WO2021024433A1 - Obstacle detection device - Google Patents

Obstacle detection device Download PDF

Info

Publication number
WO2021024433A1
WO2021024433A1 PCT/JP2019/031222 JP2019031222W WO2021024433A1 WO 2021024433 A1 WO2021024433 A1 WO 2021024433A1 JP 2019031222 W JP2019031222 W JP 2019031222W WO 2021024433 A1 WO2021024433 A1 WO 2021024433A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
distance measuring
intersection
unit
vehicle
Prior art date
Application number
PCT/JP2019/031222
Other languages
French (fr)
Japanese (ja)
Inventor
侑己 浦川
井上 悟
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021531957A priority Critical patent/JP6945776B2/en
Priority to PCT/JP2019/031222 priority patent/WO2021024433A1/en
Publication of WO2021024433A1 publication Critical patent/WO2021024433A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present invention relates to an obstacle detection device.
  • the conventional obstacle detection device uses a single ultrasonic sensor installed in the vehicle, and the ultrasonic waves transmitted from the ultrasonic sensor to the side of the vehicle are reflected by the parked vehicle while the vehicle is running.
  • the distance from the parked vehicle to the parked vehicle is detected from the time required for reception by the ultrasonic sensor, and the position of the ultrasonic sensor when the distance of the parked vehicle is detected and the detected distance are used according to the principle of triangulation. Guess the reflection point.
  • the conventional obstacle detection device obtains the shape and corners (corners) of the parked vehicle using the point sequence data of the reflection points, and determines the parking zone (see, for example, Patent Document 1).
  • the conventional obstacle detection device has a configuration in which the corners of obstacles existing on the side of the own vehicle can be obtained only when the own vehicle passes by the side of the parked vehicle which is an obstacle. Further, in the conventional obstacle detection device, when the obstacle is tilted more than a certain angle with respect to the own vehicle, it is difficult to accurately obtain the corner portion of the obstacle. As described above, the conventional obstacle detection device has a problem that it cannot detect an inclined obstacle existing in front of or behind the own vehicle.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to detect an inclined obstacle existing in front of or behind the own vehicle.
  • the obstacle detection device includes a transmission / reception unit that transmits and receives direct waves and indirect waves to a plurality of distance measuring sensors installed on the front surface or the rear surface of the vehicle, and indirect waves in the plurality of distance measuring sensors.
  • An inclined obstacle detection unit that detects the existence of an inclined obstacle having an inclined surface inclined with respect to the installation direction of a plurality of distance measuring sensors based on the reception status of the sensor, and an inclined obstacle detecting unit. When it is detected that an obstacle is present, two circles are drawn using the result of the same distance measuring sensor transmitting and receiving direct waves twice at different times while the vehicle is running.
  • intersection processing unit that calculates the position of the intersection group from the transmission / reception results of direct waves by multiple ranging sensors by performing the 2-circle intersection processing to find the intersection, and the position of the intersection group calculated by the intersection processing unit.
  • shape estimation unit that estimates the shape of the tilt obstacle and the shape of the tilt obstacle estimated by the shape estimation unit, the position of the part of the tilt obstacle closest to the vehicle is estimated and the contact position information It is provided with a contact position estimation unit that outputs as.
  • FIG. 2A and 2B are diagrams showing the reflection path of ultrasonic waves in a tilted obstacle. It is a figure explaining 2 circle intersection processing by an intersection processing part. It is a figure explaining how the position of an intersection shifts to a distant side as a vehicle approaches an inclined obstacle.
  • 5A, 5B, and 5C are diagrams illustrating a method of estimating the shape of an inclined obstacle by the shape estimation unit and a method of estimating the contact position by the contact position estimation unit. It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. 1 is a block diagram showing the structural example of the obstacle detection apparatus which concerns on Embodiment 1.
  • FIG. 2A and 2B are diagrams showing the reflection path of ultrasonic waves in a tilted obstacle. It is a figure explaining 2 circle intersection processing by an intersection processing part. It is a figure explaining how the position of an intersection shifts to a distant side as a vehicle approaches an inclined obstacle.
  • FIG. 8A to 8F are diagrams illustrating a method of selecting a distance measuring sensor by the sensor selection unit. It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 2. It is a figure which shows the continuation of the flowchart of FIG. It is a figure which shows an example of the hardware configuration of the obstacle detection apparatus which concerns on each embodiment. It is a figure which shows another example of the hardware composition of the obstacle detection apparatus which concerns on each embodiment.
  • FIG. 1 is a block diagram showing a configuration example of the obstacle detection device 10 according to the first embodiment.
  • the obstacle detection device 10 is mounted on the vehicle and detects obstacles around the vehicle.
  • the obstacle detection device 10 includes a transmission / reception unit 11, an inclination obstacle detection unit 12, an intersection processing unit 13, a shape estimation unit 14, and a contact position estimation unit 15. Further, the obstacle detection device 10 is connected to a plurality of distance measuring sensors 1 to 4 installed in the vehicle and a collision determination unit 20.
  • the ranging sensors 1 to 4 transmit ultrasonic waves or radio waves as exploration waves, and receive reflected waves which are exploration waves reflected by obstacles around the vehicle. In the following, it is assumed that the distance measuring sensors 1 to 4 are ultrasonic sensors.
  • the transmission / reception unit 11 causes the distance measurement sensors 1 to 4 to transmit / receive direct waves and indirect waves at a predetermined drive interval (for example, 50 ms) while the vehicle is traveling.
  • the transmission / reception unit 11 causes the distance measurement sensors 1 to transmit ultrasonic waves, and then causes the distance measurement sensors 1 to 4 to receive reflected waves.
  • the reflected wave received by the distance measuring sensor 1 itself that transmitted the ultrasonic wave is a direct wave
  • the reflected wave received by the distance measuring sensors 2 to 4 is an indirect wave.
  • the transmission / reception unit 11 causes the distance measurement sensor 2 to transmit the ultrasonic wave 50 ms after the time when the distance measurement sensor 1 transmits the ultrasonic wave, and then causes the distance measurement sensors 1 to 4 to receive the reflected wave.
  • the reflected wave received by the distance measuring sensor 2 itself that transmitted the ultrasonic wave is a direct wave
  • the reflected wave received by the distance measuring sensors 1, 3 and 4 is an indirect wave.
  • the transmission / reception unit 11 causes the distance measurement sensor 3 to transmit the ultrasonic waves 50 ms after the time when the ultrasonic waves are transmitted from the distance measurement sensor 2, and 50 ms from the time when the distance measurement sensor 3 transmits the ultrasonic waves.
  • ultrasonic waves are transmitted from the distance measuring sensor 4, and 50 ms after the time when the ultrasonic waves are transmitted from the distance measuring sensor 4, the ultrasonic waves are transmitted from the distance measuring sensor 1 again.
  • the transmission / reception unit 11 causes the distance measuring sensors 1 to 4 to transmit / receive direct waves and indirect waves in a drive cycle of 200 ms.
  • the transmission / reception unit 11 outputs information indicating the distance measuring sensor that transmits / receives the direct wave and information indicating the distance to the reflection point where the direct wave is reflected to the tilt obstacle detection unit 12 as the transmission / reception result of the direct wave.
  • the transmission / reception unit 11 transmits and receives the indirect wave transmission / reception result of the information indicating the distance measurement sensor that transmitted the direct wave and the distance measurement sensor that received the indirect wave and the information indicating the distance to the reflection point where the indirect wave is reflected. Is output to the tilt obstacle detection unit 12.
  • the tilt obstacle detection unit 12 receives the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave from the transmission / reception unit 11.
  • the tilt obstacle detection unit 12 detects the presence of a tilt obstacle based on the reception status of the indirect wave by the distance measuring sensors 1 to 4.
  • the "tilted obstacle” is an obstacle having an inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 to 4.
  • an obstacle having no inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 to 4 that is, an obstacle having a surface substantially parallel to the installation direction of the distance measuring sensors 1 to 4 is "non-tilted". It is called an "obstacle".
  • the tilt obstacle detection unit 12 detects the existence of a tilt obstacle, it outputs the transmission / reception result of the direct wave to the intersection processing unit 13.
  • the distance measuring sensors 1 to 4 are installed on the front surface of the vehicle, the distance measuring sensors 1 to 4 are installed in a direction parallel to the front surface, and the distance measuring sensors 1 to 4 are placed on the rear surface of the vehicle. If installed, the direction is parallel to the rear surface.
  • FIGS. 2A and 2B are diagrams showing the reflection path of ultrasonic waves at the inclined obstacles 61 and 62.
  • the distance measuring sensors 1 and 2 are installed side by side in a row on the rear surface 51 of the vehicle 50.
  • the inclined obstacles 61 and 62 are obstacles having an inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 and 2, that is, the rear surface 51.
  • the ultrasonic waves transmitted by the distance measuring sensors 1 and 2 are transmitted.
  • the sound waves are diffused when reflected on the inclined surface of the inclined obstacle 62. Therefore, the distance measuring sensors 1 and 2 can receive the direct wave, but cannot receive the indirect wave.
  • the tilt obstacle detection unit 12 determines that a non-tilt obstacle exists behind the vehicle 50 when the distance measurement sensor 1 receives the direct wave and the distance measurement sensor 2 receives the indirect wave. To detect. Further, when the distance measuring sensor 1 does not receive the direct wave and the distance measuring sensor 2 does not receive the indirect wave, the inclined obstacle detection unit 12 is behind the vehicle 50 with an inclined obstacle and a non-inclined obstacle. Detects that does not exist.
  • intersection processing unit 13 When the intersection processing unit 13 detects that an inclined obstacle is present by the inclined obstacle detecting unit 12, the intersection processing unit 13 receives the transmission / reception result of the direct wave from the inclined obstacle detecting unit 12.
  • the intersection processing unit 13 draws two circles using the result of the distance measuring sensor 1 transmitting and receiving a direct wave twice at different times while the vehicle is traveling, and performs a two-circle intersection processing to obtain the intersection of the two circles. By doing so, the position of the intersection is calculated.
  • the intersection processing unit 13 calculates the position of the intersection of each of the distance measuring sensor 2, the distance measuring sensor 3, and the distance measuring sensor 4 by using the transmission / reception results of the two direct waves.
  • the intersection processing unit 13 outputs information indicating the position of the intersection group calculated from the transmission / reception results of the direct waves by the distance measuring sensors 1 to 4 to the shape estimation unit 14.
  • FIG. 3 is a diagram illustrating 2-circle intersection processing by the intersection processing unit 13.
  • the vehicle 50 is moving backward, and the distance measuring sensor 1 moves from the position of the distance measuring sensor 1 to the position of the distance measuring sensor 1a as the vehicle 50 moves backward.
  • the intersection processing unit 13 uses the transmission / reception result of the direct wave transmitted / received at the position of the distance measuring sensor 1 from the time when the distance measuring sensor 1 transmits ultrasonic waves to the time when the direct wave is received.
  • the distance to the reflection point 70 where the ultrasonic wave is reflected is calculated by the TOF (Time Of Flight) method, centering on the position of the distance measuring sensor 1, and the distance to the reflection point 70 is the radius.
  • TOF Time Of Flight
  • the intersection processing unit 13 uses the transmission / reception result of the direct wave transmitted / received at the position of the distance measuring sensor 1a, and the time required from the distance measuring sensor 1a transmitting the ultrasonic wave to receiving the direct wave. Based on the above, the distance to the reflection point 71 where the ultrasonic wave is reflected is calculated by the TOF method, and a circle is drawn with the position of the distance measuring sensor 1a as the center and the distance to the reflection point 71 as the radius. Then, the intersection processing unit 13 calculates the position of the intersection 72 of the two circles.
  • the intersection processing unit 13 acquires various information such as vehicle speed, yaw rate, and steering angle from the vehicle 50, and uses the acquired various information to measure the distance measurement sensor 1 for each time when the vehicle 50 is traveling.
  • the positions of ⁇ 4 may be calculated. Further, although FIG. 3 shows an example in which the vehicle 50 is traveling straight, the vehicle 50 may be curved. The position where the distance measuring sensors 1 to 4 transmit the ultrasonic wave while the vehicle 50 is traveling is different from the position where the distance measuring sensors 1 to 4 receive the direct wave reflected by the inclined obstacle.
  • the intersection processing unit 13 is located at the position where the distance measuring sensors 1 to 4 transmit ultrasonic waves, the position where the distance measuring sensors 1 to 4 directly receive the wave, or the position where the distance measuring sensors 1 to 4 receive the ultrasonic waves, or the position where the distance measuring sensors 1 to 4 receive the ultrasonic waves.
  • a circle centered on any one of the intermediate positions may be drawn.
  • FIG. 4 is a diagram for explaining how the positions of the intersections 76 and 77 shift to the far side as the vehicle 50 approaches the inclined obstacle 62.
  • the ultrasonic wave transmitted at the position of the distance measuring sensor 1 is reflected at the position of the reflection point 73
  • the reflected wave transmitted at the position of the distance measuring sensor 1a is reflected at the position of the reflection point 74.
  • the reflected wave transmitted at the position of the distance measuring sensor 1b is reflected at the position of the reflection point 75.
  • the positions of the reflection points 73, 74, and 75 shift to positions farther from the vehicle 50.
  • the intersection 77 calculated by the two-circle intersection processing using the reflection point 74 and the reflection point 75 The position is shifted to the side farther from the vehicle 50.
  • the intersection processing unit 13 performs the above-mentioned two-circle intersection processing by using the reflected wave first received by the distance measuring sensor 1 after the distance measuring sensor 1 transmits ultrasonic waves as a direct wave. Since the reflected wave first received by the distance measuring sensor 1 corresponds to the shortest distance from the distance measuring sensor 1 to the tilt obstacle 62, the positions of the intersections 76 and 77 become the tilt obstacle as the vehicle 50 approaches the tilt obstacle 62. It will shift along the inclined surface of the object 62. Therefore, it is possible to obtain an approximate straight line with respect to the intersection group in the shape estimation unit 14 described later.
  • the shape estimation unit 14 receives information indicating the position of the intersection group calculated by the intersection processing unit 13 from the intersection processing unit 13 while the vehicle 50 is reversing.
  • the shape estimation unit 14 estimates the shape of the inclined obstacle based on the position of the intersection group calculated by the intersection processing unit 13.
  • the shape estimation unit 14 outputs information indicating the shape of the inclined obstacle to the contact position estimation unit 15.
  • the contact position estimation unit 15 receives information indicating the shape of the inclined obstacle from the shape estimation unit 14.
  • the contact position estimation unit 15 estimates the position of the portion of the inclination obstacle closest to the vehicle 50 based on the shape of the inclination obstacle estimated by the shape estimation unit 14, and information indicating the position of the estimated portion. Is output to the collision determination unit 20 as contact position information indicating a position that is likely to come into contact with the vehicle 50.
  • 5A, 5B, and 5C are diagrams illustrating a method of estimating the shape of the inclined obstacles 61 and 62 by the shape estimation unit 14 and a method of estimating the contact positions 82, 84, 87, 90 by the contact position estimation unit 15. Is.
  • the intersections calculated by the intersection processing unit 13 are indicated by black circles ( ⁇ ).
  • the distance measuring sensors 1 to 4 are installed side by side in a row on the rear surface 51 of the vehicle 50.
  • the shape estimation unit 14 obtains approximate straight lines 80, 81, 83, 85, 86, 88, 89 of the intersection group based on the position of the intersection group calculated by the intersection processing unit 13.
  • the shape estimation unit 14 estimates that the inclined obstacle 61 has a corner portion 61a when the approximate straight line of the intersection group is divided into two or more (FIGS. 5A and 5C). Further, the shape estimation unit 14 estimates that the intersection position of the plurality of approximate straight lines is the position of the corner portion 61a of the inclined obstacle 61.
  • the contact position estimation unit 15 estimates the position of the corner portion 61a estimated by the shape estimation unit 14 as the contact position 82. As shown in FIG.
  • the contact position estimation unit 15 may set the positions of the two corners 61a existing closer to the vehicle 50 from the three corners 61a as the contact positions 87 and 90.
  • the shape estimation unit 14 estimates that the inclined obstacle 62 has a shape having no corner portion 61a when the approximate straight line of the intersection group is one (FIG. 5B).
  • the contact position estimation unit 15 estimates the position of the intersection of the approximate straight line 83 of the intersection group and the virtual vehicle side line 53 extending the side surface of the vehicle 50 as the contact position 84.
  • the contact position estimation unit 15 is located on the side closer to the vehicle 50 among the positions of the intersections between the approximate straight line 83 and the vehicle side line 52 and the positions of the intersections between the approximate straight line 83 and the vehicle side line 53. May be the contact position 84.
  • the shape estimation unit 14 estimates whether or not a convex corner portion 61a exists on the vehicle 50 side in a range facing the distance measuring sensors 1 to 4 behind the vehicle 50. Therefore, the inclined obstacle 62 shown in FIG. 8F, which will be described later, has a shape like a prism having a corner portion 61a, but the corner portion 61a exists outside the range facing the distance measuring sensors 1 to 4. The shape estimation unit 14 estimates that the inclined obstacle 62 has a shape like an inclined wall having no corners.
  • the collision determination unit 20 receives the contact position information from the contact position estimation unit 15. For example, the collision determination unit 20 determines that the possibility of a collision is high when the distance between the rear surface 51 of the vehicle 50 and the contact position 82 of the inclined obstacle 61 shown in FIG. 5A is equal to or less than a predetermined distance. To do.
  • the collision determination unit 20 determines that the vehicle 50 has a high possibility of collision, the vehicle 50 has a function of operating the brake of the vehicle 50 to reduce the impact at the time of a collision (so-called collision damage mitigation brake) in order to avoid a collision.
  • a function of issuing an alarm to the driver is executed in order to prevent a collision.
  • FIG. 6 is a flowchart showing an operation example of the obstacle detection device 10 according to the first embodiment. While the vehicle 50 is traveling, the obstacle detection device 10 repeatedly executes the operation shown in the flowchart of FIG.
  • step ST1 the transmission / reception unit 11 causes the distance measuring sensors 1 to 4 to transmit / receive direct waves and indirect waves at a predetermined drive interval, and outputs the transmission / reception result to the tilt obstacle detection unit 12.
  • step ST2 the inclined obstacle detection unit 12 detects the existence of a non-inclined obstacle when a direct wave or an indirect wave is received by any of the distance measuring sensors 1 to 4 (step ST2 ". YES ”). In this case, the tilt obstacle detection unit 12 outputs the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave to the intersection processing unit 13. On the other hand, when the indirect wave is not received by all of the distance measuring sensors 1 to 4 and the direct wave is received by any of the distance measuring sensors 1 to 4, the tilt obstacle detection unit 12 has a tilt obstacle. Detects the existence of an object (step ST2 “NO”). In this case, the tilt obstacle detection unit 12 outputs the transmission / reception result of the direct wave to the intersection processing unit 13.
  • step ST3 the intersection processing unit 13 performs 2-circle intersection processing using the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave received from the inclination obstacle detection unit 12, and corresponds to the shape of the non-inclination obstacle. Calculate the position of the intersection group. For example, assume that the distance measuring sensor 1 transmits ultrasonic waves, the distance measuring sensor 1 receives a direct wave, and the distance measuring sensor 2 receives an indirect wave. In this case, the intersection processing unit 13 uses the transmission / reception result of the direct wave, and based on the time required from the distance measuring sensor 1 transmitting the ultrasonic wave to receiving the direct wave, the ultrasonic wave is subjected to the TOF method. Calculate the distance to the non-tilted obstacle reflected by.
  • the intersection processing unit 13 draws a circle centered on the position of the distance measuring sensor 1 and having the distance to the non-tilted obstacle calculated based on the direct wave as the radius. Further, the intersection processing unit 13 uses the transmission / reception result of the indirect wave, and based on the time required from the distance measuring sensor 1 transmitting the ultrasonic wave to the distance measuring sensor 2 receiving the indirect wave, the TOF method is used. The distance to the non-tilted obstacle to which the ultrasonic wave is reflected is calculated. Then, the intersection processing unit 13 focuses on the position of the distance measuring sensor 1 and the position of the distance measuring sensor 2, and draws an ellipse using the distance to the non-tilted obstacle calculated based on the indirect wave. Then, the intersection processing unit 13 calculates the position of the intersection between the circle and the ellipse.
  • step ST4 the contact position estimation unit 15 receives the position of the intersection group calculated by the intersection processing unit 13 from the intersection processing unit 13 via the shape estimation unit 14.
  • the contact position estimation unit 15 estimates the position of the intersection group calculated by the intersection processing unit 13 as the position of the non-tilted obstacle, and outputs the position as contact position information to the collision determination unit 20.
  • step ST5 the collision determination unit 20 determines the possibility of a collision between the inclined obstacle or the non-inclined obstacle and the vehicle 50 by using the contact position information received from the contact position estimation unit 15.
  • step ST5 “YES” the collision determination unit 20 instructs the vehicle 50 to avoid the collision in step ST6.
  • step ST5 “NO” the operation of the obstacle detection device 10 returns to step ST1.
  • step ST7 the intersection processing unit 13 performs 2-circle intersection processing as shown in FIGS. 3 and 4 using the transmission / reception result of the direct wave received from the inclined obstacle detection unit 12, and forms the shape of the inclined obstacle. Calculate the position of the corresponding intersection group.
  • step ST8 the shape estimation unit 14 obtains an approximate straight line with respect to the intersection group calculated by the intersection processing unit 13.
  • step ST9 the shape estimation unit 14 determines whether or not the obtained approximate straight lines are plural.
  • step ST10 the shape estimation unit 14 estimates that the inclined obstacle has a corner portion such as a prism.
  • step ST11 the contact position estimation unit 15 estimates the position of the corner portion estimated by the shape estimation unit 14 as the contact position, and outputs the position as contact position information to the collision determination unit 20.
  • step ST12 the shape estimation unit 14 estimates that the inclined obstacle has a shape having no corner such as an inclined wall.
  • the contact position estimation unit 15 estimates the position of the intersection of the approximate straight line obtained by the shape estimation unit 14 with the vehicle side line 52 or the vehicle side line 53 as the contact position, and uses the position as the contact position information. Output to the collision determination unit 20.
  • the obstacle detection device 10 includes a transmission / reception unit 11, an inclination obstacle detection unit 12, an intersection processing unit 13, a shape estimation unit 14, and a contact position estimation unit 15.
  • the transmission / reception unit 11 causes a plurality of distance measuring sensors 1 to 4 installed on the rear surface 51 of the vehicle 50 to transmit / receive direct waves and indirect waves.
  • the inclined obstacle detection unit 12 has an inclined obstacle having an inclined surface inclined with respect to the installation direction of the plurality of distance measuring sensors 1 to 4 based on the reception status of the indirect wave by the plurality of distance measuring sensors 1 to 4. Detect that it exists.
  • the intersection processing unit 13 transmits and receives a direct wave twice by the same ranging sensor at different times while the vehicle 50 is traveling.
  • the position of the intersection group is calculated from the transmission / reception results of direct waves by the plurality of distance measuring sensors 1 to 4.
  • the shape estimation unit 14 estimates the shape of the inclined obstacle based on the position of the intersection group calculated by the intersection processing unit 13.
  • the contact position estimation unit 15 estimates the position of the portion of the inclination obstacle closest to the vehicle 50 based on the shape of the inclination obstacle estimated by the shape estimation unit 14, and outputs it as contact position information.
  • the obstacle detection device 10 can detect an inclined obstacle existing behind the vehicle 50.
  • intersection processing unit 13 of the first embodiment performs 2-circle intersection processing using the reflected wave first received by the distance measuring sensor as a direct wave after the distance measuring sensor transmits ultrasonic waves.
  • the position of the intersection shifts along the inclined surface of the inclined obstacle, so that the shape estimation unit 14 can obtain an approximate straight line with respect to the intersection group.
  • the shape estimation unit 14 of the first embodiment obtains an approximate straight line of the intersection group, estimates that the inclined obstacle has a corner portion when there are a plurality of the approximate straight lines, and the approximate straight line is singular. If this is the case, it is presumed that the inclined obstacle has a shape without corners. As a result, the shape estimation unit 14 can determine whether the inclined obstacle has a shape like a prism or an inclined wall. Since the portion of the prism and the inclined wall that come into contact with the rear surface 51 of the vehicle 50 is different, the shape estimation unit 14 discriminates between the prism and the inclined wall, so that the collision possibility determination accuracy by the collision determination unit 20 is improved.
  • the shape estimation unit 14 of the first embodiment estimates that the intersection position of the approximate straight line is the position of the corner portion of the inclined obstacle.
  • the contact position estimation unit 15 outputs the position of the corner portion estimated by the shape estimation unit 14 as contact position information. As a result, the contact position estimation unit 15 can accurately estimate the position of the portion closest to the rear surface 51 of the vehicle 50 with respect to the inclined obstacle shaped like a prism.
  • the shape estimation unit 14 of the first embodiment uses the position of the intersection between the approximate straight line and the vehicle side lines 52 and 53 extending from the side surface of the vehicle 50 as contact position information. Output. As a result, the contact position estimation unit 15 can accurately estimate the position of the portion closest to the rear surface 51 of the vehicle 50 with respect to the inclined obstacle shaped like an inclined wall.
  • FIG. 7 is a block diagram showing a configuration example of the obstacle detection device 10 according to the second embodiment.
  • the obstacle detection device 10 according to the second embodiment has a configuration in which a sensor selection unit 16 is added to the obstacle detection device 10 of the first embodiment shown in FIG.
  • the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the sensor selection unit 16 transmits and receives direct waves from the distance measuring sensors 1 to 4 based on the position of the portion of the tilt obstacle estimated by the contact position estimation unit 15 that is closest to the vehicle, that is, the contact position. Select one or more ranging sensors to perform.
  • the sensor selection unit 16 outputs information indicating the selected ranging sensor to the transmission / reception unit 11.
  • the transmission / reception unit 11 causes two or more selected distance measurement sensors to directly transmit / receive waves.
  • FIGS. 8A to 8F are diagrams illustrating a method of selecting a distance measuring sensor by the sensor selection unit 16.
  • the same or corresponding parts as those in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the sensor selection unit 16 causes two distance measuring sensors close to the contact position of the inclined obstacle to directly transmit and receive waves, and stops transmission and reception by the remaining distance measuring sensors.
  • the distance measuring sensor that transmits and receives direct waves is referred to as a "drive sensor”
  • the distance measuring sensor that stops transmission and reception of direct waves is referred to as a “non-drive sensor”.
  • the sensor selection unit 16 selects the distance measurement sensor 2 and the distance measurement sensor 3 close to the contact position 91 of the tilt obstacle 61 as drive sensors. In the case of FIG. 8B, the sensor selection unit 16 selects the distance measurement sensor 1 and the distance measurement sensor 2 close to the contact position 92 of the tilt obstacle 61 as drive sensors.
  • the sensor selection unit 16 uses the distance measuring sensor 2 located in front of the contact position 93, which is the corner of the inclined obstacle 61, as a non-driving sensor, and the distance measuring sensor 1 adjacent to the distance measuring sensor 2.
  • the ranging sensor 3 is selected as the drive sensor. In the case of FIG.
  • the sensor selection unit 16 uses the distance measuring sensor 1 located in front of the contact position 94, which is the corner of the inclined obstacle 61, as a non-driving sensor, and the distance measuring sensor 2 adjacent to the distance measuring sensor 1.
  • the ranging sensor 3 is selected as the drive sensor.
  • the sensor selection unit 16 selects two distance measuring sensors close to the contact position.
  • the sensor selection unit 16 selects the distance measuring sensor 1 and the distance measuring sensor 2 near the contact position 95, which is the intersection of the approximate straight line of the intersection group (not shown) and the vehicle side line 52, as the drive sensor.
  • the tilt obstacle 62 exists outside the distance measuring sensor 1.
  • the inclined obstacle 62 has a shape like a prism having corners, but since there is only one approximate straight line (not shown), it is like an inclined wall having no corners in the shape estimation unit 14.
  • the sensor selection unit 16 selects the distance measuring sensor 1 and the distance measuring sensor 2 close to the contact position 96 as the drive sensor in the case of FIG. 8F as in the case of FIG. 8E.
  • FIGS. 9 and 10 are flowcharts showing an operation example of the obstacle detection device 10 according to the second embodiment. While the vehicle 50 is traveling, the obstacle detection device 10 repeatedly executes the operations shown in the flowcharts of FIGS. 9 and 10.
  • step ST21 the transmission / reception unit 11 confirms whether or not the drive sensor is selected from the distance measurement sensors 1 to 4 by the sensor selection unit 16.
  • the transmission / reception unit 11 performs the operations after step ST31 shown in FIG.
  • the transmission / reception unit 11 performs the operations after step ST1. Since the operations of steps ST1 to ST13 in the flowcharts of FIGS. 9 and 10 are the same as the operations of steps ST1 to ST13 in the flowchart of FIG. 6, the description thereof will be omitted.
  • the sensor selection unit 16 receives the contact position information indicating the contact position of the tilted obstacle estimated by the contact position estimation unit 15 in step ST11 or step ST13 from the contact position estimation unit 15.
  • the sensor selection unit 16 compares the contact position based on the contact position information with the positions of the distance measuring sensors 1 to 4, and drives at least two distance measuring sensors close to the contact position among the distance measuring sensors 1 to 4. It is selected as a sensor, and information indicating the selected drive sensor is output to the transmission / reception unit 11.
  • the transmission / reception unit 11 causes each of at least two drive sensors selected by the sensor selection unit 16 to directly transmit / receive waves at a predetermined drive interval (for example, 50 ms), resulting in transmission / reception. Is output to the tilt obstacle detection unit 12.
  • a predetermined drive interval for example, 50 ms
  • the transmission / reception unit 11 first transmits ultrasonic waves from the distance measuring sensor 2 and then causes the distance measuring sensor 2 to transmit ultrasonic waves. Receive the reflected wave (that is, the direct wave).
  • the transmission / reception unit 11 causes the distance measurement sensor 3 to transmit ultrasonic waves 50 ms after the time when the distance measurement sensor 2 transmits ultrasonic waves, and then causes the distance measurement sensor 3 to transmit a reflected wave (that is, a direct wave). Receive. Since there are only two drive sensors, the distance measurement sensor 2 and the distance measurement sensor 3, the transmission / reception unit 11 causes the distance measurement sensor 2 to transmit the ultrasonic waves again 50 ms after the ultrasonic waves are transmitted from the distance measurement sensor 3. .. In this way, the transmission / reception unit 11 causes the distance measurement sensor 2 and the distance measurement sensor 3, which are drive sensors, to directly transmit / receive waves in a drive cycle of 100 ms.
  • step ST1 the transmission / reception unit 11 drives the four ranging sensors 1 to 4 with a driving cycle of 200 ms, but in step ST31, the two ranging sensors 2 and 3 are driven with a drive cycle of 100 ms. .. Therefore, the obstacle detection device 10 can obtain more information on the contact position in a short time, and the collision determination unit 20 can determine the possibility of collision more accurately.
  • step ST32 the intersection processing unit 13 receives the transmission / reception result of the direct wave by the drive sensor from the transmission / reception unit 11 via the tilt obstacle detection unit 12.
  • the intersection processing unit 13 performs 2-circle intersection processing using the transmission / reception result of the direct wave, and calculates the position of the intersection group corresponding to the shape of the inclined obstacle.
  • steps ST33 to ST39 in the flowchart of FIG. 10 are the same as the operations of steps ST8 to ST13 and ST5 in the flowcharts of FIGS. 6 and 9, the description thereof will be omitted.
  • the sensor selection unit 16 drives the distance measuring sensors 1 to 4 with the drive sensor based on the contact position of the inclined obstacle and the installation position of the distance measuring sensors 1 to 4. It was classified as a sensor and the transmission and reception of direct waves of the non-driving sensor was stopped, but the present invention is not limited to this.
  • the ultrasonic waves transmitted from the distance measuring sensors 1 and 2 do not reach the distance measuring sensors 3 and 4 as shown in FIG. 2A.
  • the ultrasonic waves transmitted from the distance measuring sensors 3 and 4 do not reach the distance measuring sensors 1 and 2. Therefore, in the case of FIG. 8A, the distance measuring sensors 1 and 2 and the distance measuring sensors 3 and 4 can directly transmit and receive waves without interfering with the contact position 91, which is the corner portion 61a, sandwiched between them.
  • the transmission / reception unit 11 may drive the distance measurement sensor 2 and the distance measurement sensor 3 selected as the drive sensor in FIG. 8A at the same time instead of alternately driving them at intervals of 50 ms.
  • the transmission / reception unit 11 can drive the two ranging sensors 2 and 3 with a drive cycle of 50 ms.
  • the transmission / reception unit 11 shortens the drive interval between the distance measurement sensor 2 and the distance measurement sensor 3 selected as the drive sensor in FIG. 8A, and reduces the drive interval between the distance measurement sensor 1 and the distance measurement sensor 4, which are non-drive sensors. It may be lengthened.
  • the transmission / reception unit 11 drives, for example, the drive sensor every drive cycle, and drives the non-drive sensor once every two drive cycles.
  • the obstacle detection device 10 is a plurality of distance measuring sensors based on the position of the portion of the inclined obstacle estimated by the contact position estimation unit 15 that is closest to the vehicle 50.
  • the sensor selection unit 16 is provided to select a distance measuring sensor for directly transmitting and receiving waves from 1 to 4.
  • the transmission / reception unit 11 causes the distance measuring sensor selected by the sensor selection unit 16 to directly transmit / receive waves.
  • the obstacle detection device 10 can transmit and receive more direct waves in a short time to obtain more contact position information, and the collision determination unit 20 can collide more accurately. Can be determined.
  • the distance measuring sensors 1 to 4 are installed on the rear surface 51 of the vehicle 50, but they may be installed on the front surface of the vehicle 50.
  • the obstacle detection device 10 detects an inclined obstacle existing in front of the vehicle 50 by using the distance measuring sensors 1 to 4 installed on the front surface of the vehicle 50.
  • 11 and 12 are diagrams showing a hardware configuration example of the obstacle detection device 10 according to each embodiment.
  • the functions of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 in the obstacle detection device 10 are realized by the processing circuit. That is, the obstacle detection device 10 includes a processing circuit for realizing the above functions.
  • the processing circuit may be a processing circuit 100 as dedicated hardware, or a processor 101 that executes a program stored in the memory 102.
  • the processing circuit 100 when the processing circuit is dedicated hardware, the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field Processor Gate Array), or a combination thereof.
  • the functions of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 may be realized by a plurality of processing circuits 100, or the functions of each unit may be realized. The functions may be collectively realized by one processing circuit 100.
  • the processing circuit is the processor 101, the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16
  • the function is realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is described as a program and stored in the memory 102.
  • the processor 101 realizes the functions of each part by reading and executing the program stored in the memory 102.
  • the obstacle detection device 10 includes a memory 102 for storing a program in which the step shown in the flowchart of FIG. 6 or the like is eventually executed when executed by the processor 101. Further, this program causes a computer to execute the procedure or method of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16. It can be said that.
  • the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or the like.
  • the memory 102 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, and may be a non-volatile or volatile semiconductor memory such as a hard disk or a flexible disk. It may be an optical disk such as a CD (Compact Disc) or a DVD (Digital Versaille Disc).
  • the processing circuit in the obstacle detection device 10 can realize the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • the present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
  • the obstacle detection device detects inclined obstacles existing in front of and behind the vehicle, it is suitable for use in an obstacle detection device used in a collision damage mitigation brake, a collision prevention warning system, or the like. There is.
  • 1,1a, 1b, 2,3,4 ranging sensor 10 obstacle detection device, 11 transmission / reception unit, 12 tilt obstacle detection unit, 13 intersection processing unit, 14 shape estimation unit, 15 contact position estimation unit, 16 sensor Selection unit, 20 collision detection unit, 50 vehicle, 51 rear surface, 52, 53 vehicle side line, 61, 62 tilt obstacle, 61a corner, 70, 71, 73, 74, 75 reflection point, 72, 76, 77 intersection, 80,81,83,85,86,88,89 Approximate straight line, 82,84,87,90,91,92,93,94,95,96 contact position, 100 processing circuit, 101 processor, 102 memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)

Abstract

An inclined obstacle detection unit (12) detects the presence of an inclined obstacle on the basis of the indirect wave reception states of a plurality of distance measurement sensors (1-4) installed on a rear surface (51) of a vehicle (50). If the presence of an inclined obstacle has been detected, an intersection point processing unit (13) calculates the positions of an intersection point group from direct wave transmission and reception results from distance measurement sensors (1-4) by carrying out two-circle-intersection-point processing using the results of the transmission and reception of direct waves twice by a single distance measurement sensor at different points in time during vehicle (50) travel. A shape estimation unit (14) estimates the shape of the inclined obstacle on the basis of the positions of the intersection point group. A contact position estimation unit (15) estimates the position of the portion of the inclined obstacle closest to the vehicle (50) on the basis of the shape of the inclined obstacle.

Description

障害物検出装置Obstacle detector
 この発明は、障害物検出装置に関するものである。 The present invention relates to an obstacle detection device.
 従来の障害物検出装置は、車両に設置された単独の超音波センサを用いて、車両の走行中に当該超音波センサから車両の側方に送信された超音波が駐車車両で反射して当該超音波センサに受信されるまでに要した時間から駐車車両までの距離を検出し、駐車車両の距離を検出したときの当該超音波センサの位置と検出した距離とを用いて三角測量の原理により反射点を推測する。そして、従来の障害物検出装置は、反射点の点列データを用いて駐車車両の形状とコーナー(角部)を求め、駐車区画を判別する(例えば、特許文献1参照)。 The conventional obstacle detection device uses a single ultrasonic sensor installed in the vehicle, and the ultrasonic waves transmitted from the ultrasonic sensor to the side of the vehicle are reflected by the parked vehicle while the vehicle is running. The distance from the parked vehicle to the parked vehicle is detected from the time required for reception by the ultrasonic sensor, and the position of the ultrasonic sensor when the distance of the parked vehicle is detected and the detected distance are used according to the principle of triangulation. Guess the reflection point. Then, the conventional obstacle detection device obtains the shape and corners (corners) of the parked vehicle using the point sequence data of the reflection points, and determines the parking zone (see, for example, Patent Document 1).
特許第5965276号公報Japanese Patent No. 5965276
 従来の障害物検出装置は、障害物である駐車車両の側方を自車両が通過する際にのみ、自車両の側方に存在する障害物の角部を求めることができる構成であった。また、従来の障害物検出装置は、自車両に対して障害物がある角度以上に傾斜している場合、当該障害物の角部を精度よく求めることが困難であった。このように、従来の障害物検出装置には、自車両の前方又は後方に存在する、傾斜した障害物を検出することができないという課題があった。 The conventional obstacle detection device has a configuration in which the corners of obstacles existing on the side of the own vehicle can be obtained only when the own vehicle passes by the side of the parked vehicle which is an obstacle. Further, in the conventional obstacle detection device, when the obstacle is tilted more than a certain angle with respect to the own vehicle, it is difficult to accurately obtain the corner portion of the obstacle. As described above, the conventional obstacle detection device has a problem that it cannot detect an inclined obstacle existing in front of or behind the own vehicle.
 この発明は、上記のような課題を解決するためになされたもので、自車両の前方又は後方に存在する、傾斜した障害物を検出することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to detect an inclined obstacle existing in front of or behind the own vehicle.
 この発明に係る障害物検出装置は、車両の前面又は後面に設置された複数の測距センサに対して、直接波及び間接波の送受信を行わせる送受信部と、複数の測距センサにおける間接波の受信状況に基づいて、複数の測距センサの設置方向に対して傾斜した傾斜面を有する傾斜障害物が存在していることを検出する傾斜障害物検出部と、傾斜障害物検出部により傾斜障害物が存在していることが検出された場合、車両の走行中における異なる時刻に同一の測距センサが2回直接波を送受信した結果を用いて2つの円を描いて当該2つの円の交点を求める2円交点処理を行うことによって、複数の測距センサによる直接波の送受信結果から交点群の位置を算出する交点処理部と、交点処理部により算出された交点群の位置に基づいて、傾斜障害物の形状を推定する形状推定部と、形状推定部により推定された傾斜障害物の形状に基づいて、傾斜障害物のうちの車両に最も近い部位の位置を推定して接触位置情報として出力する接触位置推定部とを備えるものである。 The obstacle detection device according to the present invention includes a transmission / reception unit that transmits and receives direct waves and indirect waves to a plurality of distance measuring sensors installed on the front surface or the rear surface of the vehicle, and indirect waves in the plurality of distance measuring sensors. An inclined obstacle detection unit that detects the existence of an inclined obstacle having an inclined surface inclined with respect to the installation direction of a plurality of distance measuring sensors based on the reception status of the sensor, and an inclined obstacle detecting unit. When it is detected that an obstacle is present, two circles are drawn using the result of the same distance measuring sensor transmitting and receiving direct waves twice at different times while the vehicle is running. Based on the intersection processing unit that calculates the position of the intersection group from the transmission / reception results of direct waves by multiple ranging sensors by performing the 2-circle intersection processing to find the intersection, and the position of the intersection group calculated by the intersection processing unit. Based on the shape estimation unit that estimates the shape of the tilt obstacle and the shape of the tilt obstacle estimated by the shape estimation unit, the position of the part of the tilt obstacle closest to the vehicle is estimated and the contact position information It is provided with a contact position estimation unit that outputs as.
 この発明によれば、自車両の前方又は後方に存在する、傾斜した障害物を検出することができる。 According to the present invention, it is possible to detect an inclined obstacle existing in front of or behind the own vehicle.
実施の形態1に係る障害物検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 1. FIG. 図2A及び図2Bは、傾斜障害物における超音波の反射経路を示す図である。2A and 2B are diagrams showing the reflection path of ultrasonic waves in a tilted obstacle. 交点処理部による2円交点処理を説明する図である。It is a figure explaining 2 circle intersection processing by an intersection processing part. 車両が傾斜障害物に近づくにつれて交点の位置が遠い側にシフトしていく様子を説明する図である。It is a figure explaining how the position of an intersection shifts to a distant side as a vehicle approaches an inclined obstacle. 図5A、図5B、及び図5Cは、形状推定部による傾斜障害物の形状推定方法と、接触位置推定部による接触位置の推定方法を説明する図である。5A, 5B, and 5C are diagrams illustrating a method of estimating the shape of an inclined obstacle by the shape estimation unit and a method of estimating the contact position by the contact position estimation unit. 実施の形態1に係る障害物検出装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る障害物検出装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the obstacle detection apparatus which concerns on Embodiment 2. 図8A~図8Fは、センサ選択部による測距センサの選択方法を説明する図である。8A to 8F are diagrams illustrating a method of selecting a distance measuring sensor by the sensor selection unit. 実施の形態2に係る障害物検出装置の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the obstacle detection apparatus which concerns on Embodiment 2. 図9のフローチャートの続きを示す図である。It is a figure which shows the continuation of the flowchart of FIG. 各実施の形態に係る障害物検出装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware configuration of the obstacle detection apparatus which concerns on each embodiment. 各実施の形態に係る障害物検出装置のハードウェア構成の別の例を示す図である。It is a figure which shows another example of the hardware composition of the obstacle detection apparatus which concerns on each embodiment.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る障害物検出装置10の構成例を示すブロック図である。障害物検出装置10は、車両に搭載され、車両周辺の障害物を検出するものである。この障害物検出装置10は、送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、及び接触位置推定部15を備える。また、障害物検出装置10は、当該車両に設置されている複数の測距センサ1~4、及び衝突判定部20に接続されている。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a block diagram showing a configuration example of the obstacle detection device 10 according to the first embodiment. The obstacle detection device 10 is mounted on the vehicle and detects obstacles around the vehicle. The obstacle detection device 10 includes a transmission / reception unit 11, an inclination obstacle detection unit 12, an intersection processing unit 13, a shape estimation unit 14, and a contact position estimation unit 15. Further, the obstacle detection device 10 is connected to a plurality of distance measuring sensors 1 to 4 installed in the vehicle and a collision determination unit 20.
 図1では、障害物検出装置10に対して4個の測距センサ1~4が接続されているが、測距センサの数は4個に限定されず、2個以上であればよい。
 測距センサ1~4は、探査波として超音波又は電波等を送信し、車両周辺の障害物で反射した探査波である反射波を受信する。以下では、測距センサ1~4が超音波センサであるものとする。
In FIG. 1, four distance measuring sensors 1 to 4 are connected to the obstacle detection device 10, but the number of distance measuring sensors is not limited to four, and may be two or more.
The ranging sensors 1 to 4 transmit ultrasonic waves or radio waves as exploration waves, and receive reflected waves which are exploration waves reflected by obstacles around the vehicle. In the following, it is assumed that the distance measuring sensors 1 to 4 are ultrasonic sensors.
 送受信部11は、車両の走行中に、予め定められた駆動間隔(例えば、50ms)で、測距センサ1~4に対して直接波及び間接波の送受信を行わせる。例えば、送受信部11は、測距センサ1から超音波を送信させ、その後、測距センサ1~4に反射波を受信させる。この場合、超音波を送信した測距センサ1自身が受信した反射波は直接波であり、測距センサ2~4が受信した反射波は間接波である。送受信部11は、測距センサ1から超音波を送信させた時点から50ms後に、今度は測距センサ2から超音波を送信させ、その後、測距センサ1~4に反射波を受信させる。この場合、超音波を送信した測距センサ2自身が受信した反射波は直接波であり、測距センサ1,3,4が受信した反射波は間接波である。送受信部11は、上記同様に、測距センサ2から超音波を送信させた時点から50ms後に、測距センサ3から超音波を送信させ、測距センサ3から超音波を送信させた時点から50ms後に、測距センサ4から超音波を送信させ、測距センサ4から超音波を送信させた時点から50ms後に、再び測距センサ1から超音波を送信させる。このように、送受信部11は、200msの駆動周期で、測距センサ1~4に直接波及び間接波の送受信を行わせる。送受信部11は、直接波を送受信した測距センサを示す情報と直接波が反射した反射点までの距離を示す情報とを、直接波の送受信結果として、傾斜障害物検出部12へ出力する。また、送受信部11は、直接波を送信した測距センサ及び間接波を受信した測距センサを示す情報と、間接波が反射した反射点までの距離を示す情報とを、間接波の送受信結果として、傾斜障害物検出部12へ出力する。 The transmission / reception unit 11 causes the distance measurement sensors 1 to 4 to transmit / receive direct waves and indirect waves at a predetermined drive interval (for example, 50 ms) while the vehicle is traveling. For example, the transmission / reception unit 11 causes the distance measurement sensors 1 to transmit ultrasonic waves, and then causes the distance measurement sensors 1 to 4 to receive reflected waves. In this case, the reflected wave received by the distance measuring sensor 1 itself that transmitted the ultrasonic wave is a direct wave, and the reflected wave received by the distance measuring sensors 2 to 4 is an indirect wave. The transmission / reception unit 11 causes the distance measurement sensor 2 to transmit the ultrasonic wave 50 ms after the time when the distance measurement sensor 1 transmits the ultrasonic wave, and then causes the distance measurement sensors 1 to 4 to receive the reflected wave. In this case, the reflected wave received by the distance measuring sensor 2 itself that transmitted the ultrasonic wave is a direct wave, and the reflected wave received by the distance measuring sensors 1, 3 and 4 is an indirect wave. Similarly to the above, the transmission / reception unit 11 causes the distance measurement sensor 3 to transmit the ultrasonic waves 50 ms after the time when the ultrasonic waves are transmitted from the distance measurement sensor 2, and 50 ms from the time when the distance measurement sensor 3 transmits the ultrasonic waves. Later, ultrasonic waves are transmitted from the distance measuring sensor 4, and 50 ms after the time when the ultrasonic waves are transmitted from the distance measuring sensor 4, the ultrasonic waves are transmitted from the distance measuring sensor 1 again. In this way, the transmission / reception unit 11 causes the distance measuring sensors 1 to 4 to transmit / receive direct waves and indirect waves in a drive cycle of 200 ms. The transmission / reception unit 11 outputs information indicating the distance measuring sensor that transmits / receives the direct wave and information indicating the distance to the reflection point where the direct wave is reflected to the tilt obstacle detection unit 12 as the transmission / reception result of the direct wave. Further, the transmission / reception unit 11 transmits and receives the indirect wave transmission / reception result of the information indicating the distance measurement sensor that transmitted the direct wave and the distance measurement sensor that received the indirect wave and the information indicating the distance to the reflection point where the indirect wave is reflected. Is output to the tilt obstacle detection unit 12.
 傾斜障害物検出部12は、直接波の送受信結果と間接波の送受信結果とを送受信部11から受け取る。傾斜障害物検出部12は、測距センサ1~4における間接波の受信状況に基づいて、傾斜障害物が存在していることを検出する。「傾斜障害物」は、測距センサ1~4の設置方向に対して傾斜した傾斜面を有する障害物である。一方、測距センサ1~4の設置方向に対して傾斜した傾斜面を有さない障害物、つまり測距センサ1~4の設置方向に対して略平行な面を有する障害物を「非傾斜障害物」と称する。傾斜障害物検出部12は、傾斜障害物が存在していることを検出した場合、直接波の送受信結果を交点処理部13へ出力する。測距センサ1~4の設置方向とは、測距センサ1~4が車両の前面に設置されている場合には当該前面に平行な方向であり、測距センサ1~4が車両の後面に設置されている場合には当該後面に平行な方向である。 The tilt obstacle detection unit 12 receives the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave from the transmission / reception unit 11. The tilt obstacle detection unit 12 detects the presence of a tilt obstacle based on the reception status of the indirect wave by the distance measuring sensors 1 to 4. The "tilted obstacle" is an obstacle having an inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 to 4. On the other hand, an obstacle having no inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 to 4, that is, an obstacle having a surface substantially parallel to the installation direction of the distance measuring sensors 1 to 4 is "non-tilted". It is called an "obstacle". When the tilt obstacle detection unit 12 detects the existence of a tilt obstacle, it outputs the transmission / reception result of the direct wave to the intersection processing unit 13. When the distance measuring sensors 1 to 4 are installed on the front surface of the vehicle, the distance measuring sensors 1 to 4 are installed in a direction parallel to the front surface, and the distance measuring sensors 1 to 4 are placed on the rear surface of the vehicle. If installed, the direction is parallel to the rear surface.
 図2A及び図2Bは、傾斜障害物61,62における超音波の反射経路を示す図である。図示例では、車両50の後面51に測距センサ1,2が一列に並べて設置されている。ここで、傾斜障害物61,62とは、測距センサ1,2の設置方向、つまり後面51に対して傾斜した傾斜面を有する障害物である。 2A and 2B are diagrams showing the reflection path of ultrasonic waves at the inclined obstacles 61 and 62. In the illustrated example, the distance measuring sensors 1 and 2 are installed side by side in a row on the rear surface 51 of the vehicle 50. Here, the inclined obstacles 61 and 62 are obstacles having an inclined surface inclined with respect to the installation direction of the distance measuring sensors 1 and 2, that is, the rear surface 51.
 図2Aに示されるような、角部61aを有する、角柱のような形状をした傾斜障害物61の場合、測距センサ1が送信した超音波は、傾斜障害物61の傾斜面で反射するときに拡散する。そのため、測距センサ1は直接波を受信できるが、測距センサ2は間接波を受信できない。同様に、測距センサ2が送信した超音波も、傾斜障害物61の傾斜面で反射するときに拡散するため、測距センサ2は直接波を受信できるが、測距センサ1は間接波を受信できない。なお、角部61aは、超音波が反射する面積が小さいため、直接波も間接波も測距センサ1,2へほとんど返らない。 In the case of an inclined obstacle 61 having a corner portion 61a and having a shape like a prism as shown in FIG. 2A, when the ultrasonic wave transmitted by the distance measuring sensor 1 is reflected by the inclined surface of the inclined obstacle 61. Spread to. Therefore, the distance measuring sensor 1 can receive the direct wave, but the distance measuring sensor 2 cannot receive the indirect wave. Similarly, since the ultrasonic waves transmitted by the distance measuring sensor 2 are also diffused when reflected on the inclined surface of the inclined obstacle 61, the distance measuring sensor 2 can receive the direct wave, but the distance measuring sensor 1 receives the indirect wave. I can't receive it. Since the corner portion 61a has a small area where ultrasonic waves are reflected, neither direct waves nor indirect waves are returned to the distance measuring sensors 1 and 2.
 図2Bに示されるような、角部を有さない、傾斜壁のような形状をした傾斜障害物62の場合も傾斜障害物61の場合と同様に、測距センサ1,2が送信した超音波は、傾斜障害物62の傾斜面で反射するときに拡散する。そのため、測距センサ1,2は、直接波を受信できるが、間接波を受信できない。 In the case of the inclined obstacle 62 having no corner and shaped like an inclined wall as shown in FIG. 2B, as in the case of the inclined obstacle 61, the ultrasonic waves transmitted by the distance measuring sensors 1 and 2 are transmitted. The sound waves are diffused when reflected on the inclined surface of the inclined obstacle 62. Therefore, the distance measuring sensors 1 and 2 can receive the direct wave, but cannot receive the indirect wave.
 そこで、傾斜障害物検出部12は、例えば測距センサ1が超音波を送信した後、測距センサ1が直接波を受信し、測距センサ2が間接波を受信しなかった場合、車両50の後方に傾斜障害物61又は傾斜障害物62が存在していることを検出する。
 一方、傾斜障害物検出部12は、測距センサ1が直接波を受信し、測距センサ2が間接波を受信した場合、車両50の後方に、非傾斜障害物が存在していることを検出する。また、傾斜障害物検出部12は、測距センサ1が直接波を受信せず、測距センサ2が間接波を受信しなかった場合、車両50の後方に、傾斜障害物及び非傾斜障害物が存在していないことを検出する。
Therefore, in the tilt obstacle detection unit 12, for example, when the distance measuring sensor 1 transmits an ultrasonic wave, the distance measuring sensor 1 receives a direct wave, and the distance measuring sensor 2 does not receive an indirect wave, the vehicle 50 It is detected that the inclined obstacle 61 or the inclined obstacle 62 is present behind the.
On the other hand, the tilt obstacle detection unit 12 determines that a non-tilt obstacle exists behind the vehicle 50 when the distance measurement sensor 1 receives the direct wave and the distance measurement sensor 2 receives the indirect wave. To detect. Further, when the distance measuring sensor 1 does not receive the direct wave and the distance measuring sensor 2 does not receive the indirect wave, the inclined obstacle detection unit 12 is behind the vehicle 50 with an inclined obstacle and a non-inclined obstacle. Detects that does not exist.
 交点処理部13は、傾斜障害物検出部12により傾斜障害物が存在していることが検出された場合、直接波の送受信結果を傾斜障害物検出部12から受け取る。交点処理部13は、車両の走行中における異なる時刻に測距センサ1が2回直接波を送受信した結果を用いて2つの円を描いて当該2つの円の交点を求める2円交点処理を行うことによって、当該交点の位置を算出する。同様に、交点処理部13は、測距センサ2、測距センサ3、及び測距センサ4のそれぞれについても、2回分の直接波の送受信結果を用いて交点の位置を算出する。交点処理部13は、測距センサ1~4による直接波の送受信結果から算出した交点群の位置を示す情報を、形状推定部14へ出力する。 When the intersection processing unit 13 detects that an inclined obstacle is present by the inclined obstacle detecting unit 12, the intersection processing unit 13 receives the transmission / reception result of the direct wave from the inclined obstacle detecting unit 12. The intersection processing unit 13 draws two circles using the result of the distance measuring sensor 1 transmitting and receiving a direct wave twice at different times while the vehicle is traveling, and performs a two-circle intersection processing to obtain the intersection of the two circles. By doing so, the position of the intersection is calculated. Similarly, the intersection processing unit 13 calculates the position of the intersection of each of the distance measuring sensor 2, the distance measuring sensor 3, and the distance measuring sensor 4 by using the transmission / reception results of the two direct waves. The intersection processing unit 13 outputs information indicating the position of the intersection group calculated from the transmission / reception results of the direct waves by the distance measuring sensors 1 to 4 to the shape estimation unit 14.
 図3は、交点処理部13による2円交点処理を説明する図である。図3の例では、車両50が後退中であり、測距センサ1は、車両50の後退に伴って測距センサ1の位置から測距センサ1aの位置へと移動する。車両50の後退中、交点処理部13は、測距センサ1の位置で送受信された直接波の送受信結果を用いて、測距センサ1が超音波を送信してから直接波を受信するまでに要した時間を元に、TOF(Time Of Flight)方式により当該超音波が反射した反射点70までの距離を算出し、測距センサ1の位置を中心とし、反射点70までの距離を半径とした円を描く。同様に、交点処理部13は、測距センサ1aの位置で送受信された直接波の送受信結果を用いて、測距センサ1aが超音波を送信してから直接波を受信するまでに要した時間を元に、TOF方式により当該超音波が反射した反射点71までの距離を算出し、測距センサ1aの位置を中心とし、反射点71までの距離を半径とした円を描く。そして、交点処理部13は、2つの円の交点72の位置を算出する。 FIG. 3 is a diagram illustrating 2-circle intersection processing by the intersection processing unit 13. In the example of FIG. 3, the vehicle 50 is moving backward, and the distance measuring sensor 1 moves from the position of the distance measuring sensor 1 to the position of the distance measuring sensor 1a as the vehicle 50 moves backward. While the vehicle 50 is reversing, the intersection processing unit 13 uses the transmission / reception result of the direct wave transmitted / received at the position of the distance measuring sensor 1 from the time when the distance measuring sensor 1 transmits ultrasonic waves to the time when the direct wave is received. Based on the time required, the distance to the reflection point 70 where the ultrasonic wave is reflected is calculated by the TOF (Time Of Flight) method, centering on the position of the distance measuring sensor 1, and the distance to the reflection point 70 is the radius. Draw a circle. Similarly, the intersection processing unit 13 uses the transmission / reception result of the direct wave transmitted / received at the position of the distance measuring sensor 1a, and the time required from the distance measuring sensor 1a transmitting the ultrasonic wave to receiving the direct wave. Based on the above, the distance to the reflection point 71 where the ultrasonic wave is reflected is calculated by the TOF method, and a circle is drawn with the position of the distance measuring sensor 1a as the center and the distance to the reflection point 71 as the radius. Then, the intersection processing unit 13 calculates the position of the intersection 72 of the two circles.
 なお、交点処理部13は、車速、ヨーレート、又はステアリング角度等の各種情報を車両50から取得し、取得した各種情報を用いて、車両50が走行しているときの時刻ごとの測距センサ1~4の位置を算出すればよい。また、図3では車両50が直進している例が示されたが、車両50がカーブしていてもよい。
 車両50の走行中、測距センサ1~4が超音波を送信した位置と、当該超音波が傾斜障害物で反射した直接波を測距センサ1~4が受信する位置とは異なる。交点処理部13は、2円交点処理時、測距センサ1~4が超音波を送信した位置、測距センサ1~4が直接波を受信した位置、又は上記送信した位置と受信した位置の中間位置のうちのいずれか1つを中心とした円を描けばよい。
The intersection processing unit 13 acquires various information such as vehicle speed, yaw rate, and steering angle from the vehicle 50, and uses the acquired various information to measure the distance measurement sensor 1 for each time when the vehicle 50 is traveling. The positions of ~ 4 may be calculated. Further, although FIG. 3 shows an example in which the vehicle 50 is traveling straight, the vehicle 50 may be curved.
The position where the distance measuring sensors 1 to 4 transmit the ultrasonic wave while the vehicle 50 is traveling is different from the position where the distance measuring sensors 1 to 4 receive the direct wave reflected by the inclined obstacle. The intersection processing unit 13 is located at the position where the distance measuring sensors 1 to 4 transmit ultrasonic waves, the position where the distance measuring sensors 1 to 4 directly receive the wave, or the position where the distance measuring sensors 1 to 4 receive the ultrasonic waves, or the position where the distance measuring sensors 1 to 4 receive the ultrasonic waves. A circle centered on any one of the intermediate positions may be drawn.
 図4は、車両50が傾斜障害物62に近づくにつれて交点76,77の位置が遠い側にシフトしていく様子を説明する図である。車両50の後退中、測距センサ1の位置で送信された超音波は反射点73の位置で反射し、測距センサ1aの位置で送信された反射波は反射点74の位置で反射し、測距センサ1bの位置で送信された反射波は反射点75の位置で反射する。このように、車両50が傾斜障害物62に近づくにつれて、反射点73,74,75の位置が車両50から遠い位置にシフトしていく。そのため、反射点73と反射点74とを用いた2円交点処理により算出された交点76の位置に比べ、反射点74と反射点75とを用いた2円交点処理により算出された交点77の位置は、車両50から遠い側にシフトしている。 FIG. 4 is a diagram for explaining how the positions of the intersections 76 and 77 shift to the far side as the vehicle 50 approaches the inclined obstacle 62. While the vehicle 50 is moving backward, the ultrasonic wave transmitted at the position of the distance measuring sensor 1 is reflected at the position of the reflection point 73, and the reflected wave transmitted at the position of the distance measuring sensor 1a is reflected at the position of the reflection point 74. The reflected wave transmitted at the position of the distance measuring sensor 1b is reflected at the position of the reflection point 75. In this way, as the vehicle 50 approaches the inclined obstacle 62, the positions of the reflection points 73, 74, and 75 shift to positions farther from the vehicle 50. Therefore, compared to the position of the intersection 76 calculated by the two-circle intersection processing using the reflection point 73 and the reflection point 74, the intersection 77 calculated by the two-circle intersection processing using the reflection point 74 and the reflection point 75 The position is shifted to the side farther from the vehicle 50.
 なお、交点処理部13は、測距センサ1が超音波を送信した後に測距センサ1が最初に受信した反射波を直接波として用いて、上記の2円交点処理を行うことが好ましい。測距センサ1が最初に受信した反射波は、測距センサ1から傾斜障害物62までの最短距離に相当するため、車両50が傾斜障害物62に近づくにつれて交点76,77の位置が傾斜障害物62の傾斜面に沿ってシフトしていくことになる。そのため、後述する形状推定部14において交点群に対する近似直線を求めることが可能となる。 It is preferable that the intersection processing unit 13 performs the above-mentioned two-circle intersection processing by using the reflected wave first received by the distance measuring sensor 1 after the distance measuring sensor 1 transmits ultrasonic waves as a direct wave. Since the reflected wave first received by the distance measuring sensor 1 corresponds to the shortest distance from the distance measuring sensor 1 to the tilt obstacle 62, the positions of the intersections 76 and 77 become the tilt obstacle as the vehicle 50 approaches the tilt obstacle 62. It will shift along the inclined surface of the object 62. Therefore, it is possible to obtain an approximate straight line with respect to the intersection group in the shape estimation unit 14 described later.
 形状推定部14は、車両50の後退中に交点処理部13により算出された交点群の位置を示す情報を、交点処理部13から受け取る。形状推定部14は、交点処理部13により算出された交点群の位置に基づいて、傾斜障害物の形状を推定する。形状推定部14は、傾斜障害物の形状を示す情報を、接触位置推定部15へ出力する。 The shape estimation unit 14 receives information indicating the position of the intersection group calculated by the intersection processing unit 13 from the intersection processing unit 13 while the vehicle 50 is reversing. The shape estimation unit 14 estimates the shape of the inclined obstacle based on the position of the intersection group calculated by the intersection processing unit 13. The shape estimation unit 14 outputs information indicating the shape of the inclined obstacle to the contact position estimation unit 15.
 接触位置推定部15は、傾斜障害物の形状を示す情報を、形状推定部14から受け取る。接触位置推定部15は、形状推定部14により推定された傾斜障害物の形状に基づいて、傾斜障害物のうちの車両50に最も近い部位の位置を推定し、推定した部位の位置を示す情報を、車両50に接触する可能性の高い位置を示す接触位置情報として、衝突判定部20へ出力する。 The contact position estimation unit 15 receives information indicating the shape of the inclined obstacle from the shape estimation unit 14. The contact position estimation unit 15 estimates the position of the portion of the inclination obstacle closest to the vehicle 50 based on the shape of the inclination obstacle estimated by the shape estimation unit 14, and information indicating the position of the estimated portion. Is output to the collision determination unit 20 as contact position information indicating a position that is likely to come into contact with the vehicle 50.
 図5A、図5B、及び図5Cは、形状推定部14による傾斜障害物61,62の形状推定方法と、接触位置推定部15による接触位置82,84,87,90の推定方法を説明する図である。図示例において、交点処理部13により算出された交点は黒丸(●)で示されている。また、車両50の後面51に測距センサ1~4が一列に並べて設置されている。 5A, 5B, and 5C are diagrams illustrating a method of estimating the shape of the inclined obstacles 61 and 62 by the shape estimation unit 14 and a method of estimating the contact positions 82, 84, 87, 90 by the contact position estimation unit 15. Is. In the illustrated example, the intersections calculated by the intersection processing unit 13 are indicated by black circles (●). Further, the distance measuring sensors 1 to 4 are installed side by side in a row on the rear surface 51 of the vehicle 50.
 形状推定部14は、交点処理部13により算出された交点群の位置に基づいて、当該交点群の近似直線80,81,83,85,86,88,89を求める。形状推定部14は、交点群の近似直線が2本以上に分かれた場合(図5A及び図5C)、傾斜障害物61は角部61aを有する形状であると推定する。また、形状推定部14は、複数の近似直線の交点位置を、傾斜障害物61の有する角部61aの位置であると推定する。接触位置推定部15は、形状推定部14により推定された角部61aの位置を、接触位置82と推定する。なお、図5Cに示されるように、2つの傾斜障害物61が並んでいる場合、4本の近似直線85,86,88,89から3つの交点が求まるため、形状推定部14は、傾斜障害物が3つの角部61aを有する形状であると推定する。この場合、接触位置推定部15は、3つの角部61aの中からより車両50に近い側に存在する2つの角部61aの位置を、接触位置87,90とすればよい。 The shape estimation unit 14 obtains approximate straight lines 80, 81, 83, 85, 86, 88, 89 of the intersection group based on the position of the intersection group calculated by the intersection processing unit 13. The shape estimation unit 14 estimates that the inclined obstacle 61 has a corner portion 61a when the approximate straight line of the intersection group is divided into two or more (FIGS. 5A and 5C). Further, the shape estimation unit 14 estimates that the intersection position of the plurality of approximate straight lines is the position of the corner portion 61a of the inclined obstacle 61. The contact position estimation unit 15 estimates the position of the corner portion 61a estimated by the shape estimation unit 14 as the contact position 82. As shown in FIG. 5C, when two inclination obstacles 61 are arranged side by side, three intersections can be obtained from the four approximate straight lines 85, 86, 88, 89, so that the shape estimation unit 14 has an inclination obstacle. It is presumed that the object has a shape having three corners 61a. In this case, the contact position estimation unit 15 may set the positions of the two corners 61a existing closer to the vehicle 50 from the three corners 61a as the contact positions 87 and 90.
 一方、形状推定部14は、交点群の近似直線が1本である場合(図5B)、傾斜障害物62は角部61aを有さない形状であると推定する。この場合、接触位置推定部15は、交点群の近似直線83と、車両50の側面を延長した仮想の車両側線53との交点の位置を、接触位置84と推定する。このとき、接触位置推定部15は、近似直線83と車両側線52との交点の位置、及び、近似直線83と車両側線53との交点の位置のうち、より車両50に近い側に存在する交点を、接触位置84とすればよい。 On the other hand, the shape estimation unit 14 estimates that the inclined obstacle 62 has a shape having no corner portion 61a when the approximate straight line of the intersection group is one (FIG. 5B). In this case, the contact position estimation unit 15 estimates the position of the intersection of the approximate straight line 83 of the intersection group and the virtual vehicle side line 53 extending the side surface of the vehicle 50 as the contact position 84. At this time, the contact position estimation unit 15 is located on the side closer to the vehicle 50 among the positions of the intersections between the approximate straight line 83 and the vehicle side line 52 and the positions of the intersections between the approximate straight line 83 and the vehicle side line 53. May be the contact position 84.
 なお、形状推定部14は、あくまで、車両50の後方における測距センサ1~4に対向する範囲に、車両50側に凸の角部61aが存在するか否かを推定する。そのため、後述する図8Fに示される傾斜障害物62は、角部61aを有する角柱のような形状であるが、この角部61aは測距センサ1~4に対向する範囲外に存在するため、形状推定部14は、この傾斜障害物62を、角部を有さない傾斜壁のような形状と推定することになる。 Note that the shape estimation unit 14 estimates whether or not a convex corner portion 61a exists on the vehicle 50 side in a range facing the distance measuring sensors 1 to 4 behind the vehicle 50. Therefore, the inclined obstacle 62 shown in FIG. 8F, which will be described later, has a shape like a prism having a corner portion 61a, but the corner portion 61a exists outside the range facing the distance measuring sensors 1 to 4. The shape estimation unit 14 estimates that the inclined obstacle 62 has a shape like an inclined wall having no corners.
 衝突判定部20は、接触位置情報を接触位置推定部15から受け取る。例えば、衝突判定部20は、図5Aに示される車両50の後面51と傾斜障害物61の接触位置82との距離が、予め定められた距離以下である場合、衝突の可能性が高いと判定する。車両50は、衝突判定部20により衝突の可能性が高いと判定された場合、衝突回避のために、車両50のブレーキを作動させて衝突時の衝撃を軽減させる機能(いわゆる衝突被害軽減ブレーキ)、又は衝突を未然に防ぐために運転者に対して警報を発する機能(いわゆる衝突防止警報システム)等を実行する。 The collision determination unit 20 receives the contact position information from the contact position estimation unit 15. For example, the collision determination unit 20 determines that the possibility of a collision is high when the distance between the rear surface 51 of the vehicle 50 and the contact position 82 of the inclined obstacle 61 shown in FIG. 5A is equal to or less than a predetermined distance. To do. When the collision determination unit 20 determines that the vehicle 50 has a high possibility of collision, the vehicle 50 has a function of operating the brake of the vehicle 50 to reduce the impact at the time of a collision (so-called collision damage mitigation brake) in order to avoid a collision. Or, a function of issuing an alarm to the driver (so-called collision prevention warning system) or the like is executed in order to prevent a collision.
 図6は、実施の形態1に係る障害物検出装置10の動作例を示すフローチャートである。障害物検出装置10は、車両50が走行している間、図6のフローチャートに示される動作を繰り返し実行する。 FIG. 6 is a flowchart showing an operation example of the obstacle detection device 10 according to the first embodiment. While the vehicle 50 is traveling, the obstacle detection device 10 repeatedly executes the operation shown in the flowchart of FIG.
 ステップST1において、送受信部11は、予め定められた駆動間隔で、測距センサ1~4に対して直接波及び間接波の送受信を行わせ、送受信結果を傾斜障害物検出部12へ出力する。 In step ST1, the transmission / reception unit 11 causes the distance measuring sensors 1 to 4 to transmit / receive direct waves and indirect waves at a predetermined drive interval, and outputs the transmission / reception result to the tilt obstacle detection unit 12.
 ステップST2において、傾斜障害物検出部12は、測距センサ1~4のいずれかにより直接波及び間接波が受信された場合、非傾斜障害物が存在していることを検知する(ステップST2“YES”)。この場合、傾斜障害物検出部12は、直接波の送受信結果と間接波の送受信結果とを、交点処理部13へ出力する。
 一方、傾斜障害物検出部12は、測距センサ1~4のすべてにより間接波が受信されておらず、かつ、測距センサ1~4のいずれかにより直接波が受信された場合、傾斜障害物が存在していることを検知する(ステップST2“NO”)。この場合、傾斜障害物検出部12は、直接波の送受信結果を、交点処理部13へ出力する。
In step ST2, the inclined obstacle detection unit 12 detects the existence of a non-inclined obstacle when a direct wave or an indirect wave is received by any of the distance measuring sensors 1 to 4 (step ST2 ". YES ”). In this case, the tilt obstacle detection unit 12 outputs the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave to the intersection processing unit 13.
On the other hand, when the indirect wave is not received by all of the distance measuring sensors 1 to 4 and the direct wave is received by any of the distance measuring sensors 1 to 4, the tilt obstacle detection unit 12 has a tilt obstacle. Detects the existence of an object (step ST2 “NO”). In this case, the tilt obstacle detection unit 12 outputs the transmission / reception result of the direct wave to the intersection processing unit 13.
 ステップST3において、交点処理部13は、傾斜障害物検出部12から受け取った直接波の送受信結果と間接波の送受信結果とを用いて2円交点処理を行い、非傾斜障害物の形状に相当する交点群の位置を算出する。例えば、測距センサ1が超音波を送信し、測距センサ1が直接波を受信し、測距センサ2が間接波を受信した場合を想定する。
 この場合、交点処理部13は、直接波の送受信結果を用いて、測距センサ1が超音波を送信してから直接波を受信するまでに要した時間を元に、TOF方式により当該超音波が反射した非傾斜障害物までの距離を算出する。そして、交点処理部13は、測距センサ1の位置を中心とし、上記直接波に基づいて算出した非傾斜障害物までの距離を半径とした円を描く。また、交点処理部13は、間接波の送受信結果を用いて、測距センサ1が超音波を送信してから測距センサ2が間接波を受信するまでに要した時間を元に、TOF方式により当該超音波が反射した非傾斜障害物までの距離を算出する。そして、交点処理部13は、測距センサ1の位置と測距センサ2の位置を焦点とし、上記間接波に基づいて算出した非傾斜障害物までの距離を用いた楕円を描く。そして、交点処理部13は、円と楕円との交点の位置を算出する。
In step ST3, the intersection processing unit 13 performs 2-circle intersection processing using the transmission / reception result of the direct wave and the transmission / reception result of the indirect wave received from the inclination obstacle detection unit 12, and corresponds to the shape of the non-inclination obstacle. Calculate the position of the intersection group. For example, assume that the distance measuring sensor 1 transmits ultrasonic waves, the distance measuring sensor 1 receives a direct wave, and the distance measuring sensor 2 receives an indirect wave.
In this case, the intersection processing unit 13 uses the transmission / reception result of the direct wave, and based on the time required from the distance measuring sensor 1 transmitting the ultrasonic wave to receiving the direct wave, the ultrasonic wave is subjected to the TOF method. Calculate the distance to the non-tilted obstacle reflected by. Then, the intersection processing unit 13 draws a circle centered on the position of the distance measuring sensor 1 and having the distance to the non-tilted obstacle calculated based on the direct wave as the radius. Further, the intersection processing unit 13 uses the transmission / reception result of the indirect wave, and based on the time required from the distance measuring sensor 1 transmitting the ultrasonic wave to the distance measuring sensor 2 receiving the indirect wave, the TOF method is used. The distance to the non-tilted obstacle to which the ultrasonic wave is reflected is calculated. Then, the intersection processing unit 13 focuses on the position of the distance measuring sensor 1 and the position of the distance measuring sensor 2, and draws an ellipse using the distance to the non-tilted obstacle calculated based on the indirect wave. Then, the intersection processing unit 13 calculates the position of the intersection between the circle and the ellipse.
 ステップST4において、接触位置推定部15は、交点処理部13により算出された交点群の位置を、形状推定部14を介して交点処理部13から受け取る。接触位置推定部15は、交点処理部13により算出された交点群の位置を非傾斜障害物の位置と推定し、当該位置を接触位置情報として衝突判定部20へ出力する。 In step ST4, the contact position estimation unit 15 receives the position of the intersection group calculated by the intersection processing unit 13 from the intersection processing unit 13 via the shape estimation unit 14. The contact position estimation unit 15 estimates the position of the intersection group calculated by the intersection processing unit 13 as the position of the non-tilted obstacle, and outputs the position as contact position information to the collision determination unit 20.
 ステップST5において、衝突判定部20は、接触位置推定部15から受け取った接触位置情報を用いて、傾斜障害物又は非傾斜障害物と車両50との衝突の可能性を判定する。衝突判定部20は、衝突の可能性が高いと判定した場合(ステップST5“YES”)、ステップST6において車両50に対して衝突回避を指示する。衝突の可能性が低い場合(ステップST5“NO”)、障害物検出装置10の動作はステップST1に戻る。 In step ST5, the collision determination unit 20 determines the possibility of a collision between the inclined obstacle or the non-inclined obstacle and the vehicle 50 by using the contact position information received from the contact position estimation unit 15. When the collision determination unit 20 determines that the possibility of a collision is high (step ST5 “YES”), the collision determination unit 20 instructs the vehicle 50 to avoid the collision in step ST6. When the possibility of collision is low (step ST5 “NO”), the operation of the obstacle detection device 10 returns to step ST1.
 ステップST7において、交点処理部13は、傾斜障害物検出部12から受け取った直接波の送受信結果を用いて図3及び図4に示されるような2円交点処理を行い、傾斜障害物の形状に相当する交点群の位置を算出する。 In step ST7, the intersection processing unit 13 performs 2-circle intersection processing as shown in FIGS. 3 and 4 using the transmission / reception result of the direct wave received from the inclined obstacle detection unit 12, and forms the shape of the inclined obstacle. Calculate the position of the corresponding intersection group.
 ステップST8において、形状推定部14は、交点処理部13により算出された交点群に対する近似直線を求める。ステップST9において、形状推定部14は、求めた近似直線が複数であるか否かを判定する。 In step ST8, the shape estimation unit 14 obtains an approximate straight line with respect to the intersection group calculated by the intersection processing unit 13. In step ST9, the shape estimation unit 14 determines whether or not the obtained approximate straight lines are plural.
 近似直線が複数である場合(ステップST9“YES”)、ステップST10において、形状推定部14は、傾斜障害物が角柱のような角部を有する形状であると推定する。ステップST11において、接触位置推定部15は、形状推定部14により推定された角部の位置を接触位置と推定し、当該位置を接触位置情報として衝突判定部20へ出力する。 When there are a plurality of approximate straight lines (step ST9 “YES”), in step ST10, the shape estimation unit 14 estimates that the inclined obstacle has a corner portion such as a prism. In step ST11, the contact position estimation unit 15 estimates the position of the corner portion estimated by the shape estimation unit 14 as the contact position, and outputs the position as contact position information to the collision determination unit 20.
 近似直線が単数である場合(ステップST9“NO”)、ステップST12において、形状推定部14は、傾斜障害物が傾斜壁のような角部を有さない形状であると推定する。ステップST13において、接触位置推定部15は、形状推定部14により求められた近似直線と、車両側線52又は車両側線53との交点の位置を、接触位置と推定し、当該位置を接触位置情報として衝突判定部20へ出力する。 When the approximate straight line is singular (step ST9 “NO”), in step ST12, the shape estimation unit 14 estimates that the inclined obstacle has a shape having no corner such as an inclined wall. In step ST13, the contact position estimation unit 15 estimates the position of the intersection of the approximate straight line obtained by the shape estimation unit 14 with the vehicle side line 52 or the vehicle side line 53 as the contact position, and uses the position as the contact position information. Output to the collision determination unit 20.
 以上のように、実施の形態1に係る障害物検出装置10は、送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、及び接触位置推定部15を備える。送受信部11は、車両50の後面51に設置された複数の測距センサ1~4に対して、直接波及び間接波の送受信を行わせる。傾斜障害物検出部12は、複数の測距センサ1~4における間接波の受信状況に基づいて、複数の測距センサ1~4の設置方向に対して傾斜した傾斜面を有する傾斜障害物が存在していることを検出する。交点処理部13は、傾斜障害物検出部12により傾斜障害物が存在していることが検出された場合、車両50の走行中における異なる時刻に同一の測距センサが2回直接波を送受信した結果を用いて2つの円を描いて当該2つの円の交点を求める2円交点処理を行うことによって、複数の測距センサ1~4による直接波の送受信結果から交点群の位置を算出する。形状推定部14は、交点処理部13により算出された交点群の位置に基づいて、傾斜障害物の形状を推定する。接触位置推定部15は、形状推定部14により推定された傾斜障害物の形状に基づいて、傾斜障害物のうちの車両50に最も近い部位の位置を推定して接触位置情報として出力する。これにより、障害物検出装置10は、車両50の後方に存在する傾斜障害物を検出することができる。 As described above, the obstacle detection device 10 according to the first embodiment includes a transmission / reception unit 11, an inclination obstacle detection unit 12, an intersection processing unit 13, a shape estimation unit 14, and a contact position estimation unit 15. The transmission / reception unit 11 causes a plurality of distance measuring sensors 1 to 4 installed on the rear surface 51 of the vehicle 50 to transmit / receive direct waves and indirect waves. The inclined obstacle detection unit 12 has an inclined obstacle having an inclined surface inclined with respect to the installation direction of the plurality of distance measuring sensors 1 to 4 based on the reception status of the indirect wave by the plurality of distance measuring sensors 1 to 4. Detect that it exists. When the intersection detection unit 12 detects that an inclination obstacle exists, the intersection processing unit 13 transmits and receives a direct wave twice by the same ranging sensor at different times while the vehicle 50 is traveling. By drawing two circles using the results and performing a two-circle intersection process for finding the intersections of the two circles, the position of the intersection group is calculated from the transmission / reception results of direct waves by the plurality of distance measuring sensors 1 to 4. The shape estimation unit 14 estimates the shape of the inclined obstacle based on the position of the intersection group calculated by the intersection processing unit 13. The contact position estimation unit 15 estimates the position of the portion of the inclination obstacle closest to the vehicle 50 based on the shape of the inclination obstacle estimated by the shape estimation unit 14, and outputs it as contact position information. As a result, the obstacle detection device 10 can detect an inclined obstacle existing behind the vehicle 50.
 また、実施の形態1の交点処理部13は、測距センサが超音波を送信した後に当該測距センサが最初に受信した反射波を直接波として用いて2円交点処理を行う。これにより、車両50が傾斜障害物に近づくにつれて交点の位置が傾斜障害物の傾斜面に沿ってシフトしていくことになるため、形状推定部14において交点群に対する近似直線を求めることが可能となる。 Further, the intersection processing unit 13 of the first embodiment performs 2-circle intersection processing using the reflected wave first received by the distance measuring sensor as a direct wave after the distance measuring sensor transmits ultrasonic waves. As a result, as the vehicle 50 approaches the inclined obstacle, the position of the intersection shifts along the inclined surface of the inclined obstacle, so that the shape estimation unit 14 can obtain an approximate straight line with respect to the intersection group. Become.
 また、実施の形態1の形状推定部14は、交点群の近似直線を求め、当該近似直線が複数である場合に傾斜障害物が角部を有する形状であると推定し、当該近似直線が単数である場合に傾斜障害物が角部を有さない形状であると推定する。これにより、形状推定部14は、傾斜障害物が角柱のような形状であるか傾斜壁のような形状であるかを判別することができる。角柱と傾斜壁とでは車両50の後面51に接触する部位が異なるため、形状推定部14が角柱と傾斜壁とを判別することにより、衝突判定部20による衝突可能性の判定精度が向上する。 Further, the shape estimation unit 14 of the first embodiment obtains an approximate straight line of the intersection group, estimates that the inclined obstacle has a corner portion when there are a plurality of the approximate straight lines, and the approximate straight line is singular. If this is the case, it is presumed that the inclined obstacle has a shape without corners. As a result, the shape estimation unit 14 can determine whether the inclined obstacle has a shape like a prism or an inclined wall. Since the portion of the prism and the inclined wall that come into contact with the rear surface 51 of the vehicle 50 is different, the shape estimation unit 14 discriminates between the prism and the inclined wall, so that the collision possibility determination accuracy by the collision determination unit 20 is improved.
 また、実施の形態1の形状推定部14は、交点群の近似直線が複数である場合、当該近似直線の交点位置が傾斜障害物の有する角部の位置であると推定する。接触位置推定部15は、形状推定部14により推定された角部の位置を接触位置情報として出力する。これにより、接触位置推定部15は、角柱のような形状をした傾斜障害物について、車両50の後面51に最も近い部位の位置を精度よく推定することができる。 Further, when there are a plurality of approximate straight lines of the intersection group, the shape estimation unit 14 of the first embodiment estimates that the intersection position of the approximate straight line is the position of the corner portion of the inclined obstacle. The contact position estimation unit 15 outputs the position of the corner portion estimated by the shape estimation unit 14 as contact position information. As a result, the contact position estimation unit 15 can accurately estimate the position of the portion closest to the rear surface 51 of the vehicle 50 with respect to the inclined obstacle shaped like a prism.
 また、実施の形態1の形状推定部14は、交点群の近似直線が単数である場合、当該近似直線と車両50の側面を延長した車両側線52,53との交点の位置を接触位置情報として出力する。これにより、接触位置推定部15は、傾斜壁のような形状をした傾斜障害物について、車両50の後面51に最も近い部位の位置を精度よく推定することができる。 Further, when the approximate straight line of the intersection group is singular, the shape estimation unit 14 of the first embodiment uses the position of the intersection between the approximate straight line and the vehicle side lines 52 and 53 extending from the side surface of the vehicle 50 as contact position information. Output. As a result, the contact position estimation unit 15 can accurately estimate the position of the portion closest to the rear surface 51 of the vehicle 50 with respect to the inclined obstacle shaped like an inclined wall.
実施の形態2.
 図7は、実施の形態2に係る障害物検出装置10の構成例を示すブロック図である。実施の形態2に係る障害物検出装置10は、図1に示された実施の形態1の障害物検出装置10に対して、センサ選択部16が追加された構成である。図7において図1と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 2.
FIG. 7 is a block diagram showing a configuration example of the obstacle detection device 10 according to the second embodiment. The obstacle detection device 10 according to the second embodiment has a configuration in which a sensor selection unit 16 is added to the obstacle detection device 10 of the first embodiment shown in FIG. In FIG. 7, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 センサ選択部16は、接触位置推定部15により推定された傾斜障害物のうちの車両に最も近い部位の位置、つまり接触位置に基づいて、測距センサ1~4の中から直接波の送受信を行わせる1つ以上の測距センサを選択する。センサ選択部16は、選択した測距センサを示す情報を、送受信部11へ出力する。送受信部11は、センサ選択部16により測距センサが選択された場合、選択された2つ以上の測距センサに対して直接波の送受信を行わせる。 The sensor selection unit 16 transmits and receives direct waves from the distance measuring sensors 1 to 4 based on the position of the portion of the tilt obstacle estimated by the contact position estimation unit 15 that is closest to the vehicle, that is, the contact position. Select one or more ranging sensors to perform. The sensor selection unit 16 outputs information indicating the selected ranging sensor to the transmission / reception unit 11. When the distance measuring sensor is selected by the sensor selection unit 16, the transmission / reception unit 11 causes two or more selected distance measurement sensors to directly transmit / receive waves.
 図8A~図8Fは、センサ選択部16による測距センサの選択方法を説明する図である。図8A~図8Fにおいて図1~図5と同一又は相当する部分は、同一の符号を付し説明を省略する。この例では、センサ選択部16は、傾斜障害物の接触位置に近い2つの測距センサに直接波の送受信を行わせるようにし、残りの測距センサによる送受信を停止させる。 8A to 8F are diagrams illustrating a method of selecting a distance measuring sensor by the sensor selection unit 16. In FIGS. 8A to 8F, the same or corresponding parts as those in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted. In this example, the sensor selection unit 16 causes two distance measuring sensors close to the contact position of the inclined obstacle to directly transmit and receive waves, and stops transmission and reception by the remaining distance measuring sensors.
 以下では、直接波の送受信を行わせる測距センサを「駆動センサ」と称し、直接波の送受信を停止させる測距センサを「非駆動センサ」と称する。 Hereinafter, the distance measuring sensor that transmits and receives direct waves is referred to as a "drive sensor", and the distance measuring sensor that stops transmission and reception of direct waves is referred to as a "non-drive sensor".
 図8Aの場合、センサ選択部16は、傾斜障害物61の接触位置91に近い測距センサ2と測距センサ3を、駆動センサとして選択する。図8Bの場合、センサ選択部16は、傾斜障害物61の接触位置92に近い測距センサ1と測距センサ2を、駆動センサとして選択する。 In the case of FIG. 8A, the sensor selection unit 16 selects the distance measurement sensor 2 and the distance measurement sensor 3 close to the contact position 91 of the tilt obstacle 61 as drive sensors. In the case of FIG. 8B, the sensor selection unit 16 selects the distance measurement sensor 1 and the distance measurement sensor 2 close to the contact position 92 of the tilt obstacle 61 as drive sensors.
 例外として、測距センサの正面に傾斜障害物61の角部が存在する場合、角部の正面の測距センサは直接波を受信することが困難であるため、センサ選択部16は、正面の測距センサを除外した残りの測距センサの中から、接触位置に近い2つの測距センサを選択する。図8Cの場合、センサ選択部16は、傾斜障害物61の角部である接触位置93の正面に位置する測距センサ2を非駆動センサとし、測距センサ2に隣接する測距センサ1と測距センサ3を駆動センサとして選択する。図8Dの場合、センサ選択部16は、傾斜障害物61の角部である接触位置94の正面に位置する測距センサ1を非駆動センサとし、測距センサ1に隣接する測距センサ2と測距センサ3を駆動センサとして選択する。 As an exception, when the corner portion of the tilt obstacle 61 is present in front of the distance measuring sensor, it is difficult for the ranging sensor in front of the corner portion to receive a direct wave, so that the sensor selection unit 16 is in front of the distance measuring sensor. From the remaining distance measuring sensors excluding the distance measuring sensor, two distance measuring sensors close to the contact position are selected. In the case of FIG. 8C, the sensor selection unit 16 uses the distance measuring sensor 2 located in front of the contact position 93, which is the corner of the inclined obstacle 61, as a non-driving sensor, and the distance measuring sensor 1 adjacent to the distance measuring sensor 2. The ranging sensor 3 is selected as the drive sensor. In the case of FIG. 8D, the sensor selection unit 16 uses the distance measuring sensor 1 located in front of the contact position 94, which is the corner of the inclined obstacle 61, as a non-driving sensor, and the distance measuring sensor 2 adjacent to the distance measuring sensor 1. The ranging sensor 3 is selected as the drive sensor.
 また、センサ選択部16は、傾斜壁のような形状をした傾斜障害物62の場合、接触位置に近い2つの測距センサを選択する。図8Eの場合、センサ選択部16は、図示しない交点群の近似直線と車両側線52との交点である接触位置95に近い測距センサ1と測距センサ2を、駆動センサとして選択する。図8Fの場合、測距センサ1よりも外側に傾斜障害物62が存在する。この傾斜障害物62は、角部を有する角柱のような形状をしているが、近似直線(不図示)が1本であるので形状推定部14において角部を有さない傾斜壁のような形状をした傾斜障害物62と推定され、接触位置推定部15において上記近似直線と車両側線52との交点である接触位置96が推定される。よって、センサ選択部16は、図8Eの場合と同様、図8Fの場合も、接触位置96に近い測距センサ1と測距センサ2を駆動センサとして選択する。 Further, in the case of an inclined obstacle 62 shaped like an inclined wall, the sensor selection unit 16 selects two distance measuring sensors close to the contact position. In the case of FIG. 8E, the sensor selection unit 16 selects the distance measuring sensor 1 and the distance measuring sensor 2 near the contact position 95, which is the intersection of the approximate straight line of the intersection group (not shown) and the vehicle side line 52, as the drive sensor. In the case of FIG. 8F, the tilt obstacle 62 exists outside the distance measuring sensor 1. The inclined obstacle 62 has a shape like a prism having corners, but since there is only one approximate straight line (not shown), it is like an inclined wall having no corners in the shape estimation unit 14. It is presumed to be an inclined obstacle 62 having a shape, and the contact position 96, which is the intersection of the approximate straight line and the vehicle side line 52, is estimated by the contact position estimation unit 15. Therefore, the sensor selection unit 16 selects the distance measuring sensor 1 and the distance measuring sensor 2 close to the contact position 96 as the drive sensor in the case of FIG. 8F as in the case of FIG. 8E.
 図9及び図10は、実施の形態2に係る障害物検出装置10の動作例を示すフローチャートである。障害物検出装置10は、車両50が走行している間、図9及び図10のフローチャートに示される動作を繰り返し実行する。 9 and 10 are flowcharts showing an operation example of the obstacle detection device 10 according to the second embodiment. While the vehicle 50 is traveling, the obstacle detection device 10 repeatedly executes the operations shown in the flowcharts of FIGS. 9 and 10.
 ステップST21において、送受信部11は、センサ選択部16により測距センサ1~4の中から駆動センサが選択されているか否かを確認する。駆動センサが選択されている場合(ステップST21“YES”)、送受信部11は、図10に示されるステップST31以降の動作を行う。一方、駆動センサが選択されていない場合(ステップST21“NO”)、送受信部11は、ステップST1以降の動作を行う。図9及び図10のフローチャートにおけるステップST1~ST13の動作は、図6のフローチャートにおけるステップST1~ST13の動作と同じであるため、説明を省略する。 In step ST21, the transmission / reception unit 11 confirms whether or not the drive sensor is selected from the distance measurement sensors 1 to 4 by the sensor selection unit 16. When the drive sensor is selected (step ST21 “YES”), the transmission / reception unit 11 performs the operations after step ST31 shown in FIG. On the other hand, when the drive sensor is not selected (step ST21 “NO”), the transmission / reception unit 11 performs the operations after step ST1. Since the operations of steps ST1 to ST13 in the flowcharts of FIGS. 9 and 10 are the same as the operations of steps ST1 to ST13 in the flowchart of FIG. 6, the description thereof will be omitted.
 ステップST22において、センサ選択部16は、接触位置推定部15がステップST11又はステップST13で推定した、傾斜障害物の接触位置を示す接触位置情報を、接触位置推定部15から受け取る。センサ選択部16は、接触位置情報に基づく接触位置と測距センサ1~4の位置とを比較して、測距センサ1~4の中から当該接触位置に近い少なくとも2つ測距センサを駆動センサとして選択し、選択した駆動センサを示す情報を送受信部11へ出力する。 In step ST22, the sensor selection unit 16 receives the contact position information indicating the contact position of the tilted obstacle estimated by the contact position estimation unit 15 in step ST11 or step ST13 from the contact position estimation unit 15. The sensor selection unit 16 compares the contact position based on the contact position information with the positions of the distance measuring sensors 1 to 4, and drives at least two distance measuring sensors close to the contact position among the distance measuring sensors 1 to 4. It is selected as a sensor, and information indicating the selected drive sensor is output to the transmission / reception unit 11.
 ステップST31において、送受信部11は、予め定められた駆動間隔(例えば、50ms)で、センサ選択部16により選択された少なくとも2つの駆動センサのそれぞれに対して直接波の送受信を行わせ、送受信結果を傾斜障害物検出部12へ出力する。例えば、図8Aのように測距センサ2と測距センサ3が駆動センサとして選択された場合、送受信部11は、まず、測距センサ2から超音波を送信させ、その後、測距センサ2に反射波(つまり、直接波)を受信させる。送受信部11は、測距センサ2から超音波を送信させた時点から50ms後に、今度は測距センサ3から超音波を送信させ、その後、測距センサ3に反射波(つまり、直接波)を受信させる。駆動センサは測距センサ2と測距センサ3の2つだけなので、送受信部11は、測距センサ3から超音波を送信させた時点から50ms後に、再び測距センサ2から超音波を送信させる。このように、送受信部11は、100msの駆動周期で、駆動センサである測距センサ2と測距センサ3に直接波の送受信を行わせる。送受信部11は、ステップST1では、4つの測距センサ1~4を200msの駆動周期で駆動させるが、ステップST31では、2つの測距センサ2,3を100msの駆動周期で駆動させることになる。そのため、障害物検出装置10は、短時間でより多くの接触位置の情報を得ることができるようになり、衝突判定部20は、より精度よく衝突の可能性を判定することができる。 In step ST31, the transmission / reception unit 11 causes each of at least two drive sensors selected by the sensor selection unit 16 to directly transmit / receive waves at a predetermined drive interval (for example, 50 ms), resulting in transmission / reception. Is output to the tilt obstacle detection unit 12. For example, when the distance measuring sensor 2 and the distance measuring sensor 3 are selected as drive sensors as shown in FIG. 8A, the transmission / reception unit 11 first transmits ultrasonic waves from the distance measuring sensor 2 and then causes the distance measuring sensor 2 to transmit ultrasonic waves. Receive the reflected wave (that is, the direct wave). The transmission / reception unit 11 causes the distance measurement sensor 3 to transmit ultrasonic waves 50 ms after the time when the distance measurement sensor 2 transmits ultrasonic waves, and then causes the distance measurement sensor 3 to transmit a reflected wave (that is, a direct wave). Receive. Since there are only two drive sensors, the distance measurement sensor 2 and the distance measurement sensor 3, the transmission / reception unit 11 causes the distance measurement sensor 2 to transmit the ultrasonic waves again 50 ms after the ultrasonic waves are transmitted from the distance measurement sensor 3. .. In this way, the transmission / reception unit 11 causes the distance measurement sensor 2 and the distance measurement sensor 3, which are drive sensors, to directly transmit / receive waves in a drive cycle of 100 ms. In step ST1, the transmission / reception unit 11 drives the four ranging sensors 1 to 4 with a driving cycle of 200 ms, but in step ST31, the two ranging sensors 2 and 3 are driven with a drive cycle of 100 ms. .. Therefore, the obstacle detection device 10 can obtain more information on the contact position in a short time, and the collision determination unit 20 can determine the possibility of collision more accurately.
 ステップST32において、交点処理部13は、駆動センサによる直接波の送受信結果を、傾斜障害物検出部12を介して送受信部11から受け取る。交点処理部13は、直接波の送受信結果を用いて2円交点処理を行い、傾斜障害物の形状に相当する交点群の位置を算出する。 In step ST32, the intersection processing unit 13 receives the transmission / reception result of the direct wave by the drive sensor from the transmission / reception unit 11 via the tilt obstacle detection unit 12. The intersection processing unit 13 performs 2-circle intersection processing using the transmission / reception result of the direct wave, and calculates the position of the intersection group corresponding to the shape of the inclined obstacle.
 図10のフローチャートにおけるステップST33~ステップST39の動作は、図6及び図9のフローチャートにおけるステップST8~ST13,ST5の動作と同じであるため、説明を省略する。 Since the operations of steps ST33 to ST39 in the flowchart of FIG. 10 are the same as the operations of steps ST8 to ST13 and ST5 in the flowcharts of FIGS. 6 and 9, the description thereof will be omitted.
 なお、図8A~図8Fの例では、センサ選択部16は、傾斜障害物の接触位置と測距センサ1~4の設置位置とに基づいて、測距センサ1~4を駆動センサと非駆動センサとに分類し、非駆動センサの直接波の送受信を停止させたが、これに限定されない。
 例えば、図8Aに示される位置に傾斜障害物61が存在する場合、図2Aに示されるように測距センサ1,2から送信された超音波は測距センサ3,4へ届かない。同様に、測距センサ3,4から送信された超音波は、測距センサ1,2へ届かない。したがって、図8Aの場合、角部61aである接触位置91を間に挟んで、測距センサ1,2と測距センサ3,4とは、干渉せずに直接波の送受信が可能である。
In the example of FIGS. 8A to 8F, the sensor selection unit 16 drives the distance measuring sensors 1 to 4 with the drive sensor based on the contact position of the inclined obstacle and the installation position of the distance measuring sensors 1 to 4. It was classified as a sensor and the transmission and reception of direct waves of the non-driving sensor was stopped, but the present invention is not limited to this.
For example, when the tilt obstacle 61 is present at the position shown in FIG. 8A, the ultrasonic waves transmitted from the distance measuring sensors 1 and 2 do not reach the distance measuring sensors 3 and 4 as shown in FIG. 2A. Similarly, the ultrasonic waves transmitted from the distance measuring sensors 3 and 4 do not reach the distance measuring sensors 1 and 2. Therefore, in the case of FIG. 8A, the distance measuring sensors 1 and 2 and the distance measuring sensors 3 and 4 can directly transmit and receive waves without interfering with the contact position 91, which is the corner portion 61a, sandwiched between them.
 そこで、例えば、送受信部11は、図8Aにおいて駆動センサとして選択された測距センサ2と測距センサ3とを50ms間隔で交互に駆動するのではなく、同時に駆動してもよい。この場合、送受信部11は、2つの測距センサ2,3を50msの駆動周期で駆動させることができる。
 あるいは、送受信部11は、図8Aにおいて駆動センサとして選択された測距センサ2と測距センサ3の駆動間隔を短くし、非駆動センサである測距センサ1と測距センサ4の駆動間隔を長くしてもよい。この場合、送受信部11は、例えば、駆動センサを駆動周期ごとに駆動し、非駆動センサを駆動周期の2回に1回駆動する。
Therefore, for example, the transmission / reception unit 11 may drive the distance measurement sensor 2 and the distance measurement sensor 3 selected as the drive sensor in FIG. 8A at the same time instead of alternately driving them at intervals of 50 ms. In this case, the transmission / reception unit 11 can drive the two ranging sensors 2 and 3 with a drive cycle of 50 ms.
Alternatively, the transmission / reception unit 11 shortens the drive interval between the distance measurement sensor 2 and the distance measurement sensor 3 selected as the drive sensor in FIG. 8A, and reduces the drive interval between the distance measurement sensor 1 and the distance measurement sensor 4, which are non-drive sensors. It may be lengthened. In this case, the transmission / reception unit 11 drives, for example, the drive sensor every drive cycle, and drives the non-drive sensor once every two drive cycles.
 以上のように、実施の形態2に係る障害物検出装置10は、接触位置推定部15により推定された傾斜障害物のうちの車両50に最も近い部位の位置に基づいて、複数の測距センサ1~4の中から直接波の送受信を行わせる測距センサを選択するセンサ選択部16を備える。送受信部11は、センサ選択部16により選択された当該測距センサに対して直接波の送受信を行わせる。これにより、障害物検出装置10は、短時間でより多くの直接波の送受信を行わせてより多くの接触位置の情報を得ることができるようになり、衝突判定部20は、より精度よく衝突の可能性を判定することができる。 As described above, the obstacle detection device 10 according to the second embodiment is a plurality of distance measuring sensors based on the position of the portion of the inclined obstacle estimated by the contact position estimation unit 15 that is closest to the vehicle 50. The sensor selection unit 16 is provided to select a distance measuring sensor for directly transmitting and receiving waves from 1 to 4. The transmission / reception unit 11 causes the distance measuring sensor selected by the sensor selection unit 16 to directly transmit / receive waves. As a result, the obstacle detection device 10 can transmit and receive more direct waves in a short time to obtain more contact position information, and the collision determination unit 20 can collide more accurately. Can be determined.
 なお、実施の形態1,2では、測距センサ1~4が車両50の後面51に設置されたが、車両50の前面に設置されてもよい。この場合、障害物検出装置10は、車両50の前面に設置された測距センサ1~4を用いて、車両50の前方に存在する傾斜障害物を検出する。 In the first and second embodiments, the distance measuring sensors 1 to 4 are installed on the rear surface 51 of the vehicle 50, but they may be installed on the front surface of the vehicle 50. In this case, the obstacle detection device 10 detects an inclined obstacle existing in front of the vehicle 50 by using the distance measuring sensors 1 to 4 installed on the front surface of the vehicle 50.
 最後に、各実施の形態に係る障害物検出装置10のハードウェア構成を説明する。
 図11及び図12は、各実施の形態に係る障害物検出装置10のハードウェア構成例を示す図である。障害物検出装置10における送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、接触位置推定部15、及びセンサ選択部16の機能は、処理回路により実現される。即ち、障害物検出装置10は、上記機能を実現するための処理回路を備える。処理回路は、専用のハードウェアとしての処理回路100であってもよいし、メモリ102に格納されるプログラムを実行するプロセッサ101であってもよい。
Finally, the hardware configuration of the obstacle detection device 10 according to each embodiment will be described.
11 and 12 are diagrams showing a hardware configuration example of the obstacle detection device 10 according to each embodiment. The functions of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 in the obstacle detection device 10 are realized by the processing circuit. That is, the obstacle detection device 10 includes a processing circuit for realizing the above functions. The processing circuit may be a processing circuit 100 as dedicated hardware, or a processor 101 that executes a program stored in the memory 102.
 図11に示されるように、処理回路が専用のハードウェアである場合、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、接触位置推定部15、及びセンサ選択部16の機能を複数の処理回路100で実現してもよいし、各部の機能をまとめて1つの処理回路100で実現してもよい。 As shown in FIG. 11, when the processing circuit is dedicated hardware, the processing circuit 100 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated Circuit). ), FPGA (Field Processor Gate Array), or a combination thereof. The functions of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 may be realized by a plurality of processing circuits 100, or the functions of each unit may be realized. The functions may be collectively realized by one processing circuit 100.
 図12に示されるように、処理回路がプロセッサ101である場合、送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、接触位置推定部15、及びセンサ選択部16の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ102に格納される。プロセッサ101は、メモリ102に格納されたプログラムを読みだして実行することにより、各部の機能を実現する。即ち、障害物検出装置10は、プロセッサ101により実行されるときに、図6等のフローチャートで示されるステップが結果的に実行されることになるプログラムを格納するためのメモリ102を備える。また、このプログラムは、送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、接触位置推定部15、及びセンサ選択部16の手順又は方法をコンピュータに実行させるものであるとも言える。 As shown in FIG. 12, when the processing circuit is the processor 101, the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 The function is realized by software, firmware, or a combination of software and firmware. The software or firmware is described as a program and stored in the memory 102. The processor 101 realizes the functions of each part by reading and executing the program stored in the memory 102. That is, the obstacle detection device 10 includes a memory 102 for storing a program in which the step shown in the flowchart of FIG. 6 or the like is eventually executed when executed by the processor 101. Further, this program causes a computer to execute the procedure or method of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16. It can be said that.
 ここで、プロセッサ101とは、CPU(Central Processing Unit)、処理装置、演算装置、又はマイクロプロセッサ等のことである。
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、又はフラッシュメモリ等の不揮発性もしくは揮発性の半導体メモリであってもよいし、ハードディスク又はフレキシブルディスク等の磁気ディスクであってもよいし、CD(Compact Disc)又はDVD(Digital Versatile Disc)等の光ディスクであってもよい。
Here, the processor 101 is a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, or the like.
The memory 102 may be a non-volatile or volatile semiconductor memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or a flash memory, and may be a non-volatile or volatile semiconductor memory such as a hard disk or a flexible disk. It may be an optical disk such as a CD (Compact Disc) or a DVD (Digital Versaille Disc).
 なお、送受信部11、傾斜障害物検出部12、交点処理部13、形状推定部14、接触位置推定部15、及びセンサ選択部16の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。このように、障害物検出装置10における処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の機能を実現することができる。 Some of the functions of the transmission / reception unit 11, the tilt obstacle detection unit 12, the intersection processing unit 13, the shape estimation unit 14, the contact position estimation unit 15, and the sensor selection unit 16 are realized by dedicated hardware. The part may be realized by software or firmware. As described above, the processing circuit in the obstacle detection device 10 can realize the above-mentioned functions by hardware, software, firmware, or a combination thereof.
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 The present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
 この発明に係る障害物検出装置は、車両前後に存在する傾斜した障害物を検出するようにしたので、衝突被害軽減ブレーキ又は衝突防止警報システム等で用いられる障害物検出装置に用いるのに適している。 Since the obstacle detection device according to the present invention detects inclined obstacles existing in front of and behind the vehicle, it is suitable for use in an obstacle detection device used in a collision damage mitigation brake, a collision prevention warning system, or the like. There is.
 1,1a,1b,2,3,4 測距センサ、10 障害物検出装置、11 送受信部、12 傾斜障害物検出部、13 交点処理部、14 形状推定部、15 接触位置推定部、16 センサ選択部、20 衝突判定部、50 車両、51 後面、52,53 車両側線、61,62 傾斜障害物、61a 角部、70,71,73,74,75 反射点、72,76,77 交点、80,81,83,85,86,88,89 近似直線、82,84,87,90,91,92,93,94,95,96 接触位置、100 処理回路、101 プロセッサ、102 メモリ。 1,1a, 1b, 2,3,4 ranging sensor, 10 obstacle detection device, 11 transmission / reception unit, 12 tilt obstacle detection unit, 13 intersection processing unit, 14 shape estimation unit, 15 contact position estimation unit, 16 sensor Selection unit, 20 collision detection unit, 50 vehicle, 51 rear surface, 52, 53 vehicle side line, 61, 62 tilt obstacle, 61a corner, 70, 71, 73, 74, 75 reflection point, 72, 76, 77 intersection, 80,81,83,85,86,88,89 Approximate straight line, 82,84,87,90,91,92,93,94,95,96 contact position, 100 processing circuit, 101 processor, 102 memory.

Claims (6)

  1.  車両の前面又は後面に設置された複数の測距センサに対して、直接波及び間接波の送受信を行わせる送受信部と、
     前記複数の測距センサにおける間接波の受信状況に基づいて、前記複数の測距センサの設置方向に対して傾斜した傾斜面を有する傾斜障害物が存在していることを検出する傾斜障害物検出部と、
     前記傾斜障害物検出部により前記傾斜障害物が存在していることが検出された場合、前記車両の走行中における異なる時刻に同一の測距センサが2回直接波を送受信した結果を用いて2つの円を描いて当該2つの円の交点を求める2円交点処理を行うことによって、前記複数の測距センサによる直接波の送受信結果から交点群の位置を算出する交点処理部と、
     前記交点処理部により算出された前記交点群の位置に基づいて、前記傾斜障害物の形状を推定する形状推定部と、
     前記形状推定部により推定された前記傾斜障害物の形状に基づいて、前記傾斜障害物のうちの前記車両に最も近い部位の位置を推定して接触位置情報として出力する接触位置推定部とを備える障害物検出装置。
    A transmitter / receiver that transmits and receives direct and indirect waves to multiple ranging sensors installed on the front or rear of the vehicle.
    Inclined obstacle detection that detects the existence of an inclined obstacle having an inclined surface inclined with respect to the installation direction of the plurality of distance measuring sensors based on the reception status of the indirect wave in the plurality of distance measuring sensors. Department and
    When it is detected by the inclined obstacle detection unit that the inclined obstacle is present, the same distance measuring sensor transmits and receives a direct wave twice at different times while the vehicle is running. An intersection processing unit that calculates the position of an intersection group from the transmission / reception results of direct waves by the plurality of distance measuring sensors by performing a two-circle intersection processing that draws one circle and finds the intersection of the two circles.
    A shape estimation unit that estimates the shape of the inclined obstacle based on the position of the intersection group calculated by the intersection processing unit, and a shape estimation unit.
    Based on the shape of the tilt obstacle estimated by the shape estimation unit, the contact position estimation unit is provided to estimate the position of the portion of the tilt obstacle closest to the vehicle and output it as contact position information. Obstacle detector.
  2.  前記交点処理部は、測距センサが探査波を送信した後に前記測距センサが最初に受信した反射波を前記直接波として用いて前記2円交点処理を行うことを特徴とする請求項1記載の障害物検出装置。 The two-circle intersection processing is performed by using the reflected wave first received by the distance measuring sensor as the direct wave after the distance measuring sensor transmits a search wave. Obstacle detection device.
  3.  前記形状推定部は、前記交点群の近似直線を求め、前記近似直線が複数である場合に前記傾斜障害物が角部を有する形状であると推定し、前記近似直線が単数である場合に前記傾斜障害物が角部を有さない形状であると推定することを特徴とする請求項1記載の障害物検出装置。 The shape estimation unit obtains an approximate straight line of the intersection group, estimates that the inclined obstacle has a corner portion when there are a plurality of the approximate straight lines, and when the approximate straight line is singular, the said The obstacle detection device according to claim 1, wherein the inclined obstacle is estimated to have a shape having no corners.
  4.  前記形状推定部は、前記交点群の近似直線が複数である場合、前記近似直線の交点位置が前記傾斜障害物の有する前記角部の位置であると推定し、
     前記接触位置推定部は、前記形状推定部により推定された前記角部の位置を前記接触位置情報として出力することを特徴とする請求項3記載の障害物検出装置。
    When there are a plurality of approximate straight lines of the intersection group, the shape estimation unit estimates that the intersection position of the approximate straight line is the position of the corner portion of the inclination obstacle.
    The obstacle detection device according to claim 3, wherein the contact position estimation unit outputs the position of the corner portion estimated by the shape estimation unit as the contact position information.
  5.  前記接触位置推定部は、前記交点群の近似直線が単数である場合、前記近似直線と前記車両の側面を延長した車両側線との交点の位置を前記接触位置情報として出力することを特徴とする請求項3記載の障害物検出装置。 The contact position estimation unit is characterized in that, when the approximate straight line of the intersection group is singular, the position of the intersection between the approximate straight line and the vehicle side line extending the side surface of the vehicle is output as the contact position information. The obstacle detection device according to claim 3.
  6.  前記接触位置推定部により推定された前記傾斜障害物のうちの前記車両に最も近い部位の位置に基づいて、前記複数の測距センサの中から直接波の送受信を行わせる測距センサを選択するセンサ選択部を備え、
     前記送受信部は、前記センサ選択部により選択された前記測距センサに対して直接波の送受信を行わせることを特徴とする請求項1記載の障害物検出装置。
    Based on the position of the portion of the tilt obstacle estimated by the contact position estimation unit that is closest to the vehicle, a distance measuring sensor that directly transmits and receives waves is selected from the plurality of distance measuring sensors. Equipped with a sensor selection unit
    The obstacle detection device according to claim 1, wherein the transmission / reception unit transmits / receives a direct wave to the distance measuring sensor selected by the sensor selection unit.
PCT/JP2019/031222 2019-08-07 2019-08-07 Obstacle detection device WO2021024433A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021531957A JP6945776B2 (en) 2019-08-07 2019-08-07 Obstacle detector
PCT/JP2019/031222 WO2021024433A1 (en) 2019-08-07 2019-08-07 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031222 WO2021024433A1 (en) 2019-08-07 2019-08-07 Obstacle detection device

Publications (1)

Publication Number Publication Date
WO2021024433A1 true WO2021024433A1 (en) 2021-02-11

Family

ID=74503158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031222 WO2021024433A1 (en) 2019-08-07 2019-08-07 Obstacle detection device

Country Status (2)

Country Link
JP (1) JP6945776B2 (en)
WO (1) WO2021024433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022247997A1 (en) * 2021-05-28 2022-12-01 Continental Autonomous Mobility Germany GmbH Method for determining the position of an object

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194938A (en) * 2001-12-25 2003-07-09 Denso Corp Obstacle detector
JP2004354326A (en) * 2003-05-30 2004-12-16 Denso Corp Surrounding display device for vehicle
WO2013024509A1 (en) * 2011-08-16 2013-02-21 三菱電機株式会社 Object detection device
US20180251092A1 (en) * 2017-03-06 2018-09-06 GM Global Technology Operations LLC Vehicle collision prediction algorithm using radar sensor and upa sensor
JP2018189422A (en) * 2017-04-28 2018-11-29 株式会社Soken Obstacle detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194938A (en) * 2001-12-25 2003-07-09 Denso Corp Obstacle detector
JP2004354326A (en) * 2003-05-30 2004-12-16 Denso Corp Surrounding display device for vehicle
WO2013024509A1 (en) * 2011-08-16 2013-02-21 三菱電機株式会社 Object detection device
US20180251092A1 (en) * 2017-03-06 2018-09-06 GM Global Technology Operations LLC Vehicle collision prediction algorithm using radar sensor and upa sensor
JP2018189422A (en) * 2017-04-28 2018-11-29 株式会社Soken Obstacle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022247997A1 (en) * 2021-05-28 2022-12-01 Continental Autonomous Mobility Germany GmbH Method for determining the position of an object
DE102021205477A1 (en) 2021-05-28 2022-12-01 Continental Autonomous Mobility Germany GmbH Procedure for determining the position of an object

Also Published As

Publication number Publication date
JP6945776B2 (en) 2021-10-06
JPWO2021024433A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP3955314B2 (en) Tracking system and self-propelled body
JP6474228B2 (en) Object detection device
JP2910377B2 (en) Radar equipment for vehicles
JP5644516B2 (en) Parking space detection device
JP6577767B2 (en) Object detection apparatus and object detection method
JP6811913B2 (en) Obstacle detector
JP6945776B2 (en) Obstacle detector
JP6599075B2 (en) Obstacle detection device
US20220342061A1 (en) Method and a device for classifying an object, in particular in the surroundings of a motor vehicle
JP2013036837A (en) Object shape recognition apparatus for vehicle
JP2015132511A (en) Road surface monitoring device and electric cart
JP6992439B2 (en) Object detector
JP6953166B2 (en) Automatic driving control device and automatic driving control method for electric vehicles
JP7414154B2 (en) Method and device for detecting traffic congestion in a vehicle
JPWO2020008537A1 (en) Obstacle detection device or driving support device
JPH1062532A (en) Radar for vehicle
JP6820132B2 (en) Driving support device
WO2020008536A1 (en) Obstacle detection device
JP6873353B2 (en) Obstacle detector
JP6994676B1 (en) Vehicle and obstacle detector
JP2007101295A (en) Tracking system and self-propelled body
JP2020166534A (en) Work vehicle
JP4496018B2 (en) Vehicle perimeter monitoring device and vehicle equipped with the same
JP7195447B2 (en) Obstacle detector
JP7476495B2 (en) Collision avoidance device, collision avoidance method, and collision avoidance program for autonomous vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940575

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940575

Country of ref document: EP

Kind code of ref document: A1