。
 上記フェノール系酸化防止剤を含有させることにより、二軸延伸ポリアミドフィルムの製膜操業性が向上する。特に、原料にリサイクルしたフィルムを用いる場合、樹脂の熱劣化が起こりやすく、これに起因する製膜操業不良が発生し、生産コスト上昇を招く傾向にある。これに対して、酸化防止剤を含有させることで、樹脂の熱劣化が抑制され操業性が向上する。
<Antioxidant>
The biaxially stretched polyamide film or the base material layer (layer A) in the present invention may contain an antioxidant.
As the antioxidant, a phenolic antioxidant is preferable. The phenolic antioxidant is preferably a fully hindered phenolic compound or a partially hindered phenolic compound. For example, tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, stearyl-β- (3,5-di-t-butyl-4-hydroxy). Phenyl) propionate, 3,9-bis [1,1-dimethyl-2- [β- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] 2,4,8,10- Tetraoxaspiro [5,5] undecane and the like can be mentioned.
By containing the above-mentioned phenolic antioxidant, the film-forming operability of the biaxially stretched polyamide film is improved. In particular, when a recycled film is used as a raw material, thermal deterioration of the resin is likely to occur, which causes poor film formation operation and tends to increase the production cost. On the other hand, by containing an antioxidant, thermal deterioration of the resin is suppressed and operability is improved.
[機能層(B層)]
 本発明における一つの実施態様として、基材層(A層)の少なくとも片面に機能層(B層)を積層して、表面の特性を改善することができる。
 B層は、ポリアミド6樹脂を70質量%以上含む層である。
 B層は、ポリアミド6樹脂を70質量%以上含むことで優れた衝撃強度などの機械的強度や酸素などのガスバリア性を持った二軸延伸ポリアミドフィルム得られる。
 ポリアミド6樹脂としては、前記のA層で使用するポリアミド6樹脂と同様のものを使用できる。
[Functional layer (B layer)]
As one embodiment of the present invention, the functional layer (B layer) can be laminated on at least one surface of the base material layer (A layer) to improve the surface characteristics.
The B layer is a layer containing 70% by mass or more of the polyamide 6 resin.
When the B layer contains 70% by mass or more of the polyamide 6 resin, a biaxially stretched polyamide film having excellent mechanical strength such as impact strength and gas barrier property such as oxygen can be obtained.
As the polyamide 6 resin, the same one as the polyamide 6 resin used in the A layer can be used.
 B層には、他の熱可塑性樹脂、滑剤、熱安定剤、酸化防止剤、帯電防止剤や防曇剤、紫外線吸収剤、染料、顔料等の各種の添加剤をB層の表面に持たせる機能に応じて含有させることができる。
 B層を包装袋の外側に用いる場合は、耐摩擦ピンホール性が必要なので、ポリアミド系エラストマーやポリオレフィン系エラストマーのような軟らかい樹脂やボイドを多量に発生させる物質を含有させることは好ましくない。
The B layer is provided with various additives such as other thermoplastic resins, lubricants, heat stabilizers, antioxidants, antistatic agents and antifogging agents, ultraviolet absorbers, dyes, pigments, etc. on the surface of the B layer. It can be contained according to the function.
When the B layer is used on the outside of the packaging bag, it is necessary to have abrasion resistance and pinhole resistance, so it is not preferable to contain a soft resin such as a polyamide-based elastomer or a polyolefin-based elastomer or a substance that generates a large amount of voids.
 B層には、本発明の目的を損なわない範囲で、上記のポリアミド6の他に熱可塑性樹脂を含むことができる。例えば、ポリアミドMXD6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂などのポリアミド系樹脂が挙げられる。
 必要に応じてポリアミド系以外の熱可塑性樹脂、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート等のポリエステル系重合体、ポリエチレン、ポリプロピレン等のポリオレフィン系重合体等を含有させてもよい。
The layer B may contain a thermoplastic resin in addition to the above-mentioned polyamide 6 as long as the object of the present invention is not impaired. For example, polyamide-based resins such as polyamide MXD6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, and polyamide 6/66 copolymer resin can be mentioned.
If necessary, a thermoplastic resin other than polyamide-based, for example, a polyester-based polymer such as polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or a polyolefin-based polymer such as polyethylene or polypropylene may be contained. Good.
 B層には、フィルムの滑り性を良くするために、滑剤として微粒子や有機潤滑剤などを含有させることが好ましい。
 滑り性を良くすることで、フィルムの取扱い性が向上するとともに、擦れによる包装袋の破袋が減少する。
It is preferable that the B layer contains fine particles, an organic lubricant, or the like as a lubricant in order to improve the slipperiness of the film.
By improving the slipperiness, the handleability of the film is improved and the breakage of the packaging bag due to rubbing is reduced.
 前記の微粒子としては、シリカ、カオリン、ゼオライト等の無機微粒子、アクリル系、ポリスチレン系等の高分子系有機微粒子等の中から適宜選択して使用することができる。なお、透明性と滑り性の面から、シリカ微粒子を用いることが好ましい。 As the fine particles, it is possible to appropriately select and use from inorganic fine particles such as silica, kaolin and zeolite, and polymer organic fine particles such as acrylic and polystyrene. From the viewpoint of transparency and slipperiness, it is preferable to use silica fine particles.
 前記の微粒子の好ましい平均粒子径は0.5~5.0μmであり、より好ましくは1.0~3.0μmである。平均粒子径が0.5μm未満であると、良好な滑り性を得るのに多量の添加量が要求される。一方、5.0μmを超えると、フィルムの表面粗さが大きくなりすぎて外観が悪くなる傾向がある。 The average particle size of the fine particles is preferably 0.5 to 5.0 μm, more preferably 1.0 to 3.0 μm. If the average particle size is less than 0.5 μm, a large amount of addition is required to obtain good slipperiness. On the other hand, if it exceeds 5.0 μm, the surface roughness of the film tends to be too large and the appearance tends to be deteriorated.
 前記のシリカ微粒子を使用する場合、シリカの細孔容積の範囲は、0.5~2.0ml/gであると好ましく、0.8~1.6ml/gであるとより好ましい。細孔容積が0.5ml/g未満であると、ボイドが発生し易くなりフィルムの透明性が悪化する。細孔容積が2.0ml/gを超えると、微粒子による表面の突起ができにくくなる傾向がある。 When the above silica fine particles are used, the range of the pore volume of silica is preferably 0.5 to 2.0 ml / g, and more preferably 0.8 to 1.6 ml / g. If the pore volume is less than 0.5 ml / g, voids are likely to occur and the transparency of the film deteriorates. When the pore volume exceeds 2.0 ml / g, surface protrusions due to fine particles tend to be difficult to form.
 前記の有機潤滑剤としては、脂肪酸アマイド及び/又は脂肪酸ビスアマイドを含有させることができる。脂肪酸アマイド及び/又は脂肪酸ビスアマイドとしては、エルカ酸アマイド、ステアリン酸アマイド、エチレンビスステアリン酸アマイド、エチレンビスベヘン酸アマイド、エチレンビスオレイン酸アマイドなどが挙げられる。
 B層に添加する脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量は、好ましくは0.01~0.40質量%であり、さらに好ましくは0.05~0.30質量%である。脂肪酸アマイド及び/又は脂肪酸ビスアマイドの含有量が上記範囲未満となると、滑り性が悪くなる傾向がある。一方、上記範囲を越えると、濡れ性が悪くなる傾向がある。
As the organic lubricant, fatty acid amide and / or fatty acid bisamide can be contained. Examples of the fatty acid amide and / or the fatty acid bisamide include erucic acid amide, stearic acid amide, ethylene bisstearic acid amide, ethylene bisbehenic acid amide, and ethylene bisoleic acid amide.
The content of the fatty acid amide and / or the fatty acid bisamide added to the layer B is preferably 0.01 to 0.40% by mass, and more preferably 0.05 to 0.30% by mass. When the content of fatty acid amide and / or fatty acid bisamide is less than the above range, slipperiness tends to deteriorate. On the other hand, if it exceeds the above range, the wettability tends to deteriorate.
 B層には、フィルムの滑り性を良くする目的でポリアミド6以外のポリアミド系樹脂、例えば、ポリアミドMXD6樹脂、ポリアミド11、ポリアミド12樹脂、ポリアミド66樹脂、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂などを添加することができる。特にポリアミドMXD6樹脂が好ましく、1~10質量%添加することが好ましい。1質量%未満ではフィルムの滑り性改善効果が少ない。10質量%より多い場合は、フィルムの滑り性改善効果が飽和する。
 ポリアミドMXD6樹脂はメタキシリレンジアミンとアジピン酸の重縮合で製造される。
 ポリアミドMXD6の相対粘度は、1.8~4.5であることが好ましく、より好ましくは、2.0~3.2である。相対粘度が1.8より小さい場合や4.5より大きい場合は、押出機でポリアミド樹脂との混練がしにくい場合がある。
For the purpose of improving the slipperiness of the film, the B layer contains polyamide resins other than polyamide 6, such as polyamide MXD6 resin, polyamide 11, polyamide 12 resin, polyamide 66 resin, polyamide 6/12 copolymer resin, and polyamide 6. 66 A copolymer resin or the like can be added. In particular, polyamide MXD6 resin is preferable, and 1 to 10% by mass is preferably added. If it is less than 1% by mass, the effect of improving the slipperiness of the film is small. If it is more than 10% by mass, the slipperiness improving effect of the film is saturated.
Polyamide MXD6 resin is produced by polycondensation of methylylenediamine and adipic acid.
The relative viscosity of the polyamide MXD6 is preferably 1.8 to 4.5, more preferably 2.0 to 3.2. If the relative viscosity is less than 1.8 or greater than 4.5, it may be difficult to knead with the polyamide resin in the extruder.
 B層にフィルムの滑り性を良くする目的で、微粒子、有機潤滑剤、又はポリアミドMXD6樹脂などのポリアミド系樹脂を添加する場合、基材層(A層)へのこれらの添加量を少なくすると、透明性に優れ、かつ滑り性も優れるフィルムが得られるので、好ましい。 When a fine particle, an organic lubricant, or a polyamide resin such as a polyamide MXD6 resin is added to the B layer for the purpose of improving the slipperiness of the film, if the amount of these additions to the base material layer (A layer) is reduced, It is preferable because a film having excellent transparency and excellent slipperiness can be obtained.
 また、B層には接着性を良くする目的でポリアミド6以外のポリアミド系樹脂を添加することもできる。この場合、ポリアミド6・12共重合樹脂、ポリアミド6・66共重合樹脂などの共重合ポリアミド樹脂が好ましい。 Further, a polyamide resin other than polyamide 6 can be added to the B layer for the purpose of improving the adhesiveness. In this case, a copolymerized polyamide resin such as a polyamide 6/12 copolymer resin and a polyamide 6/66 copolymer resin is preferable.
 本発明における二軸延伸ポリアミドフィルムのB層には、前記のA層と同様に酸化防止剤を含有させることができる。 The B layer of the biaxially stretched polyamide film in the present invention can contain an antioxidant in the same manner as the A layer described above.
 本発明における二軸延伸ポリアミドフィルム又は基材層(A層)及び機能層(B層)に、滑剤や酸化防止剤などの副材料や添加剤を添加する方法としては、樹脂重合時や押出し機での溶融押出し時に添加できる。高濃度のマスターバッチを作製してマスターバッチをフィルム生産時にポリアミド樹脂に添加してもよい。こうした公知の方法により行うことができる。 As a method of adding an auxiliary material such as a lubricant or an antioxidant or an additive to the biaxially stretched polyamide film or the base material layer (A layer) and the functional layer (B layer) in the present invention, a resin polymerization or an extruder is used. It can be added at the time of melt extrusion in. A high concentration masterbatch may be prepared and the masterbatch may be added to the polyamide resin during film production. This can be done by such a known method.
[二軸延伸ポリアミドフィルムの厚み構成]
 本発明における二軸延伸ポリアミドフィルムの厚みは、特に制限されるものではないが、包装材料として使用する場合、通常100μm以下であり、一般には5~50μmの厚みのものが使用され、特に8~30μmのものが使用される。
[Thickness composition of biaxially stretched polyamide film]
The thickness of the biaxially stretched polyamide film in the present invention is not particularly limited, but when used as a packaging material, it is usually 100 μm or less, and generally 5 to 50 μm thick is used, and particularly 8 to 8 to 50 μm. The one of 30 μm is used.
 本発明における二軸延伸ポリアミドフィルムの各層の厚み構成において、B層の厚みがフィルム総厚みの大部分を占めた場合、耐屈曲ピンホール性が低下する。従って、本発明において、A層の厚みを、A層とB層の合計厚みの50~93%、特に70~93%とすることが好ましい。 In the thickness structure of each layer of the biaxially stretched polyamide film in the present invention, when the thickness of the B layer occupies most of the total thickness of the film, the bending pinhole resistance is lowered. Therefore, in the present invention, the thickness of the A layer is preferably 50 to 93%, particularly 70 to 93% of the total thickness of the A layer and the B layer.
[接着改質層]
 本発明の易接着性ポリアミドフィルムは、少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有する。
 前記接着改質層は、フィルム製造工程でフィルムをミルロールとして巻き取る前に塗布液を塗布・乾燥して設けられることが好ましい。
 塗布液の塗布は、未延伸フィルム、1軸延伸フィルム、及び/又は2軸延伸フィルムに行うことができる。フィルムを逐次2軸延伸法で製造する場合は、通常、1軸延伸フィルムに塗布液を塗布し乾燥する。フィルムを同時2軸延伸で製造する場合は、通常、未軸延伸フィルムに塗布液を塗布し乾燥する。
[Adhesive modification layer]
The easy-adhesive polyamide film of the present invention is adhesively modified by any resin such as a polyester resin, a polyurethane resin, and / or a polyacrylic resin having a coating amount of 0.01 to 3 g / m 2 as a solid content on at least one side. Has a layer.
The adhesive modification layer is preferably provided by applying and drying a coating liquid before winding the film as a mill roll in the film manufacturing process.
The coating liquid can be applied to an unstretched film, a uniaxially stretched film, and / or a biaxially stretched film. When the film is sequentially produced by the biaxial stretching method, the coating liquid is usually applied to the uniaxially stretched film and dried. When the film is produced by simultaneous biaxial stretching, the coating liquid is usually applied to the non-axially stretched film and dried.
 本発明おける接着改質層を設けるための塗布液は、フィルム製造工程でフィルムをミルロールとして巻き取る前に塗布液を塗布・乾燥して塗布膜を設けるので、製造における安全性と衛生性を確保するために、樹脂の水系分散体を用いることが好ましい。 As the coating liquid for providing the adhesive modification layer in the present invention, the coating liquid is applied and dried before winding the film as a mill roll in the film manufacturing process to provide the coating film, thus ensuring safety and hygiene in manufacturing. Therefore, it is preferable to use an aqueous dispersion of the resin.
 <接着改質層に用いるポリエステル樹脂>
 本発明における接着改質層としてポリエステル樹脂を設ける場合、ポリエステル樹脂としては共重合ポリエステル系樹脂を選ぶことができる。共重合ポリエステル系樹脂とはジカルボン酸成分とジオール成分及びその他のエステル形成成分の重縮合物である。共重合ポリエステル系樹脂に構成成分として含有されるジカルボン酸成分としては、たとえば、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニレンジカルボン酸、5-ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸などの脂環族ジカルボン酸、マレイン酸、フマル酸、テトラヒドロフタル酸などの不飽和ジカルボン酸などを挙げることができる。
<Polyester resin used for the adhesive modification layer>
When a polyester resin is provided as the adhesive modification layer in the present invention, a copolymerized polyester resin can be selected as the polyester resin. The copolymerized polyester resin is a polycondensate of a dicarboxylic acid component, a diol component, and other ester-forming components. Examples of the dicarboxylic acid component contained in the copolymerized polyester resin as a component include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-biphenylenedicarboxylic acid, 5-sodium sulfoisophthalic acid and the like. Aromatic dicarboxylic acids such as succinic acid, succinic acid, adipic acid, azelaic acid, and sebacic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 1,2-cyclohexanedicarboxylic acid, maleic acid, Examples thereof include unsaturated dicarboxylic acids such as fumaric acid and tetrahydrophthalic acid.
 上記ジカルボン酸成分の他に、水分散性を付与するため、5-スルホイソフタル酸、スルホテレフタル酸、4-スルホイソフタル酸、4-スルホナフタレン-2,6-ジカルボン酸、5(4-スルホフェノキシ)イソフタル酸の塩類を用いることができる。なかでも、5-ナトリウムスルホイソフタル酸を1~10モル%の範囲で使用するのが好ましい。 In addition to the above dicarboxylic acid components, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfoisophthalic acid, 4-sulfonaphthalene-2,6-dicarboxylic acid, 5 (4-sulfophenoxy) are used to impart water dispersibility. ) Isophthalic acid salts can be used. Among them, it is preferable to use 5-sodium sulfoisophthalic acid in the range of 1 to 10 mol%.
 共重合ポリエステル系樹脂に含有されるジオール成分としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ポリエチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタールなどの脂環族ジオール、4,4’-ビス(ヒドロキシエチル)ビスフェノールAなどの芳香族ジオール、さらにビス(ポリオキシエチレングリコール)ビスフェノールエーテルなどを挙げることができる。
 ポリエステル樹脂は、水系分散体の塗布液として使用することが好ましい。
Examples of the diol component contained in the copolymerized polyester resin include ethylene glycol, diethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, and polyethylene glycol. Aliose diols, alicyclic diols such as 1,4-cyclohexanedimetal, aromatic diols such as 4,4'-bis (hydroxyethyl) bisphenol A, and bis (polyoxyethylene glycol) bisphenol ethers. be able to.
The polyester resin is preferably used as a coating liquid for the aqueous dispersion.
 本発明における接着改質層としてポリエステル樹脂を設ける場合、ポリエステル樹脂としては後述のアクリルグラフト共重合ポリエステルが耐水ラミネート強度を高くできるので特に好ましい。 When a polyester resin is provided as the adhesive modification layer in the present invention, the acrylic graft copolymerized polyester described later is particularly preferable as the polyester resin because it can increase the water resistance laminating strength.
 <接着改質層に用いるポリウレタン樹脂>
 本発明における接着改質層としてポリウレタン樹脂を設ける場合、ポリウレタン樹脂としては、例えば、活性水素を2個以上有するポリオール類と有機ポリイソシアネートとを反応させて得られるものが挙げられる。
 ポリオール類としては、たとえば、飽和ポリエステルポリオール類;ポリエーテルポリオール類(たとえばポリエチレングリコール、ポリテトラメチレングリコールなど);アミノアルコール類(たとえばエタノールアミン、ジエタノールアミン、トリエタノールアミンなど);不飽和ポリエステルポリオール類(たとえば不飽和多価カルボン酸単独あるいはこれと飽和多価カルボン酸との混合物と、飽和多価アルコール類と不飽和多価アルコール類との混合物とを重縮合させて得られるもの)、ポリブタジエンポリオール類(たとえば1,2-ポリブタジエンポリオール、1,4-ポリブタジエンポリオールなど)、アクリルポリオール類(各種アクリル系モノマーとヒドロキシル基を有するアクリル酸系モノマーとを共重合させて得られるヒドロキシル基を側鎖に有するアクリルポリオール類)などの不飽和二重結合を有するポリオール類を挙げることができる。
 有機ポリイソシアネートとしては、たとえば、芳香族ポリイソシアネート類(たとえばジフェニルメタンジイソシアネート、トルエンジイソシアネートなど)、脂肪族ポリイソシアネート類(たとえばへキサメチレンジイソシアネートなど)、脂環族ポリイソシアネート類(たとえばイソホロンジイソシアネートなど)、芳香族・脂肪族ポリイソシアネート類(たとえばキリレンジイソシアネート)、さらにこれらのイソシアネート類と低分子量ポリオールとを予め反応させて得られるポリイソシアネート類を挙げることができる。
<Polyurethane resin used for the adhesive modification layer>
When a polyurethane resin is provided as the adhesive modification layer in the present invention, examples of the polyurethane resin include those obtained by reacting polyols having two or more active hydrogens with an organic polyisocyanate.
Examples of the polyols include saturated polyester polyols; polyether polyols (for example, polyethylene glycol, polytetramethylene glycol, etc.); amino alcohols (for example, ethanolamine, diethanolamine, triethanolamine, etc.); unsaturated polyester polyols (for example, unsaturated polyester polyols). For example, unsaturated polyvalent carboxylic acid alone or a mixture thereof and a saturated polyvalent carboxylic acid and a mixture of saturated polyvalent alcohols and unsaturated polyvalent alcohols are polycondensed), polybutadiene polyols. (For example, 1,2-polybutadiene polyol, 1,4-polybutadiene polyol, etc.), acrylic polyols (various acrylic monomers and acrylic acid-based monomers having a hydroxyl group are copolymerized to have a hydroxyl group in the side chain. Acrylic polyols) and other polyols having unsaturated double bonds can be mentioned.
Examples of the organic polyisocyanate include aromatic polyisocyanates (for example, diphenylmethane diisocyanate, toluene diisocyanate, etc.), aliphatic polyisocyanates (for example, hexamethylene diisocyanate, etc.), alicyclic polyisocyanates (for example, isophorone diisocyanate, etc.), and the like. Examples thereof include aromatic / aliphatic polyisocyanates (for example, killylene diisocyanate), and polyisocyanates obtained by reacting these isocyanates with a low molecular weight polyol in advance.
 このポリウレタン樹脂の製造は公知の方法により行うことができる。製造の際には生成プレポリマー中に未反応のイソシアネート基が2個以上存在するようにする必要がある。このイソシアネート基はブロック化することが好ましく、特に水系塗液を調製するときはこのブロック化は必須である。このブロック化はイソシアネートのブロック化として良く知られているものであり、加熱によって遊離イソシアネート基を再生できるものである。ブロック化剤としては、たとえば、重亜硫酸塩類、アルコール類、オキシム類、活性メチレン化合物、イミダゾール類、ラクタム、イミン化合物、アミド化合物、イミド化合物などを挙げることができる。 The polyurethane resin can be produced by a known method. During production, it is necessary to make sure that two or more unreacted isocyanate groups are present in the produced prepolymer. This isocyanate group is preferably blocked, and this blocking is indispensable especially when preparing an aqueous coating solution. This blocking is well known as the blocking of isocyanates, and the free isocyanate groups can be regenerated by heating. Examples of the blocking agent include heavy sulfites, alcohols, oximes, active methylene compounds, imidazoles, lactams, imine compounds, amide compounds, and imide compounds.
 これらブロック化剤とポリウレタンプレポリマー中のイソシアネート基との反応は、常温~100℃の温度で行うことができ、必要に応じてウレタン化触媒を用いることができる。ここでポリウレタンプレポリマーに安定な水分散性、水溶性を付与するために分子内に親水性基を導入するとよい。該親水性基としては、─SO3 M(ここで、Mはアルカリ金属、アルカリ土類金属である)、-OH、-COOR(ここでRはアンモニア、第三級アミンの残基である)などが例示される。これらのうち特にアンモニア又は第三級アミンで中和されたカルボキシル基が好ましい。アンモニア又は第三級アミンで中和されたカルボキシル基をポリウレタンプレポリマー中に導入するには、たとえば、ポリウレタンプレポリマー合成時の反応原料の一つとしてカルボキシル基含有ポリヒドロキシ化合物を用いる方法、未反応イソシアネート基を有するポリウレタンプレポリマーのイソシアネート基に水酸基含有カルボン酸やアミノ基含有カルボン酸を反応させ、ついで反応生成物を高速攪拌中下でアンモニア水又は第三級アミン水溶液中に添加し中和する方法などの方法がある。
 ポリウレタン樹脂は、水系分散体の塗布液にして使用することが好ましい。
The reaction between these blocking agents and the isocyanate groups in the polyurethane prepolymer can be carried out at a temperature of room temperature to 100 ° C., and a urethanization catalyst can be used if necessary. Here, it is advisable to introduce a hydrophilic group into the molecule in order to impart stable water dispersibility and water solubility to the polyurethane prepolymer. The hydrophilic groups include -SO 3 M (where M is an alkali metal and an alkaline earth metal), -OH and -COOR (where R is a residue of ammonia and a tertiary amine). Etc. are exemplified. Of these, a carboxyl group neutralized with ammonia or a tertiary amine is particularly preferable. To introduce a carboxyl group neutralized with ammonia or a tertiary amine into the polyurethane prepolymer, for example, a method using a carboxyl group-containing polyhydroxy compound as one of the reaction raw materials during the synthesis of the polyurethane prepolymer, unreacted. A hydroxyl group-containing carboxylic acid or an amino group-containing carboxylic acid is reacted with the isocyanate group of a polyurethane prepolymer having an isocyanate group, and then the reaction product is added to aqueous ammonia or a tertiary amine aqueous solution under high-speed stirring to neutralize the reaction product. There are methods such as methods.
The polyurethane resin is preferably used as a coating liquid for an aqueous dispersion.
 <接着改質層に用いるポリアクリル樹脂>
 本発明における接着改質層としてポリアクリル樹脂を設ける場合、ポリアクリル樹脂としては、アクリル酸又はメタクリル酸、又はその塩類やエステル類を重合して得られるアクリル重合体が挙げられる。
 アクリル酸エステル系及びメタクリル酸エステル系単量体としては、たとえば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸グリシジル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸2-ヒドロキシエチル、メタクリル酸グリシジルなどを挙げることができる。アクリル酸及びメタクリル酸の塩類としては、たとえば、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリル酸カリウム、メタクリル酸カリウム、アクリル酸アンモニウム、メタクリル酸アンモニウムなどが挙げられる。
 これらの必須成分の他に、アクリルアミド、メタクリルアミド、メタクリル酸アミノエチル、メタクリル酸アミノメチル、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミドなどのアクリル酸系単量体を添加してもよい。
 ポリアクリル樹脂には、この他に塩化ビニル、酢酸ビニル、スチレン、ビニルエーテル、ブタジエン、イソプレン、ビニルスルホン酸ソーダなどの単量体を共重合成分として用いることもできる。なお、アクリル重合体には、アクリル酸塩成分、メタクリル酸塩成分、アクリル酸成分、アクリルアミド成分、アクリル酸2-ヒドロキシエチル成分、N-メチロールアクリルアミド成分などの親水性成分が共重合成分として含まれることが塗膜の機能性を高めるために好ましい。また分子側鎖に官能基を有する共重合体であってもよい。また、このアクリル系重合体は、メタクリル酸メチルやメタクリル酸エチルのような硬質成分を主成分として用い、共重合成分として、アクリル酸エステルのような軟質成分を共重合して得ることもできる。
 ポリアクリル樹脂は、水系分散体の塗布液にして使用することが好ましい。
<Polyacrylic resin used for adhesive modification layer>
When a polyacrylic resin is provided as the adhesive modification layer in the present invention, examples of the polyacrylic resin include an acrylic polymer obtained by polymerizing acrylic acid or methacrylic acid, or salts or esters thereof.
Examples of the acrylate-based and methacrylic acid ester-based monomers include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, glycidyl acrylate, and methyl methacrylate. Examples thereof include ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, 2-hydroxyethyl methacrylate, and glycidyl methacrylate. Examples of salts of acrylic acid and methacrylic acid include sodium acrylate, sodium methacrylate, potassium acrylate, potassium methacrylate, ammonium acrylate, and ammonium methacrylate.
In addition to these essential components, acrylic acid-based monomers such as acrylamide, methacrylamide, aminoethyl methacrylate, aminomethyl methacrylate, N-methylolacrylamide, and N-methoxymethylacrylamide may be added.
In addition to this, a monomer such as vinyl chloride, vinyl acetate, styrene, vinyl ether, butadiene, isoprene, and sodium vinyl sulfonic acid can be used as the copolymerization component in the polyacrylic resin. The acrylic polymer contains hydrophilic components such as an acrylic acid salt component, a methacrylic acid salt component, an acrylic acid component, an acrylamide component, a 2-hydroxyethyl acrylate component, and an N-methylol acrylamide component as a copolymerization component. It is preferable to enhance the functionality of the coating film. Further, it may be a copolymer having a functional group in the molecular side chain. Further, this acrylic polymer can also be obtained by using a hard component such as methyl methacrylate or ethyl methacrylate as a main component and copolymerizing a soft component such as an acrylic acid ester as a copolymerization component.
The polyacrylic resin is preferably used as a coating liquid for an aqueous dispersion.
 <接着改質層に用いるアクリルグラフト共重合ポリエステル樹脂>
 本発明における接着改質層としてポリエステル樹脂を設ける場合、ポリアクリル樹脂をポリエステル樹脂にグラフト重合した共重合ポリエステルが特に好ましいので、以下に詳細に説明する。
 接着改質層を形成させるための塗布液としては、特にポリアクリル樹脂をポリエステル樹脂にグラフト重合した共重合ポリエステルの水系分散体が好ましい。
 アクリルグラフト共重合ポリエステル水系分散体中のアクリルグラフト共重合ポリエステル粒子のレーザー光散乱法により測定される平均粒子径は、500nm以下、好ましくは10nm~500nm、さらに好ましくは10nm~300nmである。平均粒子径が500nmを超えると、塗布後の塗膜強度が低下する場合がある。
<Acrylic graft copolymerized polyester resin used for adhesive modification layer>
When a polyester resin is provided as the adhesive modification layer in the present invention, a copolymerized polyester obtained by graft-polymerizing a polyacrylic resin onto a polyester resin is particularly preferable, and will be described in detail below.
As the coating liquid for forming the adhesive modification layer, an aqueous dispersion of a copolymerized polyester obtained by graft-polymerizing a polyacrylic resin onto a polyester resin is particularly preferable.
The average particle size of the acrylic graft copolymerized polyester particles in the acrylic graft copolymerized polyester aqueous dispersion measured by the laser light scattering method is 500 nm or less, preferably 10 nm to 500 nm, and more preferably 10 nm to 300 nm. If the average particle size exceeds 500 nm, the strength of the coating film after coating may decrease.
 アクリルグラフト共重合ポリエステル水系分散体中のアクリルグラフト共重合ポリエステル粒子の含有量は、通常、1質量%~50質量%、好ましくは3質量%~30質量%である。
 本発明に用いられ得るアクリルグラフト共重合ポリエステル水系分散体中の粒子は、水性分散媒体中においてポリエステル主鎖をコアとするコア-シェル構造をとる。
The content of the acrylic graft copolymerized polyester particles in the acrylic graft copolymerized polyester aqueous dispersion is usually 1% by mass to 50% by mass, preferably 3% by mass to 30% by mass.
The particles in the acrylic graft copolymerized polyester aqueous dispersion that can be used in the present invention have a core-shell structure having a polyester main chain as a core in an aqueous dispersion medium.
 上記アクリルグラフト共重合ポリエステル水系分散体から得られる塗布膜は、ポリアミドフィルムとの接着性が非常に優れている。さらに、耐ブロッキング性が非常に優れているため、ガラス転移点の比較的低いフィルム基材においても問題なく使用し得る。また積層体とする場合、印刷インキやシーラント層を積層するときに使用する接着剤との接着性も非常に良好である。得られる積層フィルム(ラミネートフィルムともいう)は、レトルト処理や沸水処理における耐久性が著しく向上する。 The coating film obtained from the acrylic graft copolymerized polyester aqueous dispersion has excellent adhesiveness to the polyamide film. Furthermore, since it has very excellent blocking resistance, it can be used without problems even on a film substrate having a relatively low glass transition point. Further, in the case of a laminated body, the adhesiveness with the adhesive used when laminating the printing ink or the sealant layer is also very good. The obtained laminated film (also referred to as a laminated film) has significantly improved durability in retort treatment and boiling water treatment.
  (アクリルグラフト共重合ポリエステルのポリエステル主鎖)
 本発明においてグラフト化ポリエステルの主鎖として用い得るポリエステルは、好適には少なくともジカルボン酸成分とジオール成分とから合成される飽和または不飽和ポリエステルであり、得られるポリエステルは、1種の重合体または2種以上の重合体の混合物であり得る。そして、本来それ自身では水に分散または溶解しないポリエステルが好ましい。本発明に用い得るポリエステルの重量平均分子量は、5000~l00000、好ましくは5000~50000である。重量平均分子量が5000未満であると乾燥塗膜の後加工性等の塗膜物性が低下する。さらに重量平均分子量が5000未満であると、主鎖となるポリエステル自身が水溶化し易いため、形成されるグラフト化ポリエステルが後述するコア-シェル構造を形成し得ない。ポリエステルの重量平均分子量が100000を超えると水分散化が困難となる。水分散化の観点からは100000以下が好ましい。ガラス転移点は、30℃以下、好ましくは10℃以下である。
(Polyester main chain of acrylic graft copolymerized polyester)
The polyester that can be used as the main chain of the grafted polyester in the present invention is preferably a saturated or unsaturated polyester synthesized from at least a dicarboxylic acid component and a diol component, and the obtained polyester is one kind of polymer or 2 It can be a mixture of polymers of more than one species. And polyester which is originally not dispersed or dissolved in water by itself is preferable. The weight average molecular weight of the polyester that can be used in the present invention is 5000 to 10000, preferably 5000 to 50000. If the weight average molecular weight is less than 5000, the physical properties of the coating film such as post-processability of the dry coating film deteriorate. Further, when the weight average molecular weight is less than 5000, the polyester itself as the main chain is easily solubilized, so that the grafted polyester to be formed cannot form the core-shell structure described later. If the weight average molecular weight of polyester exceeds 100,000, water dispersion becomes difficult. From the viewpoint of water dispersion, 100,000 or less is preferable. The glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.
 上記ジカルボン酸成分としては、少なくとも1種の芳香族ジカルボン酸、少なくとも1種の脂肪族及び/又は脂環族ジカルボン酸、及び少なくとも1種のラジカル重合性不飽和二重結合を有するジカルボン酸を含む、ジカルボン酸混合物であることが好ましい。このジカルボン酸混合物中に含まれる、芳香族ジカルボン酸は、30~99.5モル%、好ましくは40~99.5モル%、脂肪族及び/又は脂環族ジカルボン酸は、0~70モル%、好ましくは0~60モル%、ラジカル重合性不飽和二重結合を有するジカルボン酸は、0.5~10モル%、好ましくは2~7モル%、より好ましくは3~6モル%である。ラジカル重合性不飽和二重結合を含有するジカルボン酸の含有量が0.5モル%未満の場合、ポリエステルに対するラジカル重合性単量体の効果的なグラフト化が行なわれにくく、水系媒体中での分散粒子径が大きくなる傾向があり、分散安定性が低下する傾向がある。 The dicarboxylic acid component includes at least one aromatic dicarboxylic acid, at least one aliphatic and / or alicyclic dicarboxylic acid, and at least one dicarboxylic acid having a radically polymerizable unsaturated double bond. , A mixture of dicarboxylic acids is preferred. The aromatic dicarboxylic acid contained in this dicarboxylic acid mixture is 30 to 99.5 mol%, preferably 40 to 99.5 mol%, and the aliphatic and / or alicyclic dicarboxylic acid is 0 to 70 mol%. The dicarboxylic acid having a radically polymerizable unsaturated double bond is preferably 0.5 to 10 mol%, preferably 2 to 7 mol%, and more preferably 3 to 6 mol%. When the content of the dicarboxylic acid containing a radically polymerizable unsaturated double bond is less than 0.5 mol%, it is difficult to effectively graft the radically polymerizable monomer to the polyester, and it is difficult to effectively graft the radically polymerizable monomer to the polyester. The dispersed particle size tends to be large, and the dispersion stability tends to decrease.
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等が用いられ得る。さらに、必要に応じて5-スルホイソフタル酸ナトリウムも用い得る。
 脂肪族ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、これらの酸無水物等を用い得る。
 脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、1,3-シクロへキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、これらの酸無水物等を用い得る。
As the aromatic dicarboxylic acid, terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid and the like can be used. In addition, sodium 5-sulfoisophthalate may be used if desired.
As the aliphatic dicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, dodecandioic acid, dimer acid, acid anhydrides thereof and the like can be used.
As the alicyclic dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, acid anhydrides thereof and the like can be used.
 ラジカル重合性不飽和二重結合を含有するジカルボン酸としては、α,β-不飽和ジカルボン酸類としてフマール酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、不飽和二重結合を含有する脂環族ジカルボン酸として2,5-ノルボルネンジカルボン酸無水物、テトラヒドロ無水フタル酸等を用い得る。これらの内で、フマール酸、マレイン酸および2,5-ノルボルネンジカルボン酸(エンド-ビシクロ-(2,2,1)-5-へプテン-2,3-ジカルボン酸)が好ましい。 Examples of the dicarboxylic acid containing a radically polymerizable unsaturated double bond include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and a fat containing an unsaturated double bond as α, β-unsaturated dicarboxylic acids. As the cyclic dicarboxylic acid, 2,5-norbornenedicarboxylic acid anhydride, tetrahydrophthalic acid anhydride and the like can be used. Of these, fumaric acid, maleic acid and 2,5-norbornenedicarboxylic acid (endo-bicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid) are preferred.
 上記ジオール成分は、炭素数2~10の脂肪族グリコール、炭素数6~12の脂環族グリコール、及びエーテル結合含有グリコールのうちの少なくとも1種よりなる。
 炭素数2~10の脂肪族グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-へキサンジオール等を用い得る。
 炭素数6~12の脂環族グリコールとしては、1,4-シクロヘキサンジメタノール等を用い得る。
 エーテル結合含有グリコールとしては、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、さらにビスフェノール類の2つのフェノール性水酸基にエチレンオキサイド又はプロピレンオキサイドをそれぞれ1~数モル付加して得られるグリコール類、たとえば2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン等を用い得る。ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールも必要に応じて用い得る。
The diol component comprises at least one of an aliphatic glycol having 2 to 10 carbon atoms, an alicyclic glycol having 6 to 12 carbon atoms, and an ether bond-containing glycol.
Aliphatic glycols having 2 to 10 carbon atoms include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, and 1,6. -Hexanediol or the like can be used.
As the alicyclic glycol having 6 to 12 carbon atoms, 1,4-cyclohexanedimethanol or the like can be used.
Examples of the ether bond-containing glycol include glycols obtained by adding 1 to several mols of ethylene oxide or propylene oxide to each of two phenolic hydroxyl groups of diethylene glycol, triethylene glycol, dipropylene glycol, and bisphenols, for example, 2,2. -Bis (4-hydroxyethoxyphenyl) propane or the like can be used. Polyethylene glycol, polypropylene glycol, and polytetramethylene glycol may also be used as needed.
 上記ジカルボン酸成分およびジオール成分の他に、3官能性以上のポリカルボン酸および/またはポリオールを共重合し得る。
 3官能以上のポリカルボン酸としては、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングルコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)等を用い得る。
 3官能性以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等を用い得る。
 3官能以上のポリカルボン酸としては、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)ベンゾフェノンテトラカルボン酸、トリメシン酸等を用い得る。
 3官能性以上のポリオールとしては、グリセリン、トリメチロールエタン、トリメチロールプロパン等を用い得る。
 3官能性以上のポリカルボン酸及び/又はポリオールは、上記ジカルボン酸成分を含む全ポリカルボン酸成分あるいは上記ジオール成分を含む全ポリオール成分に対し0~5モル%、好ましくは、0~3モル%の範囲で使用し得る。
In addition to the above dicarboxylic acid component and diol component, a trifunctional or higher functional polycarboxylic acid and / or polyol can be copolymerized.
Examples of trifunctional or higher functional polycarboxylic acids include (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethyleneglucolbis (anhydrotrimeritate), and glycerol tris (an). Hydrotrimellitic) and the like can be used.
As the trifunctional or higher functional polyol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and the like can be used.
As the trifunctional or higher functional polycarboxylic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenonetetracarboxylic acid, trimesic acid and the like can be used.
As the trifunctional or higher functional polyol, glycerin, trimethylolethane, trimethylolpropane and the like can be used.
The trifunctional or higher functional polycarboxylic acid and / or polyol is 0 to 5 mol%, preferably 0 to 3 mol%, based on the total polycarboxylic acid component containing the dicarboxylic acid component or the total polyol component containing the diol component. Can be used in the range of.
  (アクリルグラフト共重合ポリエステルのグラフト部分)
 本発明に用い得るアクリルグラフト共重合ポリエステルのグラフト部分は、親水性基を有するか、又は後で親水性基に変化させることができる基を有するラジカル重合性単量体を少なくとも1種含む単量体混合物由来のアクリル重合体である。
(Acrylic graft copolymer polyester graft part)
The graft portion of the acrylic graft copolymerized polyester that can be used in the present invention is a single amount containing at least one radical polymerizable monomer having a hydrophilic group or having a group that can be changed to a hydrophilic group later. It is an acrylic polymer derived from a body mixture.
 グラフト部分を構成する重合体の重量平均分子量は500~50000、好ましくは4000~50000である。重量平均分子量が500未満の場合には、グラフト化率が低下するのでポリエステルヘの親水性の付与が十分に行なわれなくなり、かつ一般にグラフト部分の重量平均分子量を500未満にコントロールすることは困難である。グラフト部分は分散粒子の水和層を形成する。粒子に十分な厚みの水和層をもたせ、安定な分散体を得るためにはラジカル重合性単量体由来のグラフト部分の、重量平均分子は500以上であることが望ましい。ラジカル重合性単量体のグラフト部分の重量平均分子量の上限は溶液重合における重合性の点で上記のように50000が好ましい。この範囲内での分子量のコントロールは、重合開始剤量、モノマー滴下時間、重合時間、反応溶媒、及びモノマー組成を適切に選択し、必要に応じて連鎖移動剤や重合禁止剤を適宜組み合わせることにより行ない得る。ガラス転移点は、30℃以下、好ましくは10℃以下である。 The weight average molecular weight of the polymer constituting the graft portion is 500 to 50,000, preferably 4000 to 50,000. When the weight average molecular weight is less than 500, the grafting rate is lowered, so that hydrophilicity is not sufficiently imparted to the polyester, and it is generally difficult to control the weight average molecular weight of the grafted portion to less than 500. is there. The graft portion forms a hydrated layer of dispersed particles. In order to allow the particles to have a hydration layer having a sufficient thickness and to obtain a stable dispersion, it is desirable that the weight average molecule of the graft portion derived from the radically polymerizable monomer is 500 or more. The upper limit of the weight average molecular weight of the graft portion of the radically polymerizable monomer is preferably 50,000 as described above in terms of polymerizability in solution polymerization. To control the molecular weight within this range, the amount of the polymerization initiator, the monomer dropping time, the polymerization time, the reaction solvent, and the monomer composition are appropriately selected, and a chain transfer agent or a polymerization inhibitor is appropriately combined as necessary. Get it done. The glass transition point is 30 ° C. or lower, preferably 10 ° C. or lower.
 ラジカル重合性単量体が有する親水性基としては、カルボキシル基、水酸基、スルホン酸基、アミド基、第4級アンモニウム塩、リン酸基等を用い得る。親水性基に変化させ得る基としては、酸無水物、グリシジル、クロル等を用い得る。グラフト化によりポリエステルに導入される親水性基によってグラフト化ポリエステルの水への分散性をコントロールし得る。上記親水性基の中で、カルボキシル基は、そのグラフト化ポリエステルへの導入量を当該技術分野で公知の酸価を用いて正確に決定し得るため、グラフト化ポリエステルの水への分散性をコントロールする上で好ましい。 As the hydrophilic group of the radically polymerizable monomer, a carboxyl group, a hydroxyl group, a sulfonic acid group, an amide group, a quaternary ammonium salt, a phosphoric acid group or the like can be used. As the group that can be changed to a hydrophilic group, acid anhydride, glycidyl, chlor and the like can be used. The hydrophilicity introduced into the polyester by grafting can control the dispersibility of the grafted polyester in water. Among the above hydrophilic groups, the carboxyl group controls the dispersibility of the grafted polyester in water because the amount of the carboxyl group introduced into the grafted polyester can be accurately determined using an acid value known in the art. It is preferable to do so.
 カルボキシル基含有ラジカル重合性単量体としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等があり、さらに水/アミンに接して容易にカルボン酸を発生するマレイン酸無水物、イタコン酸無水物、メタクリル酸無水物等が用いられ得る。好ましいカルボキシル基含有ラジカル重合性単量体はアクリル酸無水物、メタクリル酸無水物及びマレイン酸無水物である。 Examples of the carboxyl group-containing radically polymerizable monomer include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid, and maleic anhydride which easily generates a carboxylic acid in contact with water / amine. A product, itaconic acid anhydride, methacrylic acid anhydride and the like can be used. Preferred carboxyl group-containing radically polymerizable monomers are acrylic anhydride, methacrylic anhydride and maleic anhydride.
 上記親水性基含有ラジカル重合性単量体の他に、少なくとも1種の親水性基を含有しないラジカル重合性単量体を共重合することが好ましい。親水性基含有単量体のみの場合、ポリエステル主鎖に対するグラフト化が円滑に起こらず、良好な共重合ポリエステル水系分散体を得ることが難しい。少なくとも1種の親水性基を含有しないラジカル重合性単量体を共重合することによって初めて効率の高いグラフト化が行なわれ得る。 In addition to the above hydrophilic group-containing radical polymerizable monomer, it is preferable to copolymerize at least one hydrophilic group-free radical polymerizable monomer. In the case of only the hydrophilic group-containing monomer, grafting to the polyester main chain does not occur smoothly, and it is difficult to obtain a good copolymerized polyester aqueous dispersion. Highly efficient grafting can only be achieved by copolymerizing a radically polymerizable monomer that does not contain at least one hydrophilic group.
 親水性基を含有しないラジカル重合性単量体としては、エチレン性不飽和結合を有しかつ上記のような親水性基を含有しない単量体の1種またはそれ以上の組み合わせが使用される。このような単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ヒドロキシエチル、アクリル酸ヒドロキプロピル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-ヘキシル、メタクリル酸ラウリル、メタクリル酸2-ヒドロキシエチル、メタクリル酸ヒドロキシルプロピル等のメタクリル酸エステル;アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等のアクリル酸またはメタクリル酸誘導体;アクリロニトリル、メタクリロニトリル等のニトリル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物;塩化ビニル、塩化ビニルデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;スチレン、α-メチルスチレン、t-ブチルスチレン、ビニルトルエン、ビニルナフタリン類等の芳香族ビニル化合物;を挙げることができる。これらのモノマーは単独もしくは2つ以上組み合わせて用いられ得る。 As the radically polymerizable monomer containing no hydrophilic group, one or more combinations of monomers having an ethylenically unsaturated bond and not containing a hydrophilic group as described above are used. Examples of such a monomer include acrylic acid esters such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydrokipropyl acrylate; Methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-hexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxylpropyl methacrylate; acrylamide. , N-Methylrol acrylamide, Diacetone acrylamide and other acrylic acids or methacrylic acid derivatives; Acrylonitrile, Methacrylic acid and other nitriles; Vinyl acetate, vinyl propionate, vinyl benzoate and other vinyl esters; Vinyl methyl ether, vinyl ethyl Vinyl ethers such as ether and vinylisobutyl ether; Vinyl ketones such as vinylmethylketone, vinylhexylketone and methylisopropenylketone; N- such as N-vinylpyrrole, N-vinylcarbazole, N-vinylindole and N-vinylpyrrolidone. Vinyl compounds; vinyl halides such as vinyl chloride, vinyl den, vinyl bromide, vinyl fluoride; aromatic vinyl compounds such as styrene, α-methylstyrene, t-butylstyrene, vinyltoluene, vinylnaphthalin; be able to. These monomers may be used alone or in combination of two or more.
 親水性基含有単量体と親水性基を含有しない単量体の使用比率は、グラフト化ポリエステルに導入する親水性基の量を考慮して決定されるが、通常、質量比(親水性基含有単量体:親水性基を含有しない単量体)として、95:5~5:95、好ましくは90:10~10:90、さらに好ましくは80:20~40:60の範囲である。 The ratio of the hydrophilic group-containing monomer to the hydrophilic group-free monomer used is determined in consideration of the amount of the hydrophilic group introduced into the grafted polyester, but is usually determined by the mass ratio (hydrophilic group). The content of the monomer (monomer containing no hydrophilic group) is in the range of 95: 5 to 5:95, preferably 90:10 to 10:90, and more preferably 80:20 to 40:60.
 親水性基含有単量体として、カルボキシル基含有単量体を用いる場合、グラフト化ポリエステルの総酸価は、600~4000eq./10 g、好ましくは700~3000eq./10 g、最も好ましくは800~2500eq./10 gである。酸価が600eq./10 g以下の場合、グラフト化ポリエステルを水に分散したときに粒子径の小さい共重合ポリエステル水系分散体が得にくく、さらに共重合ポリエステル水系分散体の分散安定性が低下する。酸価が4000eq./10 g以上の場合、共重合ポリエステル水系分散体から形成される接着改質層の耐水性が低くなる。 When a carboxyl group-containing monomer is used as the hydrophilic group-containing monomer, the total acid value of the grafted polyester is 600 to 4000 eq. / 10 6 g, preferably 700-3000 eq. / 10 6 g, most preferably 800-2500 eq. / 10 6 g. The acid value is 600 eq. When the amount is 1/10 6 g or less, it is difficult to obtain a copolymerized polyester aqueous dispersion having a small particle size when the grafted polyester is dispersed in water, and the dispersion stability of the copolymerized polyester aqueous dispersion is further lowered. The acid value is 4000 eq. When the amount is 1/10 6 g or more, the water resistance of the adhesive modified layer formed from the copolymerized polyester aqueous dispersion becomes low.
 アクリルグラフト共重合ポリエステルにおけるポリエステル主鎖とグラフト部分との質量比(ポリエステル:ラジカル重合性単量体)は、40:60~95:5、好ましくは55:45~93:7、さらに好ましくは60:40~90:10の範囲である。 The mass ratio (polyester: radically polymerizable monomer) of the polyester main chain to the graft portion in the acrylic graft copolymerized polyester is 40:60 to 95: 5, preferably 55:45 to 93: 7, and more preferably 60. : The range is 40 to 90:10.
 ポリエステル主鎖の質量比率が40質量%以下である場合、すでに説明した母体ポリエステルの優れた性能すなわち高い加工性、優れた耐水性、各種基材への優れた密着性を十分に発揮することができず、逆にアクリル樹脂の望ましくない性能、すなわち低い加工性、光沢、耐水性等を付加してしまう。ポリエステルの質量比率が95質量%以上である場合、グラフト化ポリエステルに親水性を付与するグラフト部分の親水性基量が不足して、良好な水性分散体を得ることができない。 When the mass ratio of the polyester main chain is 40% by mass or less, the excellent performance of the base polyester described above, that is, high processability, excellent water resistance, and excellent adhesion to various substrates can be sufficiently exhibited. On the contrary, it adds undesired performance of acrylic resin, that is, low workability, gloss, water resistance and the like. When the mass ratio of the polyester is 95% by mass or more, the amount of hydrophilic groups in the graft portion that imparts hydrophilicity to the grafted polyester is insufficient, and a good aqueous dispersion cannot be obtained.
  (アクリルグラフト共重合ポリエステルのグラフト化反応の溶媒)
 グラフト化反応の溶媒は、沸点が50~250℃の水性有機溶媒から構成されることが好ましい。ここで水性有機溶媒とは20℃における水に対する溶解性が少なくとも10g/L以上、好ましくは20g/L以上である有機溶媒をいう。沸点が250℃を超える水性有機溶媒は、蒸発速度が遅いため、塗膜形成後の塗膜の高温焼付によっても十分に取リ除き得ないので不適当である。また沸点が50℃以下の水性有機溶媒では、それを溶媒としてグラフト化反応を実施する場合、50℃以下の温度でラジカルに分解する開始剤を用いねばならないので取扱上の危険が増大し、好ましくない。
(Solvent for grafting reaction of acrylic graft copolymerized polyester)
The solvent for the grafting reaction is preferably composed of an aqueous organic solvent having a boiling point of 50 to 250 ° C. Here, the aqueous organic solvent means an organic solvent having a solubility in water at 20 ° C. of at least 10 g / L or more, preferably 20 g / L or more. An aqueous organic solvent having a boiling point of more than 250 ° C. is unsuitable because it cannot be sufficiently removed even by high-temperature baking of the coating film after the coating film is formed because the evaporation rate is slow. Further, in the case of an aqueous organic solvent having a boiling point of 50 ° C. or lower, when carrying out the grafting reaction using it as a solvent, an initiator that decomposes into radicals at a temperature of 50 ° C. or lower must be used, which increases the risk of handling and is preferable. Absent.
 ポリエステルをよく溶解し、かつ親水性基、特にカルボキシル基含有重合性単量体を含む重合性単量体及びその重合体を比較的良く溶解する水性有機溶媒(第一群)としては、エステル類、たとえば酢酸エチル;ケトン類、たとえばメチルエチルケトン、メチルイソブチルケトン、及びシクロへキサノン;環状エーテル類、たとえばテトラヒドロフラン、ジオキサン、及び1,3-ジオキソラン;グリコールエーテル類、たとえばエチレングリコールジメチルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールプロピルエーテル、エチレングリコールエチルエーテル、及びエチレングリコールブチルエーテル;カルビトール類、たとえばメチルカルビトール、エチルカルビトール、及びブチルカルビトール;グリコール類又はグリコールエーテルの低級エステル類、たとえばエチレングリコールジアセテート及びエチレングリコールエチルエーテルアセテート;ケトンアルコール類、たとえばダイアセトンアルコール;N-置換アミド類、たとえばジメチルホルムアミド、ジメチルアセトアミド、及びN-メチルピロリドン;等を挙げることができる。 As an aqueous organic solvent (group 1) that dissolves polyester well and dissolves a hydrophilic group, particularly a polymerizable monomer containing a carboxyl group-containing polymerizable monomer and a polymer thereof relatively well, esters , For example ethyl acetate; ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; cyclic ethers such as tetrahydrofuran, dioxane, and 1,3-dioxolane; glycol ethers such as ethylene glycol dimethyl ether, propylene glycol methyl ether, Propropylene glycol propyl ether, ethylene glycol ethyl ether, and ethylene glycol butyl ether; carbitols such as methyl carbitol, ethyl carbitol, and butyl carbitol; lower esters of glycols or glycol ethers such as ethylene glycol diacetate and ethylene. Glycolethyl ether acetate; ketone alcohols such as diacetone alcohol; N-substituted amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; and the like.
 これに対し、ポリエステルをほとんど溶解しないが、親水性基、特にカルボキシル基含有重合性単量体を含む重合性単量体及びその重合体を比較的よく溶解する水性有機溶媒(第二群)として、水、低級アルコール類、低級グリコール類、低級カルボン酸類、低級アミン類等を挙げることが出来る。好ましいのは炭素数1~4のアルコール類及びグリコール類である。 On the other hand, as an aqueous organic solvent (second group) that hardly dissolves polyester but relatively dissolves a hydrophilic group, particularly a polymerizable monomer containing a carboxyl group-containing polymerizable monomer and a polymer thereof. , Water, lower alcohols, lower glycols, lower carboxylic acids, lower amines and the like. Alcohols and glycols having 1 to 4 carbon atoms are preferable.
 グラフト化反応を単一溶媒中で行なう場合は、第一群の水性有機溶媒の一種を用い得る。混合溶媒中で行なう場合は、第一群の水性有機溶媒の複数種又は第一群の水性有機溶媒の少なくとも一種と第二群の水性有機溶媒の少なくとも一種とを用い得る。 When the grafting reaction is carried out in a single solvent, one of the first group of aqueous organic solvents can be used. When carried out in a mixed solvent, a plurality of types of the first group of aqueous organic solvents or at least one of the first group of aqueous organic solvents and at least one of the second group of aqueous organic solvents may be used.
 第一群の水性有機溶媒からの単一溶媒中及び第一群及び第二群の水性有機溶媒のそれぞれ一種からなる混合溶媒中のいずれにおいても、グラフト化反応を行ない得る。しかし、グラフト化反応の進行挙動、グラフト化反応生成物及びそれから導かれる水系分散体の外観、性状等の点から、第一群及び第二群の水性有機溶媒のぞれぞれ一種からなる混合溶媒を使用することが好ましい。この理由は、ポリエステルのグラフト化反応においてポリエステル分子間の架橋により系のゲル化が起こりやすいが、以下のように混合溶媒を用いることによりゲル化が防止され得るからである。 The grafting reaction can be carried out in either a single solvent from the aqueous organic solvent of the first group or a mixed solvent consisting of one of the aqueous organic solvents of the first group and the second group. However, from the viewpoint of the progress behavior of the grafting reaction, the appearance and properties of the grafting reaction product and the aqueous dispersion derived from the grafting reaction product, a mixture of the first group and the second group of aqueous organic solvents, respectively. It is preferable to use a solvent. The reason for this is that in the polyester grafting reaction, gelation of the system is likely to occur due to cross-linking between polyester molecules, but gelation can be prevented by using a mixed solvent as described below.
 第一群の溶媒中では、ポリエステル分子鎖は広がりの大きい鎖ののびた状態にあり、他方、第一群/第二群の混合溶媒中では、ポリエステル分子鎖は広がりの小さい糸まり状に絡まった状態にあることが、これら溶液中のポリエステルの粘度測定により確認された。ポリエステル分子鎖が延びた状態では、ポリエステル主鎖中の反応点がすべてグラフト化反応に寄与し得るので、ポリエステルのグラフト化率は高くなるが、同時に分子間の架橋が起こる率も高くなる。他方、ポリエステル分子鎖が糸まり状になっている場合は、糸まり内部の反応点はグラフト化反応に寄与し得ず、同時に分子間の架橋が起こる率も低くなる。よって、溶媒の種類を選択することによってポリエステル分子の状態を調節することができ、それによりグラフト化率及びグラフト化反応による分子間架橋を調節し得る。 In the solvent of the first group, the polyester molecular chain is in a stretched state with a wide spread, while in the mixed solvent of the first group / the second group, the polyester molecular chain is entangled in a thread-like shape with a small spread. It was confirmed by measuring the viscosity of the polyester in these solutions that it was in a state. In the extended state of the polyester molecular chain, all the reaction points in the polyester main chain can contribute to the grafting reaction, so that the polyester grafting rate is high, but at the same time, the rate of intermolecular cross-linking is also high. On the other hand, when the polyester molecular chain is in the form of a thread, the reaction point inside the thread cannot contribute to the grafting reaction, and at the same time, the rate of intermolecular cross-linking is low. Therefore, the state of the polyester molecule can be adjusted by selecting the type of solvent, thereby adjusting the grafting rate and the intermolecular cross-linking due to the grafting reaction.
 高いグラフト化率とゲル化抑制の両立は、混合溶媒系において達成し得る。第一群/第二群の混合溶媒の最適の混合比率は、使用するポリエステルの溶解性等によって変わり得るが、通常、第一群/第二群の混合溶媒の質量比率は、95:5~10:90、好ましくは90:10~20:80、さらに好ましくは85:15~30:70の範囲である。 Achievement of both high grafting rate and suppression of gelation can be achieved in a mixed solvent system. The optimum mixing ratio of the mixed solvent of the first group / the second group may vary depending on the solubility of the polyester used, etc., but usually, the mass ratio of the mixed solvent of the first group / the second group is 95: 5 to 95: 5. It is in the range of 10:90, preferably 90:10 to 20:80, and more preferably 85:15 to 30:70.
  (アクリルグラフト共重合ポリエステルのラジカル重合開始剤及び連鎖移動剤)
 用い得るラジカル重合開始剤として、当業者には公知の有機過酸化物類や有機アゾ化合物類を用い得る。
 有機過酸化物として、ベンゾイルパ-オキサイド、t-ブチルパ-オキシピバレート、有機アゾ化合物として、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等を挙げることができる。
 グラフト化反応を行なうためのラジカル重合開始剤の使用量は、ラジカル重合性単量体に対して、少なくとも0.2質量%以上、好ましくは0.5質量%以上である。
 重合開始剤の他に、グラフト部分の鎖長を調節するための連鎖移動剤、たとえばオクチルメルカプタン、メルカプトエタノール、3-t-ブチル-4-ヒドロキシアニソール等を必要に応じて用い得る。この場合、ラジカル重合性単量体に対して0~5質量%の範囲で添加されるのが望ましい。
(Radical polymerization initiator and chain transfer agent for acrylic graft copolymerized polyester)
As a radical polymerization initiator that can be used, organic peroxides and organic azo compounds known to those skilled in the art can be used.
As an organic peroxide, benzoyl peroxide, t-butylpa-oxypivalate, and as an organic azo compound, 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), etc. Can be mentioned.
The amount of the radical polymerization initiator used for carrying out the grafting reaction is at least 0.2% by mass or more, preferably 0.5% by mass or more, based on the radically polymerizable monomer.
In addition to the polymerization initiator, a chain transfer agent for adjusting the chain length of the graft portion, for example, octyl mercaptan, mercaptoethanol, 3-t-butyl-4-hydroxyanisole and the like can be used as required. In this case, it is desirable to add it in the range of 0 to 5% by mass with respect to the radically polymerizable monomer.
  (アクリルグラフト共重合ポリエステルのグラフト化反応)
 グラフト部分の形成は、上記ポリエステル中のラジカル重合性不飽和二重結合と上記ラジカル重合性単量体とが重合すること及び/又はラジカル重合性不飽和二重結合と上記ラジカル重合性単量体の重合体の活性末端とが反応することにより進行する。グラフト化反応終了後の反応生成物は、目的とするグラフト化ポリエステルの他にグラフト部分を有さないポリエステル及びポリエステルとグラフトしなかったラジカル重合性単量体の重合体を含有する。反応生成物中のグラフト化ポリエステルの生成比率が低く、グラフト部分を有さないポリエステル及びグラフトしなかったラジカル重合性単量体の重合体の比率が高い場合は、安定性の良好な分散体が得られない。
(Acrylic graft copolymerization polyester grafting reaction)
The graft portion is formed by the polymerization of the radically polymerizable unsaturated double bond and the radically polymerizable monomer in the polyester and / or the radically polymerizable unsaturated double bond and the above radically polymerizable monomer. It proceeds by reacting with the active end of the polymer of. The reaction product after completion of the grafting reaction contains, in addition to the target grafted polyester, a polyester having no graft portion and a polymer of a radically polymerizable monomer not grafted with the polyester. When the production ratio of the grafted polyester in the reaction product is low and the ratio of the polyester having no graft portion and the polymer of the radically polymerizable monomer not grafted is high, a dispersion having good stability is obtained. I can't get it.
 通常、グラフト化反応は、加温下で上記ポリエステルを含む溶液に対し、上記ラジカル重合性単量体とラジカル開始剤とを一時に添加して行ない得るか、あるいは別々に一定時間を要して滴下した後、さらに一定時間攪拌下に加温を継続して反応を進行させることによって行い得る。あるいは、必要に応じて、ラジカル重合性単量体の一部を先に添加し、次いで残りのラジカル重合性単量体、重合開始剤を別々に一定時間を要して滴下した後、さらに一定時間攪拌下に加温を継続してグラフト化反応を行い得る。 Usually, the grafting reaction can be carried out by adding the radically polymerizable monomer and the radical initiator to the solution containing the polyester under heating at one time, or separately for a certain period of time. After the dropping, the reaction can be carried out by continuing heating with stirring for a certain period of time. Alternatively, if necessary, a part of the radically polymerizable monomer is added first, and then the remaining radically polymerizable monomer and the polymerization initiator are separately added dropwise over a certain period of time, and then further constant. The grafting reaction can be carried out by continuing heating under stirring for hours.
 ポリエステルと溶媒との質量比率は、ポリエステルとラジカル重合性単量体との反応性及びポリエステルの溶剤溶解性を考慮して、重合工程中均一に反応が進行する質量比率が選択される。通常、70:30~10:90、好ましくは50:50~15:85の範囲である。 For the mass ratio of polyester and solvent, the mass ratio at which the reaction proceeds uniformly during the polymerization step is selected in consideration of the reactivity of polyester and radically polymerizable monomer and the solvent solubility of polyester. It is usually in the range of 70:30 to 10:90, preferably 50:50 to 15:85.
 <アクリルグラフト共重合ポリエステルの水分散化>
 本発明に用いられ得るグラフト化ポリエステルは、固体状態で水系媒体に投入するか、又は親水性溶媒に溶解後、水系媒体に投入することによって、水分散化され得る。特に、親水性の基を有するラジカル重合性単量体として、スルホン酸基及びカルボキシル基のような酸性基を有する単量体を用いた場合、グラフト化ポリエステルを塩基性化合物で中和することによって、グラフト化ポリエステルを容易に平均粒子径500nm以下の微粒子として水に分散して、共重合ポリエステル水系分散体を調製し得る。
<Water dispersion of acrylic graft copolymerized polyester>
The grafted polyester that can be used in the present invention can be water-dispersed by being put into an aqueous medium in a solid state or by being dissolved in a hydrophilic solvent and then being put into an aqueous medium. In particular, when a monomer having an acidic group such as a sulfonic acid group and a carboxyl group is used as the radically polymerizable monomer having a hydrophilic group, the grafted polyester is neutralized with a basic compound. , The grafted polyester can be easily dispersed in water as fine particles having an average particle diameter of 500 nm or less to prepare a copolymerized polyester aqueous dispersion.
 塩基性化合物としては塗膜形成時、あるいは以下に述べる硬化剤を配合した場合は焼付硬化時に揮散する化合物が望ましい。そのような塩基性化合物としては、アンモニア、有機アミン類等が好ましい。有機アミン類としては、トリエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン等を挙げることができる。
 塩基性化合物の使用量は、グラフト部分中に含まれるカルボキシル基を、少なくとも部分中和あるいは完全中和して、水系分散体のpH値を5.0~9.0の範囲にする量が好ましい。
As the basic compound, a compound that volatilizes at the time of forming a coating film or, when a curing agent described below is blended, at the time of baking curing is desirable. As such a basic compound, ammonia, organic amines and the like are preferable. Examples of organic amines include triethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, Examples thereof include 3-ethoxypropylamine.
The amount of the basic compound used is preferably an amount in which the carboxyl group contained in the graft portion is at least partially neutralized or completely neutralized so that the pH value of the aqueous dispersion is in the range of 5.0 to 9.0. ..
 塩基性化合物で中和された共重合ポリエステル水系分散体を調製する方法としては、グラフト化反応終了後、反応液から溶媒を、減圧下でエクストルダー等により除去してメルト状又は固体状(ペレット、粉末等)にし、次いでこれを塩基性化合物水溶液に投じて加熱下攪拌すること又はグラフト化反応を終了した時点で直ちに塩基性化合物水溶液を反応液に投入し、さらに加熱攪拌を継続すること(ワン・ポット法)により水系分散体を調製し得る。利便性の点からワン・ポット法が好ましい。この場合、グラフト化反応に用いた溶媒の沸点が100℃以下ならば蒸留によって一部又は全部を容易に取り除き得る。 As a method for preparing a copolymerized polyester aqueous dispersion neutralized with a basic compound, after completion of the grafting reaction, the solvent is removed from the reaction solution with an extruder or the like under reduced pressure to form a melt or solid (pellets). , Powder, etc.), then throw it into an aqueous solution of the basic compound and stir under heating, or immediately add the aqueous solution of the basic compound to the reaction solution when the grafting reaction is completed, and continue heating and stirring ( An aqueous dispersion can be prepared by the one-pot method). The one-pot method is preferable from the viewpoint of convenience. In this case, if the boiling point of the solvent used in the grafting reaction is 100 ° C. or lower, part or all of the solvent can be easily removed by distillation.
 <塗布液に添加する架橋剤>
 上記のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂の塗布液には、さらに架橋剤(硬化用樹脂)を配合して硬化を行なうことにより、接着改質層に高度の耐水性を付与することができる。
 架橋剤としては、アルキル化フェノール類、クレゾール類等とホルムアルデヒドとの縮合物のフェノールホルムアルデヒド樹脂;尿素、メラミン、ベンゾグアナミン等とホルムアルデヒドとの付加物、この付加物と炭素原子数が1~6のアルコールからなるアルキルエーテル化合物等のアミノ樹脂;多官能性エポキシ化合物;多官能性イソシアネート化合物;ブロックイソシアネート化合物;多官能性アジリジン化合物;オキサゾリン化合物等を用い得る。
 これらの架橋剤は、それぞれ単独又は2種以上混合して用い得る。架橋剤の配合量としては、グラフト化ポリエステルに対して、5質量%~40質量%が好ましい。
<Crosslinking agent added to the coating liquid>
By further adding a cross-linking agent (curing resin) to the coating liquid of any of the above polyester resin, polyurethane resin, and / or polyacrylic resin and curing the resin, the adhesive modification layer is highly advanced. Water resistance can be imparted.
Examples of the cross-linking agent include phenol-formaldehyde resins obtained by condensing alkylated phenols, cresols and the like with formaldehyde; additions of urea, melamine, benzoguanamine and the like with formaldehyde, and alcohols having 1 to 6 carbon atoms with these additions. Amino resins such as alkyl ether compounds composed of; polyfunctional epoxy compounds; polyfunctional isocyanate compounds; blocked isocyanate compounds; polyfunctional aziridine compounds; oxazoline compounds and the like can be used.
These cross-linking agents may be used alone or in admixture of two or more. The blending amount of the cross-linking agent is preferably 5% by mass to 40% by mass with respect to the grafted polyester.
 架橋剤の配合方法としては、(1)架橋剤が水溶性である場合、直接水系分散体中に溶解又は分散させる方法、又は(2)架橋剤が油溶性である場合、グラフト化反応終了後、水分散化の前又は後に架橋剤を加えてコア部にポリエステルと共存させる方法を用い得る。これらの方法は、架橋剤の種類、性状により適宜選択し得る。さらに架橋剤には、硬化剤あるいは促進剤を併用し得る。 As a method of blending the cross-linking agent, (1) when the cross-linking agent is water-soluble, it is directly dissolved or dispersed in the aqueous dispersion, or (2) when the cross-linking agent is oil-soluble, after the completion of the grafting reaction. , A method of adding a cross-linking agent before or after water dispersion and allowing the core portion to coexist with polyester can be used. These methods can be appropriately selected depending on the type and properties of the cross-linking agent. Further, a curing agent or an accelerator may be used in combination with the cross-linking agent.
 本発明に用いる接着改質層には、さらに本発明の効果を損なわない範囲で、帯電防止性、滑り性を付与するために、帯電防止剤、無機滑剤、有機滑剤等の添加剤を含有させることができる。帯電防止剤、無機滑剤、有機滑剤等をフィルム表面に塗布する場合、これらの添加剤の脱離を防止するため接着改質層に含有させることが好ましい。 The adhesive modification layer used in the present invention contains additives such as an antistatic agent, an inorganic lubricant, and an organic lubricant in order to impart antistatic properties and slipperiness to the extent that the effects of the present invention are not impaired. be able to. When an antistatic agent, an inorganic lubricant, an organic lubricant or the like is applied to the film surface, it is preferable to include these additives in the adhesive modification layer in order to prevent detachment of these additives.
[易接着性ポリアミドフィルムの製造方法]
 本発明の易接着性ポリアミドフィルムは、本発明における二軸延伸ポリアミドフィルムに後述の方法で接着改質層を形成することで製造する。
 本発明における二軸延伸ポリアミドフィルムは、公知の製造方法により製造することができる。例えば、逐次二軸延伸法、同時二軸延伸法が挙げられる。逐次二軸延伸法は、製膜速度が上げられるので、製造コスト的に有利であるので好ましい。
 本発明における二軸延伸ポリアミドフィルムの作製方法についてさらに説明する。
 まず、押出機を用いて原料樹脂を溶融押出しし、Tダイからフィルム状に押出し、冷却ロール上にキャストして冷却し、未延伸フィルムを得る。
 樹脂の溶融温度は好ましくは200~300℃である。上記未満であると未溶融物などが発生し、欠点などの外観不良が発生することがあり、上記を超えると樹脂の劣化などが観察され、分子量低下、外観低下が発生することがある。
[Manufacturing method of easy-adhesive polyamide film]
The easy-adhesive polyamide film of the present invention is produced by forming an adhesive modification layer on the biaxially stretched polyamide film of the present invention by the method described later.
The biaxially stretched polyamide film in the present invention can be produced by a known production method. For example, a sequential biaxial stretching method and a simultaneous biaxial stretching method can be mentioned. The sequential biaxial stretching method is preferable because the film forming speed can be increased and it is advantageous in terms of manufacturing cost.
The method for producing the biaxially stretched polyamide film in the present invention will be further described.
First, the raw material resin is melt-extruded using an extruder, extruded into a film from a T-die, cast on a cooling roll and cooled to obtain an unstretched film.
The melting temperature of the resin is preferably 200 to 300 ° C. If it is less than the above, unmelted matter or the like may be generated, and appearance defects such as defects may occur. If it exceeds the above, deterioration of the resin or the like may be observed, and molecular weight or appearance may be deteriorated.
 冷却ロール温度は、-30~80℃が好ましく、更に好ましくは0~50℃である。
 Tダイから押出されたフィルム状溶融物を回転冷却ドラムにキャストし冷却して未延伸フィルムを得るには、例えば、エアナイフを使用する方法や静電荷を印荷する静電密着法等が好ましく適用できる。特に後者が好ましく使用される。
The cooling roll temperature is preferably −30 to 80 ° C., more preferably 0 to 50 ° C.
In order to cast a film-like melt extruded from a T-die onto a rotary cooling drum and cool it to obtain an unstretched film, for example, a method using an air knife or an electrostatic adhesion method for imprinting an electrostatic charge is preferably applied. it can. In particular, the latter is preferably used.
 また、キャストした未延伸フィルムの冷却ロールの反対面も冷却することが好ましい。例えば、未延伸フィルムの冷却ロールの反対面に、槽内の冷却用液体を接触させる方法、スプレーノズルで蒸散する液体を塗布する方法、高速流体を吹き付けて冷却する方法等を併用することが好ましい。このようにして得られた未延伸フィルムを二軸方向に延伸して二軸延伸ポリアミドフィルムを得る。 It is also preferable to cool the opposite side of the cooling roll of the cast unstretched film. For example, it is preferable to use a method of bringing the cooling liquid in the tank into contact with the opposite surface of the cooling roll of the unstretched film, a method of applying a liquid that evaporates with a spray nozzle, a method of spraying a high-speed fluid to cool the film, and the like. .. The unstretched film thus obtained is stretched in the biaxial direction to obtain a biaxially stretched polyamide film.
 MD方向の延伸方法としては、一段延伸又は二段延伸等の多段延伸が使用できる。後述するように、一段での延伸ではなく、二段延伸などの多段のMD方向の延伸が物性面およびMD方向及びTD方向の物性の均一さ(等方性)の面で好ましい。
 逐次二軸延伸法におけるMD方向の延伸は、ロール延伸が好ましい。
As the stretching method in the MD direction, multi-step stretching such as one-step stretching or two-step stretching can be used. As will be described later, multi-stage stretching in the MD direction, such as two-stage stretching, is preferable in terms of physical properties and uniformity (isotropy) of physical properties in the MD and TD directions, rather than one-stage stretching.
Roll stretching is preferable for stretching in the MD direction in the sequential biaxial stretching method.
 MD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、さらに好ましくは60℃である。50℃未満であると樹脂が軟化せず、延伸が困難となることがある。
 MD方向の延伸温度の上限は好ましくは120℃であり、より好ましくは115℃であり、さらに好ましくは110℃である。120℃を超えると樹脂が軟らかくなりすぎ安定した延伸ができないことがある。
The lower limit of the stretching temperature in the MD direction is preferably 50 ° C., more preferably 55 ° C., and even more preferably 60 ° C. If the temperature is lower than 50 ° C., the resin does not soften and stretching may be difficult.
The upper limit of the stretching temperature in the MD direction is preferably 120 ° C., more preferably 115 ° C., and even more preferably 110 ° C. If the temperature exceeds 120 ° C., the resin may become too soft and stable stretching may not be possible.
 MD方向の延伸倍率(多段で延伸する場合は、それぞれの倍率を乗じた全延伸倍率)の下限は好ましくは2.2倍であり、より好ましくは2.5倍であり、さらに好ましくは2.8倍である。2.2倍未満であるとMD方向の厚み精度が低下するほか、結晶化度が低くなりすぎて衝撃強度が低下することがある。
 MD方向の延伸倍率の上限は好ましくは5.0倍であり、より好ましくは4.5倍であり、最も好ましくは4.0倍である。5.0倍を超えると後続の延伸が困難となることがある。
The lower limit of the stretching ratio in the MD direction (in the case of drawing in multiple stages, the total stretching ratio multiplied by each magnification) is preferably 2.2 times, more preferably 2.5 times, and further preferably 2. It is eight times. If it is less than 2.2 times, the thickness accuracy in the MD direction is lowered, and the crystallinity is too low, so that the impact strength may be lowered.
The upper limit of the draw ratio in the MD direction is preferably 5.0 times, more preferably 4.5 times, and most preferably 4.0 times. If it exceeds 5.0 times, subsequent stretching may be difficult.
 また、MD方向の延伸を多段で行う場合には、それぞれの延伸で上述のような延伸が可能であるが、倍率については、全MD方向の延伸倍率の積は5.0以下となるよう、延伸倍率を調整することが必要である。例えば、二段延伸の場合であれば、一段目の延伸を1.5~2.1倍、二段目の延伸を1.5~1.8倍が好ましい。 Further, when the stretching in the MD direction is performed in multiple stages, the stretching as described above is possible in each stretching, but the product of the stretching magnifications in all MD directions is 5.0 or less. It is necessary to adjust the draw ratio. For example, in the case of two-stage stretching, the first-stage stretching is preferably 1.5 to 2.1 times, and the second-stage stretching is preferably 1.5 to 1.8 times.
 MD方向に延伸したフィルムは、テンターでTD方向に延伸し、熱固定し、リラックス処理(緩和処理ともいう)する。
 TD方向の延伸温度の下限は好ましくは50℃であり、より好ましくは55℃であり、さらに好ましくは60℃である。50℃未満であると樹脂が軟化せず、延伸が困難となることがある。
 TD方向の延伸温度の上限は好ましくは190℃であり、より好ましくは185℃であり、さらに好ましくは180℃である。190℃を超えると結晶化してしまい、延伸が困難となることがある。
The film stretched in the MD direction is stretched in the TD direction with a tenter, heat-fixed, and relaxed (also referred to as relaxation treatment).
The lower limit of the stretching temperature in the TD direction is preferably 50 ° C., more preferably 55 ° C., and even more preferably 60 ° C. If the temperature is lower than 50 ° C., the resin does not soften and stretching may be difficult.
The upper limit of the stretching temperature in the TD direction is preferably 190 ° C., more preferably 185 ° C., and even more preferably 180 ° C. If it exceeds 190 ° C., it may crystallize and stretching may become difficult.
 TD方向の延伸倍率(多段で延伸する場合は、それぞれの倍率を乗じた全延伸倍率)の下限は好ましくは2.8であり、より好ましくは3.2倍であり、さらに好ましくは3.5倍であり、特に好ましくは3.8倍である。2.8未満であるとTD方向の厚み精度が低下するほか、結晶化度が低くなりすぎて衝撃強度が低下することがある。
 TD方向の延伸倍率の上限は好ましくは5.5倍であり、より好ましくは5.0倍であり、さらに好ましくは4.7であり、特に好ましくは4.5であり、最も好ましくは4.3倍である。5.5倍を超えると著しく生産性が低下することがある。
The lower limit of the draw ratio in the TD direction (in the case of multi-stage stretching, the total draw ratio multiplied by each ratio) is preferably 2.8, more preferably 3.2 times, still more preferably 3.5. It is double, and particularly preferably 3.8 times. If it is less than 2.8, the thickness accuracy in the TD direction is lowered, and the crystallinity is too low, so that the impact strength may be lowered.
The upper limit of the draw ratio in the TD direction is preferably 5.5 times, more preferably 5.0 times, further preferably 4.7, particularly preferably 4.5, and most preferably 4. It is three times. If it exceeds 5.5 times, the productivity may decrease significantly.
 熱固定温度の選択は本発明において重要な要素である、熱固定温度を高くするに従い、フィルムの結晶化および配向緩和が進み、衝撃強度を向上させ、熱収縮率を低減させることができる。一方、熱固定温度が低い場合には結晶化および配向緩和が不十分で熱収縮率を十分に低減させることができない。)また、熱固定温度が高くなりすぎると、樹脂の劣化が進み、急速に衝撃強度などフィルムの強靱性が失われる。 The selection of the heat fixing temperature is an important factor in the present invention. As the heat fixing temperature is increased, the film crystallizes and the orientation is relaxed, the impact strength is improved, and the heat shrinkage rate can be reduced. On the other hand, when the heat fixing temperature is low, crystallization and orientation relaxation are insufficient, and the heat shrinkage rate cannot be sufficiently reduced. ) Further, if the heat fixing temperature becomes too high, the resin deteriorates and the toughness of the film such as impact strength is rapidly lost.
 熱固定温度の下限は好ましくは180℃であり、より好ましくは200℃である。熱固定温度が低いと熱収縮率が大きくなりすぎてラミネート後の外観が低下する、ラミネート強度が低下する傾向がある。
 熱固定温度の上限は好ましくは230℃であり、より好ましくは220℃である。熱固定温度が高すぎると、衝撃強度が低下する傾向がある。
The lower limit of the heat fixing temperature is preferably 180 ° C., more preferably 200 ° C. When the heat fixing temperature is low, the heat shrinkage rate becomes too large, and the appearance after laminating tends to deteriorate, and the laminating strength tends to decrease.
The upper limit of the heat fixing temperature is preferably 230 ° C., more preferably 220 ° C. If the heat fixing temperature is too high, the impact strength tends to decrease.
 熱固定の時間は0.5~20秒であることが好ましい。さらには1~15秒である。熱固定時間は熱固定温度や熱固定ゾーンでの風速とのかね合いで適正時間とすることができる。熱固定条件が弱すぎると、結晶化及び配向緩和が不十分となり上記問題が起こる。熱固定条件が強すぎるとフィルム強靱性が低下する。 The heat fixing time is preferably 0.5 to 20 seconds. Furthermore, it takes 1 to 15 seconds. The heat fixing time can be set to an appropriate time in consideration of the heat fixing temperature and the wind speed in the heat fixing zone. If the heat fixing conditions are too weak, crystallization and orientation relaxation will be insufficient, and the above problems will occur. If the heat fixing conditions are too strong, the film toughness will decrease.
 熱固定処理した後にリラックス処理をすることは熱収縮率の制御に有効である。リラックス処理する温度は熱固定処理温度から樹脂のガラス転移温度(Tg)までの範囲で選べるが、好ましくは熱固定処理温度-10℃~Tg+10℃が好ましい。リラックス温度が高すぎると、収縮速度が速すぎて歪みなどの原因となるため好ましくない。逆にリラックス温度が低すぎるとリラックス処理とならず、単に弛むだけとなり熱収縮率が下がらず、寸法安定性が悪くなる。 Relaxing after heat fixing is effective in controlling the heat shrinkage rate. The temperature for the relaxing treatment can be selected in the range from the heat fixing treatment temperature to the glass transition temperature (Tg) of the resin, but the heat fixing treatment temperature is preferably −10 ° C. to Tg + 10 ° C. If the relaxation temperature is too high, the contraction speed is too fast and causes distortion and the like, which is not preferable. On the contrary, if the relaxing temperature is too low, the relaxing treatment is not performed, the heat shrinkage is not lowered, and the dimensional stability is deteriorated.
 リラックス処理のリラックス率の下限は、好ましくは0.5%であり、より好ましくは1%である。0.5%未満であると熱収縮率が十分に下がらないことがある。
 リラックス率の上限は好ましくは20%であり、より好ましくは15%であり、さらに好ましくは10%である。20%を超えるとテンター内でたるみが発生し、生産が困難になることがある。
The lower limit of the relaxation rate of the relaxation treatment is preferably 0.5%, more preferably 1%. If it is less than 0.5%, the heat shrinkage rate may not be sufficiently lowered.
The upper limit of the relaxation rate is preferably 20%, more preferably 15%, and even more preferably 10%. If it exceeds 20%, slack will occur in the tenter, which may make production difficult.
 シーラントフィルムや印刷層との接着強度を上げるため、積層延伸ポリアミドフィルム表面及び/又は接着改質層の表面にコロナ処理や火炎処理等を施してもよい。また、積層延伸ポリアミドフィルムと接着改質層の接着強度を上げるため、積層延伸ポリアミドフィルムの接着改質層側の表面にコロナ処理や火炎処理等を施してもよい。 In order to increase the adhesive strength with the sealant film and the printing layer, the surface of the laminated stretched polyamide film and / or the surface of the adhesive modification layer may be subjected to corona treatment, flame treatment, or the like. Further, in order to increase the adhesive strength between the laminated stretched polyamide film and the adhesive modified layer, the surface of the laminated stretched polyamide film on the adhesive modified layer side may be subjected to corona treatment, flame treatment or the like.
 本発明における接着改質層を形成する方法としては、ポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂を含む塗布剤を積層延伸ポリアミドフィルムにグラビア方式、リバース方式、ダイ方式、バー方式、ディップ方式等公知の塗布方式で塗布する方法を用いることができる。 As a method for forming the adhesive modification layer in the present invention, a coating agent containing any resin of polyester resin, polyurethane resin, and / or polyacrylic resin is laminated on a stretched polyamide film by a gravure method, a reverse method, a die method, or the like. A known coating method such as a bar method or a dip method can be used.
 前記塗布剤の塗布量は、2軸延伸後のポリアミドフィルムに対して固形分として0.01~3g/m2 が好ましい。更に好ましくは、0.04~0.5g/m2 になるよう
に塗布する。上記の塗布量であれば、接着改質層と他層との十分な接着強度が得られ、かつフィルム同志のブロッキングの発生を抑制できる。
The amount of the coating agent applied is preferably 0.01 to 3 g / m 2 as a solid content with respect to the polyamide film after biaxial stretching. More preferably, it is applied so as to be 0.04 to 0.5 g / m 2 . With the above coating amount, sufficient adhesive strength between the adhesive modification layer and another layer can be obtained, and the occurrence of blocking between films can be suppressed.
 本発明における接着改質層は、二軸延伸ポリアミドフィルム基材に塗布剤を塗布するか、未延伸あるいは一軸延伸後のポリアミドフィルム基材に塗布剤を塗布した後、乾燥し、必要に応じて、さらに一軸延伸あるいは二軸延伸後熱固定を行うことができる。塗布剤塗布後の乾燥温度としては、180℃以上、好ましくは200℃以上で乾燥及び熱固定を行うことにより塗膜が強固になり、接着改質層とポリアミドフィルム基材との接着性が向上する。 The adhesive modification layer in the present invention is dried after applying a coating agent to a biaxially stretched polyamide film base material or an unstretched or uniaxially stretched polyamide film base material, and if necessary. Further, uniaxial stretching or biaxial stretching can be followed by thermal fixation. The drying temperature after application of the coating agent is 180 ° C. or higher, preferably 200 ° C. or higher, to strengthen the coating film and improve the adhesiveness between the adhesive modification layer and the polyamide film base material. To do.
 塗布後に延伸を行う場合、塗布後の乾燥は、塗布フィルムの延伸性を損なわないために塗布フィルムの水分率を0.1~2%の範囲に制御する必要がある。延伸後は200℃以上で乾燥及び熱固定することによリ、塗膜が強固になリ接着改質層とポリアミドフィルム基材との接着性が飛躍的に向上する。 When stretching is performed after coating, it is necessary to control the moisture content of the coating film in the range of 0.1 to 2% so that the drying after coating does not impair the stretchability of the coating film. After stretching, it is dried and heat-fixed at 200 ° C. or higher to strengthen the coating film and dramatically improve the adhesiveness between the adhesive modification layer and the polyamide film base material.
 こうして得られた本発明の易接着性ポリアミドフィルムは、製袋品の運搬時に段ボール等の運搬包装との摩擦が生じた場合でもその摩擦でフィルムに削れが生じてそれによって破袋することを抑制できる。また、袋同志の接触することで屈曲疲労によって破袋することを抑制できる。また、ポリアミドフィルムとシーラントフィルム間の耐水接着強度が高いので、高い破袋防止性を発現する。 The easy-adhesive polyamide film of the present invention thus obtained prevents the film from being scraped due to friction with the transportation packaging such as corrugated cardboard during transportation of the bag-making product, thereby preventing the bag from breaking. it can. In addition, it is possible to prevent the bags from breaking due to bending fatigue due to the contact between the bags. In addition, since the water-resistant adhesive strength between the polyamide film and the sealant film is high, high bag breakage prevention property is exhibited.
[易接着性ポリアミドフィルムの特性]
 本発明の易接着性ポリアミドフィルムは、実施例に記載した測定方法によるゲルボフレックステスターを用いたひねり屈曲試験を温度1℃で1000回実施した時のピンホール欠点数が10個以下である。より好ましくは5個以下である。屈曲試験後のピンホール欠点数が少ないほど耐屈曲ピンホール性が優れており、ピンホール数が10個以下であれば、輸送時などに包装袋に負荷がかかってもピンホールが発生しにくい包装袋が得られる。
[Characteristics of easy-adhesive polyamide film]
The easy-adhesive polyamide film of the present invention has 10 or less pinhole defects when a twist bending test using a gelboflex tester according to the measurement method described in Examples is performed 1000 times at a temperature of 1 ° C. More preferably, the number is 5 or less. The smaller the number of pinhole defects after the bending test, the better the bending pinhole resistance. If the number of pinholes is 10 or less, pinholes are less likely to occur even if the packaging bag is loaded during transportation. A packaging bag is obtained.
 更に、本発明の易接着性ポリアミドフィルムは、耐摩擦ピンホールテストでピンホール発生までの距離が2900cm以上である。より好ましくは3100cm以上、更に好ましくは3300cm以上である。ピンホールが発生する距離が長いほど耐摩擦ピンホール性に優れており、ピンホールが発生する距離が2900cm以上であれば、輸送時などに包装袋が段ボール箱などと擦れてもピンホールが発生しにくい包装袋が得られる。
 本発明の易接着性ポリアミドフィルムは、上記の耐屈曲ピンホール性と耐摩擦ピンホール性の両方の特性が優れていることに特徴がある。これらの特性を持った本発明の易接着性ポリアミドフィルムは、輸送時にピンホールが発生しにくいので包装用フィルムとして極めて有用である。
Further, the easily adhesive polyamide film of the present invention has a pinhole resistance distance of 2900 cm or more in the abrasion resistance pinhole test. It is more preferably 3100 cm or more, still more preferably 3300 cm or more. The longer the distance where pinholes occur, the better the resistance to friction pinholes. If the distance where pinholes occur is 2900 cm or more, pinholes will occur even if the packaging bag rubs against a cardboard box during transportation. A packaging bag that is difficult to obtain can be obtained.
The easy-adhesive polyamide film of the present invention is characterized in that it is excellent in both the above-mentioned bending-resistant pinhole resistance and friction-resistant pinhole resistance. The easy-adhesive polyamide film of the present invention having these characteristics is extremely useful as a packaging film because pinholes are less likely to occur during transportation.
 本発明の易接着性ポリアミドフィルムは、160℃、10分での熱収縮率が流れ方向(以下MD方向と略記する)及び幅方向(以下TD方向と略記する)ともに0.6~3.0%の範囲であり、好ましくは、0.6~2.5%である。熱収縮率が、3.0%を超える場合には、ラミネートや印刷など、次工程で熱がかかる場合にカールや収縮が発生する場合がある。また、シーラントフィルムとのラミネート強度が弱くなる場合がある。熱収縮率を0.6%未満とすることは可能ではあるが、力学的に脆くなる場合がある。また、生産性が悪化するので好ましくない。 The easy-adhesive polyamide film of the present invention has a heat shrinkage rate at 160 ° C. for 10 minutes of 0.6 to 3.0 in both the flow direction (hereinafter abbreviated as MD direction) and the width direction (hereinafter abbreviated as TD direction). It is in the range of%, preferably 0.6 to 2.5%. If the heat shrinkage rate exceeds 3.0%, curling or shrinkage may occur when heat is applied in the next process such as laminating or printing. In addition, the lamination strength with the sealant film may be weakened. Although it is possible to set the heat shrinkage rate to less than 0.6%, it may become mechanically brittle. Moreover, it is not preferable because the productivity deteriorates.
 耐衝撃性に優れることが二軸延伸ポリアミドフィルムの特長であるので、本発明の易接着性ポリアミドフィルムの衝撃強度は、0.7J/15μm以上が好ましい。より好ましい衝撃強度は、0.9J/15μm以上である。 Since it is a feature of the biaxially stretched polyamide film that it has excellent impact resistance, the impact strength of the easily adhesive polyamide film of the present invention is preferably 0.7 J / 15 μm or more. A more preferable impact strength is 0.9 J / 15 μm or more.
 本発明の易接着性ポリアミドフィルムのヘイズ値は、10%以下であることが好ましい。より好ましくは7%以下、更に好ましくは5%以下である。
 ヘイズ値が小さいと透明性や光沢が良いので、包装袋に使用した場合、きれいな印刷ができ商品価値を高める。
 フィルムの滑り性を良くするために微粒子を添加するとヘイズ値が大きくなるので、微粒子は機能層のB層のみに入れる方が、ヘイズ値を小さくできる。
The haze value of the easily adhesive polyamide film of the present invention is preferably 10% or less. It is more preferably 7% or less, still more preferably 5% or less.
When the haze value is small, the transparency and gloss are good, so when used in a packaging bag, it can print beautifully and increase the commercial value.
Since the haze value increases when fine particles are added to improve the slipperiness of the film, the haze value can be reduced by adding the fine particles only to the B layer of the functional layer.
 本発明の易接着性ポリアミドフィルムは、ASTM D6866-16の放射性炭素(C14)測定によるバイオマス由来の炭素の含有量(バイオマス度ともいう)が、ポリアミドフィルム中の全炭素に対して1~15%含まれることが好ましい。
 大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリアミド中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。
The easy-adhesive polyamide film of the present invention has a biomass-derived carbon content (also referred to as biomass degree) measured by ASTM D6866-16 for radiocarbon (C 14 ), which is 1 to 15 with respect to the total carbon in the polyamide film. % Is preferably contained.
Since carbon dioxide in the atmosphere contains C 14 at a fixed ratio (105.5 pMC), the content of C 14 in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. Is known to be. Moreover, C 14 are also known that do not contain little in fossil fuels. Therefore, the proportion of biomass-derived carbon can be calculated by measuring the proportion of C 14 contained in all carbon atoms in the polyamide.
 本発明の易接着性ポリアミドフィルムは、実施例に記載したポリエチレン系シーラントと貼り合わせた後のラミネート強度は、4.0N/15mm以上である。
 本発明の易接着性ポリアミドフィルムは、通常シーラントフィルムとラミネートしてから包装袋に加工される。上記のラミネート強度が4.0N/15mm以上であれば、各種の積層構成で本発明の易接着性ポリアミドフィルムを使用して包装袋を作製した場合に、シール部の強度が十分に得られ、破れにくい強い包装袋が得られる。
 ラミネート強度を4.0N/15mm以上にするために、本発明の易接着性ポリアミドフィルムは、コロナ処理、コーティング処理、火炎処理等を施すことができる。
The easy-adhesive polyamide film of the present invention has a lamination strength of 4.0 N / 15 mm or more after being bonded to the polyethylene-based sealant described in Examples.
The easy-adhesive polyamide film of the present invention is usually laminated with a sealant film and then processed into a packaging bag. When the above-mentioned lamination strength is 4.0 N / 15 mm or more, sufficient strength of the sealing portion can be obtained when a packaging bag is produced using the easily adhesive polyamide film of the present invention in various laminated configurations. A strong packaging bag that is hard to tear can be obtained.
In order to increase the lamination strength to 4.0 N / 15 mm or more, the easily adhesive polyamide film of the present invention can be subjected to corona treatment, coating treatment, flame treatment and the like.
 さらに、本発明の易接着性ポリアミドフィルムは、用途に応じて寸法安定性を良くするために熱処理や調湿処理を施すことも可能である。加えて、フィルム表面の接着性を良好にするためにコロナ処理、コーティング処理や火炎処理等を施したり、印刷加工、金属物や無機酸化物等の蒸着加工を施したりすることも可能である。なお蒸着加工にて形成される蒸着膜としては、アルミニウムの蒸着膜、ケイ素酸化物やアルミニウム酸化物の単一物もしくは混合物の蒸着膜が好適に用いられる。さらにこれらの蒸着膜上に保護層などをコーティングすることにより、酸素や水素バリア性などを向上させることができる。 Further, the easily adhesive polyamide film of the present invention can be subjected to heat treatment or humidity control treatment in order to improve dimensional stability depending on the application. In addition, in order to improve the adhesiveness of the film surface, it is possible to perform corona treatment, coating treatment, flame treatment, etc., printing processing, and vapor deposition processing of metal objects, inorganic oxides, and the like. As the thin-film film formed by the thin-film deposition process, a thin-film film of aluminum and a thin-film film of a single substance or a mixture of silicon oxide and aluminum oxide are preferably used. Further, by coating a protective layer or the like on these thin-film deposition films, oxygen and hydrogen barrier properties can be improved.
 本発明の易接着性ポリアミドフィルムは、シーラントフィルムなどを積層した積層フィルムにしてから、ボトムシール袋、サイドシール袋、三方シール袋、ピロー袋、スタンディングパウチ、ガゼット袋、角底袋などの包装袋に加工される。
 シーラントフィルムとしては、未延伸線状低密度ポリエチレンフィルム、未延伸ポリプロピレンフィルム、エチレン-ビニルアルコール共重合樹脂フィルムなどが挙げられる。
 本発明の易接着性ポリアミドフィルムを使用した積層フィルムの層構成としては、本発明の易接着性ポリアミドフィルムを積層フィルム中に有するものであれば特に限定されない。また、積層フィルムに使用するフィルムは、石化由来原料でもバイオマス由来原料でも良いが、バイオマス由来の原料を用いて重合されたポリ乳酸、ポリエチレンテレフタレート、ポリブチレンサクシネート、ポリエチレン、ポリエチレンフラノエートなどの方が環境負荷の低減という点で好ましい。
The easy-adhesive polyamide film of the present invention is made into a laminated film in which a sealant film or the like is laminated, and then a packaging bag such as a bottom seal bag, a side seal bag, a three-way seal bag, a pillow bag, a standing pouch, a gusset bag, or a square bottom bag. Is processed into.
Examples of the sealant film include an unstretched linear low-density polyethylene film, an unstretched polypropylene film, and an ethylene-vinyl alcohol copolymer resin film.
The layer structure of the laminated film using the easily adhesive polyamide film of the present invention is not particularly limited as long as the easily adhesive polyamide film of the present invention is contained in the laminated film. The film used for the laminated film may be a petrochemical-derived raw material or a biomass-derived raw material, but those such as polylactic acid, polyethylene terephthalate, polybutylene succinate, polyethylene, and polyethylene furanoate polymerized using the biomass-derived raw material. Is preferable in terms of reducing the environmental load.
 本発明の積層フィルムの層構成の例としては、/で層の境界を表わすと、例えば、ONY/接/LLDPE、ONY/接/CPP、ONY/接/Al/接/CPP、ONY/接/Al/接/LLDPE、ONY/PE/Al/接/LLDPE、ONY/接/Al/PE/LLDPE、PET/接/ONY/接/LLDPE、PET/接/ONY/PE/LLDPE、PET/接/ONY/接/Al/接/LLDPE、PET/接/Al/接/ONY/接/LLDPE、PET/接/Al/接/ONY/PE/LLDPE、PET/PE/Al/PE/ONY/PE/LLDPE、PET/接/ONY/接/CPP、PET/接/ONY/接/Al/接/CPP、PET/接/Al/接/ONY/接/CPP、ONY/接/PET/接/LLDPE、ONY/接/PET/PE/LLDPE、ONY/接/PET/接/CPP、ONY//Al//PET//LLDPE、ONY/接/Al/接/PET/PE/LLDPE、ONY/PE/LLDPE、ONY/PE/CPP、ONY/PE/Al/PE、ONY/PE/Al/PE/LLDPE、OPP/接/ONY/接/LLDPE、ONY/接/EVOH/接/LLDPE、ONY/接/EVOH/接/CPP、ONY/接/アルミ又は無機酸化物蒸着PET/接/LLDPE、ONY/接/アルミ蒸着PET/接/ONY/接/LLDPE、ONY/接/アルミ蒸着PET/PE/LLDPE、ONY/PE/アルミ蒸着PET/PE/LLDPE、ONY/接/アルミ蒸着PET/接/CPP、PET/接/アルミ蒸着PET/接/ONY/接/LLDPE、CPP/接/ONY/接/LLDPE、ONY/接/アルミ蒸着LLDPE、ONY/接/アルミ蒸着CPPなどが挙げられる。
 なお上記層構成に用いた各略称は以下の通りである。
ONY:本発明の易接着性ポリアミドフィルム、PET:延伸ポリエチレンテレフタレートフィルム、LLDPE:未延伸線状低密度ポリエチレンフィルム、CPP:未延伸ポリプロピレンフィルム、OPP:延伸ポリプロピレンフィルム、PE:押出しラミネート又は未延伸の低密度ポリエチレンフィルム、Al:アルミニウム箔、EVOH:エチレン-ビニルアルコール共重合樹脂、接:フィルム同士を接着させる接着剤層、アルミ又は無機酸化物蒸着はアルミニウム又は無機酸化物が蒸着されていることを表わす。
As an example of the layer structure of the laminated film of the present invention, when the boundary of the layer is represented by /, for example, ONY / contact / LLDPE, ONY / contact / CPP, ONY / contact / Al / contact / CPP, ONY / contact / Al / Contact / LLDPE, ONY / PE / Al / Contact / LLDPE, ONY / Contact / Al / PE / LLDPE, PET / Contact / ONY / Contact / LLDPE, PET / Contact / ONY / PE / LLDPE, PET / Contact / ONY / Contact / Al / Contact / LLDPE, PET / Contact / Al / Contact / ONY / Contact / LLDPE, PET / Contact / Al / Contact / ONY / PE / LLDPE, PET / PE / Al / PE / ONY / PE / LLDPE, PET / contact / ONY / contact / CPP, PET / contact / ONY / contact / Al / contact / CPP, PET / contact / Al / contact / ONY / contact / CPP, ONY / contact / PET / contact / LLDPE, ONY / Contact / PET / PE / LLDPE, ONY / Contact / PET / Contact / CPP, ONY // Al // PET // LLDPE, ONY / Contact / Al / Contact / PET / PE / LLDPE, ONY / PE / LLDPE , ONY / PE / CPP, ONY / PE / Al / PE, ONY / PE / Al / PE / LLDPE, OPP / Contact / ONY / Contact / LLDPE, ONY / Contact / EVOH / Contact / LLDPE, ONY / Contact / EVOH / Contact / CPP, ONY / Contact / Aluminum or inorganic oxide vapor deposition PET / Contact / LLDPE, ONY / Contact / Aluminum vapor deposition PET / Contact / ONY / Contact / LLDPE, ONY / Contact / Aluminum vapor deposition PET / PE / LLDPE, ONY / PE / Aluminum vapor deposition PET / PE / LLDPE, ONY / Contact / Aluminum vapor deposition PET / Contact / CPP, PET / Contact / Aluminum vapor deposition PET / Contact / ONY / Contact / LLDPE, CPP / Contact / ONY / Contact / LLDPE, ONY / Contact / aluminum vapor deposition LLDPE, ONY / contact / aluminum vapor deposition CPP and the like.
The abbreviations used for the above layer structure are as follows.
ONY: Easy-adhesive polyamide film of the present invention, PET: Stretched polyethylene terephthalate film, LLDPE: Unstretched linear low-density polyethylene film, CPP: Unstretched polypropylene film, OPP: Stretched polypropylene film, PE: Extruded laminate or unstretched Low density polyethylene film, Al: aluminum foil, EVOH: ethylene-vinyl alcohol copolymer resin, contact: adhesive layer for adhering films to each other, aluminum or inorganic oxide vapor deposition means that aluminum or inorganic oxide is deposited. Represent.
 次に、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、フィルムの評価は次の測定法によって行った。特に記載しない場合は、測定は23℃、相対湿度65%の環境の測定室で行った。
(1)フィルムのヘイズ値
 (株)東洋精機製作所社製の直読ヘイズメーターを使用し、JIS-K-7105に準拠し測定した。
(2)フィルムの厚み
 フィルムのTD方向に10等分して(幅が狭いフィルムについては厚みを測定できる幅が確保できる幅になるよう当分する)、MD方向に100mmのフィルムを10枚重ねで切り出し、温度23℃、相対湿度65%の環境下で2時間以上コンディショニングする。テスター産業製厚み測定器で、それぞれのサンプルの中央の厚み測定し、その平均値を厚みとした。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. The film was evaluated by the following measurement method. Unless otherwise specified, the measurement was carried out in a measurement room in an environment of 23 ° C. and 65% relative humidity.
(1) Film haze value Measured according to JIS-K-7105 using a direct-reading haze meter manufactured by Toyo Seiki Seisakusho Co., Ltd.
(2) Film thickness Divide the film into 10 equal parts in the TD direction (for a narrow film, divide it so that the width that can measure the thickness can be secured), and stack 10 100 mm films in the MD direction. The film is cut out and conditioned for 2 hours or more in an environment with a temperature of 23 ° C. and a relative humidity of 65%. The thickness at the center of each sample was measured with a thickness measuring device manufactured by Tester Sangyo, and the average value was taken as the thickness.
(3)フィルムのバイオマス度
 得られたフィルムバイオマス度は、ASTM D6866-16 Method B (AMS)に示された放射性炭素(C14)測定により行った。
(4)フィルムの熱収縮率
 試験温度160℃、加熱時間10分間とした以外は、JIS C2318に記載の寸法変化試験法に準じて下記式によって熱収縮率を測定した。
 熱収縮率=[(処理前の長さ-処理後の長さ)/処理前の長さ]×100(%)
(5)フィルムの衝撃強度
 (株)東洋精機製作所製のフィルムインパクトテスターを使用し測定した。測定値は、厚み15μm当たりに換算してJ(ジュール)/15μmで表した。
(6)フィルムの動摩擦係数
 JIS-C2151に準拠し、下記条件によりフィルム巻外面同士の動摩擦係数を評価した。なお、試験片の大きさは、幅130mm、長さ250mm、試験速度は150mm/分で行った。
(3) Biomass degree of film The obtained film biomass degree was measured by radiocarbon (C 14 ) measurement shown in ASTM D6866-16 Method B (AMS).
(4) Heat Shrinkage Rate of Film The heat shrinkage rate was measured by the following formula according to the dimensional change test method described in JIS C2318, except that the test temperature was 160 ° C. and the heating time was 10 minutes.
Heat shrinkage = [(length before treatment-length after treatment) / length before treatment] x 100 (%)
(5) Impact strength of film Measured using a film impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. The measured value was expressed as J (joule) / 15 μm in terms of thickness per 15 μm.
(6) Dynamic friction coefficient of film Based on JIS-C2151, the dynamic friction coefficient between film winding outer surfaces was evaluated under the following conditions. The size of the test piece was 130 mm in width and 250 mm in length, and the test speed was 150 mm / min.
(7)フィルムの耐屈曲ピンホール性
 理学工業社製のゲルボフレックステスターを使用し、下記の方法により屈曲疲労ピンホール数を測定した。
 実施例で作製したフィルムにポリエステル系接着剤を塗布後、厚み40μmの線状低密度ポリエチレンフィルム(L-LDPEフィルム:東洋紡社製、L4102)をドライラミネートし、40℃の環境下で3日間エージングを行いラミネートフィルムとした。得られたラミネートフィルムを12インチ×8インチに裁断し、直径3.5インチの円筒状にし、円筒状フィルムの一方の端をゲルボフレックステスターの固定ヘッド側に、他方の端を可動ヘッド側に固定し、初期の把持間隔を7インチとした。ストロークの最初の3.5インチで440度のひねりを与え、その後2.5インチは直線水平運動で全ストロークを終えるような屈曲疲労を、40回/分の速さで1000回行い、ラミネートフィルムに発生したピンホール数を数えた。なお、測定は1℃の環境下で行った。テストフィルムのL-LDPEフィルム側を下面にしてろ紙(アドバンテック、No.50)の上に置き、4隅をセロテープ(登録商標)で固定した。インク(パイロット製インキ(品番INK-350-ブルー)を純水で5倍希釈したもの)をテストフィルム上に塗布し、ゴムローラーを用いて一面に延展させた。不要なインクをふき取った後、テストフィルムを取り除き、ろ紙に付いたインクの点の数を計測した。
(7) Bending resistance pinhole resistance of the film The number of bending fatigue pinholes was measured by the following method using a gelboflex tester manufactured by Rigaku Kogyo Co., Ltd.
After applying a polyester adhesive to the film produced in the examples, a linear low-density polyethylene film (L-LDPE film: manufactured by Toyobo Co., Ltd., L4102) having a thickness of 40 μm is dry-laminated and aged in an environment of 40 ° C. for 3 days. Was performed to obtain a laminated film. The obtained laminated film is cut into a cylinder of 12 inches x 8 inches to form a cylinder with a diameter of 3.5 inches, and one end of the cylindrical film is on the fixed head side of the Gelboflex tester and the other end is on the movable head side. The initial gripping interval was 7 inches. The first 3.5 inches of the stroke gives a 440 degree twist, then the 2.5 inches is subjected to flexion fatigue at a speed of 40 times / minute, such as finishing the entire stroke in a straight horizontal motion, and the laminated film. I counted the number of pinholes that occurred in. The measurement was performed in an environment of 1 ° C. The test film was placed on a filter paper (Advantech, No. 50) with the L-LDPE film side facing down, and the four corners were fixed with cellophane tape (registered trademark). Ink (pilot ink (product number INK-350-blue) diluted 5 times with pure water) was applied on a test film and spread over one surface using a rubber roller. After wiping off unnecessary ink, the test film was removed and the number of ink dots on the filter paper was counted.
(8)フィルムの耐摩擦ピンホール性
 堅牢度試験機(東洋精機製作所)を使用し、下記の方法により摩擦試験を行い、ピンホール発生距離を測定した。
 上記耐屈曲ピンホール性評価で作製したものと同様のラミネートフィルムを、四つ折りにして角を尖らせたテストサンプルを作製し、堅牢度試験機にて、振幅:25cm、振幅速度:30回/分、加重:100g重で、段ボール内面に擦りつけた。段ボールは、K280×P180×K210(AF)=(表材ライナー×中芯材×裏材ライナー(フルートの種類))を使用した。
 ピンホール発生距離は、以下の手順に従い算出した。ピンホール発生距離が長いほど、耐摩擦ピンホール性が優れている。
 まず、振幅100回距離2500cmで摩擦テストを行った。ピンホールが開かなかった場合は振幅回数20回距離500cm増やして摩擦テストを行った。またピンホールが開かなかった場合は更に振幅回数20回距離500cm増やして摩擦テストを行った。これを繰り返しピンホールが開いた距離に×をつけて水準1とした。振幅100回距離2500cmでピンホールが開いた場合は振幅回数20回距離500cm減らして摩擦テストを行った。またピンホールが開いた場合は更に振幅回数20回距離500cm減らして摩擦テストを行った。これを繰り返しピンホールが開かなかった距離に○をつけて水準1とした。
 次に水準2として、水準1で最後が○だった場合は、振幅回数を20回増やして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付けた。水準1で最後が×だった場合は、振幅回数を20回減らして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付けた。
 更に水準3~20として、前の水準で○だった場合は、振幅回数を20回増やして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付ける。前の水準で×だった場合は、振幅回数を20回減らして摩擦テストを行い、ピンホールが開かなかったら○、ピンホールが開いたら×を付ける。これを繰り返し、水準3~20に○又は×をつける。
 例えば、表1のような結果が得られた。表1を例にしてピンホール発生距離の求め方を説明する。
 各距離の○と×の試験数を数える。
 最もテスト回数の多かった距離を中央値とし、係数をゼロとする。それより距離が長い場合は、500cmごとに係数を+1、+2、+3・・・、距離が短い場合は、500cmごとに係数を-1、-2、-3・・・とした。
 水準1~20までの全ての試験で、穴が開かなかった試験数と穴が開いた試験数を比較して、次のA及びBの場合についてそれぞれの式で摩擦ピンホール発生距離を算出した。
 A;全ての試験で、穴が開かなかった試験数が、穴が開いた試験数以上の場合
 摩擦ピンホール発生距離=中央値+500×(Σ(係数×穴が開かなかった試験数)/穴が開かなかった試験数)+1/2)
 B:全ての試験で、穴が開かなかった試験数が、穴が開いた試験数未満の場合
 摩擦ピンホール発生距離=中央値+500×(Σ(係数×穴が開いた試験数)/穴が開いた試験数)-1/2)
(8) Friction resistance of film Pinhole resistance Using a fastness tester (Toyo Seiki Seisakusho), a friction test was conducted by the following method, and the pinhole occurrence distance was measured.
A test sample similar to that produced in the above bending pinhole resistance evaluation was folded in four to prepare a test sample with sharp corners, and an amplitude: 25 cm, an amplitude speed: 30 times / with a fastness tester. Minutes, weight: 100 g weight, rubbed against the inner surface of the cardboard. As the corrugated cardboard, K280 × P180 × K210 (AF) = (surface material liner × core material × back material liner (type of flute)) was used.
The pinhole occurrence distance was calculated according to the following procedure. The longer the pinhole generation distance, the better the friction pinhole resistance.
First, a friction test was performed with an amplitude of 100 times and a distance of 2500 cm. When the pinhole did not open, the friction test was performed by increasing the number of amplitudes by 20 times and increasing the distance by 500 cm. When the pinhole was not opened, the friction test was performed by further increasing the number of amplitudes by 20 times and the distance by 500 cm. This was repeated and the distance at which the pinhole was opened was marked with a cross to make it level 1. When a pinhole was opened at an amplitude of 100 times and a distance of 2500 cm, a friction test was performed by reducing the number of amplitudes of 20 times by a distance of 500 cm. When the pinhole was opened, the friction test was performed by further reducing the number of amplitudes by 20 times and the distance by 500 cm. This was repeated and the distance at which the pinhole did not open was marked with a circle to make it level 1.
Next, as level 2, if the last was ○ at level 1, the number of amplitudes was increased 20 times and a friction test was performed. If the pinhole did not open, it was marked with ○, and if it opened, it was marked with ×. If the last was x at level 1, the number of amplitudes was reduced 20 times and a friction test was performed. If the pinhole did not open, a circle was added, and if the pinhole opened, a cross was added.
Furthermore, if the level is 3 to 20, if the previous level is ○, the number of amplitudes is increased 20 times and a friction test is performed. If the pinhole does not open, ○ is added, and if the pinhole opens, × is added. If it was x at the previous level, reduce the number of amplitudes by 20 times and perform a friction test. If the pinhole does not open, mark ○, and if the pinhole opens, mark x. This is repeated, and levels 3 to 20 are marked with ○ or ×.
For example, the results shown in Table 1 were obtained. A method of obtaining the pinhole generation distance will be described using Table 1 as an example.
Count the number of ○ and × tests for each distance.
The median is the distance with the most tests, and the coefficient is zero. When the distance is longer than that, the coefficients are set to +1, +2, +3 ... Every 500 cm, and when the distance is short, the coefficients are set to -1, -2, -3 ... Every 500 cm.
In all the tests from level 1 to 20, the number of tests without holes and the number of tests with holes were compared, and the friction pinhole occurrence distance was calculated by each formula for the following cases A and B. ..
A: In all tests, when the number of tests without holes is greater than or equal to the number of tests with holes Friction pinhole generation distance = median + 500 x (Σ (coefficient x number of tests without holes) / hole Number of tests that did not open) + 1/2)
B: In all tests, when the number of tests without holes is less than the number of tests with holes Friction pinhole generation distance = median + 500 x (Σ (coefficient x number of tests with holes) / hole Number of open tests) -1 / 2)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(9)ポリエチレン系シーラントとのラミネート強度
 耐屈曲ピンホール性評価の説明に記載した方法と同様にして作製したラミネートフィルムを幅15mm×長さ200mmの短冊状に切断し、ラミネートフィルムの一端を二軸延伸ポリアミドフィルムと線状低密度ポリエチレンフィルムとの界面で剥離し、(株式会社島津製作所製、オートグラフ)を用い、温度23℃、相対湿度50%、引張り速度200mm/分、剥離角度90°の条件下でラミネート強度をMD方向とTD方向にそれぞれ3回測定しその平均値で評価した。
(9) Lamination strength with polyethylene-based sealant A laminate film produced in the same manner as described in the description of evaluation of bending pinhole resistance is cut into strips having a width of 15 mm and a length of 200 mm, and one end of the laminate film is cut into two. Peeled at the interface between the axially stretched polyamide film and the linear low-density polyethylene film, and used (manufactured by Shimadzu Corporation, Autograph) at a temperature of 23 ° C, a relative humidity of 50%, a tensile speed of 200 mm / min, and a peeling angle of 90 °. Under the above conditions, the lamination strength was measured three times in each of the MD direction and the TD direction, and evaluated by the average value.
(10)耐水ラミネート強度(水付着条件下でのラミネート強度) (9)のラミネート強度を測定する際に、上記短冊状ラミネートフィルムの剥離界面に水をスポイトで垂らしながらラミネート強度を測定した。MD方向とTD方向にそれぞれ3回測定し平均値で評価した。 (10) Water-resistant laminate strength (lamination strength under water adhesion conditions) When measuring the laminate strength of (9), the laminate strength was measured while water was dropped on the peeling interface of the strip-shaped laminate film with a dropper. It was measured three times in each of the MD direction and the TD direction and evaluated by the average value.
(11)キャスト時の製膜安定性
 Tダイから溶融樹脂をフィルム状に押出し、冷却ロール上にキャストして冷却し、未延伸フィルムを得る工程を目視で観察し、製膜安定性を以下のとおり評価した。
 ○:製膜が安定していて均質な未延伸フィルムが得られた。
 △:製膜が少し不安定で、未延伸フィルムの幅などに変動がみられたが、二軸延伸することができた。
 ×:製膜が不安定で未延伸フィルムが不均質なため二軸延伸フィルムを得られなかった。
(12)ダイリップ出口に生成する熱劣化物の発生周期
 ダイスのリップの掃除を行ってからフィルムの製膜を開始し、ダイスのリップに熱劣化物が発生するまでの時間を観察した。
(11) Film-forming stability during casting The process of extruding the molten resin from the T-die into a film, casting it on a cooling roll to cool it, and visually observing the process of obtaining an unstretched film was performed to obtain the following film-forming stability. Evaluated as per.
◯: An unstretched film having stable film formation and being homogeneous was obtained.
Δ: The film formation was a little unstable, and the width of the unstretched film fluctuated, but biaxial stretching was possible.
X: A biaxially stretched film could not be obtained because the film formation was unstable and the unstretched film was inhomogeneous.
(12) Generation cycle of heat-deteriorated substances generated at the outlet of the die lip After cleaning the lip of the die, film formation was started, and the time until the heat-degraded substance was generated on the lip of the die was observed.
(13)原料ポリアミドの相対粘度
 0.25gのポリアミドを25mlのメスフラスコ中で1.0g/dlの濃度になるように96%硫酸で溶解したポリアミド溶液を20℃にて相対粘度を測定した。
(14)原料ポリアミドの融点
 JIS K7121に準じてセイコーインスルメンツ社製、SSC5200型示差走査熱量測定器を用いて、窒素雰囲気中で、試料重量:10mg、昇温開始温度:30℃、昇温速度:20℃/分で測定し、吸熱ピーク温度(Tmp)を融点として求めた。
(15)接着性改質層の塗布量
 2軸配向ポリアミドフィルムを10cm×10cmの面積に切り出し、フィルムの接着性改質層面をメチルエチルケトン/トルエン=1/1の混合有機溶剤を染み込ませた布で拭き取り、拭き取り前後の重量を精密天秤(島津製作所社製AUW120D)で測定した。測定した重量差から平方メートル当たりに換算し、塗布量(g/m2 )を算出した。
(13) Relative Viscosity of Raw Polyamide A polyamide solution prepared by dissolving 0.25 g of polyamide in a 25 ml volumetric flask with 96% sulfuric acid so as to have a concentration of 1.0 g / dl was measured at 20 ° C.
(14) Melting point of raw material polyamide Using an SSC5200 differential scanning calorimetry device manufactured by Seiko Instruments Co., Ltd. according to JIS K7121, sample weight: 10 mg, temperature rise start temperature: 30 ° C., temperature rise in a nitrogen atmosphere. The speed was measured at 20 ° C./min, and the endothermic peak temperature (Tmp) was determined as the melting point.
(15) Application amount of adhesive modification layer A biaxially oriented polyamide film is cut into an area of 10 cm × 10 cm, and the surface of the adhesive modification layer of the film is impregnated with a mixed organic solvent of methyl ethyl ketone / toluene = 1/1. The weight before and after wiping was measured with a precision balance (AUW120D manufactured by Shimadzu Corporation). The coating amount (g / m 2 ) was calculated by converting the measured weight difference into square meters.
(実施例1-1)
 押出機と380mm巾のTダイよりなる装置を使用し、Tダイから溶融した下記の樹脂組成物をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。
 樹脂組成物:ポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)97質量部、及びポリアミド11(アルケマ社製、相対粘度2.5、融点186℃、バイオマス度100%)3.0質量部、多孔質シリカ微粒子(富士シリシア化学株式会社製、平均粒子径2.0μm、細孔容積1.6ml/g)0.45質量部及び脂肪酸ビスアマイド(共栄社化学株式会社製エチエンビスステアリン酸アミド)0.15質量部からなる樹脂組成物。
 得られた未延伸フィルムを、ロール式延伸機に導き、ロールの周速差を利用して、80℃でMD方向に1.73倍延伸した後、70℃でさらに1.85倍延伸した。引き続き、この一軸延伸フィルムにロールコーターで下記の塗布液(A)を塗布した後、70℃の温風で乾燥させつつ、連続的にテンター式延伸機に導き、110℃で予熱した後、TD方向に120℃で1.2倍、130℃で1.7倍、160℃で2.0倍延伸して、215℃で熱固定処理した後、215℃で7%緩和処理をした後に巻き取って接着性改質層(AEG)が積層された二軸延伸ポリアミドフィルムを得た。 得られた易接着性ポリアミドフィルムの評価結果を表2に示した。
(Example 1-1)
Using a device consisting of an extruder and a T-die with a width of 380 mm, the following resin composition melted from the T-die is extruded into a film, cast on a cooling roll whose temperature has been adjusted to 20 ° C., and electrostatically adhered to a thickness of 200 μm. An unstretched film was obtained.
Resin composition: Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 97 parts by mass, and polyamide 11 (manufactured by Alchema, relative viscosity 2.5, melting point 186 ° C., biomass degree 100%) 3 .0 parts by mass, porous silica fine particles (manufactured by Fuji Silicia Chemical Co., Ltd., average particle diameter 2.0 μm, pore volume 1.6 ml / g) 0.45 parts by mass and fatty acid bisamide (manufactured by Kyoeisha Chemical Co., Ltd. Stearate amide) A resin composition consisting of 0.15 parts by mass.
The obtained unstretched film was guided to a roll-type stretcher, stretched 1.73 times in the MD direction at 80 ° C. using the difference in peripheral speeds of the rolls, and then further stretched 1.85 times at 70 ° C. Subsequently, the following coating liquid (A) was applied to this uniaxially stretched film with a roll coater, and then continuously guided to a tenter type stretching machine while being dried with warm air at 70 ° C., preheated at 110 ° C., and then TD. Stretched 1.2 times at 120 ° C., 1.7 times at 130 ° C., 2.0 times at 160 ° C., heat-fixed at 215 ° C., 7% relaxation treatment at 215 ° C., and then wound. A biaxially stretched polyamide film on which an adhesive modification layer (AEG) was laminated was obtained. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 2.
 [塗布液(A):アクリルグラフト共重合ポリエステルの水系分散体]
 攪拌機、温度計および部分還流式冷却器を具備したステンレススチール製オートクレーブにジメチルテレフタレート466質量部、ジメチルイソフタレート466質量部、ネオペンチルグリコール401質量部、エチレングリコール443質量部、およびテトラ-n-ブチルチタネート0.52質量部を仕込み、160~220℃で4時間かけてエステル交換反応を行った。次いでフマル酸23質量部を加えて200℃から220℃まで1時間かけて昇温し、エステル化反応を行った。次いで255℃まで昇温し、反応系を徐々に減圧したのち0.2mmHgの減圧下で1時間30分攪拌しながら反応させてポリエステルを得た。得られたポリエステルは淡黄色透明で、ガラス転移温度60℃、重量平均分子量は12000であった。NMR測定等により得られた組成は次の通りであった。
 ・ジカルボン酸成分
   テレフタル酸 48モル%
   イソフタル酸 48モル%
   フマル酸 4モル%
 ・ジオール成分
   ネオペンチルグリコール 50モル%
   エチレングリコール 50モル%
 攪拌器、温度計、還流装置と定量滴下装置を備えた反応器に、上記ポリエステル樹脂75質量部とメチルエチルケトン56質量部とイソプロピルアルコール19質量部とを入れ65℃で加熱、攪拌し樹脂を溶解した。樹脂が完溶した後、メタクリル酸17.5質量部とアクリル酸エチル7.5質量部の混合物と、アゾビスジメチルバレロニトリル1.2質量部とを25質量部のメチルエチルケトンに溶解した溶液を0.2ml/分でポリエステル溶液中に滴下し、滴下終了後さらに2時間攪拌を続けた。反応溶液から分析用のサンプリング(5g)を行った後、水300質量部とトリエチルアミン25質量部を反応溶液に加え、1時間攪拌してグラフト化ポリエステルの分散体を調整した。その後、得られた分散体の温度を100℃に上げ、メチルエチルケトン、イソプロピルアルコール、過剰のトリエチルアミンを蒸留により溜去して共重合ポリエステル水系分散体を得た。
[Coating liquid (A): Acrylic graft copolymerized polyester aqueous dispersion]
466 parts by mass of dimethyl terephthalate, 466 parts by mass of dimethyl isophthalate, 401 parts by mass of neopentyl glycol, 443 parts by mass of ethylene glycol, and tetra-n-butyl in a stainless steel autoclave equipped with a stirrer, a thermometer and a partial reflux condenser. 0.52 parts by mass of titanate was charged, and a transesterification reaction was carried out at 160 to 220 ° C. for 4 hours. Next, 23 parts by mass of fumaric acid was added, the temperature was raised from 200 ° C. to 220 ° C. over 1 hour, and an esterification reaction was carried out. Then, the temperature was raised to 255 ° C., the reaction system was gradually depressurized, and then the reaction was carried out under a reduced pressure of 0.2 mmHg for 1 hour and 30 minutes with stirring to obtain a polyester. The obtained polyester was pale yellow and transparent, had a glass transition temperature of 60 ° C., and had a weight average molecular weight of 12000. The composition obtained by NMR measurement and the like was as follows.
・ Dicarboxylic acid component terephthalic acid 48 mol%
Isophthalic acid 48 mol%
Fumaric acid 4 mol%
・ Diol component Neopentyl glycol 50 mol%
Ethylene glycol 50 mol%
75 parts by mass of the polyester resin, 56 parts by mass of methyl ethyl ketone and 19 parts by mass of isopropyl alcohol were placed in a reactor equipped with a stirrer, a thermometer, a reflux device and a quantitative dropping device, and heated at 65 ° C. to stir to dissolve the resin. .. After the resin is completely dissolved, a solution prepared by dissolving a mixture of 17.5 parts by mass of methacrylic acid and 7.5 parts by mass of ethyl acrylate and 1.2 parts by mass of azobisdimethylvaleronitrile in 25 parts by mass of methyl ethyl ketone is 0. The mixture was added dropwise to the polyester solution at 2 ml / min, and stirring was continued for another 2 hours after the addition was completed. After sampling (5 g) for analysis from the reaction solution, 300 parts by mass of water and 25 parts by mass of triethylamine were added to the reaction solution, and the mixture was stirred for 1 hour to prepare a dispersion of the grafted polyester. Then, the temperature of the obtained dispersion was raised to 100 ° C., and methyl ethyl ketone, isopropyl alcohol, and excess triethylamine were distilled off by distillation to obtain a copolymerized polyester aqueous dispersion.
 得られた分散体は、白色で平均粒子径300nm、25℃におけるB型粘度は50センチポワズであった。この分散体5gに重水1.25gを添加して固形分濃度を20質量%とした後、DSSを加えて、125MHz13C-NMRを測定した。ポリエステル主鎖のカルボニル炭素のシグナル(160-175ppm)の半値幅は∞(シグナルが検出されない)であり、グラフト部分のメタクリル酸のカルボニル炭素のシグナル(181-186ppm)の半値幅は110Hzであった。グラフト化反応終了時点でサンプリングした溶液を100℃で8時間真空下で乾燥を行い、その固形分について酸価の測定、ポリエステルのグラフト効率の測定(NMRの測定)、および加水分解によるグラフト部分の分子量の測定を行った。固形分の酸価は2300eq./106 gであった。H-NMRの測定では、フマル酸由来のシグナル(δ=6.8-6.9ppm、doublet)が全く検出されなかったことから、ポリエステルのグラフト効率は100%であることを確認した。グラフト部分の分子量は、重量平均分子量10000であった。
 しかる後、上記の如く得られた水系分散体を、固形分濃度5質量%になるように水で希釈して塗布液(A)を得た。
The obtained dispersion was white, had an average particle diameter of 300 nm, and had a B-type viscosity at 25 ° C. of 50 centipoise. After adding 1.25 g of heavy water to 5 g of this dispersion to make the solid content concentration 20% by mass, DSS was added and 125 MHz 13C-NMR was measured. The half width of the carbonyl carbon signal (160-175 ppm) of the polyester backbone was ∞ (no signal was detected), and the half width of the carbonyl carbon signal of methacrylic acid (181-186 ppm) in the graft portion was 110 Hz. .. The solution sampled at the end of the grafting reaction was dried at 100 ° C. for 8 hours under vacuum, and the acid value of the solid content was measured, the graft efficiency of polyester was measured (NMR measurement), and the grafted portion was hydrolyzed. The molecular weight was measured. The acid value of the solid content is 2300 eq. It was / 10 6 g. 1 In the 1 H-NMR measurement, no signal derived from fumaric acid (δ = 6.8-6.9 ppm, doublet) was detected, so that it was confirmed that the graft efficiency of polyester was 100%. The molecular weight of the graft portion was a weight average molecular weight of 10000.
After that, the aqueous dispersion obtained as described above was diluted with water so as to have a solid content concentration of 5% by mass to obtain a coating liquid (A).
(実施例1-2~1-9)
 原料の樹脂組成物を表2のように変更した以外は、実施例1-1と同様の方法で接着性改質層(AEG)を持つ二軸延伸ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表2に示した。
 ただし、実施例1-6及び1-7においては、塗布液として前記塗布液(B):ポリウレタン樹脂の水系分散体を用い、接着性改質層(PU)が積層された易接着性ポリアミドフィルムを得た。
[塗布液(B):ポリウレタン樹脂の水系分散体]
 (A)ポリウレタンおよび水系分散液の調製;ジカルボン酸成分としてアジピン酸を;そしてグリコール成分として1、4-ブタンジオール60モル%(グリコール成分の)、およびビスフェノールAのプロピレンオキサイド(1モル)付加物40モル%を用いて、Tgが-5℃のポリエステル(ポリエステルポリオール)を得た。このポリエステルにトルエンジイソシアネートを作用させてウレタンポリマーを得た。これをプレポリマーとし、1、6-ヘキサンジオールを作用させて鎖延長すると共にアミノカルボン酸塩を末端に反応させ、水不溶性でかつ水分散性のポリウレタンを得た。これを撹拌しながら熱水中に分散させ、25%水系分散液を得た。
 上記ポリウレタンの水系分散液を固形分が5質量%になるように、イオン交換水およびイソプロピルアルコールの等量混合液中に加え希釈して塗布液(B)を得た。
(Examples 1-2 to 1-9)
A biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 1-1 except that the resin composition of the raw material was changed as shown in Table 2. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 2.
However, in Examples 1-6 and 1-7, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid, and an easily adhesive polyamide film on which an adhesive modifying layer (PU) was laminated was used. Got
[Coating liquid (B): water-based dispersion of polyurethane resin]
(A) Preparation of polyurethane and aqueous dispersions; adipic acid as a dicarboxylic acid component; and 60 mol% 1,4-butanediol (of a glycol component) as a glycol component, and a propylene oxide (1 mol) adduct of bisphenol A. Using 40 mol%, a polyester (polyester polyol) having a Tg of −5 ° C. was obtained. Toluene diisocyanate was allowed to act on this polyester to obtain a urethane polymer. This was used as a prepolymer, and 1,6-hexanediol was allowed to act to extend the chain, and the aminocarboxylic acid salt was reacted at the terminal to obtain a water-insoluble and water-dispersible polyurethane. This was dispersed in hot water with stirring to obtain a 25% aqueous dispersion.
The aqueous dispersion of polyurethane was added to an equal amount mixture of ion-exchanged water and isopropyl alcohol so that the solid content was 5% by mass, and diluted to obtain a coating liquid (B).
(比較例1-1~1-6)
 表2に示した原料の樹脂組成物を使用し、接着性改質層を形成しない以外は実施例1-1と同様の方法で二軸延伸ポリアミドフィルムを得た。シーラントフィルムとの接着性を良くするために熱固定処理及び緩和処理を行った後にフィルムの表面をコロナ放電処理した。評価結果を表2に示した。
 ただし、比較例1-4においてはTダイから溶融樹脂をフィルム状に安定して押出すことができず、均質な未延伸フィルムが得られなかったため二軸延伸ができなかった。
(Comparative Examples 1-1 to 1-6)
A biaxially stretched polyamide film was obtained by using the raw material resin composition shown in Table 2 in the same manner as in Example 1-1 except that the adhesive modification layer was not formed. The surface of the film was subjected to corona discharge treatment after heat fixing treatment and relaxation treatment in order to improve the adhesiveness with the sealant film. The evaluation results are shown in Table 2.
However, in Comparative Example 1-4, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained, so that biaxial stretching was not possible.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、実施例のフィルムは耐屈曲ピンホール性と耐摩擦ピンホール性の良好なフィルムが得られた。また、ヘイズが低く透明性が良好で、衝撃強度も強く、シーラントフィルムとのラミネート強度も高く、包装用フィルムとして優れていた。また、接着性改質層の存在のため、ラミネート強度、特に耐水ラミネート強度が優れていた。
 比較例1-1及び比較例1-2の耐屈曲ピンホール性を改質する材料を含まない二軸延伸ポリアミドフィルムと比較例1-3のポリアミド11の含有量が少なすぎる二軸延伸ポリアミドフィルムは、耐屈曲ピンホール性が劣っていた。
 比較例1-4は、ポリアミド11の含有量が多すぎるため、Tダイから溶融樹脂をフィルム状に安定して押出すことができないため均質な未延伸フィルムが得られず、二軸延伸ポリアミドフィルムが得られなかった。
 比較例1-5では、耐屈曲ピンホール性を改質する材料として従来使用されているポリアミドエラストマー(アルケマ社製ナイロン12/ポリテトラメチレングリコール共重合体、商品名「Pebax SA01」)を使用したところ、耐屈曲ピンホール性は良好であるが耐摩擦ピンホール性が劣っていた。また、長時間の生産をした時にダイスに劣化物が付着しやすく、長時間の連続生産ができないという欠点があった。
 比較例1-6は、本発明における二軸延伸ポリアミドフィルムに接着性改質層を設けず、代わりにコロナ処理を行い接着性を上げた。耐屈曲ピンホール性と耐摩擦ピンホール性は良好であったが、ラミネート強度及び耐水ラミネート強度が低かった。
As shown in Table 2, as the film of the example, a film having good bending pinhole resistance and friction pinhole resistance was obtained. In addition, the haze was low, the transparency was good, the impact strength was strong, the lamination strength with the sealant film was high, and the film was excellent as a packaging film. Further, due to the presence of the adhesive modification layer, the laminate strength, particularly the water resistant laminate strength, was excellent.
The biaxially stretched polyamide film containing no material for modifying the bending pinhole resistance of Comparative Examples 1-1 and 1-2 and the biaxially stretched polyamide film containing too little polyamide 11 of Comparative Example 1-3. Was inferior in bending pinhole resistance.
In Comparative Example 1-4, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, so that a homogeneous unstretched film could not be obtained, and the biaxially stretched polyamide film could not be obtained. Was not obtained.
In Comparative Example 1-5, a conventionally used polyamide elastomer (nylon 12 / polytetramethylene glycol copolymer manufactured by Arkema, trade name “Pebox SA01”) was used as a material for modifying bending pinhole resistance. However, although the bending pinhole resistance was good, the friction pinhole resistance was inferior. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
In Comparative Example 1-6, the biaxially stretched polyamide film of the present invention was not provided with the adhesive modification layer, but instead was subjected to corona treatment to improve the adhesiveness. The bending-resistant pinhole resistance and the friction-resistant pinhole resistance were good, but the laminating strength and the water-resistant laminating strength were low.
(実施例2-1)
  熱固定処理温度及び緩和処理温度を218℃にした以外は、実施例1-1と同様にして接着性改質層(AEG)を持つ易接着性二軸延伸ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表3に示した。
(Example 2-1)
An easily adhesive biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 1-1 except that the heat fixing treatment temperature and the relaxation treatment temperature were set to 218 ° C. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 3.
(実施例2-2~2-10及び比較例2-1~2-5)
 原料の樹脂組成物を表3のように変更した以外は、実施例2-1と同様の方法で接着性改質層を持つ易接着性ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表3に示した。
 尚、少なくとも一部がバイオマス由来の原料からなるポリアミド樹脂であるポリアミド410、ポリアミド610、ポリアミド1010としては、それぞれ下記のものを用いた。
 ポリアミド410:(DSM社製、ECOPaXX Q150-E、融点250℃、バイオマス度71%)
 ポリアミド610:(アルケマ社製、RilsanS SMNO、融点222℃、バイオマス度62.5%)
 ポリアミド1010:(アルケマ社製、RilsanT TMNO、融点202℃、バイオマス度50%)
 ただし、実施例2-7においては、塗布液として前記塗布液(B):ポリウレタン樹脂の水系分散体を用い、接着性改質層(PU)が積層された易接着性ポリアミドフィルムを得た。
 実施例2-6及び比較例2-2の熱固定処理及び緩和処理は210℃で行った。
 また、比較例2-4においてはTダイから溶融樹脂をフィルム状に安定して押出すことができず、均質な未延伸フィルムが得られなかったため二軸延伸ができなかった。
(Examples 2-2 to 2-10 and Comparative Examples 2-1 to 2-5)
An easily adhesive polyamide film having an adhesive modification layer was obtained in the same manner as in Example 2-1 except that the resin composition of the raw material was changed as shown in Table 3. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 3.
As the polyamide 410, the polyamide 610, and the polyamide 1010, which are polyamide resins whose at least a part is made of a biomass-derived raw material, the following ones were used.
Polyamide 410: (manufactured by DSM, ECOPaXX Q150-E, melting point 250 ° C., biomass degree 71%)
Polyamide 610: (manufactured by Arkema, RilsanS SMNO, melting point 222 ° C., biomass degree 62.5%)
Polyamide 1010: (manufactured by Arkema, RilsanT TMNO, melting point 202 ° C., biomass degree 50%)
However, in Example 2-7, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid to obtain an easily adhesive polyamide film on which the adhesive modifying layer (PU) was laminated.
The heat fixing treatment and relaxation treatment of Examples 2-6 and Comparative Example 2-2 were carried out at 210 ° C.
Further, in Comparative Example 2-4, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained, so that biaxial stretching was not possible.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示したとおり、実施例のフィルムは耐屈曲ピンホール性と耐摩擦ピンホール性の両方が良好なフィルムが得られた。また、ヘイズが低く透明性が良好で、衝撃強度も強く、シーラントフィルムとのラミネート強度も高く、包装用フィルムとして優れていた。
 比較例2-1及び比較例2-2の耐屈曲ピンホール性を改質する効果がある少なくとも原料の一部がバイオマス由来であるポリアミド樹脂を含まない二軸延伸ポリアミドフィルムと比較例2-3のポリアミド11の含有量が少なすぎる二軸延伸ポリアミドフィルムは、耐屈曲ピンホール性が劣っていた。
 比較例2-4は、ポリアミド11の含有量が多すぎるため、Tダイから溶融樹脂をフィルム状に安定して押出すことができず、均質な未延伸フィルムが得られず、二軸延伸ポリアミドフィルムが得られなかった。
 比較例2-5は、耐屈曲ピンホール性を改質する材料として従来使用されている前記ポリアミドエラストマーを使用したところ、耐屈曲ピンホール性は良好であるが耐摩擦ピンホール性が劣っていた。また、長時間の生産をした時にダイスに劣化物が付着しやすく、長時間の連続生産ができないという欠点があった。
As shown in Table 3, as the film of the example, a film having good both bending pinhole resistance and friction pinhole resistance was obtained. In addition, the haze was low, the transparency was good, the impact strength was strong, the lamination strength with the sealant film was high, and the film was excellent as a packaging film.
Comparative Example 2-3 with a biaxially stretched polyamide film containing no polyamide resin in which at least a part of the raw material is derived from biomass, which has the effect of modifying the bending pinhole resistance of Comparative Example 2-1 and Comparative Example 2-2. The biaxially stretched polyamide film containing too little polyamide 11 was inferior in bending pinhole resistance.
In Comparative Example 2-4, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained. No film was obtained.
In Comparative Example 2-5, when the above-mentioned polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
(実施例3-1)
 押出機2台と380mm巾の共押出Tダイよりなる装置を使用し、フィードブロック法でB層/A層/B層の構成で積層してTダイから溶融樹脂をフィルム状に押出し、20℃に温調した冷却ロールにキャストし静電密着させて厚み200μmの未延伸フィルムを得た。
 A層とB層の樹脂組成物は以下のとおりである。
 A層を構成する樹脂組成物:ポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)97質量部、及びポリアミド11(集盛社製、相対粘度2.5、融点186℃、バイオマス度100%)3.0質量部からなるポリアミド樹脂組成物。
 B層を構成する樹脂組成物:ポリアミド6(東洋紡株式会社製、相対粘度2.8、融点220℃)95質量部、及びポリアミドMXD6(三菱瓦斯化学株式会社製、相対粘度2.1、融点237℃)5.0質量部、多孔質シリカ微粒子(富士シリシア化学株式会社製、平均粒子径2.0μm、細孔容積1.6ml/g)0.54質量部及び脂肪酸ビスアマイド(共栄社化学株式会社製エチエンビスステアリン酸アミド)0.15質量部からなる樹脂組成物。
 なお、二軸延伸ポリアミドフィルムの厚みは、合計厚みが15μm、基材層(A層)の厚みが12μm、表裏の機能層(B層)の厚みがそれぞれ1.5μmずつになるように、フィードブロックの構成と押出し機の吐出量を調整した。
 得られた未延伸フィルムを、ロール式延伸機に導き、ロールの周速差を利用して、80℃でMD方向に1.73倍延伸した後、70℃でさらに1.85倍延伸した。引き続き、この一軸延伸フィルムにロールコーターで前記塗布液(A)を塗布した後、70℃の温風で乾燥させつつ、連続的にテンター式延伸機に導き、110℃で予熱した後、TD方向に120℃で1.2倍、130℃で1.7倍、160℃で2.0倍延伸して、215℃で熱固定処理した後、215℃で7%緩和処理をした後に巻き取って接着性改質層(AEG)が積層された二軸延伸ポリアミドフィルムを得た。は得られた易接着性ポリアミドフィルムの評価結果を表4に示した。
(Example 3-1)
Using a device consisting of two extruders and a co-extruded T-die with a width of 380 mm, the molten resin is extruded into a film from the T-die by laminating in a B layer / A layer / B layer configuration by the feed block method, and the temperature is 20 ° C. An unstretched film having a thickness of 200 μm was obtained by casting it on a cooling roll whose temperature was adjusted to 2 and electrostatically adhering it.
The resin compositions of the A layer and the B layer are as follows.
Resin composition constituting layer A: Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 97 parts by mass, and polyamide 11 (manufactured by Shuseisha, relative viscosity 2.5, melting point 186 ° C.) Polyamide resin composition consisting of 3.0 parts by mass (biomass degree 100%).
Resin composition constituting layer B: Polyamide 6 (manufactured by Toyo Boseki Co., Ltd., relative viscosity 2.8, melting point 220 ° C.) 95 parts by mass, and polyamide MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., relative viscosity 2.1, melting point 237) ℃) 5.0 parts by mass, porous silica fine particles (manufactured by Fuji Silysia Chemical Ltd., average particle diameter 2.0 μm, pore volume 1.6 ml / g) 0.54 parts by mass and fatty acid bisamide (manufactured by Kyoeisha Chemical Co., Ltd.) Ethienbis stearate amide) A resin composition consisting of 0.15 parts by mass.
The biaxially stretched polyamide film is fed so that the total thickness is 15 μm, the thickness of the base material layer (A layer) is 12 μm, and the thickness of the front and back functional layers (B layer) is 1.5 μm. The block configuration and the discharge rate of the extruder were adjusted.
The obtained unstretched film was guided to a roll-type stretcher, stretched 1.73 times in the MD direction at 80 ° C. using the difference in peripheral speeds of the rolls, and then further stretched 1.85 times at 70 ° C. Subsequently, after applying the coating liquid (A) to this uniaxially stretched film with a roll coater, the film is continuously guided to a tenter type stretching machine while being dried with warm air at 70 ° C., preheated at 110 ° C., and then in the TD direction. The film was stretched 1.2 times at 120 ° C, 1.7 times at 130 ° C, 2.0 times at 160 ° C, heat-fixed at 215 ° C, and then wound up after 7% relaxation treatment at 215 ° C. A biaxially stretched polyamide film on which an adhesive modification layer (AEG) was laminated was obtained. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 4.
(実施例3-2~3-9)
 A層とB層の樹脂組成物を表4のように変更した以外は、実施例3-1と同様の方法で接着性改質層を持つ二軸延伸ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表4に示した。
 ただし、実施例3-8及び実施例3-9においては、塗布液として前記塗布液(B):ポリウレタン樹脂の水系分散体を用い、接着性改質層(PU)が積層された易接着性ポリアミドフィルムを得た。
(比較例3-1~3-5)
 表4に示した原料の樹脂組成物を使用し、接着性を上げるために接着性改質層を形成しない代わりに熱固定処理及び緩和処理を行った後に線状低密度ポリエチレンフィルムとドライラミネートする側のフィルム表面をコロナ放電処理した。評価結果を表4に示した。
 ただし、比較例3-3においてはポリアミド11の含有量が多過ぎるため、Tダイから溶融樹脂をフィルム状に安定して押出すことができず均質な未延伸フィルムが得られなかったため二軸延伸ができなかった。
(Examples 3-2 to 3-9)
A biaxially stretched polyamide film having an adhesive modification layer was obtained in the same manner as in Example 3-1 except that the resin compositions of the A layer and the B layer were changed as shown in Table 4. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 4.
However, in Examples 3-8 and 3-9, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid, and the adhesive modification layer (PU) was laminated for easy adhesion. A polyamide film was obtained.
(Comparative Examples 3-1 to 3-5)
Using the raw material resin composition shown in Table 4, instead of forming an adhesive modification layer in order to improve the adhesiveness, heat fixing treatment and relaxation treatment are performed, and then dry lamination is performed with the linear low density polyethylene film. The surface of the film on the side was subjected to corona discharge treatment. The evaluation results are shown in Table 4.
However, in Comparative Example 3-3, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, and a homogeneous unstretched film could not be obtained. I couldn't.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示したとおり、実施例のフィルムは耐屈曲ピンホール性と耐摩擦ピンホール性の良好なフィルムが得られた。また、ヘイズが低く透明性が良好で、かつ滑り性も良好であった。衝撃強度も強く、シーラントフィルムとのラミネート強度も高く、包装用フィルムとして優れていた。また、接着性改質層の存在のため、耐水ラミネート強度が優れていた。
 また、実施例3-2、3-6、3-7で得られたフィルムのヘイズと動摩擦係数の値から、B層(機能層)には、微粒子と有機潤滑剤とポリアミドMXD6を含有させると透明性と滑り性の両方の特性が優れた二軸延伸ポリアミドフィルムが得られることがわかる。
 比較例3-1のポリアミド11を含まない二軸延伸ポリアミドフィルム及び比較例3-2のポリアミド11の含有量が少ない二軸延伸ポリアミドフィルムは、耐屈曲ピンホール性が劣っていた。また接着性改質層もないので、耐水ラミネート強度も低かった。
 比較例3-3は、ポリアミド11の含有量が多すぎるため、Tダイから溶融樹脂をフィルム状に安定して押出すことができないため均質な未延伸フィルムが得られず、二軸延伸ポリアミドフィルムが得られなかった。
 比較例3-4では、耐屈曲ピンホール性を改質する材料として従来使用されている前記ポリアミドエラストマーを使用したところ、耐屈曲ピンホール性は良好であるが耐摩擦ピンホール性が劣っていた。また、長時間の生産をした時にダイスに劣化物が付着しやすく、長時間の連続生産ができないという欠点があった。
 比較例3-5は、本発明における二軸延伸ポリアミドフィルムに接着性改質層を設けず、代わりにコロナ処理して接着性を上げた。耐屈曲ピンホール性と耐摩擦ピンホール性は良好であったが、耐水ラミネート強度が低かった。
As shown in Table 4, as the film of the example, a film having good bending pinhole resistance and friction pinhole resistance was obtained. In addition, the haze was low, the transparency was good, and the slipperiness was also good. It had strong impact strength and high lamination strength with a sealant film, and was excellent as a packaging film. Further, due to the presence of the adhesive modification layer, the water resistance laminate strength was excellent.
Further, from the values of the haze and the dynamic friction coefficient of the films obtained in Examples 3-2, 3-6, and 3-7, it is determined that the B layer (functional layer) contains fine particles, an organic lubricant, and polyamide MXD6. It can be seen that a biaxially stretched polyamide film having excellent both transparency and slipperiness properties can be obtained.
The biaxially stretched polyamide film containing no polyamide 11 of Comparative Example 3-1 and the biaxially stretched polyamide film having a small content of the polyamide 11 of Comparative Example 3-2 were inferior in bending pinhole resistance. Moreover, since there was no adhesive modification layer, the water resistance laminate strength was also low.
In Comparative Example 3-3, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, so that a homogeneous unstretched film could not be obtained, and the biaxially stretched polyamide film could not be obtained. Was not obtained.
In Comparative Example 3-4, when the polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
In Comparative Example 3-5, the biaxially stretched polyamide film of the present invention was not provided with the adhesive modification layer, but instead was treated with a corona to improve the adhesiveness. The bending-resistant pinhole resistance and the friction-resistant pinhole resistance were good, but the water-resistant laminate strength was low.
(実施例4-1)
  熱固定処理温度及び緩和処理温度を218℃にした以外は、実施例3-1と同様にして接着性改質層(AEG)を持つ易接着性二軸延伸ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表5に示した。
(Example 4-1)
An easily adhesive biaxially stretched polyamide film having an adhesive modification layer (AEG) was obtained in the same manner as in Example 3-1 except that the heat fixing treatment temperature and the relaxation treatment temperature were set to 218 ° C. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 5.
(実施例4-2~4-11及び比較例4-1~4-7)
 A層とB層の樹脂組成物、熱固定温度などの製膜条件を表5のように変更した以外は、実施例4-1と同様の方法で易接着性ポリアミドフィルムを得た。得られた易接着性ポリアミドフィルムの評価結果を表5に示した。
 ただし、実施例4-8においては、塗布液として前記塗布液(B):ポリウレタン樹脂の水系分散体を用い、接着性改質層(PU)が積層された易接着性ポリアミドフィルムを得た。
 実施例4-6及び比較例4-2の熱固定処理及び緩和処理は210℃で行った。
 また、比較例4-4においては基材層のポリアミド11の含有量が多過ぎるためTダイから溶融樹脂をフィルム状に安定して押出すことができず、均質な未延伸フィルムが得られなかったため二軸延伸ができなかった。
(Examples 4-2 to 4-11 and Comparative Examples 4-1 to 4-7)
An easily adhesive polyamide film was obtained in the same manner as in Example 4-1 except that the film forming conditions such as the resin composition of the A layer and the B layer and the heat fixing temperature were changed as shown in Table 5. The evaluation results of the obtained easily adhesive polyamide film are shown in Table 5.
However, in Examples 4-8, the coating liquid (B): an aqueous dispersion of a polyurethane resin was used as the coating liquid to obtain an easily adhesive polyamide film on which the adhesive modifying layer (PU) was laminated.
The heat fixing treatment and relaxation treatment of Examples 4-6 and Comparative Example 4-2 were carried out at 210 ° C.
Further, in Comparative Example 4-4, since the content of the polyamide 11 in the base material layer was too large, the molten resin could not be stably extruded from the T-die into a film, and a homogeneous unstretched film could not be obtained. Therefore, biaxial stretching was not possible.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示したとおり、実施例のフィルムは耐屈曲ピンホール性と耐摩擦ピンホール性の両方が良好なフィルムが得られた。また、ヘイズが低く透明性が良好で、衝撃強度も強く、シーラントフィルムとのラミネート強度及び耐水ラミネート強度も高く、包装用フィルムとして優れていた。
 比較例4-1及び比較例4-2においては、耐屈曲ピンホール性を改質する効果がある少なくとも原料の一部がバイオマス由来であるポリアミド樹脂を含まないポリアミドフィルムと比較例4-3のポリアミド11の含有量が少なすぎるポリアミドフィルムは、耐屈曲ピンホール性が劣っていた。
 比較例4-4は、ポリアミド11の含有量が多すぎるため、Tダイから溶融樹脂をフィルム状に安定して押出すことができず均質な未延伸フィルムが得られず、二軸延伸ポリアミドフィルムも得られなかった。
 比較例4-5においては、A層の厚み及び厚み率が小さいため、フィルムの耐屈曲ピンホール性が劣っていた。
 比較例4-6においては、B層のポリアミド6樹脂の量が少ないため、フィルムの耐屈曲ピンホール性と耐摩擦ピンホール性が劣っていた。
 比較例4-7は、耐屈曲ピンホール性を改質する材料として従来使用されている前記ポリアミドエラストマーを使用したところ、耐屈曲ピンホール性は良好であるが耐摩擦ピンホール性が劣っていた。また、長時間の生産をした時にダイスに劣化物が付着しやすく、長時間の連続生産ができないという欠点があった。
As shown in Table 5, as the film of the example, a film having good both bending pinhole resistance and friction pinhole resistance was obtained. In addition, the haze was low, the transparency was good, the impact strength was strong, the lamination strength with the sealant film and the water resistance lamination strength were high, and it was excellent as a packaging film.
In Comparative Example 4-1 and Comparative Example 4-2, a polyamide film containing no polyamide resin in which at least a part of the raw material is derived from biomass, which has the effect of modifying the bending pinhole resistance, and Comparative Example 4-3. The polyamide film containing too little polyamide 11 was inferior in bending pinhole resistance.
In Comparative Example 4-4, since the content of the polyamide 11 was too large, the molten resin could not be stably extruded into a film from the T-die, and a homogeneous unstretched film could not be obtained. Therefore, the biaxially stretched polyamide film could not be obtained. I couldn't get it.
In Comparative Example 4-5, since the thickness and thickness ratio of the A layer were small, the bending pinhole resistance of the film was inferior.
In Comparative Example 4-6, since the amount of the polyamide 6 resin in the B layer was small, the bending pinhole resistance and the friction pinhole resistance of the film were inferior.
In Comparative Example 4-7, when the above-mentioned polyamide elastomer conventionally used as a material for modifying the bending pinhole resistance was used, the bending pinhole resistance was good but the friction pinhole resistance was inferior. .. In addition, there is a drawback that deteriorated products tend to adhere to the die during long-term production, and continuous production for a long time is not possible.
 本発明の易接着性ポリアミドフィルムは、耐衝撃性及び耐屈曲ピンホール性と耐摩擦ピンホール性が同時に優れていることから、食品包装等の包装材料の用途に好適に用いることができる。また、ラミネート強度及び耐水ラミネート強度が強いので、運搬時やボイル処理などの時に破れにくい各種包装用袋を提供することが出来る。更に、元来地上にあるバイオマス由来の原料から重合された樹脂を用いているので、カーボンニュートラルなフィルムであり、地上の二酸化炭素の増減に影響を少ない点で環境負荷を低減できる。 Since the easily adhesive polyamide film of the present invention is excellent in impact resistance, bending pinhole resistance, and friction pinhole resistance at the same time, it can be suitably used for packaging materials such as food packaging. Further, since the laminating strength and the water resistant laminating strength are strong, it is possible to provide various packaging bags that are not easily torn during transportation or boiling treatment. Furthermore, since a resin originally polymerized from a biomass-derived raw material on the ground is used, it is a carbon-neutral film and can reduce the environmental load in that it has little influence on the increase and decrease of carbon dioxide on the ground.

Claims (8)

  1.  ポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含む二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有することを特徴とする易接着性ポリアミドフィルム。 A coating amount of 0.01 to 3 g / m as a solid content on at least one side of a biaxially stretched polyamide film containing 99 to 70% by mass of a polyamide 6 resin and 1 to 30% by mass of a polyamide resin in which at least a part of the raw material is derived from biomass. 2 of polyester resin, easily adhesive polyamide film characterized in that an adhesive modifying layer made of either a resin of the polyurethane resin, and / or polyacrylic resins.
  2.  下記の基材層(A層)の少なくとも片面に下記の機能層(B層)が積層された二軸延伸ポリアミドフィルムの少なくとも片面に固形分として塗布量が0.01~3g/m2 のポリエステル樹脂、ポリウレタン樹脂、及び/又はポリアクリル樹脂のいずれかの樹脂からなる接着改質層を有することを特徴とする易接着性ポリアミドフィルム。
     基材層(A層)はポリアミド6樹脂99~70質量%と少なくとも原料の一部がバイオマス由来であるポリアミド樹脂1~30質量%を含み、機能層(B層)はポリアミド6樹脂70質量%以上を含む。
    A polyester having a coating amount of 0.01 to 3 g / m 2 as a solid content on at least one side of a biaxially stretched polyamide film in which the following functional layer (B layer) is laminated on at least one side of the following base material layer (A layer). An easily adhesive polyamide film having an adhesive modification layer made of any resin of a resin, a polyurethane resin, and / or a polyacrylic resin.
    The base material layer (A layer) contains 99 to 70% by mass of the polyamide 6 resin and 1 to 30% by mass of the polyamide resin in which at least a part of the raw material is derived from biomass, and the functional layer (B layer) contains 70% by mass of the polyamide 6 resin. Including the above.
  3.  前記二軸延伸ポリアミドフィルム中の全炭素に対して、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が1~15%であることを特徴とする前記請求項1又は2に記載の易接着性ポリアミドフィルム。 The invention according to claim 1 or 2, wherein the content of biomass-derived carbon as measured by radiocarbon (C 14 ) is 1 to 15% with respect to the total carbon in the biaxially stretched polyamide film. Easy-adhesive polyamide film.
  4.  少なくとも原料の一部がバイオマス由来であるポリアミド樹脂が、ポリアミド11、ポリアミド410、ポリアミド610、及びポリアミド1010からなる群から選ばれる少なくとも1種のポリアミド樹脂であることを特徴とする請求項1~3いずれかに記載の易接着性ポリアミドフィルム。 Claims 1 to 3 are characterized in that the polyamide resin from which at least a part of the raw material is derived from biomass is at least one polyamide resin selected from the group consisting of polyamide 11, polyamide 410, polyamide 610, and polyamide 1010. The easily adhesive polyamide film according to any one.
  5.  下記の(a)及び(b)を満足することを特徴とする請求項1~4いずれかに記載の易接着性ポリアミドフィルム。
     (a)ゲルボフレックステスターを用いたひねり屈曲試験を温度1℃で1000回実施した時のゲルボピンホール欠点数が10個以下、
     (b)耐摩擦ピンホールテストでピンホール発生までの距離が2900cm以上。
    The easily adhesive polyamide film according to any one of claims 1 to 4, which satisfies the following (a) and (b).
    (A) The number of defects of gelbo pinholes when the twist bending test using a gelboflex tester was performed 1000 times at a temperature of 1 ° C. was 10 or less.
    (B) The distance to the occurrence of a pinhole in the friction-resistant pinhole test is 2900 cm or more.
  6.  ポリエチレン系シーラントフィルムと貼り合わせた後のラミネート強度が4.0N/15mm以上であることを特徴とする請求項1~5いずれかに記載の易接着性ポリアミドフィルム。 The easily adhesive polyamide film according to any one of claims 1 to 5, wherein the lamination strength after being bonded to the polyethylene-based sealant film is 4.0 N / 15 mm or more.
  7.  請求項1~6いずれかに記載の易接着性ポリアミドフィルムにシーラントフィルムを積層した積層フィルム。 A laminated film in which a sealant film is laminated on the easily adhesive polyamide film according to any one of claims 1 to 6.
  8.  請求項7に記載された積層フィルムを用いた包装袋。 A packaging bag using the laminated film according to claim 7.
PCT/JP2020/023106 2019-08-02 2020-06-11 Readily adhering polyamide film WO2021024615A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020555087A JPWO2021024615A1 (en) 2019-08-02 2020-06-11

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019-142893 2019-08-02
JP2019142893 2019-08-02
JP2019144378 2019-08-06
JP2019-144378 2019-08-06
JP2020-029081 2020-02-25
JP2020029081 2020-02-25
JP2020-029082 2020-02-25
JP2020029082 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021024615A1 true WO2021024615A1 (en) 2021-02-11

Family

ID=74503473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023106 WO2021024615A1 (en) 2019-08-02 2020-06-11 Readily adhering polyamide film

Country Status (3)

Country Link
JP (1) JPWO2021024615A1 (en)
TW (1) TW202112928A (en)
WO (1) WO2021024615A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847972A (en) * 1994-06-03 1996-02-20 Unitika Ltd Biaxially oriented polyamide film and production thereof
JPH08507011A (en) * 1993-04-09 1996-07-30 ビスケイス コーポレイション Packaging container for cheese, film, bag, and method for packaging CO exhaled food
JPH10287753A (en) * 1997-04-11 1998-10-27 Unitika Ltd Biaxially oriented polyamide film
JP2004058336A (en) * 2002-07-25 2004-02-26 Dainippon Printing Co Ltd Packaging material for retort and retort treated packaging product using the same
JP2005178805A (en) * 2003-12-17 2005-07-07 Dainippon Printing Co Ltd Pouch for retort
JP2009226821A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
WO2012117884A1 (en) * 2011-03-01 2012-09-07 東洋紡績株式会社 Stretched polyamide film
JP2016053177A (en) * 2010-07-20 2016-04-14 宇部興産株式会社 Polyamide resin composition and film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507011A (en) * 1993-04-09 1996-07-30 ビスケイス コーポレイション Packaging container for cheese, film, bag, and method for packaging CO exhaled food
JPH0847972A (en) * 1994-06-03 1996-02-20 Unitika Ltd Biaxially oriented polyamide film and production thereof
JPH10287753A (en) * 1997-04-11 1998-10-27 Unitika Ltd Biaxially oriented polyamide film
JP2004058336A (en) * 2002-07-25 2004-02-26 Dainippon Printing Co Ltd Packaging material for retort and retort treated packaging product using the same
JP2005178805A (en) * 2003-12-17 2005-07-07 Dainippon Printing Co Ltd Pouch for retort
JP2009226821A (en) * 2008-03-25 2009-10-08 Toyobo Co Ltd Polyamide-based laminated biaxially-stretched film
JP2016053177A (en) * 2010-07-20 2016-04-14 宇部興産株式会社 Polyamide resin composition and film
WO2012117884A1 (en) * 2011-03-01 2012-09-07 東洋紡績株式会社 Stretched polyamide film

Also Published As

Publication number Publication date
TW202112928A (en) 2021-04-01
JPWO2021024615A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US11325363B2 (en) Laminate including polyester film having furandicarboxylate unit and heat-sealable resin layer, and packaging bag
US11325362B2 (en) Layered polyester film
JP4687289B2 (en) Polyamide-based mixed resin laminated film roll and manufacturing method thereof
WO2021200489A1 (en) Biaxially stretched polyamide film
WO2017169553A1 (en) Polyester film
JP7444056B2 (en) Biaxially oriented polyamide film and laminated film
JP7452389B2 (en) Manufacturing method of polyamide film mill roll
JP2023178296A (en) Easily adhesive polyamide film
TWI438088B (en) Easily adhering film
WO2021024615A1 (en) Readily adhering polyamide film
JP2008087349A (en) Polyamide mixed resin laminated film roll and its manufacturing method
JP5181763B2 (en) Polyamide-based laminated biaxially stretched film
JP2022038956A (en) Easily adhesive polyamide film
JP5181764B2 (en) Polyamide-based laminated biaxially stretched film
JP2007015189A (en) Polyamide-based mixed resin-laminated film roll and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555087

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850530

Country of ref document: EP

Kind code of ref document: A1