WO2021024518A1 - 電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法 - Google Patents

電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法 Download PDF

Info

Publication number
WO2021024518A1
WO2021024518A1 PCT/JP2020/004820 JP2020004820W WO2021024518A1 WO 2021024518 A1 WO2021024518 A1 WO 2021024518A1 JP 2020004820 W JP2020004820 W JP 2020004820W WO 2021024518 A1 WO2021024518 A1 WO 2021024518A1
Authority
WO
WIPO (PCT)
Prior art keywords
split
coil
permanent magnet
pair
armature
Prior art date
Application number
PCT/JP2020/004820
Other languages
English (en)
French (fr)
Inventor
水野 健
旭 韓
一将 伊藤
貴裕 水田
貴之 安盛
公康 古澤
昌吾 南
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021537562A priority Critical patent/JPWO2021024518A1/ja
Publication of WO2021024518A1 publication Critical patent/WO2021024518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present application relates to an armature, a rotary electric machine, a linear motor, and a method for manufacturing an armature, a rotary electric machine, and a linear motor.
  • Patent Document 1 proposes a motor in which a permanent magnet is embedded near the center of the teeth portion.
  • the permanent magnets are arranged in the field slots provided in the iron core so that the magnetic pole surfaces having the same polarity face each other in the circumferential direction. Further, a field winding is housed on the radial outer side of the permanent magnet inserted in the field slot.
  • the permanent magnet has a rectangular cross section perpendicular to its axial direction, the field slot is open only inside the armature core, and the outer peripheral surface of the armature core constitutes the armature core. It is connected all around by an electromagnetic steel plate. There is a problem that a short-circuit magnetic flux is generated in which the NS pole of the permanent magnet is short-circuited via the connected portion, and a large amount of magnetic flux passing through the outer peripheral side of the stator, which does not serve as a driving force for the rotor, is generated.
  • the present application discloses a technique for solving the above-mentioned problems, and prevents short-circuit magnetic flux and increases the magnetic flux density on the tooth portion side of the armature to increase the efficiency of armatures, rotary motors, and the like. It is an object of the present invention to provide a method for manufacturing a linear motor, an armature, a rotary electric machine, and a linear motor.
  • the armature disclosed in the present application is An armature that combines multiple coil winding bodies adjacent to each other in the first direction.
  • the coil winding body is between a pair of split cores each having a split yoke portion and a split teeth portion protruding from the split yoke portion in a second direction orthogonal to the first direction, and a pair of the split cores.
  • the rotary electric machine disclosed in the present application is It has a stator formed as an armature and a rotor.
  • the plurality of coil winding bodies are combined in an annular shape in the first direction.
  • the rotor is rotatably supported with the outer peripheral surface of the rotor core facing the inner peripheral surface of the stator.
  • the linear motor disclosed in the present application is A mover formed as an armature and a flat plate-shaped stator provided at equal intervals in the first direction and having a plurality of convex portions protruding in the second direction are provided.
  • the plurality of coil winding bodies are combined in a straight line.
  • the mover is capable of linear movement by having the tip of the split tooth portion of the mover face the upper surface of the stator.
  • the method for manufacturing an armature disclosed in the present application is as follows.
  • a pair of the split cores are opened in a direction in which the pair of the split cores are separated from each other, and a magnetized magnet material is used between the pair of the split cores from the tip side of the split teeth portion. It has a permanent magnet intermediate body which is the permanent magnet before magnetism, or a magnetic material insertion step of inserting the permanent magnet.
  • the method for manufacturing a rotary electric machine disclosed in the present application is as follows.
  • the rotor is rotatably arranged so that the outer peripheral surface of the rotor core faces the inner peripheral surface of the stator.
  • the method for manufacturing a linear motor disclosed in the present application is as follows.
  • FIG. It is a perspective view of the rotary electric machine according to Embodiment 1.
  • FIG. It is a perspective view of the linear motor according to Embodiment 1.
  • FIG. It is a perspective view of the stator according to Embodiment 1.
  • FIG. It is a side view of the stator according to Embodiment 1.
  • FIG. FIG. 4 is a cross-sectional view taken along the line AA of FIG.
  • FIG. is a perspective view of the coil winding body which comprises the stator according to Embodiment 1.
  • FIG. It is an exploded view of the coil winding body according to Embodiment 1.
  • FIG. It is a perspective view of the split core according to Embodiment 1.
  • FIG. It is a flow chart which shows the manufacturing process of the stator according to Embodiment 1.
  • FIG. FIG. It is a perspective view of the linear motor according to Embodiment 1.
  • FIG. It is a perspective view of the stator according to Embodiment 1.
  • FIG. It
  • FIG. 8 is a cross-sectional view taken along the line BB of FIG. This is another example of a cross-sectional view of a main part of the divided core according to the first embodiment.
  • FIG. It is a conceptual diagram which shows the structure of the winding apparatus by Embodiment 1.
  • FIG. It is sectional drawing which is perpendicular to the axial direction of the coil winding body as a comparative example by Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view perpendicular to the axial direction of the coil wound body according to the first embodiment. It is sectional drawing which shows the other variation of the permanent magnet according to Embodiment 1.
  • FIG. It is sectional drawing which shows the other variation of the permanent magnet according to Embodiment 1.
  • FIG. It is sectional drawing which shows the other variation of the permanent magnet according to Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view of a conductor constituting the coil according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a conductor constituting the coil according to the first embodiment.
  • FIG. 5 is a cross-sectional view of a conductor constituting the coil according to the first embodiment.
  • It is a modification of the coil according to the first embodiment, and is the figure explaining the continuous dislocation part.
  • It is a perspective view of the batch dislocation part of the coil by Embodiment 1.
  • FIG. It is a figure explaining the position which provides the batch dislocation part shown in FIG.
  • It is a flow chart which shows the manufacturing process of the stator according to Embodiment 2.
  • FIG. 5 is an exploded perspective view showing a relationship between an insulating portion for a coil winding body and a coil according to the second embodiment.
  • It is a conceptual diagram which shows the coil manufacturing apparatus and the coil manufacturing process by Embodiment 2.
  • FIG. It is a conceptual diagram which shows the coil insertion process by Embodiment 2.
  • FIG. It is a supplementary drawing explaining the dimensional relationship between the coil and a pair of split cores according to the second embodiment.
  • It is a conceptual diagram which shows the permanent magnet intermediate insertion process by Embodiment 2.
  • FIG. FIG. 5 is a conceptual diagram showing a state in which the permanent magnet intermediate insertion step according to the second embodiment is completed.
  • FIG. 1 is a perspective view of the rotary electric machine 100.
  • the circumferential direction X of the stator 10 is the first direction
  • the radial direction Y orthogonal to the first direction is the second direction
  • the axial direction Z orthogonal to the first direction and the second direction is the third direction.
  • the rotary electric machine 100 includes a stator 10 (armature) and a rotor (movable element) 20.
  • the main body of the rotor 20 is composed only of the rotor core 20a having ferromagnetism.
  • the rotor 20 is rotatably supported by a bearing (not shown) with the outer peripheral surface of the rotor core 20a facing the inner peripheral surface of the stator 10.
  • a permanent magnet is not used for the rotor 20, and the rotational force of the rotor 20 is generated by the attractive force obtained by the magnetic field generated by the coil 4 of the stator 10.
  • the rotary electric machine 100 is a so-called flux switching motor or a switching reluctance motor.
  • FIG. 2 is a perspective view of the linear motor 100R.
  • the linear motor 100R includes a stator 10R formed in a flat plate shape, and a mover 20R that floats on the stator 10R through a gap and moves linearly. That is, the tip portion 11Rtin of the split tooth portion 11Rt of the mover 20R faces the upper surface of the stator 10R.
  • the moving direction X of the mover 20R is the first direction
  • the protruding direction Y of the split tooth portion 11Rt orthogonal to the first direction is the direction orthogonal to the second direction, the first direction, and the second direction.
  • Z be the third direction.
  • the linear motor 100R uses the same principle as the generation of the rotational force of the rotor 20 described above. That is, the propulsive force of the mover 20R (armature) is such that the suction force generated by the coil 4R of the mover 20R is provided on the upper surface of the stator 10R at equal intervals in the moving direction X and in the protruding direction Y. It is obtained by acting on the protruding convex portion 10Rt.
  • the major difference between the rotary electric machine 100 and the linear motor 100R is that the stator 10 which is an armature does not move in the rotary electric machine 100, whereas the mover 20R which is an armature moves in the linear motor.
  • FIG. 3 is a perspective view of the stator 10.
  • FIG. 4 is a side view of the stator 10.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 6 is a perspective view of the coil winding body 10A constituting the stator 10.
  • FIG. 7 is an exploded view of the coil winding body 10A and the coil winding intermediate body 10MA.
  • FIG. 7 will be used in two ways in the following description. The case where the coil winding intermediate body 10MA having the unmagnetized permanent magnet intermediate 3M is described and the case where the coil winding body 10A having the magnetized permanent magnet 3 is described.
  • FIG. 8 is a perspective view of the split core 11.
  • FIG. 9 is a flow chart showing a manufacturing process of the stator 10.
  • FIG. 10 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 11 is another example of a cross-sectional view of a main part of the divided core 11.
  • the armature will be described by taking a rotary electric machine as an example.
  • the principle of driving the rotary electric machine 100 and the linear motor 100R is the same, and the present application applies to both the rotary electric machine and the linear motor. Applicable.
  • the stator 10 is composed of 14 coil winding bodies 10A combined in an annular shape.
  • the number of coil winding bodies 10A is not limited to this, and the stator 10 can be configured by any number required by the characteristics of the rotary electric machine 100.
  • the coil winding body 10A has two pairs of divided cores 11 divided in the circumferential direction.
  • the split core 11 shown in FIG. 8 and the same split core 11 as the split core 11 inverted in the axial direction Z form a pair of split cores 11.
  • the split core 11 is a laminated core in which electromagnetic steel sheets, which are magnetic plate materials, are laminated in the axial direction Z.
  • Each of the split cores 11 has a split yoke portion 11y, a split tooth portion 11t protruding inward in the radial direction from the split yoke portion 11y, and one of the circumferential directions X from the tip of the split tooth portion 11t in the radial direction Y.
  • a shoe portion 11s protruding from the permanent magnet 3) is provided.
  • a permanent magnet 3 is sandwiched between the pair of split cores 11 in the circumferential direction X.
  • the cross-sectional shape of the permanent magnet 3 perpendicular to the axial direction Z is trapezoidal.
  • a coil 4 is wound around the pair of split tooth portions 11t of the pair of split cores 11 via the two insulating portions 21a and the two insulating portions 21b.
  • the insulating portion 21a and the insulating portion 21b electrically insulate the split core 11 and the coil 4.
  • the coil winding body 10A has a structure in which a pair of split cores 11 having a permanent magnet 3 sandwiched between them is wound around two split tooth portions 11t with magnet wires via insulating portions 21a and 21b. .. Further, the two divided cores 11 are symmetrical with respect to the permanent magnet 3.
  • the split core of the mover 20R of the linear motor 100R shown in FIG. 2 has the same configuration.
  • the upper end surface of the paper surface is one end surface
  • the lower end surface of the paper surface is the other end surface
  • the divided core 11 on the right side of FIG. Let the core 11 be the other split core 11.
  • the first insulating portion 21a is an upper half of the one end surface of one split core 11 in the axial direction Z and the inner peripheral surface of the slot S of one split core 11 in the axial direction Z (inner peripheral surface of the split yoke portion 11y). And the side surface of the split tooth portion 11t in the circumferential direction X and the outer peripheral surface of the shoe portion 11s).
  • the first insulating portion 21b covers the other end surface of one of the split cores 11 in the axial direction Z and the other half of the inner peripheral surface of the slot S in the axial direction Z.
  • the second insulating portion 21b is the upper half of the one end surface of the other split core 11 in the axial direction Z and the inner peripheral surface of the slot S of the other split core 11 in the axial direction Z (inner circumference of the split yoke portion 11y).
  • the surface and the side surface of the split tooth portion 11t in the circumferential direction X and the outer peripheral surface of the shoe portion 11s) are covered.
  • the second insulating portion 21a covers the other end surface of the other split core 11 in the axial direction Z and the other half of the inner peripheral surface of the slot S in the axial direction Z.
  • the insulating portions 21a and 21b are inserted along the inner peripheral surface of the slot S from two vertical directions in the axial direction Z, respectively.
  • step S1-1 split core manufacturing step
  • one of the pair of split cores 11 has a shape that can be combined by arranging the top and bottom in the Z direction in reverse, the distinction between left and right is omitted.
  • Caulking is an example of a method of fixing the layers of the divided cores 11.
  • At least two plastically processed concave portions 12r and convex portions 12p are provided at appropriate positions of the iron core pieces 11p, and the iron core pieces 11p laminated in the axial direction Z are connected to each other. Fits and sticks.
  • an electromagnetic steel sheet having an adhesive layer 13 capable of adhering by melting and solidifying by heat is used on the surface of the electromagnetic steel sheet in which the iron core piece 11p is punched out in advance. Can be done.
  • the fixing method is not limited to this.
  • a permanent magnet intermediate 3M (permanent magnet 3 before magnetization) is manufactured using a magnetizable material in a process separate from the split core manufacturing step (step S1-2: permanent magnet intermediate manufacturing step). .. Further, the insulating portions 21a and 21b are manufactured in a process different from the above two steps (step S1-3: insulating portion manufacturing step).
  • step S2 the split core assembly step (step S2) is carried out.
  • the prepared pair of two split cores 11, the two insulating portions 21a and 21b, respectively, and the permanent magnet intermediate 3M before magnetism are combined.
  • FIG. 12 is a conceptual diagram showing the configuration of the winding device 60.
  • the coil 4 is wound around the pair of split cores 11 sandwiching the magnetized permanent magnet 3 by using the winding device 60 to obtain the coil winding body 10A (step S4: coil winding step). ).
  • step S5 14 coil winding bodies 10A are combined in an annular shape as shown in FIG.
  • This step includes a step for maintaining the posture of the coil winding bodies 10A arranged in an annular shape.
  • the stator 10 shown in FIG. 3 is obtained through a process of welding the circumferential ends of the split yoke portions 11y of the adjacent split cores 11 to each other.
  • step S6 the terminal wires 41 of each coil 4 are connected to form a circuit for realizing the function of the stator 10.
  • the magnetizing step of the permanent magnet 3 (step S3) can be performed immediately after the production of the permanent magnet intermediate 3M (step S1-2) or after the coil winding step (step S4), and is shown in FIG. It is not limited to the order of the process.
  • the stator 10 and the rotor 20 are rotatably arranged so that the outer peripheral surface of the rotor core 20a faces the inner peripheral surface of the stator 10 to obtain the rotary electric machine 100.
  • the mover 20R is used.
  • the tip portion 11Rtin of the split teeth portion 11Rt is opposed to the upper surface of the stator 10R and is movably arranged to obtain the linear motor 100R.
  • FIG. 13 is a cross-sectional view of the coil winding body 10B as a comparative example, perpendicular to the axial direction Z.
  • FIG. 14 is a cross-sectional view of the coil winding body 10A perpendicular to the axial direction Z.
  • permanent magnets 3C having a rectangular cross-sectional shape perpendicular to the axial direction Z are sandwiched by a pair of split cores 11C from both sides in the circumferential direction X.
  • permanent magnets 3 having a substantially trapezoidal cross-sectional shape perpendicular to the axial direction Z are sandwiched by a pair of split cores 11 from both sides in the circumferential direction X.
  • the width of the permanent magnet 3 in the circumferential direction is larger at the inner peripheral side end portion (end portion on the split tooth 11 side) than at the outer peripheral side end portion (end portion on the split yoke side).
  • the cross-sectional areas of the permanent magnet 3 and the permanent magnet 3C perpendicular to the axial direction Z are equal.
  • the flow of the second magnetic flux E2 passes from the N poles of the permanent magnets 3 and 3C through one of the split tooth portions 11t and 11Bt on the side in which the N poles are in contact, to the inner peripheral side of the stator, and further to the inner peripheral side of the stator. It is a magnetic flux that returns to the S pole of the permanent magnets 3 and 3C through the divided tooth portions 11t and 11Bt of the divided cores 11 and 11B.
  • the coil winding body 10A of the present application shown in FIG. 14 has the above-mentioned second magnetic flux E2 more than the coil winding body 10B of the comparative example shown in FIG. Is larger than the flow of the first magnetic flux E1 described above. That is, the magnetic flux density is high.
  • the magnetic flux that contributes to the rotational force of the rotor 20 is the second magnetic flux E2.
  • the cross-sectional shape of the permanent magnet 3 is longer on the inner peripheral side than on the outer peripheral side.
  • the magnetic flux density of the second magnetic flux E2 flowing inward in the radial direction of the stator 10 can be improved as compared with the permanent magnet 3B having a rectangular cross-sectional shape.
  • the torque given to the rotor 20 can be increased, so that the efficiency of the rotary electric machine 100 can be improved, the size can be reduced, and the cogging torque can be reduced.
  • the permanent magnet 3 having a cross-sectional shape perpendicular to the axial direction Z having a small outer peripheral side and a large inner peripheral side has been described so far.
  • the width of the outer peripheral side end is zero.
  • the same effect can be expected even if the vertical cross section has a triangular shape.
  • trapezoid The reason why we have dared to express it as "trapezoid" is that if the cross-sectional shape perpendicular to the axial direction Z of the permanent magnet is a perfect triangle, there is a concern that the sharp tip on the outer peripheral side of the permanent magnet will crack. In this application, considering that the minute difference in the width of the tip does not significantly affect the characteristics of the rotary electric machine 100, or that a surface having a minute width remains from the viewpoint of processing the permanent magnet. These are collectively referred to as a trapezoidal shape in a broad sense.
  • outer peripheral surface and the inner peripheral surface of the permanent magnet 3 may be curved surfaces having the same curvature as the outer peripheral surface and the inner peripheral surface of the divided core 11, respectively.
  • FIGS. 15 to 17 are cross-sectional views showing other variations of the permanent magnet 3.
  • the inner peripheral width Lin is larger than the outer peripheral width Lout.
  • the length of the outer peripheral direction X is Lout
  • the width of the inner peripheral side X in the circumferential direction is 2 (L2) with respect to the length L1 in the radial direction Y. It has a shape that grows in steps.
  • the permanent magnet 3E shown in FIG. 16 has a rectangular cross section 3E1 having a rectangular cross section perpendicular to the axial direction Z on the outer peripheral side and a trapezoidal cross section having a rectangular cross section perpendicular to the axial direction Z on the inner peripheral side of the rectangular cross section 3E1. It has a shape that is combined with the trapezoidal portion 3E2.
  • the permanent magnet 3F shown in FIG. 17 has a first cross section trapezoidal portion 3F1 having a trapezoidal cross section perpendicular to the axial direction Z on the outer peripheral side and a cross section perpendicular to the axial direction Z on the inner peripheral side of the first cross section trapezoidal portion 3F1.
  • the length of the lower base of the first cross-section trapezoidal portion 3F1 and the length of the upper base of the second cross-section trapezoidal portion 3F2 are equal.
  • the cross-sectional area on the tip side of the divided tooth portion 11t is larger.
  • the cross-sectional area on the split yoke portion 11y side may be larger than the cross-sectional area, and the shapes of FIGS. 15 to 17 may be combined.
  • FIGS. 18 to 20 are cross-sectional views of the bundled wire 42 constituting the coil 4 of the first embodiment.
  • the bundled wire 42 is a so-called para-wire composed of a plurality of conductors 43 connected in parallel.
  • any of the conductors shown in FIGS. 18 to 20 may be used.
  • FIG. 21 is a modification of the coil 4 of the first embodiment, and is a diagram for explaining the continuous dislocation portion 47.
  • FIG. 22 is a modification of the coil of the first embodiment, and is a diagram for explaining the batch dislocation portion 48.
  • FIG. 23 is a diagram illustrating a position where the batch dislocation portion shown in FIG. 22 is provided.
  • the resistance ratio between the vicinity of the surface of the conductor 43 and the central portion of the conductor 43 changes, that is, the so-called skin effect. Occurs.
  • a coil winding body 10A composed of a split core 11 provided with both a centrally wound coil 4 and a permanent magnet 3, which is the object of the present application, and a plurality of these, a stator 10 arranged in an annular shape, and the stator 10 thereof.
  • a bundled wire 42 in which a plurality of conductors 43 with an insulating coating are bundled in order to suppress the skin effect.
  • the conductor 43 used in the rotary electric machine 100.
  • the conductor 43 has a square wire having a square cross section having a side length of a as shown in FIG. 19 or a two-sided length shown in FIG. A flat line having a rectangular cross section, where a> b, is used.
  • the surface of the conductor 43 is usually covered with an insulating coating 44 such as an enamel layer, and various types of the thickness t of the insulating coating 44 are provided by the manufacturer depending on the withstand voltage specification.
  • some coils have an adhesive layer on the outside of the insulating coating 44 in order to heat the coil 4 after winding and self-fuse it to maintain its shape.
  • the outer circumference of the bundle wire 42 may be covered with an insulating tape 46 for taping.
  • the conductor 43 is always located outside the other conductor 43, and conversely, it is always inside the other conductor 43. Since the conductor 43 to be located is formed, a difference in the density of the magnetic flux passing through the bundled wire 42 causes a phase difference and a potential difference, which causes a new problem that the loss of the rotary electric machine 100 increases. Therefore, in order to suppress the phase difference and the potential difference in the bundled wire, a method of providing a so-called dislocation portion in which the winding position of the conductor 43 is exchanged is known in the coil 4.
  • the continuous dislocation electric wire shown in FIG. 21 may be used as the bundled wire 42 having a dislocation portion.
  • this dislocation wire flat wires or square wires are stacked in two rows, and the two conductors 43 move clockwise or counterclockwise in the bundled wire and circulate at each dislocation pitch P in the longitudinal direction of the conductor 43. It is a structure having a continuous dislocation portion 47.
  • the general winding device 60 shown in FIG. 12 may be used in the coil winding step (step S4) shown in FIG.
  • the use of continuous dislocation wires also has drawbacks.
  • the first drawback is that the continuous dislocation wire is more expensive than the bundled wire 42 that is not dislocated because the manufacturing cost of the dislocation portion is added. Further, as a second drawback, the continuous dislocation electric wire is easily twisted because the conductors are twisted in the same direction, and the continuous dislocation electric wire is liable to be bent, which is called a kink, while winding the coil 4. Poor workability.
  • the third drawback is that the dislocation part swells more than the bundled wire that bundles linear conductors, so if the coil 4 is wound using this, the so-called coil space factor decreases, resulting in the torque of the rotating electric machine. It should be noted that is reduced.
  • the coil space factor is a ratio of the effective cross-sectional area perpendicular to the axial direction Z of the slot accommodating the coil to the cross-sectional area perpendicular to the axial direction Z of the conductors actually constituting the coil.
  • each conductor 43 as shown in FIGS. 18 and 19 is bundled in the bobbin 61.
  • the self-fused bundle wire 42 is wound.
  • the bundled wire 42 is fed out from the nozzle 64 of the flyer 63, which makes a linear reciprocating motion while turning around the tooth portion, via a tensioner 62 for controlling the tension for winding the bundled wire 42, and the winding process is performed. Will be implemented.
  • a bundled wire 42 taped with an insulating material such as insulating tape 46 may be used instead of the self-bonding wire as shown in FIG. 20, a bundled wire 42 taped with an insulating material such as insulating tape 46 may be used.
  • FIG. 22 is a perspective view of the batch dislocation portion 48 provided in the coil.
  • FIG. 23 is a diagram illustrating a position where the batch dislocation portion 48 shown in FIG. 22 is provided.
  • at least one bundled wire 42 is formed at least one batch dislocation portion 48 twisted 180 degrees about the axis of the bundled wire 42.
  • the bulge of the twisted portion of the bundled wire 42 does not exist in the slot S as compared with the coil using the continuous dislocation portion 47 described above. Therefore, it is possible to maintain a high space factor of the coil 4 in the slot S.
  • the armature is An armature that combines multiple coil winding bodies adjacent to each other in the first direction.
  • the coil winding body is between a pair of split cores each having a split yoke portion and a split teeth portion protruding from the split yoke portion in a second direction orthogonal to the first direction, and a pair of the split cores.
  • With a permanent magnet sandwiched between A pair of coils wound around the split teeth portion is provided.
  • the efficiency of the rotary electric machine 100 can be improved, and it is possible to obtain an armature, a rotary electric machine, a linear motor, and a method for manufacturing an armature, a rotary electric machine, and a linear motor, which are small in size, have high torque, and have small cogging.
  • Embodiment 2 the method for manufacturing the armature, the rotary electric machine, the linear motor, and the armature, the rotary electric machine, and the linear motor according to the second embodiment will be described focusing on the parts different from the first embodiment.
  • a method of manufacturing an armature in which a coil 4 is wound after a pair of split cores 11 are combined with a permanent magnet intermediate 3M sandwiched between them has been described.
  • a method of manufacturing the coil 4 in advance and assembling it with other parts will be described.
  • FIG. 24 is a flow chart showing a manufacturing process of the stator according to the second embodiment.
  • FIG. 25 is a perspective view of the coil winding body 210A (excluding the split core).
  • FIG. 26 is an exploded perspective view showing the relationship between the insulating portion 221 for the coil winding body 210A and the coil 204.
  • FIG. 27 is a conceptual diagram showing the winding device 260 and the coil manufacturing process (step S1-4).
  • FIG. 28 is a conceptual diagram showing a coil insertion process.
  • FIG. 29 is a supplementary view illustrating the dimensional relationship between the coil 204 and the pair of split cores 211.
  • FIG. 30 is a conceptual diagram showing a process of inserting a permanent magnet intermediate.
  • FIG. 31 is a conceptual diagram showing a state of the coil winding intermediate 210MA in which the permanent magnet intermediate insertion step has been completed.
  • 32 and 33 are diagrams illustrating the effects of the second embodiment.
  • the coil manufacturing step (step) using the wound frame-shaped insulating portion 221 obtained in the insulating portion manufacturing step. S1-4) Perform.
  • the coil 204 is wound around the winding frame-shaped insulating portion 221.
  • a total of four insulating portions, two insulating portions 21a and two insulating portions 21b, are used in combination.
  • the insulating portion 221 used in the present embodiment is shown in FIG. It is an integral body in the shape of a winding frame shown.
  • the insulating portion 221 includes an inner peripheral surface of a slot for accommodating the coil 204, both end surfaces of the split tooth portion 211t in the axial direction Z, both end surfaces of the split yoke portion 211y in the axial direction Z, and the axial direction Z of the shoe portion 211s. It is integrally formed so as to cover both end faces of the coil 204, and can be used as a winding frame of the coil 204 itself.
  • the portion of the insulating portion 221 along the split tooth portion 211t is referred to as the inner cylinder portion 211k.
  • winding frame-shaped insulating portion 221 By using the winding frame-shaped insulating portion 221, as shown in FIG. 27, a plurality of winding frame-shaped insulating portions 221 are locked to the winding frame jig 67 of the winding device 260, and this is used as a motor or the like. If either the winding frame stage 68 or the nozzle holder 65 is provided with a linear motion mechanism that reciprocates in the direction of the arrow U, the bobbin 61 to the tensioner 62 and the nozzle 64 are rotated as shown by the arrow Q. The bundled wire 42 can be wound around the insulating portion 221 via the above.
  • a plurality of coils 204 can be wound at the same time, and the shape accuracy of the coil 204 can be maintained even if the formed coil 204 is removed from the spindle shaft. Therefore, heat treatment for self-fusion between bundled wires or heat treatment or It becomes easy to peel off the insulating coating of the terminal wire of the coil 204.
  • the batch dislocation portion 48 in the middle of the winding of the coil 204. In that case, it is preferable to rotate the nozzle 64 in the circumferential direction T of the bundle wire 42 when winding the portion where the batch dislocation portion 48 is provided. If the wound frame-shaped insulating portion 221 can maintain the shape of the coil 204 and the insulating portion 221 has a structure for locking the terminal wire with a groove or the like, heat treatment for self-fusion is unnecessary. Is.
  • a method of assembling the coil winding intermediate 210MA by using the winding frame-shaped insulating portion 221 obtained by the above steps and the coil 204 wound around the insulating portion 221 will be described.
  • a pair of split cores 211 are prepared (split core assembly step: step S202-1).
  • the side surfaces 211u of the respective split cores 211 that come into contact with the side surfaces of the permanent magnet in the circumferential direction X are brought into contact with each other. After that, as shown in FIG.
  • the insulating portion 221 and the coil 204 wound around the insulating portion 221 are placed inside the radial direction Y (of the split core 211) while the space between the two split cores 211 is closed. It is inserted into the pair of divided cores 211 from the tip side of the divided tooth portion 211t (coil insertion step with insulating portion: step S202-2).
  • the total V of the width X in the circumferential direction of the tip portion 211tin inside the radial direction Y of the divided tooth portion 211t and the width X in the circumferential direction of the pair of shoe portions 211s is set to be smaller than W. Therefore, as described in the first embodiment, the coil 204 is wound in advance on the insulating portion 221 without first assembling the pair of split cores 11, the pair of insulating portions 21a and 21b, and the permanent magnet intermediate 3M, respectively. After the wire is drawn, it can be assembled to the pair of split cores 211.
  • the pair of split cores 11 are opened in the circumferential direction X, that is, in the directions away from each other, and are inside the radial direction Y between the split cores 211 (of the split teeth portion 211t).
  • the coil winding intermediate 210MA is obtained by inserting the permanent magnet intermediate 203MA from the tip side) (step S202-3: permanent magnet intermediate insertion step (magnetic material insertion step)).
  • the slot has an advantage of inserting the coil 204 into a pair of divided cores in which the space between the divided cores 211 is closed from the inside in the radial direction.
  • the improvement of the space factor of the coil 204 in S can be mentioned.
  • the line extending the bottom surface 49 (the outer surface in the radial direction Y) of the slot in the circumferential direction X is a part of the split yoke portion 211By of the split core 211B. It is interfering. Therefore, if the coil 204B is wound after the split core 211B and the permanent magnet intermediate 203MB are combined first, the conductor interferes with the split yoke portion 211By, so that the coil is wound by the winding device 60 described with reference to FIG. Difficult to line.
  • the insulating portion 221B that maintains the shape and the thin film insulating film 221C are shared, and the coil 204B is previously wound around the insulating portion 221B and the insulating film 221C by using the assembly method of the second embodiment.
  • the space factor of the coil 204B can be improved even with the shape of the above slot, further miniaturization and efficiency improvement of the rotary motor can be expected, and the rotary motor with high torque and small cogging and related to this.
  • a linear motor can be obtained.
  • FIG. 33 shows an example in which the insulating film 221C is used, in FIG. 32, if a gap is obtained between the coil 204B and the split core 211B and a sufficient insulating distance is maintained, the insulating film 221C is used. It is unnecessary.
  • the shoe portion 211s is provided at the inner tip portion 211tin of the split tooth portion 211t in the radial direction Y. Even if the pair of split cores 211, the insulating portion 221 and the permanent magnet intermediate 203MA are not assembled first, the coil 204 is wound around the insulating portion 221 in advance and then assembled to the pair of split cores 211, and the permanent magnet intermediate. Since the body 203MA can be inserted between the pair of split cores 211, improvement in assembly accuracy of the stator and improvement in productivity can be expected.
  • a plurality of coils 204 can be wound at the same time, and the shape accuracy of the coil 204 can be maintained even if the formed coil 204 is removed from the spindle shaft, so that the coil 204 can be self-sealed. It becomes easy to heat-treat or peel off the insulating coating of the end wire of the coil 204.
  • the coil 204B can be inserted into the slot of the split core regardless of the slot shape, and the space factor of the coil 204B can be increased. Further improvement in efficiency and miniaturization of the rotary electric motor can be expected, and torque can be increased. It is possible to obtain a rotary electric machine with high cogging and small cogging and a linear motor related thereto.
  • FIG. 34 is a flow chart showing a manufacturing process of the stator according to the third embodiment.
  • FIG. 35 is an exploded view of the coil winding body 310A.
  • FIG. 35 will be used in two ways in the following description. The case where the coil winding intermediate 310MA having the unmagnetized permanent magnet intermediate 3M is described and the case where the coil winding body 310A having the magnetized permanent magnet 3 is described.
  • FIG. 36 is a supplementary view illustrating the dimensional relationship between the coil 304 and the pair of split cores 211.
  • FIG. 37 is a cross-sectional view taken along the line DD of FIG. 36 and is a conceptual diagram showing a coil insertion step.
  • the difference between the first embodiment and the present embodiment is that the shape of the insulating portion used is different.
  • the coil forming process and the coil mounting process are different.
  • the difference between the second embodiment and the present embodiment is that, in the second embodiment, the coil 204 is wound in advance around the winding frame-shaped insulating portion 221 and then mounted on the pair of split cores 211.
  • the coil is not wound around the insulating portion, but only the coil is formed in advance.
  • the coil 204 is wound around the winding frame-shaped insulating portion 221 and then inserted into the pair of split cores 11 together.
  • the pair of split cores 211 After mounting the insulating portions 321a and 321b, the separately formed coil 304 is mounted.
  • the pair of split cores 211 manufactured in the split core manufacturing step (step S1-1) are combined with the insulating portion manufacturing step (step S1-3). Assemble the pair of insulating portions 321a and the pair of insulating portions 321b manufactured in 1.
  • the width of the circumferential direction X of the cavity inside the coil 304 is W2
  • the circumferential directions of the insulating portions 321a and 321b mounted on the pair of split cores 211 at the radial inner tips is set to be smaller than W2.
  • the coil 304 manufactured in the coil manufacturing step (step S1-4) is attached to the insulating portions 321a and 321b to form a pair of split cores 211 in which the space between the two is closed. It is inserted into the pair of split tooth portions 211t from the inside in the radial direction (the tip end side of the split teeth portions 211t) (coil insertion step: step S302-2).
  • step S202-3 permanent magnet intermediate insertion step
  • the inner collar (broken line portion) provided in the insulating portions 21a and 21b of the third embodiment is not provided in the insulating portions 321a and 321b. Therefore, even if only the coil 304 is used, the coil 304 wound in advance can be independently inserted into the pair of split cores 211 from the inside in the radial direction Y as in the second embodiment. Then, through the magnetizing step (step S3), the coil winding intermediate 310MA becomes the coil winding body 310A. Subsequent steps are the same as in the second embodiment.
  • the insulation is higher than that of the second embodiment.
  • the resin material of the part can be suppressed.
  • the productivity of the product can be improved, which saves energy and improves the yield of bookbinding.
  • FIG. 38 is a cross-sectional view of the coil winding body 410A perpendicular to the axial direction Z.
  • the magnetic field generated by the stator coil penetrates the permanent magnet in the center of the coil, an eddy current is generated on the surface of the magnet. This eddy current works in the direction of canceling the original magnetic field by creating a new magnetic field, and as a result, thermal demagnetization occurs in which the magnetic characteristics deteriorate due to the increase in Joule heat.
  • the shape of the permanent magnet 403 as a whole has a triangular or trapezoidal cross section perpendicular to the axial direction Z, and the width of the circumferential direction X inside the radial direction Y is the diameter. It is larger than the width in the circumferential direction outside the direction Y. Therefore, the permanent magnet 403 is divided into a plurality of divided permanent magnets 403B in the radial direction Y.
  • the eddy current is reduced to obtain magnetic characteristics.
  • Higher rotary armatures and related linear motors can be obtained.
  • FIG. 39 is a cross-sectional view of the coil winding body 510A perpendicular to the axial direction Z.
  • FIG. 40 is a diagram illustrating the effect according to the present embodiment. In this embodiment, the reinforcing structure of the permanent magnet 503 will be described in particular.
  • the cross section of the reinforcing portions 33a and 33b perpendicular to the axial direction Z is trapezoidal.
  • the coil winding bodies 510A are fitted with the stator 510 shown in FIG. 40 due to heat shrinkage after fitting.
  • the stress Q1 toward the axis works.
  • the stress Q1 is a stress Q2 and a stress Q3 that press the adjacent coil winding bodies 510A against each other in the circumferential direction X.
  • the materials of the reinforcing portions 33a and 33b may be non-conductive materials and have magnetism. Even in this case, the eddy currents generated in the reinforcing portions 33a and 33b can be reduced.
  • the permanent magnet 503 may be an integral one, or may be a permanent magnet 503 divided in the radial direction as described in the fourth embodiment.
  • 100 rotary electric machine 100R linear motor, 10,510 stator, 10A, 10B, 210A, 310A, 410A, 510A coil winding body, 10MA, 210MA, 310MA coil winding intermediate body, 10Rt convex part, 10,10R stator , 11, 11B, 11C, 211, 211B split core, 11p iron core piece, 11s, 211s shoe part, 11t, 11Rt, 211t split tooth part, 211tin, 11Rtin tip part, 11y, 211y split yoke part, 211u side surface, inside 211k Cylinder part, 12p convex part, 12r concave part, 13 adhesive layer, 20 rotor, 20R mover, 20a rotor core, 21a, 21b, 221,221B, 321a, 321b insulation part, 221C insulation film, 3,3C, 3D , 3E, 3F, 403,503 Permanent magnet, 403B Split permanent magnet, 3E1 Rectangular

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)
  • Linear Motors (AREA)

Abstract

電機子(10)は、複数のコイル巻装体(10A)を第一方向(X)に隣接させて組み合わせた電機子であって、コイル巻装体(10A)は、分割ヨーク部(11y)と、分割ヨーク部(11y)から第一方向(X)と直交する第二方向(Y)に突出する分割ティース部(11t)とをそれぞれ有する一対の分割コア(11)と、一対の分割コア(11)の間に挟まれた永久磁石(3)と、一対の分割ティース部(11)に巻線されたコイル(4)とを備え、永久磁石(3)の、第一方向(X)及び第二方向(Y)に直交する第三方向(Z)に垂直な断面を第二方向(Y)の中央で、第一方向(X)に二分した2つの断面積を比較すると、分割ティース部(11t)の先端側の断面積の方が、分割ヨーク部(11y)側の断面積よりも大きい。

Description

電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法
 本願は、電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法に関するものである。
 産業用、車載用のモータ等の回転電機においては、小型化、高速化、使用速度範囲の広範囲化が求められている。これらの要求に応えるモータとして回転子構造をシンプル、かつ堅牢なモータ構造とし、固定子側にコイルと永久磁石を用いた、いわゆるフラックススイッチングモータが提案されている。このモータの電機子インダクタンスを低減し、使用速度範囲を拡大するため、ティース部の中央部付近に磁石を埋設したモータが提案されている(例えば、特許文献1参照)。
特許第6421349号(段落0028~段落0050、図1)
 特許文献1では、ティース部の中央部付近に永久磁石を埋設したモータを提案している。この永久磁石は、周方向において同じ極性の磁極面が向かい合うように、鉄心に設けられた界磁スロット内に配置されている。また、界磁スロットに挿入された永久磁石の径方向外側には、界磁巻線が収納されている。
 しかしながら、上記永久磁石は、その軸方向に垂直な断面が長方形であり、界磁スロットは、電機子鉄心の内側にのみ開口しており、電機子鉄心の外周面は、電機子鉄心を構成する電磁鋼板によって全周に渡って繋がっている。この繋がっている部分を経由し、永久磁石のNS極が短絡する短絡磁束が発生すると共に、回転子の駆動力とならない、固定子の外周側を通る磁束が多く発生するという課題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、短絡磁束を防止すると共に、電機子のティース部側の磁束密度を増加させ、効率の高い電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を提供することを目的とする。
 本願に開示される電機子は、
複数のコイル巻装体を第一方向に隣接させて組み合わせた電機子であって、
前記コイル巻装体は、分割ヨーク部と、前記分割ヨーク部から前記第一方向と直交する第二方向に突出する分割ティース部とをそれぞれ有する一対の分割コアと、一対の前記分割コアの間に挟まれた永久磁石と、
一対の前記分割ティース部に巻線されたコイルとを備え、
前記永久磁石の、前記第一方向及び前記第二方向に直交する第三方向に垂直な断面を前記第二方向の中央で、前記第一方向に二分した2つの断面積を比較すると、前記分割ティース部の先端側の断面積の方が、前記分割ヨーク部側の断面積よりも大きいものである。
 本願に開示される回転電機は、
電機子として形成された固定子と、回転子とを備え、
複数の前記コイル巻装体は、前記第一方向に円環状に組み合わされており、
前記回転子は、前記固定子の内周面に、回転子鉄心の外周面を対向させて、回転可能に支えられているものである。
 本願に開示されるリニアモータは、
電機子としての形成された可動子と、前記第一方向に等間隔に設けられ、かつ前記第二方向に突出する複数の凸部を有する平板状の固定子とを備え、
複数の前記コイル巻装体は、直線状に組み合わされており、
前記可動子は、前記固定子の上面に、前記可動子の前記分割ティース部の先端部を対向させて、直動可能なものである。
 本願に開示される電機子の製造方法は、
前記分割コアを製造する分割コア製造工程と、
前記コイルを予め巻線するコイル製造工程と、
双方の間の空間を閉じた一対の前記分割コアの一対の前記分割ティース部に、前記分割ティース部の先端側から前記コイルを挿入するコイル挿入工程と、
一対の前記分割コアを、一対の前記分割コアが相互に離れる方向に開いて、それぞれの前記分割コアの間に前記分割ティース部の先端側から、着磁可能な磁石素材を用いて製造した着磁前の前記永久磁石である永久磁石中間体又は、前記永久磁石を挿入する磁性体挿入工程とを有するものである。
 また、本願に開示される回転電機の製造方法は、
 前記電機子の製造方法としての固定子の製造方法によって製造する固定子と、
回転子とを、回転子鉄心の外周面が、前記固定子の内周面に対向して回転可能に配置するものである。
 また、本願に開示されるリニアモータの製造方法は、
前記電機子の製造方法としての可動子の製造方法によって製造する可動子を、
固定子上において、前記固定子の上面に前記分割ティース部の先端部を対向させて、移動可能に配置するものである。
 本願に開示される電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、短絡磁束を防止すると共に、電機子のティース部側の磁束密度を増加させ、効率の高い電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を提供することができる。
実施の形態1による回転電機の斜視図である。 実施の形態1によるリニアモータの斜視図である。 実施の形態1による固定子の斜視図である。 実施の形態1による固定子の側面図である。 図4のA-A断面図である。 実施の形態1による固定子を構成するコイル巻装体の斜視図である。 実施の形態1によるコイル巻装体の分解図である。 実施の形態1による分割コアの斜視図である。 実施の形態1による固定子の製造工程を示すフロー図である。 図8のB-B断面図である。 実施の形態1による分割コアの要部断面図の他の例である。 実施の形態1による巻線装置の構成を示す概念図である。 実施の形態1による比較例としてのコイル巻装体の軸方向に垂直な断面図である。 実施の形態1によるコイル巻装体の軸方向に垂直な断面図である。 実施の形態1による永久磁石の他のバリエーションを示す断面図である。 実施の形態1による永久磁石の他のバリエーションを示す断面図である。 実施の形態1による永久磁石の他のバリエーションを示す断面図である。 実施の形態1によるコイルを構成する、導体の断面図である。 実施の形態1によるコイルを構成する、導体の断面図である。 実施の形態1によるコイルを構成する、導体の断面図である。 実施の形態1によるコイルの変形例であり、連続転位部を説明する図である。 実施の形態1によるコイルの一括転位部の斜視図である。 図22に示す一括転位部を設ける位置を説明する図である。 実施の形態2による固定子の製造工程を示すフロー図である。 実施の形態2によるコイル巻装体(分割コアを除く)の斜視図である。 実施の形態2によるコイル巻装体用の絶縁部とコイルの関係を示す分解斜視図である。 実施の形態2によるコイル製造装置とコイル製造工程を示す概念図である。 実施の形態2によるコイル挿入工程を示す概念図である。 実施の形態2によるコイルと一対の分割コアとの寸法関係を説明する補足図である。 実施の形態2による永久磁石中間体挿入工程を示す概念図である。 実施の形態2による永久磁石中間体挿入工程が完了した状態を示す概念図である。 実施の形態2の効果を説明する図である。 実施の形態2の効果を説明する図である。 実施の形態3による固定子の製造工程を示すフロー図である。 実施の形態3によるコイル巻装体の分解図である。 実施の形態3によるコイルと一対の分割コアとの寸法関係を説明する補足図である。 図36のD-D断面図であり、コイル挿入工程を示す概念図である。 実施の形態4によるコイル巻装体の軸方向Zに垂直な断面図である。 実施の形態5によるコイル巻装体の軸方向Zに垂直な断面図である。 実施の形態5に係る効果を説明する図である。
実施の形態1.
 以下、実施の形態1に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を図を用いて説明する。
図1は、回転電機100の斜視図である。
図1に示すように、固定子10の周方向Xを第一方向、第一方向に直交する径方向Yを第二方向、第一方向及び第二方向に直交する軸方向Zを第三方向とする。
 回転電機100は、固定子10(電機子)と回転子(可動子)20とを備える。回転子20の本体は、強磁性を有する回転子鉄心20aのみで構成されている。そして回転子20は、固定子10の内周面に回転子鉄心20aの外周面を対向させて、図示しないベアリングによって、回転可能に支えられている。回転子20には永久磁石を使用しておらず、回転子20の回転力は、固定子10のコイル4が発生する磁界によって得られる吸引力によって生み出される。回転電機100は、いわゆるフラックススイッチングモータ、或いは、スイッチングリラクタンスモータと呼ばれるものである。
 図2は、リニアモータ100Rの斜視図である。リニアモータ100Rは、平板状に形成された固定子10Rと、この固定子10Rの上に空隙を介して浮上して直動運動する可動子20Rとを備える。すなわち、可動子20Rの分割ティース部11Rtの先端部11Rtinは、固定子10Rの上面に対向している。図2のリニアモータにおいては、可動子20Rの移動方向Xを第一方向、第一方向に直交する分割ティース部11Rtの突出方向Yを第二方向、第一方向及び第二方向に直交する方向Zを第三方向とする。
 リニアモータ100Rは、上述の回転子20の回転力の発生と同じ原理を利用している。すなわち、可動子20R(電機子)の推進力は、可動子20Rのコイル4Rが発生する吸引力が、固定子10Rの上面に、移動方向Xに等間隔に設けられ、かつ、突出方向Yに突出する凸部10Rtに作用することにより得られる。回転電機100とリニアモータ100Rの大きく異なる点は、回転電機100では、電機子である固定子10が動かないのに対して、リニアモータでは、電機子である可動子20Rが動く点である。また、回転電機100では、電機子である固定子10を構成する複数のコイル巻装体(詳細は後述)が、円環状に組み合わされているのに対して、リニアモータ100Rでは、電機子である可動子20Rを構成する複数のコイル巻装体が、直線状に組み合わされている点である。
 図3は、固定子10の斜視図である。
図4は、固定子10の側面図である。
図5は、図4のA-A断面図である。
図6は、固定子10を構成するコイル巻装体10Aの斜視図である。
図7は、コイル巻装体10A、コイル巻装中間体10MAの分解図である。
図7については、以下の説明において2通りの使い方をする。着磁されていない永久磁石中間体3Mを有するコイル巻装中間体10MAに関する説明をする場合と、着磁後の永久磁石3を有するコイル巻装体10Aに関する説明をする場合である。
図8は、分割コア11の斜視図である。
図9は、固定子10の製造工程を示すフロー図である。
図10は、図8のB-B断面図である。
図11は、分割コア11の要部断面図の他の例である。
 本実施の形態では、回転電機を例として電機子について説明するが、上述したように、回転電機100とリニアモータ100Rが駆動する原理は同じであり、本願は、回転電機およびリニアモータいずれにも適用できる。
 図1、図2に示すように、固定子10は、円環状に組み合わされた14個のコイル巻装体10Aによって構成されている。ただし、コイル巻装体10Aの数はこれに限定されるものではなく、回転電機100の特性上必要となる任意の個数にて固定子10を構成できる。
 図6、図7に示すようにコイル巻装体10Aは、周方向に分割された2個一対の分割コア11を有する。図8に示す分割コア11と、当該分割コア11と同じ分割コア11を軸方向Zに反転させた物とが一対の分割コア11となる。分割コア11は、磁性板材である電磁鋼板を軸方向Zに積層した積層コアである。それぞれの分割コア11は、分割ヨーク部11yと、分割ヨーク部11yから径方向Yの内側に突出する分割ティース部11tと、分割ティース部11tの径方向Yの先端から、周方向Xの一方(永久磁石3と反対側)に突出するシュー部11sとを備える。
 一対の分割コア11の周方向Xの間には、永久磁石3が挟まれている。永久磁石3の軸方向Zに垂直な断面形状は、台形である。そして、一対の分割コア11の一対の分割ティース部11tの周囲には、2個の絶縁部21aと2個の絶縁部21bを介してコイル4が巻線されている。絶縁部21a及び絶縁部21bは、分割コア11と、コイル4とを電気的に絶縁する。
 すなわち、コイル巻装体10Aは、永久磁石3を間に挟んだ一対の分割コア11の2つの分割ティース部11tの周囲を、絶縁部21a、21bを介してマグネットワイヤで巻き回した構造である。また、2個の分割コア11は、永久磁石3に対して左右対象となっている。なお、図2に示すリニアモータ100Rの可動子20Rの分割コアも同じ構成である。
 ここで、図7、図8の分割コア11について、紙面上側の端面を一端面、紙面下側の端面を他端面とし、図7、右側の分割コア11を一方の分割コア11、左側の分割コア11を他方の分割コア11とする。
 1個目の絶縁部21aは、一方の分割コア11の軸方向Zの一端面及び一方の分割コア11のスロットSの内周面の軸方向Zの上半分(分割ヨーク部11yの内周面と分割ティース部11tの周方向Xの側面とシュー部11sの外周面)を覆っている。また、1個目の絶縁部21bは、一方の分割コア11の軸方向Zの他端面及びスロットSの内周面の軸方向Zの残りの半分を覆っている。
 そして2個目の絶縁部21bは、他方の分割コア11の軸方向Zの一端面及び他方の分割コア11のスロットSの内周面の軸方向Zの上半分(分割ヨーク部11yの内周面と分割ティース部11tの周方向Xの側面とシュー部11sの外周面)を覆っている。また、2個目の絶縁部21aは、他方の分割コア11の軸方向Zの他端面及びスロットSの内周面の軸方向Zの残りの半分を覆っている。絶縁部21a、21bは、それぞれ軸方向Zの上下二方向からスロットSの内周面に沿って挿入する。
 次に、図9を用いて、固定子10の製造方法を説明する。
まず、電磁鋼板から、図8に示す複数の鉄心片11pを打ち抜いて積層し、各積層間を固着する(ステップS1-1:分割コア製造工程)。分割コア11は、2個で一対なので、鉄心片11pは、全部で28枚製造する。
 上述のように一対の分割コア11は、一方をZ方向の天地を逆に配置して組み合わせることが可能な形状としているため、左右の区別は省略している。分割コア11の積層間を固着する方法の例として、カシメ加工がある。
 図8、図10に示すように、鉄心片11pの適当な位置に少なくとも2か所、塑性加工を施しの凹部12rと凸部12pとを設け、軸方向Zに積層された鉄心片11p同士を嵌合して固着する。
 なお、他の固着方法として、図11に示すように、予め鉄心片11pを打ち抜く電磁鋼板の表面に、熱によって溶融し固化することで接着が可能な接着層13を備えた電磁鋼板を用いることができる。なお、固着方法はこの限りではない。
 分割コア製造工程とは別工程にて、着磁可能な磁石素材を用いて永久磁石中間体3M(着磁前の永久磁石3)を製造する(ステップS1-2:永久磁石中間体製造工程)。また、上記2つの工程とは別工程にて、絶縁部21a、21bを製造する(ステップS1-3:絶縁部製造工程)。
 次に、分割コア組立工程(ステップS2)を実施する。この工程では、図7に示すように、準備した2個一対の分割コア11と、それぞれ2個の絶縁部21a、21bと、着磁前の永久磁石中間体3Mを組み合わせる。
 次に、図示しない着磁ヨーク部を用いて、永久磁石中間体3Mに着磁し、永久磁石3を得る(ステップS3:着磁工程)。
図12は、巻線装置60の構成を示す概念図である。
次に、着磁後の永久磁石3を挟んだ一対の分割コア11に対し、巻線装置60を用いてコイル4を巻線し、コイル巻装体10Aを得る(ステップS4:コイル巻線工程)。
 次に、固定子組立工程(ステップS5)において、14個のコイル巻装体10Aを、図3に示すように、円環状に組み合わせる。この工程では、円環状に配列したコイル巻装体10Aの姿勢を保つための行程が含まれる。そして、例えば、隣り合う分割コア11の分割ヨーク部11yの周方向端部同士を溶接するなどの行程を経て、図3に示す固定子10を得る。
 次に、結線工程(ステップS6)において、各コイル4の端末線41を接続し、固定子10の機能を実現するための回路を形成する。なお、永久磁石3の着磁工程(ステップS3)については、永久磁石中間体3Mの製造(ステップS1-2)の直後、あるいはコイル巻線工程(ステップS4)の後に行うこともでき、図9の行程順の限りではない。
 最後に、固定子10と、回転子20とを、回転子鉄心20aの外周面が、固定子10の内周面に対向して回転可能に配置して回転電機100を得る。
 また、電機子がリニアモータ100Rの可動子20Rである場合は、可動子20Rを、
固定子10R上において、固定子10Rの上面に分割ティース部11Rtの先端部11Rtinを対向させて、移動可能に配置してリニアモータ100Rを得る。
 次に、図13~図17を用いて、永久磁石3の内周側の磁束密度の向上について説明する。
図13は、比較例としてのコイル巻装体10Bの軸方向Zに垂直な断面図である。
図14は、コイル巻装体10Aの軸方向Zに垂直な断面図である。
図13に示す比較例のコイル巻装体10Bでは、軸方向Zに垂直な断面形状が長方形である永久磁石3Cが、一対の分割コア11Cによって、周方向Xの両側から挟まれている。
一方、図14に示す本願のコイル巻装体10Aでは、軸方向Zに垂直な断面形状が概ね台形の永久磁石3が、一対の分割コア11によって、周方向Xの両側から挟まれており、永久磁石3の周方向の幅は、内周側端部(分割ティース11側の端部)の方が、外周側端部(分割ヨーク側の端部)よりも大きい。しかしながら、永久磁石3と永久磁石3Cの軸方向Zに垂直な断面積は、等しい。
 図14に示すコイル巻装体10Aの場合も、図13に示す比較例としてのコイル巻装体10Bの場合も、それぞれ一対の分割コア11、分割コア11Bには大きく分けて2種類の磁束が流れる。第一の磁束E1の流れは、永久磁石3、3CのN極から、当該N極が接する側の一方の分割ヨーク部11y、11Byを通って固定子の外周側に抜け、さらに、他方の分割コア11、11Bの分割ヨーク部11y、11Byを通って永久磁石3、3CのS極に戻る磁束である。
 第二の磁束E2の流れは、永久磁石3、3CのN極から、当該N極が接する側の一方の分割ティース部11t、11Btを通って固定子の内周側に抜け、さらに、他方の分割コア11、11Bの分割ティース部11t、11Btを通って永久磁石3、3CのS極に戻る磁束である。
 図13と図14とを比較すると分かるように、図14に示す本願のコイル巻装体10Aの方が、図13に示す比較例のコイル巻装体10Bよりも、上述の第二の磁束E2の流れが、上述の第一の磁束E1の流れよりも多い。すなわち、磁束密度が高くなっている。そして、回転子20の回転力に寄与する磁束は、この第二の磁束E2である。
 このように、永久磁石3と永久磁石3Cとは軸方向Zに垂直な断面積が等しいながらも、永久磁石3の断面形状を、内周側の方が外周側よりも、周方向の長さが長い台形とすることにより、断面形状が長方形の永久磁石3Bよりも、固定子10の径方向内側に流れる第二の磁束E2の磁束密度を向上させることができる。これにより、回転子20に与えるトルクを増加することができるので、回転電機100の効率の向上、小型化、及び、コギングトルクの低減が期待できる。
 なお、これまで、軸方向Zに垂直な断面形状が、外周側が小さく内周側が大きい台形である永久磁石3について説明したが、例えば、外周側端部の幅がゼロである、軸方向Zに垂直な断面が三角形の形状であっても同じ効果が期待できる。
 これまで敢えて「台形」と表現した理由としては、永久磁石の軸方向Zに垂直な断面形状を完全な三角形状とすれば、永久磁石の外周側の鋭利な先端部に割れが生じる懸念があること、微小な先端部の幅の差は、回転電機100の特性に大きな影響を及ぼさないこと、或いは、永久磁石の加工の観点から微小な幅を有する面が残ることを考慮して、本願ではこれらを総称して広義の台形形状とした。
 さらに、永久磁石3の、外周面および内周面は、それぞれ分割コア11の外周面および内周面と同じ曲率を有する曲面としてもよい。
 図15~図17は、永久磁石3の他のバリエーションを示す断面図である。
永久磁石の軸方向Zに垂直な断面において、内周側と外周側の幅が異なる永久磁石の変形例として、例えば、図15~図17に示すような例がある。いずれも、内周の幅Linが外周の幅Loutよりも大きい。
 図15に示す永久磁石3Dは、外周の周方向Xの長さがLoutであり、径方向Yの長さL1に対して、内周側の周方向Xの幅が2・(L2)ずつ、階段状に大きくなる形状である。また、図16に示す永久磁石3Eは、外周側に軸方向Zに垂直な断面が長方形の断面長方形部3E1と、断面長方形部3E1の内周側に軸方向Zに垂直な断面が台形の断面台形部3E2とを合わせた形状をしている。断面長方形部3E1の短辺と断面台形部3E2の上底の長さは等しい。また、図17に示す永久磁石3Fは、外周側に軸方向Zに垂直な断面が台形の第一断面台形部3F1と、第一断面台形部3F1の内周側に軸方向Zに垂直な断面が同じく台形の第二断面台形部3F2とを合わせた形状をしている。第一断面台形部3F1の下底と、第二断面台形部3F2の上底の長さは等しい。
 このように、永久磁石3の軸方向Zに垂直な断面を径方向Yの中央で、周方向Xに二分した2つの断面積を比較すると、分割ティース部11tの先端側の断面積の方が、分割ヨーク部11y側の断面積よりも大きければ良く、図15~図17の形状を組み合わせたものであってもよい。
 次に、図18~図23を用いて、図5~図7に示すコイル4の導体とその変形例について説明する。
 図18~図20は、実施の形態1のコイル4を構成する、束線42の断面図である。束線42は、並列に接続された複数の導体43からなる、所謂パラ線である。束線42を構成する導体43としては、図18~図20に示すいずれの導体を利用するとよい。
図21は、実施の形態1のコイル4の変形例であり、連続転位部47を説明する図である。
図22は、実施の形態1のコイルの変形例であり、一括転位部48を説明する図である。
図23は、図22に示す一括転位部を設ける位置を説明する図である。
 回転子20に与えるトルクを増加するために、コイル4の通電電流、印加電圧、或いは周波数を増加させると、導体43の表面付近と、導体43の中央部の抵抗比が変化する、いわゆる表皮効果が発生する。この表皮効果は、周波数が高い程、電流が導体43の表面に集中して顕著になる。
 そして、この表皮効果によって、導体43の抵抗、回転電機の銅損が増加するという問題がある。そこで、コイル4の1ターン当たりの導体断面積を等しいながらも導体本数を増やすことで、表皮効果を緩和できることが一般に知られている。
 本願の対象である集中巻きしたコイル4と永久磁石3の両方が設けられた分割コア11からなるコイル巻装体10Aと、これを複数個、環状に配列した固定子10および当該固定子10を用いた回転電機100には、上記表皮効果を抑制するために、複数の絶縁被覆付きの導体43が束ねられた、束線42を用いることが有効である。
 回転電機100に供される導体43には、銅、アルミが用いられる。導体43は、図18に示す丸線に加え、図19に示すような、1辺の長さがaである、断面が正方形の角線、或いは、図20に示す、2辺の長さがa>bである、断面長方形の平角線が用いられる。
 また、導体43の表面は通常エナメル層などの絶縁被覆44で覆われており、絶縁被覆44の厚みtは、耐電圧仕様によって様々な種類がメーカより提供されている。また、コイル4を巻線後に加熱し自己融着させて形状を維持するために絶縁被覆44の外側に接着層を有するものもある。さらに、自己融着線でなくても、図20に示すように、束線42の外周を絶縁テープ46で覆いテーピングをするものもある。
 一方で、細線化および多導体化の欠点として、束線42をコイル4とした時に、常に他の導体43よりも外側に位置する導体43と、反対に、常に他の導体43よりも内側に位置する導体43とができるがために、束線42を通過する磁束の密度差が生じることで位相差、電位差が生じ、回転電機100の損失が増加する問題が新たに生じる。そこで、上記束線内の位相差、電位差を抑制するため、コイル4内に、導体43の巻線位置を入れ替える、いわゆる転位部を設ける方法が知られている。
 例えば、転位部を有する束線42として、図21に示す連続転位電線を用いても良い。
この転位電線は、平角線、或いは角線を2列に積み重ね、導体43の長手方向の転位ピッチP毎に、2本の導体43が時計方向又は反時計方向に束線内を移動し循環する連続転位部47を有する構造である。このような、連続転位電線を用いる場合は、図9に示すコイル巻線工程(ステップS4)において、図12に示す一般的な巻線装置60を用いればよい。一方で、連続転位電線の使用には欠点もある。
 第一の欠点として、連続転位電線は、転位を施さない束線42と比較して、転位部の製造コストが付加されるため高価である。また、第二の欠点として、連続転位電線は、同一の方向に導体が縒られていることから捻れ易く、コイル4を巻線する最中に連続転位電線にキンクと呼ばれる折れ曲がりが生じ易いため、工作性が悪い。第三の欠点として、転位部は直線状の導体を束ねた束線よりも膨らむため、これを用いてコイル4を巻線すると、いわゆるコイル占積率が低下するため結果的に回転電機のトルクが低下することに注意しなくてはならない。なお、コイル占積率とは、コイルを収納するスロットの軸方向Zに垂直な有効断面積に対して、実際にコイルを構成する導体の軸方向Zに垂直な断面積が占める割合である。
 このような理由から、図18、図19に示す、転位を施していない束線を部分的に捻って転位部を設ける方法を採ることも有効である。
 転位を施していない束線を捻ってコイル4に転位部を設ける場合、例えば、図12に示す巻線装置60において、ボビン61には、図18、図19に示すような各導体43を束ねて自己融着させた束線42を巻いておく。束線42は、束線42を巻き回す張力を制御するためのテンショナ62を経由して、ティース部の周囲を旋回しながら直線往復運動をするフライヤ63のノズル64から繰り出され、巻線工程が実施される。
 なお、図20に示すような、自己融着線でなくとも、絶縁テープ46等の絶縁材でテーピングされた束線42を用いてもよい。
 図22は、コイルに設けた一括転位部48の斜視図である。
図23は、図22に示す一括転位部48を設ける位置を説明する図である。
図22に示すように、コイル4の巻線中に、束線42を、束線42の軸芯を中心として180度捻られた一括転位部48を、少なくとも一か所形成する。これにより、上記表皮効果によるコイルの位相差および電位差による回転電機100の損失増加を抑制することができる。
 図23に示す位置に一括転位部48を設けたコイル4は、上述の連続転位部47を用いるコイルに比べて、束線42の捻れた部分の膨らみが、スロットS内に存在しない。したがって、スロットS内におけるコイル4の占積率を高く維持することが可能である。
 実施の形態1に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、
電機子は、
複数のコイル巻装体を第一方向に隣接させて組み合わせた電機子であって、
前記コイル巻装体は、分割ヨーク部と、前記分割ヨーク部から前記第一方向と直交する第二方向に突出する分割ティース部とをそれぞれ有する一対の分割コアと、一対の前記分割コアの間に挟まれた永久磁石と、
一対の前記分割ティース部に巻線されたコイルとを備え、
前記永久磁石の、前記第一方向及び前記第二方向に直交する第三方向に垂直な断面を前記第二方向の中央で、前記第一方向に二分した2つの断面積を比較すると、前記分割ティースの先端側の断面積の方が、前記分割ヨーク部側の断面積よりも大きいものなので、
永久磁石3のSN極間の短絡磁束を防止できる。また、分割コア11の回転子20に近い、内側に流れる磁束密度を効率良く高めることができるので、回転子20に与えるトルクを増加することができる。これらにより、回転電機100の効率の向上が期待でき、小型でトルクが高く、コギングの小さい電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を得ることができる。
実施の形態2.
 以下、実施の形態2に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を実施の形態1と異なる部分を中心に説明する。実施の形態1では、一対の分割コア11に永久磁石中間体3Mを挟んで組み合わせてから、コイル4を巻線する電機子の製造方法を説明した。本実施の形態では、コイル4を予め製造しておいて他の部品と組み立てる方法について説明する。
 図24は、実施の形態2による固定子の製造工程を示すフロー図である。
図25は、コイル巻装体210A(分割コアを除く)の斜視図である。
図26は、コイル巻装体210A用の絶縁部221とコイル204の関係を示す分解斜視図である。
図27は、巻線装置260とコイル製造工程(ステップS1-4)を示す概念図である。
図28は、コイル挿入工程を示す概念図である。
図29は、コイル204と一対の分割コア211との寸法関係を説明する補足図である。
図30は、永久磁石中間体挿入工程を示す概念図である。
図31は、永久磁石中間体挿入工程が完了したコイル巻装中間体210MAの状態を示す概念図である。
図32および図33は、実施の形態2の効果を説明する図である。
 図24に示すように、本実施の形態では、絶縁部製造工程(ステップS1-3)の後工程において、絶縁部製造工程で得た巻枠状の絶縁部221を用い、コイル製造工程(ステップS1-4)行う。当該工程では、図25に示すように、巻枠状の絶縁部221に対してコイル204を巻線する。実施の形態1では、2個の絶縁部21aと、2個の絶縁部21bとの計4個の絶縁部を組み合わせて使用したが、本実施の形態で使用する絶縁部221は、図26に示す巻枠状の形状をした一体物である。絶縁部221は、コイル204を収納するスロットの内周面と、分割ティース部211tの軸方向Zの両端面と、分割ヨーク部211yの軸方向Zの両端面と、シュー部211sの軸方向Zの両端面を覆うように一体形成されていて、それ自体がコイル204の巻枠として利用できる。絶縁部221のうち、分割ティース部211tに沿う部分を、内筒部211kとする。
 巻枠状の絶縁部221を利用することにより、図27に示すように、巻線装置260の巻枠用冶具67に複数の巻枠状の絶縁部221を係止させて、これをモータ等の回転動力66によって矢印Qに示すように旋回させると共に巻枠ステージ68又はノズルホルダ65のいずれかに、矢印U方向に往復運動する直動機構を備えれば、ボビン61からテンショナ62およびノズル64を経由して束線42を絶縁部221に巻き回すことができる。
 これにより、コイル204を複数個、同時に巻線することができ、形成したコイル204をスピンドル軸から取り外してもコイル204の形状精度を保てるため、束線間の自己融着のための熱処理或いは、コイル204の端末線の絶縁被覆を剥離することが容易になる。
 また、実施の形態1と同様に、コイル204の巻線の途中で一括転位部48を設けることも可能である。その場合は、一括転位部48を設ける部分を巻線する時に、ノズル64を束線42の周方向Tに回転させるとよい。なお、巻枠状の絶縁部221が、コイル204の形状を維持でき、かつ、溝等で端末線を係止する構造を絶縁部221が備えていれば、自己融着のための熱処理は不要である。
 次に、以上の工程により得られた巻枠状の絶縁部221と、これに巻線されたコイル204を用いてコイル巻装中間体210MAを組み立てる方法について説明する。
まず、図28に示すように一対の分割コア211を用意する(分割コア組立工程:ステップS202-1)。そして、図29に示すように、最終的な製品では、永久磁石の周方向Xの側面と接触するそれぞれの分割コア211の側面211u同士を接触させる。その後、図28に示すように、双方の分割コア211の間の空間を閉じた状態のまま、絶縁部221と、これに巻線されたコイル204を、径方向Yの内側(分割コア211の分割ティース部211tの先端側)から、一対の分割コア211に挿入する(絶縁部付きコイル挿入工程:ステップS202-2)。
 図29に示すように、絶縁部221の内側の内筒部211kの周方向Xの内径をWとすると、双方の分割コア211の間の空間を閉じた状態の一対の分割コア211の一対の分割ティース部211tの径方向Yの内側の先端部211tinの周方向Xの幅および一対のシュー部211sの周方向Xの幅の合計Vは、Wより小さくなるように設定されている。したがって、実施の形態1で説明したように、一対の分割コア11と、それぞれ一対の絶縁部21a、21bと永久磁石中間体3Mとを先に組立てなくとも、絶縁部221に予めコイル204を巻線した後で、一対の分割コア211に組み付けることができる。
 次に、図30に示すように、一対の分割コア11を、周方向Xに、すなわち相互に離れる方向に開いて、それぞれの分割コア211の間に径方向Yの内側(分割ティース部211tの先端側)から永久磁石中間体203MAを挿入することによりコイル巻装中間体210MAを得る(ステップS202-3:永久磁石中間体挿入工程(磁性体挿入工程))。
 なお、図31に示すように、分割コア211の永久磁石中間体203MAと接触する側面211uの2点鎖線gで示す範囲に予め接着剤を塗布しておけば、以上の工程を終了した状態で、全ての部材を一体化して固定できる。
 さらに、上述のように絶縁部221に予めコイル204を巻線した後、これらを双方の分割コア211の間の空間を閉じた一対の分割コアに径方向Yの内側から挿入する利点として、スロットSに占めるコイル204の占積率の向上が挙げられる。
 例えば、図32に示すような分割コア211Bの形状では、スロットの底面49(径方向Yの外側の面)を周方向Xに延長したラインは、分割コア211Bの分割ヨーク部211Byの一部と干渉している。したがって、先に分割コア211Bと永久磁石中間体203MBとを組み合わせてからコイル204Bを巻線しようとすると、導体が分割ヨーク部211Byと干渉するために、図12で説明した巻線装置60で巻線することが難しい。
 そこで、図33に示すように、形状を維持する絶縁部221Bと、薄膜の絶縁フィルム221Cを共用し、実施の形態2の組み立て方法を用いて絶縁部221Bおよび絶縁フィルム221Cに予めコイル204Bを巻線すれば、上記スロットの形状であってもコイル204Bの占積率を向上でき、更なる回転電機の小型化、効率の向上が期待でき、トルクが高くコギングの小さい回転電機と、これに関連するリニアモータを得ることができる。
 尚、図33では絶縁フィルム221Cを用いる例を示したが、図32において、コイル204Bと、分割コア211Bとの間に空隙が得られ十分な絶縁距離が保たれるのであれば絶縁フィルム221Cは不要である。
 実施の形態2に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、分割ティース部211tの径方向Yの内側の先端部211tinにシュー部211sを備えた一対の分割コア211と絶縁部221と永久磁石中間体203MAとを先に組立てなくとも、絶縁部221に予めコイル204を巻線した後で、一対の分割コア211に組み付け、永久磁石中間体203MAを一対の分割コア211の間に挿入することができるので、固定子の組立精度の向上、生産性の向上が期待できる。
 また、巻線装置260によれば、コイル204を複数個、同時に巻線することができ、形成したコイル204をスピンドル軸から取り外してもコイル204の形状精度を保てるため、自己融着のための熱処理、或いは、コイル204の端末線の絶縁被覆を剥離することが容易になる。
 これらにより、生産工程の省エネルギー化、製品の歩留まりの向上が期待できる。さらに、スロット形状に拘わらす分割コアのスロットにコイル204Bを挿入でき、コイル204Bの占積率を高めることが可能であって、更なる回転電機の効率の向上、小型化が期待でき、トルクが高くコギングの小さい回転電機と、これに関連するリニアモータを得ることができる。
実施の形態3.
 以下、実施の形態3に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を実施の形態1、2と異なる部分を中心に説明する。
図34は、実施の形態3による固定子の製造工程を示すフロー図である。
図35は、コイル巻装体310Aの分解図である。
図35については、以下の説明において2通りの使い方をする。着磁されていない永久磁石中間体3Mを有するコイル巻装中間体310MAに関する説明をする場合と、着磁後の永久磁石3を有するコイル巻装体310Aに関する説明をする場合である。
図36は、コイル304と一対の分割コア211との寸法関係を説明する補足図である。
図37は、図36のD-D断面図であり、コイル挿入工程を示す概念図である。
 実施の形態1と本実施の形態との違いは、まず、使用する絶縁部の形状が異なる点である。次に、コイルの形成工程、コイルの装着工程が異なる。
 実施の形態2と本実施の形態との違いは、まず、実施の形態2では、巻枠状の絶縁部221に予めコイル204を巻線してから、一対の分割コア211に装着したのに対して、本実施の形態では、絶縁部に対してコイルを巻線するのではなく、コイルだけを予め形成する点である。次に、実施の形態2では、巻枠状の絶縁部221にコイル204を巻線した後、これらを一緒に一対の分割コア11に挿入したが、本実施の形態では、一対の分割コア211に絶縁部321a、321bを装着した後、別途形成したコイル304を装着する点である。
 本実施の形態では、分割コア組立工程(ステップS302-1)において、まず、分割コア製造工程(ステップS1-1)で製造した一対の分割コア211に、絶縁部製造工程(ステップS1-3)で製造した一対の絶縁部321aと一対の絶縁部321bを組み立てる。
 図36に示すように、コイル304の内側の空洞部の周方向Xの幅をW2とすると、一対の分割コア211に装着した絶縁部321a、321bの、径方向内側先端における、それぞれの周方向外側端部の間の幅V2は、W2より小さくなるように設定されている。
 実施の形態2と同様の手順で、コイルの製造工程(ステップS1-4)で製造したコイル304を、絶縁部321a、321bを装着して双方の間の空間を閉じた一対の分割コア211の一対の分割ティース部211tに、径方向Yの内側(分割ティース部211tの先端側)から挿入する(コイル挿入工程:ステップS302-2)。
 次に、一対の分割コア211を、周方向Xに、すなわち相互に離れる方向に開いて、それぞれの分割コア211の間に径方向Yの内側から永久磁石中間体3Mを挿入することによりコイル巻装中間体310MAを得る(ステップS202-3:永久磁石中間体挿入工程)。
 図37に示すように、実施の形態3の絶縁部21a、21bで設けていた内鍔(破線部分)は、絶縁部321a、321bには設けていない。したがって、コイル304だけであっても実施の形態2と同様、予め巻線したコイル304を単独で径方向Yの内側から一対の分割コア211に挿入することができる。その後、着磁工程(ステップS3)を経て、コイル巻装中間体310MAは、コイル巻装体310Aとなる。その後の工程は、実施の形態2と同様である。
 実施の形態3に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、実施の形態1、2の効果に加えて、実施の形態2よりも絶縁部の樹脂材料を抑制することができる。これらにより、製品の生産性を向上できることから、省エネルギーとなり、製本の歩留まりも向上できる。
実施の形態4.
 以下、実施の形態4に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を実施の形態1~3と異なる部分を中心に、永久磁石のバリエーションについて説明する。
図38は、コイル巻装体410Aの軸方向Zに垂直な断面図である。
一般に、固定子のコイルによって生じた磁界がコイル中央の永久磁石を貫通すると磁石の表面に渦電流が生じる。この渦電流が新たな磁場を作る事によって元の磁場を打ち消す方向に働き、結果、ジュール熱が増加することで磁気特性が劣化する熱減磁が生じる。
 そこで、本実施の形態では、図38に示すように、断面台形の分割永久磁石403Bを径方向Yに積み重ねて貼り合わせた永久磁石403(永久磁石403は、ティース部の211tの径方向Yに垂直に、複数の永久磁石に分割されていることと同義)を使用することにより上記の渦電流による損失を抑制する。
 なお、実施の形態1でも述べたが、永久磁石403の全体としての形状は、軸方向Zに垂直な断面が、三角形又は台形であり、径方向Yの内側の周方向Xの幅が、径方向Yの外側の周方向の幅よりも大きい。よって、永久磁石403は、径方向Yに複数の分割永久磁石403Bに分割されていることになる。
 実施の形態4に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、実施の形態1の効果に加えて、渦電流を低減して磁気特性のさらに高い回転電機と、これに関連するリニアモータを得ることができる。
実施の形態5.
 以下、実施の形態5に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法を実施の形態4と異なる部分を中心に説明する。
図39は、コイル巻装体510Aの軸方向Zに垂直な断面図である。
図40は、本実施の形態に係る効果を説明する図である。
本実施の形態では、特に永久磁石503の補強構造について説明する。
 図39に示すように、コイル巻装体510Aの軸方向に垂直な断面図において、永久磁石503の径方向Yの外周側(分割ヨーク部211y側の端部)と内周側(分割ティース部211t側の端部)の双方に、それぞれ、永久磁石503に接し、かつ一対の分割コア211の間に挟まれた非導電性かつ非磁性の補強部33aと補強部33bとを備える。補強部33a、33bの軸方向Zに垂直な断面は、台形である。
 補強部33a、33bを設けることで、図40に示すように、複数のコイル巻装体510Aを円環状に配列した後に、隣り合う分割コア211同士を溶接し、ハウジング7を焼き嵌め等で嵌合する際に、永久磁石503に働く圧縮応力を緩和することができる。
 ハウジング7を焼き嵌めで、円環状に固定した複数のコイル巻装体510Aに嵌合すると、嵌合後の熱収縮により、各コイル巻装体510Aには、図40に示す、固定子510の軸芯方向に向かう応力Q1が働く。この応力Q1は、隣り合うコイル巻装体510Aを、周方向Xに相互に押し付ける応力Q2、応力Q3となる。
 そして応力Q2、Q3は、永久磁石503の径方向Yの内周側および外周側に最も近い部分に集中する。そこで、当該部分に、補強部33a、33bを挿入することにより、永久磁石503が、応力Q2、Q3により割れることを防止する。これにより、製品の歩留まりと生産性を向上できる。なお、補強部33a、33bの材質は、非導電性材料かつ磁性を有するものであってもよい。この場合でも、補強部33a、33bに発生する渦電流を低減できる。
 なお、永久磁石503は、一体物でもよいし、実施の形態4で説明したような、径方向に分割されたものを用いてもよい。
 実施の形態5に係る電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法によれば、実施の形態1~4の効果に加えて、さらに歩留まりの高い回転電機と、これに関連するリニアモータを得ることができる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 100 回転電機、100R リニアモータ、10,510 固定子、10A,10B,210A,310A,410A,510A コイル巻装体、10MA,210MA,310MA コイル巻装中間体、10Rt 凸部、10,10R 固定子、11,11B,11C,211,211B 分割コア、11p 鉄心片、11s,211s シュー部、11t,11Rt,211t 分割ティース部、211tin,11Rtin 先端部、11y,211y 分割ヨーク部、211u 側面、211k 内筒部、12p 凸部、12r 凹部、13 接着層、20 回転子、20R 可動子、20a 回転子鉄心、21a,21b,221,221B,321a,321b 絶縁部、221C 絶縁フィルム、3,3C,3D,3E,3F,403,503 永久磁石、403B 分割永久磁石、3E1 断面長方形部、3E2 断面台形部、3F1 第一断面台形部、3F2 第二断面台形部、3M,203MA,203MB 永久磁石中間体、33a,33b 補強部、42 束線、43 導体、44 絶縁被覆、46 絶縁テープ、47 連続転位部、48 一括転位部、49 底面、4,4R,204,204B,304 コイル、60,260 巻線装置、61 ボビン、62 テンショナ、63 フライヤ、64 ノズル、65 ノズルホルダ、66 回転動力、67 巻枠用冶具、68 巻枠ステージ、7 ハウジング、P 転位ピッチ、S スロット、U 矢印、Lin,Lout 幅、X 周方向、Y 径方向、Z 軸方向、E1,E2 磁束、Q1,Q2,Q3 応力。

Claims (15)

  1. 複数のコイル巻装体を第一方向に隣接させて組み合わせた電機子であって、
    前記コイル巻装体は、分割ヨーク部と、前記分割ヨーク部から前記第一方向と直交する第二方向に突出する分割ティース部とをそれぞれ有する一対の分割コアと、一対の前記分割コアの間に挟まれた永久磁石と、
    一対の前記分割ティース部に巻線されたコイルとを備え、
    前記永久磁石の、前記第一方向及び前記第二方向に直交する第三方向に垂直な断面を前記第二方向の中央で、前記第一方向に二分した2つの断面積を比較すると、前記分割ティース部の先端側の断面積の方が、前記分割ヨーク部側の断面積よりも大きい電機子。
  2. 前記永久磁石の前記第三方向に垂直な断面形状は、三角形又は台形である請求項1に記載の電機子。
  3. 前記永久磁石は、前記分割ティース部の前記第二方向に垂直に、複数に分割されている請求項1又は請求項2に記載の電機子。
  4. 一対の前記分割コアと前記コイルとを電気的に絶縁する絶縁部を備える請求項1から請求項3のいずれか1項に記載の電機子。
  5. 前記絶縁部は、前記コイルを収納するスロットの内周面と、前記分割ティース部の前記第三方向の両端面とを覆い、巻枠状に一体形成されている請求項4に記載の電機子。
  6. 一対の前記分割コアにおける前記分割ティース部の前記第二方向の先端部から前記永久磁石と反対側に前記第一方向に突出するシュー部をそれぞれ備える請求項5に記載の電機子。
  7. 一対の前記先端部の前記第一方向の幅および一対の前記シュー部の前記第一方向の幅の合計は、前記絶縁部の前記第一方向の内径よりも小さい請求項6に記載の電機子。
  8. 前記永久磁石の前記分割ヨーク部側の端部と前記分割ティース部側の端部との双方には、それぞれ、前記永久磁石に接し、かつ一対の前記分割コアの間に挟まれた非磁性の補強部を備える請求項1から請求項7のいずれか1項に記載の電機子。
  9. 前記補強部は、非導電性を有する請求項8に記載の電機子。
  10. 前記コイルは、並列に接続された複数の導体を有する束線からなり、前記束線は、前記束線の軸芯を中心として180度捻られた、少なくとも一箇所の一括転位部を有する請求項1から請求項9のいずれか1項に記載の電機子。
  11. 請求項1から請求項10のいずれか1項に記載の電機子として形成された固定子と、回転子とを備え、
    複数の前記コイル巻装体は、前記第一方向に円環状に組み合わされており、
    前記回転子は、前記固定子の内周面に、回転子鉄心の外周面を対向させて、回転可能に支えられている回転電機。
  12. 請求項1から請求項10のいずれか1項に記載の電機子としての形成された可動子と、前記第一方向に等間隔に設けられ、かつ前記第二方向に突出する複数の凸部を有する平板状の固定子とを備え、
    複数の前記コイル巻装体は、直線状に組み合わされており、
    前記可動子は、前記固定子の上面に、前記可動子の前記分割ティース部の先端部を対向させて、直動可能であるリニアモータ。
  13. 請求項1から請求項10のいずれか1項に記載の電機子の製造方法であって、
    前記分割コアを製造する分割コア製造工程と、
    前記コイルを予め巻線するコイル製造工程と、
    双方の間の空間を閉じた一対の前記分割コアの一対の前記分割ティース部に、前記分割ティース部の先端側から前記コイルを挿入するコイル挿入工程と、
    一対の前記分割コアを、一対の前記分割コアが相互に離れる方向に開いて、それぞれの前記分割コアの間に前記分割ティース部の先端側から、着磁可能な磁石素材を用いて製造した着磁前の前記永久磁石である永久磁石中間体又は、前記永久磁石を挿入する磁性体挿入工程とを有する電機子の製造方法。
  14. 請求項13に記載の電機子の製造方法としての固定子の製造方法によって製造する固定子と、
    回転子とを、回転子鉄心の外周面が、前記固定子の内周面に対向して回転可能に配置する回転電機の製造方法。
  15. 請求項13に記載の電機子の製造方法としての可動子の製造方法によって製造する可動子を、
    固定子上において、前記固定子の上面に前記分割ティース部の先端部を対向させて、移動可能に配置するリニアモータの製造方法。
PCT/JP2020/004820 2019-08-07 2020-02-07 電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法 WO2021024518A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537562A JPWO2021024518A1 (ja) 2019-08-07 2020-02-07 電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-145150 2019-08-07
JP2019145150 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021024518A1 true WO2021024518A1 (ja) 2021-02-11

Family

ID=74502893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004820 WO2021024518A1 (ja) 2019-08-07 2020-02-07 電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法

Country Status (2)

Country Link
JP (1) JPWO2021024518A1 (ja)
WO (1) WO2021024518A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037189A (ja) * 1999-07-27 2001-02-09 Sankyo Seiki Mfg Co Ltd 回転電機
JP2013046460A (ja) * 2011-08-23 2013-03-04 Yaskawa Electric Corp リニアモータの可動子およびリニアモータ
JP2014135240A (ja) * 2013-01-11 2014-07-24 Toyota Motor Corp モータ巻線用集合導線
KR20170108490A (ko) * 2016-03-18 2017-09-27 정일산업 주식회사 Fspm 모터의 제조방법
WO2017216995A1 (ja) * 2016-06-17 2017-12-21 三菱電機株式会社 永久磁石式同期機および永久磁石式同期機の固定子の製造方法
JP2018038175A (ja) * 2016-08-31 2018-03-08 ミネベアミツミ株式会社 モータのステータ構造
JP2018074890A (ja) * 2016-10-25 2018-05-10 株式会社豊田自動織機 回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001037189A (ja) * 1999-07-27 2001-02-09 Sankyo Seiki Mfg Co Ltd 回転電機
JP2013046460A (ja) * 2011-08-23 2013-03-04 Yaskawa Electric Corp リニアモータの可動子およびリニアモータ
JP2014135240A (ja) * 2013-01-11 2014-07-24 Toyota Motor Corp モータ巻線用集合導線
KR20170108490A (ko) * 2016-03-18 2017-09-27 정일산업 주식회사 Fspm 모터의 제조방법
WO2017216995A1 (ja) * 2016-06-17 2017-12-21 三菱電機株式会社 永久磁石式同期機および永久磁石式同期機の固定子の製造方法
JP2018038175A (ja) * 2016-08-31 2018-03-08 ミネベアミツミ株式会社 モータのステータ構造
JP2018074890A (ja) * 2016-10-25 2018-05-10 株式会社豊田自動織機 回転電機

Also Published As

Publication number Publication date
JPWO2021024518A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP3561251B2 (ja) 往復動式モータの固定子の構造
US11444502B2 (en) Coil bobbin, stator core of distributed winding radial gap-type rotating electric machine, and distributed winding radial gap-type rotating electric machine
US20130278103A1 (en) Stator used in an electrical motor or generator with low loss magnetic material and method of manufacturing a stator
US11621621B2 (en) Magnets, pole shoes, and slot openings of axial flux motor
WO2016136384A1 (ja) 電機子および回転電機
JPWO2020017133A1 (ja) 分布巻ラジアルギャップ型回転電機及びその固定子
US20150001979A1 (en) Axial Gap Rotating Electric Machine
JP2010130819A (ja) 界磁子及び界磁子の製造方法
US20150091404A1 (en) Rotor for rotating electric machine, rotating electric machine, and magnetizing apparatus for rotating electric machine
WO2020255614A1 (ja) コイル及びそれを備えたステータ、ロータ、モータ並びにコイルの製造方法
WO2015075784A1 (ja) アキシャルギャップ型回転電機
WO2021024518A1 (ja) 電機子、回転電機、リニアモータ及び、電機子、回転電機、リニアモータの製造方法
JP5708706B2 (ja) 回転電機
JP2020171096A (ja) ステータ
JP2012157182A (ja) 可変界磁型回転電機
JP2018129975A (ja) 回転電機、亀甲形コイルの製造方法および亀甲形コイルの製造装置
CN115280639A (zh) 旋转电动机
JP2004201488A (ja) 同期電動機及びその製造方法
JP4771278B2 (ja) 永久磁石形電動機およびその製造方法
JP5531773B2 (ja) 回転電機
JP6995183B1 (ja) モーターのコア構造
JP2019097258A (ja) 回転電機用磁性くさび、回転電機用磁性くさびの製造方法、および、回転電機
JP2012147630A (ja) リニアモータ用コイル、リニアモータ及びリニアモータ用コイルの製造方法
JP2018046590A (ja) 回転電機
KR100417422B1 (ko) 왕복동식 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849525

Country of ref document: EP

Kind code of ref document: A1