WO2021024467A1 - 一本鎖rnaの製造方法 - Google Patents

一本鎖rnaの製造方法 Download PDF

Info

Publication number
WO2021024467A1
WO2021024467A1 PCT/JP2019/031427 JP2019031427W WO2021024467A1 WO 2021024467 A1 WO2021024467 A1 WO 2021024467A1 JP 2019031427 W JP2019031427 W JP 2019031427W WO 2021024467 A1 WO2021024467 A1 WO 2021024467A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
rna
group
ligase
bonded
Prior art date
Application number
PCT/JP2019/031427
Other languages
English (en)
French (fr)
Inventor
彬裕 阪田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to PCT/JP2019/031427 priority Critical patent/WO2021024467A1/ja
Publication of WO2021024467A1 publication Critical patent/WO2021024467A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides

Definitions

  • the present invention relates to a method for producing single-stranded RNA.
  • Nucleic acid compounds are reported in Patent Document 1 as nucleic acid molecules capable of suppressing gene expression.
  • a compound having an amino acid structure in the linker portion of the nucleic acid compound is also known.
  • these nucleic acid compounds are not easily decomposed in the living body, have high biostability, and have the property of avoiding an immune response.
  • nucleic acid compound having such excellent properties has a long chain length of about 50 bases, a simpler method is required in the synthesis method.
  • An object of the present invention is to provide a simple method for producing single-stranded RNA.
  • the present inventor ligates the first single-strand RNA and the second single-strand RNA using a certain RNA ligase. It has been found that the desired single-stranded RNA having a length of 50 bases or more can be easily produced, and the produced target product can be purified by reverse phase chromatography.
  • the present invention has been completed by further studying based on these findings, and provides the following method for producing single-stranded RNA.
  • the present invention includes the following aspects.
  • a method for producing positive-strand RNA which comprises a step of purifying by a)
  • the first single-stranded RNA is a single-stranded RNA consisting of a Y2a region, an Lz linker region, a Y1a region, an X1a region, a W1a region, an Lw linker region, and a W2a region in this order from the 5'terminal side.
  • the second single-stranded RNA is a single-stranded RNA consisting of the X2a region.
  • the X1a and X2a regions contain at least four equal number of nucleotide sequences complementary to each other.
  • the Y1a and Y2a regions contain at least one equal number of nucleotide sequences complementary to each other.
  • the W1a and W2a regions contain any number of nucleotide sequences.
  • the Lw linker region and the Lz linker region are linker regions having atomic groups derived from amino acids, and g)
  • the single-strand RNA to be produced is a linked single-stranded RNA consisting of an X2a region, a Y2a region, an Lz linker region, a Y1a region, an X1a region, a W1a region, an Lw linker region, and a W2a region in this order from the 5'terminal side.
  • the terminal oxygen atom bonded to Y 11 is bonded to the phosphorus atom of the phosphate ester of the terminal nucleotide of either the Y1 region or the Y2 region.
  • the terminal oxygen atom bonded to Y 21 are bonded to the phosphorus atom of the phosphoric acid ester of a terminal nucleotide of the Y1 region and the Y2 region other areas not bound to Y 11 of.
  • the Lz linker region is a divalent group represented by the following formula (I), and the Lz linker region is a divalent group represented by the following formula (I').
  • the production method according to 1] or [2]. In the formula, Y 11 and Y 21 each independently represent an alkylene group having 1 to 20 carbon atoms, and Y 12 and Y 22 are each independently substituted with a hydrogen atom or an amino group.
  • the terminal oxygen atom bonded to Y 11 is bonded to the phosphorus atom of the phosphate ester of the terminal nucleotide of either the Y1 region or the Y2 region.
  • the terminal oxygen atom bonded to Y 21 are bonded to the phosphorus atom of the phosphoric acid ester of a terminal nucleotide of the Y2 region and the Y1 region other areas not bound to Y 11 of.
  • Y '11 and Y' 21 each independently represents an alkylene group having 1 to 20 carbon atoms
  • Y '12 and Y' 22 are each independently a hydrogen atom or an amino group, or represents optionally substituted alkyl group, or Y 'and 12 and the Y' 22 are bonded to each other at their ends an alkylene group having 3 to 4 carbon atoms
  • the terminal oxygen atom bonded to Y '11 is coupled with the phosphorus atom of the phosphoric acid ester of a terminal nucleotide of one of regions of the Z1 region and the Z2 region and, Y 'terminal oxygen atoms bonded to 21, wherein Z2 region and the Z1 region of Y' is bonded to the phosphorus atom of the phosphoric acid ester of a terminal nucleotide of the other areas not bound to 11.
  • the Lz linker region and the Lw linker region are independently divalent groups having a structure represented by the following formula (II-A) or (II-B), respectively, according to the above item [1] or The manufacturing method according to [2]. (In the equation, n and m each independently represent an integer from 1 to 20.) [5] Suppresses the expression of a gene targeted by RNA interferometry in at least one of the X1 region, the Y1a region, the X1a region and the W1a region, and the X2a region and the Y2a region. The production method according to any one of the above items [1] to [4], which comprises the nucleotide sequence to be used.
  • the RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage, ligase 2 derived from KVP40, Trypanosoma brucei RNA ligase, Deinococcus radiodurans RNA ligase, or Leishmania pre-RNA ligase 1 from Leishmania ligase.
  • the manufacturing method according to any one of the above. [7] Any of the above items [1] to [6], wherein the RNA ligase is an RNA ligase consisting of an amino acid sequence having 95% or more identity with the amino acid sequence set forth in SEQ ID NO: 5, 6, or 7. The manufacturing method according to paragraph 1.
  • RNA ligase is T4 RNA ligase 2 derived from T4 bacteriophage or RNA ligase 2 derived from KVP40.
  • the monoalkylamine salt or dialkylamine salt is at least one salt selected from the group consisting of hexylammonium salt, dipropylammonium salt, dibutylammonium salt, and quaternaryammonium salt.
  • the packing material for the reverse phase column chromatography is silica or a polymer in which any one or more of a phenyl group, an alkyl group having 1 to 20 carbon atoms, or a cyanopropyl group is immobilized, according to the above item [1].
  • the production method according to any one of [9].
  • FIG. It is a figure which shows the arrangement used in Example 1.
  • FIG. It is a figure which shows the ligation single-strand RNA synthesized in Example 1. It is a figure which shows RNA strands I, II and III.
  • the "gene” in the present invention includes double-stranded DNA, single-stranded DNA (sense strand or antisense strand), and fragments thereof. Further, in the present invention, the term “gene” shall be used without distinguishing between a regulatory region, a coding region, an exon, and an intron unless otherwise specified.
  • the numerical range of the number of nucleotides discloses, for example, all positive integers belonging to the range, and as a specific example, the description of "1 to 4 nucleotides” is “1 nucleotide", “ Means all disclosures of “2 nucleotides”, “3 nucleotides”, and “4 nucleotides”. Further, the description of “1 to 4 bases” means all disclosures of “1 base”, “2 bases”, “3 bases”, and “4 bases”. As used herein, the terms “number of nucleotides” and “number of bases” represent the length of a nucleotide sequence in a mutually compatible manner.
  • (I) EC6.5 which is defined by the International Biochemical Union as an enzyme number for the first single-strand RNA having a phosphate group at the 5'end and the second single-strand RNA having a hydroxyl group at the 3'end.
  • a step of ligating the first single-strand RNA and the second single-strand RNA by allowing RNA ligase classified into 1.3 and having double-strand nick repair activity to act will be described.
  • the linked single-stranded RNA contains a nucleotide sequence that suppresses gene expression in at least one of an A region consisting of a Y1a region, an X1a region, and a W1a region, and a B region consisting of an X2a region and a Y2a region. You may.
  • a nucleotide sequence a sequence that suppresses the expression of the target gene by the RNA interference method may be included.
  • RNA interference is the introduction of double-stranded RNA consisting of a sense RNA consisting of a sequence identical to at least a part of the mRNA sequence of a target gene and an antisense RNA consisting of a sequence complementary thereto into cells. This is a phenomenon in which the mRNA of the target gene is decomposed, and as a result, the translation inhibition into a protein is induced and the expression of the target gene is inhibited.
  • DICE a type of RNase III nucleolytic enzyme family
  • the target gene is not particularly limited, and a desired gene can be appropriately selected.
  • the nucleotide sequence that suppresses the expression of the target gene is not particularly limited as long as it is a sequence that can suppress the gene expression, and is based on the sequence information of the target gene registered in a known database (for example, GenBank) or the like. It is possible to design by a conventional method.
  • the nucleotide sequence is 80% or 85% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, and most preferably 100% with respect to a predetermined region of the target gene. Have the sameness.
  • RNA interference for example, a sense RNA having the same sequence as at least a part of the mRNA sequence of the target gene can be used.
  • the number of bases in the nucleotide sequence that suppresses the expression of the target gene by RNA interference is not particularly limited, and is, for example, 19 to 30 bases, preferably 19 to 21 bases.
  • Either one or both of the A region and the B region may have two or more of the same expression-suppressing sequences for the same target gene, or may have two or more different expression-suppressing sequences for the same target. Alternatively, it may have two or more different expression-suppressing sequences for different target genes.
  • the location of each expression-suppressing sequence is not particularly limited, and may be any one or both of the X1a region and the Y1a region, or a region spanning both. There may be.
  • each expression-suppressing sequence may be any one or both of the X2a region and the Y2a region, or may be a region spanning both.
  • the expression-suppressing sequence preferably has 90% or more complementarity with respect to a predetermined region of the target gene, more preferably 95%, further preferably 98%, and particularly preferably 100%. Is.
  • a ligase is allowed to act on a first single-strand RNA having a phosphate group at the 5'end and a second single-strand RNA having a hydroxyl group at the 3'end, and the first single-strand RNA is described. It is produced in the step of connecting the single-strand RNA and the second single-strand RNA (see FIG. 2).
  • a linked single-stranded RNA complementary sequence portions are arranged in the molecule, and a double strand can be partially formed in the molecule.
  • the linked single-stranded RNA molecule contains a nucleotide sequence in which the X1a region and the X2a region have complementarity with each other, and further contains a nucleotide sequence in which the Y1a region and the Y2a region have complementarity with each other.
  • a double chain is formed between the sequences having complementarity, and the linker regions of Lw and Lz form a loop structure depending on their length.
  • FIG. 2 shows the connection order of the regions and the positional relationship of each region forming the double chain portion. For example, the length of each region, the shape of the linker region (Lw and Lz), and the like are shown. Not limited to these.
  • At least one of the A region consisting of the Y1a region, the X1a region and the W1a region, and the B region consisting of the X2a region and the Y2a region may contain at least one sequence that suppresses the expression of the target gene by RNA interference. ..
  • the A region and the B region may be completely complementary, or one or several nucleotides may be non-complementary, but it is preferable that they are completely complementary.
  • the one or several nucleotides are, for example, 1 to 3 nucleotides, preferably 1 or 2 nucleotides.
  • the Y1a region has a nucleotide sequence complementary to the entire region of the Y2a region.
  • the Y1a region and the Y2a region are nucleotide sequences that are completely complementary to each other, and are nucleotide sequences consisting of one or more of the same number of nucleotides.
  • the X1a region has a nucleotide sequence complementary to the entire region of the X2a region.
  • the X1a region and the X2a region are nucleotide sequences that are completely complementary to each other, and are nucleotide sequences consisting of two or more equal numbers of nucleotides.
  • the W1a region and the W2a region are regions containing an arbitrary number of nucleotide sequences, are not essential sequences, and may have an embodiment in which the number of nucleotides is 0.
  • the embodiment may include nucleotides.
  • each area is illustrated below, but it is not limited to this.
  • the relationship between the number of nucleotides in the W2a region (W2an), the number of nucleotides in the X2a region (X2an), and the number of nucleotides in the Y2a region (Y2an) is, for example, the condition of the following formula (1). Fulfill.
  • the relationship between the number of nucleotides in the W1a region (W1an), the number of nucleotides in the X1a region (X1an), and the number of nucleotides in the Y1a region (Y1an) satisfies, for example, the condition of the following formula (2).
  • the relationship between the number of nucleotides in the X1 region (X1an) and the number of nucleotides in the Y1a region (Y1an) is not particularly limited, and for example, any of the following conditions is satisfied.
  • X1an Y1an ... (3)
  • the number of nucleotides in the X1a region (X1an) and the number of nucleotides in the X2a region (X2an) are 2 or more, preferably 4 or more, and more preferably 10 or more.
  • the number of nucleotides in the Y1a region (Y1an) and the number of nucleotides in the Y2a region (Y2an) are one or more, preferably two or more, and more preferably four or more.
  • the W1a region preferably contains a nucleotide sequence complementary to the entire region of the W2a region or a partial region of the W2a region.
  • the W1a region and the W2a region may have one or several nucleotides that are non-complementary, but are preferably completely complementary.
  • the W2a region preferably consists of a nucleotide sequence that is one or more nucleotides shorter than the W1a region.
  • the entire nucleotide sequence of the W2a region is complementary to all the nucleotides of any subregion of the W1a region. It is more preferable that the nucleotide sequence from the 5'end to the 3'end of the W2a region is a sequence complementary to the nucleotide sequence starting from the nucleotide at the 3'end of the W1a region and toward the 5'end.
  • X1an X2an ... (6)
  • Y1an Y2an ... (7) W1an ⁇ W2an ⁇ ⁇ ⁇ (8)
  • the total number of nucleotides excluding the linker region (Lw, Lz) has a lower limit of typically 38, preferably 42, more preferably 50, and even more preferably 50. It is 51, particularly preferably 52, and the upper limit is typically 300, preferably 200, more preferably 150, even more preferably 100, and particularly preferably 80.
  • the lengths of the linker regions of Lw and Lz are not particularly limited. It is preferable that these linker regions have, for example, a length in which the X1a region and the X2a region can form a duplex, or a length in which the Y1a region and the Y2a region can form a duplex.
  • Each linker region of Lw and Lz is a region having an atomic group derived from an amino acid. These linker regions (Lw, Lz) are usually non-nucleotide linker regions.
  • the upper limit of the number of atoms forming the main chain of the linker region is typically 100, preferably 80, and more preferably 50.
  • the Lw linker region is, for example, a divalent group represented by the above formula (I), and the Lz linker is, for example, a divalent group represented by the above formula (I').
  • the single-stranded RNA produced by the production method according to this embodiment may consist of only ribonucleotides, may contain deoxynucleotides, non-nucleotides, and the like, and may be contained in ribonucleotides. It may contain a phosphorothioester bond in which the oxygen atom of the phosphorodiester bond is partially replaced with a sulfur atom.
  • the single-stranded RNA produced by the production method according to this embodiment is preferably composed of only ribonucleotides.
  • the Lz linker region and the Lw linker region are each independently a linker region having an atomic group derived from an amino acid, and the amino acid here may be either a natural amino acid or an artificial amino acid, and may be a substituent or a substituent. It may have a protecting group.
  • Examples of the Lz linker region include a divalent group represented by the following formula (I).
  • Y 11 and Y 21 each independently represent an alkylene group having 1 to 20 carbon atoms
  • Y 12 and Y 22 are each independently substituted with a hydrogen atom or an amino group. Either represents a good alkyl group, or Y 12 and Y 22 bond to each other at their ends to represent an alkylene group with 3-4 carbon atoms.
  • the terminal oxygen atom bonded to Y 11 are bonded to the phosphorus atom of the phosphoric acid ester of one of the terminal nucleotide of Z1 region and Z2 region and, The terminal oxygen atom bonded to Y 21 is bonded to the phosphorus atom of the phosphate ester of the other terminal nucleotide that is not bonded to Y 11 in the Z2 region and the Z1 region.
  • Y '11 and Y' 21 each independently represents an alkylene group having 1 to 20 carbon atoms
  • Y '12 and Y' 22 are each independently a hydrogen atom, or an amino group or represents optionally substituted alkyl group
  • Y 'and 12 and the Y' 22 are bonded to each other at their ends an alkylene group having 3 to 4 carbon atoms
  • the terminal oxygen atom bonded to Y '11 linker Lw region is linked with the phosphorus atom of the phosphoric acid ester of one of the terminal nucleotide of the W1 region and W2 regions, and, Y 'terminal oxygen atoms bonded to 21, Y of W2 region and W1 region' joins the phosphorus atom of the phosphoric acid ester of the other terminal nucleotide not bound to 11.
  • the alkylene group having 1 to 20 carbon atoms may be either linear or branched, and is preferably an alkylene group having 4 to 6 carbon atoms.
  • Examples of the alkylene group include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, an isobutylene group, a tert-butylene group, an n-pentylene group, an isopentylene group, a hexylene group and the like. Be done.
  • the alkyl group in the alkyl group which may be substituted with the amino group may be either linear or branched, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 5 carbon atoms. It is a group.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-provyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a hexyl group and the like. ..
  • Examples of the alkyl group that may be substituted with the amino group include those in which a part of the hydrogen atom of the above-exemplified alkyl group is substituted with an amino group.
  • the number of amino groups that the alkyl group that may be substituted with the amino group can have is not particularly limited, and is preferably 1. Further, the substitution position of the amino group in the alkyl group which may be substituted with the amino group is not particularly limited, and may be any position. Examples of the alkyl group substituted with the amino group include a 4-aminobutyl group.
  • the divalent group represented by any of the above formulas (I) and (I') is used.
  • the divalent group represented by the following formula (II-A) or (II-B) is used. Can be mentioned.
  • n and m each independently represent an integer of 1 to 20.
  • N and m are independent and preferably integers of 4 to 6, and n and m may be the same or different.
  • FIG. 1 shows an example of the first and second single-strand RNAs used in the production method according to this embodiment.
  • FIG. 1 shows a state in which the first and second single-strand RNAs are arranged in a straight line.
  • the schematic diagram at the bottom of FIG. 2 shows a state in which it is bound with ligase to form a single-stranded RNA.
  • the method for producing the first and second single-stranded RNA used in the production method according to this embodiment is not particularly limited, and a known solid-phase synthesis method, liquid phase synthesis method, or the like, a known nucleic acid synthesizer, or the like is used. Can be chemically synthesized. Examples of such a synthetic method include a phosphoramidite method, an H-phosphonate method, and the method described in International Publication No. 2013/027843.
  • amidite for phosphorylation at the 5'end may be used in solid-phase synthesis.
  • Commercially available amidite can be used as the 5'phosphoramidite.
  • an RNA molecule having a hydroxyl group at the 5'end is synthesized, deprotected, and then phosphorylated with a commercially available phosphorylating agent to form a phosphate group at the 5'end.
  • Single-stranded RNA having can be prepared.
  • the phosphorylating agent for example, a commercially available Chemical Phosphorylation Reagent (Glen Research) represented by the following structural formula (III-a) is known (European Patent Application Publication No. 0816368).
  • linker regions of Lz and Lw can be similarly prepared by a nucleic acid synthesizer using amidite as shown below.
  • amidite in the linker region for example, an amidite having a proline skeleton represented by the following structural formula (III-b) can be prepared by the method described in Example A4 of International Publication No. 2012/017919, and the following structural formula (III-b)
  • the following amidites represented by each of III-c), (III-d) and (III-e) can be prepared by the method described in Examples A1 to A3 of International Publication No. 2013/103146. ..
  • the bases that make up nucleotides are usually natural bases that make up nucleic acids, typically RNA, but unnatural bases may be used in some cases.
  • Examples of such non-natural bases include modified analogs of natural or non-natural bases.
  • bases examples include purine bases such as adenine and guanine, pyrimidine bases such as cytosine, uracil and thymine.
  • bases include inosine, xanthine, hypoxanthine, nubularine, isoganicine, and tubericine.
  • the base is, for example, an alkyl derivative such as 2-aminoadenine, 6-methylated purine; an alkyl derivative such as 2-propylated purine; 5-halouracil and 5-halocitosine; 5-propynyl uracil and 5-propynylcitosine; -Azouracil, 6-azocitosine and 6-azotimine; 5-uracil (psoid uracil), 4-thiouracil, 5-halouracil, 5- (2-aminopropyl) uracil, 5-aminoallyl uracil; 8-aminoallylated, amination, Thiolization, thioalkylation, hydroxylation and other 8-substituted purines; 5-trifluoromethylation and other 5-substituted pyrimidines; 7-methylguanine; 5-substituted pyrimidines; 6-azapyrimidine; N-2, N -6 and O-6 substituted purines (
  • reaction product containing the single-stranded RNA produced in the ligation step (I) is subjected to a reverse phase column using a mobile phase containing at least one salt selected from the group consisting of monoalkylamine salts and dialkylammonium salts.
  • a mobile phase containing at least one salt selected from the group consisting of monoalkylamine salts and dialkylammonium salts The step of purifying by chromatography will be described.
  • RNA ligase is classified into EC6.5.1.3, which is defined as an enzyme number by the International Union of Biochemistry and Molecular Biology, and has nick repair activity.
  • n and m represent the number of arbitrary nucleotides and are represented by one or more integers.
  • RNA ligase examples include T4 RNA ligase 2 derived from T4 bacteriophage. This RNA ligase 2 can be purchased from, for example, New England BioLabs. Further, as the RNA ligase, ligase 2 derived from vibriopage KVP40, Trypanosoma brucei RNA ligase, Deinococcus radiodurans RNA ligase, or Leishmania ligase RNA is exemplified. Such RNA ligase is obtained by, for example, extracting and purifying from each organism by the method described in the non-patent literature (Structure and Mechanism of RNA Ligase, Structure, Vol.12, PP.327-339.). It can also be used.
  • RNA ligase 2 derived from T4 bacteriophage
  • a protein consisting of an amino acid sequence having 95% or more identity with the amino acid sequence shown in SEQ ID NO: 5 and having double-stranded nick repair activity is also used. It is possible.
  • Such RNA ligase 2 includes not only the enzyme of the amino acid sequence shown in SEQ ID NO: 5, but also its variants T39A, F65A, F66A (RNA ligase structures reveal the basis for RNA specificity and conformative changes that drive ligation forward, Cell. (See Vol.127, pp.71-84.), Etc.) can be exemplified.
  • RNA ligase 2 can be obtained, for example, by a method using Escherichia coli bacteriophage T4 deposited in ATCC (American Type Culture Collection) as ATCC (registered trademark) 11303 or a method such as PCR based on the description in the above-mentioned document. Is possible.
  • RNA ligase 2 derived from KVP40 can be obtained by the method described in the non-patent document (characterization of bacteriophage KVP40 and T4 RNA ligase 2, Virology, vol. 319, PP. 141-151.). Specifically, for example, it can be obtained by the following method. That is, among the DNA extracted from bacteriophage KVP40 (for example, deposited with JGI as deposit number Go008199), the open reading frame 293 is digested with restriction enzymes by NdeI and BamHI, and then amplified by a polymerase chain reaction. The obtained DNA is incorporated into the plasmid vector pET16b (Novagen). Alternatively, the DNA sequence can be artificially synthesized by PCR.
  • a desired mutant can be obtained by DNA sequence analysis.
  • the obtained vector DNA was subjected to E.I. Incorporate into E. coli BL21 (DE3) and incubate in LB medium containing 0.1 mg / mL ampicillin. Add isopropyl- ⁇ -thiogalactoside to 0.5 mM and incubate at 37 ° C. for 3 hours. All subsequent operations are preferably performed at 4 ° C.
  • the cells are precipitated by centrifugation, and the precipitate is stored at ⁇ 80 ° C. Buffer A [50 mM Tris-HCl (pH 7.5), 0.2 M NaCl, 10% sucrose] is added to the frozen cells.
  • RNA ligase 2 derived from KVP40 can be obtained.
  • RNA ligase 2 As the RNA ligase 2 derived from KVP40, an RNA ligase having a double-stranded nick repair activity, which is a protein consisting of an amino acid sequence having 95% or more identity with the amino acid sequence of SEQ ID NO: 6, can be used.
  • RNA ligase can be obtained by the method described in the non-patent document (An RNA Ligase from Deinococcus radiodulans, J Biol Chem., Vol. 279, No. 49, PP. 50654-61.). For example, it is also possible to obtain the ligase from a biological material deposited with the ATCC as ATCC® BAA-816.
  • the Deinococcus radiodurans RNA ligase a protein consisting of an amino acid sequence having 95% or more identity with the amino acid sequence of SEQ ID NO: 7 and having double-stranded nick repair activity can be used.
  • a ligase examples include an RNA ligase having an amino acid sequence of SEQ ID NO: 7 and an RNA ligase having a mutation of K165A or E278A in the RNA ligase of SEQ ID NO: 7 (ex).
  • Trypanosoma brucei RNA ligase can be obtained in the non-patent document (Assiciation of Two Novel Proteins TbMP52 and TbMP48 with the Trypanosoma brucei RNA Editing Complex, Vol.21, No.2, PP.380-389.) ..
  • Leishmania tarentolae RNA ligase can be described in the non-patent document (The Mitochondrial RNA Ligase from Leishmania tarentolae Can Join RNA Molecule Bridged by a Complementary RNA, Vol. 274, No. 34, PP. 24289-24296). ..
  • T4 RNA ligase 2 derived from T4 bacteriophage is preferable.
  • the reaction conditions for allowing the RNA ligase to act on the first and second single-stranded RNAs are particularly limited as long as the RNA ligase functions and the desired single-stranded RNA can be produced. It can be set as appropriate.
  • the amount of RNA ligase used can be appropriately set according to the amount of the first and second single-stranded RNA to be linked, the reaction temperature and the reaction time.
  • the reaction time of the RNA ligase is selected, for example, from the range of 0.5 to 144 hours.
  • the pH of the RNA ligase treatment can be appropriately set according to the optimum pH of the enzyme used, and is selected from, for example, the range of pH 4 to 9.
  • the temperature of the RNA ligase treatment can be appropriately set according to the optimum temperature of the enzyme used, and is selected from, for example, the range of 0 to 50 ° C.
  • the reaction solution in which RNA ligase is allowed to act on the first and second single-stranded RNA may contain a buffer solution, a metal salt, ATP and the like.
  • the buffer solution include Tris-hydrochloric acid buffer solution, ATP buffer solution, potassium phosphate buffer solution, glycine-hydrochloric acid buffer solution, acetate buffer solution, citrate buffer solution and the like.
  • the metal salt include magnesium salt, potassium salt, calcium salt, sodium salt and the like.
  • a crude product containing single-stranded RNA produced by the action of RNA ligase can usually be isolated by using a method of precipitating, extracting and purifying RNA.
  • a method of precipitating RNA by adding a solvent having low solubility in RNA such as ethanol and isopropyl alcohol to the solution after the reaction, or phenol / chloroform / isoamyl alcohol (for example, phenol / chloroform / isoamyl).
  • HPLC high performance liquid chromatography
  • a mobile phase containing at least one ammonium salt selected from the group consisting of monoalkylammonium salts and dialkylammonary salts is used.
  • ammonium salts are typically ammonium salts composed of organic or inorganic acids and monoalkylamines or dialkylamines.
  • the mobile phase is a non-hydrophobic mobile phase, and specific examples thereof include those containing an ammonium salt as described above.
  • mobile phases include solvents containing C1-C3 alcohols (eg, methanol, ethanol, isopropanol or n-propanol), nitriles (eg, acetonitrile) and, in some cases, water.
  • the acid forming the ammonium salt include carbonic acid, acetic acid, formic acid, trifluoroacetic acid and propionic acid.
  • Such mobile phases typically exemplify eluents consisting of monoalkylamines or dialkylamines / acetic acid / water / acetonitrile.
  • Examples of the concentration of the ammonium salt include those of 1-200 mM, 5-150 mM or 20-100 mM.
  • Examples of the pH range of the mobile phase include a pH range of 6-8 or 6.5-7.5.
  • the mobile phase may contain a triethylammonium salt or the like other than the ammonium salt, but the ratio of at least one ammonium salt selected from the group consisting of monoalkylammonium salt and dialkylammonium salt is based on the total ammonium salt. For example, 30 mol% or more, 40 mol% or more, 50 mol% or more, 60 mol% or more, 70 mol% or more, 80 mol% or more, 90 mol% or more, or at least one ammonium salt selected from the group consisting of monoalkylammonium salts and dialkylammonium salts. Consists of only.
  • the at least one ammonium salt selected include, for example, at least one ammonium salt selected from the group consisting of hexyl ammonium salt, dipropyl ammonium salt, dibutyl ammonium salt, and quaternary ammonium salt. , It is preferable to use an ammonium salt selected from these.
  • silica having one or more of a phenyl group, an alkyl group having 1 to 20 carbon atoms, or a cyanopropyl group fixed as a hydrophobic stationary phase or Polymers are exemplified.
  • examples of the silica or polymer as such a filler include those having a particle size of 2 ⁇ m or more, or 5 ⁇ m or more.
  • a mobile phase containing the ammonium salt is passed through a column containing the packing material, and then a solution in which a single-stranded RNA ligated by rigase is dissolved in the mobile phase is passed. Then, the impurities contained in the RNA (unreacted first and / or second) are subjected to a gradient (gradient) in which the RNA is bound to the column and then the concentration of the organic solvent in the mobile phase through which the solution is passed is gradually increased. It is carried out by separating and eluting the target RNA molecule (such as the RNA strand of).
  • the temperature of the reverse phase column chromatography is, for example, 20-100 ° C, 25-80 ° C, or 30-60 ° C.
  • the fractions obtained by reverse phase column chromatography were analyzed for composition by UV absorption at a wavelength of 260 nm under the same chromatographic conditions as the separation conditions, and the selected fractions were collected and purified. You get things.
  • those capable of suppressing the expression of the target gene can be used as a therapeutic or prophylactic agent for diseases caused by the gene.
  • the case of chemically synthesizing a single-stranded RNA having a length of about 20 bases is superior in terms of yield and yield as compared with the case of chemically synthesizing a single-stranded RNA having a length of about 50 bases or more. Therefore, rather than chemically synthesizing a single-stranded RNA having a length of about 50 bases or more, a high yield and yield can be obtained by chemically synthesizing a single-stranded RNA having a length of about 20 bases, ligating and ligating them. In addition, the unligated RNA strand is excellent in quality because it can be easily removed by purification.
  • RNA interference method it is possible to produce a single-stranded RNA having a length of about 50 bases or more with high yield, yield and quality.
  • RNA interference method by including a nucleotide sequence that suppresses the expression of the target gene by RNA interference, as a result, single-stranded RNA that can be used in the RNA interference method can be efficiently produced, and cost reduction is expected.
  • Example 1 1. Synthesis of First Single-Strand RNA
  • the single-strand RNA shown below (strand I in FIG. 3) was synthesized.
  • the strand consists of 31 bases in length and corresponds to the first single-strand RNA.
  • SEQ ID NO: 1 The description of SEQ ID NO: 1 in the sequence listing indicates the base sequence from the 4th base after the 3rd "P" from the 5'end to the 29th base before the 30th "P".
  • the single-strand RNA was synthesized from the 3'side to the 5'side using a nucleic acid synthesizer (trade name NTS M-4MX-E, Nippon Techno Service Co., Ltd.) based on the phosphoramidite method.
  • RNA amidite uridine EMM amidite described in Example 2 of International Publication No. 2013/027843, citidine EMM amidite described in Example 3, adenosine EMM amidite described in Example 4, and Example.
  • guanosine EMM amidite described in 5
  • Chemical Phosphoramidite Reagent (Glen Research) was used for 5'phosphorylation, porous glass was used as the solid phase carrier, and trichloroacetic acid toluene solution was used as the deblocking solution.
  • 5-benzylthio-1H-tetrazole was used as a condensing agent
  • an iodine solution was used as an oxidizing agent
  • an anhydrous phenoxyacetic acid solution and an N-methylimidazole solution were used as capping solutions.
  • Second Single-Strand RNA The single-strand RNA shown below (chain II in FIG. 3) was synthesized. The strand consists of 22 bases in length and corresponds to the second single-strand RNA.
  • Chain III AGCAGAGUACACACAGCAUAUACCPGGUAUAUGCUGUGUACUCUGCUUCPG (5'-3') (SEQ ID NOs: 3 and 4)
  • the base sequence from the 5'-terminal base to the 22nd base corresponds to the sequence of SEQ ID NO: 2
  • the base sequence from the 23rd base to the 3'-terminal base corresponds to the above-mentioned SEQ ID NO: 1.
  • SEQ ID NO: 3 in the sequence listing indicates the base sequence from the 5'-terminal base to before the 25th "P", and the description of SEQ ID NO: 4 is from the 26th base to the 52nd base. The base sequence before "P" of is shown.
  • the composition was 1250 units T4 RNA ligase 2 (New England Biolabs), 20 mM MgCl 2 10 mM DTT 4 mM ATP mixed solution 3.2 mL, and the reaction scale was 32 mL. Then, the mixture was incubated at 37 ° C. for 1 hour, 1 mL of a 0.2 M aqueous ethylenediaminetetraacetic acid solution was added to the reaction solution, and the mixture was allowed to stand in a water bath at 65 ° C. for 10 minutes to stop the reaction.
  • the purity of the target product in the crude product was 57.5%, and the residual ratios of chain I and chain II were 3.0% and 15.0%, respectively. It was.
  • the area value of the target object was calculated as the purity with respect to the total area value of the obtained chromatogram detected by the UV spectrum having a wavelength of 260 nm in HPLC, and the area value of the raw material with respect to the total area value was calculated as the residual ratio.
  • reaction solution 16 mL was taken out, filtered using Milex-GP (Merck & Co., Inc.), and washed with 1 mL of 100 mM hexyl ammonium acetate (pH 7.0).
  • single-stranded RNA can be easily produced.
  • SEQ ID NOs: 1 to 4 indicate the base sequence of RNA.
  • SEQ ID NOs: 5 to 7 represent amino acid sequences.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、(I)5'末端にリン酸基を有する第1の一本鎖RNAと、3'末端に水酸基を有する第2の一本鎖RNAに、国際生化学連合が酵素番号として定めるEC6.5.1.3に分類され、二本鎖ニック修復活性を有するRNAリガーゼを作用させ、前記第1の一本鎖RNAと前記第2の一本鎖RNAとを連結する工程、および(II)(I)の連結工程で生成した一本鎖RNAを含む反応生成物をモノアルキルアミン塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つの塩を含む移動相を用いた逆相カラムクロマトグラフィーによって精製する工程を含む一本鎖RNAの製造方法、を提供する。

Description

一本鎖RNAの製造方法
 本発明は、一本鎖RNAの製造方法に関する。
 遺伝子の発現を抑制可能な核酸分子として、特許文献1では、核酸化合物が報告されている。かかる核酸化合物としては、核酸化合物のリンカー部分にアミノ酸構造を有するものも知られている。また、これらの核酸化合物は、生体内で分解され難く、高い生体安定性を有しており、免疫応答を回避できるという特性を持っている。
 かかる優れた特性を有する核酸化合物は、約50塩基程度の長い鎖長のため、合成方法においてより簡便な方法が求められている。
国際公開第2012/017919号
 本発明は、一本鎖RNAの簡便な製造方法を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、第1の一本鎖のRNAと第2の一本鎖のRNAとをある種のRNAリガーゼを用いてライゲーションを行うことにより、目的とする50塩基長以上の一本鎖RNAを容易に製造することができ、さらに生成した目的物を逆相クロマトグラフィーにより精製することができることを見出した。
 本発明は、これら知見に基づき、更に検討を重ねて完成されたものであり、次の一本鎖RNAの製造方法を提供するものである。
 本発明は以下の態様を包含する。
[1] (I)5’末端にリン酸基を有する第1の一本鎖RNAと、3’末端に水酸基を有する第2の一本鎖RNAに、国際生化学連合が酵素番号として定めるEC6.5.1.3に分類され、二本鎖ニック修復活性を有するRNAリガーゼを作用させ、前記第1の一本鎖RNAと前記第2の一本鎖RNAとを連結する工程、および
 (II)(I)の連結工程で生成した一本鎖RNAを含む反応生成物をモノアルキルアミン塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つの塩を含む移動相を用いた逆相カラムクロマトグラフィーによって精製する工程、を含む一本鎖RNAの製造方法であって、
a)第1の一本鎖RNAが、5’末端側から順に、Y2a領域、Lzリンカー領域、Y1a領域、X1a領域、W1a領域、Lwリンカー領域及びW2a領域からなる一本鎖RNAであり、
b)第2の一本鎖RNAが、X2a領域からなる一本鎖RNAであり、
c)X1a領域とX2a領域が互いに相補的な少なくとも4個の同数のヌクレオチド配列を含み、
d)Y1a領域とY2a領域が互いに相補的な少なくとも1個の同数のヌクレオチド配列を含み、
e)W1a領域及びW2a領域が、任意の数のヌクレオチド配列を含み、
f)Lwリンカー領域及びLzリンカー領域がアミノ酸から誘導される原子団を有するリンカー領域であり、そして、
g)生成する一本鎖RNAが、5’末端側から順に、X2a領域、Y2a領域、Lzリンカー領域、Y1a領域、X1a領域、W1a領域、Lwリンカー領域及びW2a領域からなる連結一本鎖RNAであることを特徴とする、
一本鎖RNAの製造方法。
[2] 前記Lzリンカー領域およびLwリンカー領域が、下記式(I)で表される二価の基である、前項[1]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000005
(式中、Y11及びY21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y12及びY22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY12とY22とがその末端で互いに結合して炭素数3~4のアルキレン基を表し、そして、
 Y11に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、
 Y21に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のY11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
[3] 前記Lzリンカー領域が、下記式(I)で表される二価の基であり、前記Lzリンカー領域が、下記式(I’)で表される二価の基である、前項[1]または[2]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、Y11及びY21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y12及びY22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY12とY22とがその末端で互いに結合して炭素数3~4のアルキレン基を表し、そして、
 Y11に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、
 Y21に結合している末端の酸素原子は、前記Y2領域および前記Y1領域のY11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
Figure JPOXMLDOC01-appb-C000007
(式中、Y’11及びY’21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y’12及びY’22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY’12とY’22とがその末端で互いに結合し炭素数3~4のアルキレン基を表し、
 Y’11に結合している末端の酸素原子は、前記Z1領域および前記Z2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、そして、
 Y’21に結合している末端の酸素原子は、前記Z2領域および前記Z1領域のY’11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
[4] 前記Lzリンカー領域および前記Lwリンカー領域は、それぞれ独立して、下記式(II-A)または(II-B)で表される構造の二価の基である、前項[1]または[2]に記載の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式中、nおよびmは、それぞれ独立して、1から20の何れかの整数を表す。)
[5] 前記X1領域、前記Y1a領域、前記X1a領域及び前記W1a領域からなる領域、並びに前記X2a領域及び前記Y2a領域からなる領域の少なくとも一方に、RNA干渉法の標的となる遺伝子の発現を抑制するヌクレオチド配列を含む、前項[1]から[4]の何れか一項に記載の製造方法。
[6] 前記RNAリガーゼが、T4バクテリオファージ由来のT4 RNAリガーゼ2、KVP40由来のリガーゼ2、Trypanosoma brucei RNAリガーゼ、Deinococcus radiodurans RNAリガーゼ、またはLeishmania tarentolae RNAリガーゼである、前項[1]から[5]の何れか一項に記載の製造方法。
〔7〕 前記RNAリガーゼが、配列番号5、6、または7に記載のアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなるRNAリガーゼである、前項[1]から[6]の何れか一項に記載の製造方法。
[8] 前記RNAリガーゼが、T4バクテリオファージ由来のT4 RNAリガーゼ2またはKVP40由来のRNAリガーゼ2である、前項[1]から[7]の何れか一項に記載の製造方法。
〔9〕 前記モノアルキルアミン塩もしくはジアルキルアミン塩が、ヘキシルアンモニウム塩、ジプロピルアンモニウム塩、ジブチルアンモニウム塩、およびジアミルアンモニウム塩からなる群から選ばれる少なくとも1つの塩である、前項[1]から[8]の何れか一項に記載の製造方法。
〔10〕 前記逆相カラムクロマトグラフィーの充填剤が、フェニル基、炭素数1~20のアルキル基、またはシアノプロピル基のいずれか1つ以上が固定されたシリカまたはポリマーである、前項[1]から[9]のいずれか一項に記載の製造方法。
 本発明の方法によれば、一本鎖RNAの簡便な製造方法が提供される。
実施例1で使用した配列を示す図である。 実施例1で合成した連結一本鎖RNAを示す図である。 RNA鎖I、IIおよびIIIを示す図である。
 以下、本発明について詳細に説明する。
 なお、本明細書において「含む(comprise)」とは、「本質的にからなる(essentially consist of)」という意味と、「のみからなる(consist of)」という意味をも包含する。
 本発明において「遺伝子」とは、特に言及しない限り、二本鎖DNA、一本鎖DNA(センス鎖又はアンチセンス鎖)、及びそれらの断片が含まれる。また、本発明において「遺伝子」とは、特に言及しない限り、調節領域、コード領域、エクソン、及びイントロンを区別することなく示すものとする。
 本明細書において、ヌクレオチド数の数値範囲は、例えば、その範囲に属する正の整数を全て開示するものであり、具体例として、「1~4ヌクレオチド」との記載は、「1ヌクレオチド」、「2ヌクレオチド」、「3ヌクレオチド」、および「4ヌクレオチド」の全ての開示を意味する。また、「1~4塩基」との記載は、「1塩基」、「2塩基」、「3塩基」、および「4塩基」の全ての開示を意味する。本明細書において、「ヌクレオチド数」及び「塩基数」は、相互に互換的に、ヌクレオチド配列の長さを表す。
(I)5’末端にリン酸基を有する第1の一本鎖RNAと、3’末端に水酸基を有する第2の一本鎖RNAに、国際生化学連合が酵素番号として定めるEC6.5.1.3に分類され、二本鎖ニック修復活性を有するRNAリガーゼを作用させ、前記第1の一本鎖RNAと前記第2の一本鎖RNAとを連結する工程について説明する。
 前記連結一本鎖RNAは、Y1a領域とX1a領域とW1a領域とからなるA領域、および、X2a領域とY2a領域とからなるB領域の少なくとも一方に、遺伝子の発現を抑制するヌクレオチド配列を含んでいてもよい。そのようなヌクレオチド配列として、RNA干渉法により標的遺伝子の発現を抑制する配列を含んでいてもよい。
 RNA干渉(RNAi)とは、標的遺伝子のmRNA配列の少なくとも一部と同一の配列からなるセンスRNA及びこれと相補的な配列からなるアンチセンスRNAからなる二本鎖RNAを細胞内に導入することにより、標的遺伝子のmRNAが分解され、その結果タンパク質への翻訳阻害を誘導し、標的遺伝子の発現が阻害される現象をいう。RNA干渉の機構の詳細については未だに不明な部分もあるが、DICERといわれる酵素(RNase III核酸分解酵素ファミリーの一種)が二本鎖RNAと接触し、二本鎖RNAがsiRNAと呼ばれる小さな断片に分解されるのが主な機構と考えられている。
 標的となる遺伝子は、特に制限されず、所望の遺伝子を適宜選択することができる。標的となる遺伝子の発現を抑制するヌクレオチド配列は、遺伝子発現を抑制可能な配列である限り特に制限されず、公知のデータベース(例えば、GenBankなど)等に登録されている標的遺伝子の配列情報を基に常法により設計することが可能である。当該ヌクレオチド配列は、標的となる遺伝子の所定の領域に対して、80%または85%以上、好ましくは90%以上、より好ましくは95%以上、更に好ましくは98%以上、最も好ましくは100%の同一性を有する。
 RNA干渉により、標的遺伝子の発現を抑制するヌクレオチド配列としては、例えば、標的遺伝子のmRNA配列の少なくとも一部と同一の配列からなるセンスRNAを用いることができる。RNA干渉により、標的遺伝子の発現を抑制するヌクレオチド配列の塩基数は、特に制限されず、例えば19~30塩基であり、好ましくは19~21塩基である。
 A領域およびB領域のいずれか一方または両者は、同じ標的遺伝子に対する同一の発現抑制配列を2つ以上有していてもよいし、同じ標的に対する異なる発現抑制配列を2つ以上有していてもよいし、異なる標的遺伝子に対する異なる発現抑制配列を2つ以上有していてもよい。A領域が、2つ以上の発現抑制配列を有する場合、各発現抑制配列の配置箇所は、特に制限されず、X1a領域およびY1a領域のいずれか一領域または両者でもよいし、両者に架かる領域であってもよい。B領域が、2つ以上の発現抑制配列を有する場合、各発現抑制配列の配置箇所は、X2a領域およびY2a領域のいずれか一領域または両者でもよいし、両者に架かる領域であってもよい。発現抑制配列は、標的遺伝子の所定領域に対して、90%以上の相補性を有していることが好ましく、より好ましくは95%であり、さらに好ましくは98%であり、特に好ましくは100%である。
 かかる連結一本鎖RNAは、5’末端にリン酸基を有する第1の一本鎖RNAと3’末端に水酸基を有する第2の一本鎖RNAとにリガーゼを作用させ、前記第1の一本鎖RNAと前記第2の一本鎖とを連結する工程で製造される(図2参照)。
 連結一本鎖RNAは、分子内において相補性のある配列部分が並び、分子内で部分的に二重鎖を形成しうる。連結一本鎖RNA分子は、図2に示すように、X1a領域とX2a領域が互いに相補性を有するヌクレオチド配列を含み、さらにY1a領域とY2a領域が互いに相補性を有するヌクレオチド配列を含み、これらの相補性を有する配列との間で、二重鎖が形成され、LwおよびLzのリンカー領域が、その長さに応じてループ構造をとる。図2は、あくまでも、前記領域の連結順序および二重鎖部を形成する各領域の位置関係を示すものであり、例えば、各領域の長さ、リンカー領域(LwおよびLz)の形状等は、これらに限定されない。
 Y1a領域とX1a領域とW1a領域とからなるA領域、およびX2a領域とY2a領域とからなるB領域の少なくとも一方が、RNA干渉により標的遺伝子の発現を抑制する配列を少なくとも1つ含んでいてもよい。連結一本鎖RNAにおいて、A領域とB領域とは、完全に相補的でもよいし、1もしくは数個のヌクレオチドが非相補的であってもよいが、完全に相補的であることが好ましい。前記1若しくは数個のヌクレオチドは、例えば、1~3個のヌクレオチド、好ましくは1または2個のヌクレオチドである。Y1a領域は、Y2a領域の全領域に対して相補的なヌクレオチド配列を有している。Y1a領域とY2a領域とは、互いに完全に相補的なヌクレオチド配列であり、1つ以上の同数のヌクレオチドからなるヌクレオチド配列である。X1a領域は、X2a領域の全領域に対して相補的なヌクレオチド配列を有している。X1a領域とX2a領域とは、互いに完全に相補的なヌクレオチド配列であり、2つ以上の同数のヌクレオチドからなるヌクレオチド配列である。本実施形態の製造方法では、W1a領域およびW2a領域は、任意の数のヌクレオチド配列を含む領域であり、必須の配列ではなく、ヌクレオチドの数が0の態様であってもよく、1つ以上のヌクレオチドを含む態様であってもよい。
 以下に各領域の長さを例示するが、これに限定されない。
 連結一本鎖RNA分子において、W2a領域のヌクレオチド数(W2an)と、X2a領域のヌクレオチド数(X2an)およびY2a領域のヌクレオチド数(Y2an)との関係は、例えば、下記式(1)の条件を満たす。W1a領域のヌクレオチド数(W1an)と、X1a領域のヌクレオチド数(X1an)およびY1a領域のヌクレオチド数(Y1an)との関係は、例えば、下記式(2)の条件を満たす。
   W2an≦X2an+Y2an  ・・・(1)
   W1an≦X1an+Y1an  ・・・(2)
 連結一本鎖RNA分子において、X1領域のヌクレオチド数(X1an)とY1a領域のヌクレオチド数(Y1an)との関係は、特に制限されず、例えば、下記式のいずれかの条件を満たす。
   X1an=Y1an  ・・・(3)
   X1an<Y1an  ・・・(4)
   X1an>Y1an  ・・・(5)
 本実施形態の方法において、X1a領域のヌクレオチド数(X1an)、及びX2a領域のヌクレオチド数(X2an)は、2つ以上であり、好ましくは4つ以上であり、より好ましくは10個以上である。
 Y1a領域のヌクレオチド数(Y1an)、及びY2a領域のヌクレオチド数(Y2an)は、1つ以上であり、好ましくは2つ以上であり、より好ましくは4つ以上である。
 W1a領域は、好ましくは、W2a領域の全領域またはW2a領域の部分領域に対して相補的なヌクレオチド配列を含む。W1a領域とW2a領域とは、1もしくは数個のヌクレオチドが非相補的であってもよいが、完全に相補的であることが好ましい。
 より詳しくは、W2a領域は、W1a領域よりも、1ヌクレオチド以上短いヌクレオチド配列からなることが好ましい。この場合、W2a領域のヌクレオチド配列全体が、W1a領域の任意の部分領域の全てのヌクレオチドと相補的となる。W2a領域の5’末端から3’末端までのヌクレオチド配列は、W1a領域の3’末端のヌクレオチドから始まり5’末端に向かってのヌクレオチド配列と相補性のある配列であることがより好ましい。
 連結一本鎖RNA分子において、X1a領域のヌクレオチド数(X1an)とX2a領域の塩基数(X2an)との関係、Y1a領域のヌクレオチド数(Y1an)とY2a領域のヌクレオチド数(Y2an)との関係、並びにW1a領域のヌクレオチド数(W1an)とW2a領域のヌクレオチド数(W2an)との関係は、下記式(6)、(7)および(8)の条件をそれぞれ満たす。
   X1an=X2an  ・・・(6)
   Y1an=Y2an  ・・・(7)
   W1an≧W2an  ・・・(8)
 連結一本鎖RNAにおいて、リンカー領域(Lw、Lz)を除くヌクレオチド数の合計は、下限が、典型的には、38であり、好ましくは42であり、より好ましくは50であり、さらに好ましくは51であり、特に好ましくは52であり、上限が、典型的には、300であり、好ましくは200であり、より好ましくは150であり、さらに好ましくは100であり、特に好ましくは80である。
 連結一本鎖RNAにおいて、LwおよびLzのリンカー領域の長さは、特に制限されない。これらのリンカー領域は、例えば、X1a領域とX2a領域とが二重鎖を形成可能な長さ、あるいはY1a領域とY2a領域とが二重鎖を形成可能な長さであることが好ましい。LwおよびLzの各リンカー領域は、アミノ酸から誘導される原子団を有する領域である。これらのリンカー領域(Lw、Lz)は、通常、非ヌクレオチドのリンカー領域である。
 リンカー領域の主鎖を形成する原子の数は、その上限は、典型的には、100であり、好ましくは80であり、より好ましくは50である。
 Lwリンカー領域は、例えば、上記式(I)で表される二価の基であり、Lzリンカーは、例えば、上記式(I’)で表される二価の基である。
 本態様にかかる製造方法により製造される一本鎖RNAは、リボヌクレオチドのみからなるものであってもよく、デオキシヌクレオチド、非ヌクレオチドなどを含むものであってもよく、さらには、リボヌクレオチド中のホスホロジエステル結合の酸素原子が一部硫黄原子に置換されたホスホロチオエステル結合を含むものであってもよい。本態様にかかる製造方法により製造される一本鎖RNAは、好ましくはリボヌクレオチドのみから構成されるものである。
 Lzリンカー領域及びLwリンカー領域は、それぞれ独立に、アミノ酸から誘導される原子団を有するリンカー領域であり、ここでのアミノ酸は天然アミノ酸及び人工アミノ酸のいずれであってもよく、また、置換基又は保護基を有するものであってもよい。
 Lzリンカー領域としては、例えば、下記式(I)で表される二価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、Y11及びY21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y12及びY22は、それぞれ独立して、水素原子、又はアミノ基で置換されていてもよいアルキル基を表すか、或いはY12とY22とがその末端で互いに結合し炭素数3~4のアルキレン基を表し、
 Y11に結合している末端の酸素原子は、Z1領域及びZ2領域のいずれか一方の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、そして、
 Y21に結合している末端の酸素原子は、Z2領域及びZ1領域のY11とは結合していない他方の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
 また、Lwリンカー領域としては、下記式(I’)で表される二価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式中、Y’11及びY’21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y’12及びY’22は、それぞれ独立して、水素原子、又はアミノ基で置換されていてもよいアルキル基を表すか、或いはY’12とY’22とがその末端で互いに結合し炭素数3~4のアルキレン基を表し、
 リンカーLw領域のY’11に結合している末端の酸素原子は、W1領域及びW2領域の何れか一方の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、そして、
 Y’21に結合している末端の酸素原子は、W2領域及びW1領域のY’11とは結合していない他方の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
 前記炭素数1~20のアルキレン基は、直鎖状又は分岐鎖状のいずれでもよく、好ましくは炭素数4~6のアルキレン基である。前記アルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、tert-ブチレン基、n-ペンチレン基、イソペンチレン基、及びヘキシレン基等が挙げられる。
 前記アミノ基で置換されていてもよいアルキル基におけるアルキル基は、直鎖状又は分岐鎖状のいずれでもよく、好ましくは炭素数1~10のアルキル基、より好ましくは炭素数1~5のアルキル基である。前記アルキル基としては、例えば、メチル基、エチル基、n-プロビル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、及びヘキシル基等が挙げられる。前記アミノ基で置換されていてもよいアルキル基としては、前記例示したアルキル基の水素原子の一部がアミノ基で置換されたものもまた例示される。
 前記アミノ基で置換されていてもよいアルキル基が有し得るアミノ基の数は特に制限されず、好ましくは1である。また、前記アミノ基で置換されていてもよいアルキル基におけるアミノ基の置換位置も特に制限されず、いずれの位置であってもよい。アミノ基で置換されたアルキル基としては、例えば、4-アミノブチル基が挙げられる。
 上記式(I)及び(I’)のいずれかで表される二価の基の好ましい具体例としては、下記式(II-A)又は(II-B)で表される二価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式中、n及びmは、それぞれ独立して、1から20の何れかの整数を表す。)
 n及びmは、それぞれ独立して、好ましくは4~6の整数であり、nとmは同じであってもよいし、異なっていてもよい。
 本態様にかかる製造方法で用いる第1および第2の一本鎖RNAの一例を図1に示す。図1では第1および第2の一本鎖RNAを直線状に並べた状態を示している。図2の下の模式図ではリガーゼで結合させて一本鎖RNAとした状態を示している。
 本明細書及び図面において示す配列においては、「p」の略号は、5’末端の水酸基がリン酸基で修飾されていることを示す。また、配列中の「P」の略号は、下記構造式(III-A)で表されるアミダイトを用いて導入される構造である。
Figure JPOXMLDOC01-appb-C000012
 本態様にかかる製造方法で用いる第1および第2の一本鎖RNAの製造方法は、特に制限されず、公知の固相合成法、液相合成法等や、公知の核酸合成装置等を用いて化学的に合成することができる。そのような合成方法としては、例えば、ホスホロアミダイト法、H-ホスホネート法、国際公開第2013/027843号に記載の方法などが挙げられる。
 一本鎖RNAの5’位のリン酸化には、5’末端のリン酸化用のアミダイトを固相合成にて使用してもよい。5’リン酸化アミダイトは市販のアミダイトを使用することができる。また、固相合成にて、5’末端が水酸基であるRNA分子を合成しておき、脱保護を行った後に、市販のリン酸化剤にてリン酸化することで5’末端にリン酸基を有する一本鎖RNAを調製することができる。リン酸化剤としては、例えば下記構造式(III-a)で示される市販のChemical Phosphorylation Reagent(Glen Research)などが知られている(欧州特許出願公開第0816368号明細書)。
Figure JPOXMLDOC01-appb-C000013
 また、Lz及びLwのリンカー領域については、以下に示すようなアミダイトを使用して、同様に核酸合成機にて調製することができる。リンカー領域のアミダイトとしては、例えば、下記構造式(III-b)に示されるプロリン骨格を有するアミダイトは国際公開第2012/017919号の実施例A4に記載の方法にて調製でき、下記構造式(III-c)、(III-d)及び(III-e)のそれぞれで表される下記のアミダイトは国際公開第2013/103146号の実施例A1~A3に記載の方法にて調製することができる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 ヌクレオチドを構成する塩基は、通常は、核酸、典型的にはRNAを構成する天然の塩基であるが、非天然の塩基を場合によっては、使用してもよい。かかる非天然の塩基としては、天然あるいは非天然の塩基の修飾アナログが例示される。
 塩基の例としては、例えば、アデニンおよびグアニン等のプリン塩基、シトシン、ウラシルおよびチミン等のピリミジン塩基等が挙げられる。塩基は、この他に、イノシン、キサンチン、ヒポキサンチン、ヌバラリン(nubularine)、イソグアニシン(isoguanisine)、ツベルシジン(tubercidine)等が挙げられる。前記塩基は、例えば、2-アミノアデニン、6-メチル化プリン等のアルキル誘導体;2-プロピル化プリン等のアルキル誘導体;5-ハロウラシルおよび5-ハロシトシン;5-プロピニルウラシルおよび5-プロピニルシトシン;6-アゾウラシル、6-アゾシトシンおよび6-アゾチミン;5-ウラシル(プソイドウラシル)、4-チオウラシル、5-ハロウラシル、5-(2-アミノプロピル)ウラシル、5-アミノアリルウラシル;8-ハロ化、アミノ化、チオール化、チオアルキル化、ヒドロキシル化および他の8-置換プリン;5-トリフルオロメチル化および他の5-置換ピリミジン;7-メチルグアニン;5-置換ピリミジン;6-アザピリミジン;N-2、N-6、およびO-6置換プリン(2-アミノプロピルアデニンを含む);5-プロピニルウラシルおよび5-プロピニルシトシン;ジヒドロウラシル;3-デアザ-5-アザシトシン;2-アミノプリン;5-アルキルウラシル;7-アルキルグアニン;5-アルキルシトシン;7-デアザアデニン;N6,N6-ジメチルアデニン;2,6-ジアミノプリン;5-アミノ-アリル-ウラシル;N3-メチルウラシル;置換1,2,4-トリアゾール;2-ピリジノン;5-ニトロインドール;3-ニトロピロール;5-メトキシウラシル;ウラシル-5-オキシ酢酸;5-メトキシカルボニルメチルウラシル;5-メチル-2-チオウラシル;5-メトキシカルボニルメチル-2-チオウラシル;5-メチルアミノメチル-2-チオウラシル;3-(3-アミノ-3-カルボキシプロピル)ウラシル;3-メチルシトシン;5-メチルシトシン;N4-アセチルシトシン;2-チオシトシン;N6-メチルアデニン;N6-イソペンチルアデニン;2-メチルチオ-N6-イソペンテニルアデニン;N-メチルグアニン;O-アルキル化塩基等が挙げられる。また、プリン塩基およびピリミジン塩基には、例えば、米国特許第3,687,808号、「Concise Encyclopedia Of Polymer Science And Engineering」、858~859頁、クロシュビッツ ジェー アイ(Kroschwitz J.I.)編、John Wiley & Sons、1990、およびイングリッシュら(Englischら)、Angewandte Chemie、International Edition、1991、30巻、p.613に開示されるものが含まれる。
 次いで、前記(I)の連結工程で生成した一本鎖RNAを含む反応生成物をモノアルキルアミン塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つの塩を含む移動相を用いた逆相カラムクロマトグラフィーによって精製する工程について説明する。
 RNAリガーゼは、国際生化学・分子生物学連合が酵素番号として定めるEC6.5.1.3に分類され、ニック修復活性を有する。当該RNAリガーゼとは、ATP + (ribonucleotide)n-3'-hydroxyl + 5'-phospho-(ribonucleotide)m <=> (ribonucleotide)n+m + AMP + diphosphateの反応を触媒する酵素であって、二本鎖核酸におけるニックを修復する活性を有するものである。ただし、nおよびmは任意のヌクレオチドの数を表し、1つ以上の整数で表される。
 かかるRNAリガーゼとしては、例えば、T4バクテリオファージ由来のT4 RNAリガーゼ2が例示される。このRNAリガーゼ2は、例えば、New England BioLabsから購入できる。さらに、RNAリガーゼとしては、ビブリオファージ(vibriophage)KVP40由来のリガーゼ2、Trypanosoma brucei RNAリガーゼ、Deinococcus radiodurans RNAリガーゼ、若しくはLeishmania tarentolae RNAリガーゼが例示される。かかるRNAリガーゼは、例えば、非特許文献(Structure and Mechanism of RNA Ligase, Structure, Vol.12, PP.327-339.)に記載の方法で各生物から抽出および精製することで得られたものを用いることもできる。
 T4バクテリオファージ由来のT4 RNAリガーゼ2としては、配列番号5に記載のアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなるタンパク質であって、二本鎖ニック修復活性を有するRNAリガーゼも使用可能である。かかるRNAリガーゼ2としては、配列番号5に記載のアミノ酸配列の酵素のほかに、その変異体であるT39A,F65A,F66A(RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward, Cell. Vol.127,pp.71-84.参照)などを例示することができる。かかるRNAリガーゼ2は、例えば、前記文献の記載に基づき、ATCC(登録商標)11303としてATCC(American Type Culture Collection)に寄託されている、Escherichia coli bacteriophage T4を用いる方法やPCR等の方法で得ることが可能である。
 KVP40由来のRNAリガーゼ2は、非特許文献(Characterization ofbacteriophage KVP40 and T4 RNA ligase 2, Virology, vol. 319, PP.141-151.)に記載の方法で取得することができる。具体的には、例えば、以下のような方法で取得できる。すなわち、バクテリオファージKVP40(例えば、寄託番号Go008199としてJGIに寄託されている)から抽出したDNAのうち、オープンリーディングフレーム293を、NdeIおよびBamHIによって制限酵素消化したのちに、ポリメラーゼ連鎖反応により増幅させる。得られたDNAをプラスミドベクターpET16b(Novagen)に組み込む。または、当該のDNA配列をPCRによって人工合成することもできる。ここで、DNA配列解析により、所望の変異体を得ることができる。続いて、得られたベクターDNAをE.coli BL21(DE3)に組み込み、0.1mg/mLアンピシリンを含むLB培地中にて培養する。イソプロピル-β-チオガラクトシドを0.5mMになるように添加し、37℃で3時間培養する。その後の操作はすべて4℃で行うことが好ましい。まず、遠心操作により菌体を沈殿させ、沈殿物を-80℃にて保管する。凍った菌体にバッファーA[50mM Tris-HCl(pH7.5),0.2M NaCl,10%スクロース]を加える。そして、リゾチームとTriton X-100を加え、超音波によって菌体を破砕し、目的物を溶出させる。その後、アフィニティクロマトグラフィやサイズ排除クロマトグラフィーなどを利用して目的物を単離する。そして、得られた水溶液を遠心ろ過し、溶離液をバッファーに置換することによりリガーゼとして使用することができる。
 このようにして、KVP40由来のRNAリガーゼ2を得ることができる。KVP40由来のRNAリガーゼ2としては、配列番号6のアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなるタンパク質であって、二本鎖ニック修復活性を有するRNAリガーゼが使用可能である。
 Deinococcus radiodurans RNAリガーゼは非特許文献(An RNA Ligase from Deinococcus radiodurans, J Biol Chem., Vol. 279, No.49, PP. 50654-61.)に記載の方法で取得することができる。例えば、ATCC(登録商標)BAA-816としてATCCに寄託されている生物学的な材料から、前記リガーゼを得ることも可能である。Deinococcus radiodurans RNAリガーゼとしては、配列番号7のアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなるタンパク質であって、二本鎖ニック修復活性を有するRNAリガーゼを使用可能である。かかるリガーゼとしては、具体的には、配列番号7のアミノ酸配列からなるRNAリガーゼに加えて、配列番号7のRNAリガーゼにおいて、K165AあるいはE278Aの変異を有するアミノ酸配列からなるRNAリガーゼが例示される(An RNA Ligase from Deinococcus radiodurans, J Biol Chem., Vol. 279, No.49, PP. 50654-61.)。
 Trypanosoma brucei RNAリガーゼは非特許文献(Assiciation of Two Novel Proteins TbMP52 and TbMP48 with the Trypanosoma brucei RNA Editing Complex, Vol.21, No.2, PP.380-389.)に記載の方法で取得することができる。
 Leishmania tarentolae RNAリガーゼは非特許文献(The Mitochondrial RNA Ligase from Leishmania tarentolae Can Join RNA Molecules Bridged by a Complementary RNA, Vol. 274, No.34, PP.24289-24296)に記載の方法で取得することができる。
 中でも、RNAリガーゼとしては、T4バクテリオファージ由来のT4 RNAリガーゼ 2が好ましい。
 本態様にかかる製造方法において、第1および第2の一本鎖RNAにRNAリガーゼを作用させる反応条件は、RNAリガーゼが機能し、所望の一本鎖RNAを製造できる条件である限り特に制限されず、適宜設定することができる。
 RNAリガーゼの使用量は、連結する第1および第2の一本鎖RNAの量、反応温度及び反応時間に応じて、適切な使用量を適宜設定することができる。RNAリガーゼの反応時間は、例えば、0.5~144時間の範囲から選択される。RNAリガーゼ処理のpHは、使用酵素の至適pHに対応して適宜設定することができ、例えば、pH4~9の範囲から選択される。RNAリガーゼ処理の温度は、使用酵素の至適温度に対応して適宜設定することができ、例えば、0~50℃の範囲から選択される。
 第1および第2の一本鎖RNAにRNAリガーゼを作用させる反応液には、これらの他に、緩衝液、金属塩、ATP等が含まれていてもよい。緩衝液としては、例えばトリス-塩酸緩衝液、ATP緩衝液、リン酸カリウム緩衝液、グリシン-塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液等が挙げられる。金属塩としては、例えば、マグネシウム塩、カリウム塩、カルシウム塩、ナトリウム塩等が挙げられる。
 RNAリガーゼを作用させて製造した一本鎖RNAを含む粗生成物は、RNAを沈殿、抽出及び精製する方法を用いることで通常、単離することができる。具体的には、反応後の溶液にエタノール、イソプロピルアルコールなどのRNAに対して溶解性の低い溶媒を加えることでRNAを沈殿させる方法や、フェノール/クロロホルム/イソアミルアルコール(例えば、フェノール/クロロホルム/イソアミルアルコール=25/24/1)の溶液を反応溶液に加え、RNAを水層に抽出させる方法が採用される。その後、逆相カラムクロマトグラフィー、陰イオン交換カラムクロマトグラフィー、アフィニティカラムクロマトグラフィー等の公知の高速液体クロマトグラフィー(HPLC)の手法などにより単離、精製することができる。
 生成した一本鎖RNAを逆相カラムクロマトグラフィーで精製する工程においては、モノアルキルアンモニウム塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つのアンモニウム塩を含む移動相が使用される。かかるアンモニウム塩としては、典型的には、有機または無機の酸とモノアルキルアミンンまたはジアルキルアミンからなるアンモニウム塩が例示される。
 逆相カラムクロマトグラフィーにおいて、移動相(溶離液)となるのは、非疎水性の移動相であり、具体的には、前記のようなアンモニウム塩を含むものが例示される。かかる移動相としては、C1-C3アルコール(例えば、メタノール、エタノール、イソプロパノールもしくはn-プロパノール)、ニトリル(例えば、アセトニトリル)、および場合によっては、水を含む溶媒が、例示される。前記アンモニウム塩を形成する酸としては、例えば、炭酸、酢酸、ギ酸、トリフルオロ酢酸およびプロピオン酸が例示される。かかる移動相としては、典型的には、モノアルキルアミンまたはジアルキルアミン/酢酸/水/アセトニトリルからなる溶離液が例示される。
 前記アンモニウム塩の濃度としては、例えば、1-200mM、5-150mMまたは20-100mMの濃度が例示される。移動相のpH範囲としては、例えば、pH:6-8、あるいは6.5-7.5の範囲が例示される。
 移動相は、前記アンモニウム塩以外のトリエチルアンモニウム塩等を含んでいてもよいが、モノアルキルアンモニウム塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つのアンモニウム塩の割合は、全アンモニウム塩に対して、例えば、30mol%以上、40mol%以上、50mol%以上、60mol%以上、70mol%以上、80mol%以上、90mol%以上あるいはモノアルキルアンモニウム塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つのアンモニウム塩のみからなる。選択される少なくとも1つのアンモニウム塩としては、具体的には、例えば、ヘキシルアンモニウム塩、ジプロピルアンモニウム塩、ジブチルアンモニウム塩、およびジアミルアンモニウム塩からなる群から選ばれる少なくとも1つのアンモニウム塩が例示され、これらから選ばれるアンモニウム塩を使用することが好ましい。
 前記逆相カラムクロマトグラフィーの充填剤としては、疎水性の固定相となる、例えば、フェニル基、炭素数1~20のアルキル基、またはシアノプロピル基のいずれか1つ以上が固定されたシリカまたはポリマーが例示される。かかる充填剤であるシリカまたはポリマーとしては、例えば、粒子径が、2μm以上、あるいは5μm以上のものが例示される。
 逆相カラムクロマトグラフィーによる分離は、前記充填剤を含むカラムに前記のアンモニウム塩を含む移動相を通液し、次いで同移動相にリガーゼにより連結された一本鎖RNAを溶解した溶液を通液し、前記RNAをカラム内に結合させ、次いで、通液する移動相中の有機溶媒濃度を順次増大させる勾配(グラジエント)により、前記RNAに含まれる不純物(未反応の第1および/または第2のRNA鎖など)と目的とするRNA分子とを分離して溶出させることにより実施される。
 逆相カラムクロマトグラフィーの温度は、例えば、20-100℃、25-80℃、あるいは30-60℃である。
 逆相カラムクロマトグラフィーにより得られる画分は、分離条件と同様のクロマトグラフィーの条件下で、波長260nmのUV吸収で、組成を分析して、選択された画分が集められ、精製された目的物が得られる。
 本発明の方法により製造した一本鎖RNAの中で、標的となる遺伝子の発現を抑制できるものは、遺伝子が原因となる疾患の治療又は予防剤として使用することができる。
 20塩基長程度の一本鎖RNAを化学合成する場合は、約50塩基長あるいはそれ以上の一本鎖RNAを化学合成する場合と比べて収率及び収量の点で優れている。そのため、約50塩基長程度又はそれ以上の一本鎖RNAを化学合成するよりも、20塩基長程度の一本鎖RNAを化学合成しライゲーションして連結することで、高い収率及び収量が得られる上、ライゲーションされなかったRNA鎖は精製で容易に除去可能であるため品質においても優れている。
 それ故、本発明の製造方法によれば、約50塩基長又はそれ以上の一本鎖RNAを高い収率、収量及び品質で製造することができる。また、RNA干渉により標的遺伝子の発現を抑制するヌクレオチド配列を含ませることにより、結果として、RNA干渉法に利用できる一本鎖RNAを、効率的に製造可能となり、コストの低減が期待される。
 以下、本発明を更に詳しく説明するため実施例を挙げる。しかし、本発明はこれら実施例等になんら限定されるものではない。
[実施例1]
 1.第1の一本鎖RNAの合成
 以下に示す一本鎖RNA(図3の鎖I)を合成した。当該鎖は31塩基長からなり、第1の一本鎖RNAに対応する。
  鎖I:pCCPGGUAUAUGCUGUGUGUACUCUGCUUCPG (5'-3') (配列番号1)
 配列表中の配列番号1の記載は、5’末端から3番目「P」の後の4番目の塩基から30番目「P」の前の29番目の塩基までの塩基配列を示す。
 当該一本鎖RNAは、ホスホロアミダイト法に基づき、核酸合成機(商品名NTS M-4MX-E、日本テクノサービス株式会社)を用いて3’側から5’側に向かって合成した。
 当該合成には、RNAアミダイトとして、国際公開第2013/027843号の実施例2に記載のウリジンEMMアミダイト、実施例3に記載のシチジンEMMアミダイト、実施例4に記載のアデノシンEMMアミダイト、および実施例5に記載のグアノシンEMMアミダイトを使用し、5’リン酸化にはChemical Phosphorylation Reagent(Glen Research)を使用し、固相担体として多孔質ガラスを使用し、デブロッキング溶液としてトリクロロ酢酸トルエン溶液を使用し、縮合剤として5-ベンジルチオ-1H-テトラゾールを使用し、酸化剤としてヨウ素溶液を使用し、キャッピング溶液として無水フェノキシ酢酸溶液とN-メチルイミダゾール溶液とを使用して行った。
 固相合成後の固相担体からの切出しと脱保護は、国際公開第2013/027843号に記載の方法に従った。すなわち、アンモニア水溶液とエタノールとを加え、しばらく静置した後に固相担体をろ過し、溶媒を留去した。その後、テトラブチルアンモニウムフルオリドを用いて水酸基の脱保護を行った。得られたRNAを注射用蒸留水を用いて所望の濃度となるように溶解した。
 2.第2の一本鎖RNAの合成
 以下に示す一本鎖RNA(図3の鎖II)を合成した。当該鎖は22塩基長からなり、第2の一本鎖RNAに対応する。
  鎖II:AGCAGAGUACACACAGCAUAUA (5'-3') (配列番号2)
 当該一本鎖RNAは、上記と同様の方法により合成した。
 上記第1および第2のRNAをライゲーションすることで得られる連結一本鎖RNAを下記に示す。
鎖III:
AGCAGAGUACACACAGCAUAUACCPGGUAUAUGCUGUGUGUACUCUGCUUCPG (5'-3') (配列番号3,4)
 上記配列中、5’末端の塩基から22番目の塩基までの塩基配列は前記配列番号2の配列に相当し、また、23番目の塩基から3’末端の塩基までの塩基配列は前記配列番号1の配列に相当する。また、配列表中の配列番号3の記載は、5’末端の塩基から25番目の「P」の前までの塩基配列を示し、また、配列番号4の記載は、26番目の塩基から52番目の「P」の前までの塩基配列を示す。
3.ライゲーション
 次に、50mLコニカルチューブの中に大塚蒸留水(大塚製薬社)を25.3mL、500mM Tris-Acetate(pH7.0)3.2mL、0.82mM 鎖IVのRNAを86.4μL、1.15mMの鎖VのRNAを56.0μL加え、65℃に加温した水浴中に10分静置し、その後室温にて冷却した。そして、1250units T4 RNAリガーゼ2(New England Biolabs社)、20mM MgCl 10mM DTT 4mM ATP混合液3.2mLの組成で、反応スケール32mLで行った。その後、37℃で1時間インキュベートし、0.2M エチレンジアミン四酢酸水溶液1mLを反応液に加えて65℃の水浴中に10分間静置し、反応を停止させた。
 反応液から一部を取り出し、HPLCによって分析したところ、粗生成物中の目的物の純度は57.5%、鎖Iおよび鎖IIの残存割合はそれぞれ3.0%、15.0%であった。なお、HPLCにおいて波長260nmのUVスペクトルによって検出し、得られたクロマトグラムの総面積値に対する目的物の面積値を純度として算出し、総面積値に対する原料の面積値を残存割合として算出した。
 続いて、反応液を16mL取り出し、マイレクス-GP(メルク社)を用いてろ過し、100mM ヘキシルアンモニウムアセテート(pH.7.0) 1mLで洗いこんだ。
4.精製
 表1に記載の条件で、カラムクロマトグラフィーにより精製を行った。ただし、精製前にカラム内に移動相A/移動相B=65/35の比率で流速1.0mL/minで10分間通液したのちにサンプルを添加した。得られた画分をそれぞれHPLCにて分析した。その結果、目的物の純度は88.4%、鎖Iおよび鎖IIの残存割合についてはそれぞれ1.0%、4.0%となった。なお、実施例1に記載の方法と同様に純度および残存割合を算出した。得られた試料を質量分析測定によって測定した結果を表2に示す。計算値と合致していることから、目的物が得られていることが確認できた(以下、HAA精製と略記する。)。
Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019
[比較例1]
 上記実施例1で得られた反応液から16mLを取り出し、マイレクス-GP(メルク社製)を用いてろ過し、100mM トリエチルアンモニウムアセテート(pH.7.0) 1mLで洗いこんだ。表3の条件でカラムクロマトグラフィー精製を行った。ただし、精製前にカラム内に移動相A/移動相B=95/5の比率で流速1.0mL/minで10分間通液したのちにサンプルを添加した。その結果、目的物の純度は58.6%、鎖Iおよび鎖IIについてはそれぞれ3.1%、15.5%となった。得られた試料を質量分析測定によって測定した結果、計算値と合致していることから、目的物が得られることが確認できた。得られた試料を質量分析測定した結果を表4に示す(以下、TEAA精製と略記する。)。
Figure JPOXMLDOC01-appb-T000020
 比較例1および実施例1の結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000021
 本発明の製造方法によれば、一本鎖RNAを簡便に製造できる。
 配列番号1乃至4は、RNAの塩基配列を示す。
 配列番号5乃至7は、アミノ酸配列を示す。

Claims (10)

  1.  (I)5’末端にリン酸基を有する第1の一本鎖RNAと、3’末端に水酸基を有する第2の一本鎖RNAに、国際生化学連合が酵素番号として定めるEC6.5.1.3に分類され、二本鎖ニック修復活性を有するRNAリガーゼを作用させ、前記第1の一本鎖RNAと前記第2の一本鎖RNAとを連結する工程、および
     (II)(I)の連結工程で生成した一本鎖RNAを含む反応生成物をモノアルキルアミン塩およびジアルキルアンモニウム塩からなる群から選ばれる少なくとも1つの塩を含む移動相を用いた逆相カラムクロマトグラフィーによって精製する工程、を含む一本鎖RNAの製造方法であって、
    a)第1の一本鎖RNAが、5’末端側から順に、Y2a領域、Lzリンカー領域、Y1a領域、X1a領域、W1a領域、Lwリンカー領域及びW2a領域からなる一本鎖RNAであり、
    b)第2の一本鎖RNAが、X2a領域からなる一本鎖RNAであり、
    c)X1a領域とX2a領域が互いに相補的な少なくとも4個の同数のヌクレオチド配列を含み、
    d)Y1a領域とY2a領域が互いに相補的な少なくとも1個の同数のヌクレオチド配列を含み、
    e)W1a領域及びW2a領域が、任意の数のヌクレオチド配列を含み、
    f)Lwリンカー領域及びLzリンカー領域がアミノ酸から誘導される原子団を有するリンカー領域であり、そして、
    g)生成する一本鎖RNAが、5’末端側から順に、X2a領域、Y2a領域、Lzリンカー領域、Y1a領域、X1a領域、W1a領域、Lwリンカー領域及びW2a領域からなる連結一本鎖RNAであることを特徴とする、
    一本鎖RNAの製造方法。
  2.  前記Lzリンカー領域およびLwリンカー領域が、下記式(I)で表される二価の基である、請求項1に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Y11及びY21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y12及びY22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY12とY22とがその末端で互いに結合して炭素数3~4のアルキレン基を表し、そして、
     Y11に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、
     Y21に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のY11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
  3.  前記Lzリンカー領域が、下記式(I)で表される二価の基であり、前記Lzリンカー領域が、下記式(I’)で表される二価の基である、請求項1または2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Y11及びY21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y12及びY22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY12とY22とがその末端で互いに結合して炭素数3~4のアルキレン基を表し、そして、
     Y11に結合している末端の酸素原子は、前記Y1領域および前記Y2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、
     Y21に結合している末端の酸素原子は、前記Y2領域および前記Y1領域のY11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Y’11及びY’21は、それぞれ独立して、炭素数1~20のアルキレン基を表し、Y’12及びY’22は、それぞれ独立して、水素原子、もしくはアミノ基で置換されていてもよいアルキル基を表すか、或いはY’12とY’22とがその末端で互いに結合し炭素数3~4のアルキレン基を表し、
     Y’11に結合している末端の酸素原子は、前記Z1領域および前記Z2領域のいずれか一方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合しており、そして、
     Y’21に結合している末端の酸素原子は、前記Z2領域および前記Z1領域のY’11とは結合していない他方の領域の末端ヌクレオチドのリン酸エステルのリン原子と結合している。)
  4.  前記Lzリンカー領域および前記Lwリンカー領域は、それぞれ独立して、下記式(II-A)または(II-B)で表される構造の二価の基である、請求項1または2に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、nおよびmは、それぞれ独立して、1から20の何れかの整数を表す。)
  5.  前記X1領域、前記Y1a領域、前記X1a領域及び前記W1a領域からなる領域、並びに前記X2a領域及び前記Y2a領域からなる領域の少なくとも一方に、RNA干渉法の標的となる遺伝子の発現を抑制するヌクレオチド配列を含む、請求項1から4の何れか一項に記載の製造方法。
  6.  前記RNAリガーゼが、T4バクテリオファージ由来のT4 RNAリガーゼ2、KVP40由来のリガーゼ2、Trypanosoma brucei RNAリガーゼ、Deinococcus radiodurans RNAリガーゼ、またはLeishmania tarentolae RNAリガーゼである、請求項1から5の何れか一項に記載の製造方法。
  7.  前記RNAリガーゼが、配列番号5、6、または7に記載のアミノ酸配列と95%以上の同一性を有するアミノ酸配列からなるRNAリガーゼである、請求項1から6の何れか一項に記載の製造方法。
  8.  前記RNAリガーゼが、T4バクテリオファージ由来のT4 RNAリガーゼ2またはKVP40由来のRNAリガーゼ2である、請求項1から7の何れか一項に記載の製造方法。
  9.  前記モノアルキルアミン塩もしくはジアルキルアミン塩が、ヘキシルアンモニウム塩、ジプロピルアンモニウム塩、ジブチルアンモニウム塩、およびジアミルアンモニウム塩からなる群から選ばれる少なくとも1つの塩である、請求項1から8の何れか一項に記載の製造方法。
  10.  前記逆相カラムクロマトグラフィーの充填剤が、フェニル基、炭素数1~20のアルキル基、またはシアノプロピル基のいずれか1つ以上が固定されたシリカまたはポリマーである、請求項1から9のいずれか一項に記載の製造方法。
PCT/JP2019/031427 2019-08-08 2019-08-08 一本鎖rnaの製造方法 WO2021024467A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031427 WO2021024467A1 (ja) 2019-08-08 2019-08-08 一本鎖rnaの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031427 WO2021024467A1 (ja) 2019-08-08 2019-08-08 一本鎖rnaの製造方法

Publications (1)

Publication Number Publication Date
WO2021024467A1 true WO2021024467A1 (ja) 2021-02-11

Family

ID=74502604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031427 WO2021024467A1 (ja) 2019-08-08 2019-08-08 一本鎖rnaの製造方法

Country Status (1)

Country Link
WO (1) WO2021024467A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282120A1 (ja) * 2021-07-06 2023-01-12 住友化学株式会社 核酸オリゴマーを含む組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046596A (ja) * 2013-12-16 2017-03-09 学校法人東京医科大学 TGF−β1遺伝子発現制御のための一本鎖核酸分子
US20170121716A1 (en) * 2014-07-03 2017-05-04 Rhodx, Inc. Tagging and assessing a target sequence
WO2019156020A1 (ja) * 2018-02-09 2019-08-15 住友化学株式会社 核酸分子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046596A (ja) * 2013-12-16 2017-03-09 学校法人東京医科大学 TGF−β1遺伝子発現制御のための一本鎖核酸分子
US20170121716A1 (en) * 2014-07-03 2017-05-04 Rhodx, Inc. Tagging and assessing a target sequence
WO2019156020A1 (ja) * 2018-02-09 2019-08-15 住友化学株式会社 核酸分子の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GONG, L. ET AL.: "Comparing ion-pairing reagents and counter anions for ion-pair reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of synthetic oligonucleotides", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 29, 2015, pages 2402 - 2410, XP055354828, DOI: 10.1002/rcm.7409 *
GONG, L. ET AL.: "Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 28, 2014, pages 339 - 350, XP055354822, DOI: 10.1002/rcm.6773 *
MARTINS A ET AL.: "An RNA Ligase from Deinococcus radiodurans", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 49, 2004, pages 50654 - 50661, XP055629625, DOI: 10.1074/jbc.M407657200 *
YIN S ET AL.: "Characterization of bacteriophage KVP40 and T4 RNA ligase 2", VIROLOGY, vol. 319, no. 1, 2004, pages 141 - 151, XP004488998, DOI: 10.1016/j.virol.2003.10.037 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282120A1 (ja) * 2021-07-06 2023-01-12 住友化学株式会社 核酸オリゴマーを含む組成物

Similar Documents

Publication Publication Date Title
TWI837122B (zh) 單股rna的製造方法
JP6864767B2 (ja) 核酸分子の製造方法
JP2693643B2 (ja) キラルリン結合を有するオリゴヌクレオチド
US20190233461A1 (en) 5-position modified pyrimidines and their use
US7612187B2 (en) 2-azapurine compounds and their uses
CA2989682A1 (en) Oligonucleotide compositions and methods thereof
JPH10510433A (ja) 高いキラル純度のホスホロチオエート結合を有するオリゴヌクレオチド
WO2001018015A1 (en) Oligonucleotide n3&#39;→p5&#39; thiophosphoramidates: their synthesis and use
JP2003012688A (ja) オリゴヌクレオチドn3’→p5’ホスホルアミデート:合成および化合物;ハイブリダイゼーションおよびヌクレアーゼ耐性特性
JP6631751B1 (ja) ヘアピン型一本鎖rna分子の製造方法
EP4194553A1 (en) Modified sirna with reduced off-target activity
JP6828219B1 (ja) 核酸分子の製造方法
WO2021024467A1 (ja) 一本鎖rnaの製造方法
Masaki et al. Modification of oligonucleotides with weak basic residues via the 2′-O-carbamoylethyl linker for improving nuclease resistance without loss of duplex stability and antisense activity
EP0931090B1 (en) Improved chimeric oligonucleotide vectors
JPWO2006043521A1 (ja) ホスホロチオエート結合を有する光学活性なオリゴ核酸化合物
Piperakis Synthesis and Properties of Nucleic Acid Duplexes and Quadruplexes containing 3'-S-Phosphorothiolate Linkages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP