WO2021024447A1 - State evaluation method and state evaluation device of rolling device, and rolling equipment - Google Patents

State evaluation method and state evaluation device of rolling device, and rolling equipment Download PDF

Info

Publication number
WO2021024447A1
WO2021024447A1 PCT/JP2019/031332 JP2019031332W WO2021024447A1 WO 2021024447 A1 WO2021024447 A1 WO 2021024447A1 JP 2019031332 W JP2019031332 W JP 2019031332W WO 2021024447 A1 WO2021024447 A1 WO 2021024447A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
rolling roll
vibration
rotation speed
amplitude
Prior art date
Application number
PCT/JP2019/031332
Other languages
French (fr)
Japanese (ja)
Inventor
石川 英司
喜美 影平
宏徳 下釜
吉川 雅司
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to CN201980097273.3A priority Critical patent/CN114007774B/en
Priority to PCT/JP2019/031332 priority patent/WO2021024447A1/en
Priority to JP2021538643A priority patent/JP7179996B2/en
Publication of WO2021024447A1 publication Critical patent/WO2021024447A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/46Roll speed or drive motor control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C51/00Measuring, gauging, indicating, counting, or marking devices specially adapted for use in the production or manipulation of material in accordance with subclasses B21B - B21F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Definitions

  • the present disclosure relates to a state evaluation method of a rolling apparatus, a state evaluation device, and a rolling equipment.
  • the occurrence of defects in the rolled product may be detected or suppressed based on the measurement result of vibration of the rolling apparatus.
  • vibration is detected by a vibration sensor installed in a housing of a rolling mill or a roll chock, and based on the result of frequency analysis of the obtained vibration data, a striped defect that occurs in a metal plate to be rolled. It is described to detect the resonance phenomenon (chattering) of the rolling mill that may cause (chatter mark).
  • N-sided formation may occur in which the cross-sectional shape of the rolling roll approaches a specific N-sided shape.
  • the rolling roll is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll are formed on the surface of the material rolled by the rolling roll, which may cause a problem in product quality. Therefore, it is desired to appropriately grasp the growth tendency of N-sided rolling rolls and suppress the deterioration of product quality.
  • At least one embodiment of the present invention aims to provide a state evaluation method, a state evaluation device, and a rolling equipment of a rolling apparatus capable of appropriately evaluating the growth tendency of N-polygonization of a rolling roll. And.
  • the method for evaluating the state of the rolling mill is It is a method for evaluating the growth tendency of N-polygonization in which the rolling roll of the rolling apparatus is unevenly worn to become N-gonal.
  • a vibration data acquisition step of acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods, and a vibration data acquisition step.
  • An amplitude acquisition step of performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-gon.
  • an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr Based on the time course of the amplitude acquired for each of the vibration data, an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, and an evaluation step.
  • a state evaluation method for evaluating the growth tendency of N-polygonization of a rolling roll.
  • FIG. 5A It is a schematic diagram of an example of the frequency spectrum obtained by frequency analysis of the vibration data of the rolling roll acquired in the sampling period after the lapse of time ⁇ t from the sampling period of the vibration data shown in FIG. 5A. It is a figure which shows a typical example of the correlation (characteristic diagram) of the rotation speed fr of a rolling roll and a characteristic value ⁇ . It is a schematic diagram of the rolling apparatus in which N-sided formation of a rolling roll occurs. It is a figure which shows an example of the evaluation result displayed on the display part.
  • FIG. 1 is a schematic view of a rolling equipment to which a state evaluation method and a state evaluation device according to some embodiments are applied.
  • the rolling equipment 1 according to the embodiment includes a rolling apparatus 2 including a rolling stand 10 configured to roll a metal plate S, and a state evaluation for evaluating the state of the rolling apparatus 2.
  • the device 50 and the like are provided.
  • the rolling equipment 1 is provided with a vibration measuring unit 90 for measuring the vibration of the rolling roll 3 constituting the rolling stand 10.
  • the rolling stand 10 includes a plurality of rolling rolls 3 for rolling the metal plate S, a reduction device 8 for applying a load to the rolling rolls 3 to reduce the metal plate S, a housing (not shown), and the like.
  • the reduction device 8 may include a hydraulic cylinder.
  • the rolling roll 3 is placed on the side opposite to the metal plate S with the pair of work rolls 4A and 4B provided so as to sandwich the metal plate S and the pair of work rolls 4A and 4B. It is provided and includes a pair of backup rolls 6A, 6B for supporting the pair of work rolls 4A, 4B, respectively.
  • the work rolls 4A and 4B are rotatably supported by roll chock 5A and 5B, respectively.
  • the backup rolls 6A and 6B are rotatably supported by roll chock 7A and 7B, respectively.
  • the roll chock 5A, 5B and the roll chock 7A, 7B are supported by a housing (not shown).
  • the vibration measuring unit 90 includes acceleration sensors 91 to 94 attached to the roll chocks 5A, 5B, 7A, and 7B, respectively.
  • the acceleration sensors 91 to 94 vibrate in any direction of the roll chock 5A, 5B, 7A, 7B (for example, the vertical direction, the horizontal direction, and / or the rotation axis direction of the rolling roll 3), that is, the work roll 4A. , 4B and backup rolls 6A, 6B are configured to detect vibrations in any direction.
  • the signal indicating the above-mentioned vibration detected by the acceleration sensors 91 to 94 is sent to the state evaluation device 50.
  • the vibration measuring unit 90 may include a displacement detecting unit configured to measure the displacement of the rolling roll 3 in any direction.
  • the vibration of the rolling roll 3 may be calculated based on the measurement result by the displacement detection unit.
  • the displacement detection unit for example, a displacement meter of a laser type or an eddy current type can be used.
  • an imaging device (camera or the like) can be used as the displacement detection unit.
  • the vibration of the rolling roll 3 may be calculated by imaging one part of the rolling roll 3 with an imaging device and performing image processing on the obtained imaging data.
  • FIG. 2 is a schematic configuration diagram of the state evaluation device 50 according to the embodiment.
  • the state evaluation device 50 is configured to evaluate the growth tendency of N-polygonization due to uneven wear of the rolling roll 3, as will be described in detail later.
  • the state evaluation device 50 is configured to receive a signal indicating the vibration of the rolling roll 3 from the vibration measuring unit 90 and a signal indicating the rotation speed of the rolling roll 3 measured by the roll rotation speed measuring unit 95. There is. Further, the state evaluation device 50 is configured to acquire the steel type data (material, hardness, etc.) of the metal plate S rolled by the rolling device 2 from the steel type data storage unit 96.
  • the state evaluation device 50 includes a vibration data acquisition unit 52 for processing received information, a frequency analysis unit 54, an amplitude extraction unit 56, a characteristic value calculation unit 62, a correlation acquisition unit 66, an evaluation unit 68, and the like. .. Further, the state evaluation device 50 includes an output unit 72 configured to output the evaluation result by the state evaluation device 50. The evaluation result by the state evaluation device 50 is output to the display unit 98 (display or the like) via the output unit 72.
  • the state evaluation device 50 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like.
  • the state evaluation device 50 receives signals from various measuring instruments (such as the vibration measuring unit 90 or the roll rotation speed measuring unit 95 described above) via an interface.
  • the CPU is configured to process the signal received in this way. Further, the CPU is configured to process a program expanded in the memory.
  • the processing content of the state evaluation device 50 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory. The CPU reads the program from the memory and executes the instructions included in the program.
  • FIG. 7 is a schematic view of a rolling apparatus in which the rolling roll 3 is N-sided.
  • the rolling apparatus 2 shown in FIG. 7 includes a plurality of rolling stands 10A to 10C.
  • the cross-sectional shape of the rolling roll 3 orthogonal to the axial direction usually has a circular shape like the rolling roll 3 of the rolling stand 10A or 10C, but the rolling roll 3 (work rolls 4A, 4B) of the rolling stand 10B shown in FIG.
  • the cross-sectional shapes of the backup rolls 6A and 6B) are N-polygons (specifically, dodecagonal), and these rolling rolls 3 are N-sided.
  • the rolling roll 3 When the rolling roll 3 is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll 3 are formed on the surface of the metal plate S rolled by the rolling roll 3, which may cause a problem in product quality. is there. Therefore, it is desired to appropriately grasp the growth tendency of the N-gonalization of the rolling roll 3 and suppress the deterioration of the quality of the product metal plate. According to the state evaluation method of the rolling apparatus described below, the growth tendency of N-polygonization of the rolling roll 3 can be appropriately grasped.
  • the rolling rolls 3 may be N-polygonalized at a specific rolling stand 10, or a plurality of rolling rolls 3 constituting one rolling stand may be formed.
  • N-sided formation may occur on a specific rolling roll 3 (work rolls 4A, 4B or backup rolls 6A, 6B).
  • N-polygonization is relatively likely to occur in the work rolls 4A and 4B.
  • cold rolling performed at a relatively low temperature N-polygonization is relatively likely to occur in the backup rolls 6A and 6B.
  • the state evaluation method of the rolling mill will be described.
  • the growth tendency of N-polygonization of the rolling roll 3 (work roll 4A, 4B or backup roll 6A, 6B) can be evaluated.
  • a method of evaluating the state of the rolling mill using the above-mentioned state evaluation device 50 will be described, but in some embodiments, a part or all of the processing by the state evaluation device 50 described below will be described.
  • the state of the rolling mill may be evaluated by manually performing the above.
  • FIG. 3 is a schematic flowchart of a state evaluation method of the rolling mill according to the embodiment.
  • the vibration data acquisition unit 52 acquires vibration data indicating the vibration of the rolling roll 3 in a plurality of sampling periods during rolling of the rolling roll 3 at a specific rotation speed fr (vibration data acquisition).
  • fr vibration data acquisition
  • Step S102 the vibration data
  • the one measured by the vibration measuring unit 90 described above may be acquired online.
  • the vibration data measured by the vibration measuring unit 90 in the past and stored in the storage device may be acquired by reading the vibration data from the storage device.
  • the frequency analysis unit 54 performs frequency analysis on each of the vibration data acquired during the plurality of sampling periods (step S104). Further, based on the frequency spectrum obtained as a result of frequency analysis by the amplitude extraction unit 56, the vibration amplitude A at the frequency (fr ⁇ N) corresponding to the specific N-side (hereinafter, the vibration amplitude A corresponding to the N-side) and the like. (Also referred to as) is acquired (amplitude acquisition step; step S106).
  • step S112 based on the time-dependent change of the vibration amplitude A acquired for each of the vibration data in step S106 by the evaluation unit 68, the growth of N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3 The tendency is evaluated (evaluation step; step S112).
  • the characteristic value calculation unit 62 may calculate the characteristic value ⁇ indicating the index of the change with time of the vibration amplitude A based on the vibration amplitude A or the like acquired in step S106 (characteristic value acquisition). Step; Step S108). In this case, in step S112, the growth tendency of N-polygonization of the rolling roll 3 at the time of rolling at the rotation speed fr of the rolling roll 3 may be evaluated based on the characteristic value ⁇ calculated in step S108. ..
  • the correlation acquisition unit 66 performs the above steps S102 to S108 at a plurality of rotation speed frs of the rolling roll 3 to acquire characteristic values ⁇ corresponding to the plurality of rotation speed frs, respectively. Then, a characteristic diagram showing the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ may be acquired (correlation acquisition step; step S110). In this case, in step S112, based on the characteristic diagram (correlation) acquired in step S110, the growth tendency of N-polygonization of the rolling roll 3 at the time of rolling at the rotation speed fr of the rolling roll 3 is evaluated. You may.
  • step S108 and step S110 in the flowchart of FIG. 3 are arbitrary steps that can be executed as needed.
  • step S102 during rolling of the rolling roll 3 at a specific rotation speed fr, vibration data indicating the vibration of the rolling roll 3 is acquired in each of the plurality of sampling periods.
  • FIG. 4A is a graph schematically showing an example of the time-dependent change of the vibration amplitude A (corresponding to the vibration amplitude acquired in step S106) corresponding to the specific N-sided polygon in the rolling roll 3.
  • FIG. 4B is a graph schematically showing an example of the relationship between the time t and the rotation speed fr of the rolling roll 3.
  • the time axis (horizontal axis) of the graph of FIG. 4A and the graph of FIG. 4B is common.
  • the tendency (increase or decrease, speed, etc.) of the vibration amplitude A corresponding to a specific N-sided polygon with time differs depending on the rotation speed fr of the rolling roll 3.
  • rolling is performed at the rotation speed fr1 of the rolling roll 3 during the period from time t0 to time t1 (length ⁇ t1 of the period) (see FIG. 4B).
  • the vibration amplitude A corresponding to the specific N-sided polygon shows an increasing tendency (see FIG. 4A).
  • the N-polygonization is growing in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from a circle to an N-sided shape.
  • the rotation speed fr1 of the rolling roll 3 is changed to fr2 (however, fr1 ⁇ fr2), and the period from time t1 to time t2 (length ⁇ t2 of the period) is the rotation speed fr2 of the rolling roll 3. (See Fig. 4B).
  • the vibration amplitude A corresponding to the specific N-sided polygon shows a decreasing tendency (see FIG. 4A). This indicates that the N-sided formation is attenuated in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from the N-sided shape to approach a circle.
  • step S102 vibration data is acquired in a sampling period including the time t0 during rolling at the rotation speed fr1 of the rolling roll 3 and a sampling period including the time t1 (however, t0 ⁇ t1) (FIGS. 4A and 4A). See 4B). Then, frequency analysis is performed on these vibration data, and the vibration amplitude A0 corresponding to the N-sided polygon at time t0 and the vibration amplitude A1 corresponding to the N-sided polygon at time t1 are acquired (steps S104 and S106). Then, in step S112, the growth tendency of N-polygonization of the rolling roll 3 is evaluated by comparing the vibration amplitude A0 and the vibration amplitude A1 described above.
  • the vibration amplitude A1 is larger than the vibration amplitude A0, the vibration amplitude A corresponding to the N-sided polygon tends to increase at the rotation speed fr1 of the rolling roll 3. That is, it can be evaluated that the N-sided formation of the rolling roll 3 grows at the rotation speed fr1 of the rolling roll 3.
  • the vibration amplitude A1 corresponding to the N-polygon is smaller than the vibration amplitude A1
  • the vibration amplitude A corresponding to the N-sided polygon tends to decrease at the rotation speed fr2 of the rolling roll 3. That is, it can be evaluated that the N-sided formation of the rolling roll 3 is attenuated at the rotation speed fr2 of the rolling roll 3.
  • the vibration of the frequency (fr ⁇ N) corresponding to the specific N-side is based on the vibration data acquired during the rolling of the metal plate S at the specific rotation speed fr of the rolling roll 3. Since the amplitude (vibration amplitude A) is acquired, the growth tendency of the N-square formation of the rolling roll 3 at the rotation speed fr of the rolling roll 3 (for example, the N-square formation) is based on the change with time of the vibration amplitude A. Whether it is growing or declining, etc.) can be evaluated. Therefore, for example, based on this evaluation, the quality deterioration of the product metal plate can be suppressed by controlling the operation of the rolling apparatus 2 so that the N-sided formation of the rolling roll 3 does not grow.
  • FIG. 5A is a schematic diagram of a frequency spectrum obtained by frequency analysis of vibration data of the rolling roll 3 acquired in a certain sampling period at a specific rotation speed fr of the rolling roll 3.
  • FIG. 5B is a schematic diagram of a frequency spectrum obtained by frequency analysis of the vibration data of the rolling roll 3 acquired in the sampling period after the lapse of time ⁇ t from the sampling period of the vibration data shown in FIG. 5A at the same rotation speed fr. Is.
  • the frequencies fr ⁇ (N-1), fr ⁇ N, and fr ⁇ (N + 1) correspond to the (N-1) polygon, the N polygon, and the (N + 1) polygon, respectively. Indicates the vibration frequency.
  • the vibration amplitude AN-1 (vibration amplitude at the frequency fr ⁇ (N-1)) corresponding to the (N-1) square of the rolling roll 3 is AN-1 i (Fig. It is reduced from 5A) to AN-1 i + 1 (FIG. 5B), and the vibration amplitude AN + 1 (vibration amplitude at frequency fr ⁇ (N + 1)) corresponding to the (N + 1) square of the rolling roll 3 is AN + 1. It decreases from i (Fig. 5A) to AN + 1 i + 1 (Fig. 5B).
  • the N-polygonization of the rolling roll 3 is performed. Can be appropriately suppressed. Further, the N-squared formation of the rolling roll 3 is attenuated by the operation at the changed rotation speed, but the (N + 1) squared formation of the rolling roll 3 proceeds even when the (N + 1) squared formation grows. By changing the number of rotations of the rolling roll 3 before excessively, the progress of (N + 1) polygonization of the rolling roll 3 can be appropriately suppressed.
  • the vibration amplitude A corresponding to the N-sided polygon increases or decreases exponentially during rolling at a constant rotation speed fr. Then, the vibration amplitudes A0 and A1 corresponding to the above-mentioned N-gon at the times t0 and t1 during rolling at the rotation speed fr1 of the rolling roll 3 satisfy the relationship represented by the following formula (A).
  • A1 A0 ⁇ exp ( ⁇ ( ⁇ 1) ⁇ fr1 ⁇ ⁇ t1)... (A)
  • the vibration amplitudes A1 and A2 corresponding to the above-mentioned N-gon at the times t1 and t2 during rolling at the rotation speed fr2 of the rolling roll 3 satisfy the relationship represented by the following formula (B).
  • A2 A1 ⁇ exp ( ⁇ ( ⁇ 2) ⁇ fr2 ⁇ ⁇ t2)...
  • B By generalizing and organizing the above formula (B), the following formula (C) can be obtained.
  • a i + 1 / A i exp ( ⁇ ( ⁇ i + 1 ) ⁇ fr i + 1 ⁇ ⁇ t i + 1 )...
  • the following equation (D) can be obtained by taking the natural logarithms of both sides of the above (C) and arranging them.
  • ⁇ ( ⁇ i + 1 ) ln (A i + 1 / A i ) / (fr i + 1 ⁇ ⁇ t i + 1 )... (D)
  • ⁇ ( ⁇ i ) in the above formulas (A) to (D) is a characteristic value determined corresponding to the rotation speed fr i of the rolling roll 3 (hereinafter, also simply referred to as “characteristic value ⁇ ”). is there.
  • step S102 vibration data is acquired in the sampling period including the time t1 during rolling at the rotation speed fr2 of the rolling roll and the sampling period including the time t2. Then, frequency analysis is performed on these vibration data, and the vibration amplitude A1 corresponding to the N-sided polygon at time t1 and the vibration amplitude A2 corresponding to the N-sided polygon at time t2 are acquired (steps S104 and S106).
  • step S108 ⁇ ( ⁇ 2) corresponding to the rotation speed fr2 is calculated from the vibration amplitudes A1 and A2, the rotation speed fr2 of the rolling roll 3, and the time length ⁇ t2 between the two sampling periods described above. can do.
  • the length of time between the first sampling period (for example, the sampling period including time t1) and the second sampling period (for example, the sampling period including time t2) (hereinafter, also referred to as the time difference of the sampling period).
  • ⁇ t may be, for example, the difference between the start times of each sampling period, the difference between the end times of each sampling period, or the start time of the first sampling period and the second sampling period. Although it may be the difference from the end time of, each i is acquired by the same calculation method.
  • the ratio of the vibration amplitude A corresponding to the N-sided shape of the rolling roll 3 (A i + 1 / A i ) tends to change with time (increase or decrease of the amplitude, etc.) of the vibration amplitude A during the two sampling periods. ) Is shown. Therefore, as described above, the characteristic value ⁇ acquired based on this ratio (A i + 1 / A i ) is the growth tendency of the N-sided polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3. It can be an index showing the growth or attenuation of N-polygonization). Therefore, by using the characteristic value ⁇ , the growth tendency of N-polygonization of the rolling roll 3 at the rotation speed fr of the rolling roll 3 can be appropriately evaluated.
  • the characteristic value ⁇ calculated by the above formula (D) is the vibration amplitude per unit time because the numerator on the right side of the above formula (D) includes the time difference ( ⁇ t) between the sampling periods of the vibration data. It shows the change of. Therefore, in the region where the characteristic value ⁇ is positive, it is evaluated that the larger the characteristic value ⁇ is, the larger the increase rate of the vibration amplitude A corresponding to the N-side polygon is, and the faster the growth rate of the N-sided formation of the rolling roll 3 is. be able to.
  • the unit time of the above-mentioned amplitude between the two sampling periods is determined by the ratio of the vibration amplitude corresponding to the N-sided polygon of the rolling roll 3 (A i + 1 / A i ) and the time difference ⁇ t between the two sampling periods.
  • the characteristic value ⁇ obtained based on the above-mentioned vibration amplitude ratio (A i + 1 / A i ) and the time difference ⁇ t is the N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3.
  • step S110 acquisition of the correlation (characteristic diagram) between the rotation speed fr and the characteristic value ⁇ in step S110 (correlation acquisition step) will be described.
  • step S110 as described above, the above steps S102 to S118 are performed at the plurality of rotation speed frs of the rolling roll 3, and the characteristic values ⁇ corresponding to the plurality of rotation speed frs are acquired.
  • the combination of the rotation speed fr and the characteristic value ⁇ acquired in this way may be recorded in the recording unit 60 (see FIG. 2).
  • the correlation (characteristic diagram) between the rotation speed fr and the characteristic value ⁇ can be acquired.
  • FIG. 6 is a diagram showing a typical example of the correlation (characteristic diagram) between the rotation speed fr and the characteristic value ⁇ acquired in step S110.
  • 1 (that is, the frequency fr ⁇ N corresponding to the N-square is equal to the natural frequency of the rolling roll 3 regardless of “N”.
  • is larger than zero, and in particular, ⁇ is maximized when ⁇ 2. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 grows (progresses), and the larger the ⁇ , the faster the growth rate of the N-polygonization of the rolling roll 3.
  • is smaller than zero. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 is attenuated, and the smaller the ⁇ , the faster the attenuation speed of the N-gonification of the rolling roll 3.
  • 0, the N-sided formation of the rolling roll 3 does not grow or decay.
  • step S112 After acquiring the above-mentioned characteristic diagram (correlation) in step S110, in step S112, the growth tendency of N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3 is evaluated based on this characteristic diagram. can do. That is, by using the above-mentioned characteristic diagram, ⁇ corresponding to various rotation speed frs of the rolling roll 3 can be obtained, so that the growth tendency of N-polygonization corresponding to a specific rotation speed of the rolling roll 3 can be obtained. Can be evaluated.
  • the ⁇ corresponding to the current rotation speed of the rolling roll 3 can be grasped to grasp the growth tendency of the N-sided polygonization of the rolling roll 3 at the present time, or the rotation of the rolling roll 3 scheduled to be changed in the future. It is possible to predict the growth tendency of N-polygonization of the rolling roll 3 by the number.
  • step S110 the steel grade data (including information such as the material and hardness of each steel grade) is read from the steel grade data storage unit 96 (see FIG. 2), and the combination of the rotation speed fr and the characteristic value ⁇ together with the steel grade data. Is recorded in the recording unit 60 (see FIG. 2), and a characteristic diagram (correlation between the rotation speed fr and the characteristic value ⁇ ) may be acquired for each steel type based on this recording.
  • the evaluation result in step S112 may be output to the display unit 98 (display or the like) via the output unit 72 (see FIG. 2).
  • FIG. 8 is a diagram showing an example of the evaluation result displayed on the display unit 98.
  • a graph of the correlation between the rotation speed fr (that is, ⁇ ) and the characteristic value ⁇ , and a plurality of types of N polygons (N 39, 40, 41) at the current rotation speed fr of the rolling roll 3
  • the characteristic value ⁇ corresponding to each of the above is shown as a point on the graph.
  • a graph showing the correlation between the rotation number fr and the characteristic value ⁇ can be obtained individually, but as shown in the graph of FIG. 8 (and FIG.
  • the natural vibration of the number of polygons N and the rolling roll 3 When graphing using the parameter ⁇ obtained by normalizing the rotation number fr with the number fn, the correlation curves (characteristic diagrams) for a plurality of types of N-gonal numbers may almost overlap.
  • vibration data of the rolling roll 3 is acquired during the sampling period including the time t1 and frequency analysis is performed to obtain the vibration data of the rolling roll 3 in the sampling period including the time t1.
  • the vibration amplitude A1 corresponding to the N-sided polygon is acquired.
  • step S110 it acquired in step S110, based on the correlation between the rotational speed fr and the characteristic value sigma, the vibration amplitude when the rolling at a rotation number fr1 of the rolling rolls 3 and continued from the time t1 reaches the threshold A th The time to time ⁇ t c is calculated.
  • the characteristic value ⁇ indicates the change in amplitude during the time ⁇ ti + 1 as a ratio (A i + 1 / A i ) during rolling at the rotation speed fr i + 1 of the rolling roll 3. Therefore, the equation (D), the characteristic value ⁇ during rolling in rotational speed fr1, the vibration amplitude A corresponding to the N rectangular at some point during the rolling in the rotational speed fr1, the threshold A th vibration amplitude (although Using A ⁇ Ath ) and the time ⁇ t c from A to Ath of the vibration amplitude, it can be expressed as the following equation (E).
  • the rotation speed fr1 of the rolling roll 3 is based on the above-mentioned correlation (correlation indicating the growth tendency of N-polygonization of the rolling roll) between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ .
  • the time ⁇ t c until the vibration amplitude corresponding to the N-side polygon of the rolling roll 3 reaches the predetermined threshold At th is calculated (predicted). That is, since the time until the N-sided polygonization of the rolling roll 3 reaches a predetermined degree (threshold Ath ) is calculated, for example, operating conditions (rolling roll rotation speed, etc.) are calculated before the calculated time elapses.
  • the correction unit 70 after acquiring the correlation (characteristic diagram) between the rotation speed fr of the rolling roll 3 and the characteristic value ⁇ , the correction unit 70 (see FIG. 2) is used during rolling using the rolling roll 3.
  • the above-mentioned correlation (characteristic diagram) may be modified based on the data regarding the vibration amplitude corresponding to the N-square, which is acquired from the acquired vibration data.
  • the characteristic value ⁇ during rolling at the rotation speed fr1 is set to the vibration amplitude A1 corresponding to the N-sided polygon at the time t1 during rolling at the rotation speed fr1 and the time t2 during rolling at the rotation speed fr1.
  • ln (A2 / A1) / (fr1 ⁇ ⁇ t)... (G)
  • the characteristic value ⁇ can be calculated. That is, regarding the characteristic value ⁇ corresponding to the rotation speed fr1 of the rolling roll 3, the characteristic value ⁇ based on the actually measured value (calculated from the above equation (G)) and the characteristic value ⁇ based on the correlation (characteristic diagram). You can get both. Therefore, by modifying the correlation (characteristic diagram) based on the characteristic value ⁇ based on the actually measured value, a more accurate correlation (characteristic diagram) can be obtained.
  • the correlation (characteristic diagram) between the rotation frequency fr of the rolling roll 3 and the characteristic value ⁇ is acquired, it is acquired from the vibration data acquired during the actual rolling using the rolling roll 3. Since the correlation between the rotation speed fr and the characteristic value ⁇ was corrected based on the data on the vibration amplitude of the frequency corresponding to the N-side of the rolling roll 3, the N of the rolling roll 3 was based on the correlation. The growth tendency of keratinization can be evaluated more accurately.
  • the vibration showing the vibration of each rolling roll 3 (work roll 4A, 4B or backup roll 6A, 6B) is attached to the roll chock (roll chock 5A, 5B, 7A or 7B) supporting the rolling roll 3.
  • the embodiment (see FIG. 1) acquired by using the measuring unit 90 (specifically, the acceleration sensors 91 to 94) has been described, the mode of the vibration measuring unit 90 is not limited to this.
  • the vibration measuring unit may be configured to detect the vibration of the housing supporting the rolling rolls 3 (work rolls 4A, 4B and backup rolls 6A, 6B). In this case, based on the vibration data obtained by the vibration measuring unit, it is possible to evaluate the growth tendency of the N-polygonization of the rolling roll 3 supported by the housing. For example, it is possible to detect that N-polygonization is growing or decaying in any of the rolling rolls 3 supported by the housing. In this way, after identifying the rolling stand including the housing in which the growth of N-polygonization of the rolling roll 3 is detected, a vibration measuring unit is installed for each of the plurality of rolling rolls 3 included in the rolling stand. Then, the growth tendency of the N-polygonization of each rolling roll 3 may be evaluated individually.
  • the method for evaluating the state of the rolling mill is It is a method for evaluating the growth tendency of N-polygonization in which the rolling roll of the rolling apparatus is unevenly worn to become N-gonal.
  • a vibration data acquisition step of acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods, and a vibration data acquisition step.
  • An amplitude acquisition step of performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-gon.
  • an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr Based on the time course of the amplitude acquired for each of the vibration data, an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, and an evaluation step.
  • the present inventors have found that when the N-squared rolling roll grows during rolling, the amplitude of the frequency component corresponding to the N-squared shape contained in the vibration of the rolling roll increases with the passage of time. It was also found that when the N-square formation of the rolling roll is attenuated during rolling, the amplitude of the frequency component corresponding to the N-square contained in the vibration of the rolling roll decreases with the passage of time.
  • the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude of the vibration of the rolling roll is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether the N-squared formation is growing or decaying) based on the time course of the amplitude. Whether or not, etc.) can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
  • the rolling during rolling at the rotation speed fr is based on the ratio of the amplitudes acquired in the amplitude acquisition step. Further provided with a characteristic value acquisition step of acquiring a characteristic value ⁇ indicating an index of a time-dependent change in the amplitude of vibration at a frequency corresponding to the N-side of the roll. In the evaluation step, the growth tendency of the N-polygonization during rolling at the rotation speed fr is evaluated based on the characteristic value ⁇ .
  • the ratio of the vibration amplitudes of the frequencies corresponding to the N-gons of the rolling rolls which are obtained from the vibration data acquired in two different sampling periods during rolling at the rolling speed fr.
  • the characteristic value ⁇ is acquired based on.
  • the ratio of the vibration amplitudes of the above frequencies indicates the tendency of the vibration amplitudes of the above frequencies to change with time (increase or decrease of the amplitude, etc.) between the two sampling periods, and is based on this ratio.
  • the characteristic value ⁇ obtained can be an index showing the growth tendency of N-polygonization of the rolling roll (growth or attenuation of N-polygonization, etc.) during rolling at the rotation speed fr of the rolling roll. Therefore, according to the configuration of (2) above, the growth tendency of N-polygonization of the rolling roll at the rotation speed fr of the rolling roll can be appropriately evaluated.
  • the characteristic value acquisition step the characteristic value ⁇ is acquired based on the ratio of the amplitude and the length of time between the two different sampling periods.
  • the ratio of the vibration amplitudes of the frequencies corresponding to the N-sides of the rolling rolls which are obtained from the vibration data acquired in two different sampling periods during rolling at the rolling speed fr.
  • the characteristic value ⁇ is acquired based on the length of time between the two sampling periods (the time difference between the two sampling periods). That is, since the degree of change of the above-mentioned amplitude per unit time between the two sampling periods can be known from the above-mentioned amplitude ratio and the above-mentioned time difference, it is based on the above-mentioned amplitude ratio and the above-mentioned time difference.
  • the characteristic value ⁇ obtained can be an index of the growth or decay rate of N-squared formation of the rolling roll during rolling at the rotation speed fr of the rolling roll. Therefore, according to the configuration of (3) above, the growth tendency of N-polygonization of the rolling roll at the rotation speed fr of the rolling roll can be appropriately evaluated.
  • the characteristic value ⁇ is acquired by executing the vibration data acquisition step, the amplitude acquisition step, and the characteristic value acquisition step for each of the plurality of rotation speed frs, and thus obtained.
  • the correlation between the rotation speed fr and the characteristic value ⁇ is obtained from a plurality of combinations of the rotation speed fr and the characteristic value ⁇ . Therefore, based on the correlation between the rotation speed fr obtained in this way and the characteristic value ⁇ , the growth tendency of N-polygonization of the rolling roll can be appropriately evaluated. Therefore, for example, it is necessary to evaluate whether or not the N-polygonization of the rolling roll grows under specific operating conditions (rolling roll rotation speed, etc.), or what the growth rate of the N-polygonization of the rolling roll is.
  • the step includes a step of acquiring the amplitude of the vibration in the sampling period including the time t1 based on the vibration data acquired during rolling at the rotation speed fr1 of the rolling roll.
  • the time until the amplitude reaches the threshold value when rolling at the rotation speed fr1 is continued from the time t1 is calculated based on the correlation.
  • the amplitude A1 of the vibration corresponding to the N-sided polygon of the rolling roll at time t1 is acquired from the vibration data at time t1 during rolling at the rotation speed fr1 of the rolling roll. Then, based on the above-mentioned correlation between the rotation speed fr and the characteristic value ⁇ (correlation indicating the growth tendency of N-polygonization of the rolling roll), when rolling is continued from the time t1 at the rotation speed fr1 of the rolling roll. , Calculate (predict) the time until the vibration amplitude corresponding to the N-sided shape of the rolling roll reaches a predetermined threshold value.
  • the operating conditions may be changed before the calculated time elapses.
  • the degree of N-polygonization of the rolling rolls By exchanging the rolling rolls, it is possible to prevent the degree of N-polygonization of the rolling rolls from becoming too large. As a result, deterioration of the quality of the product metal plate after rolling can be suppressed.
  • the step includes a step of correcting the correlation based on the data regarding the amplitude of the vibration acquired from the vibration data acquired during rolling using the rolling roll after acquiring the correlation.
  • the vibration amplitude of the frequency corresponding to the N-side of the rolling roll which is acquired from the vibration data actually acquired during rolling using the rolling roll. Since the correlation between the rotation frequency fr and the characteristic value ⁇ is corrected based on the data related to the above, the growth tendency of the N-squared rolling roll based on the correlation can be evaluated more accurately.
  • the state evaluation device for the rolling mill is It is a device for evaluating the growth tendency of N-polygonization due to uneven wear of rolling rolls of a rolling device.
  • a vibration data acquisition unit configured to acquire vibration data indicating vibration of the rolling roll during each of a plurality of sampling periods during rolling at the rotation speed fr of the rolling roll.
  • An amplitude extraction unit configured to perform frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquire the amplitude of the vibration at the frequency corresponding to the N-gon.
  • An evaluation unit configured to evaluate the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr based on the time course of the amplitude acquired for each of the vibration data.
  • An output unit that outputs the evaluation result by the evaluation unit and To be equipped.
  • the vibration of the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether or not the N-squared formation is growing or decaying, etc.) based on the time course of the amplitude is obtained. ) Can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
  • the rolling equipment according to at least one embodiment of the present invention is A rolling apparatus including a rolling roll for rolling a metal plate, The state evaluation device according to (7) above, which is configured to evaluate the growth tendency of N-polygonization due to uneven wear of the rolling roll. To be equipped.
  • the vibration of the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether or not the N-squared formation is growing or decaying, etc.) based on the time course of the amplitude is obtained. ) Can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
  • Rolling equipment 1 Rolling equipment 2 Rolling equipment 3 Rolling rolls 4A, 4B Work rolls 5A, 5B Roll chock 6A, 6B Backup rolls 7A, 7B Roll chock 8 Rolling device 10, 10A to 10C Rolling stand 50 Condition evaluation device 52 Vibration data acquisition unit 54 Frequency analysis unit 56 Oscillation extraction unit 60 Recording unit 62 Characteristic value calculation unit 66 Correlation acquisition unit 68 Evaluation unit 70 Correction unit 72 Output unit 90 Vibration measurement unit 91 to 94 Accelerometer 95 Roll rotation speed measurement unit 96 Steel type data storage unit 98 Display unit S Metal plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

This state evaluation method of a rolling device is a method for evaluating the growth tendency of N-polygonization in which the rolling rolls of the rolling device are unevenly worn into an N-polygon, the method comprising: a vibration data acquisition step for, during rolling at a rotation speed fr of the rolling roll, acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods; an amplitude acquisition step for performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-polygon; and an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, on the basis of the temporal change of the amplitude acquired for each of the vibration data.

Description

圧延装置の状態評価方法及び状態評価装置並びに圧延設備Rolling equipment condition evaluation method, condition evaluation equipment, and rolling equipment
 本開示は、圧延装置の状態評価方法及び状態評価装置並びに圧延設備に関する。 The present disclosure relates to a state evaluation method of a rolling apparatus, a state evaluation device, and a rolling equipment.
 圧延ロールを含む圧延装置による金属板等の圧延において、圧延装置の振動の計測結果に基づいて、圧延された製品の不具合の発生を検出したり抑制したりすることがある。 In rolling a metal plate or the like with a rolling apparatus including a rolling roll, the occurrence of defects in the rolled product may be detected or suppressed based on the measurement result of vibration of the rolling apparatus.
 例えば、特許文献1には、圧延機のハウジングやロールチョックに設置した振動センサにより振動を検出し、得られた振動データの周波数解析の結果に基づいて、圧延される金属板に生じる縞状の疵(チャタマーク)の原因となり得る圧延機の共振現象(チャタリング)を検出することが記載されている。 For example, in Patent Document 1, vibration is detected by a vibration sensor installed in a housing of a rolling mill or a roll chock, and based on the result of frequency analysis of the obtained vibration data, a striped defect that occurs in a metal plate to be rolled. It is described to detect the resonance phenomenon (chattering) of the rolling mill that may cause (chatter mark).
特開2018-118312号公報Japanese Unexamined Patent Publication No. 2018-118312
 ところで、圧延ロールを含む圧延装置において金属板等の材料の圧延を続けると、圧延ロールの断面形状が特定のN角形に近づくN角形化が生じることがある。圧延ロールのN角形化が生じて成長すると、圧延ロールにより圧延された材料の表面に、圧延ロールのN角形に対応した凹凸が形成され、製品の品質上問題となることがある。そこで、圧延ロールのN角形化の成長傾向を適切に把握して、製品の品質低下を抑制することが望まれる。 By the way, if the rolling of a material such as a metal plate is continued in a rolling apparatus including a rolling roll, N-sided formation may occur in which the cross-sectional shape of the rolling roll approaches a specific N-sided shape. When the rolling roll is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll are formed on the surface of the material rolled by the rolling roll, which may cause a problem in product quality. Therefore, it is desired to appropriately grasp the growth tendency of N-sided rolling rolls and suppress the deterioration of product quality.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、圧延ロールのN角形化の成長傾向を適切に評価可能な圧延装置の状態評価方法及び状態評価装置並びに圧延設備を提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention aims to provide a state evaluation method, a state evaluation device, and a rolling equipment of a rolling apparatus capable of appropriately evaluating the growth tendency of N-polygonization of a rolling roll. And.
 本発明の少なくとも一実施形態に係る圧延装置の状態評価方法は、
 圧延装置の圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を評価するための方法であって、
 前記圧延ロールの回転数frでの圧延中に、複数のサンプリング期間の各々において、前記圧延ロールの振動を示す振動データを取得する振動データ取得ステップと、
 前記複数のサンプリング期間に取得した前記振動データの各々について、周波数分析を行い、前記N角形に対応する周波数における前記振動の振幅を取得する振幅取得ステップと、
 前記振動データの各々について取得された前記振幅の経時変化に基づいて、前記回転数frでの圧延時における前記圧延ロールの前記N角形化の成長傾向を評価する評価ステップと、
を備える。
The method for evaluating the state of the rolling mill according to at least one embodiment of the present invention is
It is a method for evaluating the growth tendency of N-polygonization in which the rolling roll of the rolling apparatus is unevenly worn to become N-gonal.
During rolling at the rotation speed fr of the rolling roll, a vibration data acquisition step of acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods, and a vibration data acquisition step.
An amplitude acquisition step of performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-gon.
Based on the time course of the amplitude acquired for each of the vibration data, an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, and an evaluation step.
To be equipped.
 本発明の少なくとも一実施形態によれば、圧延ロールのN角形化の成長傾向を適切に評価可能な圧延装置の状態評価方法及び状態評価装置並びに圧延設備が提供される。 According to at least one embodiment of the present invention, there is provided a state evaluation method, a state evaluation device, and a rolling equipment of a rolling apparatus capable of appropriately evaluating the growth tendency of N-polygonization of a rolling roll.
一実施形態に係る状態評価方法及び状態評価装置が適用される圧延設備の模式図である。It is a schematic diagram of the rolling equipment to which the state evaluation method and the state evaluation apparatus which concerns on one Embodiment are applied. 一実施形態に係る状態評価装置の概略構成図である。It is a schematic block diagram of the state evaluation apparatus which concerns on one Embodiment. 一実施形態に係る状態評価方法の概略的なフローチャートである。It is a schematic flowchart of the state evaluation method which concerns on one Embodiment. 圧延ロールにおけるN角形に対応する振動振幅Aの経時変化の一例を模式的に示すグラフである。It is a graph which shows typically an example of the time-dependent change of the vibration amplitude A corresponding to the N-sided polygon in a rolling roll. 圧延ロールの回転数と時間との関係の一例を模式的に示すグラフである。It is a graph which shows typically an example of the relationship between the rotation speed of a rolling roll and time. 圧延ロールの振動データを周波数分析して得られる周波数スペクトルの一例の模式図である。It is a schematic diagram of an example of the frequency spectrum obtained by frequency analysis of the vibration data of a rolling roll. 図5Aに示す振動データのサンプリング期間から時間Δt経過後のサンプリング期間に取得された圧延ロールの振動データを周波数分析して得られる周波数スペクトルの一例の模式図である。It is a schematic diagram of an example of the frequency spectrum obtained by frequency analysis of the vibration data of the rolling roll acquired in the sampling period after the lapse of time Δt from the sampling period of the vibration data shown in FIG. 5A. 圧延ロールの回転数frと特性値σの相関関係(特性図)の典型的な一例を示す図である。It is a figure which shows a typical example of the correlation (characteristic diagram) of the rotation speed fr of a rolling roll and a characteristic value σ. 圧延ロールのN角形化が生じている圧延装置の模式図である。It is a schematic diagram of the rolling apparatus in which N-sided formation of a rolling roll occurs. 表示部に表示される評価結果の一例を示す図である。It is a figure which shows an example of the evaluation result displayed on the display part.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. Absent.
 図1は、幾つかの実施形態に係る状態評価方法及び状態評価装置が適用される圧延設備の模式図である。図1に示すように、一実施形態に係る圧延設備1は、金属板Sを圧延するように構成された圧延スタンド10を含む圧延装置2と、圧延装置2の状態を評価するための状態評価装置50と、を備えている。また、圧延設備1は、圧延スタンド10を構成する圧延ロール3の振動を計測するための振動計測部90を備えている。 FIG. 1 is a schematic view of a rolling equipment to which a state evaluation method and a state evaluation device according to some embodiments are applied. As shown in FIG. 1, the rolling equipment 1 according to the embodiment includes a rolling apparatus 2 including a rolling stand 10 configured to roll a metal plate S, and a state evaluation for evaluating the state of the rolling apparatus 2. The device 50 and the like are provided. Further, the rolling equipment 1 is provided with a vibration measuring unit 90 for measuring the vibration of the rolling roll 3 constituting the rolling stand 10.
 圧延スタンド10は、金属板Sを圧延するための複数の圧延ロール3と、圧延ロール3に荷重を加えて金属板Sを圧下するための圧下装置8と、ハウジング(不図示)等を含む。圧下装置8は、油圧シリンダを含んでいてもよい。 The rolling stand 10 includes a plurality of rolling rolls 3 for rolling the metal plate S, a reduction device 8 for applying a load to the rolling rolls 3 to reduce the metal plate S, a housing (not shown), and the like. The reduction device 8 may include a hydraulic cylinder.
 図1に示す圧延装置2では、圧延ロール3は、金属板Sを挟むように設けられる一対のワークロール4A,4Bと、一対のワークロール4A,4Bを挟んで金属板Sとは反対側に設けられ、一対のワークロール4A,4Bをそれぞれ支持するための一対のバックアップロール6A,6Bと、を含む。ワークロール4A,4Bは、それぞれ、ロールチョック5A,5Bによって回転可能に支持されている。バックアップロール6A,6Bは、それぞれ、ロールチョック7A,7Bによって回転可能に支持されている。ロールチョック5A,5B及びロールチョック7A,7Bは、ハウジング(不図示)によって支持されている。 In the rolling apparatus 2 shown in FIG. 1, the rolling roll 3 is placed on the side opposite to the metal plate S with the pair of work rolls 4A and 4B provided so as to sandwich the metal plate S and the pair of work rolls 4A and 4B. It is provided and includes a pair of backup rolls 6A, 6B for supporting the pair of work rolls 4A, 4B, respectively. The work rolls 4A and 4B are rotatably supported by roll chock 5A and 5B, respectively. The backup rolls 6A and 6B are rotatably supported by roll chock 7A and 7B, respectively. The roll chock 5A, 5B and the roll chock 7A, 7B are supported by a housing (not shown).
 図1に示す圧延設備1において、振動計測部90は、ロールチョック5A,5B,7A,7Bにそれぞれ取り付けられた加速度センサ91~94を含む。加速度センサ91~94は、それぞれ、ロールチョック5A,5B,7A,7Bの任意の方向(例えば、垂直方向、水平方向、及び/又は、圧延ロール3の回転軸方向)における振動、すなわち、ワークロール4A,4B及びバックアップロール6A,6Bの任意の方向における振動を検出するように構成されている。加速度センサ91~94で検出された、上述の振動を示す信号は、状態評価装置50に送られるようになっている。 In the rolling equipment 1 shown in FIG. 1, the vibration measuring unit 90 includes acceleration sensors 91 to 94 attached to the roll chocks 5A, 5B, 7A, and 7B, respectively. The acceleration sensors 91 to 94 vibrate in any direction of the roll chock 5A, 5B, 7A, 7B (for example, the vertical direction, the horizontal direction, and / or the rotation axis direction of the rolling roll 3), that is, the work roll 4A. , 4B and backup rolls 6A, 6B are configured to detect vibrations in any direction. The signal indicating the above-mentioned vibration detected by the acceleration sensors 91 to 94 is sent to the state evaluation device 50.
 他の実施形態では、振動計測部90は、圧延ロール3の任意の方向における変位を計測するように構成された変位検出部を含んでいてもよい。この場合、変位検出部による計測結果に基づいて、圧延ロール3の振動を算出するようにしてもよい。変位検出部として、例えば、レーザ式又は渦電流式等の変位計を用いることができる。あるいは、変位検出部として撮像装置(カメラ等)を用いることができる。この場合、圧延ロール3の一部位を撮像装置で撮像し、得られた撮像データを画像処理することにより、圧延ロール3の振動を算出するようにしてもよい。 In another embodiment, the vibration measuring unit 90 may include a displacement detecting unit configured to measure the displacement of the rolling roll 3 in any direction. In this case, the vibration of the rolling roll 3 may be calculated based on the measurement result by the displacement detection unit. As the displacement detection unit, for example, a displacement meter of a laser type or an eddy current type can be used. Alternatively, an imaging device (camera or the like) can be used as the displacement detection unit. In this case, the vibration of the rolling roll 3 may be calculated by imaging one part of the rolling roll 3 with an imaging device and performing image processing on the obtained imaging data.
 図2は、一実施形態に係る状態評価装置50の概略構成図である。状態評価装置50は、詳しくは後述するように、圧延ロール3の偏摩耗によるN角形化の成長傾向を評価するように構成されている。状態評価装置50は、振動計測部90から圧延ロール3の振動を示す信号を受け取るとともに、ロール回転数計測部95にて計測された圧延ロール3の回転数を示す信号を受け取るように構成されている。また、状態評価装置50は、鋼種データ記憶部96から、圧延装置2で圧延される金属板Sの鋼種データ(材質や硬さ等)を取得するように構成されている。状態評価装置50は、受け取った情報を処理するための振動データ取得部52、周波数分析部54、振幅抽出部56、特性値算出部62、相関関係取得部66、及び、評価部68等を含む。また、状態評価装置50は、該状態評価装置50による評価結果を出力するように構成された出力部72を含む。状態評価装置50による評価結果は、出力部72を介して表示部98(ディスプレイ等)に出力されるようになっている。 FIG. 2 is a schematic configuration diagram of the state evaluation device 50 according to the embodiment. The state evaluation device 50 is configured to evaluate the growth tendency of N-polygonization due to uneven wear of the rolling roll 3, as will be described in detail later. The state evaluation device 50 is configured to receive a signal indicating the vibration of the rolling roll 3 from the vibration measuring unit 90 and a signal indicating the rotation speed of the rolling roll 3 measured by the roll rotation speed measuring unit 95. There is. Further, the state evaluation device 50 is configured to acquire the steel type data (material, hardness, etc.) of the metal plate S rolled by the rolling device 2 from the steel type data storage unit 96. The state evaluation device 50 includes a vibration data acquisition unit 52 for processing received information, a frequency analysis unit 54, an amplitude extraction unit 56, a characteristic value calculation unit 62, a correlation acquisition unit 66, an evaluation unit 68, and the like. .. Further, the state evaluation device 50 includes an output unit 72 configured to output the evaluation result by the state evaluation device 50. The evaluation result by the state evaluation device 50 is output to the display unit 98 (display or the like) via the output unit 72.
 状態評価装置50は、CPU、メモリ(RAM)、補助記憶部及びインターフェース等を含んでいてもよい。状態評価装置50は、インターフェースを介して、各種計測器(上述の振動計測部90又はロール回転数計測部95等)からの信号を受け取るようになっている。CPUは、このようにして受け取った信号を処理するように構成される。また、CPUは、メモリに展開されるプログラムを処理するように構成される。 The state evaluation device 50 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like. The state evaluation device 50 receives signals from various measuring instruments (such as the vibration measuring unit 90 or the roll rotation speed measuring unit 95 described above) via an interface. The CPU is configured to process the signal received in this way. Further, the CPU is configured to process a program expanded in the memory.
 状態評価装置50での処理内容は、CPUにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。CPUは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。 The processing content of the state evaluation device 50 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory. The CPU reads the program from the memory and executes the instructions included in the program.
 上述した圧延装置2において、特定の回転数で金属板Sの圧延を続けると、圧延ロール3の断面形状が特定のN角形に近づくN角形化が生じることがある。ここで、図7は、圧延ロール3のN角形化が生じている圧延装置の模式図である。図7に示す圧延装置2は、複数の圧延スタンド10A~10Cを含む。圧延ロール3の軸方向に直交する断面形状は、通常、圧延スタンド10A又は10Cの圧延ロール3のように円形形状を有するが、図7に示す圧延スタンド10Bの圧延ロール3(ワークロール4A,4B及びバックアップロール6A,6B)の断面形状はN角形(具体的には12角形)となっており、これらの圧延ロール3にはN角形化が生じている。 In the rolling apparatus 2 described above, if the rolling of the metal plate S is continued at a specific rotation speed, N-polygonization may occur in which the cross-sectional shape of the rolling roll 3 approaches a specific N-polygon. Here, FIG. 7 is a schematic view of a rolling apparatus in which the rolling roll 3 is N-sided. The rolling apparatus 2 shown in FIG. 7 includes a plurality of rolling stands 10A to 10C. The cross-sectional shape of the rolling roll 3 orthogonal to the axial direction usually has a circular shape like the rolling roll 3 of the rolling stand 10A or 10C, but the rolling roll 3 (work rolls 4A, 4B) of the rolling stand 10B shown in FIG. The cross-sectional shapes of the backup rolls 6A and 6B) are N-polygons (specifically, dodecagonal), and these rolling rolls 3 are N-sided.
 圧延ロール3のN角形化が生じて成長すると、圧延ロール3により圧延された金属板Sの表面に、圧延ロール3のN角形に対応した凹凸が形成され、製品の品質上問題となることがある。そこで、圧延ロール3のN角形化の成長傾向を適切に把握して、製品金属板の品質低下を抑制することが望まれる。以下に説明する圧延装置の状態評価方法によれば、圧延ロール3のN角形化の成長傾向を適切に把握することができる。 When the rolling roll 3 is formed into an N-gonal shape and grows, irregularities corresponding to the N-sided shape of the rolling roll 3 are formed on the surface of the metal plate S rolled by the rolling roll 3, which may cause a problem in product quality. is there. Therefore, it is desired to appropriately grasp the growth tendency of the N-gonalization of the rolling roll 3 and suppress the deterioration of the quality of the product metal plate. According to the state evaluation method of the rolling apparatus described below, the growth tendency of N-polygonization of the rolling roll 3 can be appropriately grasped.
 なお、図7においては、各圧延ロール3において、12角形化(N=12)が生じた様子が模式的に示されているが、実際の圧延装置では、圧延ロール3の回転数等の運転条件にもよるが、Nが50程度あるいは100程度のN角形が圧延ロール3に生じることもある。 Note that FIG. 7 schematically shows how dodecagonization (N = 12) occurs in each rolling roll 3, but in an actual rolling apparatus, the operation of the number of rotations of the rolling roll 3 and the like is shown. Depending on the conditions, an N-side polygon having an N of about 50 or about 100 may occur in the rolling roll 3.
 また、圧延装置2の運転条件や仕様(固有振動数等)に応じて、特定の圧延スタンド10において圧延ロール3のN角形化が生じたり、1つの圧延スタンドを構成する複数の圧延ロール3のうち、特定の圧延ロール3(ワークロール4A,4B又はバックアップロール6A,6B)にてN角形化が生じたりすることがある。例えば、比較的高温で行う熱間圧延の場合、ワークロール4A,4BにおいてN角形化が比較的起きやすい。また、比較的低温で行う冷間圧延の場合、バックアップロール6A,6BにおいてN角形化が比較的起きやすい。 Further, depending on the operating conditions and specifications (natural frequency, etc.) of the rolling apparatus 2, the rolling rolls 3 may be N-polygonalized at a specific rolling stand 10, or a plurality of rolling rolls 3 constituting one rolling stand may be formed. Of these, N-sided formation may occur on a specific rolling roll 3 (work rolls 4A, 4B or backup rolls 6A, 6B). For example, in the case of hot rolling performed at a relatively high temperature, N-polygonization is relatively likely to occur in the work rolls 4A and 4B. Further, in the case of cold rolling performed at a relatively low temperature, N-polygonization is relatively likely to occur in the backup rolls 6A and 6B.
 次に、幾つかの実施形態に係る圧延装置の状態評価方法について説明する。この状態評価方法により、圧延ロール3(ワークロール4A,4B又はバックアップロール6A,6B)のN角形化の成長傾向を評価することができる。なお、以下においては、上述の状態評価装置50を用いて圧延装置の状態を評価する方法について説明するが、幾つかの実施形態では、以下に説明する状態評価装置50による処理の一部又は全部をマニュアルで行うことにより、圧延装置の状態評価を行うようにしてもよい。 Next, the state evaluation method of the rolling mill according to some embodiments will be described. By this state evaluation method, the growth tendency of N-polygonization of the rolling roll 3 ( work roll 4A, 4B or backup roll 6A, 6B) can be evaluated. In the following, a method of evaluating the state of the rolling mill using the above-mentioned state evaluation device 50 will be described, but in some embodiments, a part or all of the processing by the state evaluation device 50 described below will be described. The state of the rolling mill may be evaluated by manually performing the above.
 図3は、一実施形態に係る圧延装置の状態評価方法の概略的なフローチャートである。
 一実施形態では、まず、振動データ取得部52により、圧延ロール3の特定の回転数frでの圧延中に、複数のサンプリング期間における圧延ロール3の振動を示す振動データを取得する(振動データ取得ステップ;ステップS102)。該振動データとして、上述の振動計測部90により計測したものをオンラインで取得するようにしてもよい。あるいは、過去に振動計測部90で計測され、記憶装置に記憶された振動データを該記憶装置から読み出すことによって、取得するようにしてもよい。
FIG. 3 is a schematic flowchart of a state evaluation method of the rolling mill according to the embodiment.
In one embodiment, first, the vibration data acquisition unit 52 acquires vibration data indicating the vibration of the rolling roll 3 in a plurality of sampling periods during rolling of the rolling roll 3 at a specific rotation speed fr (vibration data acquisition). Step; Step S102). As the vibration data, the one measured by the vibration measuring unit 90 described above may be acquired online. Alternatively, the vibration data measured by the vibration measuring unit 90 in the past and stored in the storage device may be acquired by reading the vibration data from the storage device.
 次に、周波数分析部54により、複数のサンプリング期間に取得した振動データの各々について周波数分析を行う(ステップS104)。また、振幅抽出部56により、周波数分析の結果得られる周波数スペクトルに基づいて、特定のN角形に対応する周波数(fr×N)における振動の振幅A(以下、N角形に対応する振動振幅A等ともいう。)を取得する(振幅取得ステップ;ステップS106)。 Next, the frequency analysis unit 54 performs frequency analysis on each of the vibration data acquired during the plurality of sampling periods (step S104). Further, based on the frequency spectrum obtained as a result of frequency analysis by the amplitude extraction unit 56, the vibration amplitude A at the frequency (fr × N) corresponding to the specific N-side (hereinafter, the vibration amplitude A corresponding to the N-side) and the like. (Also referred to as) is acquired (amplitude acquisition step; step S106).
 そして、評価部68により、ステップS106にて振動データの各々について取得された振動振幅Aの経時変化に基づいて、圧延ロール3の回転数frでの圧延時における圧延ロール3のN角形化の成長傾向を評価する(評価ステップ;ステップS112)。 Then, based on the time-dependent change of the vibration amplitude A acquired for each of the vibration data in step S106 by the evaluation unit 68, the growth of N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3 The tendency is evaluated (evaluation step; step S112).
 一実施形態では、特性値算出部62により、ステップS106にて取得した振動振幅A等に基づいて、該振動振幅Aの経時変化の指標を示す特性値σを算出してもよい(特性値取得ステップ;ステップS108)。この場合、ステップS112では、ステップS108にて算出した特性値σに基づいて、圧延ロール3の回転数frでの圧延時における圧延ロール3のN角形化の成長傾向を評価するようにしてもよい。 In one embodiment, the characteristic value calculation unit 62 may calculate the characteristic value σ indicating the index of the change with time of the vibration amplitude A based on the vibration amplitude A or the like acquired in step S106 (characteristic value acquisition). Step; Step S108). In this case, in step S112, the growth tendency of N-polygonization of the rolling roll 3 at the time of rolling at the rotation speed fr of the rolling roll 3 may be evaluated based on the characteristic value σ calculated in step S108. ..
 また、一実施形態では、相関関係取得部66により、圧延ロール3の複数の回転数frにて上述のステップS102~S108を行って、複数の回転数frにそれぞれ対応する特性値σを取得して、圧延ロール3の回転数frと特性値σの相関関係を示す特性図を取得してもよい(相関関係取得ステップ;ステップS110)。この場合、ステップS112では、ステップS110にて取得した特性図(相関関係)に基づいて、圧延ロール3の回転数frでの圧延時における圧延ロール3のN角形化の成長傾向を評価するようにしてもよい。 Further, in one embodiment, the correlation acquisition unit 66 performs the above steps S102 to S108 at a plurality of rotation speed frs of the rolling roll 3 to acquire characteristic values σ corresponding to the plurality of rotation speed frs, respectively. Then, a characteristic diagram showing the correlation between the rotation speed fr of the rolling roll 3 and the characteristic value σ may be acquired (correlation acquisition step; step S110). In this case, in step S112, based on the characteristic diagram (correlation) acquired in step S110, the growth tendency of N-polygonization of the rolling roll 3 at the time of rolling at the rotation speed fr of the rolling roll 3 is evaluated. You may.
 すなわち、図3のフローチャートにおけるステップS108及びステップS110は、必要に応じて実行可能な任意のステップである。 That is, step S108 and step S110 in the flowchart of FIG. 3 are arbitrary steps that can be executed as needed.
 以下、各ステップについてより具体的に説明する。 Below, each step will be explained more concretely.
 上述したように、ステップS102では、圧延ロール3の特定の回転数frでの圧延中に、複数のサンプリング期間の各々において、圧延ロール3の振動を示す振動データを取得する。 As described above, in step S102, during rolling of the rolling roll 3 at a specific rotation speed fr, vibration data indicating the vibration of the rolling roll 3 is acquired in each of the plurality of sampling periods.
 ここで、図4Aは、圧延ロール3における特定のN角形に対応する振動振幅A(ステップS106で取得される振動振幅に対応するもの)の経時変化の一例を模式的に示すグラフである。図4Bは、時間tと、圧延ロール3の回転数frとの関係の一例を模式的に示すグラフである。なお、図4Aのグラフと図4Bグラフの時間軸(横軸)は共通である。 Here, FIG. 4A is a graph schematically showing an example of the time-dependent change of the vibration amplitude A (corresponding to the vibration amplitude acquired in step S106) corresponding to the specific N-sided polygon in the rolling roll 3. FIG. 4B is a graph schematically showing an example of the relationship between the time t and the rotation speed fr of the rolling roll 3. The time axis (horizontal axis) of the graph of FIG. 4A and the graph of FIG. 4B is common.
 図4A及び図4Bに示すように、圧延ロール3の回転数frに応じて、特定のN角形に対応する振動振幅Aの経時変化の傾向(増加又は減少、及びその速度等)は異なる。図4A及び図4Bに示す例では、時刻t0から時刻t1までの期間(当該期間の長さΔt1)は、圧延ロール3の回転数fr1で圧延を行っている(図4B参照)。この期間中、特定のN角形に対応する振動振幅Aは、増加傾向を示している(図4A参照)。これは、圧延ロール3においてN角形化が成長していること、すなわち、圧延ロール3の軸方向に直交する断面の形状が、円形からN角形に近づくように変形していることを示す。また、時刻t1において、圧延ロール3の回転数fr1からfr2(ただしfr1<fr2)に変更し、時刻t1から時刻t2までの期間(当該期間の長さΔt2)は、圧延ロール3の回転数fr2で圧延を行っている(図4B参照)。この期間中、特定のN角形に対応する振動振幅Aは、減少傾向を示している(図4A参照)。これは、圧延ロール3においてN角形化が減衰していること、すなわち、圧延ロール3の軸方向に直交する断面の形状が、N角形から円形に近づくように変形していることを示す。 As shown in FIGS. 4A and 4B, the tendency (increase or decrease, speed, etc.) of the vibration amplitude A corresponding to a specific N-sided polygon with time differs depending on the rotation speed fr of the rolling roll 3. In the examples shown in FIGS. 4A and 4B, rolling is performed at the rotation speed fr1 of the rolling roll 3 during the period from time t0 to time t1 (length Δt1 of the period) (see FIG. 4B). During this period, the vibration amplitude A corresponding to the specific N-sided polygon shows an increasing tendency (see FIG. 4A). This indicates that the N-polygonization is growing in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from a circle to an N-sided shape. Further, at time t1, the rotation speed fr1 of the rolling roll 3 is changed to fr2 (however, fr1 <fr2), and the period from time t1 to time t2 (length Δt2 of the period) is the rotation speed fr2 of the rolling roll 3. (See Fig. 4B). During this period, the vibration amplitude A corresponding to the specific N-sided polygon shows a decreasing tendency (see FIG. 4A). This indicates that the N-sided formation is attenuated in the rolling roll 3, that is, the shape of the cross section orthogonal to the axial direction of the rolling roll 3 is deformed from the N-sided shape to approach a circle.
 したがって、圧延ロール3の特定の回転数frでの圧延中に、異なる2つの時刻t、ti+1におけるN角形に対応する振動振幅A,Ai+1を取得すれば、振動振幅Aと振動振幅Ai+1との比較により、圧延ロール3のN角形化の成長傾向を評価することができる。 Therefore, during rolling at a particular rotational speed fr of the rolling rolls 3, two different times t i, the vibration amplitude corresponding to the N polygon in t i + 1 A i, by obtaining the A i + 1, and the vibration amplitude A i vibrations By comparing with the amplitude A i + 1 , the growth tendency of the N-squared rolling roll 3 can be evaluated.
 例えば、ステップS102では、圧延ロール3の回転数fr1で圧延中の時刻t0を含むサンプリング期間と、時刻t1(ただし、t0<t1)を含むサンプリング期間において、振動データを取得する(図4A及び図4B参照)。そして、これらの振動データについて周波数分析を行い、時刻t0におけるN角形に対応する振動振幅A0と、時刻t1におけるN角形に対応する振動振幅A1を取得する(ステップS104及びS106)。そして、ステップS112では、上述の振動振幅A0と振動振幅A1との比較により、圧延ロール3のN角形化の成長傾向を評価する。より具体的には、図4Aに示すように、振動振幅A0に比べて振動振幅A1は大きいので、圧延ロール3の回転数fr1では、N角形に対応する振動振幅Aは増大する傾向である。すなわち、圧延ロール3の回転数fr1では、圧延ロール3のN角形化は成長する、と評価することができる。 For example, in step S102, vibration data is acquired in a sampling period including the time t0 during rolling at the rotation speed fr1 of the rolling roll 3 and a sampling period including the time t1 (however, t0 <t1) (FIGS. 4A and 4A). See 4B). Then, frequency analysis is performed on these vibration data, and the vibration amplitude A0 corresponding to the N-sided polygon at time t0 and the vibration amplitude A1 corresponding to the N-sided polygon at time t1 are acquired (steps S104 and S106). Then, in step S112, the growth tendency of N-polygonization of the rolling roll 3 is evaluated by comparing the vibration amplitude A0 and the vibration amplitude A1 described above. More specifically, as shown in FIG. 4A, since the vibration amplitude A1 is larger than the vibration amplitude A0, the vibration amplitude A corresponding to the N-sided polygon tends to increase at the rotation speed fr1 of the rolling roll 3. That is, it can be evaluated that the N-sided formation of the rolling roll 3 grows at the rotation speed fr1 of the rolling roll 3.
 同様に、圧延ロール3の回転数frで圧延中の時刻t1を含むサンプリング期間と、時刻t2(ただし、t1<t2)を含むサンプリング期間に取得された振動データを用いて得られる、時刻t1におけるN角形に対応する振動振幅A1と、時刻t2におけるN角形に対応する振動振幅A2を比較することにより、圧延ロール3のN角形化の成長傾向を評価することができる。図4Aに示すように、振動振幅A1に比べて振動振幅A2は小さいので、圧延ロール3の回転数fr2では、N角形に対応する振動振幅Aは減少する傾向である。すなわち、圧延ロール3の回転数fr2では、圧延ロール3のN角形化は減衰する、と評価することができる。 Similarly, at the time t1 obtained by using the vibration data acquired during the sampling period including the time t1 during rolling at the rotation speed fr of the rolling roll 3 and the sampling period including the time t2 (however, t1 <t2). By comparing the vibration amplitude A1 corresponding to the N-polygon and the vibration amplitude A2 corresponding to the N-gon at time t2, the growth tendency of the N-polygonization of the rolling roll 3 can be evaluated. As shown in FIG. 4A, since the vibration amplitude A2 is smaller than the vibration amplitude A1, the vibration amplitude A corresponding to the N-sided polygon tends to decrease at the rotation speed fr2 of the rolling roll 3. That is, it can be evaluated that the N-sided formation of the rolling roll 3 is attenuated at the rotation speed fr2 of the rolling roll 3.
 上述した方法によれば、圧延ロール3の特定の回転数frにて金属板Sの圧延中に取得された振動データに基づいて、特定のN角形に対応する周波数(fr×N)の振動の振幅(振動振幅A)を取得するようにしたので、該振動振幅Aの経時変化に基づいて、圧延ロール3の回転数frにおける圧延ロール3のN角形化の成長傾向(例えば、N角形化が成長又は減衰しているか否か等)を評価することができる。したがって、例えば、この評価に基づいて、圧延ロール3のN角形化が成長しないように圧延装置2の運転制御を行うことにより、製品金属板の品質低下を抑制することができる。 According to the method described above, the vibration of the frequency (fr × N) corresponding to the specific N-side is based on the vibration data acquired during the rolling of the metal plate S at the specific rotation speed fr of the rolling roll 3. Since the amplitude (vibration amplitude A) is acquired, the growth tendency of the N-square formation of the rolling roll 3 at the rotation speed fr of the rolling roll 3 (for example, the N-square formation) is based on the change with time of the vibration amplitude A. Whether it is growing or declining, etc.) can be evaluated. Therefore, for example, based on this evaluation, the quality deterioration of the product metal plate can be suppressed by controlling the operation of the rolling apparatus 2 so that the N-sided formation of the rolling roll 3 does not grow.
 ここで、図5Aは、圧延ロール3の特定の回転数frにて、あるサンプリング期間に取得された圧延ロール3の振動データを周波数分析して得られる周波数スペクトルの模式図である。図5Bは、同じ回転数frにて、図5Aに示す振動データのサンプリング期間から時間Δt経過後のサンプリング期間に取得された圧延ロール3の振動データを周波数分析して得られる周波数スペクトルの模式図である。図5A及び図5Bにおいて、周波数fr×(N-1)、fr×N、及び、fr×(N+1)は、それぞれ、(N-1)角形、N角形、及び、(N+1)角形に対応する振動周波数を示す。 Here, FIG. 5A is a schematic diagram of a frequency spectrum obtained by frequency analysis of vibration data of the rolling roll 3 acquired in a certain sampling period at a specific rotation speed fr of the rolling roll 3. FIG. 5B is a schematic diagram of a frequency spectrum obtained by frequency analysis of the vibration data of the rolling roll 3 acquired in the sampling period after the lapse of time Δt from the sampling period of the vibration data shown in FIG. 5A at the same rotation speed fr. Is. In FIGS. 5A and 5B, the frequencies fr × (N-1), fr × N, and fr × (N + 1) correspond to the (N-1) polygon, the N polygon, and the (N + 1) polygon, respectively. Indicates the vibration frequency.
 図5A及び図5Bに示すように、同一の回転数frで圧延を行った場合、あるN角形(N1角形)の成長傾向と、別のN角形(N2角形)の成長傾向は、独立したものとなる。図5A及び図5Bにおいて、回転数frでの圧延をΔt継続したときに、圧延ロール3のN角形に対応する振動振幅A(周波数fr×Nにおける振動振幅)は、A (図5A)からA i+1(図5B)に増加している。これに対し、同様の条件で、圧延ロール3の(N-1)角形に対応する振動振幅AN-1(周波数fr×(N-1)における振動振幅)は、AN-1 (図5A)からAN-1 i+1(図5B)に減少しており、また、圧延ロール3の(N+1)角形に対応する振動振幅AN+1(周波数fr×(N+1)における振動振幅)は、AN+1 (図5A)からAN+1 i+1(図5B)に減少している。すなわち、この圧延ロール3の回転数frの条件では、圧延ロール3のN角形化は成長すると同時に、(N-1)角形化及び(N+1)角形化は減衰する。
 一方、別の回転数frでは、圧延ロール3のN角形化は減衰するが、(N-1)角形化又は(N+1)角形化は成長する、ということもあり得る。
As shown in FIGS. 5A and 5B, when rolling is performed at the same rotation speed fr, the growth tendency of one N-sided polygon (N1 polygonal shape) and the growth tendency of another N-sided polygon (N2 polygonal shape) are independent. It becomes. 5A and 5B, the rolling at a rotation speed fr when Δt continued (vibration amplitude at a frequency fr × N) vibration amplitude A N corresponding to N polygonal rolling rolls 3, A N i (FIG. 5A ) To AN i + 1 (Fig. 5B). On the other hand, under the same conditions, the vibration amplitude AN-1 (vibration amplitude at the frequency fr × (N-1)) corresponding to the (N-1) square of the rolling roll 3 is AN-1 i (Fig. It is reduced from 5A) to AN-1 i + 1 (FIG. 5B), and the vibration amplitude AN + 1 (vibration amplitude at frequency fr × (N + 1)) corresponding to the (N + 1) square of the rolling roll 3 is AN + 1. It decreases from i (Fig. 5A) to AN + 1 i + 1 (Fig. 5B). That is, under the condition of the rotation speed fr of the rolling roll 3, the N-gonization of the rolling roll 3 grows, and at the same time, the (N-1) keratinization and the (N + 1) keratinization are attenuated.
On the other hand, at another rotation speed fr, it is possible that the N-squared formation of the rolling roll 3 is attenuated, but the (N-1) squared shape or the (N + 1) squared shape grows.
 したがって、例えば、圧延ロール3の回転数frで圧延を行い、圧延ロール3のN角形化が進行し過ぎる前に、圧延ロール3の回転数frを変更することで、圧延ロール3のN角形化の進行を適切に抑制することができる。また、変更後の回転数での運転にて、圧延ロール3のN角形化は減衰するが、(N+1)角形化が成長する場合であっても、圧延ロール3の(N+1)角形化が進行し過ぎる前に、圧延ロール3の回転数を変更することで、圧延ロール3の(N+1)角形化の進行を適切に抑制することができる。 Therefore, for example, by rolling at the rotation speed fr of the rolling roll 3 and changing the rotation speed fr of the rolling roll 3 before the N-polygonization of the rolling roll 3 progresses too much, the N-polygonization of the rolling roll 3 is performed. Can be appropriately suppressed. Further, the N-squared formation of the rolling roll 3 is attenuated by the operation at the changed rotation speed, but the (N + 1) squared formation of the rolling roll 3 proceeds even when the (N + 1) squared formation grows. By changing the number of rotations of the rolling roll 3 before excessively, the progress of (N + 1) polygonization of the rolling roll 3 can be appropriately suppressed.
 このようにして、圧延ロール3の回転数frを、N角形化の成長傾向の評価結果に基づいて適切に選択することで、圧延ロール3の多角形化を適切に抑制することができる。 In this way, by appropriately selecting the rotation speed fr of the rolling roll 3 based on the evaluation result of the growth tendency of N-square formation, the polygonization of the rolling roll 3 can be appropriately suppressed.
 次に、ステップS108での特性値σの算出について説明する。本発明者らの知見によれば、一定の回転数frでの圧延中、N角形に対応する振動振幅Aは、指数関数的に増減する。そして、圧延ロール3の回転数fr1で圧延中の時刻t0及びt1における、上述のN角形に対応する振動振幅A0及びA1は、下記式(A)で示す関係を満たす。
 A1=A0×exp(σ(Φ1)・fr1・Δt1) …(A)
Next, the calculation of the characteristic value σ in step S108 will be described. According to the findings of the present inventors, the vibration amplitude A corresponding to the N-sided polygon increases or decreases exponentially during rolling at a constant rotation speed fr. Then, the vibration amplitudes A0 and A1 corresponding to the above-mentioned N-gon at the times t0 and t1 during rolling at the rotation speed fr1 of the rolling roll 3 satisfy the relationship represented by the following formula (A).
A1 = A0 × exp (σ (Φ1) ・ fr1 ・ Δt1)… (A)
 また、圧延ロール3の回転数fr2で圧延中の時刻t1及びt2における、上述のN角形に対応する振動振幅A1及びA2は、下記式(B)で示す関係を満たす。
 A2=A1×exp(σ(Φ2)・fr2・Δt2) …(B)
 上記式(B)を一般化して整理すると、下記式(C)が得られる。
 Ai+1/A=exp(σ(Φi+1)・fri+1・Δti+1) …(C)
 上記(C)の両辺の自然対数をとって整理すると、下記式(D)が得られる。
 σ(Φi+1)=ln(Ai+1/A)/(fri+1・Δti+1) …(D)
Further, the vibration amplitudes A1 and A2 corresponding to the above-mentioned N-gon at the times t1 and t2 during rolling at the rotation speed fr2 of the rolling roll 3 satisfy the relationship represented by the following formula (B).
A2 = A1 × exp (σ (Φ2) ・ fr2 ・ Δt2)… (B)
By generalizing and organizing the above formula (B), the following formula (C) can be obtained.
A i + 1 / A i = exp (σ (Φ i + 1 ) ・ fr i + 1・ Δt i + 1 )… (C)
The following equation (D) can be obtained by taking the natural logarithms of both sides of the above (C) and arranging them.
σ (Φ i + 1 ) = ln (A i + 1 / A i ) / (fr i + 1 · Δt i + 1 )… (D)
 ここで、上記式(A)~(D)中のσ(Φ)は、圧延ロール3の回転数frに対応して定まる特性値(以下、単に「特性値σ」ともいう。)である。また、Φは、Φ=fr×N/fn(ただし、fnは圧延ロール3の固有振動数)で表されるパラメータである。なお、Nは特定の自然数(角形数)であり、fnも圧延対象の金属板の材質や厚さ等によらず概ね一定であると見做すことができるので、Φは圧延ロール3の回転数frと概ね比例関係にある。 Here, σ (Φ i ) in the above formulas (A) to (D) is a characteristic value determined corresponding to the rotation speed fr i of the rolling roll 3 (hereinafter, also simply referred to as “characteristic value σ”). is there. Further, Φ i is a parameter represented by Φ i = fr i × N / fn (where fn is the natural frequency of the rolling roll 3). Since N is a specific natural number (polygonal number) and fn can be considered to be substantially constant regardless of the material and thickness of the metal plate to be rolled, Φ i is the rolling roll 3. It is roughly proportional to the number of revolutions fr i .
 したがって、圧延ロール3の特定の回転数frでの圧延中に、異なる2つの時刻t、ti+1におけるN角形に対応する振動振幅A,Ai+1を取得すれば、上記式(D)から、この回転数frに対応する特性値σを算出することができる。 Therefore, during rolling at a particular rotational speed fr of the rolling rolls 3, two different times t i, the vibration amplitude A i corresponding to the N polygon in t i + 1, by obtaining the A i + 1, from the equation (D) , The characteristic value σ corresponding to this rotation speed fr can be calculated.
 例えば、ステップS102では、圧延ロールの回転数fr2で圧延中の時刻t1を含むサンプリング期間と、時刻t2を含むサンプリング期間において、振動データを取得する。そして、これらの振動データについて周波数分析を行い、時刻t1におけるN角形に対応する振動振幅A1と、時刻t2におけるN角形に対応する振動振幅A2を取得する(ステップS104及びS106)。ステップS108ではこれらの振動振幅A1,A2と、圧延ロール3の回転数fr2と、上述の2つのサンプリング期間の間の時間の長さΔt2とから、回転数fr2に対応するσ(Φ2)を算出することができる。 For example, in step S102, vibration data is acquired in the sampling period including the time t1 during rolling at the rotation speed fr2 of the rolling roll and the sampling period including the time t2. Then, frequency analysis is performed on these vibration data, and the vibration amplitude A1 corresponding to the N-sided polygon at time t1 and the vibration amplitude A2 corresponding to the N-sided polygon at time t2 are acquired (steps S104 and S106). In step S108, σ (Φ2) corresponding to the rotation speed fr2 is calculated from the vibration amplitudes A1 and A2, the rotation speed fr2 of the rolling roll 3, and the time length Δt2 between the two sampling periods described above. can do.
 ここで、第1のサンプリング期間(例えば時刻t1を含むサンプリング期間)と、第2のサンプリング期間(例えば時刻t2を含むサンプリング期間)の間の時間の長さ(以下、サンプリング期間の時間差ともいう。)Δtは、例えば、各サンプリング期間の開始時刻の差であってもよく、各サンプリング期間の終了時刻の差であってもよく、あるいは、第1のサンプリング期間の開始時刻と第2のサンプリング期間の終了時刻との差であってもよいが、各iについて同じ算出方法で取得される。 Here, the length of time between the first sampling period (for example, the sampling period including time t1) and the second sampling period (for example, the sampling period including time t2) (hereinafter, also referred to as the time difference of the sampling period). ) Δt may be, for example, the difference between the start times of each sampling period, the difference between the end times of each sampling period, or the start time of the first sampling period and the second sampling period. Although it may be the difference from the end time of, each i is acquired by the same calculation method.
 上記式(D)により算出された特性値σがゼロより大きい場合、上記式(D)の右辺中の(Ai+1/A)が1よりも大きくなる。したがって、特性値σがゼロより大きいことは、当該σに対応する回転数frにおいて圧延ロール3のN角形化が成長することを示す。一方、上記式(D)により算出された特性値σがゼロより小さい場合、上記式(D)の右辺中の(Ai+1/A)が1よりも小さくなる。したがって、特性値σがゼロより小さいことは、当該σに対応する回転数frにおいて圧延ロール3のN角形化が減衰することを示す。 When the characteristic value σ calculated by the above formula (D) is larger than zero, (A i + 1 / A i ) in the right side of the above formula (D) becomes larger than 1. Therefore, the fact that the characteristic value σ is larger than zero indicates that the N-polygonization of the rolling roll 3 grows at the rotation speed fr corresponding to the σ. On the other hand, when the characteristic value σ calculated by the above formula (D) is smaller than zero, (A i + 1 / A i ) in the right side of the above formula (D) becomes smaller than 1. Therefore, the fact that the characteristic value σ is smaller than zero indicates that the N-polygonization of the rolling roll 3 is attenuated at the rotation speed fr corresponding to the σ.
 このように、圧延ロール3のN角形に対応する振動振幅Aの比(Ai+1/A)は、2つのサンプリング期間の間における、振動振幅Aの経時変化の傾向(振幅の増大又は減少等)を示すものである。したがって、上述のように、この比(Ai+1/A)に基づいて取得される特性値σは、圧延ロール3の回転数frでの圧延中における圧延ロール3のN角形化の成長傾向(N角形化の成長又は減衰等)を示す指標となり得る。したがって、特性値σを用いることにより、圧延ロール3の回転数frにおける圧延ロール3のN角形化の成長傾向を適切に評価することができる。 As described above, the ratio of the vibration amplitude A corresponding to the N-sided shape of the rolling roll 3 (A i + 1 / A i ) tends to change with time (increase or decrease of the amplitude, etc.) of the vibration amplitude A during the two sampling periods. ) Is shown. Therefore, as described above, the characteristic value σ acquired based on this ratio (A i + 1 / A i ) is the growth tendency of the N-sided polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3. It can be an index showing the growth or attenuation of N-polygonization). Therefore, by using the characteristic value σ, the growth tendency of N-polygonization of the rolling roll 3 at the rotation speed fr of the rolling roll 3 can be appropriately evaluated.
 また、上記式(D)で算出される特性値σは、上記式(D)の右辺の分子に、振動データのサンプリング期間同士の時間差(Δt)が含まれることから、単位時間当たりの振動振幅の変化を示すものである。したがって、特性値σが正の領域では、特性値σが大きいほど、N角形に対応する振動振幅Aの増加速度が大きく、圧延ロール3のN角形化の成長速度が速い傾向であると評価することができる。また、特性値σが負の領域では、特性値σが小さいほど、N角形に対応する振動振幅Aの減少速度が大きく、圧延ロール3のN角形化の減衰速度が速い傾向であると評価することができる。 Further, the characteristic value σ calculated by the above formula (D) is the vibration amplitude per unit time because the numerator on the right side of the above formula (D) includes the time difference (Δt) between the sampling periods of the vibration data. It shows the change of. Therefore, in the region where the characteristic value σ is positive, it is evaluated that the larger the characteristic value σ is, the larger the increase rate of the vibration amplitude A corresponding to the N-side polygon is, and the faster the growth rate of the N-sided formation of the rolling roll 3 is. be able to. Further, in the region where the characteristic value σ is negative, it is evaluated that the smaller the characteristic value σ is, the larger the decrease rate of the vibration amplitude A corresponding to the N-polygon is, and the faster the damping rate of the N-sided formation of the rolling roll 3 is. be able to.
 このように、圧延ロール3のN角形に対応する振動振幅の比(Ai+1/A)、及び、2つのサンプリング期間の時間差Δtにより、2つのサンプリング期間の間における、上述の振幅の単位時間あたりの変化度合いがわかる。したがって、上述の振動振幅の比(Ai+1/A)、及び、時間差Δtに基づいて取得される特性値σは、圧延ロール3の回転数frでの圧延中における圧延ロール3のN角形化の成長又は減衰の速度の指標となり得る。よって、この特性値σを用いることにより、圧延ロール3の回転数frにおける圧延ロール3のN角形化の成長傾向を適切に評価することができる。 As described above, the unit time of the above-mentioned amplitude between the two sampling periods is determined by the ratio of the vibration amplitude corresponding to the N-sided polygon of the rolling roll 3 (A i + 1 / A i ) and the time difference Δt between the two sampling periods. You can see the degree of change around. Therefore, the characteristic value σ obtained based on the above-mentioned vibration amplitude ratio (A i + 1 / A i ) and the time difference Δt is the N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3. Can be an indicator of the rate of growth or decay of. Therefore, by using this characteristic value σ, the growth tendency of N-polygonization of the rolling roll 3 at the rotation speed fr of the rolling roll 3 can be appropriately evaluated.
 次に、ステップS110(相関関係取得ステップ)での回転数frと特性値σとの相関関係(特性図)の取得について説明する。ステップS110では、上述したように、圧延ロール3の複数の回転数frにて上述のステップS102~S118を行い、複数の回転数frにそれぞれ対応する特性値σを取得する。このように取得された回転数frと特性値σの組合せは、記録部60(図2参照)に記録されるようになっていてもよい。このように取得された回転数frと特性値σの組合せをグラフにプロットすることで、回転数frと特性値σとの相関関係(特性図)を取得することができる。 Next, acquisition of the correlation (characteristic diagram) between the rotation speed fr and the characteristic value σ in step S110 (correlation acquisition step) will be described. In step S110, as described above, the above steps S102 to S118 are performed at the plurality of rotation speed frs of the rolling roll 3, and the characteristic values σ corresponding to the plurality of rotation speed frs are acquired. The combination of the rotation speed fr and the characteristic value σ acquired in this way may be recorded in the recording unit 60 (see FIG. 2). By plotting the combination of the rotation speed fr and the characteristic value σ acquired in this way on a graph, the correlation (characteristic diagram) between the rotation speed fr and the characteristic value σ can be acquired.
 図6は、ステップS110で取得される回転数frと特性値σの相関関係(特性図)の典型的な一例を示す図である。図6のグラフの横軸のパラメータΦ(Φ=fr×N/fn)は、上述したように、回転数frの指標となるパラメータである。 FIG. 6 is a diagram showing a typical example of the correlation (characteristic diagram) between the rotation speed fr and the characteristic value σ acquired in step S110. As described above, the parameter Φ (Φ = fr × N / fn) on the horizontal axis of the graph of FIG. 6 is a parameter that serves as an index of the rotation speed fr.
 図6に示すように、典型的な特性図においては、「N」に関わらず、Φ=1(即ち、N角形に対応する周波数fr×Nが圧延ロール3の固有振動数と等しくなる回転数fr)の近傍と、Φ<1の領域に、σがゼロとなるΦ(図6中のΦ=α2及びΦ=α1)(即ち回転数)が存在する。 As shown in FIG. 6, in a typical characteristic diagram, Φ = 1 (that is, the frequency fr × N corresponding to the N-square is equal to the natural frequency of the rolling roll 3 regardless of “N”. In the vicinity of fr) and in the region of Φ <1, Φ (Φ = α2 and Φ = α1) (that is, the number of rotations) in which σ becomes zero exists.
 そして、α1<Φ<α2の回転数領域においてσがゼロより大きく、特に、Φ≒α2にてσが極大となっている。すなわち、この回転数領域では、圧延ロール3のN角形化が成長(進行)し、σが大きいほど、圧延ロール3のN角形化の成長速度が速い。一方、Φ<α1及びΦ>α2の回転数領域ではσがゼロよりも小さい。すなわち、この回転数領域では、圧延ロール3のN角形化が減衰し、σが小さいほど、圧延ロール3のN角形化の減衰速度が速い。なお、σ=0では、圧延ロール3のN角形化は成長も減衰もしない。 Then, in the rotation speed region of α1 <Φ <α2, σ is larger than zero, and in particular, σ is maximized when Φ≈α2. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 grows (progresses), and the larger the σ, the faster the growth rate of the N-polygonization of the rolling roll 3. On the other hand, in the rotation speed region of Φ <α1 and Φ> α2, σ is smaller than zero. That is, in this rotation speed region, the N-polygonization of the rolling roll 3 is attenuated, and the smaller the σ, the faster the attenuation speed of the N-gonification of the rolling roll 3. When σ = 0, the N-sided formation of the rolling roll 3 does not grow or decay.
 ステップS110で上述の特性図(相関関係)を取得したら、ステップS112において、この特性図に基づいて、圧延ロール3の回転数frでの圧延時における圧延ロール3のN角形化の成長傾向を評価することができる。すなわち、上述の特性図を用いることで、圧延ロール3の様々な回転数frに対応するσを取得することができるので、圧延ロール3の特定の回転数に対応するN角形化の成長傾向を評価することができる。よって、例えば、現在の圧延ロール3の回転数に対応するσを把握して、現時点での圧延ロール3のN角形化の成長傾向を把握したり、あるいは、将来変更予定の圧延ロール3の回転数での圧延ロール3のN角形化の成長傾向を予測したりすることができる。 After acquiring the above-mentioned characteristic diagram (correlation) in step S110, in step S112, the growth tendency of N-polygonization of the rolling roll 3 during rolling at the rotation speed fr of the rolling roll 3 is evaluated based on this characteristic diagram. can do. That is, by using the above-mentioned characteristic diagram, σ corresponding to various rotation speed frs of the rolling roll 3 can be obtained, so that the growth tendency of N-polygonization corresponding to a specific rotation speed of the rolling roll 3 can be obtained. Can be evaluated. Therefore, for example, the σ corresponding to the current rotation speed of the rolling roll 3 can be grasped to grasp the growth tendency of the N-sided polygonization of the rolling roll 3 at the present time, or the rotation of the rolling roll 3 scheduled to be changed in the future. It is possible to predict the growth tendency of N-polygonization of the rolling roll 3 by the number.
 なお、圧延する金属板Sの鋼種に応じて、各鋼種に適合する特性図を複数種作成してもよい。この場合、ステップS110では、鋼種データ記憶部96(図2参照)から鋼種データ(鋼種毎の材質や硬さ等の情報を含む)を読み出し、該鋼種データとともに回転数fr及び特性値σの組合せを記録部60(図2参照)に記録し、この記録に基づいて、鋼種毎に特性図(回転数frと特性値σとの相関関係)を取得するようにしてもよい。 Note that, depending on the steel type of the metal plate S to be rolled, a plurality of types of characteristic diagrams suitable for each steel type may be created. In this case, in step S110, the steel grade data (including information such as the material and hardness of each steel grade) is read from the steel grade data storage unit 96 (see FIG. 2), and the combination of the rotation speed fr and the characteristic value σ together with the steel grade data. Is recorded in the recording unit 60 (see FIG. 2), and a characteristic diagram (correlation between the rotation speed fr and the characteristic value σ) may be acquired for each steel type based on this recording.
 幾つかの実施形態では、ステップS112での評価結果を、出力部72(図2参照)を介して、表示部98(ディスプレイ等)に出力するようにしてもよい。 In some embodiments, the evaluation result in step S112 may be output to the display unit 98 (display or the like) via the output unit 72 (see FIG. 2).
 図8は、表示部98に表示される評価結果の一例を示す図である。図8に示す例では、回転数fr(即ちΦ)と特性値σとの相関関係のグラフとともに、圧延ロール3の現在の回転数frにおける複数種のN角形(N=39,40,41)の各々に対応する特性値σを、グラフ上の点として示したものである。なお、各N角形について、回転数frと特性値σの相関関係を示すグラフは個別に得られるが、図8(及び図6)のグラフのように、角形数N及び圧延ロール3の固有振動数fnで回転数frを正規化したパラメータΦを用いてグラフ化すると、複数種のN角形についての相関関係の曲線(特性図)がほぼ重なる場合がある。 FIG. 8 is a diagram showing an example of the evaluation result displayed on the display unit 98. In the example shown in FIG. 8, a graph of the correlation between the rotation speed fr (that is, Φ) and the characteristic value σ, and a plurality of types of N polygons (N = 39, 40, 41) at the current rotation speed fr of the rolling roll 3 The characteristic value σ corresponding to each of the above is shown as a point on the graph. For each N-sided polygon, a graph showing the correlation between the rotation number fr and the characteristic value σ can be obtained individually, but as shown in the graph of FIG. 8 (and FIG. 6), the natural vibration of the number of polygons N and the rolling roll 3 When graphing using the parameter Φ obtained by normalizing the rotation number fr with the number fn, the correlation curves (characteristic diagrams) for a plurality of types of N-gonal numbers may almost overlap.
 図8のグラフからは、現在の回転数frでは、N=40(40角形)についてのσは0より大きいことから、圧延ロール3において40角形が成長していることがわかる。また、この図から、現在の回転数frでは、N=39(39角形)及びN=41(41角形)についてのσは0よりも小さいことから、圧延ロール3において39角形及び41角形が減衰していることがわかる。 From the graph of FIG. 8, at the current rotation speed fr, σ for N = 40 (40 squares) is larger than 0, so it can be seen that the 40 squares are growing on the rolling roll 3. Further, from this figure, at the current rotation speed fr, σ for N = 39 (39 squares) and N = 41 (41 squares) is smaller than 0, so that the 39 squares and 41 squares are attenuated in the rolling roll 3. You can see that it is doing.
 上述の相関関係を取得すると、例えば、現在の運転状態と同じ運転条件(圧延ロール3の回転数)で運転を継続した場合に、特定のN角形に対応する振動振幅が閾値に達する時間を予測することができる。幾つかの実施形態では、圧延ロール3の回転数fr1での圧延中、時刻t1を含むサンプリング期間に圧延ロール3の振動データを取得し、周波数分析を行うことで、時刻t1を含むサンプリング期間におけるN角形に対応する振動振幅A1を取得する。そして、ステップS110で取得した、回転数frと特性値σとの相関関係に基づいて、圧延ロール3の回転数fr1での圧延を前記時刻t1から継続した場合に振動振幅が閾値Athに達するまでの時間Δtを算出する。 When the above correlation is acquired, for example, when the operation is continued under the same operating conditions (rotational speed of the rolling roll 3) as the current operating state, the time when the vibration amplitude corresponding to a specific N-sided polygon reaches the threshold value is predicted. can do. In some embodiments, during rolling at the rotation speed fr1 of the rolling roll 3, vibration data of the rolling roll 3 is acquired during the sampling period including the time t1 and frequency analysis is performed to obtain the vibration data of the rolling roll 3 in the sampling period including the time t1. The vibration amplitude A1 corresponding to the N-sided polygon is acquired. Then, it acquired in step S110, based on the correlation between the rotational speed fr and the characteristic value sigma, the vibration amplitude when the rolling at a rotation number fr1 of the rolling rolls 3 and continued from the time t1 reaches the threshold A th The time to time Δt c is calculated.
 上記時間Δtの算出方法の一例について説明する。式(D)より、特性値σは、圧延ロール3の回転数fri+1での圧延中、時間Δti+1の間の振幅の変化を比(Ai+1/A)で示すものである。したがって、式(D)より、回転数fr1での圧延中の特性値σを、回転数fr1での圧延中のある時点でのN角形に対応する振動振幅A、振動振幅の閾値Ath(ただしA<Ath)、及び、振動振幅がAからAthになるまでの時間Δtを用いて、下記式(E)のように表現できる。
 σ=ln(Ath/A1)/(fr1・Δt) …(E)
 上記式(E)を変形して、下記式(F)が得られる。
 Δt=ln(Ath/A1)/(σ・fr1) …(F)
 したがって、上記式(F)から、回転数fr1において圧延中の、N角形に対応する振動振幅A1である時刻t1(例えば現在の時刻)から、振動振幅が閾値Athとなる時刻までの時間の長さΔtcを算出(予測)することができる。
An example of the method for calculating the time Δt c will be described. From the formula (D), the characteristic value σ indicates the change in amplitude during the time Δti + 1 as a ratio (A i + 1 / A i ) during rolling at the rotation speed fr i + 1 of the rolling roll 3. Therefore, the equation (D), the characteristic value σ during rolling in rotational speed fr1, the vibration amplitude A corresponding to the N rectangular at some point during the rolling in the rotational speed fr1, the threshold A th vibration amplitude (although Using A < Ath ) and the time Δt c from A to Ath of the vibration amplitude, it can be expressed as the following equation (E).
σ = ln (A th / A1) / (fr1 · Δt c )… (E)
The following formula (F) can be obtained by modifying the above formula (E).
Δt c = ln (A th / A1) / (σ · fr1)… (F)
Therefore, from the above equation (F), during rolling in rotational speed fr1, from time a vibration amplitude A1 corresponding to the N polygon t1 (e.g. the current time), the time until the vibration amplitude becomes the threshold value A th The length Δtc can be calculated (predicted).
 上述の実施形態では、圧延ロール3の回転数frと特性値σとの上述の相関関係(圧延ロールのN角形化の成長傾向を示す相関関係)に基づいて、圧延ロール3の回転数fr1で圧延を時刻t1から継続した場合に、圧延ロール3のN角形に対応する振動振幅が既定の閾値Athに達するまでの時間Δtを算出(予測)する。すなわち、圧延ロール3のN角形化が既定の程度(閾値Ath)に達するまでの時間を算出するようにしたので、算出された時間が経過する前に、例えば運転条件(圧延ロール回転数等)を変更したり、圧延ロール3を交換したりすることにより、圧延ロール3のN角形化の程度が大きくなりすぎるのを抑制することができる。これにより、圧延後の製品金属板の品質低下を抑制することができる。 In the above-described embodiment, the rotation speed fr1 of the rolling roll 3 is based on the above-mentioned correlation (correlation indicating the growth tendency of N-polygonization of the rolling roll) between the rotation speed fr of the rolling roll 3 and the characteristic value σ. When rolling is continued from time t1, the time Δt c until the vibration amplitude corresponding to the N-side polygon of the rolling roll 3 reaches the predetermined threshold At th is calculated (predicted). That is, since the time until the N-sided polygonization of the rolling roll 3 reaches a predetermined degree (threshold Ath ) is calculated, for example, operating conditions (rolling roll rotation speed, etc.) are calculated before the calculated time elapses. ) Is changed or the rolling roll 3 is replaced, so that the degree of N-polygonization of the rolling roll 3 can be suppressed from becoming too large. As a result, deterioration of the quality of the product metal plate after rolling can be suppressed.
 幾つかの実施形態では、圧延ロール3の回転数frと特性値σとの相関関係(特性図)を取得した後、修正部70により(図2参照)、圧延ロール3を用いた圧延中に取得された振動データから取得される、N角形に対応する振動振幅に関するデータに基づいて、上述の相関関係(特性図)を修正するようにしてもよい。 In some embodiments, after acquiring the correlation (characteristic diagram) between the rotation speed fr of the rolling roll 3 and the characteristic value σ, the correction unit 70 (see FIG. 2) is used during rolling using the rolling roll 3. The above-mentioned correlation (characteristic diagram) may be modified based on the data regarding the vibration amplitude corresponding to the N-square, which is acquired from the acquired vibration data.
 ここで、上述の相関関係を修正する手順の一例について説明する。式(D)より、回転数fr1での圧延中の特性値σを、回転数fr1での圧延中の時刻t1におけるN角形に対応する振動振幅A1、回転数fr1での圧延中の時刻t2(ただしt1<t2)におけるN角形に対応する振動振幅A2、及び、時刻t1とt2の時間差Δt(Δt=t2-t1)を用いて、下記式(G)のように表現できる。
 σ=ln(A2/A1)/(fr1・Δt) …(G)
Here, an example of the procedure for correcting the above-mentioned correlation will be described. From the formula (D), the characteristic value σ during rolling at the rotation speed fr1 is set to the vibration amplitude A1 corresponding to the N-sided polygon at the time t1 during rolling at the rotation speed fr1 and the time t2 during rolling at the rotation speed fr1. However, it can be expressed as the following equation (G) by using the vibration amplitude A2 corresponding to the N-sided polygon in t1 <t2) and the time difference Δt (Δt = t2-t1) between the times t1 and t2.
σ = ln (A2 / A1) / (fr1 · Δt)… (G)
 したがって、上記式(G)から、圧延ロールの回転数fr1、時刻t1における上述の振動振幅A1、時刻t2における上述の振動振幅A2、及び、時刻t1とt2の時間差Δtの各実測値に基づいて、特性値σを算出することができる。すなわち、圧延ロール3の回転数fr1に対応する特性値σについて、実測値に基づく特性値σ(上記式(G)から算出されるもの)と、相関関係(特性図)に基づく特性値σの両方を取得することができる。したがって、実測値に基づく特性値σに基づいて相関関係(特性図)を修正することにより、より精度の良好な相関関係(特性図)を得ることができる。 Therefore, from the above equation (G), based on the actual measurement values of the rotation speed fr1 of the rolling roll, the above-mentioned vibration amplitude A1 at time t1, the above-mentioned vibration amplitude A2 at time t2, and the time difference Δt between time t1 and t2. , The characteristic value σ can be calculated. That is, regarding the characteristic value σ corresponding to the rotation speed fr1 of the rolling roll 3, the characteristic value σ based on the actually measured value (calculated from the above equation (G)) and the characteristic value σ based on the correlation (characteristic diagram). You can get both. Therefore, by modifying the correlation (characteristic diagram) based on the characteristic value σ based on the actually measured value, a more accurate correlation (characteristic diagram) can be obtained.
 上述の実施形態によれば、圧延ロール3の回転数frと特性値σの相関関係(特性図)取得後に、圧延ロール3を用いた実際の圧延中に取得された振動データから取得される、圧延ロール3のN角形に対応する周波数の振動の振幅に関するデータに基づいて、回転数frと特性値σとの相関関係を修正するようにしたので、該相関関係に基づく、圧延ロール3のN角形化の成長傾向をより精度良く評価することができる。 According to the above-described embodiment, after the correlation (characteristic diagram) between the rotation frequency fr of the rolling roll 3 and the characteristic value σ is acquired, it is acquired from the vibration data acquired during the actual rolling using the rolling roll 3. Since the correlation between the rotation speed fr and the characteristic value σ was corrected based on the data on the vibration amplitude of the frequency corresponding to the N-side of the rolling roll 3, the N of the rolling roll 3 was based on the correlation. The growth tendency of keratinization can be evaluated more accurately.
 なお、上述において、各圧延ロール3(ワークロール4A,4B又はバックアップロール6A,6B)の振動を示すデータを、圧延ロール3を支持するロールチョック(ロールチョック5A,5B,7A又は7B)に取り付けた振動計測部90(具体的には加速度センサ91~94)を用いて取得する実施形態(図1参照)について説明したが、振動計測部90の態様はこれに限定されない。 In the above, the vibration showing the vibration of each rolling roll 3 ( work roll 4A, 4B or backup roll 6A, 6B) is attached to the roll chock (roll chock 5A, 5B, 7A or 7B) supporting the rolling roll 3. Although the embodiment (see FIG. 1) acquired by using the measuring unit 90 (specifically, the acceleration sensors 91 to 94) has been described, the mode of the vibration measuring unit 90 is not limited to this.
 例えば、幾つかの実施形態では、振動計測部は、圧延ロール3(ワークロール4A,4B及びバックアップロール6A,6B)を支持するハウジングの振動を検出するように構成されていてもよい。この場合、振動計測部により得られる振動データに基づいて、ハウジングに支持される圧延ロール3のN角形化の成長傾向を評価することができる。例えば、ハウジングに支持される複数の圧延ロール3のうち、何れかの圧延ロール3においてN角形化が成長又は減衰していることを検出することが可能である。このようにして、圧延ロール3のN角形化の成長が検出されたハウジングを含む圧延スタンドを特定してから、該圧延スタンドに含まれる複数の圧延ロール3の各々に対して振動計測部を設置し、各圧延ロール3のN角形化の成長傾向を個別に評価するようにしてもよい。 For example, in some embodiments, the vibration measuring unit may be configured to detect the vibration of the housing supporting the rolling rolls 3 (work rolls 4A, 4B and backup rolls 6A, 6B). In this case, based on the vibration data obtained by the vibration measuring unit, it is possible to evaluate the growth tendency of the N-polygonization of the rolling roll 3 supported by the housing. For example, it is possible to detect that N-polygonization is growing or decaying in any of the rolling rolls 3 supported by the housing. In this way, after identifying the rolling stand including the housing in which the growth of N-polygonization of the rolling roll 3 is detected, a vibration measuring unit is installed for each of the plurality of rolling rolls 3 included in the rolling stand. Then, the growth tendency of the N-polygonization of each rolling roll 3 may be evaluated individually.
 以下、幾つかの実施形態に係る圧延装置の状態評価方法及び状態評価装置並びに圧延設備について概要を記載する。 The outline of the state evaluation method, state evaluation device, and rolling equipment of the rolling apparatus according to some embodiments will be described below.
(1)本発明の少なくとも一実施形態に係る圧延装置の状態評価方法は、
 圧延装置の圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を評価するための方法であって、
 前記圧延ロールの回転数frでの圧延中に、複数のサンプリング期間の各々において、前記圧延ロールの振動を示す振動データを取得する振動データ取得ステップと、
 前記複数のサンプリング期間に取得した前記振動データの各々について、周波数分析を行い、前記N角形に対応する周波数における前記振動の振幅を取得する振幅取得ステップと、
 前記振動データの各々について取得された前記振幅の経時変化に基づいて、前記回転数frでの圧延時における前記圧延ロールの前記N角形化の成長傾向を評価する評価ステップと、
を備える。
(1) The method for evaluating the state of the rolling mill according to at least one embodiment of the present invention is
It is a method for evaluating the growth tendency of N-polygonization in which the rolling roll of the rolling apparatus is unevenly worn to become N-gonal.
During rolling at the rotation speed fr of the rolling roll, a vibration data acquisition step of acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods, and a vibration data acquisition step.
An amplitude acquisition step of performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-gon.
Based on the time course of the amplitude acquired for each of the vibration data, an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, and an evaluation step.
To be equipped.
 本発明者らは、鋭意検討の結果、圧延中において圧延ロールのN角形化が成長する場合には、圧延ロールの振動に含まれるN角形に対応する周波数成分の振幅が時間経過に伴い増大すること、及び、圧延中において圧延ロールのN角形化が減衰する場合には、圧延ロールの振動に含まれるN角形に対応する周波数成分の振幅が時間経過に伴い減少することを見出した。 As a result of diligent studies, the present inventors have found that when the N-squared rolling roll grows during rolling, the amplitude of the frequency component corresponding to the N-squared shape contained in the vibration of the rolling roll increases with the passage of time. It was also found that when the N-square formation of the rolling roll is attenuated during rolling, the amplitude of the frequency component corresponding to the N-square contained in the vibration of the rolling roll decreases with the passage of time.
 この点、上記(1)の方法によれば、圧延ロールの特定の回転数frにて材料(金属板等)の圧延中に取得された振動データに基づいて、特定のN角形に対応する周波数の振動の振幅を取得するようにしたので、該振幅の経時変化に基づいて、圧延ロールの回転数frにおける圧延ロールのN角形化の成長傾向(例えば、N角形化が成長又は減衰しているか否か等)を評価することができる。したがって、例えば、この評価に基づいて、圧延ロールのN角形化が成長しないように圧延装置の運転制御を行うことにより、製品金属板の品質低下を抑制することができる。 In this regard, according to the method (1) above, the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude of the vibration of the rolling roll is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether the N-squared formation is growing or decaying) based on the time course of the amplitude. Whether or not, etc.) can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
(2)幾つかの実施形態では、上記(1)の方法において、
 前記振動データ取得ステップにて異なる2つのサンプリング期間に取得された前記振動データについて、前記振幅取得ステップにてそれぞれ取得された前記振幅の比に基づいて、前記回転数frでの圧延中における前記圧延ロールの前記N角形に対応する周波数の振動の振幅の経時変化の指標を示す特性値σを取得する特性値取得ステップをさらに備え、
 前記評価ステップでは、前記特性値σに基づいて、前記回転数frでの圧延時における前記N角形化の成長傾向を評価する。
(2) In some embodiments, in the method of (1) above,
With respect to the vibration data acquired in two different sampling periods in the vibration data acquisition step, the rolling during rolling at the rotation speed fr is based on the ratio of the amplitudes acquired in the amplitude acquisition step. Further provided with a characteristic value acquisition step of acquiring a characteristic value σ indicating an index of a time-dependent change in the amplitude of vibration at a frequency corresponding to the N-side of the roll.
In the evaluation step, the growth tendency of the N-polygonization during rolling at the rotation speed fr is evaluated based on the characteristic value σ.
 上記(2)の方法では、圧延ロールの回転数frでの圧延中に異なる2つのサンプリング期間に取得された振動データからそれぞれ得られる、圧延ロールのN角形に対応する周波数の振動の振幅の比に基づいて、特性値σを取得する。前述の周波数の振動の振幅の比は、2つのサンプリング期間の間における、前述の周波数の振動の振幅の経時変化の傾向(振幅の増大又は減少等)を示すものであるから、この比に基づいて取得される特性値σは、圧延ロールの回転数frでの圧延中における圧延ロールのN角形化の成長傾向(N角形化の成長又は減衰等)を示す指標となり得る。よって、上記(2)の構成によれば、圧延ロールの回転数frにおける圧延ロールのN角形化の成長傾向を適切に評価することができる。 In the method (2) above, the ratio of the vibration amplitudes of the frequencies corresponding to the N-gons of the rolling rolls, which are obtained from the vibration data acquired in two different sampling periods during rolling at the rolling speed fr. The characteristic value σ is acquired based on. The ratio of the vibration amplitudes of the above frequencies indicates the tendency of the vibration amplitudes of the above frequencies to change with time (increase or decrease of the amplitude, etc.) between the two sampling periods, and is based on this ratio. The characteristic value σ obtained can be an index showing the growth tendency of N-polygonization of the rolling roll (growth or attenuation of N-polygonization, etc.) during rolling at the rotation speed fr of the rolling roll. Therefore, according to the configuration of (2) above, the growth tendency of N-polygonization of the rolling roll at the rotation speed fr of the rolling roll can be appropriately evaluated.
(3)幾つかの実施形態では、上記(2)の方法において、
 前記特性値取得ステップでは、前記振幅の前記比、及び、前記異なる2つのサンプリング期間の間の時間の長さに基づいて、前記特性値σを取得する。
(3) In some embodiments, in the method (2) above,
In the characteristic value acquisition step, the characteristic value σ is acquired based on the ratio of the amplitude and the length of time between the two different sampling periods.
 上記(3)の方法では、圧延ロールの回転数frでの圧延中に異なる2つのサンプリング期間に取得された振動データからそれぞれ得られる、圧延ロールのN角形に対応する周波数の振動の振幅の比、及び、2つのサンプリング期間の間の時間の長さ(2つのサンプリング期間の時間差)に基づいて、特性値σを取得する。すなわち、上述の振幅の比と、上述の時間差とから、2つのサンプリング期間の間における、上述の振幅の単位時間あたりの変化度合いがわかるから、上述の振幅の比、及び、上述の時間差に基づいて得られる特性値σは、圧延ロールの回転数frでの圧延中における圧延ロールのN角形化の成長又は減衰の速度の指標となり得る。よって、上記(3)の構成によれば、圧延ロールの回転数frにおける圧延ロールのN角形化の成長傾向を適切に評価することができる。 In the method (3) above, the ratio of the vibration amplitudes of the frequencies corresponding to the N-sides of the rolling rolls, which are obtained from the vibration data acquired in two different sampling periods during rolling at the rolling speed fr. , And the characteristic value σ is acquired based on the length of time between the two sampling periods (the time difference between the two sampling periods). That is, since the degree of change of the above-mentioned amplitude per unit time between the two sampling periods can be known from the above-mentioned amplitude ratio and the above-mentioned time difference, it is based on the above-mentioned amplitude ratio and the above-mentioned time difference. The characteristic value σ obtained can be an index of the growth or decay rate of N-squared formation of the rolling roll during rolling at the rotation speed fr of the rolling roll. Therefore, according to the configuration of (3) above, the growth tendency of N-polygonization of the rolling roll at the rotation speed fr of the rolling roll can be appropriately evaluated.
(4)幾つかの実施形態では、上記(2)又は(3)の方法において、
 前記圧延ロールの異なる複数の回転数について、前記振動データ取得ステップ、前記振幅取得ステップ、及び、前記特性値取得ステップを実行することにより、前記圧延ロールの回転数frと前記特性値σとの相関関係を取得する相関関係取得ステップをさらに備える。
(4) In some embodiments, in the method (2) or (3) above,
Correlation between the rotation speed fr of the rolling roll and the characteristic value σ by executing the vibration data acquisition step, the amplitude acquisition step, and the characteristic value acquisition step for a plurality of different rotation speeds of the rolling roll. It further includes a correlation acquisition step for acquiring a relationship.
 上記(4)の方法によれば、複数の回転数frの各々について、振動データ取得ステップ、振幅取得ステップ、及び、特性値取得ステップを実行することにより、特性値σを取得し、こうして得られる回転数frと特性値σとの複数の組み合わせから、回転数frと特性値σとの相関関係を取得する。したがって、このように取得される回転数frと特性値σとの相関関係に基づいて、圧延ロールのN角形化の成長傾向を適切に評価することができる。よって、例えば、特定の運転条件(圧延ロール回転数等)で圧延ロールのN角形化が成長するか否か、又は、圧延ロールのN角形化の成長速度がどれくらいであるかについて評価を行うことができ、この評価結果に基づいて、圧延ロールのN角形化が進行しない運転条件(圧延ロール回転数等)を選択することができる。これにより、圧延後の製品金属板の品質低下を抑制することができる。 According to the method (4) above, the characteristic value σ is acquired by executing the vibration data acquisition step, the amplitude acquisition step, and the characteristic value acquisition step for each of the plurality of rotation speed frs, and thus obtained. The correlation between the rotation speed fr and the characteristic value σ is obtained from a plurality of combinations of the rotation speed fr and the characteristic value σ. Therefore, based on the correlation between the rotation speed fr obtained in this way and the characteristic value σ, the growth tendency of N-polygonization of the rolling roll can be appropriately evaluated. Therefore, for example, it is necessary to evaluate whether or not the N-polygonization of the rolling roll grows under specific operating conditions (rolling roll rotation speed, etc.), or what the growth rate of the N-polygonization of the rolling roll is. Based on this evaluation result, it is possible to select an operating condition (rolling roll rotation speed, etc.) in which N-polygonization of the rolling roll does not proceed. As a result, deterioration of the quality of the product metal plate after rolling can be suppressed.
(5)幾つかの実施形態では、上記(4)の方法において、
 前記圧延ロールの回転数fr1での圧延中に取得された前記振動データに基づいて、時刻t1を含むサンプリング期間における前記振動の振幅を取得するステップを備え、
 前記評価ステップでは、前記相関関係に基づいて、前記回転数fr1での圧延を前記時刻t1から継続した場合に前記振幅が閾値に達するまでの時間を算出する。
(5) In some embodiments, in the method (4) above,
The step includes a step of acquiring the amplitude of the vibration in the sampling period including the time t1 based on the vibration data acquired during rolling at the rotation speed fr1 of the rolling roll.
In the evaluation step, the time until the amplitude reaches the threshold value when rolling at the rotation speed fr1 is continued from the time t1 is calculated based on the correlation.
 上記(5)の方法によれば、圧延ロールの回転数fr1での圧延中の時刻t1での振動データから、時刻t1での、圧延ロールのN角形に対応する振動の振幅A1を取得する。そして、回転数frと特性値σとの上述の相関関係(圧延ロールのN角形化の成長傾向を示す相関関係)に基づいて、圧延ロールの回転数fr1で圧延を時刻t1から継続した場合に、圧延ロールのN角形に対応する振動の振幅が既定の閾値に達するまでの時間を算出(予測)する。すなわち、圧延ロールのN角形化が既定の程度に達するまでの時間を算出するようにしたので、算出された時間が経過する前に、例えば運転条件(圧延ロール回転数等)を変更したり、圧延ロールを交換したりすることにより、圧延ロールのN角形化の程度が大きくなりすぎるのを抑制することができる。これにより、圧延後の製品金属板の品質低下を抑制することができる。 According to the method (5) above, the amplitude A1 of the vibration corresponding to the N-sided polygon of the rolling roll at time t1 is acquired from the vibration data at time t1 during rolling at the rotation speed fr1 of the rolling roll. Then, based on the above-mentioned correlation between the rotation speed fr and the characteristic value σ (correlation indicating the growth tendency of N-polygonization of the rolling roll), when rolling is continued from the time t1 at the rotation speed fr1 of the rolling roll. , Calculate (predict) the time until the vibration amplitude corresponding to the N-sided shape of the rolling roll reaches a predetermined threshold value. That is, since the time required for the N-squared rolling roll to reach a predetermined degree is calculated, for example, the operating conditions (rolling roll rotation speed, etc.) may be changed before the calculated time elapses. By exchanging the rolling rolls, it is possible to prevent the degree of N-polygonization of the rolling rolls from becoming too large. As a result, deterioration of the quality of the product metal plate after rolling can be suppressed.
(6)幾つかの実施形態では、上記(4)又は(5)の方法において、
 前記相関関係を取得した後で前記圧延ロールを用いた圧延中に取得された前記振動データから取得される前記振動の振幅に関するデータに基づいて、前記相関関係を修正するステップを備える。
(6) In some embodiments, in the method (4) or (5) above,
The step includes a step of correcting the correlation based on the data regarding the amplitude of the vibration acquired from the vibration data acquired during rolling using the rolling roll after acquiring the correlation.
 上記(6)の方法によれば、上述の相関関係取得後に、実際に圧延ロールを用いた圧延中に取得された振動データから取得される、圧延ロールのN角形に対応する周波数の振動の振幅に関するデータに基づいて、回転数frと特性値σとの相関関係を修正するようにしたので、該相関関係に基づく、圧延ロールのN角形化の成長傾向をより精度良く評価することができる。 According to the method (6) above, after the above-mentioned correlation is acquired, the vibration amplitude of the frequency corresponding to the N-side of the rolling roll, which is acquired from the vibration data actually acquired during rolling using the rolling roll. Since the correlation between the rotation frequency fr and the characteristic value σ is corrected based on the data related to the above, the growth tendency of the N-squared rolling roll based on the correlation can be evaluated more accurately.
(7)本発明の少なくとも一実施形態に係る圧延装置の状態評価装置は、
 圧延装置の圧延ロールの偏摩耗によるN角形化の成長傾向を評価するための装置であって、
 前記圧延ロールの回転数frでの圧延中に、複数のサンプリング期間の各々において、前記圧延ロールの振動を示す振動データを取得するように構成された振動データ取得部と、
 前記複数のサンプリング期間に取得した前記振動データの各々について、周波数分析を行い、前記N角形に対応する周波数における前記振動の振幅を取得するように構成された振幅抽出部と、
 前記振動データの各々について取得された前記振幅の経時変化に基づいて、前記回転数frでの圧延時における前記圧延ロールの前記N角形化の成長傾向を評価するように構成された評価部と、
 前記評価部による評価結果を出力する出力部と、
を備える。
(7) The state evaluation device for the rolling mill according to at least one embodiment of the present invention is
It is a device for evaluating the growth tendency of N-polygonization due to uneven wear of rolling rolls of a rolling device.
A vibration data acquisition unit configured to acquire vibration data indicating vibration of the rolling roll during each of a plurality of sampling periods during rolling at the rotation speed fr of the rolling roll.
An amplitude extraction unit configured to perform frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquire the amplitude of the vibration at the frequency corresponding to the N-gon.
An evaluation unit configured to evaluate the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr based on the time course of the amplitude acquired for each of the vibration data.
An output unit that outputs the evaluation result by the evaluation unit and
To be equipped.
 上記(7)の構成によれば、圧延ロールの特定の回転数frにて材料(金属板等)の圧延中に取得された振動データに基づいて、特定のN角形に対応する周波数の振動の振幅を取得するようにしたので、該振幅の経時変化に基づいて、圧延ロールの回転数frにおける圧延ロールのN角形化の成長傾向(例えば、N角形化が成長又は減衰しているか否か等)を評価することができる。したがって、例えば、この評価に基づいて、圧延ロールのN角形化が成長しないように圧延装置の運転制御を行うことにより、製品金属板の品質低下を抑制することができる。 According to the configuration of (7) above, the vibration of the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether or not the N-squared formation is growing or decaying, etc.) based on the time course of the amplitude is obtained. ) Can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
(8)本発明の少なくとも一実施形態に係る圧延設備は、
 金属板を圧延するための圧延ロールを含む圧延装置と、
 前記圧延ロールの偏摩耗によるN角形化の成長傾向を評価するように構成された上記(7)に記載の状態評価装置と、
を備える。
(8) The rolling equipment according to at least one embodiment of the present invention is
A rolling apparatus including a rolling roll for rolling a metal plate,
The state evaluation device according to (7) above, which is configured to evaluate the growth tendency of N-polygonization due to uneven wear of the rolling roll.
To be equipped.
 上記(8)の構成によれば、圧延ロールの特定の回転数frにて材料(金属板等)の圧延中に取得された振動データに基づいて、特定のN角形に対応する周波数の振動の振幅を取得するようにしたので、該振幅の経時変化に基づいて、圧延ロールの回転数frにおける圧延ロールのN角形化の成長傾向(例えば、N角形化が成長又は減衰しているか否か等)を評価することができる。したがって、例えば、この評価に基づいて、圧延ロールのN角形化が成長しないように圧延装置の運転制御を行うことにより、製品金属板の品質低下を抑制することができる。 According to the configuration of (8) above, the vibration of the frequency corresponding to the specific N-side is based on the vibration data acquired during the rolling of the material (metal plate, etc.) at the specific rotation speed fr of the rolling roll. Since the amplitude is acquired, the growth tendency of the N-squared formation of the rolling roll at the rotation speed fr of the rolling roll (for example, whether or not the N-squared formation is growing or decaying, etc.) based on the time course of the amplitude is obtained. ) Can be evaluated. Therefore, for example, based on this evaluation, it is possible to suppress the deterioration of the quality of the product metal plate by controlling the operation of the rolling apparatus so that the N-sided formation of the rolling roll does not grow.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In the present specification, expressions representing relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial". Strictly represents not only such an arrangement, but also a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
Further, in the present specification, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained. , The shape including the uneven portion, the chamfered portion, etc. shall also be represented.
Further, in the present specification, the expression "comprising", "including", or "having" one component is not an exclusive expression excluding the existence of another component.
1    圧延設備
2    圧延装置
3    圧延ロール
4A,4B ワークロール
5A,5B ロールチョック
6A,6B バックアップロール
7A,7B ロールチョック
8    圧下装置
10,10A~10C 圧延スタンド
50   状態評価装置
52   振動データ取得部
54   周波数分析部
56   振幅抽出部
60   記録部
62   特性値算出部
66   相関関係取得部
68   評価部
70   修正部
72   出力部
90   振動計測部
91~94 加速度センサ
95   ロール回転数計測部
96   鋼種データ記憶部
98   表示部
S    金属板
1 Rolling equipment 2 Rolling equipment 3 Rolling rolls 4A, 4B Work rolls 5A, 5B Roll chock 6A, 6B Backup rolls 7A, 7B Roll chock 8 Rolling device 10, 10A to 10C Rolling stand 50 Condition evaluation device 52 Vibration data acquisition unit 54 Frequency analysis unit 56 Oscillation extraction unit 60 Recording unit 62 Characteristic value calculation unit 66 Correlation acquisition unit 68 Evaluation unit 70 Correction unit 72 Output unit 90 Vibration measurement unit 91 to 94 Accelerometer 95 Roll rotation speed measurement unit 96 Steel type data storage unit 98 Display unit S Metal plate

Claims (8)

  1.  圧延装置の圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を評価するための方法であって、
     前記圧延ロールの回転数frでの圧延中に、複数のサンプリング期間の各々において、前記圧延ロールの振動を示す振動データを取得する振動データ取得ステップと、
     前記複数のサンプリング期間に取得した前記振動データの各々について、周波数分析を行い、前記N角形に対応する周波数における前記振動の振幅を取得する振幅取得ステップと、
     前記振動データの各々について取得された前記振幅の経時変化に基づいて、前記回転数frでの圧延時における前記圧延ロールの前記N角形化の成長傾向を評価する評価ステップと、
    を備える、圧延装置の状態評価方法。
    It is a method for evaluating the growth tendency of N-polygonization in which the rolling roll of the rolling apparatus is unevenly worn to become N-gonal.
    During rolling at the rotation speed fr of the rolling roll, a vibration data acquisition step of acquiring vibration data indicating the vibration of the rolling roll in each of a plurality of sampling periods, and a vibration data acquisition step.
    An amplitude acquisition step of performing frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquiring the amplitude of the vibration at the frequency corresponding to the N-gon.
    Based on the time course of the amplitude acquired for each of the vibration data, an evaluation step for evaluating the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr, and an evaluation step.
    A method for evaluating the state of a rolling mill, which comprises.
  2.  前記振動データ取得ステップにて異なる2つのサンプリング期間に取得された前記振動データについて、前記振幅取得ステップにてそれぞれ取得された前記振幅の比に基づいて、前記回転数frでの圧延中における前記圧延ロールの前記N角形に対応する周波数の振動の振幅の経時変化の指標を示す特性値σを取得する特性値取得ステップをさらに備え、
     前記評価ステップでは、前記特性値σに基づいて、前記回転数frでの圧延時における前記N角形化の成長傾向を評価する
    請求項1に記載の圧延装置の状態評価方法。
    With respect to the vibration data acquired in two different sampling periods in the vibration data acquisition step, the rolling during rolling at the rotation speed fr is based on the ratio of the amplitudes acquired in the amplitude acquisition step. Further provided with a characteristic value acquisition step of acquiring a characteristic value σ indicating an index of a time-dependent change in the amplitude of vibration at a frequency corresponding to the N-side of the roll.
    The method for evaluating the state of a rolling apparatus according to claim 1, wherein in the evaluation step, the growth tendency of the N-polygonization during rolling at the rotation speed fr is evaluated based on the characteristic value σ.
  3.  前記特性値取得ステップでは、前記振幅の前記比、及び、前記異なる2つのサンプリング期間の間の時間の長さに基づいて、前記特性値σを取得する
    請求項2に記載の圧延装置の状態評価方法。
    The state evaluation of the rolling mill according to claim 2, wherein in the characteristic value acquisition step, the characteristic value σ is acquired based on the ratio of the amplitude and the length of time between the two different sampling periods. Method.
  4.  前記圧延ロールの異なる複数の回転数について、前記振動データ取得ステップ、前記振幅取得ステップ、及び、前記特性値取得ステップを実行することにより、前記圧延ロールの回転数frと前記特性値σとの相関関係を取得する相関関係取得ステップをさらに備える
    請求項2又は3に記載の圧延装置の状態評価方法。
    Correlation between the rotation speed fr of the rolling roll and the characteristic value σ by executing the vibration data acquisition step, the amplitude acquisition step, and the characteristic value acquisition step for a plurality of different rotation speeds of the rolling roll. The state evaluation method for a rolling mill according to claim 2 or 3, further comprising a correlation acquisition step for acquiring a relationship.
  5.  前記圧延ロールの回転数fr1での圧延中に取得された前記振動データに基づいて、時刻t1を含むサンプリング期間における前記振動の振幅を取得するステップを備え、
     前記評価ステップでは、前記相関関係に基づいて、前記回転数fr1での圧延を前記時刻t1から継続した場合に前記振幅が閾値に達するまでの時間を算出する
    請求項4に記載の圧延装置の状態評価方法。
    The step includes a step of acquiring the amplitude of the vibration in the sampling period including the time t1 based on the vibration data acquired during rolling at the rotation speed fr1 of the rolling roll.
    The state of the rolling apparatus according to claim 4, wherein in the evaluation step, when rolling at the rotation speed fr1 is continued from the time t1, the time until the amplitude reaches the threshold value is calculated based on the correlation. Evaluation methods.
  6.  前記相関関係を取得した後で前記圧延ロールを用いた圧延中に取得された前記振動データから取得される前記振動の振幅に関するデータに基づいて、前記相関関係を修正するステップを備える
    請求項4又は5に記載の圧延装置の状態評価方法。
    Claim 4 or claim 4 comprising a step of correcting the correlation based on the data regarding the amplitude of the vibration acquired from the vibration data acquired during rolling using the rolling roll after acquiring the correlation. 5. The method for evaluating a state of a rolling mill according to 5.
  7.  圧延ロールが偏摩耗してN角形になるN角形化の成長傾向を評価するための装置であって、
     前記圧延ロールの回転数frでの圧延中に、複数のサンプリング期間の各々において、前記圧延ロールの振動を示す振動データを取得するように構成された振動データ取得部と、
     前記複数のサンプリング期間に取得した前記振動データの各々について、周波数分析を行い、前記N角形に対応する周波数における前記振動の振幅を取得するように構成された振幅抽出部と、
     前記振動データの各々について取得された前記振幅の経時変化に基づいて、前記回転数frでの圧延時における前記圧延ロールの前記N角形化の成長傾向を評価するように構成された評価部と、
     前記評価部による評価結果を出力する出力部と、
    を備える、圧延装置の状態評価装置。
    It is a device for evaluating the growth tendency of N-polygonization, in which the rolling roll is unevenly worn to become N-polygon.
    A vibration data acquisition unit configured to acquire vibration data indicating vibration of the rolling roll during each of a plurality of sampling periods during rolling at the rotation speed fr of the rolling roll.
    An amplitude extraction unit configured to perform frequency analysis on each of the vibration data acquired during the plurality of sampling periods and acquire the amplitude of the vibration at the frequency corresponding to the N-gon.
    An evaluation unit configured to evaluate the growth tendency of the N-polygonization of the rolling roll during rolling at the rotation speed fr based on the time course of the amplitude acquired for each of the vibration data.
    An output unit that outputs the evaluation result by the evaluation unit and
    A state evaluation device for rolling mills.
  8.  金属板を圧延するための圧延ロールを含む圧延装置と、
     前記圧延ロールの偏摩耗によるN角形化の成長傾向を評価するように構成された請求項7に記載の状態評価装置と、
    を備える圧延設備。
    A rolling apparatus including a rolling roll for rolling a metal plate,
    The state evaluation device according to claim 7, which is configured to evaluate the growth tendency of N-polygonization due to uneven wear of the rolling roll.
    Rolling equipment equipped with.
PCT/JP2019/031332 2019-08-08 2019-08-08 State evaluation method and state evaluation device of rolling device, and rolling equipment WO2021024447A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980097273.3A CN114007774B (en) 2019-08-08 2019-08-08 State evaluation method and state evaluation device for rolling device and rolling equipment
PCT/JP2019/031332 WO2021024447A1 (en) 2019-08-08 2019-08-08 State evaluation method and state evaluation device of rolling device, and rolling equipment
JP2021538643A JP7179996B2 (en) 2019-08-08 2019-08-08 Rolling mill condition evaluation method, condition evaluation equipment, and rolling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031332 WO2021024447A1 (en) 2019-08-08 2019-08-08 State evaluation method and state evaluation device of rolling device, and rolling equipment

Publications (1)

Publication Number Publication Date
WO2021024447A1 true WO2021024447A1 (en) 2021-02-11

Family

ID=74503129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031332 WO2021024447A1 (en) 2019-08-08 2019-08-08 State evaluation method and state evaluation device of rolling device, and rolling equipment

Country Status (3)

Country Link
JP (1) JP7179996B2 (en)
CN (1) CN114007774B (en)
WO (1) WO2021024447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115018246B (en) * 2022-04-19 2023-01-20 北京科技大学 Hot-rolled working roll on-machine selection method and roll on-machine expert system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340905A (en) * 2000-05-31 2001-12-11 Kawasaki Steel Corp Rolling method of steel plate having mill scale
JP2005234952A (en) * 2004-02-20 2005-09-02 Japan Science & Technology Agency Damping method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100254076B1 (en) * 1992-10-02 2000-04-15 가나이 쓰도무 Work rolls crossing type mill,rolling equipment and rolling method
DE19654068A1 (en) * 1996-12-23 1998-06-25 Schloemann Siemag Ag Method and device for rolling a rolled strip
CN102755994A (en) * 2011-04-26 2012-10-31 通化钢铁股份有限公司 Torsional vibration suppression device for rolling mill
CN203917388U (en) * 2014-06-06 2014-11-05 洛阳鼎锐材料科技有限公司 A kind of stretch reducing oblique roller rolling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340905A (en) * 2000-05-31 2001-12-11 Kawasaki Steel Corp Rolling method of steel plate having mill scale
JP2005234952A (en) * 2004-02-20 2005-09-02 Japan Science & Technology Agency Damping method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATSUZAKI KENICHIRO ET AL.: "Polygonal wear of work rolls in a hot leveler of steel making machine (3rd report, a countermeasure by using dynamic absorbers)", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES C, vol. 71, no. 704, April 2005 (2005-04-01), pages 1123 - 1130 *
SUEOKA ATSUO ET AL.: "Polygonal wear of work rools in a hot leveler of steel making machine", TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS SERIES C, vol. 66, no. 651, November 2000 (2000-11-01), pages 3583 - 3590 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181545A1 (en) * 2022-03-24 2023-09-28 三菱重工業株式会社 Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program

Also Published As

Publication number Publication date
CN114007774B (en) 2023-09-15
JP7179996B2 (en) 2022-11-29
CN114007774A (en) 2022-02-01
JPWO2021024447A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP5170240B2 (en) Thickness control device for rolling mill
WO2021024447A1 (en) State evaluation method and state evaluation device of rolling device, and rolling equipment
US11635389B2 (en) Methods and systems for the quantitative measurement of internal defects in as-cast steel products
US20150053017A1 (en) Fatigue assessment
CN110017784A (en) A kind of online quality inspection device of curling steel roll end and method
JP2019122979A (en) Abnormal vibration detection method of rolling mill
Younes et al. A parameters design approach to improve product quality and equipment performance in hot rolling
CN114330429A (en) Steel rail scratch recognition method, device, system, equipment and storage medium
JP2013111614A (en) Method of detecting chattering of cold rolling mill and device for detecting chattering
CN109813232A (en) Sliding bearing abrasion measuring method based on fiber grating length
JP4815177B2 (en) Material recording device
JP6572981B2 (en) Chatter mark prevention method and chatter mark prevention apparatus
JP5924490B2 (en) Abnormality detection method and cold rolling method in cold rolling
WO2021024448A1 (en) Method for assisting operation of rolling facility, operation assistance device, and rolling facility
EP4282551A1 (en) Abnormal vibration detection method for rolling mill, abnormality detection device, rolling method, and method for manufacturing metal strip
JP3268588B2 (en) Grinding method and use method of rolling roll
WO2023181545A1 (en) Rolling device monitoring/control device, rolling equipment, rolling device monitoring/control method, and rolling device monitoring/control program
US11992866B2 (en) Method for the online determination of at least one rolling parameter, and rolling mill with a device for the online determination of at least one rolling parameter
JP2006234540A (en) H-section steel shape measuring method
JP5928721B2 (en) Prediction method and prediction device for shape defects due to runout cooling strain
JP2020082173A (en) Chatter mark detection method and chatter mark detector for rolling machine
KR20130022868A (en) Cold rolling mill system
KR20240073071A (en) Method for determining suitability of rolling rolls, rolling method for metal strips, and manufacturing method for cold-rolled steel sheets
JPH09196650A (en) Method for diagnosing wear and deterioration od pinch roll
Groothuizen et al. Chatter detection in a five-stand cold mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940525

Country of ref document: EP

Kind code of ref document: A1