WO2021024240A1 - Method and operative system for the high-performance production of carbon-based nanostructured materials with variable functionalization - Google Patents

Method and operative system for the high-performance production of carbon-based nanostructured materials with variable functionalization Download PDF

Info

Publication number
WO2021024240A1
WO2021024240A1 PCT/IB2020/059446 IB2020059446W WO2021024240A1 WO 2021024240 A1 WO2021024240 A1 WO 2021024240A1 IB 2020059446 W IB2020059446 W IB 2020059446W WO 2021024240 A1 WO2021024240 A1 WO 2021024240A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
temperature
water
reaction
purification
Prior art date
Application number
PCT/IB2020/059446
Other languages
Spanish (es)
French (fr)
Inventor
Dania HERNANDEZ SÁNCHEZ
Isaac MATA CRUZ
Original Assignee
Energeia Fusion, S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energeia Fusion, S.A. De C.V. filed Critical Energeia Fusion, S.A. De C.V.
Publication of WO2021024240A1 publication Critical patent/WO2021024240A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/48Organic compounds mixed with inorganic active ingredients, e.g. polymerisation catalysts

Definitions

  • the present invention describes a method and operating system or assembly for the production of carbon-based nanostructured materials, such as graphene oxide and reduced graphene oxide with variable functionalization that can be used in multiple applications in all types of industries.
  • the properties that make it unique are: its large surface area (2630 m 2 / g), high mechanical resistance with a Young's modulus of -1100 Gpa, it is biocompatible and does not oxidize; It is an excellent electrical conductor, with a charge mobility of 200,000 cm 2 V 1 s 1 and thermal, with a thermal conductivity of 3000-5000 W / m / K, this is due to the electrons that interact with the graphene network they can move through the hexagonal cells, at a speed three hundred times less than the speed of light, much higher than the usual speed of electrons in an ordinary conductor.
  • graphene One of the most interesting characteristics of graphene has to do with its electrical conductivity. It is known that one way to classify materials is according to how well they conduct electricity: insulators, conductors, and semiconductors. But graphene shares characteristics between conductors and semiconductors. On the other hand, graphene is a very reactive molecule, this means that it has the ability to chemically react with other substances to modify or form new compounds, so it can be used, for example, as an additive to increase mechanical, electrical and thermal in polymers or non-ferrous materials, such as cement; as an additive to provide anticorrosive and antimicrobial properties to coatings; as a component in electrodes for fuel cells, supercapacitors, lithium ion batteries and photovoltaic cells.
  • CVD chemical vapor deposition
  • monolayer or bilayer graphene One method of obtaining graphene is chemical vapor deposition (CVD) and is known as monolayer or bilayer graphene. It should be noted that although it is the method with which the highest quality graphene is obtained, its disadvantages are substantial, since it is an extremely expensive and complex method, it requires sophisticated equipment and facilities, its production capacity is low and graphene obtained with this method is more suitable for electronic, optical, etc. applications, but not suitable for applications that require mixing or creating composites with other materials.
  • Low-layer graphene is a type of graphene made up of up to five layers of carbon. It should be noted that, by having a greater number of carbon layers, its properties with respect to monolayer or bilayer graphene are lower, but still important. This type of graphene is obtained by exfoliation of graphite in the liquid phase, which is a relatively simpler method, with lower cost and with greater production capacity; However, however, toxic and difficult to eliminate solvents are used for its synthesis, so the use of the graphene obtained is limited, in particular for the jump to the industrial scale, in which they are required tons, not grams. Surfactants or organic molecules with lower toxicity but low performance and low reproducibility are also used.
  • Graphene oxide comprises graphene monolayers stabilized by the electrostatic repulsion produced by the negative charge that they acquire in dispersion, due to the ionization of the functional groups that it has on its surface after the chemical treatment it receives for oxidation and exfoliation.
  • the properties of graphene oxide, with respect to monolayer, bilayer or few-layer graphene are completely different and, therefore, suitable for other types of applications.
  • the reduced graphene oxide arises from the total or partial elimination of the oxygenated groups previously anchored to the carbon network, thus obtaining a material with properties shared between graphene oxide and graphene.
  • the methods for the reduction of graphene oxide are diverse, among which the chemical, thermal and photothermal methods stand out. However, special equipment, toxic chemical reagents and controlled atmospheres are often used that make it difficult to handle.
  • a 9: 1 mixture of concentrated sulfuric acid (H 2 S0 4 ) and phosphoric acid (H 3 P0 4 ) was prepared. Subsequently, 3 grams of graphite and 18 grams of potassium permanganate (KMn0 4 ) were added, generating a slight exotherm of 35-40 ° C. The reaction was then heated to 50 ° C and mixed for 12 hours. Subsequently, the reaction was cooled to room temperature and placed in ice, adding 3 ml of 30% H 2 0 2 . The mixture was then screened using 300 ⁇ m stainless steel mesh and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant.
  • the recovered solid was washed with 200 ml of water, the mixture was sieved using 300 ⁇ m stainless steel meshes and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant.
  • the recovered solid was washed with 200 ml of 30% HCl, the mixture was sieved using 300 ⁇ m stainless steel mesh and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant.
  • the recovered solid was washed with 200 ml of ethanol, the mixture was sieved using 300 pm stainless steel mesh and filtered with polyester fibers.
  • the filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant. At the end of the washings, the material was coagulated with 200 ml of ether and the resulting suspension was filtered on PTFE membranes with pore size of 0.45 pm and the recovered solid was dried under vacuum at room temperature. Finally, the amount of material obtained was 5.8 grams.
  • the present invention developed a method and replicable operating system or assembly for the large-scale production of graphene oxide and reduced graphene oxide, in less time, minimal risk, low cost and high quality, for multiple applications and economically viable at an industrial level.
  • the optimization of each stage occurs based on the equipment and devices implemented for a production line with which there are risk prevention and control measures, industrial-scale production capacity, reduction of times and quality control is favored and replicability, both of the process and the product.
  • the invention is divided into four large modules differentiated by their function.
  • the oxidation-exfoliation and reaction containment stages are carried out, in the second module the purifications of the material are carried out, in the third the discharge of the residual leachate generated by the process is carried out and finally in the fourth module the finished product.
  • the particularities of each module will be described later.
  • Document US 2018/0230014 Al discloses a method for the production of graphite oxide, graphene oxide and graphene, at an industrial and cost efficient level.
  • This document indicates that the first step, before oxidation, is to grind the graphite at 100-150 pm, followed by its purification by flotation at 90 ° C. Subsequently, the pre-purified graphite is oxidized by inorganic oxidizing agents such as potassium permanganate, sodium nitrate and sulfuric acid. The oxidized graphite is exfoliated using external forces such as sonication, to finally be reduced to graphene.
  • the product of the claimed method is nanoscale graphene oxide sheets or platelets with a thickness less than 100 nm.
  • the disclosed method also represents a model for low graphene oxide productions, this is justified because the resulting amount of graphene oxide can be inferred by the initial amount of graphite, where the invention refers to the grinding of 30 grams of graphite for subsequent oxidation. Therefore, it is not a method that can be used for the use of graphene oxide at industrial levels.
  • US patent 9,758,379 B2 mentions a process for preparing oxidized graphite to obtain exfoliated graphene.
  • the process uses considerably less chlorate than previously known systems and is carried out by heating oxidized graphite at temperatures of 250 ° C to 2000 ° C.
  • the method claimed in said patent represents in the same way, a method for low production of oxidized graphite, this considering that the quantity of oxidized graphite produced can be estimated by the quantity of graphite to be oxidized.
  • the method claimed in US patent 9,758,379 B2 refers to the grinding of 30 grams of graphite for its oxidation; therefore, its production capacity is reduced.
  • Document MX / a / 2016/007399 describes a method of partial reduction of graphene oxide using mild reducers at room temperature.
  • the method comprises: (a) oxidation of graphite nanoplatelets to obtain graphene oxide, preferably by oxidation by the Hummers method; and exfoliating the resulting graphene oxide through ultrasonic means; (b) reduction of graphene oxide in aqueous medium with a mild reducing agent at room temperature and basic pH; and (c) drying the graphene oxide at room temperature; and where, in a preferred embodiment, the reduction involves the use of mild reducers such as fructose and ascorbic acid in aqueous medium at pH 10, at temperatures between 20 ° C and 35 ° C, in ratios of 1:10 and 1:20 (graphene oxide-reducing agent), using reduction times from 10 minutes to 144 hours.
  • mild reducers such as fructose and ascorbic acid in aqueous medium at pH 10, at temperatures between 20 ° C and 35 ° C,
  • document MX / a / 2016/007399 reports a graphene oxide production capacity of only 5.8 grams, using oxidation times of 7 to 19 hours with temperature ranges from 30 ° C to 85 ° C.
  • document MX / a / 2016/007399 uses vacuum filtration systems, which are expensive systems, with low capacity and filtration speed (ml / h).
  • hydrazine is used, which is a highly toxic and possibly carcinogenic reagent. Reduction times of approximately 75 minutes and production capacity in the order of milligrams (54 mg).
  • Document MX / a / 2017/010798 describes a method of functionalization of graphene oxide of controllable size by ultrasound, in bath conditions of temperature of 15 ° C, power of 40% amplitude for times of 10 to 100 minutes, with branched or linear amines in the presence of an organic solvent of interest such as 1,2-dichlorobenzene or toluene; where functionalization involves the use of substances such as dodecylamine, octadecylamine and heptadeca-9-amine dissolved in ethanol, methane, propanol, butanol or isopropanol in volume ratios of 1: 3 to 2: 1 under stirring.
  • an organic solvent of interest such as 1,2-dichlorobenzene or toluene
  • said functionalization has the purpose of imparting affinity to graphene oxide in organic solvents where it normally would not have it.
  • said document is directed to a functionalization method and not to solve the problems of production of graphene oxide and reduced graphene oxide to which the present invention relates.
  • MX / a / 2011/012432 discloses a highly oxidized graphene oxide and methods for its production in various modalities; In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protective agent to form the graphene oxide.
  • the document points out that graphene oxide synthesized by the methods described herein is of high structural quality, is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than graphene oxide prepared in the absence of at least less of a protection agent. Said document further mentions that the methods for the reduction of graphene oxide to chemically converted graphene are also disclosed; chemically converted graphene is significantly more electrically conductive than chemically converted graphene prepared from other graphene sources.
  • the problems to be solved by the present invention are: reduction of operational risks, process time and production costs; obtaining standardized products according to replicable methods and well-established quality parameters, as well as reducing complexity for their massive and safe production, to have high availability for their industrial application, as well as allowing the programmed functionalization of graphene oxide obtained.
  • the present invention refers to an improved method to increase the production and reduction of graphene oxide, comprising: chemically reacting graphite with a standard particle size and KMn0 4 in the presence of H 2 S0 4 / H 3 P0 4 ; controlling the start temperature in an automated rotary mixing system (SMRA); control the temperature of a refrigeration recirculator and set increasing heating ramps of the reaction temperature in si tu and ex si tu from 0 ° C to 50 ° C in a 5 to 12 hour oxidation-exfoliation interval within the SMRA ; contain the reaction with H 2 0 2 at a constant temperature; control the temperature of an external refrigeration recirculator and control the in situ response of the mixture by infrared monitoring; purifying the obtained graphene oxide paste in the presence of H 2 0, HC1 and CH CH 2 OH by means of standardized purification steps; control the final finish of graphene oxide with variable functionalization to obtain it in the form of paste, powder and reduced graphene oxide,
  • SMRA
  • the present invention also refers to an operative system or assembly for the production of graphene oxide
  • an oxidation-exfoliation and reaction containment module formed by a modified balloon flask with internal ribs that operates inserted into an automated rotary mixing system (SMRA) connected to both an external cooling recirculator and a water line derived from a purification system and an infrared sensor for temperature monitoring;
  • SMRA automated rotary mixing system
  • a purification module made up of purification systems with a mechanized cover
  • bases and frames with filters mounted on anti-spill platforms connected to a module for direct discharge of residual leachate
  • a finishing module formed by a chamber with forced extraction inside which is arranged a mechanical convection oven for vacuum drying.
  • the present invention refers to formulations containing graphene oxide and / or reduced graphene oxide obtained by the method of the present invention as an improver and / or additive for coatings, paints, waterproofing agents, inks, concrete, cement, asphalt, as raw material and / or nanofiller in chemical technical applications, among others.
  • primer with base alkyd, alkyd-based enamel, vinyl-acrylic-based paints, acrylic-styrene-based paints, aromatic polyurethane-based paints, aliphatic polyurethane-based paints, water-based polyurethane paints, alkyd traffic paint, chlorinated rubber
  • primer primer base
  • epoxy base with waterproofing agents, inks, conductive paints, concrete additive, cement additive, asphalt additive, among others.
  • graphene oxide or reduced graphene oxide in their formulation in said products, they are given high performance since they provide them with improved properties; for example, without being limiting, anticorrosive, flame retardant, antimicrobial, waterproofing, longer lasting, with greater adherence and greater resistance to UV radiation, increased Marshall resistance and indirect tension resistance, increased hardness and resistance to penetration without reducing elasticity, among others.
  • FIGS 1, 2A-2B and 3 illustrate a system of modules A), B), C) and D) by means of which the method of the present invention is carried out, module A) being an oxidation-exfoliation module and containment, module B) a purification module, module C) a residual leachate discharge module and module D) a module for product finishing.
  • Figures 4a and 4b correspond to representative images of diffraction patterns by high resolution transmission electron microscopy.
  • Figures 4c and 4d show the Raman spectrum of the graphene oxide obtained by the invention, before and after being reduced, respectively.
  • the invention developed the installation of an operating system or assembly for the large-scale production of carbon-based nanostructured materials, known as: graphene oxide and reduced graphene oxide.
  • the system or assembly is characterized by an oxidation-exfoliation and containment module, a purification module, a residual leachate discharge module and a product finishing module.
  • oxidation-exfoliation and containment module characterized by an oxidation-exfoliation and containment module, a purification module, a residual leachate discharge module and a product finishing module.
  • a series of systematized stages are developed that allow: high production capacity, minimal operational risk, low cost and versatility, since the production of different types of graphene oxide of excellent quality is achieved, with variable and replicable functionalizations, with greater production capacity in less time and greater operational safety, completely replacing known methods and tools.
  • the initial methodology of the invention was based on the improved Hummers method, however, due to its low production efficiency, high operational risk, and no feasibility to bring the use of graphene oxide produced to industrial levels, through the present invention, multiple modifications were made, both methodological and technical, implementing variations in chemical reagents, proportions, temperatures, times, stages, processes and devices used for different activities to its original conception, giving them properties to create a unique industrial process for the production, diversification, efficient and safe of different types of graphene oxide and reduced graphene oxide. With the modifications included in the present invention, it was possible to increase the production per reaction from grams to kilograms, with reduction of production times, with high quality of the material, with greater safety and standard replicability between production batches.
  • the present invention developed a replicable operating method and system or assembly for large-scale production of graphene oxide and reduced graphene oxide, in less time, minimal risk, low cost and high quality for multiple applications and economically. industrially viable.
  • the optimization of each stage occurs in function of the equipment and devices implemented for a production line with which there are risk prevention and control measures, industrial-scale production capacity, reduction of times and favoring quality control and replicability of both the process and the product.
  • the invention is divided into four large modules differentiated by their function.
  • the oxidation-exfoliation and reaction containment stages are carried out
  • the purifications of the material are carried out
  • the discharge of the residual leachate generated by the process is carried out
  • the fourth product finishing module the activities related to the drying and reduction of graphene oxide are carried out. The particularities of each module will be described later.
  • the claimed method for the production of carbon-based nanostructured materials takes as a reference the Hummers method, however, the modifications of the present invention do so Totally different from said method and any other known method since, as will be seen later, multiple methodological and technical modifications were made to said Hummers method, implementing variations in chemical reagents, proportions, temperatures, times, stages, processes and devices. used for activities other than their original conception, giving them properties to create a unique industrial process for the production, diversification, efficient and safe of different types of graphene oxide and reduced graphene oxide.
  • the invention calls for an operating system or assembly that represents a novel installation for the formation of a complete production line, allowing the phases of each stage to be separated clearly and safely by modules, where in figure 1 the module (A) is an oxidation, exfoliation and containment module, in figure 2A the module (B) is a purification module, in figure 2C module C) is a residual leachate discharge module and in figure D) it is a module of finished product.
  • the oxidation, exfoliation and reaction containment module (A) comprises a water filtration system (1) comprising three filters of activated carbon and ultraviolet light, which distributes the filtered water through a tube (a) towards a system of automated rotary mixing (SMRA) (2), through a tube (b) that comes out of a water container (3) located in the upper part of the SMRA; the filtration system Water (1) also distributes the filtered water through a tube (c) towards an ice-producing device (4) or similar and finally, distributes the filtered water through a tube (d) to a second filtration system by reverse osmosis made up of three filters (5) that provide the water required for the graphene oxide purification stages.
  • SMRA automated rotary mixing
  • the SMRA (2) comprises a balloon flask (6) with a capacity of 20 liters (which may be of a smaller or larger capacity; requiring, where appropriate, a change in the proportions of reagents within the ranges established in the present invention ) modified with internal ribs to favor the mixing of the reagents by means of internal turbulence, a vertical condenser (7) whose design was modified to create a lateral feed inlet (8) for the dosage of reagents in an indirect way, that is to say that once the flask is installed in the SMRA (2), the operator to dose the reagents or chemicals can feed them through the side inlet (8) through a funnel (9) that enters at 45 degrees with respect to the longitudinal axis vertical condenser (7) with a path of 90 to 100 cm from the external part of the safety cabin (11) of the SMRA (2) and that reaches the inner center of the balloon flask (6), without being totally exposed in form d Direct to the gases generated by the chemical reaction inside the
  • the vertical condenser (7) which can be for example Graham, Friedrichs, Dimroth, Liebig, Allihn or some other commercially available type, is connected to a refrigeration recirculator (12), the purpose of which is, by means of the operation to low temperatures, avoid leaks of the gases generated by the chemical reaction and contain them within the SMRA (2), in order to provide greater safety to the operator and obviate the need for an extraction hood such as that used in known techniques, and in which the operator is completely exposed to the gases generated during the reaction, in addition to reducing the space or work area, the method of the present invention being limited to only one or two modules to operate simultaneously.
  • they use tap water at room temperature as coolant in continuous flow through rosary-type condensers, resulting in 12-15 hours of non-recirculating water flow, not reusable and that does not guarantee the absence of gas leaks.
  • Temperature changes are monitored internally through the SMRA's own control panel (2) that detects the ex situ temperature of the reaction and the second external path through an infrared sensor (13), which allows temperature measurement in situ of the reaction.
  • FIG. 2A illustrates the graphene oxide purification module B) and Figure 2C the residual leachate discharge module.
  • independent filtration systems (14) were adapted for each stage.
  • the base of these systems is made of containers made of a material with high chemical resistance with a holding capacity of hundreds of liters. These containers were designed with a mechanized cover (15) to avoid product contamination.
  • racks (16) were manufactured with filters made of polyester, for example, to be placed on top of each container.
  • An outlet (17) with opening and closing valves (18) was designed for each purification system to discharge leachate to the waste collection area.
  • the complete filtration purification system is mounted on anti-spill platforms (19).
  • a discharge line or tube (20) is connected, which is hidden under the floor and empties into Module C) for directly discharging leachates.
  • the opening and closing valves (18) are opened synchronously with the opening and closing valves (23) that reach the high-density polyethylene containers (21). for filling through a pipe (20).
  • Module C comprises the containers (21) which are supported on anti-spill platforms (22).
  • the pipes (20) of the leachate discharge lines from the purification systems controlled by the opening and closing valves (18) reach the containers (21).
  • the filling of the containers (21) is carried out by means of the synchronized opening of the valves (18) of the purification systems and the valves (23) of the containers (21) of the leachate discharge module.
  • the disposition of the purification and leachate flow modules have been designed in such a way that they do not depend on electrical energy and for safety terms, they are arranged so as not to retain more than 50% of their maximum capacity inside.
  • Module D comprises a chamber with forced extraction (24) inside which is arranged a mechanical convection oven for vacuum drying (25) and an aluminum container with a lid (26).
  • the nature and size of the particle is fundamental for the type of graphene oxide, as well as for the oxidation-exfoliation time.
  • graphical materials were classified according to various criteria.
  • Amorphous graphite refined amorphous
  • synthetic graphite refined synthetic
  • crystalline graphite even the combination of graphites to obtain different qualities of graphenic material, depending on its production methodology.
  • the particle size was selected through an automated screening process. With the method of the present invention, a high degree of quality, replicability and functionalization is achieved, for which it is required that the selection and initial preparation of graphical materials are perfectly controlled. Stage 2. Pre-oxidation.
  • module A (see figure 1) of oxidation -exfoliation and containment of the production line was ensured, which comprises a water filtration system (1) comprising three activated carbon filters and light ultraviolet, with four branches leading to an automated rotary mixing system (SMRA) (2), a water container (3), an ice-making device (4) or similar, and a three-filter water system by reverse osmosis (5), the water from the latter system being used in the process.
  • SMRA automated rotary mixing system
  • the SMRA (2) comprises a modified balloon flask (6) with internal ribs that was fitted and secured within the SMRA (2).
  • Said modified balloon flask (6) was placed or arranged inside a container (10), which was filled with water to immerse the balloon flask (6).
  • the temperature of the water in the container (10) was controlled in a range of 0 to 10 ° C.
  • the low vacuum function was activated in a range of 250-500 bar, to fill it with a mixture of the oxidizing agent (H 2 S0 4 ) and the protective agent (H 3 P0 4 ) in previously measured quantities , according to the type of graphene oxide to be produced.
  • the vertical condenser and the SMRA were hermetically sealed, so that the gases and / or vapors emitted inside the balloon flask (6) were kept inside the SMRA and by the vertical condenser (7) through which it passes a refrigerant that is recirculated by the recirculation cooler (12) which was programmed at a temperature of -10 ° C and recirculated to the SMRA (2).
  • the vacuum function was deactivated and the mixing function was activated from 20 to 30 revolutions per minute. minute (rpm) for 5 to 10 minutes for a first exothermic control.
  • the safety cap or seal found at the feed inlet (8) was removed to proceed with the dosage of the permanganate powders.
  • the reaction between the first two oxidizing agents H 2 S0 4 and KMn0 4 ) produces manganese heptoxide (MN 2 0 7 ), which is highly volatile and can explode on contact with air, water or even with a bang. Therefore, the physical barrier represented by the SMRA (2) is important for controlling the temperature from the recirculating cooler (12) to the vertical condenser (7), so as not to allow the gases generated by the acid reaction and oxidizer come out of the SMRA (2) and therefore, the operator is not exposed to them.
  • step 1 The conditions established in step 1 were appropriately adjusted and then the temperature range of the reaction during step 2 was controlled at 10-20 ° C; However, in case of sudden increases in temperature, part of the ice produced by the ice-producing equipment (4) must be used and it must be added to the water container (10), of which A certain volume of hot water must be drained and replaced by ice in a controlled manner, until the in situ temperature is adjusted between 10-20 ° C by infrared monitoring (infrared sensor (13)). At the end of reagent administration, mixing at 20-30 rpm was maintained for 10 minutes.
  • the mixing speed was reduced to 10 rpm and controlled temperature increases were made from 20 to 25 ° C in 10 minutes, from 25 to 30 ° C with 15 minutes mixing, from 30 to 35 ° C with mixing. 15 minutes, 35-40 ° C with mixing for 30 minutes and 40-50 ° C with mixing for 5-12 hours depending on the type of graphene oxide to be synthesized.
  • the technology of the SMRA (2) offers automatic stop of the temperature with sustained mixing and also allows to automatically detect variations in the volume of the heating water container (10), so that the filtered water tank (3) connected to the SMRA ( 2) Automatically compensates for the volume of water evaporated during the 5-12 hours of the process.
  • the heating function of the SMRA (2) was automatically deactivated while the mixing function was maintained, thus allowing a slow descent to room temperature. Subsequently, the water from the SMRA (2) was partially drained and replaced by ice received from the ice generator (4) until an ex situ and in situ temperature of ⁇ 0 ° C and ⁇ 10 ° C, respectively, was achieved to control a fourth exotherm generated by H 2 0 2 . The stability of the temperature was corroborated using the infrared sensor (13) before and during the addition of the next reagent (H 2 0 2 ).
  • the safety cap or seal (8) was removed, the long tube funnel (9) was inserted through which the H 2 0 2 was slowly and dripped .
  • KMn0 4 like H 2 0 2 are strong oxidants that, when in contact, cause an oxide-reduction reaction, in which KMn0 4 that could have remained unreacted, oxidizes hydrogen peroxide releasing oxygen and causing a fourth exotherm, Therefore, at the end of dosing the H 2 0 2 , the funnel (9) was removed and the safety cap or seal (8) was placed immediately. The mixing must remain active from 3 to 5 hours at 10 rpm to complement the reaction. Subsequently, the balloon flask (6) was disassembled from the SMRA (2) and prepared for the purification step. Stage 5. Purification.
  • Step 6 Graphene oxide paste finish.
  • the paste recovered from the fourth purification system was recovered without additional treatments to purification 4.
  • the properties of this graphene oxide depend on the production and application process.
  • Step 7 Finishing graphene oxide powder.
  • the graphene oxide paste that was recovered from purification system 4 was transferred to the forced extraction chamber (24) and dried at 50-80 ° C inside a mechanical convection oven (25) for 24-48 hrs.
  • the drying time is dependent on the mass and the desired percentage of humidity.
  • the graphene oxide powder obtained following the method and operating the operating system or assembly of the invention is used as a precursor for the production of reduced graphene oxide.
  • Phase 1 Pre-drying: Inside the chamber with forced extraction (24), the graphene oxide paste was pre-dried at 80 ° C for 24 hours inside the mechanical convection oven (25).
  • Phase 3 Programming The graphene oxide powder dried at room temperature was extracted from the mechanical convection oven and the temperature (25) was programmed at 260 ° C and an aluminum container with a lid (26) was preheated inside.
  • Phase 4 Reduction The dried graphene oxide was immediately deposited and covered inside the preheated aluminum container (26) and kept inside the mechanical convection oven (25) at 260 ° C for 90-120 seconds.
  • Phase 5 After 90-120 seconds, the aluminum container (26) was extracted from the mechanical convection oven (25) with the reduced graphene oxide inside and was placed inside the chamber with forced extraction (24 ), without removing the lid of the container to prevent the material from reacting violently on contact with oxygen, until it cools.
  • Table 2 summarizes the generic methodological and process stages described above, considering that the type and quality of each product will depend on the particular modifications of each method, in terms of type of graphite and reagent concentrations.
  • graphene oxides are given by their laminar, non-conductive and hydrophilic structure, thanks to the anchoring on their surface of different percentages of functional groups carboxyl, epoxide, alcohol and other chemical elements, which increase the distance between their monolayers, the They stabilize by electrostatic repulsion, decrease their interaction energy and therefore make them easier to exfoliate and hybridize with other compounds to form new materials.
  • Stage 1 Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
  • the initial operating conditions of the system or operating assembly were adjusted, turning on and programming the refrigeration recirculator at -10 ° C and filling the SMRA water container with water and ice, adjusting the temperature to ⁇ 10 ° C.
  • the adapted balloon flask with internal ribs was adjusted for internal turbulence generation that ensures homogeneous mixing in the SMRA within the safety cabinet of the equipment, at an inclination of ⁇ 45 °.
  • the flask was immersed in the water container until it was covered by 50%.
  • the SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (2400: 270 ml) was poured into the balloon flask. From the SMRA control panel, the SMRA rotation was adjusted to 20 rpm for 5 minutes.
  • a funnel was introduced to dose the KMn0 4 (300 g, 1.0 eq.) Onto the H 2 SO 4 / H 3 PO 4 mixture at a temperature of ⁇ 10 ° C, with mixing at ⁇ 20 rpm, for 30 minutes.
  • the temperature of the reaction was continuously monitored during the dosage, to control that the internal temperature of the mixture was ⁇ 15 ° C.
  • the mixing was programmed at ⁇ 10 rpm and an ascending heating ramp of reaction temperature was started, raising to 30 ° C and stabilizing for 30 minutes.
  • the temperature was set to 40 ° C and stabilized for 30 minutes.
  • the temperature of the reaction during the heating ramps must be strictly controlled and monitored with the infrared sensor. If temperatures higher than those programmed were identified for each stabilization point of the heating ramp, the water container was slightly drained and the volume was replaced with ice until the reaction temperature was controlled at the programmed temperature.
  • the reaction was contained with H 2 0 2 , by means of a water exchange from the SMRA, by ice inside the container until the temperature in si tu of the reaction was adjusted to ⁇ 15 ° C , ensuring thermal stability for 1 hour by infrared monitoring.
  • a funnel was introduced to drip 30 ml of 50% H 2 0 2 . From the SMRA control panel, mixing was programmed for 3-5 hours at 10 rpm with automatic equipment shutdown.
  • the inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started.
  • Purification 1 Immediately after disassembling the flask, 3 kilograms of graphene oxide paste were recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ⁇ 4 ° C. The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide paste was poured onto the filter Polyester adapted in the frames placed on the purification systems 1 to eliminate the non-oxidized material and / or residual products. Purification 2.
  • the mixture remained at rest for 5 hours, to later be diluted with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide.
  • the product was poured onto the adapted polyester filter in the racks placed on the purification systems 3 for its last filtration. 1.5 kilos of graphene oxide paste were recovered and diluted in filtered water by reverse osmosis at a 1: 5 ratio.
  • the diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4.
  • Stage 1 Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
  • the initial operating conditions of the operating system or assembly were adjusted by turning on and programming the cooling recirculator at -10 ° C and filling the SMRA water container with water and ice, adjusting the temperature to ⁇ 10 ° C.
  • Stage 2 Pre-oxidation.
  • the flask was immersed in the water container, until it was covered by 50%.
  • the SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (4800: 540 ml) was poured into the balloon flask. From the SMRA control panel, the SMRA rotation was adjusted to 20 rpm for 5 minutes.
  • a funnel was introduced to dose the KMn0 4 (600 g, 2.0 eq.) Onto the mix H 2 SO 4 / H 3 PO 4 at ⁇ 0 ° C, with mixing at ⁇ 20 rpm, for 30 minutes.
  • the temperature of the reaction during the dosage was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was ⁇ 15 ° C.
  • a funnel was introduced to dose the refined amorphous graphite (300 g, 1.0 eq.) With size of particle of ⁇ 50 pm on the mixture H 2 S0 4 / H 3 P0 4 / KMn0 4 .
  • the reaction temperature during the metering of the refined amorphous graphite was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was ⁇ 18 ° C. If temperatures above 18 ° C are identified, the water container must be drained and the volume must be replaced with ice until the reaction temperature is controlled at 18 ° C.
  • mixing was programmed at ⁇ 10 rpm from the SMRA control panel, and an ascending heating ramp of reaction temperature was started, raising to 20 ° C and stabilizing for 30 minutes.
  • the temperature was set to 30 ° C and stabilized for 30 minutes.
  • the temperature was set at 40 ° C from the SMRA control panel set at ⁇ 10 rpm, and stabilized for 30 minutes.
  • the reaction temperature during the heating ramps was strictly controlled and monitored with the infrared sensor.
  • the reaction was contained with H 2 0 2 .
  • part of the water was drained from the SMRA water container and the in situ temperature of the reaction was adjusted with ice to ⁇ 10 ° C, ensuring thermal stability for 1 hour by infrared monitoring.
  • a funnel was introduced to drip, 120 ml of 50% H 2 0 2 .
  • Mixing was programmed for 3 hours at 10 rpm from the SMRA control panel with automatic equipment shutdown. Stage 5. Purification.
  • the inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started.
  • Purification 1 Immediately after disassembling the flask, 3 kilos of graphene oxide paste were recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ⁇ 4 ° C. The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide was poured onto the polyester filter adapted to the frames placed on the purification systems 1 to eliminate the non-oxidized material and residual products of the chemical reaction. Purification 2.
  • the mixture remained at rest for 5 hours, to later be diluted with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide.
  • the product was poured onto the polyester filter adapted to the racks placed on the purification systems 3 for its final filtering. 1.5 kilos of graphene oxide paste were recovered and diluted in filtered water by reverse osmosis at a 1: 5 ratio. The diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4.
  • Stage 1 Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
  • the initial operating conditions of the operating system or assembly were adjusted, turning on and programming the refrigeration recirculator at -10 ° C and filling the SMRA water container with water and ice by adjusting the temperature to ⁇ 10 ° C.
  • the adapted balloon flask with internal ribs for internal turbulence generation that ensures homogeneous mixing was fitted in the SMRA inside the safety cabinet of the equipment, at an inclination of ⁇ 45 °.
  • the balloon flask was immersed in the water container up to 50%.
  • the SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (4800: 540 milliliters) was poured into the balloon flask. Adjust the rotation of the SMRA at 20 rpm for 5 minutes.
  • a funnel was introduced to dose the KMn0 4 (600 g, 1.0 eq.) Onto the H 2 SO 4 / H 3 PO 4 mixture at a temperature of ⁇ 10 ° C with mixing at ⁇ 20 rpm for 30 minutes.
  • the temperature of the reaction during the dosage was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was ⁇ 15 ° C.
  • a funnel was introduced to dose the refined amorphous graphite (600 g, 1.0 eq.) With a particle size of ⁇ 50 pm on the EfiSCfi / EfiPCVKMnCfi mixture.
  • the reaction temperature during the dosing of the refined amorphous graphite was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was ⁇ 18 ° C. If temperatures are identified above 18 ° C, the water container would be drained slightly and the volume would be readjusted with ice until the reaction temperature was controlled at 18 ° C.
  • the temperature was increased again to 50 ° C from the SMRA control panel programmed at ⁇ 10 rpm, and it stabilized for 30 minutes and then mixing was programmed for 4.0 hours at 50 ° C, ensuring automatic filling for the replacement of the water evaporated during the process, turning off the container or container of water and sustained mixing of the product until gradually reducing the reaction temperature to ⁇ 26 ° C.
  • the reaction was contained with H 2 0 2 .
  • part of the water at room temperature was drained from the SMRA water container and the in situ temperature of the reaction was adjusted with ice to ⁇ 15 ° C, ensuring thermal stability for 1 hour by infrared monitoring.
  • a funnel was introduced to drip, 60 ml of 50% H 2 0 2 . Mixing for 3-5 hours at 10 rpm with automatic equipment stop was programmed from the SMRA control panel.
  • the inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started.
  • Purification 1 Immediately after disassembling the flask, ⁇ 6 kg of graphene oxide paste was recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ⁇ 4 ° C . The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide was poured onto the polyester filter adapted to the frames placed on the purification systems 1 to eliminate the non-oxidized material and residual products of the chemical reaction. Purification 2.
  • the mixture remained at rest for 5 hours to later dilute with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide.
  • the product was poured on the polyester filter adapted in the frames placed on the purification systems 3 for its last filtration.
  • ⁇ 3 kilos of graphene oxide paste was recovered and diluted in filtered water by reverse osmosis at a ratio of 1: 5.
  • the diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4.
  • ⁇ 2.5 kilograms of the graphene oxide paste was recovered which was used as a precursor of reduced graphene oxide.
  • Phase 1 The stage for the reduction of graphene oxide was divided into 5 Phases: Phase 1. Drying: The graphene oxide paste (2.5 kg) recovered from purification system 4 was placed inside a mechanical convection oven for drying at 80 ° C for 24 hours. Phase 2. Rehydration. A fraction of the pre-dried graphene oxide (1.5 kg) was homogeneously rehydrated at a 1: 1-1: 3 ratio with (C 2 H 5 ) 2 0 until a new paste was formed, which would later be dried under vacuum and room temperature. for 1 hour. Phase 3. Programming: The temperature of the mechanical convection oven was set at 260 ° C and an aluminum container with a lid was preheated inside for 30 minutes. Phase 4.
  • the material recovered in the aluminum deposit was transformed to reduced graphene oxide.
  • the reduction of the material consisted of the detachment of functional groups from its surface and self-repair of the graphene structure. Of detachment From the functional groups, a weight loss of approximately 20% of the parent graphene oxide resulted, where ⁇ 82% of the reduced graphene oxide are carbon atoms and -16% are oxygen atoms.
  • the partial repair of the graphene lattice structure makes it an amphiphilic semiconductor material with a density of 0.059 g / cm 3 and an exfoliated particle size of - 3 pm.
  • the structural changes of the reduced graphene oxide with respect to the graphene oxide used as a precursor can be identified by changes in its UV-visible absorption spectrum that changes with respect to its precursor graphene oxide at: 275 nm (graphene oxide: B max : 242/305 nm) and changes in the Raman spectrum to: I D 1339 cm (graphene oxide: 1348) I G 1580 cm (graphene oxide: 1602) and definition of the signal at 2682 cm.
  • the images correspond to two representative images of the characterization by high-resolution transmission electron microscopy (HRTEM, for its acronym in English).
  • the white circle in figure 4b shows the repair of the structure of the graphene network, a result of the detachment of functional groups after the reduction of graphene oxide.
  • Figures 4c and 4d correspond to a characteristic Raman spectrum where the evident spectral changes of graphene oxide are appreciated before and after being reduced.
  • the variations in the intensity of the D band are related to the disappearance of the oxygenated groups anchored on the graphene oxide, as well as the decrease in the size of the particles resulting from the reduction process.
  • the definition of the 2D band is also associated with the repair of the graphene lattice structure after reduction of the graphene oxide.
  • the graphene oxide and reduced graphene oxide produced by the method and system or operative assembly of the present invention can be used in the formulation or production of new high performance coatings, such as paints, inks and waterproofing agents and additives.
  • the present invention provides anticorrosive, flame retardant, antimicrobial, impermeability, increased durability, adhesion and blocking properties against electromagnetic radiation.
  • some of the uses, without being limiting, of the present invention and modalities of coatings are paints and waterproofing agents, as well as inks and additives for concrete and asphalt, without being limiting of other uses and modalities that may be developed as they are obvious.
  • using the graphene oxide or reduced graphene oxide produced by the method and operative assembly or system of the present invention using the graphene oxide or reduced graphene oxide produced by the method and operative assembly or system of the present invention.
  • the type of functionalized graphene oxide that was used for the production of the first alkyd was in a water-based paste presentation with 30-40% humidity and pH 3.5- 4.5 at a ratio of 0.005% to 0.10% per kilogram of material.
  • all the liquid raw materials (resins and solvents) were weighed and incorporated into a mill, subsequently grinding began and the pigments were incorporated.
  • the graphene oxide paste was added in a proportion of 0.005% to 0.10% per kilogram of the primer to be produced. The grinding was maintained for approximately 50 minutes reaching a maximum temperature of 100 ° C.
  • the primer was allowed to cool and was discharged into a disperser. When the product temperature is less than 50 ° C, the drying agent was added and dispersed for 5 minutes. Subsequently, the trays were emptied for storage.
  • the type of graphene oxide that was used was in a paste presentation, water-based with 30-40% humidity and pH 3.5-4.5 at a proportion by weight percentage in the range of 0.005% to 0.10% per kilogram of material.
  • the liquid raw materials were weighed: resins and solvents (Xylol and naphtha gas), they were incorporated into a mill and the grinding began, adding the pigments.
  • graphene oxide was added in a proportion of 0.005% to 0.10% per kilogram of the enamel to be produced. Once added, the grinding was maintained for 50 to 60 minutes reaching a maximum temperature of 100 ° C. After time, the enamel was allowed to cool and was discharged into a disperser. With a temperature lower than 50 ° C, the desiccant was added and dispersed for 5 minutes, finally it was emptied into buckets for storage.
  • the type of functionalized graphene oxide that was used was a water-based paste with 30-40% humidity and pH 3.5- 4.5.
  • the required amounts of graphene oxide were in a range of 0.005% to 0.10% per kilogram of material.
  • For the preparation of the vinyl-acrylic paint as a first stage all the liquid raw materials were weighed and mixed in a disperser and dispersion began, subsequently and without stopping dispersing, the titanium dioxide and material loads were added. . After 10 minutes of continuous dispersion, the graphene oxide was added according to the amount of paint to be produced and it was kept in dispersion for 20 minutes.
  • the disperser was stopped and the thickener (cellulosic thickener) was added and dispersed for approximately 60 minutes at this point, reaching a maximum temperature of 45 ° C. Finally the dispersion was stopped, the resin was added and dispersed for 5 minutes. At the end of the process, the modified paint was allowed to cool for 24 hours, it was given a light mixing for 2-3 minutes, to finally be packaged.
  • the thickener cellulosic thickener
  • the type of reduced graphene oxide used was in powder form.
  • the required amounts of reduced graphene oxide were in a range of 0.1% to 0.3% per kilogram of material.
  • the titanium dioxide and material loads were added.
  • the graphene oxide was added according to the amount of paint to be produced and it was kept in dispersion for 20 minutes.
  • the disperser was stopped and the thickener (cellulosic thickener) was added and dispersed for approximately 60 minutes at this point, reaching a maximum temperature of 45 ° C.
  • the dispersion was stopped, the resin was added and dispersed for 5 minutes.
  • the modified paint was allowed to cool for 24 hours, it was given a light mixing for 2-3 minutes to finally be packaged.
  • Formulation of paints with acrylic-styrene base and graphene oxide for the incorporation of graphene oxide in acrylic-styrene paint to confer antimicrobial properties, to substantially increase its durability, resistance to UV radiation and wear (for example, greater than 18,000 cycles).
  • the type of functionalized graphene oxide that was used was a water-based paste with 30-40% humidity and pH 3.5- 4.5.
  • the amounts used were by weight percentage of the paint in the range of 0.005% to 0.10% per kilogram of material.
  • all the liquid raw materials were weighed and mixed in a disperser. During the dispersion, the titanium dioxide, material fillers and pigments were added. After 10 minutes of continuously dispersing, the graphene oxide was added and dispersed for 20 minutes. At 20 minutes, the dispersion was stopped, the thickener was added and dispersed for approximately 60 minutes. At this stage the paint reached a temperature of approximately 45 ° C.
  • the dispersion was stopped, the acrylic-styrene resin was added and dispersed for 5 minutes; after the time, the stirring was stopped and it was allowed to cool for 24 hours. Finally, the paint was lightly agitated for 2 to 3 minutes, to later be packaged.
  • the type of functionalized graphene oxide that was used was in powder form, with 10-30% humidity and pH 6.4- 7.4. A proportion of 0.001% to 0.05% of graphene oxide was used, per kilogram of material.
  • the polyurethane binder polyurethane precursor-prepolymer
  • the solvents were added. During milling, the pigments were incorporated little by little.
  • the graphene oxide powder corresponding to the amount of polyurethane to be produced was added. Grinding was maintained for 30 minutes reaching a maximum temperature of 75 ° C. After 30 minutes the milling was stopped and it was allowed to cool down to a temperature below 56 ° C to add the remaining fraction of the Polyurethane prepolymer, mixing for 5 minutes. Finishing this last mixing, the aromatic polyurethane was hot cast.
  • the type of functionalized graphene oxide for the chlorinated rubber alkyd traffic paint that was used was in powder form with 10-30% humidity and pH 3.5- 4.5.
  • All liquid raw materials (resins and solvents) were weighed and incorporated into a mill. The grinding was started continuously and the pigments were incorporated little by little.
  • graphene oxide was added in a range of proportions from 0.005% to 0.10% per kilogram of paint. to produce. The grinding was maintained for 50 to 60 minutes, during which time it reached a maximum temperature of approximately 100 ° C. Over time, the paint was allowed to cool and was discharged into a disperser until it reached a temperature below 50 ° C. At this time the blotter and chlorinated rubber were added, dispersing for 5 minutes to finally empty it for storage.
  • Epoxy-based primer formulation and graphene oxide Process for incorporating graphene oxide into a two-component anticorrosive epoxy primer for use on metallic surfaces in marine environments.
  • the type of functionalized graphene oxide that was used to make the first anticorrosive epoxy was presented as a water-based paste with 30-40% humidity and pH 3.5- 4.5.
  • the liquid raw materials epoxy resin and solvents
  • the pigments were gradually incorporated and after 20 minutes the graphene oxide paste was added in percentages by weight in the range of 0.005% to 0.10% per kilogram of the first epoxy to be produced.
  • the grinding was maintained for approximately 60 minutes, reaching a maximum temperature of 100 ° C.
  • the mixture was allowed to cool and was discharged into a disperser.
  • the drying agent was added, dispersing for 5 minutes, to finally empty the first epoxy with graphene oxide to its storage containers.
  • the ink made with graphene oxide obtained by means of the present invention is of high performance, easy application and ultra fast drying, with great thermal resistance, anti-abrasive, anticorrosive, resistance to UV radiation, with excellent adhesion and covering power.
  • the ink For the production of the ink, cellulose butyric ester was used as a base resin, all the liquid raw materials (resins and solvents) were weighed and incorporated into a mill, then grinding began and titanium dioxide was added. (pigment), after 10 min of continuous grinding, the graphene material corresponding to the amount of ink to be produced (g of GO paste / Kg of ink) was added, with a concentration of between 0.001% and 0.005% of graphene oxide powder with a pH of 7.5. Subsequently, the grinding was maintained for approximately 30 min, the maximum temperature reached in this procedure was approximately 70 ° C. After time, the ink was allowed to cool and was discharged. With a temperature lower than 50 ° C, the final container was emptied.
  • the type of functionalized graphene oxide for the preparation of the waterproofing that was used was in a water-based paste presentation, with 30-40% humidity and pH 3.5- 4.5.
  • all liquid raw materials were weighed and mixed in a disperser and dispersion was started. Without stopping dispersing, the material and pigment loads were added.
  • the graphene oxide paste was added in percentages by weight in the range of 0.005% to 0.10% per kilogram of the waterproofing agent to be produced.
  • the mixing now with the graphene oxide was kept for 20 minutes.
  • the disperser was stopped to add the thickener and they dispersed again for approximately 50 more minutes. In this stage the paint reached a temperature of approximately 45 to 50 ° C.
  • the dispersion was stopped to incorporate the resin, it was again dispersed for 5 minutes and allowed to cool to room temperature to be packaged.
  • the type of graphene oxide for the preparation of the concrete admixture that was used was in a paste presentation, water-based with 30-40% humidity and pH 3.5- 4.5.
  • the preparation of the admixture for concrete is water-based pH 7.0- 8.0 in which 2.5- 3.5 grams of graphene oxide paste were dispersed per liter of admixture that was dispersed by propellers at 100-500 RPM for 10 minutes.
  • the various aggregates that integrated the concrete were mixed in a conventional way: cement, gravel, sand, water and line additives, once the concrete mixture was ready, the concrete additive with graphene oxide was incorporated directly into the mixing zone in such a way that the concentration adjustment corresponds to 0.5 to 1.5 grams of graphene oxide per ton of cement.
  • the conventional parameters for the application of concrete were continued.
  • the proportion for the additivation of the cement with the graphene oxide powder was in a range of 0.5 to 1.5 grams of graphene oxide per ton of cement and its addition can be carried out in two stages of the process, both at the end of the cooling of the clinker. or in the final grinding. In such a way that the resulting cement is already reinforced with graphene oxide.
  • the type of functionalized graphene oxide used for the preparation of the asphalt additive was presented as a water-based paste with 30-40% humidity and pH 3.5- 4.5.
  • a dose of 20 to 50 milliliters of asphalt additive with 5 to 10 grams of graphene oxide was required.
  • the first step was to preheat 20 to 50 milliliters of the dispersing medium, either oily or polymeric, at a temperature below 155 ° C and slowly add the graphene oxide paste, mixing until homogenized.
  • the second step consisted of heating a ton of asphalt cement from 140 to 155 ° C, at this temperature, the asphalt additive reinforced with graphene oxide was incorporated until homogenized.
  • the third step was to incorporate the missing aggregates (sand and gravel) into the asphalt mix. In such a way that 5 to 10 grams of functionalized graphene oxide are applied per ton of asphalt cement.

Abstract

Disclosed are a method and a complete, low-cost, replicable, scalable, operative assembly or system for the production of carbon-based nanostructured materials know as graphene oxide and reduced graphene oxide, with variable functionalisation, for industrial use, from the oxidation and chemical exfoliation of graphites of different natures (refined amorphous, refined synthetic, crystalline and combinations) and different sizes (≤50-100 µm), by means of exposure to H2SO4, H3PO4, KMnO4 and H2O2, purification by HCl and CH3CH2OH and reduction by (C2H5)2O. The invention also relates to a complete, operative production assembly or system, formed by: a module for oxidation-exfoliation and containment; a purification module; a leachate discharge module; and a finished product module.

Description

MÉTODO Y SISTEMA OPERATIVO PARA LA PRODUCCIÓN DE ALTO RENDIMIENTO DE MATERIALES NANOESTRUCTURADOS BASADOS EN CARBONO CON FUNCIONALIZACIÓN VARIABLE METHOD AND OPERATING SYSTEM FOR THE HIGH-PERFORMANCE PRODUCTION OF CARBON-BASED NANOSTRUCTURED MATERIALS WITH VARIABLE FUNCTIONALIZATION
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La presente invención describe un método y sistema o ensamble operativo para la producción de materiales nanoestructurados basados en carbono, como el óxido de grafeno y óxido de grafeno reducido con funcionalización variable que pueden ser utilizados en múltiples aplicaciones en todo tipo de industrias. The present invention describes a method and operating system or assembly for the production of carbon-based nanostructured materials, such as graphene oxide and reduced graphene oxide with variable functionalization that can be used in multiple applications in all types of industries.
ANTECEDENTES BACKGROUND
En 2004 el grupo de los profesores Andre Geim y Konstantin Novoselov de la Universidad de Manchester reportó el aislamiento de una nanoestructura de carbono conocida como grafeno. El grafeno es una molécula plana bidimensional de un átomo de espesor, compuesta por átomos de carbono que forman un patrón de anillos hexagonales. Las propiedades que lo vuelven único son: su gran superficie de área (2630 m2/g), alta resistencia mecánica con un módulo de Young de -1100 Gpa, es biocompatible y no se oxida; es un excelente conductor eléctrico, con una movilidad de cargas de 200,000 cm2 V 1 s 1 y térmico, con una conductividad térmica de 3000-5000 W/m/K, esto se debe a que los electrones que interaccionan con la red del grafeno se pueden mover por las celdas hexagonales, a una velocidad trecientas veces inferior a la velocidad de la luz, muy superior a la usual de los electrones en un conductor ordinario. El paso de los electrones por el grafeno origina un efecto Hall cuántico que es imprescindible para su comportamiento como semiconductor, pero mientras que otros semiconductores sólo presentan este efecto a temperaturas muy bajas, el grafeno lo mantiene bien incluso a temperatura ambiente, convirtiéndolo en un excelente semiconductor y su conductividad eléctrica no decae por debajo de un valor mínimo, incluso cuando no hay electrones libres en él. Su conductividad es 50% más alta que el de los nanotubos de carbono y más de 10 veces superior que el de los metales como cobre y aluminio. In 2004 the group of professors Andre Geim and Konstantin Novoselov from the University of Manchester reported the isolation of a carbon nanostructure known as graphene. Graphene is a flat, one-atom-thick, two-dimensional molecule made up of carbon atoms that form a pattern of hexagonal rings. The properties that make it unique are: its large surface area (2630 m 2 / g), high mechanical resistance with a Young's modulus of -1100 Gpa, it is biocompatible and does not oxidize; It is an excellent electrical conductor, with a charge mobility of 200,000 cm 2 V 1 s 1 and thermal, with a thermal conductivity of 3000-5000 W / m / K, this is due to the electrons that interact with the graphene network they can move through the hexagonal cells, at a speed three hundred times less than the speed of light, much higher than the usual speed of electrons in an ordinary conductor. The passage of electrons through graphene causes a quantum Hall effect that is essential for its behavior as a semiconductor, but while other semiconductors only present this effect at very low temperatures, graphene maintains it well even at room temperature, making it an excellent semiconductor and its electrical conductivity does not drop below a minimum value, even when there are no free electrons in it. Its conductivity is 50% higher than that of carbon nanotubes and more than 10 times higher than that of metals such as copper and aluminum.
Una de las características más interesantes del grafeno tiene que ver con su conductividad eléctrica. Se sabe que una forma de clasificar los materiales es según lo bien que conduzcan la electricidad: aislantes, conductores y semiconductores. Pero el grafeno comparte características entre los conductores y semiconductores. Por otro lado, el grafeno es una molécula muy reactiva, esto significa que tiene la capacidad de reaccionar químicamente con otras sustancias para modificar o formar nuevos compuestos, por lo que puede ser utilizado, por ejemplo, como aditivo para incrementar propiedades mecánicas, eléctricas y térmicas en polímeros o materiales no ferrosos, como el cemento; como aditivo para dotar de propiedades anticorrosivas y antimicrobianas a recubrimientos; como componente en electrodos para celdas de combustible, supercapacitores, baterías de ión litio y celdas foto voltaicas. También puede aplicarse a manera de revestimiento transparente y conductor para la sustitución de óxido de indio y estaño. Como componente en electrónica, para aplicaciones biomédicas, antimicrobianas, para transporte de fármacos, ingeniería de tejidos y/o como componente de sensores para la detección de agentes químicos y biológicos, entre otras muchas aplicaciones. One of the most interesting characteristics of graphene has to do with its electrical conductivity. It is known that one way to classify materials is according to how well they conduct electricity: insulators, conductors, and semiconductors. But graphene shares characteristics between conductors and semiconductors. On the other hand, graphene is a very reactive molecule, this means that it has the ability to chemically react with other substances to modify or form new compounds, so it can be used, for example, as an additive to increase mechanical, electrical and thermal in polymers or non-ferrous materials, such as cement; as an additive to provide anticorrosive and antimicrobial properties to coatings; as a component in electrodes for fuel cells, supercapacitors, lithium ion batteries and photovoltaic cells. It can also be applied as a transparent and conductive coating for the replacement of indium tin oxide. As a component in electronics, for biomedical and antimicrobial applications, for drug transport, tissue engineering and / or as a component of sensors for the detection of chemical and biological agents, among many other applications.
Pese a las excelentes características, amplia investigación y gran proyección a nivel comercial del óxido de grafeno y del óxido de grafeno reducido, las principales problemáticas en su producción aún no han sido completamente resueltas. Entre ellas están, la existencia de métodos de alto riesgo, alto costo y bajo rendimiento, que dificultan la producción de material suficiente para uso a nivel industrial. Además, la baja replicabilidad entre los lotes de producción y la falta de capacidad para funcionalizar los materiales de acuerdo al uso y/o aplicación para el que se va a utilizar. Sin embargo, más allá de surgir nuevos métodos de síntesis que sean factibles, seguros, replicables y escalables para su introducción en la industria, la mayoría de las investigaciones se enfocan en las diversas modificaciones químicas del grafeno para descubrir nuevas propiedades y mayores posibilidades de aplicación o en su defecto, se centran en el estudio de otras nanoestructuras de carbono íntimamente relacionadas al grafeno puro, como: grafeno monocapa, grafeno bicapa, grafeno de pocas capas, óxido de grafeno y óxido de grafeno reducido, entre otras. Despite the excellent characteristics, extensive research and great commercial projection of graphene oxide and reduced graphene oxide, the main problems in their production have not yet been completely resolved. Among them are the existence of high-risk, high-cost and low-yield methods, which make it difficult to produce enough material for industrial use. In addition, the low replicability between production batches and the lack of capacity to functionalize the materials according to the use and / or application for which it is to be used. However, beyond the emergence of new synthesis methods that are feasible, safe, replicable, and scalable for introduction to industry, most research focuses on the various chemical modifications of graphene to discover new properties and greater application possibilities. or failing that, they focus on the study of other carbon nanostructures closely related to pure graphene, such as: monolayer graphene, bilayer graphene, few-layered graphene, graphene oxide and reduced graphene oxide, among others.
Un método para obtener grafeno es el de deposición química de vapor (Chemical Vapor Deposition o CVD por sus siglas en inglés) y es conocido como grafeno monocapa o bicapa. Cabe destacar que aunque es el método con el que se obtiene el grafeno de la más alta calidad, sus desventajas son sustanciales, ya que es un método sumamente costoso, complejo, requiere equipos e instalaciones sofisticadas, su capacidad de producción es reducida y el grafeno obtenido con este método es más adecuado para aplicaciones electrónicas, ópticas, etc., pero no propio para aplicaciones que requieren la mezcla o la creación de compositos con otros materiales. One method of obtaining graphene is chemical vapor deposition (CVD) and is known as monolayer or bilayer graphene. It should be noted that although it is the method with which the highest quality graphene is obtained, its disadvantages are substantial, since it is an extremely expensive and complex method, it requires sophisticated equipment and facilities, its production capacity is low and graphene obtained with this method is more suitable for electronic, optical, etc. applications, but not suitable for applications that require mixing or creating composites with other materials.
El grafeno de pocas capas es un tipo de grafeno conformado por hasta cinco capas de carbono. Cabe señalar que, al tener mayor número de capas de carbono, sus propiedades respecto al grafeno monocapa o bicapa son menores, pero aun así, importantes. Este tipo de grafeno se obtiene por la exfoliación de grafito en fase líquida, el cual es un método relativamente más sencillo, de menor costo y con mayor capacidad de producción; pero que, sin embargo, para su síntesis se utilizan solventes tóxicos y difíciles de eliminar, por lo que el uso del grafeno obtenido es limitado, en particular para el salto a la escala industrial, en la que se requieren toneladas, no gramos. También se utilizan surfactantes o moléculas orgánicas con menor toxicidad pero de poco rendimiento y baja reproducibilidad. Low-layer graphene is a type of graphene made up of up to five layers of carbon. It should be noted that, by having a greater number of carbon layers, its properties with respect to monolayer or bilayer graphene are lower, but still important. This type of graphene is obtained by exfoliation of graphite in the liquid phase, which is a relatively simpler method, with lower cost and with greater production capacity; However, however, toxic and difficult to eliminate solvents are used for its synthesis, so the use of the graphene obtained is limited, in particular for the jump to the industrial scale, in which they are required tons, not grams. Surfactants or organic molecules with lower toxicity but low performance and low reproducibility are also used.
El óxido de grafeno comprende monocapas de grafeno estabilizadas por la repulsión electrostática producida por la carga negativa que adquieren en dispersión, debido a la ionización de los grupos funcionales que tiene en su superficie después del tratamiento químico que recibe para su oxidación y exfoliación. Las propiedades del óxido de grafeno, con respecto al grafeno monocapa, bicapa o de pocas capas son completamente distintas y, por tanto, apropiadas para otro tipo de aplicaciones. Para la síntesis del óxido de grafeno existen distintas metodologías, especialmente químicas o electroquímicas que ofrecen mayor capacidad de producción respecto a los métodos anteriores, además de que funge como precursor para la síntesis del óxido de grafeno reducido. Graphene oxide comprises graphene monolayers stabilized by the electrostatic repulsion produced by the negative charge that they acquire in dispersion, due to the ionization of the functional groups that it has on its surface after the chemical treatment it receives for oxidation and exfoliation. The properties of graphene oxide, with respect to monolayer, bilayer or few-layer graphene are completely different and, therefore, suitable for other types of applications. For the synthesis of graphene oxide there are different methodologies, especially chemical or electrochemical ones that offer greater production capacity compared to previous methods, in addition to serving as a precursor for the synthesis of reduced graphene oxide.
El óxido de grafeno reducido surge de la eliminación total o parcial de los grupos oxigenados anclados previamente a la red de carbono, obteniendo de esta manera un material con propiedades compartidas entre el óxido de grafeno y grafeno. Los métodos para la reducción del óxido de grafeno son diversos, entre los que destacan los métodos químicos, térmicos y fototérmicos. Sin embargo, suelen utilizarse equipos especiales, reactivos químicos tóxicos y atmósferas controladas que lo toman complicado para manejar. The reduced graphene oxide arises from the total or partial elimination of the oxygenated groups previously anchored to the carbon network, thus obtaining a material with properties shared between graphene oxide and graphene. The methods for the reduction of graphene oxide are diverse, among which the chemical, thermal and photothermal methods stand out. However, special equipment, toxic chemical reagents and controlled atmospheres are often used that make it difficult to handle.
Otras metodologías conocidas son crecimiento epitaxial, exfoliación micromecánica de grafito pirolítico altamente orientado (HOPG, por sus siglas en inglés) y exfoliación de grafito por métodos electroquímicos, cuyas desventajas compartidas son bajo rendimiento y baja reproducibilidad. Other known methodologies are epitaxial growth, highly oriented pyrolytic graphite (HOPG) micromechanical exfoliation, and electrochemical exfoliation of graphite, the shared disadvantages of which are low yield and low reproducibility.
La oxidación química del grafito con un agente oxidante fuerte que da lugar al óxido de grafeno está bien descrita a lo largo de los años desde Benjamín C. Brodie en 1957 hasta la evolución del llamado método de Hummers (William S. Hummers). Su metodología consiste en el tratamiento del grafito con ácido nítrico fumante (HN03) y clorato de potasio (KC103), con el que se obtiene un compuesto cuya fórmula es CnH405. En 1898, el método fue modificado por L. Staudenmaier, quien incorporó el ácido sulfúrico (H2S04) y el KC103 para mejorar la acidez del producto. En 1958 Hummers y Offeman reportaron un método donde se utilizaba ácido sulfúrico concentrado (H2S04), nitrato de sodio (NaN03) y permanganato de potasio (KMn04), con el que se obtuvo un material aún más oxidado que el reportado por L. Staudenmaier, pero descartado por ser un proceso sumamente oxidante y tóxico debido a la liberación de N02 y N204. Desde entonces, son numerosas las variaciones que ha tenido esta metodología con el objetivo de incrementar la capacidad de producción y a la vez, reducir la peligrosidad del proceso. The chemical oxidation of graphite with a strong oxidizing agent giving rise to graphene oxide is well described over the years from Benjamin C. Brodie in 1957 to the evolution of the so-called Hummers method (William S. Hummers). Its methodology consists of treating graphite with fuming nitric acid (HN0 3 ) and potassium chlorate (KC10 3 ), with which a compound whose formula is CnH 4 0 5 is obtained . In 1898, the method was modified by L. Staudenmaier, who incorporated sulfuric acid (H 2 S0 4 ) and KC10 3 to improve the acidity of the product. In 1958 Hummers and Offeman reported a method that used concentrated sulfuric acid (H 2 S0 4 ), sodium nitrate (NaN0 3 ) and potassium permanganate (KMn0 4 ), with which a material even more oxidized than that reported was obtained. by L. Staudenmaier, but ruled out as a highly oxidizing and toxic process due to the release of N0 2 and N 2 0 4 . Since then, there have been numerous variations that this methodology has had with the aim of increasing production capacity and at the same time reducing the danger of the process.
No fúe hasta que Marcano, D. el al., en 2010 reportó el método de Hummers mejorado que se convirtió en la mejor técnica conocida. Con este método, el grafito se oxida químicamente mediante H2S04 H3P04 y KMn04. De esta combinación deriva una de sus principales ventajas en relación a los métodos conocidos, la cual es la síntesis de un grafeno con buen porcentaje de oxidación, menor liberación de gases tóxicos y mayor capacidad de producción. Sin embargo, no es un método de riesgo nulo, puesto que aunque la liberación de gases tóxicos es menor, el riesgo de explosión permanece latente si sus condiciones no se controlan adecuadamente. Por otro lado, el tiempo de síntesis es prolongado, con una oxidación-exfoliación de 12 horas y un periodo total para la obtención del producto, de hasta cuatro semanas. Finalmente, aunque tiene una mayor eficiencia de producción comparado con otros métodos, las reducidas cantidades finales obtenidas son aún inviables para su disponibilidad y/o aplicación a niveles industriales, ya que no logran llegar a los 10 gramos. It wasn't until Marcano, D. el al., In 2010 reported the improved Hummers method that became the best known technique. With this method, the graphite is oxidized chemically by H 2 S0 4 H 3 P0 4 and KMn0 4 . One of its main advantages in relation to known methods derives from this combination, which is the synthesis of a graphene with a good percentage of oxidation, less release of toxic gases and greater production capacity. However, it is not a zero risk method, since although the release of toxic gases is lower, the risk of explosion remains latent if its conditions are not adequately controlled. On the other hand, the synthesis time is long, with an oxidation-exfoliation of 12 hours and a total period to obtain the product, of up to four weeks. Finally, although it has a higher production efficiency compared to other methods, the reduced final quantities obtained are still unfeasible for their availability and / or application at industrial levels, since they cannot reach 10 grams.
Para la producción de óxido de grafeno por el método de Hummers se emplean herramientas de laboratorio de uso común en química, por lo que su utilización o función no se describe detalladamente, sino que se asume de acuerdo al seguimiento del método, con base en el conocimiento teórico y técnico de los expertos en la materia y con propósitos de sólo enfocarse a la materia novedosa y no obvia. For the production of graphene oxide by the Hummers method, laboratory tools commonly used in chemistry are used, so its use or function is not described in detail, but is assumed according to the follow-up of the method, based on the theoretical and technical knowledge of experts in the field and for the purpose of only focusing on novel and non-obvious matter.
Por lo tanto, sólo con propósitos ilustrativos y de claridad, enseguida se proporciona una breve explicación sobre en qué consiste el método de Hummers (Hummers, W. S.; Offeman, R. E. "Preparation of Graphitic Oxide". Journal of the American Chemical Society 80 (6): 1339, (1958)) y el método de Hummers mejorado. Therefore, for purposes of illustration and clarity only, a brief explanation of what the Hummers method consists of is provided below (Hummers, WS; Offeman, RE "Preparation of Graphitic Oxide". Journal of the American Chemical Society 80 (6 ): 1339, (1958)) and the improved Hummers method.
Para la obtención de grafeno, se utiliza grafito comercial Faber-Castell, un grafito “suave” del número 8B. To obtain graphene, commercial Faber-Castell graphite is used, a "soft" graphite of number 8B.
Preparación del óxido de grafito por el método de Hummers. En un matraz redondo se disuelven 2.5 g de grafito suave comercial en 34.5 mL de ácido sulfúrico (H2S04) al 10%. Se le adicionó 4.5 g de permanganato de potasio (KMn40), al terminar de agregar se aumenta la temperatura a ± 35°C bajo agitación constante a 1000 rpm durante 2 horas. Posteriormente, se le agregó gota a gota 69 mi de agua destilada aumentando la temperatura a 84°C. Enseguida el calentamiento fue finalizado y se mantuvo en agitación durante 15 min. Se adicionaron 10 mi de una solución de H202 al 3%, se dejó en reposo durante 40 min. Se lavó y centrifügó a 1500 rpm por 3 min. La muestra obtenida (3.059 g) se volvió a tratar ahora con 69 mL de ácido sulfúrico concentrado, 9 g de permanganato de potasio, con agitación constante durante 2 horas. Al terminar, se agregaron 138 mL de agua destilada y se dejó 15 min en agitación. Pasando ese tiempo, 20 mL de H202 se agregaron a la muestra y se dejó reposar. Tras el reposo se realizó el lavado del sólido obtenido, mediante centrifugación con 1L de solución 1: 10 de HC1 en agua a 1500 rpm durante 5 min. El precipitado se secó a 60°C en estufa por 24 horas. Al producto seco obtenido, se le agregó 200 mL de agua destilada y füe sometido a tratamiento con baño ultrasónico a 250 MHz durante 1 hora 15 minutos. La reducción del óxido de grafeno obtenido se realizó por dos métodos: Reducción de óxido de grafeno (rG) por reacción térmica. Se tomó una alícuota de 75 mi de la suspensión de óxido de grafeno, se colocó en un matraz y 11.77 g de ácido ascórbico fueron agregados. Posteriormente, la reacción se mantuvo en un baño de aceite a 85°C con agitación constante por 1 hora. Terminada la reacción la solución se lavó con agua destilada, se centrifugó y se dejó secar en la estufa. Reducción de óxido de grafeno (rG) por ultrasonido. El resto de suspensión de óxido de grafeno se centrifugó y secó, para posteriormente pesarlo. Se obtuvieron 1.22 g de óxido grafeno, se adicionó 1.23 g de ácido ascórbico y se disolvió en 410 mi de agua destilada. Posteriormente, se metió a baño ultrasónico por 2 horas a 250 MHz. El producto se lavó y centrifugó. Preparation of graphite oxide by the Hummers method. In a round flask, 2.5 g of commercial soft graphite are dissolved in 34.5 mL of 10% sulfuric acid (H 2 S0 4 ). 4.5 g of potassium permanganate (KMn 4 0) was added to it, at the end of adding the temperature is increased to ± 35 ° C under constant stirring at 1000 rpm for 2 hours. Subsequently, 69 ml of distilled water was added dropwise, increasing the temperature to 84 ° C. The heating was immediately finished and it was kept stirring for 15 min. 10 ml of a 3% H 2 0 2 solution were added, it was left to rest for 40 min. It was washed and centrifuged at 1500 rpm for 3 min. The sample obtained (3,059 g) was now treated again with 69 mL of concentrated sulfuric acid, 9 g of potassium permanganate, with constant stirring for 2 hours. When finished, 138 mL of distilled water were added and the mixture was left stirring for 15 min. After that time, 20 mL of H 2 0 2 were added to the sample and it was left to settle. After standing, the solid obtained was washed, by centrifugation with 1L of a 1: 10 solution of HCl in water at 1500 rpm for 5 min. The precipitate was dried at 60 ° C in an oven for 24 hours. To the dry product obtained, 200 mL of distilled water was added and it was subjected to treatment with an ultrasonic bath at 250 MHz for 1 hour 15 minutes. The reduction of the graphene oxide obtained was carried out by two methods: Reduction of graphene oxide (rG) by thermal reaction. A 75 ml aliquot of the graphene oxide suspension was taken, placed in a flask and 11.77 g of ascorbic acid was added. Subsequently, the reaction was kept in an oil bath at 85 ° C with constant stirring for 1 hour. After the reaction, the solution was washed with distilled water, centrifuged and allowed to dry in the oven. Reduction of graphene oxide (rG) by ultrasound. The rest of the graphene oxide suspension was centrifuged and dried, to later be weighed. 1.22 g of graphene oxide were obtained, 1.23 g of ascorbic acid was added and it was dissolved in 410 ml of distilled water. Subsequently, it was placed in an ultrasonic bath for 2 hours at 250 MHz. The product was washed and centrifuged.
Para el método de Hummers mejorado se preparó una mezcla en proporción 9:1 de ácido sulfúrico concentrado (H2S04) y ácido fosfórico (H3P04). Posteriormente, se añadieron 3 gramos de grafito y 18 gramos de permanganato de potasio (KMn04), generando una ligera exotermia de 35-40°C. A continuación, la reacción se calentó a 50°C y se mezcló durante 12 horas. Posteriormente, la reacción se enfrió a temperatura ambiente y colocó dentro de hielo, añadiendo 3 mi de H202 al 30%. Después, la mezcla se tamizó utilizando mallas de acero inoxidable de 300 pm y se filtró con fibras de poliéster. El filtrado se centrifugó a 4000 rpm durante 4 horas, descartando el sobrenadante. El sólido recuperado se lavó con 200 mi de agua, la mezcla se tamizó utilizando mallas de acero inoxidable de 300 pm y se filtró con fibras de poliéster. El filtrado se centrifugó a 4000 rpm durante 4 horas, descartando el sobrenadante. El sólido recuperado se lavó con 200 mi de HC1 al 30%, la mezcla se tamizó utilizando mallas de acero inoxidable de 300 pm y se filtró con fibras de poliéster. El filtrado se centrifugó a 4000 rpm durante 4 horas, descartando el sobrenadante. El sólido recuperado se lavó con 200 mi de etanol, la mezcla se tamizó utilizando mallas de acero inoxidable de 300 pm y se filtró con fibras de poliéster. El filtrado se centrifugó a 4000 rpm durante 4 horas, descartando el sobrenadante. Al terminar con los lavados, el material se coaguló con 200 mi de éter y la suspensión resultante se filtró sobre membranas de PTFE con tamaño de poro de 0.45 pm y el sólido recuperado se secó al vacío a temperatura ambiente. Finalmente, la cantidad de material obtenido fue de 5.8 gramos. For the improved Hummers method, a 9: 1 mixture of concentrated sulfuric acid (H 2 S0 4 ) and phosphoric acid (H 3 P0 4 ) was prepared. Subsequently, 3 grams of graphite and 18 grams of potassium permanganate (KMn0 4 ) were added, generating a slight exotherm of 35-40 ° C. The reaction was then heated to 50 ° C and mixed for 12 hours. Subsequently, the reaction was cooled to room temperature and placed in ice, adding 3 ml of 30% H 2 0 2 . The mixture was then screened using 300 µm stainless steel mesh and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant. The recovered solid was washed with 200 ml of water, the mixture was sieved using 300 µm stainless steel meshes and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant. The recovered solid was washed with 200 ml of 30% HCl, the mixture was sieved using 300 µm stainless steel mesh and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant. The recovered solid was washed with 200 ml of ethanol, the mixture was sieved using 300 pm stainless steel mesh and filtered with polyester fibers. The filtrate was centrifuged at 4000 rpm for 4 hours, discarding the supernatant. At the end of the washings, the material was coagulated with 200 ml of ether and the resulting suspension was filtered on PTFE membranes with pore size of 0.45 pm and the recovered solid was dried under vacuum at room temperature. Finally, the amount of material obtained was 5.8 grams.
Las desventajas de ambos métodos, incluyendo su bajo rendimiento en la producción de óxido de grafeno, y de documentos que se encuentran en el arte previo, están señaladas líneas arriba y más adelante. The disadvantages of both methods, including their low yield in the production of graphene oxide, and of documents found in the prior art, are pointed out above and below.
La presente invención desarrolló un método y sistema o ensamble operativo replicable para la producción a gran escala de óxido de grafeno y óxido de grafeno reducido, en menor tiempo, riesgo mínimo, bajo costo y alta calidad, para aplicaciones múltiples y económicamente viables a nivel industrial. La optimización de cada etapa se da en función de los equipos y dispositivos implementados para una línea de producción con los cuales se tienen medidas de prevención y control de riesgos, capacidad de producción a escala industrial, reducción de tiempos y se favorece el control de calidad y replicabilidad, tanto del proceso como del producto. La invención está dividida en cuatro grandes módulos diferenciados por su función. En el primer módulo se llevan a cabo las etapas de oxidación- exfoliación y contención de reacción, en el segundo módulo se llevan a cabo las purificaciones del material, en el tercero se lleva a cabo la descarga de los lixiviados residuales generados por el proceso y finalmente en el cuarto módulo el terminado del producto. Las particularidades de cada módulo serán descritas más adelante. The present invention developed a method and replicable operating system or assembly for the large-scale production of graphene oxide and reduced graphene oxide, in less time, minimal risk, low cost and high quality, for multiple applications and economically viable at an industrial level. The optimization of each stage occurs based on the equipment and devices implemented for a production line with which there are risk prevention and control measures, industrial-scale production capacity, reduction of times and quality control is favored and replicability, both of the process and the product. The invention is divided into four large modules differentiated by their function. In the first module, the oxidation-exfoliation and reaction containment stages are carried out, in the second module the purifications of the material are carried out, in the third the discharge of the residual leachate generated by the process is carried out and finally in the fourth module the finished product. The particularities of each module will be described later.
El documento US 2018/0230014 Al divulga un método para la producción de óxido de grafito, óxido de grafeno y grafeno, a nivel industrial y eficiente en costo. Dicho documento señala que el primer paso, antes de la oxidación, es moler el grafito a 100-150 pm, seguido por su purificación por flotación a 90°C. Posteriormente, el grafito pre -purificado es oxidado mediante agentes oxidantes inorgánicos como permanganato de potasio, nitrato de sodio y ácido sulfúrico. El grafito oxidado se exfolia empleando fuerzas extemas como la sonicación, para finalmente ser reducido a grafeno. El producto del método reclamado son hojas o plaquetas de óxido de grafeno a nanoescala con un espesor menor a 100 nm. Document US 2018/0230014 Al discloses a method for the production of graphite oxide, graphene oxide and graphene, at an industrial and cost efficient level. This document indicates that the first step, before oxidation, is to grind the graphite at 100-150 pm, followed by its purification by flotation at 90 ° C. Subsequently, the pre-purified graphite is oxidized by inorganic oxidizing agents such as potassium permanganate, sodium nitrate and sulfuric acid. The oxidized graphite is exfoliated using external forces such as sonication, to finally be reduced to graphene. The product of the claimed method is nanoscale graphene oxide sheets or platelets with a thickness less than 100 nm.
Sin embargo, el documento US 2018/0230014 Al presenta altos costos de producción, puesto que además de requerir etapas previas de molido y purificación del grafito, la cantidad de reactivos químicos, temperaturas y tiempos de producción empleados son considerablemente elevados para la obtención de exponencialmente bajas cantidades de óxido de grafeno, debido a que para su síntesis se requieren 100 mi de mezcla ácida por gramo de grafito a oxidar. However, document US 2018/0230014 Al presents high production costs, since in addition to requiring previous stages of grinding and purification of graphite, the amount of chemical reagents, temperatures and production times used are considerably high to obtain exponentially low amounts of graphene oxide, since 100 ml of acid mixture per gram of graphite to be oxidized are required for its synthesis.
El documento US 2017/0334728 Al divulga un método químico-mecánico de oxidación de grafito cuyos productos son grafeno/grafito oxidado y agua sin necesidad de purificación posterior. El método utiliza peróxido de hidrógeno como oxidante, con potencial de oxidación ligero, menor a 2V. Document US 2017/0334728 Al discloses a chemical-mechanical method of oxidation of graphite whose products are graphene / oxidized graphite and water without the need for subsequent purification. The method uses hydrogen peroxide as an oxidant, with a slight oxidation potential, less than 2V.
No obstante, el método divulgado también representa un modelo para bajas producciones de óxido de grafeno, esto se justifica porque la cantidad de óxido de grafeno resultante puede inferirse por la cantidad de grafito inicial, donde la invención hace referencia al molido de 30 gramos de grafito para su posterior oxidación. Por lo tanto, no es un método que pueda emplearse para el uso de óxido de grafeno a niveles industriales. However, the disclosed method also represents a model for low graphene oxide productions, this is justified because the resulting amount of graphene oxide can be inferred by the initial amount of graphite, where the invention refers to the grinding of 30 grams of graphite for subsequent oxidation. Therefore, it is not a method that can be used for the use of graphene oxide at industrial levels.
La patente US 9, 758, 379 B2 menciona un proceso para preparar grafito oxidado para la obtención de grafeno exfoliado. El proceso utiliza considerablemente menos clorato que los sistemas previamente conocidos y se efectúa por calentamiento de grafito oxidado a temperaturas de 250°C a 2000°C. US patent 9,758,379 B2 mentions a process for preparing oxidized graphite to obtain exfoliated graphene. The process uses considerably less chlorate than previously known systems and is carried out by heating oxidized graphite at temperatures of 250 ° C to 2000 ° C.
Sin embargo, el método reclamado en dicha patente representa de igual forma, un método para bajas producciones de grafito oxidado, esto considerando que la cantidad de grafito oxidado producido, puede estimarse por la cantidad de grafito a oxidar. El método reclamado en la patente US 9, 758, 379 B2 hace referencia al molido de 30 gramos de grafito para su oxidación; por lo tanto, su capacidad de producción es reducida. However, the method claimed in said patent represents in the same way, a method for low production of oxidized graphite, this considering that the quantity of oxidized graphite produced can be estimated by the quantity of graphite to be oxidized. The method claimed in US patent 9,758,379 B2 refers to the grinding of 30 grams of graphite for its oxidation; therefore, its production capacity is reduced.
El documento MX/a/2016/007399 describe un método de reducción parcial de óxido de grafeno mediante reductores suaves a temperatura ambiente. El método comprende: (a) oxidación de nanoplateletas de grafito hasta obtener óxido de grafeno, preferentemente mediante oxidación por el método de Hummers; y la exfoliación del óxido de grafeno resultante a través de medios ultrasónicos; (b) reducción del óxido de grafeno en medio acuoso con un reductor suave a temperatura ambiente y un pH básico; y (c) secado del óxido de grafeno a temperatura ambiente; y donde, en una modalidad preferente, la reducción implica el uso de reductores suaves tales como fructosa y ácido ascórbico en medio acuoso a pH 10, a temperaturas entre 20°C y 35°C, en relaciones de 1:10 y 1:20 (óxido de grafeno- agente reductor), usando tiempos de reducción de 10 minutos hasta 144 horas. Document MX / a / 2016/007399 describes a method of partial reduction of graphene oxide using mild reducers at room temperature. The method comprises: (a) oxidation of graphite nanoplatelets to obtain graphene oxide, preferably by oxidation by the Hummers method; and exfoliating the resulting graphene oxide through ultrasonic means; (b) reduction of graphene oxide in aqueous medium with a mild reducing agent at room temperature and basic pH; and (c) drying the graphene oxide at room temperature; and where, in a preferred embodiment, the reduction involves the use of mild reducers such as fructose and ascorbic acid in aqueous medium at pH 10, at temperatures between 20 ° C and 35 ° C, in ratios of 1:10 and 1:20 (graphene oxide-reducing agent), using reduction times from 10 minutes to 144 hours.
Sin embargo, el documento MX/a/2016/007399 reporta una capacidad de producción de óxido de grafeno de tan solo 5.8 gramos, empleando tiempos de oxidación de 7 hasta 19 horas con rangos de temperaturas de 30°C a 85°C. However, document MX / a / 2016/007399 reports a graphene oxide production capacity of only 5.8 grams, using oxidation times of 7 to 19 hours with temperature ranges from 30 ° C to 85 ° C.
Para la purificación de grafito, el documento MX/a/2016/007399 emplea sistemas de filtración al vacío, los cuales son sistemas costosos, con baja capacidad y velocidad de filtración (ml/h). Además, en el documento MX/a/2016/007399 para la producción de grafeno químicamente modificado se utiliza hidracina, la cual es un reactivo de alta toxicidad y posiblemente cancerígeno. Los tiempos de reducción de 75 minutos aproximadamente y capacidad de producción en el orden de miligramos (54 mg). For the purification of graphite, document MX / a / 2016/007399 uses vacuum filtration systems, which are expensive systems, with low capacity and filtration speed (ml / h). In addition, in document MX / a / 2016/007399 for the production of chemically modified graphene, hydrazine is used, which is a highly toxic and possibly carcinogenic reagent. Reduction times of approximately 75 minutes and production capacity in the order of milligrams (54 mg).
El documento MX/a/2017/010798 describe un método de fimcionalización de óxido de grafeno de tamaño controlable por ultrasonido, en condiciones de baño de temperatura de 15°C, potencia de 40% de amplitud por tiempos de 10 a 100 minutos, con aminas ramificadas o lineales en presencia de solvente orgánico de interés como 1,2-diclorobenceno o tolueno; en donde la fimcionalización implica el uso de sustancias como dodecilamina, octadecilamina y heptadeca-9-amina disueltas en etanol, metano, propanol, butanol o isopropanol en proporciones de volumen de 1:3 a 2:1 en régimen de agitación. Donde dicha fimcionalización tiene como finalidad impartir afinidad al óxido de grafeno en solventes orgánicos donde normalmente no la tendría. Tal como se señala, dicho documento está dirigido a un método de funcionalización y no a resolver los problemas de producción de óxido de grafeno y óxido de grafeno reducido a los cuales la presente invención se refiere. Document MX / a / 2017/010798 describes a method of functionalization of graphene oxide of controllable size by ultrasound, in bath conditions of temperature of 15 ° C, power of 40% amplitude for times of 10 to 100 minutes, with branched or linear amines in the presence of an organic solvent of interest such as 1,2-dichlorobenzene or toluene; where functionalization involves the use of substances such as dodecylamine, octadecylamine and heptadeca-9-amine dissolved in ethanol, methane, propanol, butanol or isopropanol in volume ratios of 1: 3 to 2: 1 under stirring. Where said functionalization has the purpose of imparting affinity to graphene oxide in organic solvents where it normally would not have it. As noted, said document is directed to a functionalization method and not to solve the problems of production of graphene oxide and reduced graphene oxide to which the present invention relates.
El documento: MX/a/2011/012432 divulga un óxido de grafeno altamente oxidado y métodos para la producción del mismo en varias modalidades; en general, los métodos incluyen mezclar una fuente de grafito con una solución que contenga por lo menos un oxidante y al menos un agente de protección para formar el óxido de grafeno. El documento señala que el óxido de grafeno sintetizado mediante los métodos que se describen en la presente, es de alta calidad estructural, está más oxidado y mantiene una mayor proporción de anillos aromáticos y dominios aromáticos que el óxido de grafeno preparado en ausencia de por lo menos de un agente de protección. Dicho documento además menciona que se dan a conocer también los métodos para la reducción del óxido de grafeno a grafeno químicamente convertido; el grafeno químicamente convertido es significantemente más eléctricamente conductor que el grafeno químicamente convertido preparado a partir de otras fuentes de grafeno. Document: MX / a / 2011/012432 discloses a highly oxidized graphene oxide and methods for its production in various modalities; In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protective agent to form the graphene oxide. The document points out that graphene oxide synthesized by the methods described herein is of high structural quality, is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than graphene oxide prepared in the absence of at least less of a protection agent. Said document further mentions that the methods for the reduction of graphene oxide to chemically converted graphene are also disclosed; chemically converted graphene is significantly more electrically conductive than chemically converted graphene prepared from other graphene sources.
Sin embargo, en el documento MX/a/2011/012432 se establece que para la producción de grafeno químicamente modificado se utiliza hidracina, la cual es un reactivo de alta toxicidad y posiblemente cancerígeno. Con tiempos de reducción de 75 minutos aproximadamente y capacidad de producción en el orden de miligramos (76 mg). However, document MX / a / 2011/012432 establishes that hydrazine is used for the production of chemically modified graphene, which is a highly toxic and possibly carcinogenic reagent. With reduction times of approximately 75 minutes and production capacity in the order of milligrams (76 mg).
Como un diestro en la materia puede observar a partir de lo anteriormente expuesto, los problemas a resolver por la presente invención son: reducción de riesgos operativos, tiempo de proceso y costos de producción; la obtención de productos estandarizados de acuerdo a métodos replicables y parámetros de calidad bien establecidos, así como reducción de la complejidad para su producción masiva y segura, para contar con alta disponibilidad para su aplicación industrial, así como permitir la funcionalización programada del óxido de grafeno obtenido. As one skilled in the art can observe from the foregoing, the problems to be solved by the present invention are: reduction of operational risks, process time and production costs; obtaining standardized products according to replicable methods and well-established quality parameters, as well as reducing complexity for their massive and safe production, to have high availability for their industrial application, as well as allowing the programmed functionalization of graphene oxide obtained.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
En una primera modalidad la presente invención se refiere a un método mejorado para incrementar la producción y reducción de óxido de grafeno, que comprende: hacer reaccionar químicamente grafito con un tamaño de partícula estándar y KMn04 en presencia de H2S04/ H3P04; controlar la temperatura de inicio en un sistema de mezclado rotatorio automatizado (SMRA); controlar la temperatura de un recirculador de refrigeración y ajustar rampas de calentamiento ascendentes de la temperatura de la reacción in si tu y ex si tu de 0°C hasta 50°C en un intervalo de 5 hasta 12 horas de oxidación-exfoliación dentro del SMRA; contener la reacción con H202 a una temperatura constante; controlar la temperatura de un recirculador extemo de refrigeración y controlar la respuesta in situ de la mezcla por monitoreo infrarrojo; purificar la pasta de óxido de grafeno obtenida en presencia de H20, HC1 y CH CH2OH mediante etapas estandarizadas de purificación; controlar el terminado final del óxido de grafeno con funcionalización variable para obtenerlo en forma de pasta, polvo y óxido de grafeno reducido, con diferentes tamaños de partícula y mediciones de pH. In a first embodiment, the present invention refers to an improved method to increase the production and reduction of graphene oxide, comprising: chemically reacting graphite with a standard particle size and KMn0 4 in the presence of H 2 S0 4 / H 3 P0 4 ; controlling the start temperature in an automated rotary mixing system (SMRA); control the temperature of a refrigeration recirculator and set increasing heating ramps of the reaction temperature in si tu and ex si tu from 0 ° C to 50 ° C in a 5 to 12 hour oxidation-exfoliation interval within the SMRA ; contain the reaction with H 2 0 2 at a constant temperature; control the temperature of an external refrigeration recirculator and control the in situ response of the mixture by infrared monitoring; purifying the obtained graphene oxide paste in the presence of H 2 0, HC1 and CH CH 2 OH by means of standardized purification steps; control the final finish of graphene oxide with variable functionalization to obtain it in the form of paste, powder and reduced graphene oxide, with different particle sizes and pH measurements.
En una segunda modalidad, la presente invención también se refiere a un sistema o ensamble operativo para la producción de óxido de grafeno que comprende: un módulo de oxidación-exfoliación y contención de reacción, formado por un matraz de balón modificado con costillas intemas que opera insertado a un sistema de mezclado rotatorio automatizado (SMRA) conectado tanto a un recirculador externo de refrigeración como a una línea de agua derivada de un sistema de purificación y un sensor infrarrojo para el monitoreo de temperatura; un módulo de purificación, formado por sistemas de purificación con cubierta mecanizada; bases y bastidores con filtros montados sobre plataformas antiderrames, conectados a un módulo para la descarga directa de lixiviados residuales; y un módulo de terminado, formado por una cámara con extracción forzada en cuyo interior está dispuesto un homo de convección mecánica para desecado al vacío. In a second embodiment, the present invention also refers to an operative system or assembly for the production of graphene oxide comprising: an oxidation-exfoliation and reaction containment module, formed by a modified balloon flask with internal ribs that operates inserted into an automated rotary mixing system (SMRA) connected to both an external cooling recirculator and a water line derived from a purification system and an infrared sensor for temperature monitoring; a purification module, made up of purification systems with a mechanized cover; bases and frames with filters mounted on anti-spill platforms, connected to a module for direct discharge of residual leachate; and a finishing module, formed by a chamber with forced extraction inside which is arranged a mechanical convection oven for vacuum drying.
En una tercera modalidad, la presente invención se refiere a formulaciones que contienen óxido de grafeno y/o óxido de grafeno reducido obtenidos por el método de la presente invención como mej orador y/o aditivo para recubrimientos, pinturas, impermeabilizantes, tintas, concreto, cemento, asfalto, como materia prima y/o nanorelleno en aplicaciones técnicas químicas, entre otros. A manera de ejemplo, sin ser limitativos, entre los productos que aumentan su desempeño al ser formulados o incluir en su formulación al óxido de grafeno y/o óxido de grafeno reducido, se pueden citar los siguientes: primer (base de imprimación) con base alquidálica, esmalte con base alquidálica, pinturas con base vinil- acrílica, pinturas con base acrílica-estirenada, pinturas con base de poliuretano aromático, pinturas con base de poliuretano alifático, pinturas con poliuretano base agua, pintura de tráfico alquidal hule clorado, primer (base de imprimación) con base epóxica, con impermeabilizantes, tintas, pinturas conductoras, aditivo para concreto, aditivo de cemento, aditivo para asfalto, entre otros. Al formular o incluir en su formulación el óxido de grafeno u óxido de grafeno reducido en dichos productos, se les confiere un alto desempeño puesto que les proporcionan propiedades mejoradas; por ejemplo, sin ser limitativas, anticorrosivas, ignífugas, antimicrobianas, impermeabilizantes, de mayor durabilidad, de mayor adherencia y mayor resistencia a la radiación UV, aumento en la resistencia Marshall y la resistencia de tensión indirecta, incremento de dureza y resistencia a la penetración sin reducir elasticidad, entre otras. In a third embodiment, the present invention refers to formulations containing graphene oxide and / or reduced graphene oxide obtained by the method of the present invention as an improver and / or additive for coatings, paints, waterproofing agents, inks, concrete, cement, asphalt, as raw material and / or nanofiller in chemical technical applications, among others. By way of example, without being limiting, among the products that increase their performance when formulated or include graphene oxide and / or reduced graphene oxide in their formulation, the following can be mentioned: primer (primer base) with base alkyd, alkyd-based enamel, vinyl-acrylic-based paints, acrylic-styrene-based paints, aromatic polyurethane-based paints, aliphatic polyurethane-based paints, water-based polyurethane paints, alkyd traffic paint, chlorinated rubber, primer ( primer base) with epoxy base, with waterproofing agents, inks, conductive paints, concrete additive, cement additive, asphalt additive, among others. By formulating or including graphene oxide or reduced graphene oxide in their formulation in said products, they are given high performance since they provide them with improved properties; for example, without being limiting, anticorrosive, flame retardant, antimicrobial, waterproofing, longer lasting, with greater adherence and greater resistance to UV radiation, increased Marshall resistance and indirect tension resistance, increased hardness and resistance to penetration without reducing elasticity, among others.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Las figuras 1, 2A-2B y 3 ilustran un sistema de módulos A), B), C) y D) mediante los cuales se lleva a cabo el método de la presente invención, siendo el módulo A) un módulo de oxidación-exfoliación y contención, el módulo B) un módulo de purificación, el módulo C) un módulo de descarga de lixiviados residuales y el módulo D) un módulo para el terminado de producto. Figures 1, 2A-2B and 3 illustrate a system of modules A), B), C) and D) by means of which the method of the present invention is carried out, module A) being an oxidation-exfoliation module and containment, module B) a purification module, module C) a residual leachate discharge module and module D) a module for product finishing.
Las figuras 4a y 4b corresponden a imágenes representativas de patrones de difracción por microscopía electrónica de transmisión de alta resolución. Figures 4a and 4b correspond to representative images of diffraction patterns by high resolution transmission electron microscopy.
Las figuras 4c y 4d muestran el espectro Raman del óxido de grafeno obtenido por la invención, antes y después de ser reducido, respectivamente. Figures 4c and 4d show the Raman spectrum of the graphene oxide obtained by the invention, before and after being reduced, respectively.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En la presente invención se describen formas de realización de la invención que de ninguna manera deberán de ser interpretadas como limitantes, sino más bien deberán de ser interpretadas como ilustrativas, que ejemplifican los principios de las mismas. Cualquiera de los títulos de sección usados en la presente tiene propósitos organizativos solamente y no deben ser interpretados como limitantes del tema descrito. Para los propósitos de la presente divulgación, todos los números y letras de identificación de componentes/elementos estructurales/etapas del método y sistema o ensamble operativo pueden encontrarse en las figuras 1, 2A-2B, 3 y 4a-4d a menos que se indique de otra manera. In the present invention embodiments of the invention are described that should in no way be construed as limiting, but rather should be construed as illustrative, exemplifying the principles thereof. Any of the section titles used herein are for organizational purposes only and should not be construed as limiting the subject matter described. For the purposes of the present disclosure, all component / structural element / method steps / system / assembly identification numbers and letters may be found in Figures 1, 2A-2B, 3 and 4a-4d unless otherwise noted. otherwise.
La invención desarrolló la instalación de un sistema o ensamble operativo para la producción a gran escala de materiales nanoestructurados basados en carbono, conocidos como: óxido de grafeno y óxido de grafeno reducido. El sistema o ensamble se caracteriza por un módulo de oxidación-exfoliación y contención, un módulo de purificación, un módulo de descarga de lixiviados residuales y un módulo de terminado de producto. En cada módulo se desarrollan una serie de etapas sistematizadas que permiten: alta capacidad de producción, riesgo operativo mínimo, bajo costo y versatilidad, ya que se logra la producción de distintos tipos de óxido de grafeno de excelente calidad, con fimcionalizaciones variables y replicables, con mayor capacidad de producción en menor tiempo y mayor seguridad operacional, sustituyendo en su totalidad los métodos y herramientas conocidos. The invention developed the installation of an operating system or assembly for the large-scale production of carbon-based nanostructured materials, known as: graphene oxide and reduced graphene oxide. The system or assembly is characterized by an oxidation-exfoliation and containment module, a purification module, a residual leachate discharge module and a product finishing module. In each module a series of systematized stages are developed that allow: high production capacity, minimal operational risk, low cost and versatility, since the production of different types of graphene oxide of excellent quality is achieved, with variable and replicable functionalizations, with greater production capacity in less time and greater operational safety, completely replacing known methods and tools.
La metodología inicial de la invención se basó en el método de Hummers mejorado, sin embargo, debido a su baja eficiencia de producción, elevado riesgo operativo y nula factibilidad para llevar el uso del óxido de grafeno producido a niveles industriales, mediante la presente invención, se realizaron múltiples modificaciones, tanto metodológicas como técnicas, implementando variaciones en reactivos químicos, proporciones, temperaturas, tiempos, etapas, procesos y dispositivos utilizados para actividades distintas a su concepción original, confiriéndoles propiedades para crear un proceso industrial único de producción, diversificación, eficiente y seguro de distintos tipos de óxido de grafeno y óxido de grafeno reducido. Con las modificaciones incluidas en la presente invención, se logró incrementar la producción por reacción de gramos a kilogramos, con reducción de tiempos de producción, con alta calidad del material, con mayor seguridad y replicabilidad estándar entre lotes de producción. Además, con los métodos anteriores a la invención, se obtiene un solo tipo de material genérico que puede no ser adecuado para algunos usos o bien, requieren de füncionalizaciones adicionales al producto obtenido, mientras que la presente invención permite la funcionalización programada desde el inicio del proceso, para obtener diferentes materiales grafénicos de acuerdo con los requerimientos de los usos y/o aplicaciones en los que se van a utilizar. The initial methodology of the invention was based on the improved Hummers method, however, due to its low production efficiency, high operational risk, and no feasibility to bring the use of graphene oxide produced to industrial levels, through the present invention, multiple modifications were made, both methodological and technical, implementing variations in chemical reagents, proportions, temperatures, times, stages, processes and devices used for different activities to its original conception, giving them properties to create a unique industrial process for the production, diversification, efficient and safe of different types of graphene oxide and reduced graphene oxide. With the modifications included in the present invention, it was possible to increase the production per reaction from grams to kilograms, with reduction of production times, with high quality of the material, with greater safety and standard replicability between production batches. Furthermore, with the methods prior to the invention, a single type of generic material is obtained that may not be suitable for some uses or require additional functionalizations to the product obtained, while the present invention allows programmed functionalization from the beginning of the procedure. process, to obtain different graphene materials according to the requirements of the uses and / or applications in which they are to be used.
Como se mencionó anteriormente, la presente invención desarrolló un método y sistema o ensamble operativo replicable para la producción a gran escala de óxido de grafeno y óxido de grafeno reducido, en menor tiempo, riesgo mínimo, bajo costo y alta calidad para aplicaciones múltiples y económicamente viables a nivel industrial. La optimización de cada etapa se da en fünción de los equipos y dispositivos implementados para una línea de producción con los cuales se tienen medidas de prevención y control de riesgos, capacidad de producción a escala industrial, reducción de tiempos y favorecen al control de calidad y replicabilidad tanto del proceso como del producto. La invención está dividida en cuatro grandes módulos diferenciados por su fünción. En el primer módulo se llevan a cabo las etapas de oxidación-exfoliación y contención de reacción, en el segundo módulo se llevan a cabo las purificaciones del material, en el tercer módulo se lleva a cabo la descarga de los lixiviados residuales generados por el proceso y finalmente en el cuarto módulo de terminado de producto se llevan a cabo las actividades relacionadas con el secado y reducción del óxido de grafeno. Las particularidades de cada módulo serán descritas más adelante. As mentioned above, the present invention developed a replicable operating method and system or assembly for large-scale production of graphene oxide and reduced graphene oxide, in less time, minimal risk, low cost and high quality for multiple applications and economically. industrially viable. The optimization of each stage occurs in function of the equipment and devices implemented for a production line with which there are risk prevention and control measures, industrial-scale production capacity, reduction of times and favoring quality control and replicability of both the process and the product. The invention is divided into four large modules differentiated by their function. In the first module the oxidation-exfoliation and reaction containment stages are carried out, in the second module the purifications of the material are carried out, in the third module the discharge of the residual leachate generated by the process is carried out and finally in the fourth product finishing module the activities related to the drying and reduction of graphene oxide are carried out. The particularities of each module will be described later.
Sorprendentemente, se ha descubierto que el método y sistema o ensamble operativo divulgados en la presente invención pueden sustituir en su totalidad los métodos y herramientas conocidas por su mayor capacidad de producción y reducción de óxidos de grafeno con porcentajes de pureza en relación carbono/ oxígeno y con porcentajes de füncionalización en el intervalo de 5 a 50 % en menor tiempo y mayor seguridad operacional. Las siguientes tablas 1 y la son tablas comparativas que muestran las diferencias existentes entre los métodos más representativos para la síntesis química de óxido de grafeno y la presente invención (Tabla 1) y algunos ejemplos que no deben de ser considerados como limitativos sino más bien ilustrativos de las ventajas de la presente invención, de porcentajes de oxidación y funcionalización (Tabla la). Surprisingly, it has been discovered that the method and operating system or assembly disclosed in the present invention can completely replace the methods and tools known for their greater capacity for the production and reduction of graphene oxides with percentages of purity in carbon / oxygen ratio and with percentages of functionalization in the range of 5 to 50% in less time and greater operational safety. The following tables 1 and 1 are comparative tables that show the differences between the most representative methods for the chemical synthesis of graphene oxide and the present invention (Table 1) and some examples that should not be considered as limiting but rather illustrative of the advantages of the present invention, of oxidation and functionalization percentages (Table 1).
TABLA 1
Figure imgf000014_0001
TABLE 1
Figure imgf000014_0001
TABLA la
Figure imgf000015_0001
TABLE the
Figure imgf000015_0001
Por otro lado, aunque la mayoría de los usos conocidos del óxido de grafeno y del óxido de grafeno reducido se encuentran todavía en investigación, algunas aplicaciones están logrando introducirse al mercado. Sin embargo, los óxidos de grafeno utilizados en las aplicaciones conocidas, son producto de otras metodologías y procesos, por lo que sus características fisicoquímicas son distintas a las de los óxidos de grafeno derivados de la actual invención. On the other hand, although most of the known uses of graphene oxide and reduced graphene oxide are still under investigation, some applications are finding their way onto the market. However, the graphene oxides used in known applications are the product of other methodologies and processes, so their physicochemical characteristics are different from those of the graphene oxides derived from the current invention.
Cabe señalar que para cada purificación se utiliza un sistema de filtración exactamente igual, pero en distintas líneas de filtración siendo esta la razón por la cual el número que identifica el primero, segundo, tercero o cuarto sistema de purificación que conforman el sistema completo de purificación esta identificado con un mismo número, esto es el número (14), pero no así los otros componentes como por ejemplo, las tarimas, válvulas, bastidores, plataformas, etc. (Esto es nuevo) Antes de proceder a describir la metodología de la presente invención es necesario tener en cuenta que existen diferentes tipos de grafito, como por ejemplo el amorfo, el cristalino y el sintético, con diferentes grados de pureza y de tamaño de partícula. El tipo de grafito seleccionado y utilizado en la presente invención depende de las propiedades que se requieran de acuerdo con el uso/aplicación por lo que los ejemplos incluidos en la presente invención deberán solo ser considerados como ilustrativos y no limitativos de la misma. It should be noted that for each purification an exactly the same filtration system is used, but in different filtration lines, this being the reason why the number that identifies the first, second, third or fourth purification system that make up the complete purification system It is identified with the same number, this is the number (14), but not the other components such as the platforms, valves, racks, platforms, etc. (This is new) Before proceeding to describe the methodology of the present invention, it is necessary to take into account that there are different types of graphite, such as amorphous, crystalline and synthetic, with different degrees of purity and particle size . The type of graphite selected and used in the present invention depends on the properties that are required according to the use / application, so the examples included in the present invention should only be considered as illustrative and not limiting thereof.
Sistema o ensamble operativo para la producción de materiales nanoestructurados basados en carbono Operating system or assembly for the production of carbon-based nanostructured materials
El método reclamado para la producción de materiales nanoestructurados basados en carbono, conocidos como óxido de grafeno y óxido de grafeno reducido toma como referencia el método de Hummers, sin embargo, las modificaciones de la presente invención lo hacen totalmente diferente a dicho método y a cualquier otro método conocido puesto que como se observará más adelante, a dicho método de Hummers se le realizaron múltiples modificaciones tanto metodológicas como técnicas, implementando variaciones en reactivos químicos, proporciones, temperaturas, tiempos, etapas, procesos y dispositivos utilizados para actividades distintas a su concepción original, confiriéndoles propiedades para crear un proceso industrial único de producción, diversificación, eficiente y seguro de distintos tipos de óxido de grafeno y óxido de grafeno reducido. The claimed method for the production of carbon-based nanostructured materials, known as graphene oxide and reduced graphene oxide, takes as a reference the Hummers method, however, the modifications of the present invention do so Totally different from said method and any other known method since, as will be seen later, multiple methodological and technical modifications were made to said Hummers method, implementing variations in chemical reagents, proportions, temperatures, times, stages, processes and devices. used for activities other than their original conception, giving them properties to create a unique industrial process for the production, diversification, efficient and safe of different types of graphene oxide and reduced graphene oxide.
Las modificaciones realizadas se dividen en modificaciones metodológicas y modificaciones técnicas. The modifications made are divided into methodological modifications and technical modifications.
Modificaciones metodológicas: Methodological modifications:
Consisten en cambios en las materias primas utilizadas, tales como la diversificación de los tipos de grafito utilizados tanto en su naturaleza (sintética, amorfa, cristalina o combinaciones entre ellas); como, por ejemplo, tamaño de partícula (50-100 pm); cambios en proporciones y pureza del ácido sulfúrico (H2S04), ácido fosfórico (H3P04), permanganato de potasio (KMN04), peróxido de hidrógeno (H202), ácido clorhídrico (HC1), etanol absoluto (CH3CH2OH), y la eliminación del uso de éter (C2H5)20 para la producción de óxido de grafeno, pero utilizado para la producción de óxido de grafeno reducido; cambios en condiciones como: ajustes en temperaturas, tiempos y forma de mezclado. Estos cambios permiten obtener distintos tipos de óxido de grafeno en relación a sus características fisicoquímicas y, por lo tanto, con propiedades particulares, siendo todas esas modificaciones no obvias para un diestro en la materia y que llevan a obtener un método de producción de óxido de grafeno y óxido de grafeno reducido de alto rendimiento totalmente diferente a los actualmente conocidos. Por otro lado, el método reclamado identifica y detalla claramente las etapas del proceso de forma sistematizada. They consist of changes in the raw materials used, such as the diversification of the types of graphite used both in their nature (synthetic, amorphous, crystalline or combinations between them); such as, for example, particle size (50-100 pm); changes in proportions and purity of sulfuric acid (H 2 S0 4 ), phosphoric acid (H 3 P0 4 ), potassium permanganate (KMN0 4 ), hydrogen peroxide (H 2 0 2 ), hydrochloric acid (HC1), absolute ethanol (CH 3 CH 2 OH), and the elimination of the use of ether (C 2 H 5 ) 2 0 for the production of graphene oxide, but used for the production of reduced graphene oxide; changes in conditions such as: adjustments in temperatures, times and way of mixing. These changes make it possible to obtain different types of graphene oxide in relation to their physicochemical characteristics and, therefore, with particular properties, all these modifications being not obvious for a skilled person in the field and that lead to obtaining a method of producing graphene oxide. High performance graphene and reduced graphene oxide totally different from those currently known. On the other hand, the claimed method clearly identifies and details the stages of the process in a systematic way.
Asimismo, la invención reclama un sistema o ensamble operativo que representa una novedosa instalación para la conformación de una línea completa de producción, permitiendo separar las fases de cada etapa de forma clara y segura por módulos en donde en la figura 1 el módulo (A) es un módulo de oxidación, exfoliación y contención, en la figura 2A el módulo (B) es un módulo de purificación, en la figura 2C el módulo C) es un módulo de descarga de lixiviados residuales y en la figura D) es un módulo de terminado de producto. Likewise, the invention calls for an operating system or assembly that represents a novel installation for the formation of a complete production line, allowing the phases of each stage to be separated clearly and safely by modules, where in figure 1 the module (A) is an oxidation, exfoliation and containment module, in figure 2A the module (B) is a purification module, in figure 2C module C) is a residual leachate discharge module and in figure D) it is a module of finished product.
Módulo A) de oxidación-exfoliación y contención de reacción. Module A) of oxidation-exfoliation and reaction containment.
El módulo de oxidación, exfoliación y contención de reacción (A) comprende un sistema de filtración de agua (1) que comprende tres filtros de carbón activado y luz ultravioleta, que distribuye el agua filtrada por medio de un tubo (a) hacia un sistema de mezclado rotatorio automatizado (SMRA) (2), a través de un tubo (b) que sale de un contenedor de agua (3) ubicado en la parte superior del SMRA; el sistema de filtración de agua (1) también distribuye el agua filtrada por medio de un tubo (c) hacia un dispositivo productor de hielo (4) o similar y finalmente, distribuye el agua filtrada por medio de un tubo (d) a un segundo sistema de filtración por osmosis inversa conformado por tres filtros (5) que proveen el agua requerida para las etapas de purificación del óxido de grafeno. El SMRA (2) comprende un matraz de balón (6) con capacidad de 20 litros (que puede ser de menor o mayor capacidad; requiriendo, en su caso, un cambio en las proporciones de reactivos dentro de los rangos establecidos en la presente invención) modificado con costillas intemas para favorecer el mezclado de los reactivos por medio de turbulencia intema, un condensador vertical (7) cuyo diseño fue modificado para crear una entrada lateral de alimentación (8) para la dosificación de reactivos en una forma indirecta, es decir que una vez instalado el matraz en el SMRA (2), el operador para dosificar los reactivos o sustancias químicas pueda alimentar los mismos por la entrada lateral (8) a través de un embudo (9) que entra a 45 grados respecto al eje longitudinal del condensador vertical (7) con una trayectoria de 90 a 100 cm desde la parte extema de la cabina de seguridad (11) del SMRA (2) y que llega hasta el centro interno del matraz de balón (6), sin quedar totalmente expuesto en forma directa a los gases generados por la reacción química dentro del SMRA (2), protegiendo su integridad; un recipiente, por ejemplo una tina de agua (10) para sumergir el matraz de balón (6) y una cabina de seguridad (11) que aísla al SMRA (2). El condensador vertical (7), que puede ser por ejemplo tipo Graham, Friedrichs, Dimroth, Liebig, Allihn o algún otro que se encuentre comercialmente disponible, está conectado a un recirculador (12) de refrigeración, cuya finalidad es, mediante la operación a bajas temperaturas, evitar fugas de los gases generados por la reacción química y contenerlos dentro del SMRA (2), para de esta manera proporcionar mayor seguridad al operador y obviar la necesidad de una campana de extracción como la que se utiliza en las técnicas conocidas, y en la cual el operador está completamente expuesto a los gases generados durante la reacción, además de reducir el espacio o área de trabajo, limitándose el método de la presente invención tan sólo a uno o dos módulos a operar simultáneamente. Además de que los sistemas de uso común, emplean agua corriente a temperatura ambiente como refrigerante en flujo continuo a través de condensadores tipo rosario dando como resultado de 12-15 horas de flujo de agua sin recircular, no reutilizable y que no garantiza la ausencia de fügas de gases. The oxidation, exfoliation and reaction containment module (A) comprises a water filtration system (1) comprising three filters of activated carbon and ultraviolet light, which distributes the filtered water through a tube (a) towards a system of automated rotary mixing (SMRA) (2), through a tube (b) that comes out of a water container (3) located in the upper part of the SMRA; the filtration system Water (1) also distributes the filtered water through a tube (c) towards an ice-producing device (4) or similar and finally, distributes the filtered water through a tube (d) to a second filtration system by reverse osmosis made up of three filters (5) that provide the water required for the graphene oxide purification stages. The SMRA (2) comprises a balloon flask (6) with a capacity of 20 liters (which may be of a smaller or larger capacity; requiring, where appropriate, a change in the proportions of reagents within the ranges established in the present invention ) modified with internal ribs to favor the mixing of the reagents by means of internal turbulence, a vertical condenser (7) whose design was modified to create a lateral feed inlet (8) for the dosage of reagents in an indirect way, that is to say that once the flask is installed in the SMRA (2), the operator to dose the reagents or chemicals can feed them through the side inlet (8) through a funnel (9) that enters at 45 degrees with respect to the longitudinal axis vertical condenser (7) with a path of 90 to 100 cm from the external part of the safety cabin (11) of the SMRA (2) and that reaches the inner center of the balloon flask (6), without being totally exposed in form d Direct to the gases generated by the chemical reaction inside the SMRA (2), protecting its integrity; a container, for example a tub of water (10) to immerse the balloon flask (6) and a safety cabinet (11) that isolates the SMRA (2). The vertical condenser (7), which can be for example Graham, Friedrichs, Dimroth, Liebig, Allihn or some other commercially available type, is connected to a refrigeration recirculator (12), the purpose of which is, by means of the operation to low temperatures, avoid leaks of the gases generated by the chemical reaction and contain them within the SMRA (2), in order to provide greater safety to the operator and obviate the need for an extraction hood such as that used in known techniques, and in which the operator is completely exposed to the gases generated during the reaction, in addition to reducing the space or work area, the method of the present invention being limited to only one or two modules to operate simultaneously. In addition to the common use systems, they use tap water at room temperature as coolant in continuous flow through rosary-type condensers, resulting in 12-15 hours of non-recirculating water flow, not reusable and that does not guarantee the absence of gas leaks.
Los cambios de temperatura son monitoreados por una vía intema a través del panel de control propio del SMRA (2) que detecta la temperatura ex situ de la reacción y la segunda vía extema mediante un sensor infrarrojo (13), que permite la medición de temperatura in situ de la reacción. Temperature changes are monitored internally through the SMRA's own control panel (2) that detects the ex situ temperature of the reaction and the second external path through an infrared sensor (13), which allows temperature measurement in situ of the reaction.
Durante todo el proceso se llevan a cabo una serie de reacciones exotérmicas que es necesario controlar oportunamente para prevención de riesgos operacionales y para la prevención de alteraciones en la calidad del material. En términos de seguridad, si no se lleva con cuidado el proceso, se puede provocar la liberación de gases, exceso de presión en el SMRA (2) o la ignición de gases volátiles con oxígeno atmosférico y riesgo de incendio; en cuanto al control de calidad, porque la temperatura de inicio y la manera en como evoluciona dan la pauta para el autocalentamiento de la reacción química y para la obtención del producto deseado. Por lo anterior, los cambios de temperatura de todo el proceso son monitoreados y guiados en forma interna a través del panel de control propio del SMRA (2), que detecta la temperatura ex situ de la reacción y en forma extema, mediante un sensor infrarrojo (13), que permite la medición de temperatura in situ de la reacción. El operador al estar monitoreando directamente la temperatura podrá actuar oportunamente para anticiparse y controlar cualquier eventualidad, considerando el riesgo latente de incremento súbito de temperatura y estallamiento durante la oxidación. Cabe señalar que en las metodologías conocidas para la producción de óxido de grafeno y óxido de grafeno reducido, hasta ahora no se reporta monitoreo de temperatura in situ ; por lo tanto, no hay previsión oportuna de peligro de aumento repentino de temperatura y en caso de presentarse, el operador se ve en la necesidad de intervenir inmediata y directamente, incrementando el riesgo por exposición. Throughout the process, a series of exothermic reactions are carried out that it is necessary to control in a timely manner for the prevention of operational risks and for the prevention of alterations in the quality of the material. In terms of safety, if the process is not taken with care, it can cause the release of gases, excess pressure in the SMRA (2) or the ignition of volatile gases with atmospheric oxygen and risk of fire; in terms of quality control, because the starting temperature and the way it evolves give the guideline for the self-heating of the chemical reaction and for obtaining the desired product. Therefore, the temperature changes of the entire process are monitored and guided internally through the SMRA's own control panel (2), which detects the ex situ temperature of the reaction and externally, by means of an infrared sensor. (13), which allows in situ temperature measurement of the reaction. The operator, by directly monitoring the temperature, will be able to act in a timely manner to anticipate and control any eventuality, considering the latent risk of a sudden increase in temperature and bursting during oxidation. It should be noted that in the known methodologies for the production of graphene oxide and reduced graphene oxide, so far no in-situ temperature monitoring has been reported; therefore, there is no timely anticipation of the danger of a sudden increase in temperature and, if it occurs, the operator finds it necessary to intervene immediately and directly, increasing the risk of exposure.
Para la etapa de purificación es necesario desensamblar el matraz de balón (6) con costillas intemas que es la parte del SMRA (2) que contiene el óxido de grafeno, para de esta manera iniciar la purificación del mismo. La figura 2A ilustra el módulo B) de purificación del óxido de grafeno y la figura 2C el módulo de descarga de lixiviados residuales. For the purification step, it is necessary to disassemble the balloon flask (6) with internal ribs, which is the part of the SMRA (2) that contains graphene oxide, in order to start its purification. Figure 2A illustrates the graphene oxide purification module B) and Figure 2C the residual leachate discharge module.
Módulo B) de Purificación Purification Module B)
Para las etapas de purificación se adaptaron sistemas de filtración (14) independientes para cada etapa. La base de estos sistemas está hecha de contenedores fabricados de un material de alta resistencia química con capacidad de contención de cientos de litros. A estos contenedores se les diseñó una cubierta mecanizada (15) para evitar la contaminación del producto. De acuerdo a las dimensiones de los contenedores, se fabricaron bastidores (16) con filtros de por ejemplo poliéster, a colocar en la parte superior de cada contenedor. A cada sistema de purificación se le diseñó una salida (17) con válvulas de apertura y cierre (18) para la descarga del lixiviado hacia la zona de recolección de residuos. El sistema completo de purificación por filtración está montado sobre tarimas (19) antiderrames. A partir de las válvulas ( 18) de apertura y cierre de cada sistema de purificación por filtración se conecta una línea de descarga o tubo (20), la cual se oculta bajo el piso y desemboca en el Módulo C) de descarga de lixiviados directamente a los contenedores (21) colocados sobre las tarimas (22) antiderrames y ubicados en la zona de almacenamiento temporal de residuos fuera del área de producción, con el objetivo de evitar cualquier tipo de contacto por parte de los operadores con los lixiviados ácidos generados del proceso de producción. Las líneas de los lixiviados llegan hacia los contenedores (21) a través de tuberías (20) controladas de la misma manera por válvulas (23) de apertura y cierre. Para hacer la liberación de los lixiviados desde los sistemas de purificación, las válvulas ( 18) de apertura y cierre se abren de forma sincronizada con las válvulas (23) de apertura y cierre que llegan a los contenedores (21) de polietileno de alta densidad para su llenado a través de una tubería (20). Al llegar al 80% de su capacidad, todas las válvulas (18, 23) se cierran y las mangueras se reubican en contenedores vacíos. La cantidad de contenedores dependerá de las características del proceso, cantidades de producción, capacidad de las instalaciones, etc. Una vez llenos los contenedores al 80% de su capacidad, se recolectan por una compañía especializada en el manejo de residuos peligrosos. Módulo C) de descarga de lixiviados residuales. For the purification stages, independent filtration systems (14) were adapted for each stage. The base of these systems is made of containers made of a material with high chemical resistance with a holding capacity of hundreds of liters. These containers were designed with a mechanized cover (15) to avoid product contamination. According to the dimensions of the containers, racks (16) were manufactured with filters made of polyester, for example, to be placed on top of each container. An outlet (17) with opening and closing valves (18) was designed for each purification system to discharge leachate to the waste collection area. The complete filtration purification system is mounted on anti-spill platforms (19). From the opening and closing valves (18) of each filtration purification system, a discharge line or tube (20) is connected, which is hidden under the floor and empties into Module C) for directly discharging leachates. to the containers (21) placed on the anti-spill pallets (22) and located in the temporary waste storage area outside the production area, in order to avoid any type of contact by the operators with the acid leachates generated from the production process. Leachate lines they reach the containers (21) through pipes (20) controlled in the same way by opening and closing valves (23). To release the leachate from the purification systems, the opening and closing valves (18) are opened synchronously with the opening and closing valves (23) that reach the high-density polyethylene containers (21). for filling through a pipe (20). Upon reaching 80% capacity, all valves (18, 23) are closed and the hoses are relocated to empty containers. The number of containers will depend on the characteristics of the process, production quantities, capacity of the facilities, etc. Once the containers are 80% full, they are collected by a company specialized in handling hazardous waste. Module C) of discharge of residual leachate.
El módulo C) comprende los contenedores (21) los cuales se encuentran soportados sobre plataformas antiderrames (22). Hacia los contenedores (21) llegan las tuberías (20) de las líneas de descarga de los lixiviados provenientes de los sistemas de purificación controlados mediante las válvulas de apertura y cierre (18). El llenado de los contenedores (21) se realiza mediante la apertura sincronizada de las válvulas (18) de los sistemas de purificación y las válvulas (23) de los contenedores (21) del módulo de descarga de lixiviados. Module C) comprises the containers (21) which are supported on anti-spill platforms (22). The pipes (20) of the leachate discharge lines from the purification systems controlled by the opening and closing valves (18) reach the containers (21). The filling of the containers (21) is carried out by means of the synchronized opening of the valves (18) of the purification systems and the valves (23) of the containers (21) of the leachate discharge module.
La disposición de los módulos de purificación y flujo del lixiviado han sido diseñados de tal manera que no dependan de energía eléctrica y por términos de seguridad, están dispuestos para no retener en su interior más del 50% de su capacidad máxima. The disposition of the purification and leachate flow modules have been designed in such a way that they do not depend on electrical energy and for safety terms, they are arranged so as not to retain more than 50% of their maximum capacity inside.
Módulo D) de terminado de producto. Module D) of finished product.
El módulo D) comprende una cámara con extracción forzada (24) en cuyo interior está dispuesto un homo de convección mecánica para desecado al vacío (25) y un contenedor de aluminio con tapa (26). Module D) comprises a chamber with forced extraction (24) inside which is arranged a mechanical convection oven for vacuum drying (25) and an aluminum container with a lid (26).
Metodología para la producción de materiales nanoestructurados basados en carbonoMethodology for the production of carbon-based nanostructured materials
Con la invención se desarrollan una serie de diseños metodológicos subdivididos en etapas sistematizadas para producir materiales nanoestructurados basados en carbono conocidos como óxido de grafeno y óxido de grafeno reducido. El método comprende las siguientes etapas: With the invention, a series of methodological designs subdivided into systematized stages are developed to produce nanostructured carbon-based materials known as graphene oxide and reduced graphene oxide. The method comprises the following stages:
Etapa 1. Selección y preparación del material grafitico: El grafito es una forma alotrópica del carbono. Stage 1. Selection and preparation of graphical material: Graphite is an allotropic form of carbon.
La naturaleza y tamaño de partícula es fundamental para el tipo de óxido de grafeno, así como para el tiempo de oxidación-exfoliación. Para la presente invención, los materiales grafiticos fueron clasificados de acuerdo a varios criterios. The nature and size of the particle is fundamental for the type of graphene oxide, as well as for the oxidation-exfoliation time. For the present invention, graphical materials were classified according to various criteria.
Por su naturaleza y uso: Grafito amorfo (amorfo refinado), grafito sintético (sintético refinado), grafito cristalino e incluso la combinación de grafitos para la obtención de distintas calidades del material grafénico, en función de su metodología de producción. Al respecto, se observó que al controlar las características y naturaleza del grafito como material de partida permite mayor control en las propiedades físico-químicas del producto final, menor tiempo de síntesis y mayor seguridad operativa durante el proceso. By its nature and use: Amorphous graphite (refined amorphous), synthetic graphite (refined synthetic), crystalline graphite and even the combination of graphites to obtain different qualities of graphenic material, depending on its production methodology. In this regard, observed that by controlling the characteristics and nature of graphite as a starting material, it allows greater control of the physical-chemical properties of the final product, shorter synthesis time and greater operational safety during the process.
Por el nivel de molienda y tamaño de partícula: El tamaño de partícula se seleccionó a través de un proceso de tamizado automatizado. Con el método de la presente invención se consigue un alto grado de calidad, replicabilidad y fimcionalización, por lo cual se requiere que la selección y preparación inicial de materiales grafiticos estén perfectamente controladas. Etapa 2. Pre -oxidación. By grinding level and particle size: The particle size was selected through an automated screening process. With the method of the present invention, a high degree of quality, replicability and functionalization is achieved, for which it is required that the selection and initial preparation of graphical materials are perfectly controlled. Stage 2. Pre-oxidation.
Consiste en la preparación de las condiciones de proceso, en términos de equipos y reactivos. En primera instancia, se aseguró el correcto funcionamiento del módulo A) (ver figura 1) de oxidación -exfoliación y contención de la línea de producción, que comprende un sistema de filtración de agua (1) que comprende tres filtros de carbón activado y luz ultravioleta, con cuatro ramificaciones que se dirigen a un sistema de mezclado rotatorio automatizado (SMRA) (2), a un contenedor de agua (3), a un dispositivo productor de hielo (4) o similar y a un sistema de tres filtros de agua por osmosis inversa (5), siendo el agua de éste último sistema utilizada en el proceso. It consists of preparing the process conditions, in terms of equipment and reagents. In the first instance, the correct operation of module A) (see figure 1) of oxidation -exfoliation and containment of the production line was ensured, which comprises a water filtration system (1) comprising three activated carbon filters and light ultraviolet, with four branches leading to an automated rotary mixing system (SMRA) (2), a water container (3), an ice-making device (4) or similar, and a three-filter water system by reverse osmosis (5), the water from the latter system being used in the process.
El SMRA (2) comprende un matraz de balón (6) modificado con costillas internas que se ajustó y aseguró dentro del SMRA (2). Dicho matraz de balón (6) modificado fue colocado o dispuesto dentro de un recipiente (10), el cual se llenó de agua para sumergir al matraz de balón (6). La temperatura del agua del recipiente (10) fue controlada en un rango de 0 a 10°C. Una vez sumergido el matraz, se activó la función de bajo vacío en un rango de 250-500 bar, para llenarlo con una mezcla del agente oxidante (H2S04) y del agente protector (H3P04) en cantidades previamente medidas, de acuerdo al tipo de óxido de grafeno a producir. El condensador vertical y el SMRA fueron herméticamente sellados, por lo que la salida de gases y/o vapores emitidos dentro del matraz de balón (6) fueron mantenidos en el interior del SMRA y por el condensador vertical (7) a través del cual pasa un refrigerante que es recirculado por el enfriador de recirculación (12) el cual fue programado a una temperatura de -10°C y recirculado hacia el SMRA (2). Al terminar el llenado del matraz de balón (6) con el agente oxidante (H2S04) y el agente protector (H3P04) se desactivó la función de vacío y se activó la función de mezclado de 20 a 30 revoluciones por minuto (rpm) durante 5 a 10 minutos para un primer control exotérmico. The SMRA (2) comprises a modified balloon flask (6) with internal ribs that was fitted and secured within the SMRA (2). Said modified balloon flask (6) was placed or arranged inside a container (10), which was filled with water to immerse the balloon flask (6). The temperature of the water in the container (10) was controlled in a range of 0 to 10 ° C. Once the flask was submerged, the low vacuum function was activated in a range of 250-500 bar, to fill it with a mixture of the oxidizing agent (H 2 S0 4 ) and the protective agent (H 3 P0 4 ) in previously measured quantities , according to the type of graphene oxide to be produced. The vertical condenser and the SMRA were hermetically sealed, so that the gases and / or vapors emitted inside the balloon flask (6) were kept inside the SMRA and by the vertical condenser (7) through which it passes a refrigerant that is recirculated by the recirculation cooler (12) which was programmed at a temperature of -10 ° C and recirculated to the SMRA (2). At the end of filling the balloon flask (6) with the oxidizing agent (H 2 S0 4 ) and the protective agent (H 3 P0 4 ), the vacuum function was deactivated and the mixing function was activated from 20 to 30 revolutions per minute. minute (rpm) for 5 to 10 minutes for a first exothermic control.
Etapa 3. Oxidación-exfoliación. Stage 3. Oxidation-exfoliation.
Una vez controlada la temperatura in situ de la mezcla ácida a ~ 10-20°C, se retiró el tapón o sello de seguridad que se encuentra en la entrada de la alimentación (8) para proceder con la dosificación de los polvos de permanganato de potasio (KMn04) y de grafito, para lo cual se introdujo en dicha entrada un embudo (9) que llegó aproximadamente hasta la parte media del matraz de balón (6) para permitir la alimentación de los polvos de KMn04, preferiblemente el embudo se colocó a ~ 45 grados respecto al eje longitudinal del condensador vertical (7). Once the in situ temperature of the acid mixture was controlled at ~ 10-20 ° C, the safety cap or seal found at the feed inlet (8) was removed to proceed with the dosage of the permanganate powders. potassium (KMn0 4 ) and graphite, for which a funnel (9) was introduced into said inlet that reached approximately the part middle of the balloon flask (6) to allow the feeding of the KMn0 4 powders, preferably the funnel was placed at ~ 45 degrees with respect to the longitudinal axis of the vertical condenser (7).
Se inició con la dosificación del segundo reactivo oxidante (KMn04). Al terminar la dosificación, se extrajo el embudo (9) y se colocó nuevamente el tapón o sello de seguridad, (8) manteniendo el mezclado durante 10 minuto a 20-30 rpm. Se repitió el procedimiento para continuar con la dosificación del agente a oxidar (grafito). Al finalizar la dosificación, el embudo (9) se extrajo y el tapón o sello de seguridad (8) se colocó nuevamente, manteniendo el mezclado durante 10 minutos a 20-30 rpm. It began with the dosage of the second oxidizing reagent (KMn0 4 ). At the end of the dosage, the funnel (9) was removed and the safety cap or seal was placed again, (8) keeping mixing for 10 minutes at 20-30 rpm. The procedure was repeated to continue with the dosage of the agent to be oxidized (graphite). At the end of the dosage, the funnel (9) was removed and the safety cap or seal (8) was placed again, maintaining mixing for 10 minutes at 20-30 rpm.
La aportación o uso del SMRA (2) dentro de una cabina de seguridad (11), el recirculador de refrigeración (12) el sensor infrarrojo (13) y el embudo (9) al sistema o ensamble operativo de la presente invención, hacen del proceso para la producción de óxido de grafeno confiable en términos de seguridad debido a que los riesgos de integridad del operador durante el manejo de los reactivos químicos se reduce considerablemente al igual que por el manejo de los riesgos propios de las mezclas y de sus derivados. Dichos riesgos suelen ser superiores a cuando se encuentran en su forma individual o sin mezclar. Por ejemplo, la reacción entre los dos primeros agentes oxidantes (H2S04 y KMn04) produce heptóxido de manganeso (MN207), el cual es sumamente volátil y puede estallar al contacto con el aire, con el agua o incluso con un golpe. Por lo tanto, es importante la barrera física que representa el SMRA (2) para el control de la temperatura desde el enfriador por recirculación (12) hasta el condensador vertical (7), para no permitir que los gases generados por la reacción ácida y oxidante salgan del SMRA (2) y que por lo tanto, el operador no quede expuesto a ellos. The contribution or use of the SMRA (2) within a safety cabin (11), the refrigeration recirculator (12) the infrared sensor (13) and the funnel (9) to the operating system or assembly of the present invention, make the Reliable process for the production of graphene oxide in terms of safety due to the fact that the operator's integrity risks during the handling of chemical reagents is considerably reduced, as well as due to the handling of the risks of mixtures and their derivatives. These risks are usually higher than when they are in their individual form or without mixing. For example, the reaction between the first two oxidizing agents (H 2 S0 4 and KMn0 4 ) produces manganese heptoxide (MN 2 0 7 ), which is highly volatile and can explode on contact with air, water or even with a bang. Therefore, the physical barrier represented by the SMRA (2) is important for controlling the temperature from the recirculating cooler (12) to the vertical condenser (7), so as not to allow the gases generated by the acid reaction and oxidizer come out of the SMRA (2) and therefore, the operator is not exposed to them.
Cuando el grafito entra en contacto con los agentes oxidantes, éste comienza a oxidarse, generando una tercer exotermia, cuyo nivel de peligrosidad está en función de la temperatura de inicio, la naturaleza y pureza del grafito, la velocidad de dosificación, la forma y la velocidad de mezclado. Esto es fundamental en el momento de dosificar, puesto que existe un riesgo latente de estallamiento sobre todo cuando la mezcla alcanza temperaturas superiores a los 55°C, por lo que durante la alimentación o administración de los reactivos es indispensable el monitoreo térmico tanto de la reacción in situ como del medio que la contiene ex situ. El monitoreo in situ de la reacción se llevó a cabo mediante el sensor infrarrojo (13) mientras que el monitoreo ex situ, se llevó a cabo a través del panel de control propio del SMRA (2). Se ajustaron apropiadamente las condiciones establecidas en la etapa 1 y entonces el rango de temperatura de la reacción durante la etapa 2 se controló a 10-20°C; sin embargo, en caso de incrementos súbitos de temperatura, se deberá de utilizar parte del hielo producido por el equipo productor de hielo (4) y se deberá de añadir al recipiente de agua (10), del cual se deberá drenar determinado volumen de agua caliente y sustituir por hielo de manera controlada, hasta ajustar la temperatura in situ entre 10-20°C por monitoreo infrarrojo (sensor infrarrojo (13)). Al terminar la administración de los reactivos, el mezclado a 20-30 rpm se mantuvo durante 10 minutos. A los 10 minutos se redujo la velocidad de mezclado a 10 rpm y se realizaron incrementos controlados de temperatura de 20 a 25 °C en 10 minutos, de 25 a 30°C con mezclado de 15 minutos, de 30 a 35°C con mezclado de 15 minutos, de 35-40°C con mezclado de 30 minutos y de 40-50°C con mezclado durante 5-12 horas dependiendo del tipo de óxido de grafeno a sintetizar. La tecnología del SMRA (2) ofrece paro automático de la temperatura con mezclado sostenido y también permite detectar automáticamente variaciones en el volumen del recipiente de agua de calentamiento (10), por lo que el depósito de agua filtrada (3) conectado al SMRA (2) compensa automáticamente el volumen de agua evaporada durante las 5-12 horas del proceso. When graphite comes into contact with oxidizing agents, it begins to oxidize, generating a third exotherm, the level of danger of which is a function of the starting temperature, the nature and purity of the graphite, the dosage rate, the form and the mixing speed. This is essential at the time of dosing, since there is a latent risk of bursting, especially when the mixture reaches temperatures above 55 ° C, so that during feeding or administration of reagents, thermal monitoring of both the reaction in situ as of the medium that contains it ex situ. In situ monitoring of the reaction was carried out using the infrared sensor (13) while ex situ monitoring was carried out through the SMRA's own control panel (2). The conditions established in step 1 were appropriately adjusted and then the temperature range of the reaction during step 2 was controlled at 10-20 ° C; However, in case of sudden increases in temperature, part of the ice produced by the ice-producing equipment (4) must be used and it must be added to the water container (10), of which A certain volume of hot water must be drained and replaced by ice in a controlled manner, until the in situ temperature is adjusted between 10-20 ° C by infrared monitoring (infrared sensor (13)). At the end of reagent administration, mixing at 20-30 rpm was maintained for 10 minutes. At 10 minutes the mixing speed was reduced to 10 rpm and controlled temperature increases were made from 20 to 25 ° C in 10 minutes, from 25 to 30 ° C with 15 minutes mixing, from 30 to 35 ° C with mixing. 15 minutes, 35-40 ° C with mixing for 30 minutes and 40-50 ° C with mixing for 5-12 hours depending on the type of graphene oxide to be synthesized. The technology of the SMRA (2) offers automatic stop of the temperature with sustained mixing and also allows to automatically detect variations in the volume of the heating water container (10), so that the filtered water tank (3) connected to the SMRA ( 2) Automatically compensates for the volume of water evaporated during the 5-12 hours of the process.
Etapa 4. Contención de reacción. Stage 4. Reaction containment.
Concluidas las 5-12 horas de reacción, la función de calentamiento del SMRA (2) se desactivó automáticamente mientras que la función de mezclado se mantuvo, permitiendo así llevar un descenso lento hasta temperatura ambiente. Posteriormente, el agua del SMRA (2) fue drenada parcialmente y se sustituyó por hielo recibido del generador de hielo (4) hasta que se logró una temperatura ex situ e in situ de ~ 0°C y ~ 10°C, respectivamente, para controlar una cuarta exotermia generada por el H202. La estabilidad de la temperatura se corroboró utilizando el sensor infrarrojo (13) antes y durante la adición del siguiente reactivo (H202). Teniendo controladas estas condiciones y sin dejar de mezclar, se retiró el tapón o sello de seguridad (8), se introdujo el embudo de tubo largo (9) a través del cual se administró lentamente y por goteo el H202. Tanto el KMn04 como el H202 son fuertes oxidantes que al entrar en contacto provocan una reacción de óxido-reducción, en la que el KMn04 que pudiese haber quedado sin reaccionar, oxida al peróxido de hidrógeno liberando oxígeno y provocando una cuarta exotermia, por lo que al terminar de dosificar el H202, el embudo (9) se extrajo y el tapón o sello de seguridad (8) se colocó de inmediato El mezclado debe permanecer activo de 3 a 5 horas a 10 rpm para complementar la reacción. Posteriormente, se desensambló el matraz de balón (6) del SMRA (2) y se preparó para la etapa de purificación. Etapa 5. Purificación. After the 5-12 hours of reaction, the heating function of the SMRA (2) was automatically deactivated while the mixing function was maintained, thus allowing a slow descent to room temperature. Subsequently, the water from the SMRA (2) was partially drained and replaced by ice received from the ice generator (4) until an ex situ and in situ temperature of ~ 0 ° C and ~ 10 ° C, respectively, was achieved to control a fourth exotherm generated by H 2 0 2 . The stability of the temperature was corroborated using the infrared sensor (13) before and during the addition of the next reagent (H 2 0 2 ). Keeping these conditions under control and without stopping mixing, the safety cap or seal (8) was removed, the long tube funnel (9) was inserted through which the H 2 0 2 was slowly and dripped . KMn0 4 like H 2 0 2 are strong oxidants that, when in contact, cause an oxide-reduction reaction, in which KMn0 4 that could have remained unreacted, oxidizes hydrogen peroxide releasing oxygen and causing a fourth exotherm, Therefore, at the end of dosing the H 2 0 2 , the funnel (9) was removed and the safety cap or seal (8) was placed immediately.The mixing must remain active from 3 to 5 hours at 10 rpm to complement the reaction. Subsequently, the balloon flask (6) was disassembled from the SMRA (2) and prepared for the purification step. Stage 5. Purification.
Purificación 1. Al desensamblar el matraz de balón (6) se vertió la pasta de óxido de grafeno a un contenedor a < 4°C. La pasta de óxido de grafeno se diluyó con agua producida por el sistema de filtración por osmosis inversa (5) en una proporción 1:1.7, dentro de una cámara con extracción forzada hasta controlar una quinta exotermia y los gases desprendidos. El producto se vació en un primer sistema de purificación (14) y se cubrió con la tapa mecanizada (15). Purificación 2. HC1. La pasta de óxido de grafeno depositada en el filtro (16) de poliéster del primer sistema de purificación, se recuperó y se mezcló homogéneamente con HC1 30% en una proporción de 2.2:1. La mezcla se mantuvo en reposo durante 3-5 h. Posteriormente, el material se diluyó con agua purificada por osmosis inversa obtenida del sistema (5) en una proporción 1: 2.7 y se vertió en el segundo sistema de purificación (14) y se cubrió con la tapa mecanizada (15). Purification 1. Upon disassembling the balloon flask (6), the graphene oxide paste was poured into a container at <4 ° C. The graphene oxide paste was diluted with water produced by the inverse osmosis filtration system (5) in a 1: 1.7 ratio, inside a chamber with forced extraction until a fifth exotherm was controlled and the gases evolved. The product was emptied into a first purification system (14) and covered with the mechanized lid (15). Purification 2. HC1. The graphene oxide paste deposited on the polyester filter (16) of the first purification system, was recovered and homogeneously mixed with 30% HC1 in a ratio of 2.2: 1. The mixture was kept standing for 3-5 h. Subsequently, the material was diluted with water purified by reverse osmosis obtained from system (5) in a 1: 2.7 ratio and poured into the second purification system (14) and covered with the mechanized lid (15).
Purificación 3. CH CH2OH. La pasta de óxido de grafeno depositada sobre el filtro (16) de poliéster del segundo sistema de purificación, se recuperó y se mezcló homogéneamente con CH3CH2OH en proporción 1:2. La mezcla se mantuvo en reposo durante 5 h y se realizó una segunda dilución con agua purificada por osmosis inversa obtenida del sistema (5) en una proporción 1:1.7, para verter sobre el tercer sistema de purificación (14) y se cubrió con la tapa mecanizada (15). Purification 3. CH CH 2 OH. The graphene oxide paste deposited on the polyester filter (16) of the second purification system was recovered and mixed homogeneously with CH 3 CH 2 OH in a 1: 2 ratio. The mixture was kept at rest for 5 h and a second dilution was made with water purified by reverse osmosis obtained from system (5) in a ratio 1: 1.7, to pour over the third purification system (14) and covered with the lid mechanized (15).
Purificación 4. El sólido depositado en el filtro (16) de poliéster en el tercer sistema de purificación se recuperó y se diluyó con agua purificada por osmosis inversa obtenida del sistema (5) en una proporción 1:5 y finalmente se vertió sobre el cuarto sistema de purificación (14) y se cubrió con la cubierta mecanizada (15). Purification 4. The solid deposited on the polyester filter (16) in the third purification system was recovered and diluted with water purified by reverse osmosis obtained from system (5) in a 1: 5 ratio and finally poured over the fourth purification system (14) and covered with the mechanized cover (15).
Etapa 6. Terminado de óxido de grafeno en pasta. Step 6. Graphene oxide paste finish.
La pasta recuperada del cuarto sistema de purificación fue recuperada sin tratamientos adicionales a la purificación 4. Las propiedades de éste óxido de grafeno dependen del proceso de producción y aplicación. The paste recovered from the fourth purification system was recovered without additional treatments to purification 4. The properties of this graphene oxide depend on the production and application process.
Etapa 7. Terminado de óxido de grafeno en polvo. Step 7. Finishing graphene oxide powder.
La pasta de óxido de grafeno que se recuperó del sistema de purificación 4 fue transferida a la cámara con extracción forzada (24) y secada a 50-80°C dentro de un homo de convección mecánica (25) durante 24-48 hrs. El tiempo de secado es dependiente de la masa y del porcentaje de humedad deseado. The graphene oxide paste that was recovered from purification system 4 was transferred to the forced extraction chamber (24) and dried at 50-80 ° C inside a mechanical convection oven (25) for 24-48 hrs. The drying time is dependent on the mass and the desired percentage of humidity.
El polvo de óxido de grafeno obtenido siguiendo el método y operando el sistema o ensamble operativo de la invención, es utilizado como precursor para la producción de óxido de grafeno reducido. The graphene oxide powder obtained following the method and operating the operating system or assembly of the invention is used as a precursor for the production of reduced graphene oxide.
Etapa 8. Terminado en óxido de grafeno reducido. Stage 8. Finished in reduced graphene oxide.
Una vez anclados los grupos funcionales a la red de grafeno, éstos son removidos parcialmente, de acuerdo a las 6 fases siguientes de reducción. Once the functional groups are anchored to the graphene network, they are partially removed, according to the following 6 reduction phases.
Fase 1. Pre-secado: Dentro de la cámara con extracción forzada (24), se pre-secó la pasta de óxido de grafeno a 80 °C durante 24 horas dentro del homo de convección mecánica (25). Phase 1. Pre-drying: Inside the chamber with forced extraction (24), the graphene oxide paste was pre-dried at 80 ° C for 24 hours inside the mechanical convection oven (25).
Fase 2. Rehidratación. En el interior de la cámara con extracción forzada (24), se rehidrató homogéneamente una fracción de óxido de grafeno pre-secado con (C2H5)20 a una proporción 1:1- 1:3 hasta formar una nueva pasta y se secó a temperatura ambiente dentro del homo de convección mecánica, activando la función de desecado al vacío (25) por 1 hora. Phase 2. Rehydration. Inside the chamber with forced extraction (24), a fraction of pre-dried graphene oxide was homogeneously rehydrated with (C 2 H 5 ) 2 0 to a 1: 1- 1: 3 ratio to form a new paste and dried at room temperature in a mechanical convection oven, activating the vacuum drying function (25) for 1 hour.
Fase 3. Programación: El polvo de óxido de grafeno desecado a temperatura ambiente se extrajo del homo de convección mecánica y se programó la temperatura (25) a 260°C y se precalentó en su interior un contenedor de aluminio con tapa (26). Phase 3. Programming: The graphene oxide powder dried at room temperature was extracted from the mechanical convection oven and the temperature (25) was programmed at 260 ° C and an aluminum container with a lid (26) was preheated inside.
Fase 4. Reducción: Se depositó y cubrió inmediatamente el óxido de grafeno desecado dentro del contenedor de aluminio (26) precalentado y se mantuvo dentro del homo de convección mecánica (25) a 260°C durante 90- 120 segundos. Phase 4. Reduction: The dried graphene oxide was immediately deposited and covered inside the preheated aluminum container (26) and kept inside the mechanical convection oven (25) at 260 ° C for 90-120 seconds.
Fase 5. Enfriamiento: Después de los 90- 120 segundos se extrajo el contenedor de aluminio (26) del homo de convección mecánica (25) con el óxido de grafeno reducido en su interior y se colocó dentro de la cámara con extracción forzada (24), sin retirar la tapa del contenedor para evitar que el material reaccione violentamente al contacto con el oxígeno, hasta su enfriamiento. Phase 5. Cooling: After 90-120 seconds, the aluminum container (26) was extracted from the mechanical convection oven (25) with the reduced graphene oxide inside and was placed inside the chamber with forced extraction (24 ), without removing the lid of the container to prevent the material from reacting violently on contact with oxygen, until it cools.
Fase 6. Terminado. El material recuperado en el contenedor de aluminio fue transformado a óxido de grafeno reducido. La reducción del material consistió en el desprendimiento de gmpos funcionales de su superficie, autoreparación de la estructura de grafeno y como consecuencia de ello se dieron cambios en sus características fisicoquímicas. Phase 6. Completed. The recovered material in the aluminum container was transformed to reduced graphene oxide. The reduction of the material consisted of the detachment of functional groups from its surface, self-repair of the graphene structure and as a consequence of this, there were changes in its physicochemical characteristics.
Para facilitar la comprensión del presente método, en la tabla 2 se resumen las etapas genéricas metodológicas y de proceso descritas con anterioridad, considerando que el tipo y calidad de cada producto dependerá de las modificaciones particulares de cada método, en términos de tipo de grafito y concentraciones de reactivos. To facilitate understanding of this method, Table 2 summarizes the generic methodological and process stages described above, considering that the type and quality of each product will depend on the particular modifications of each method, in terms of type of graphite and reagent concentrations.
Tabla 2
Figure imgf000025_0001
Table 2
Figure imgf000025_0001
Ejemplos Examples
A continuación se describen una serie de ejemplos que soportan la eficiencia del sistema o ensamble tecnológico y de su versatilidad para ser operado bajo diversas condiciones metodológicas, con el objetivo de modificar física y químicamente el grafito para producir óxidos de grafeno a gran escala y con funcionalizaciones variables para uso industrial. A la vez, la invención permite obtener óxidos de grafeno como precursores de óxido de grafeno reducido para otro tipo de aplicaciones. Las propiedades de los óxidos de grafeno están dadas por su estructura laminar, no conductora e hidrofílica, gracias al anclaje sobre su superficie de distintos porcentajes de grupos funcionales carboxilo, epóxido, alcohol y otros elementos químicos, que aumentan la distancia entre sus monocapas, las estabilizan por repulsión electrostática, disminuyen su energía de interacción y por tanto las hacen más fáciles de exfoliar e hibridar con otros compuestos para formar nuevos materiales. Al mismo tiempo, con la invención, se logra controlar a) el tamaño de partícula sin exfoliar, b) el tamaño de partícula exfoliada, c) su dispersabilidad, d) estabilidad térmica, e) densidad, f) absorbancia g) conductividad, h) pH, i) composición química, j) superficie de área, entre otras características explotables para distintos usos industriales. Estas características se pueden dar en todas las partes del método de la presente invención al darse las respectivas variaciones durante el mismo; por ejemplo, la selección del tipo de grafito, los tiempos de reacción, los grados de purificación y los niveles de oxidación o reducción. Además, las propiedades que se deseen están relacionadas con el porcentaje de funcionalización; por ejemplo, a mayor oxidación se reduce la conductividad y el producto se vuelve más hidrofílico, a menor oxidación (como en el óxido de grafeno reducido) aumenta la conductividad y se vuelve más hidrofóbico. A series of examples are described below that support the efficiency of the system or technological assembly and its versatility to be operated under various methodological conditions, with the aim of physically and chemically modifying graphite to produce graphene oxides on a large scale and with functionalizations variables for industrial use. At the same time, the invention makes it possible to obtain graphene oxides as precursors of reduced graphene oxide for other types of applications. The properties of graphene oxides are given by their laminar, non-conductive and hydrophilic structure, thanks to the anchoring on their surface of different percentages of functional groups carboxyl, epoxide, alcohol and other chemical elements, which increase the distance between their monolayers, the They stabilize by electrostatic repulsion, decrease their interaction energy and therefore make them easier to exfoliate and hybridize with other compounds to form new materials. At the same time, with the invention, it is possible to control a) the non-exfoliated particle size, b) the exfoliated particle size, c) its dispersibility, d) thermal stability, e) density, f) absorbance g) conductivity, h ) pH, i) chemical composition, j) surface area, among other exploitable characteristics for different industrial uses. These characteristics can be given in all parts of the method of the present invention given the respective variations during it; for example, the selection of the type of graphite, the reaction times, the degrees of purification and the levels of oxidation or reduction. Furthermore, the properties that are desired are related to the percentage of functionalization; for example, higher oxidation reduces conductivity and the product becomes more hydrophilic, lower oxidation (as in reduced graphene oxide) increases conductivity and becomes more hydrophobic.
Ejemplo 1 Example 1
Proceso para la producción de ~ 1.5 kilogramos de óxido de grafeno en pasta con funcionalización al 10%. Process for the production of ~ 1.5 kilograms of graphene oxide paste with 10% functionalization.
El método y sistema o ensamble para la producción de óxido de grafeno con funcionalización al 10% se desarrollan en las siguientes etapas. The method and system or assembly for the production of graphene oxide with 10% functionalization are developed in the following stages.
Etapa 1. Preparación de equipos y selección de reactivos de acuerdo a las características del material a sintetizar. Stage 1. Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
Se ajustaron las condiciones iniciales de operación del sistema o ensamble operativo, encendiendo y programando el recirculador de refrigeración a - 10 °C y llenando con agua y hielo el recipiente de agua del SMRA ajustando la temperatura a < 10 °C. The initial operating conditions of the system or operating assembly were adjusted, turning on and programming the refrigeration recirculator at -10 ° C and filling the SMRA water container with water and ice, adjusting the temperature to <10 ° C.
Etapa 2. Pre -oxidación. Stage 2. Pre-oxidation.
Se ajustó el matraz de balón adaptado con costillas internas para la generación turbulencia intema que asegura un mezclado homogéneo en el SMRA dentro de la cabina de seguridad del equipo, a una inclinación de ~ 45°. Para controlar la primer exotermia generada por la mezcla ácida (H2SO4/H3PO4), se sumergió el matraz dentro del recipiente de agua hasta quedar cubierto en un 50%. Se activó el sistema de vacío del SMRA y se vertió dentro del matraz de balón una proporción 8.8: 1 de H2SO4/H3PO4 (2400: 270 mi). Desde el panel de control del SMRA se ajustó la rotación del SMRA a 20 rpm por 5 minutos. The adapted balloon flask with internal ribs was adjusted for internal turbulence generation that ensures homogeneous mixing in the SMRA within the safety cabinet of the equipment, at an inclination of ~ 45 °. To control the first exotherm generated by the acidic mixture (H 2 SO 4 / H 3 PO 4 ), the flask was immersed in the water container until it was covered by 50%. The SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (2400: 270 ml) was poured into the balloon flask. From the SMRA control panel, the SMRA rotation was adjusted to 20 rpm for 5 minutes.
Etapa 3. Oxidación-Exfoliación. Stage 3. Oxidation-Exfoliation.
A través de la entrada indirecta de dosificación, ubicada en la columna lateral izquierda del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para dosificar el KMn04 (300 g, 1.0 eq.) sobre la mezcla H2SO4/H3PO4 a una temperatura de < 10 °C, con un mezclado a ~ 20 rpm, durante 30 minutos. Mediante el sensor de infrarrojo se monitoreó continuamente la temperatura de la reacción durante la dosificación, para controlar que la temperatura intema de la mezcla se encuentre a < 15°C. A través de la entrada indirecta de dosificación ubicada en la columna lateral del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo, para dosificar el grafito sintético (300 g, 1.0 eq.) con un tamaño de partícula de ~ 50 pm sobre la mezcla H2SO4/H3PO4/KM11O4. La temperatura de la reacción durante la dosificación del grafito sintético se monitoreó continuamente con el sensor infrarrojo, para controlar que la temperatura intema de la mezcla se encontrará a < 18°C. De identificarse temperaturas superiores a 18°C, se drenará ligeramente el recipiente de agua y se repondrá el volumen con hielo hasta controlar la temperatura de la reacción a 18°C. Al terminar la dosificación del grafito sintético, desde el panel de control del SMRA se programó el mezclado a ~ 10 rpm y se inició una rampa de calentamiento ascendente de temperatura de la reacción, elevando a 30°C y estabilizando durante 30 minutos. Desde el panel de control del SMRA programado a ~ 10 rpm, se programó la temperatura a 40°C y se estabilizó durante 30 minutos. La temperatura de la reacción durante las rampas de calentamiento debe ser estrictamente controlada y monitoreada con el sensor infrarrojo. De identificarse temperaturas superiores a las programadas por cada punto de estabilización de la rampa de calentamiento, se drenó ligeramente el recipiente de agua y se repuso el volumen con hielo hasta controlar la temperatura de la reacción a la temperatura programada. Desde el panel de control del SMRA programado a ~ 10 rpm, se incrementó nuevamente la temperatura a 50°C y se estabilizó durante 30 minutos. Desde el panel de control del SMRA programado a ~ 10 rpm se programó el mezclado por 4 horas a 50°C, asegurando un llenado automático para el reemplazo del agua evaporada durante el proceso, apagado del recipiente de calentamiento y mezclado sostenido del producto hasta disminuir gradualmente la temperatura de la reacción a ~ 26°C. Through the indirect dosing inlet, located on the left side column of the SMRA, at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to dose the KMn0 4 (300 g, 1.0 eq.) Onto the H 2 SO 4 / H 3 PO 4 mixture at a temperature of <10 ° C, with mixing at ~ 20 rpm, for 30 minutes. By means of the infrared sensor, the temperature of the reaction was continuously monitored during the dosage, to control that the internal temperature of the mixture was <15 ° C. Through the indirect dosing inlet located on the side column of the SMRA, at the intersection with the Graham type condenser at -10 ° C, a funnel was introduced, to dose the synthetic graphite (300 g, 1.0 eq.) With a ~ 50 pm particle size on mix H 2 SO 4 / H 3 PO 4 / KM11O 4 . The reaction temperature during the dosing of the synthetic graphite was continuously monitored with the infrared sensor, to control that the internal temperature of the mixture was <18 ° C. If temperatures above 18 ° C are identified, the water container will be drained slightly and the volume will be replaced with ice until the reaction temperature is controlled at 18 ° C. At the end of the dosing of the synthetic graphite, from the control panel of the SMRA the mixing was programmed at ~ 10 rpm and an ascending heating ramp of reaction temperature was started, raising to 30 ° C and stabilizing for 30 minutes. From the SMRA control panel set at ~ 10 rpm, the temperature was set to 40 ° C and stabilized for 30 minutes. The temperature of the reaction during the heating ramps must be strictly controlled and monitored with the infrared sensor. If temperatures higher than those programmed were identified for each stabilization point of the heating ramp, the water container was slightly drained and the volume was replaced with ice until the reaction temperature was controlled at the programmed temperature. From the SMRA control panel set at ~ 10 rpm, the temperature was increased again to 50 ° C and stabilized for 30 minutes. From the SMRA control panel set at ~ 10 rpm, mixing was programmed for 4 hours at 50 ° C, ensuring automatic filling for the replacement of evaporated water during the process, turning off the heating container and sustained mixing of the product until it decreased. gradually the reaction temperature to ~ 26 ° C.
Etapa 4. Contención de reacción. Stage 4. Reaction containment.
Al terminar el proceso de oxidación-exfoliación se procedió a contener la reacción con H202, mediante un recambio de agua del SMRA, por hielo dentro del recipiente hasta que se ajustó la temperatura in si tu de la reacción a ~ 15 °C, asegurando la estabilidad térmica durante 1 hora mediante monitoreo infrarrojo. A través de la entrada indirecta de dosificación, ubicada en la columna lateral del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para administrar por goteo 30 mi de H202 al 50%. Desde el panel de control del SMRA se programó el mezclado por 3-5 horas a 10 rpm con paro automático del equipo. At the end of the oxidation-exfoliation process, the reaction was contained with H 2 0 2 , by means of a water exchange from the SMRA, by ice inside the container until the temperature in si tu of the reaction was adjusted to ~ 15 ° C , ensuring thermal stability for 1 hour by infrared monitoring. Through the indirect dosing inlet, located in the side column of the SMRA, at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to drip 30 ml of 50% H 2 0 2 . From the SMRA control panel, mixing was programmed for 3-5 hours at 10 rpm with automatic equipment shutdown.
Etapa 5. Purificación. Stage 5. Purification.
Se desensambló del SMRA el matraz de balón con costillas internas que contenía el material oxidado y se inició la primera purificación. Purificación 1. Inmediatamente después de desensamblar el matraz, se recuperaron 3 kilos de pasta de óxido de grafeno y se realizó una dilución con agua filtrada por osmosis inversa, proporción 1:1.7 a temperatura ambiente, dentro de un contenedor a ~ 4°C. El producto se mezcló y mantuvo en reposo dentro de una cámara con extracción forzada durante 5 horas hasta detener la exotermia y la liberación de gases. Una vez a temperatura ambiente, la pasta de óxido de grafeno se vertió sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 1 para eliminar el material no oxidado y/o productos residuales. Purificación 2. Se recuperaron aproximadamente 1.5 kg de pasta de óxido de grafeno contenida en la parte superior del filtro de poliéster del sistema de purificación 1 y se mezcló homogéneamente con 0.6 litros de HC1 al 30%. La mezcla se mantuvo en reposo por 5 horas, para la eliminación de impurezas y restos ácidos de la pasta de óxido de grafeno. Se realizó una dilución de la mezcla ácida en agua filtrada por osmosis inversa con una proporción 1: 2.7 a temperatura ambiente. La mezcla ácida diluida se vertió sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 2 para su filtración. Purificación 3. Se recuperó 1 kilo de pasta de óxido de grafeno contenido sobre el filtro de poliéster del sistema de purificación 2 y se mezcló con una proporción 1:2 de CH3CH2OH. La mezcla permaneció en reposo durante 5 horas, para posteriormente ser diluida con agua filtrada por osmosis inversa en una proporción 1:1.7 para comenzar a elevar el pH del óxido de grafeno. Una vez diluido, el producto se vertió sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 3 para su último filtrado. Se recuperaron 1.5 kilos de pasta óxido de grafeno y se diluyó en agua filtrada por osmosis inversa a una proporción 1:5. El producto diluido fue filtrado sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 4. The inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started. Purification 1. Immediately after disassembling the flask, 3 kilograms of graphene oxide paste were recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ~ 4 ° C. The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide paste was poured onto the filter Polyester adapted in the frames placed on the purification systems 1 to eliminate the non-oxidized material and / or residual products. Purification 2. Approximately 1.5 kg of graphene oxide paste contained in the upper part of the polyester filter of purification system 1 were recovered and mixed homogeneously with 0.6 liters of 30% HCl. The mixture was kept at rest for 5 hours, to remove impurities and acid residues from the graphene oxide paste. The acidic mixture was diluted in filtered water by reverse osmosis with a 1: 2.7 ratio at room temperature. The dilute acidic mixture was poured onto the adapted polyester filter in the frames placed on the purification systems 2 for filtration. Purification 3. 1 kilogram of graphene oxide paste contained on the polyester filter of purification system 2 was recovered and mixed with a 1: 2 ratio of CH 3 CH 2 OH. The mixture remained at rest for 5 hours, to later be diluted with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide. Once diluted, the product was poured onto the adapted polyester filter in the racks placed on the purification systems 3 for its last filtration. 1.5 kilos of graphene oxide paste were recovered and diluted in filtered water by reverse osmosis at a 1: 5 ratio. The diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4.
Etapa 6. Terminado en pasta. Stage 6. Finished in paste.
Del filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 4, se recuperaron 1.5 kilos de pasta de óxido de grafeno con funcionalización al 10% y las siguientes características: índice de funcionalización por espectroscopia Raman IDI348 CIL'/IG 1602 cm ^ ~ 0.95, espectro de absorción por espectroscopia UV- visible On : 225 nm / 252 nm, tamaño de partícula sin exfoliar: <50 pm, Tamaño de hoja exfoliada: 1-5 pm. From the polyester filter adapted to the racks placed on purification systems 4, 1.5 kilos of graphene oxide paste with 10% functionalization were recovered and the following characteristics: functionalization index by Raman spectroscopy I DI 348 CI L '/ I G 1602 cm ^ ~ 0.95, absorption spectrum by UV-visible spectroscopy O n : 225 nm / 252 nm, non-exfoliated particle size: <50 pm, exfoliated leaf size: 1-5 pm.
Ejemplo 2 Example 2
Proceso para la producción de ~ 1 kilogramo óxido de grafeno en pasta con funcionalización al 30%. Process for the production of ~ 1 kilogram graphene oxide paste with 30% functionalization.
El método y sistema o ensamble para la producción de óxido de grafeno con funcionalización al 30% se desarrollan en las siguientes etapas: The method and system or assembly for the production of graphene oxide with 30% functionalization are developed in the following stages:
Etapa 1. Preparación de equipos y selección de reactivos de acuerdo a las características del material a sintetizar. Stage 1. Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
Se ajustaron las condiciones iniciales de operación del sistema o ensamble operativo, encendiendo y programando el recirculador de refrigeración a - 10 °C y llenando con agua y hielo el recipiente para agua del SMRA ajustando la temperatura a < 10 °C. The initial operating conditions of the operating system or assembly were adjusted by turning on and programming the cooling recirculator at -10 ° C and filling the SMRA water container with water and ice, adjusting the temperature to <10 ° C.
Etapa 2. Pre -oxidación. El matraz de balón adaptado con costillas internas para la generación turbulencia intema que asegura un mezclado homogéneo se ajustó en el SMRA dentro de la cabina de seguridad del equipo, a una inclinación de ~ 45°. Para controlar la primer exotermia generada por la mezcla ácida (H2SO4/H3PO4), se sumergió el matraz dentro del recipiente de agua, hasta quedar cubierto en un 50%. Se activó el sistema de vacío del SMRA y se vertió dentro del matraz de balón una proporción 8.8: 1 de H2SO4/ H3PO4 (4800: 540 mi). Desde el panel de control del SMRA se ajustó la rotación del SMRA a 20 rpm por 5 minutos. Stage 2. Pre-oxidation. The adapted balloon flask with internal ribs for internal turbulence generation that ensures homogeneous mixing was fitted in the SMRA inside the safety cabinet of the equipment, at an inclination of ~ 45 °. To control the first exotherm generated by the acidic mixture (H 2 SO 4 / H 3 PO 4 ), the flask was immersed in the water container, until it was covered by 50%. The SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (4800: 540 ml) was poured into the balloon flask. From the SMRA control panel, the SMRA rotation was adjusted to 20 rpm for 5 minutes.
Etapa 3. Oxidación-Exfoliación. Stage 3. Oxidation-Exfoliation.
A través de la entrada indirecta de dosificación ubicada en la columna lateral izquierda del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para dosificar el KMn04 (600 g, 2.0 eq.) sobre la mezcla H2SO4/H3PO4 a una temperatura de ~ 0 °C, con un mezclado a ~ 20 rpm, durante 30 minutos. La temperatura de la reacción durante la dosificación fue monitoreada continuamente con el sensor infrarrojo, controlando que la temperatura intema de la mezcla se encontrará a < 15°C. A través de la entrada indirecta de dosificación ubicada en la columna lateral del SMRA, en la intersección con el condensador tipo Graham a -10°C se introdujo un embudo para dosificar el grafito amorfo refinado (300 g, 1.0 eq.) con tamaño de partícula de ~ 50 pm sobre la mezcla H2S04/H3P04/KMn04. La temperatura de la reacción durante la dosificación del grafito amorfo refinado fue monitoreada continuamente con el sensor infrarrojo controlando que la temperatura interna de la mezcla se encontrará a < 18°C. De identificarse temperaturas superiores a 18°C se debe drenar el recipiente e agua y se debe de reponer el volumen con hielo hasta controlar la temperatura de la reacción a 18°C. Al terminar la dosificación del grafito amorfo refinado se programó el mezclado a ~ 10 rpm desde el panel de control del SMRA, y se inició una rampa de calentamiento ascendente de temperatura de la reacción, elevando a 20°C y estabilizando durante 30 minutos. Desde el panel de control del SMRA programado a ~ 10 rpm, se programó la temperatura a 30°C y se estabilizó durante 30 minutos. Se programó la temperatura a 40°C desde el panel de control del SMRA programado a ~ 10 rpm, y se estabilizó durante 30 minutos. La temperatura de la reacción durante las rampas de calentamiento fue estrictamente controlada y monitoreada con el sensor infrarrojo. De identificarse temperaturas superiores a las programadas por cada punto de estabilización de la rampa de calentamiento, se deberá drenar ligeramente el agua caliente del recipiente de agua y el volumen se debe de reponer con hielo hasta controlar la reacción a la temperatura programada. Se programó el mezclado por 5.5 horas a 40°C desde el panel de control del SMRA programado a ~ 10 rpm , asegurando un llenado automático para el reemplazo del agua evaporada durante el proceso, apagado del recipiente de calentamiento y mezclado sostenido del producto hasta disminuir gradualmente la temperatura de la reacción a ~ 26°C. Etapa 4. Contención de reacción. Through the indirect dosing inlet located on the left side column of the SMRA, at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to dose the KMn0 4 (600 g, 2.0 eq.) Onto the mix H 2 SO 4 / H 3 PO 4 at ~ 0 ° C, with mixing at ~ 20 rpm, for 30 minutes. The temperature of the reaction during the dosage was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was <15 ° C. Through the indirect dosing inlet located on the side column of the SMRA, at the intersection with the Graham type condenser at -10 ° C a funnel was introduced to dose the refined amorphous graphite (300 g, 1.0 eq.) With size of particle of ~ 50 pm on the mixture H 2 S0 4 / H 3 P0 4 / KMn0 4 . The reaction temperature during the metering of the refined amorphous graphite was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was <18 ° C. If temperatures above 18 ° C are identified, the water container must be drained and the volume must be replaced with ice until the reaction temperature is controlled at 18 ° C. At the end of the dosing of the refined amorphous graphite, mixing was programmed at ~ 10 rpm from the SMRA control panel, and an ascending heating ramp of reaction temperature was started, raising to 20 ° C and stabilizing for 30 minutes. From the SMRA control panel set at ~ 10 rpm, the temperature was set to 30 ° C and stabilized for 30 minutes. The temperature was set at 40 ° C from the SMRA control panel set at ~ 10 rpm, and stabilized for 30 minutes. The reaction temperature during the heating ramps was strictly controlled and monitored with the infrared sensor. If temperatures higher than those programmed for each stabilization point of the heating ramp are identified, the hot water must be drained slightly from the water container and the volume must be replaced with ice until the reaction is controlled at the programmed temperature. Mixing was programmed for 5.5 hours at 40 ° C from the SMRA control panel programmed at ~ 10 rpm, ensuring automatic filling for the replacement of the evaporated water during the process, turning off the heating container and sustained mixing of the product until decreasing gradually the reaction temperature to ~ 26 ° C. Stage 4. Reaction containment.
Una vez terminado el tiempo de oxidación-exfoliación se procedió a contener la reacción con H202. Primero se drenó parte del agua del recipiente de agua del SMRA y con hielo se ajustó la temperatura in situ de la reacción a ~ 10 °C, asegurando la estabilidad térmica durante 1 hora mediante monitoreo infrarrojo. A través de la entrada indirecta de dosificación ubicada en la columna lateral del SMRA en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para administrar por goteo, 120 mi de H202 al 50%. Se programó el mezclado por 3 horas a 10 rpm desde el panel de control del SMRA con paro automático del equipo. Etapa 5. Purificación. Once the oxidation-exfoliation time had ended, the reaction was contained with H 2 0 2 . First, part of the water was drained from the SMRA water container and the in situ temperature of the reaction was adjusted with ice to ~ 10 ° C, ensuring thermal stability for 1 hour by infrared monitoring. Through the indirect dosing inlet located in the side column of the SMRA at the intersection with the -10 ° C Graham condenser, a funnel was introduced to drip, 120 ml of 50% H 2 0 2 . Mixing was programmed for 3 hours at 10 rpm from the SMRA control panel with automatic equipment shutdown. Stage 5. Purification.
Se desensambló del SMRA el matraz de balón con costillas internas que contenía el material oxidado y se inició la primera purificación. Purificación 1. Inmediatamente después de desensamblar el matraz se recuperaron 3 kilos de pasta de óxido de grafeno y se realizó una dilución con agua filtrada por osmosis inversa, proporción 1:1.7 a temperatura ambiente, dentro de un contenedor a ~ 4°C. El producto se mezcló y mantuvo en reposo dentro de una cámara con extracción forzada durante 5 horas hasta detener la exotermia y la liberación de gases. Una vez a temperatura ambiente el óxido de grafeno fue vertido sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 1 para eliminar el material no oxidado y productos residuales propios de la reacción química. Purificación 2. Se recuperaron aproximadamente 1.5 kg de pasta de óxido de grafeno contenida en la parte superior del filtro de poliéster del sistema de purificación 1 y se mezcló homogéneamente con 0.6 litros de HC1 al 30%. Ua mezcla se mantuvo en reposo por 5 horas, para la eliminación de impurezas y restos ácidos del óxido de grafeno. Se realizó una dilución de la mezcla ácida en agua filtrada por osmosis inversa con una proporción 1: 2.7 a temperatura ambiente. Ua mezcla ácida diluida se vertió sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 2 para su filtración. Purificación 3. Se recuperó 1 kilo de pasta de óxido de grafeno contenido sobre el filtro de poliéster del sistema de purificación 2 y se mezcló con una proporción 1:2 de CH3CH2OH. Ua mezcla permaneció en reposo durante 5 horas, para posteriormente diluir con agua filtrada por osmosis inversa en una proporción 1:1.7 para comenzar a elevar el pH del óxido de grafeno. Una vez diluido se vertió el producto sobre la el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 3 para su último filtrado. Se recuperaron 1.5 kilos de óxido de grafeno en pasta y se diluyó en agua filtrada por osmosis inversa a una proporción 1:5. El producto diluido fue filtrado sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 4. The inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started. Purification 1. Immediately after disassembling the flask, 3 kilos of graphene oxide paste were recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ~ 4 ° C. The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide was poured onto the polyester filter adapted to the frames placed on the purification systems 1 to eliminate the non-oxidized material and residual products of the chemical reaction. Purification 2. Approximately 1.5 kg of graphene oxide paste contained in the upper part of the polyester filter of purification system 1 were recovered and mixed homogeneously with 0.6 liters of 30% HCl. The mixture was kept at rest for 5 hours, for the elimination of impurities and acid residues of the graphene oxide. The acidic mixture was diluted in filtered water by reverse osmosis with a 1: 2.7 ratio at room temperature. A dilute acidic mixture was poured onto the adapted polyester filter in the frames placed on the purification systems 2 for filtration. Purification 3. 1 kilogram of graphene oxide paste contained on the polyester filter of purification system 2 was recovered and mixed with a 1: 2 ratio of CH 3 CH 2 OH. The mixture remained at rest for 5 hours, to later be diluted with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide. Once diluted, the product was poured onto the polyester filter adapted to the racks placed on the purification systems 3 for its final filtering. 1.5 kilos of graphene oxide paste were recovered and diluted in filtered water by reverse osmosis at a 1: 5 ratio. The diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4.
Etapa 6. Terminado en pasta. Del filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 4, se recuperó ~ 1 kilo de pasta de óxido de grafeno con funcionalización al 30% y las siguientes características: índice de funcionalización por espectroscopia Raman Iornscm IG 1602 cm ': ~ 1.0, espectro de absorción por espectroscopia UV- visible: n^: 242 nm / 305 nm, tamaño de partícula sin exfoliar: > 100 pm, tamaño de hoja exfoliada: ~1 pm. Stage 6. Finished in paste. From the polyester filter adapted to the racks placed on purification systems 4, ~ 1 kilo of graphene oxide paste with 30% functionalization was recovered and the following characteristics: functionalization index by Raman Iorns spectroscopy cm I G 1602 cm ' : ~ 1.0, UV-visible spectroscopy absorption spectrum: n ^: 242 nm / 305 nm, non-exfoliated particle size:> 100 pm, exfoliated leaf size: ~ 1 pm.
Ejemplo 3 Example 3
Proceso para la producción de ~ 2.5 kilogramos de pasta de óxido de grafeno como precursor de óxido de grafeno reducido Process for the production of ~ 2.5 kilograms of graphene oxide paste as a precursor to reduced graphene oxide
El método y sistema o ensamble para la producción de óxido de grafeno con funcionalización al 10% se desarrollan en las siguientes etapas: The method and system or assembly for the production of graphene oxide with 10% functionalization are developed in the following stages:
Etapa 1. Preparación de equipos y selección de reactivos de acuerdo a las características del material a sintetizar. Stage 1. Preparation of equipment and selection of reagents according to the characteristics of the material to be synthesized.
Se ajustaron las condiciones iniciales de operación del sistema o ensamble operativo, encendiendo y programando el recirculador de refrigeración a - 10 °C y llenando con agua y hielo el recipiente de agua del SMRA al ajustarse la temperatura a < 10 °C. The initial operating conditions of the operating system or assembly were adjusted, turning on and programming the refrigeration recirculator at -10 ° C and filling the SMRA water container with water and ice by adjusting the temperature to <10 ° C.
Etapa 2. Pre -oxidación. Stage 2. Pre-oxidation.
El matraz de balón adaptado con costillas internas para la generación turbulencia intema que asegura un mezclado homogéneo se ajustó en el SMRA dentro de la cabina de seguridad del equipo, a una inclinación de ~ 45°. Para controlar la primer exotermia generada por la mezcla ácida (H2SO4/H3PO4), se sumergió el matraz de balón dentro del recipiente de agua hasta un 50%. Se activó el sistema de vacío del SMRA y se vertió dentro del matraz de balón una proporción 8.8: 1 de H2SO4/H3PO4 (4800: 540 mililitros). Se ajusta la rotación del SMRA a 20 rpm por 5 minutos. The adapted balloon flask with internal ribs for internal turbulence generation that ensures homogeneous mixing was fitted in the SMRA inside the safety cabinet of the equipment, at an inclination of ~ 45 °. To control the first exotherm generated by the acidic mixture (H 2 SO 4 / H 3 PO 4 ), the balloon flask was immersed in the water container up to 50%. The SMRA vacuum system was activated and an 8.8: 1 ratio of H 2 SO 4 / H 3 PO 4 (4800: 540 milliliters) was poured into the balloon flask. Adjust the rotation of the SMRA at 20 rpm for 5 minutes.
Etapa 3. Oxidación-Exfoliación. Stage 3. Oxidation-Exfoliation.
A través de la entrada indirecta de dosificación, ubicada en la columna lateral izquierda del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para dosificar el KMn04 (600 g, 1.0 eq.) sobre la mezcla H2SO4/H3PO4 a una temperatura de < 10 °C con un mezclado a ~ 20 rpm durante 30 minutos. La temperatura de la reacción durante la dosificación fue monitoreada continuamente con el sensor infrarrojo, controlando que la temperatura intema de la mezcla se encontrará a < 15°C. A través de la vía indirecta de dosificación, ubicada en la columna lateral del SMRA, en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para dosificar el grafito amorfo refinado (600 g, 1.0 eq.) con un tamaño de partícula de ~ 50 pm sobre la mezcla EfiSCfi/EfiPCVKMnCfi. La temperatura de la reacción durante la dosificación del grafito amorfo refinado fue monitoreada continuamente con el sensor infrarrojo, controlando que la temperatura interna de la mezcla se encontrara a < 18°C. De identificarse temperaturas superiores a 18°C, se drenaría ligeramente el recipiente de agua y el volumen se reajustaría con hielo hasta controlar la temperatura de la reacción a 18°C. Se programó el mezclado a ~ 10 rpm al terminar la dosificación del grafito amorfo refinado desde el panel de control del SMRA y se inició una rampa de calentamiento ascendente de temperatura de la reacción elevando a 30°C y estabilizando durante 30 minutos. Se programó la temperatura a 40°C desde el panel de control del SMRA programado a ~ 10 rpm y se estabilizó durante 30 minutos. La temperatura de la reacción durante las rampas de calentamiento fue estrictamente controlada y monitoreada con el sensor infrarrojo. De identificarse temperaturas superiores a las programadas por cada punto de estabilización de la rampa de calentamiento, se deberá de drenar ligeramente el recipiente de agua y el volumen se deberá de reponer con hielo hasta controlar la reacción a la temperatura programada. Se incrementó nuevamente la temperatura a 50°C desde el panel de control del SMRA programado a ~ 10 rpm, y se estabilizó durante 30 minutos y posteriormente se programó el mezclado por 4.0 horas a 50°C, asegurando un llenado automático para el reemplazo del agua evaporada durante el proceso, apagado del contenedor o recipiente de agua y mezclado sostenido del producto hasta disminuir gradualmente la temperatura de la reacción a ~ 26°C. Through the indirect dosing inlet, located on the left side column of the SMRA, at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to dose the KMn0 4 (600 g, 1.0 eq.) Onto the H 2 SO 4 / H 3 PO 4 mixture at a temperature of <10 ° C with mixing at ~ 20 rpm for 30 minutes. The temperature of the reaction during the dosage was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was <15 ° C. Through the indirect dosing route, located in the lateral column of the SMRA, at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to dose the refined amorphous graphite (600 g, 1.0 eq.) With a particle size of ~ 50 pm on the EfiSCfi / EfiPCVKMnCfi mixture. The reaction temperature during the dosing of the refined amorphous graphite was continuously monitored with the infrared sensor, controlling that the internal temperature of the mixture was <18 ° C. If temperatures are identified above 18 ° C, the water container would be drained slightly and the volume would be readjusted with ice until the reaction temperature was controlled at 18 ° C. Mixing was programmed at ~ 10 rpm upon completion of the dosing of the refined amorphous graphite from the SMRA control panel and an upward heating ramp of reaction temperature was started raising to 30 ° C and stabilizing for 30 minutes. The temperature was set at 40 ° C from the SMRA control panel set at ~ 10 rpm and stabilized for 30 minutes. The reaction temperature during the heating ramps was strictly controlled and monitored with the infrared sensor. If temperatures higher than those programmed for each stabilization point of the heating ramp are identified, the water container must be drained slightly and the volume must be replaced with ice until the reaction is controlled at the programmed temperature. The temperature was increased again to 50 ° C from the SMRA control panel programmed at ~ 10 rpm, and it stabilized for 30 minutes and then mixing was programmed for 4.0 hours at 50 ° C, ensuring automatic filling for the replacement of the water evaporated during the process, turning off the container or container of water and sustained mixing of the product until gradually reducing the reaction temperature to ~ 26 ° C.
Etapa 4. Contención de reacción. Stage 4. Reaction containment.
Al terminar la etapa de oxidación-exfoliación se procedió a la contención de la reacción con H202. Para ello se drenó parte del agua a temperatura ambiente del recipiente de agua del SMRA y se ajustó con hielo la temperatura in situ de la reacción a ~ 15 °C, asegurando la estabilidad térmica durante 1 hora mediante monitoreo infrarrojo. A través de la entrada indirecta de dosificación, ubicada en la columna lateral del SMRA en la intersección con el condensador tipo Graham a -10°C, se introdujo un embudo para administrar por goteo, 60 mi de H202 al 50%. Se programó desde el panel de control del SMRA el mezclado por 3- 5 horas a 10 rpm con paro automático del equipo. At the end of the oxidation-exfoliation stage, the reaction was contained with H 2 0 2 . For this, part of the water at room temperature was drained from the SMRA water container and the in situ temperature of the reaction was adjusted with ice to ~ 15 ° C, ensuring thermal stability for 1 hour by infrared monitoring. Through the indirect dosing inlet, located in the side column of the SMRA at the intersection with the Graham-type condenser at -10 ° C, a funnel was introduced to drip, 60 ml of 50% H 2 0 2 . Mixing for 3-5 hours at 10 rpm with automatic equipment stop was programmed from the SMRA control panel.
Etapa 5. Purificación. Stage 5. Purification.
Se desensambló del SMRA el matraz de balón con costillas internas que contiene el material oxidado y se comenzó la primera purificación. Purificación 1. Inmediatamente después de desensamblar el matraz, se recuperaron ~6 kilos de pasta de óxido de grafeno y se realizó una dilución con agua filtrada por osmosis inversa, proporción 1:1.7 a temperatura ambiente, dentro de un contenedor a ~ 4°C. El producto se mezcló y se mantuvo en reposo dentro de una cámara con extracción forzada durante 5 horas hasta detener la exotermia y la liberación de gases. Una vez a temperatura ambiente el óxido de grafeno fue vertido sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 1 para eliminar el material no oxidado y productos residuales propios de la reacción química. Purificación 2. Se recuperaron aproximadamente ~3 kg de pasta de óxido de grafeno contenida en la parte superior del filtro de poliéster del sistema de purificación 1 y se mezcló homogéneamente con 1.3 litros de HC1 al 30%. La mezcla se mantuvo en reposo por 5 horas para la eliminación de impurezas y restos ácidos del óxido de grafeno. Se realizó una dilución de la mezcla ácida en agua filtrada por osmosis inversa con una proporción 1: 2.7 a temperatura ambiente. La mezcla ácida diluida se vertió sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 2 para su filtración. Purificación 3. Se recuperaron ~ 2 kilos de pasta de óxido de grafeno contenido sobre el filtro de poliéster del sistema de purificación 2 y se mezcló con una proporción 1:2 de CH3CH2OH. La mezcla permaneció en reposo durante 5 horas para posteriormente diluir con agua filtrada por osmosis inversa en una proporción 1:1.7 para comenzar a elevar el pH del óxido de grafeno. Una vez diluido se vertió el producto sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 3 para su último filtrado. Se recuperaron ~ 3 kilos de pasta de óxido de grafeno y se diluyó en agua filtrada por osmosis inversa a una proporción 1:5. El producto diluido fue filtrado sobre el filtro de poliéster adaptado en los bastidores colocados sobre los sistemas de purificación 4. Se recuperaron ~ 2.5 kilogramos de la pasta de óxido de grafeno que fue utilizada como precursor de óxido de grafeno reducido. The inner ribbed balloon flask containing the oxidized material was disassembled from the SMRA and the first purification started. Purification 1. Immediately after disassembling the flask, ~ 6 kg of graphene oxide paste was recovered and a dilution was made with filtered water by reverse osmosis, ratio 1: 1.7 at room temperature, inside a container at ~ 4 ° C . The product was mixed and kept at rest in a chamber with forced extraction for 5 hours until the exotherm and the release of gases stopped. Once at room temperature, the graphene oxide was poured onto the polyester filter adapted to the frames placed on the purification systems 1 to eliminate the non-oxidized material and residual products of the chemical reaction. Purification 2. Approximately ~ 3 kg of graphene oxide paste was recovered contained in the upper part of the polyester filter of purification system 1 and homogeneously mixed with 1.3 liters of 30% HCl. The mixture was kept at rest for 5 hours to remove impurities and acid residues from the graphene oxide. The acidic mixture was diluted in filtered water by reverse osmosis with a 1: 2.7 ratio at room temperature. The dilute acidic mixture was poured onto the adapted polyester filter in the frames placed on the purification systems 2 for filtration. Purification 3. ~ 2 kilos of graphene oxide paste contained on the polyester filter of purification system 2 were recovered and mixed with a 1: 2 ratio of CH 3 CH 2 OH. The mixture remained at rest for 5 hours to later dilute with water filtered by reverse osmosis in a 1: 1.7 ratio to begin to raise the pH of the graphene oxide. Once diluted, the product was poured on the polyester filter adapted in the frames placed on the purification systems 3 for its last filtration. ~ 3 kilos of graphene oxide paste was recovered and diluted in filtered water by reverse osmosis at a ratio of 1: 5. The diluted product was filtered on the polyester filter adapted in the frames placed on the purification systems 4. ~ 2.5 kilograms of the graphene oxide paste was recovered which was used as a precursor of reduced graphene oxide.
Etapa 6. Terminado del producto por Reducción del óxido de grafeno. Stage 6. Finishing the product by Reduction of graphene oxide.
La etapa para la reducción de óxido de grafeno fue dividida en 5 Fases: Fase 1. Secado: Fa pasta de óxido de grafeno (2.5 kg) recuperada del sistema de purificación 4 se colocó dentro de un homo de convección mecánica para su secado a 80 °C durante 24 horas. Fase 2. Rehidratación. Una fracción del óxido de grafeno pre-secado (1.5 kg) fue rehidratado homogéneamente a una proporción 1: 1-1:3 con (C2H5)20 hasta formar una nueva pasta, que posteriormente sería secada al vacío y temperatura ambiente durante 1 hora. Fase 3. Programación: Se programó la temperatura del homo de convección mecánica a 260°C y se precalentó en su interior durante 30 minutos un contenedor de aluminio con tapa. Fase 4. Reducción: Se depositó el óxido de grafeno parcialmente hidratado con (C2H5)20, dentro del contenedor de aluminio precalentado, se tapó inmediatamente el contenedor y se mantuvo dentro del homo de convección mecánica a 260° C durante 90-120 segundos. Fase 5. Enfriamiento: Se extrajo el contenedor de aluminio tapado, del homo de convección forzada con el óxido de grafeno reducido en su interior y se colocó dentro de una cámara con extracción forzada, sin retirar la tapa del contenedor para evitar que el material reaccionara violentamente al contacto con el oxígeno, hasta su enfriamiento de aproximadamente 1 hora. Etapa 7. Terminado. The stage for the reduction of graphene oxide was divided into 5 Phases: Phase 1. Drying: The graphene oxide paste (2.5 kg) recovered from purification system 4 was placed inside a mechanical convection oven for drying at 80 ° C for 24 hours. Phase 2. Rehydration. A fraction of the pre-dried graphene oxide (1.5 kg) was homogeneously rehydrated at a 1: 1-1: 3 ratio with (C 2 H 5 ) 2 0 until a new paste was formed, which would later be dried under vacuum and room temperature. for 1 hour. Phase 3. Programming: The temperature of the mechanical convection oven was set at 260 ° C and an aluminum container with a lid was preheated inside for 30 minutes. Phase 4. Reduction: The partially hydrated graphene oxide with (C 2 H 5 ) 2 0 was deposited into the preheated aluminum container, the container was immediately covered and kept inside the mechanical convection oven at 260 ° C for 90 -120 seconds. Phase 5. Cooling: The covered aluminum container was extracted from the forced convection oven with the reduced graphene oxide inside and placed inside a chamber with forced extraction, without removing the container lid to prevent the material from reacting violently on contact with oxygen, until cooling for about 1 hour. Stage 7. Finished.
El material recuperado en el depósito de aluminio fue transformado a óxido de grafeno reducido. Fa reducción del material consistió en el desprendimiento de gmpos funcionales de su superficie y autoreparación de la estructura de grafeno. Del desprendimiento de los grupos funcionales derivó una pérdida de peso de aproximadamente el 20% del óxido de grafeno precursor, donde el ~ 82% del óxido de grafeno reducido son átomos de carbono y el -16% son átomos de oxígeno. La reparación parcial de la estructura de la red de grafeno lo convierten en un material semiconductor, amfifílico, con una densidad de 0.059 g/cm3 y tamaño de partícula exfoliada de - 3 pm. Los cambios estructurales del óxido de grafeno reducido respecto al óxido de grafeno empleado como precursor, se pueden identificar por cambios en su espectro de absorción UV- visible que cambia respecto a su óxido de grafeno precursor a t : 275 nm (óxido de grafeno: Bmax: 242/ 305 nm) y cambios en el espectro Raman a: ID1339 cm (óxido de grafeno: 1348 ) IG 1580 cm (óxido de grafeno: 1602 ) y definición de la señal a 2682 cm . The material recovered in the aluminum deposit was transformed to reduced graphene oxide. The reduction of the material consisted of the detachment of functional groups from its surface and self-repair of the graphene structure. Of detachment From the functional groups, a weight loss of approximately 20% of the parent graphene oxide resulted, where ~ 82% of the reduced graphene oxide are carbon atoms and -16% are oxygen atoms. The partial repair of the graphene lattice structure makes it an amphiphilic semiconductor material with a density of 0.059 g / cm 3 and an exfoliated particle size of - 3 pm. The structural changes of the reduced graphene oxide with respect to the graphene oxide used as a precursor can be identified by changes in its UV-visible absorption spectrum that changes with respect to its precursor graphene oxide at: 275 nm (graphene oxide: B max : 242/305 nm) and changes in the Raman spectrum to: I D 1339 cm (graphene oxide: 1348) I G 1580 cm (graphene oxide: 1602) and definition of the signal at 2682 cm.
En las figuras 4a y 4b las imágenes corresponden a dos imágenes representativas de la caracterización por microscopía electrónica de transmisión de alta resolución (HRTEM, por sus siglas en inglés). El círculo blanco de la figura 4b, hace notar la reparación de la estructura de la red de grafeno, resultado del desprendimiento de grupos funcionales después de la reducción del óxido de grafeno. Las figuras 4c y 4d corresponden a un espectro característico Raman donde se aprecian los evidentes cambios espectrales del óxido de grafeno antes y después de ser reducido. Las variaciones en la intensidad de la banda D están relacionadas con la desaparición de los grupos oxigenados de anclados sobre el óxido de grafeno, así como de disminución en el tamaño de las partículas resultado del proceso de reducción. La definición de la banda 2D también está asociada con la reparación de la estructura de la red de grafeno después de la reducción del óxido De grafeno. In Figures 4a and 4b, the images correspond to two representative images of the characterization by high-resolution transmission electron microscopy (HRTEM, for its acronym in English). The white circle in figure 4b shows the repair of the structure of the graphene network, a result of the detachment of functional groups after the reduction of graphene oxide. Figures 4c and 4d correspond to a characteristic Raman spectrum where the evident spectral changes of graphene oxide are appreciated before and after being reduced. The variations in the intensity of the D band are related to the disappearance of the oxygenated groups anchored on the graphene oxide, as well as the decrease in the size of the particles resulting from the reduction process. The definition of the 2D band is also associated with the repair of the graphene lattice structure after reduction of the graphene oxide.
Formulación de recubrimientos que incluyen óxido de grafeno u óxido de grafeno reducido Formulation of coatings including graphene oxide or reduced graphene oxide
El óxido de grafeno y óxido de grafeno reducido producidos mediante el método y sistema o ensamble operativo de la presente invención se pueden utilizar en la formulación o producción de nuevos recubrimientos de alto desempeño, tales como pinturas, tintas e impermeabilizantes y aditivos. The graphene oxide and reduced graphene oxide produced by the method and system or operative assembly of the present invention can be used in the formulation or production of new high performance coatings, such as paints, inks and waterproofing agents and additives.
En el caso de pinturas, la presente invención proporciona propiedades anticorrosivas, ignífugas, antimicrobianas, impermeabilidad, mayor durabilidad, adherencia y de bloqueo contra la radiación electromagnética. En particular, algunos de los usos, sin ser limitativos, de la presente invención y modalidades de recubrimientos son pinturas e impermeabilizantes, así como tintas y aditivos para concreto y asfalto, sin ser limitativo de otros usos y modalidades que puedan ser desarrolladas al ser obvias para un diestro en la materia a partir de la presente descripción, utilizando el óxido de grafeno o el óxido de grafeno reducido producidos mediante el método y sistema o ensamble operativo de la presente invención. Formulación de primer con base alquidálica y óxido de grafenoIn the case of paints, the present invention provides anticorrosive, flame retardant, antimicrobial, impermeability, increased durability, adhesion and blocking properties against electromagnetic radiation. In particular, some of the uses, without being limiting, of the present invention and modalities of coatings are paints and waterproofing agents, as well as inks and additives for concrete and asphalt, without being limiting of other uses and modalities that may be developed as they are obvious. to one skilled in the art from the present description, using the graphene oxide or reduced graphene oxide produced by the method and operative assembly or system of the present invention. Primer formulation with alkyd base and graphene oxide
Proceso para la incorporación del óxido de grafeno en un primer alquidálico para incrementar sustancialmente su propiedad anticorrosiva (por ejemplo 1,100 hs en cámara salina), para conferirle propiedades antimicrobianas, para incrementar su durabilidad y resistencia a la radiación UV (por ejemplo 1,600 hs en cámara de intemperismo acelerado). Process for the incorporation of graphene oxide in an alkyd primer to substantially increase its anticorrosive property (for example 1,100 hours in a saline chamber), to give it antimicrobial properties, to increase its durability and resistance to UV radiation (for example 1,600 hours in a chamber accelerated weathering).
El tipo de óxido de grafeno funcionalizado que se utilizó para la producción del primer alquidálico fue en presentación en pasta base agua con 30-40% de humedad y pH 3.5- 4.5 a una proporción de 0.005% a 0.10% por kilogramo de material. Para la elaboración del primer, se pesaron todas las materias primas líquidas (resinas y solventes) y se incorporaron a un molino, posteriormente se inició con la molienda y se incorporaron los pigmentos. Transcurridos 10 minutos de molienda continua se agregaron la pasta de óxido de grafeno en una proporción de 0.005% a 0.10% por kilogramo del primer a producir. La molienda se mantuvo aproximadamente durante 50 minutos alcanzando una temperatura máxima de 100° C. Pasado el tiempo, el primer se dejó enfriar y se descargó a un dispersor. Cuando la temperatura del producto es menor a los 50°C, se agregó el secante y se dispersó por 5 minutos. Posteriormente se realizó el vaciado a las cubetas para su almacenamiento. The type of functionalized graphene oxide that was used for the production of the first alkyd was in a water-based paste presentation with 30-40% humidity and pH 3.5- 4.5 at a ratio of 0.005% to 0.10% per kilogram of material. For the preparation of the primer, all the liquid raw materials (resins and solvents) were weighed and incorporated into a mill, subsequently grinding began and the pigments were incorporated. After 10 minutes of continuous grinding, the graphene oxide paste was added in a proportion of 0.005% to 0.10% per kilogram of the primer to be produced. The grinding was maintained for approximately 50 minutes reaching a maximum temperature of 100 ° C. After time, the primer was allowed to cool and was discharged into a disperser. When the product temperature is less than 50 ° C, the drying agent was added and dispersed for 5 minutes. Subsequently, the trays were emptied for storage.
Formulación de esmalte con base alquídica y óxido de grafenoEnamel formulation with alkyd base and graphene oxide
Proceso para la incorporación del óxido de grafeno en esmalte alquidálico para incrementar sustancialmente su propiedad anticorrosiva (por ejemplo 1,100 hs en cámara salina), para conferirle propiedades antimicrobianas, para incrementar su durabilidad y resistencia a la radiación UV (por ejemplo 1,600 hs en cámara de intemperismo acelerado). Process for the incorporation of graphene oxide in alkyd enamel to substantially increase its anticorrosive property (for example 1,100 hours in a saline chamber), to give it antimicrobial properties, to increase its durability and resistance to UV radiation (for example 1,600 hours in a saline chamber). accelerated weathering).
El tipo de óxido de grafeno que se utilizó fue en presentación en pasta, base agua con 30-40% de humedad y pH 3.5-4.5 a una proporción por porcentaje en peso en el rango de 0.005% a 0.10% por kilogramo de material. Para la elaboración del esmalte alquidálico se pesaron las materias primas líquidas: resinas y solventes (Xilol y gas nafta), se incorporaron a un molino y se inició la molienda, añadiendo los pigmentos. Después de 10 minutos de molienda continua se agregaron el óxido de grafeno en una proporción de 0.005% a 0.10% por kilogramo del esmalte a producir. Una vez añadido, la molienda se mantuvo durante 50 a 60 minutos alcanzando una temperatura máxima de 100° C. Pasado el tiempo, el esmalte se dejó enfriar y se descargó a un dispersor. Con una temperatura menor a los 50°C se agregó el secante y se dispersó por 5 minutos, finalmente se realizó el vaciado a cubetas para su almacenamiento. The type of graphene oxide that was used was in a paste presentation, water-based with 30-40% humidity and pH 3.5-4.5 at a proportion by weight percentage in the range of 0.005% to 0.10% per kilogram of material. For the elaboration of the alkyd enamel, the liquid raw materials were weighed: resins and solvents (Xylol and naphtha gas), they were incorporated into a mill and the grinding began, adding the pigments. After 10 minutes of continuous grinding, graphene oxide was added in a proportion of 0.005% to 0.10% per kilogram of the enamel to be produced. Once added, the grinding was maintained for 50 to 60 minutes reaching a maximum temperature of 100 ° C. After time, the enamel was allowed to cool and was discharged into a disperser. With a temperature lower than 50 ° C, the desiccant was added and dispersed for 5 minutes, finally it was emptied into buckets for storage.
Formulación de pinturas con base vinil acrílica y óxido de grafenoFormulation of paints based on acrylic vinyl and graphene oxide
Proceso para la incorporación de óxido de grafeno en pintura vinil -acrílica para conferir propiedades antimicrobianas, evitando la adherencia y crecimiento de hasta por ejemplo 99.9% de bacterias gramnegativas, grampositivas y hongos como: Escherichia cotí, Pseudomona aeruginosa, Staphylococcus aureus, Enterococcus faecalis y Candida albicans. La incorporación del óxido de grafeno a la vez incrementa sustancialmente la resistencia al desgaste de la pintura (por ejemplo superior a 18,000 ciclos). Process for the incorporation of graphene oxide in vinyl-acrylic paint to confer antimicrobial properties, avoiding the adherence and growth of up to for example 99.9% of gram-negative, gram-positive bacteria and fungi such as: Escherichia cotí, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. The incorporation of graphene oxide at the same time substantially increases the wear resistance of the paint (for example, greater than 18,000 cycles).
El tipo de óxido de grafeno funcionalizado que se utilizó fue en presentación en pasta base agua con 30-40% de humedad y pH 3.5- 4.5. Las cantidades requeridas de óxido de grafeno fueron en un rango de 0.005% a 0.10% por kilogramo de material. Para la preparación de la pintura vinil-acrílica, como primera etapa se pesaron y se mezclaron todas las materias primas liquidas en un dispersor y se dio inicio a la dispersión, posteriormente y sin dejar de dispersar se adicionaron el dióxido de titanio y cargas de material. Pasados 10 minutos de dispersión continua, se agregaron el óxido de grafeno de acuerdo a la cantidad de pintura a producir y se mantuvo en dispersión durante 20 minutos. Pasado este tiempo se detuvo el dispersor y se adicionaron el espesante (espesante celulósico) y se dispersó durante aproximadamente 60 minutos en este punto alcanzando una temperatura máxima de 45 °C. Finalmente se detuvo la dispersión, se agregaron la resina y se dispersaron por 5 minutos. Al terminar el proceso, la pintura modificada se dejó enfriar durante 24 horas, se le dio un ligero mezclado de 2-3 minutos, para finalmente ser envasada. The type of functionalized graphene oxide that was used was a water-based paste with 30-40% humidity and pH 3.5- 4.5. The required amounts of graphene oxide were in a range of 0.005% to 0.10% per kilogram of material. For the preparation of the vinyl-acrylic paint, as a first stage all the liquid raw materials were weighed and mixed in a disperser and dispersion began, subsequently and without stopping dispersing, the titanium dioxide and material loads were added. . After 10 minutes of continuous dispersion, the graphene oxide was added according to the amount of paint to be produced and it was kept in dispersion for 20 minutes. After this time, the disperser was stopped and the thickener (cellulosic thickener) was added and dispersed for approximately 60 minutes at this point, reaching a maximum temperature of 45 ° C. Finally the dispersion was stopped, the resin was added and dispersed for 5 minutes. At the end of the process, the modified paint was allowed to cool for 24 hours, it was given a light mixing for 2-3 minutes, to finally be packaged.
Formulación de pinturas con base vinil-acrílica y óxido de grafeno reducidoFormulation of paints based on vinyl-acrylic and reduced graphene oxide
Proceso para la incorporación de óxido de grafeno reducido en pintura vinil-acrílica para conferir propiedades semiconductoras, con el objetivo de limitar y/o proteger contra la radiación electromagnética La incorporación del óxido de grafeno a la vez incrementa sustancialmente la resistencia al desgaste de la pintura (por ejemplo superior a 18,000 ciclos). Process for the incorporation of reduced graphene oxide in vinyl-acrylic paint to confer semiconductor properties, in order to limit and / or protect against electromagnetic radiation The incorporation of graphene oxide at the same time substantially increases the wear resistance of the paint (for example greater than 18,000 cycles).
El tipo de óxido de grafeno reducido que se utilizó fue en presentación en polvo. Las cantidades requeridas de óxido de grafeno reducido fueron en un rango de 0.1% a 0.3% por kilogramo de material. Para la preparación de la pintura vinil-acrílica, como primera etapa se pesaron y se mezclaron todas las materias primas liquidas en un dispersor y se dio inicio a la dispersión, posteriormente y sin dejar de dispersar se adicionaron el dióxido de titanio y cargas de material. Pasados 10 minutos de dispersión continua se agregaron el óxido de grafeno de acuerdo a la cantidad de pintura a producir y se mantuvo en dispersión durante 20 minutos. Pasado este tiempo se detuvo el dispersor y se adicionaron el espesante (espesante celulósico) y se dispersaron durante aproximadamente 60 minutos en este punto alcanzando una temperatura máxima de 45°C. Finalmente se detuvo la dispersión, se agregaron la resina y se dispersaron por 5 minutos. Al terminar el proceso, la pintura modificada se dejó enfriar durante 24 horas, se le dio un ligero mezclado de 2-3 minutos para finalmente ser envasada. The type of reduced graphene oxide used was in powder form. The required amounts of reduced graphene oxide were in a range of 0.1% to 0.3% per kilogram of material. For the preparation of the vinyl-acrylic paint, as a first stage all the liquid raw materials were weighed and mixed in a disperser and dispersion began, subsequently and without stopping dispersing, the titanium dioxide and material loads were added. . After 10 minutes of continuous dispersion, the graphene oxide was added according to the amount of paint to be produced and it was kept in dispersion for 20 minutes. After this time, the disperser was stopped and the thickener (cellulosic thickener) was added and dispersed for approximately 60 minutes at this point, reaching a maximum temperature of 45 ° C. Finally the dispersion was stopped, the resin was added and dispersed for 5 minutes. At the end of the process, the modified paint was allowed to cool for 24 hours, it was given a light mixing for 2-3 minutes to finally be packaged.
Formulación de pinturas con base acrílica-estireneada y óxido de grafeno Proceso para la incorporación de óxido de grafeno en pintura acrílica-estirenada para conferir propiedades antimicrobianas, para incrementar sustancialmente su durabilidad, resistencia a la radiación UV y al desgaste (por ejemplo superior a 18,000 ciclos). Formulation of paints with acrylic-styrene base and graphene oxide Process for the incorporation of graphene oxide in acrylic-styrene paint to confer antimicrobial properties, to substantially increase its durability, resistance to UV radiation and wear (for example, greater than 18,000 cycles).
El tipo de óxido de grafeno funcionalizado que se utilizó fue en presentación en pasta base agua con 30-40% de humedad y pH 3.5- 4.5. Las cantidades utilizadas fueron por porcentaje en peso de la pintura en el rango de 0.005% a 0.10% por kilogramo de material. Para la preparación de la pintura se pesaron y mezclaron todas las materias primas líquidas en un dispersor. Durante la dispersión se adicionaron el dióxido de titanio, cargas de material y pigmentos. Después de 10 minutos de dispersaron continuamente, se agregó el óxido de grafeno y se dispersó durante 20 minutos. A los 20 minutos, se detuvo la dispersión, se agregó el espesante y se dispersó por aproximadamente 60 minutos. En esta etapa la pintura alcanzó una temperatura aproximada de 45°C. A los 60 minutos se detuvo la dispersión, se agregaron la resina acrílica-estirenada y se dispersó por 5 minutos; transcurrido el tiempo, se detuvo la agitación y se dejó enfriar por 24 horas. Finalmente la pintura fue agitada ligeramente de 2 a 3 minutos, para posteriormente ser envasada. The type of functionalized graphene oxide that was used was a water-based paste with 30-40% humidity and pH 3.5- 4.5. The amounts used were by weight percentage of the paint in the range of 0.005% to 0.10% per kilogram of material. For the preparation of the paint, all the liquid raw materials were weighed and mixed in a disperser. During the dispersion, the titanium dioxide, material fillers and pigments were added. After 10 minutes of continuously dispersing, the graphene oxide was added and dispersed for 20 minutes. At 20 minutes, the dispersion was stopped, the thickener was added and dispersed for approximately 60 minutes. At this stage the paint reached a temperature of approximately 45 ° C. At 60 minutes the dispersion was stopped, the acrylic-styrene resin was added and dispersed for 5 minutes; after the time, the stirring was stopped and it was allowed to cool for 24 hours. Finally, the paint was lightly agitated for 2 to 3 minutes, to later be packaged.
Formulación de pinturas con base poliuretano aromático y óxido de grafeno Proceso para la incorporación de óxido de grafeno en pinturas de poliuretano aromático para incrementar exponencialmente la propiedad anticorrosiva (por ejemplo 1500 hs a exposición a niebla salina), aumentar su adherencia (por ejemplo 1,469 PSI), conferir propiedades antimicrobianas, así como mejorar su durabilidad y resistencia a la radiación UV (por ejemplo 1600 hs de exposición a intemperismo acelerado). Formulation of paints based on aromatic polyurethane and graphene oxide Process for the incorporation of graphene oxide in aromatic polyurethane paints to exponentially increase the anticorrosive property (for example 1500 hs exposure to saline mist), increase its adherence (for example 1,469 PSI ), confer antimicrobial properties, as well as improve its durability and resistance to UV radiation (for example, 1600 hours of exposure to accelerated weathering).
El tipo de óxido de grafeno funcionalizado que se utilizó fue en presentación en polvo, con 10-30% de humedad y pH 6.4- 7.4. Se utilizó una proporción de 0.001% a 0.05% de óxido de grafeno, por kilogramo de material. Para la primera etapa de producción del poliuretano aromático se cargó el ligante de poliuretano (precursor-prepolímero de poliuretano), en esta etapa solo se incorporaron 1/3 parte del ligante al molino y posteriormente se adicionaron los solventes. Durante la molienda se incorporaron poco a poco los pigmentos. Después de 10 minutos de molienda se añadió el polvo de óxido de grafeno correspondiente a la cantidad de poliuretano a producir. Se mantuvo la molienda durante 30 minutos alcanzando una temperatura máxima de 75°C. A los 30 minutos se detuvo la molienda y se dejó enfriar hasta lograr una temperatura inferior a 56 °C para agregar la fracción restante del prepolímero de Poliuretano, mezclando durante 5 minutos. Terminando este último mezclado se realizó el vaciado en caliente del poliuretano aromático. The type of functionalized graphene oxide that was used was in powder form, with 10-30% humidity and pH 6.4- 7.4. A proportion of 0.001% to 0.05% of graphene oxide was used, per kilogram of material. For the first stage of production of the aromatic polyurethane, the polyurethane binder (polyurethane precursor-prepolymer) was loaded, in this stage only 1/3 of the binder was incorporated into the mill and then the solvents were added. During milling, the pigments were incorporated little by little. After 10 minutes of grinding, the graphene oxide powder corresponding to the amount of polyurethane to be produced was added. Grinding was maintained for 30 minutes reaching a maximum temperature of 75 ° C. After 30 minutes the milling was stopped and it was allowed to cool down to a temperature below 56 ° C to add the remaining fraction of the Polyurethane prepolymer, mixing for 5 minutes. Finishing this last mixing, the aromatic polyurethane was hot cast.
Formulación de pinturas con base de poliuretano alifático y óxido de grafeno Proceso para la incorporación de óxido de grafeno en pinturas de poliuretano alifático para incrementar exponencialmente la propiedad anticorrosiva y antimicrobiana, así como su durabilidad y resistencia a la radiación UV. Los efectos se potencian al emplear a modo de sistema con la pintura primer epóxico adicionado con óxido de grafeno. Formulation of paints based on aliphatic polyurethane and graphene oxide Process for the incorporation of graphene oxide in aliphatic polyurethane paints to exponentially increase the anticorrosive and antimicrobial property, as well as its durability and resistance to UV radiation. The effects are enhanced when used as a system with the first epoxy paint added with graphene oxide.
Para la formulación de pinturas con óxido de grafeno con poliuretano alifático se utilizaron cantidades de polvo de óxido de grafeno con 10-30% de humedad y pH 6.4- 7.4. Para la producción del poliuretano alifático como primera etapa se cargó el ligante de poliuretano (precursor), en esta etapa solo se incorporaron el ligante al molino y posteriormente se adicionaron los solventes y se dio inicio a la molienda, incorporando poco a poco los pigmentos. Pasado 20 minutos de molienda se agregó el polvo de óxido de grafeno en porcentajes por peso en el rango de 0.001% a 0.05% por kilogramo de poliuretano alifático a producir. La molienda se mantuvo por 40 minutos alcanzando una temperatura máxima 80°C. Pasado este tiempo se detuvo la molienda y se dejó enfriar hasta una temperatura menor de 56 °C. Posteriormente se dio inicio al vaciado en caliente del poliuretano alifático. For the formulation of graphene oxide paints with aliphatic polyurethane, quantities of graphene oxide powder were used with 10-30% humidity and pH 6.4- 7.4. For the production of aliphatic polyurethane, as the first stage, the polyurethane binder (precursor) was loaded, in this stage only the binder was incorporated into the mill and subsequently the solvents were added and the milling began, gradually incorporating the pigments. After 20 minutes of grinding, the graphene oxide powder was added in percentages by weight in the range of 0.001% to 0.05% per kilogram of aliphatic polyurethane to be produced. The grinding was maintained for 40 minutes reaching a maximum temperature of 80 ° C. After this time, the milling was stopped and it was allowed to cool down to a temperature lower than 56 ° C. Subsequently, the hot casting of the aliphatic polyurethane began.
Formulación de pinturas con poliuretano base agua y óxido de grafeno Proceso para la incorporación de óxido de grafeno en pinturas de poliuretano base agua para incrementar exponencialmente su adherencia, poder cubriente, durabilidad, resistencia a la radiación UV y propiedad antimicrobiana. Formulation of paints with water-based polyurethane and graphene oxide Process for the incorporation of graphene oxide in water-based polyurethane paints to exponentially increase their adhesion, covering power, durability, resistance to UV radiation and antimicrobial property.
Para la formulación de pinturas con óxido de grafeno con poliuretano base agua se utilizaron cantidades de polvo de óxido de grafeno con 10-30% de humedad y pH 6.4- 7.4, en porcentajes por peso en el rango de 0.001% a 0.05% por kilogramo de material. En la preparación del poliuretano acuoso, como primera etapa se pesaron y se mezclaron todas las materias primas líquidas en un dispersor y se dio inicio a la dispersión. Pasados 10 min de dispersión continua se agregaron el polvo de óxido de grafeno correspondiente a la cantidad de poliuretano acuso a producir y se mantuvo en dispersión durante 20 minutos más, en esta etapa la pintura alcanzó una temperatura aproximadamente de 45°C. Finalmente se detuvo la dispersión y se agregaron por último la resina del poliuretano acuoso. Se dispersaron por 5 minutos y se dejó enfriar por 24 horas. Una vez la pintura a temperatura ambiente, se agitó ligeramente de 2 a 3 minutos, para posteriormente llevar a cabo el envasado del producto. For the formulation of paints with graphene oxide with water-based polyurethane, quantities of graphene oxide powder with 10-30% humidity and pH 6.4- 7.4 were used, in percentages by weight in the range of 0.001% to 0.05% per kilogram. of material. In preparing the aqueous polyurethane, as a first step all liquid raw materials were weighed and mixed in a disperser and dispersion was started. After 10 min of continuous dispersion, the graphene oxide powder corresponding to the amount of polyurethane used to produce was added and it was kept in dispersion for a further 20 minutes, at this stage the paint reached a temperature of approximately 45 ° C. Finally dispersion was stopped and the aqueous polyurethane resin was added last. They were dispersed for 5 minutes and allowed to cool for 24 hours. Once the paint was at room temperature, it was lightly stirred for 2 to 3 minutes, to later carry out the packaging of the product.
Formulación de pintura de tráfico alquidal hule clorado y óxido de grafenoAlkyd traffic paint formulation chlorinated rubber and graphene oxide
Proceso para la incorporación de óxido de grafeno en pinturas de tráfico alquidal hule clorado, para mejorar su adherencia, durabilidad y resistencia a radiación UV. Process for the incorporation of graphene oxide in chlorinated rubber alkyd traffic paints, to improve their adhesion, durability and resistance to UV radiation.
El tipo de óxido de grafeno funcionalizado para la pintura de tráfico alquidal hule clorado que se utilizó fue en presentación en polvo con 10-30% de humedad y pH 3.5- 4.5. Para la elaboración de la pintura de tráfico se pesaron todas las materias primas líquidas (resinas y solventes) y se incorporaron a un molino. El molido se inició en modo continuo y se incorporaron poco a poco los pigmentos. Transcurridos 10 minutos de molienda se agregó el óxido de grafeno en un rango de proporciones de 0.005% a 0.10% por kilogramo de pintura a producir. La molienda se mantuvo de 50 a 60 minutos, tiempo en el que alcanzó una temperatura máxima de aproximadamente 100°C. Pasado el tiempo, la pintura se dejó enfriar y se descargó a un dispersor hasta alcanzar una temperatura inferior a los 50°C. En éste momento se agregaron el secante y el hule clorado, dispersando por 5 minutos para finalmente hacer el vaciado para su almacenamiento. The type of functionalized graphene oxide for the chlorinated rubber alkyd traffic paint that was used was in powder form with 10-30% humidity and pH 3.5- 4.5. For the production of traffic paint, all liquid raw materials (resins and solvents) were weighed and incorporated into a mill. The grinding was started continuously and the pigments were incorporated little by little. After 10 minutes of grinding, graphene oxide was added in a range of proportions from 0.005% to 0.10% per kilogram of paint. to produce. The grinding was maintained for 50 to 60 minutes, during which time it reached a maximum temperature of approximately 100 ° C. Over time, the paint was allowed to cool and was discharged into a disperser until it reached a temperature below 50 ° C. At this time the blotter and chlorinated rubber were added, dispersing for 5 minutes to finally empty it for storage.
Formulación de primer con base epóxica y óxido de grafeno Proceso para la incorporación de óxido de grafeno en un primer epóxico anticorrosivo de dos componentes para uso sobre superficies metálicas en ambientes marítimos. La aplicación de primer epóxico con grafeno en conjunto con la pintura de poliuretano alifático mejorado con óxido de grafeno a modo de sistema, incrementa sustancialmente las propiedades anticorrosivas, de adherencia, de resistencia a la luz ultravioleta y durabilidad. Epoxy-based primer formulation and graphene oxide Process for incorporating graphene oxide into a two-component anticorrosive epoxy primer for use on metallic surfaces in marine environments. The application of the first epoxy with graphene in conjunction with the aliphatic polyurethane paint enhanced with graphene oxide as a system, substantially increases the anticorrosive properties, adhesion, resistance to ultraviolet light and durability.
El tipo de óxido de grafeno funcionalizado que se utilizó para para la elaboración del primer epóxico anticorrosivo fue en presentación en pasta base agua con 30-40% de humedad y pH 3.5- 4.5. Para la preparación del primer con base epóxica de dos componentes se pesaron las materias primas líquidas (resina epóxica y solventes) y se incorporaron a un molino para iniciar la molienda. Durante la molienda continua los pigmentos se incorporaron gradualmente y transcurridos 20 minutos se añadió la pasta de óxido de grafeno en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de primer epóxico a producir. La molienda se mantuvo por aproximadamente 60 minutos, alcanzando una temperatura máxima de 100° C. A los 60 minutos de molienda con la pasta de óxido de grafeno, se dejó enfriar la mezcla y se descargó a un dispersor. Al lograr una temperatura menor a los 50°C se agregó el secante, dispersando por 5 minutos, para finalmente vaciar el primer epóxico con óxido de grafeno a sus contenedores de almacenamiento. The type of functionalized graphene oxide that was used to make the first anticorrosive epoxy was presented as a water-based paste with 30-40% humidity and pH 3.5- 4.5. For the preparation of the two-component epoxy-based primer, the liquid raw materials (epoxy resin and solvents) were weighed and incorporated into a mill to start grinding. During the continuous milling, the pigments were gradually incorporated and after 20 minutes the graphene oxide paste was added in percentages by weight in the range of 0.005% to 0.10% per kilogram of the first epoxy to be produced. The grinding was maintained for approximately 60 minutes, reaching a maximum temperature of 100 ° C. After 60 minutes of grinding with the graphene oxide paste, the mixture was allowed to cool and was discharged into a disperser. Upon achieving a temperature lower than 50 ° C, the drying agent was added, dispersing for 5 minutes, to finally empty the first epoxy with graphene oxide to its storage containers.
Formulación de tintas con óxido de grafeno Proceso para la incorporación de óxido de grafeno en tintas para proteger y/o marcar superficies metálicas en ambientes de alta corrosividad, fricción, calor y radiación UV. Formulation of inks with graphene oxide Process for the incorporation of graphene oxide in inks to protect and / or mark metallic surfaces in environments of high corrosivity, friction, heat and UV radiation.
La tinta elaborada con óxido de grafeno obtenido mediante la presente invención es de alto desempeño, fácil aplicación y secado ultra rápido, con gran resistencia térmica, antiabrasiva, anticorrosiva, resistencia a radiación UV, con excelente adherencia y poder cubriente. The ink made with graphene oxide obtained by means of the present invention is of high performance, easy application and ultra fast drying, with great thermal resistance, anti-abrasive, anticorrosive, resistance to UV radiation, with excellent adhesion and covering power.
Para la elaboración de la tinta, se utilizó como resina base éster butírico de celulosa, se pesaron todas las materias primas liquidas (resinas y solventes) y se incorporaron a un molino, posteriormente se inició con la molienda y se fueron incorporando el bióxido de titanio (pigmento), pasado 10 min de molienda continua se agregaron el material grafénico correspondiente a la cantidad de tinta a producir (g de GO pasta/Kg de tinta), con una concentración de entre 0.001% y 0.005% de óxido de grafeno en polvo con un pH de 7.5. Posteriormente, se mantuvo la molienda aproximadamente durante 30 min, la temperatura máxima alcanzada en este procedimiento fue de aproximadamente 70° C. Pasado el tiempo, la tinta se dejó enfriar y se descargó. Ya con una temperatura menor a los 50°C se realizó el vaciado al recipiente final. For the production of the ink, cellulose butyric ester was used as a base resin, all the liquid raw materials (resins and solvents) were weighed and incorporated into a mill, then grinding began and titanium dioxide was added. (pigment), after 10 min of continuous grinding, the graphene material corresponding to the amount of ink to be produced (g of GO paste / Kg of ink) was added, with a concentration of between 0.001% and 0.005% of graphene oxide powder with a pH of 7.5. Subsequently, the grinding was maintained for approximately 30 min, the maximum temperature reached in this procedure was approximately 70 ° C. After time, the ink was allowed to cool and was discharged. With a temperature lower than 50 ° C, the final container was emptied.
Formulación de impermeabilizantes con óxido de grafenoFormulation of waterproofing with graphene oxide
Proceso para la incorporación de óxido de grafeno en recubrimientos impermeabilizantes (acrílico-estirenados) . Process for the incorporation of graphene oxide in waterproofing coatings (acrylic-stretched).
El tipo de óxido de grafeno funcionalizado para la preparación del impermeabilizante que se utilizó fue en presentación en pasta base agua, con 30-40% de humedad y pH 3.5- 4.5. En la primera etapa de preparación se pesaron y mezclaron todas las materias primas líquidas en un dispersor y se dio inicio a la dispersión. Sin dejar de dispersar se adicionaron las cargas de material y pigmentos. Pasados 10 minutos del mezclado continuo se añadió la pasta de óxido de grafeno en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo del impermeabilizante a producir. El mezclado ahora con el óxido de grafeno se mantuvo por 20 minutos. Al finalizar, se detuvo el dispersor para agregar el espesante y se dispersaron nuevamente por aproximadamente 50 minutos más. En esta etapa la pintura alcanzó una temperatura aproximada de 45 a 50°C. A los 50 minutos se detuvo la dispersión para incorporar la resina, nuevamente se dispersó por 5 minutos y se dejó enfriar a temperatura ambiente para ser envasada. The type of functionalized graphene oxide for the preparation of the waterproofing that was used was in a water-based paste presentation, with 30-40% humidity and pH 3.5- 4.5. In the first stage of preparation, all liquid raw materials were weighed and mixed in a disperser and dispersion was started. Without stopping dispersing, the material and pigment loads were added. After 10 minutes of continuous mixing, the graphene oxide paste was added in percentages by weight in the range of 0.005% to 0.10% per kilogram of the waterproofing agent to be produced. The mixing now with the graphene oxide was kept for 20 minutes. Upon completion, the disperser was stopped to add the thickener and they dispersed again for approximately 50 more minutes. In this stage the paint reached a temperature of approximately 45 to 50 ° C. After 50 minutes the dispersion was stopped to incorporate the resin, it was again dispersed for 5 minutes and allowed to cool to room temperature to be packaged.
Formulación de óxido de grafeno como aditivo para concretoFormulation of graphene oxide as an admixture for concrete
Proceso de uso del óxido de grafeno funcionalizado en la preparación de aditivos para concreto de alta resistencia. La incorporación del óxido de grafeno proporciona incrementos de resistencia de por ejemplo 10 al 25%, aumento del 350% en la impermeabilidad, mejoría del 100% en la resistencia al fuego, mayor resistencia a la radiación UV, así como propiedades elásticas, anticorrosivas y antimicrobianas. Process of use of functionalized graphene oxide in the preparation of additives for high-strength concrete. The incorporation of graphene oxide provides resistance increases of for example 10 to 25%, 350% increase in impermeability, 100% improvement in fire resistance, greater resistance to UV radiation, as well as elastic, anticorrosive and antimicrobial.
El tipo de óxido de grafeno para la preparación del aditivo para concreto que se utilizó fue en presentación en pasta, base agua con 30-40% de humedad y pH 3.5- 4.5. La preparación del aditivo para concreto es base agua pH 7.0- 8.0 en la cual se dispersaron de 2.5- 3.5 gramos de pasta de óxido de grafeno por litro de aditivo que fue dispersado por propelas a 100- 500 RPM durante 10 minutos. The type of graphene oxide for the preparation of the concrete admixture that was used was in a paste presentation, water-based with 30-40% humidity and pH 3.5- 4.5. The preparation of the admixture for concrete is water-based pH 7.0- 8.0 in which 2.5- 3.5 grams of graphene oxide paste were dispersed per liter of admixture that was dispersed by propellers at 100-500 RPM for 10 minutes.
Para la preparación del concreto se mezclaron los diversos agregados que integraron el concreto de manera convencional: cemento, grava, arena, agua y aditivos de línea, una vez lista la mezcla del concreto se incorporaron el aditivo para concreto con óxido de grafeno directamente en la zona de mezclado de tal manera que el ajuste de la concentración corresponda a 0.5 a 1.5 gramos de óxido de grafeno por tonelada de cemento. Una vez realizada la mezcla, se continuó con los parámetros convencionales para la aplicación del concreto. To prepare the concrete, the various aggregates that integrated the concrete were mixed in a conventional way: cement, gravel, sand, water and line additives, once the concrete mixture was ready, the concrete additive with graphene oxide was incorporated directly into the mixing zone in such a way that the concentration adjustment corresponds to 0.5 to 1.5 grams of graphene oxide per ton of cement. One time Once the mixture was made, the conventional parameters for the application of concrete were continued.
Formulación de óxido de grafeno como aditivo de cementoFormulation of graphene oxide as a cement additive
Proceso para la incorporación del óxido de grafeno funcionalizado para la síntesis de cemento reforzado para altas resistencias. El tipo de óxido de grafeno para la preparación del aditivo para cemento que se utilizó fue en presentación en polvo o pasta y se agregaron en el proceso de producción de cemento. Una vez terminado el proceso de clinkerización el producto se retiró del clinker del homo a una temperatura promedio de 1200°C, se pasó a un proceso de enfriamiento y por transportadores metálicos fue llevado a almacenamiento. Para la producción final del cemento el clinker fue conducido a la molienda de cemento por molinos de bolas. La proporción para la aditivación del cemento con el polvo de óxido de grafeno fue en un rango de 0.5 a 1.5 gramos de óxido de grafeno por tonelada de cemento y su adición se puede realizar en dos etapas del proceso, tanto al término del enfriamiento del clinker o en la molienda final. De tal forma que el cemento resultante ya está reforzado con el óxido de grafeno. Process for the incorporation of functionalized graphene oxide for the synthesis of reinforced cement for high strengths. The type of graphene oxide for the preparation of the cement additive that was used was in powder or paste presentation and they were added in the cement production process. Once the clinkerization process was finished, the product was removed from the clinker of the oven at an average temperature of 1200 ° C, it was passed to a cooling process and was taken to storage by metal conveyors. For the final production of the cement, the clinker was led to the cement grinding by ball mills. The proportion for the additivation of the cement with the graphene oxide powder was in a range of 0.5 to 1.5 grams of graphene oxide per ton of cement and its addition can be carried out in two stages of the process, both at the end of the cooling of the clinker. or in the final grinding. In such a way that the resulting cement is already reinforced with graphene oxide.
Formulación de óxido de grafeno como aditivo para asfaltoFormulation of graphene oxide as an additive for asphalt
Proceso de uso del óxido de grafeno funcionalizado en la preparación de aditivos para asfalto. La incorporación del óxido de grafeno aumenta por ejemplo la resistencia Marshall y la resistencia de tensión indirecta; incrementa la dureza y la resistencia a la penetración, sin alterar su elasticidad. Process of use of functionalized graphene oxide in the preparation of additives for asphalt. The incorporation of graphene oxide increases for example the Marshall resistance and the indirect tension resistance; increases hardness and resistance to penetration, without altering its elasticity.
El tipo de óxido de grafeno funcionalizado que se utilizó para la preparación del aditivo asfáltico fue en presentación en pasta base agua con 30-40% de humedad y pH 3.5- 4.5. Para la preparación de una tonelada de cemento asfáltico se requirió una dosis de 20 a 50 mililitros de aditivo asfáltico con 5 a 10 gramos de óxido de grafeno. Para preparar una dosis de aditivo asfáltico el primer paso fue precalentar de 20 a 50 mililitros del medio dispersante, ya sea oleoso o polimérico a una temperatura inferior a 155 °C y agregar lentamente la pasta de óxido de grafeno mezclando hasta homogeneizar. El segundo paso consistió en calentar una tonelada de cemento asfáltico de 140 a 155°C, lograda ésta temperatura, se incorporó el aditivo asfáltico reforzado con óxido de grafeno hasta homogeneizar. Finalmente el tercer paso fue incorporar a la mezcla asfáltica los agregados faltantes (arena y grava). De tal forma que se apliquen de 5 a 10 gramos de óxido de grafeno funcionalizado por tonelada de cemento asfáltico. The type of functionalized graphene oxide used for the preparation of the asphalt additive was presented as a water-based paste with 30-40% humidity and pH 3.5- 4.5. For the preparation of one ton of asphalt cement, a dose of 20 to 50 milliliters of asphalt additive with 5 to 10 grams of graphene oxide was required. To prepare a dose of asphalt additive, the first step was to preheat 20 to 50 milliliters of the dispersing medium, either oily or polymeric, at a temperature below 155 ° C and slowly add the graphene oxide paste, mixing until homogenized. The second step consisted of heating a ton of asphalt cement from 140 to 155 ° C, at this temperature, the asphalt additive reinforced with graphene oxide was incorporated until homogenized. Finally, the third step was to incorporate the missing aggregates (sand and gravel) into the asphalt mix. In such a way that 5 to 10 grams of functionalized graphene oxide are applied per ton of asphalt cement.
A partir de lo anterior se entiende que, a menos que se indique de otra manera, todas las cifras que expresan cantidades de ingredientes, condiciones de reacción y así sucesivamente usadas en la especificación y reivindicaciones deben entenderse que son aproximadas, por lo tanto, ellas pueden variar dependiendo de las propiedades deseadas que se busca obtener con la presente invención. It is understood from the foregoing that, unless otherwise indicated, all figures expressing amounts of ingredients, reaction conditions and so forth used in the specification and claims are to be understood to be Approximate, therefore, they may vary depending on the desired properties that are sought to be obtained with the present invention.
Además, es claro que otras modalidades de la invención serán evidentes para una persona con conocimientos en la materia a partir de la especificación y práctica de la invención descrita en la presente. Por lo tanto, se pretende que la especificación y los ejemplos sean considerados únicamente como ejemplos ilustrativos. Furthermore, it is clear that other embodiments of the invention will be apparent to a person skilled in the art from the specification and practice of the invention described herein. Therefore, the specification and examples are intended to be considered as illustrative examples only.
REFERENCIAS BIBLIOGRÁFICAS BIBLIOGRAPHIC REFERENCES
Hernández Y., Nicolosi, V., Lotya, M., Blighe F. M., Sun, Z., De S., McGovem, I. T., Holland, B., Byme, M., Gun'Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. Nat Nanotechnol. 2008, 3, 563. Hernández Y., Nicolosi, V., Lotya, M., Blighe FM, Sun, Z., De S., McGovem, IT, Holland, B., Byme, M., Gun'Ko, YK, Boland, JJ, Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, AC, & Coleman, JN Nat Nanotechnol. 2008, 3, 563.
Geng, J., Kong, B.S., Yang, S.B. and Jung, H.T. Chem. Commun., 2010, 46, 5091 Tetlowa, H., Posthuma de Boer, J., Forde, I.J., Vvedensky, D.D., Corauxc, J., Kantorovicha, L. Physics Reports. 2014, 542, 195. Geng, J., Kong, B.S., Yang, S.B. and Jung, H.T. Chem. Commun., 2010, 46, 5091 Tetlowa, H., Posthuma de Boer, J., Forde, I.J., Vvedensky, D.D., Corauxc, J., Kantorovicha, L. Physics Reports. 2014, 542, 195.
Seah, C.M., Chai, S.P., Mohamed A. R. Carbón 2014, 70, 1 Haddon, R. C. Science 1993, 261, 1545 Seah, C.M., Chai, S.P., Mohamed A. R. Carbon 2014, 70, 1 Haddon, R. C. Science 1993, 261, 1545
Shin, C. J., Lin, S., Strano, M. S. J. Am. Chem. Soc. 2010, 132, 14638. Shin, C. J., Lin, S., Strano, M. S. J. Am. Chem. Soc. 2010, 132, 14638.
Quintana M., Grzelczak M., Spyrou K., Kooi B., Bals S., Van Tendeloo G., Rudolf P and Prato M. Chem. Commun., 2012, 48, 12159. Quintana M., Grzelczak M., Spyrou K., Kooi B., Bals S., Van Tendeloo G., Rudolf P and Prato M. Chem. Commun., 2012, 48, 12159.
Hernández, D., Scardamaglia, M., Saucedo, S., Bittencourt, C., Quintana, M. RSC Adv., 2016, 6, 66634. Hernández, D., Scardamaglia, M., Saucedo, S., Bittencourt, C., Quintana, M. RSC Adv., 2016, 6, 66634.
Staudenmaier L., Verfahren zur Darstellung der Graphitsáure, Ber. Dtsch. Chem. Ges., 1898, 31, 1481; Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, 80 (6), 1339; Staudenmaier L., Verfahren zur Darstellung der Graphitsáure, Ber. Dtsch. Chem. Ges., 1898, 31, 1481; Hummers W.S., Offeman R.E. Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, 80 (6), 1339;
D. C. Marcano, D. V. Kosynkin, J. M. Berlín, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu and J. M. Tour, ACS Nano, 2010, 4, 4806
Hontoria- Lucas, C.; López-Peinado, A.; López-González, J.; Rojas-Cervantes, M.; Martin- Aranda, R. Carbón. 1995, 33, 1585. Hontoria- Lucas, C .; López-Peinado, A .; López-González, J .; Rojas-Cervantes, M .; Martin- Aranda, R. Carbon. 1995, 33, 1585.
Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S., Williams, E.D. Nano Lett. 2007, 7, 1643. Yang Qiu, Felten Collin, Robert H. Hurt,b, and Indrek Külaots. Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbón N Y. 2016 January ; 96: 20-28. Ishigami, M., Chen, J.H., Cullen, W.G., Fuhrer, M.S., Williams, E.D. Nano Lett. 2007, 7, 1643. Yang Qiu, Felten Collin, Robert H. Hurt, b, and Indrek Külaots. Thermochemistry and kinetics of graphite oxide exothermic decomposition for safety in large-scale storage and processing. Carbon N Y. 2016 January; 96: 20-28.
Leda Shahriary, Anjali A. Athawale. Graphene Oxide Synthesized by using Modified Hummers Approach. International Journal of Renewable Energy and Environmental Engineering. Yol. 02, No. 01, January 2014 Leda Shahriary, Anjali A. Athawale. Graphene Oxide Synthesized by using Modified Hummers Approach. International Journal of Renewable Energy and Environmental Engineering. Yol. 02, No. 01, January 2014

Claims

REIVINDICACIONES
1. Método para producir materiales nanoestructurados de óxido de grafeno y óxido de grafeno reducido, el método comprende las siguientes etapas: a) selección y preparación de equipos y reactivos de acuerdo a las características del material a sintetizar; b) pre-oxidación; c) óxidación-exfoliación; d) contención de la reacción; e) purificación; y f) terminado de producto caracterizado porque la etapa a) consiste en preparar un módulo de oxidación, exfoliación y contención de reacción que comprende: i) un recirculador de refrigeración; ii) un sistema de filtración de agua que comprende tres filtros de carbón activado y luz ultravioleta, iii) un sistema de purificación de agua por osmosis inversa; iv) un dispositivo o aparato generador de hielo; v) un contenedor de agua, y vi) un sistema de mezclado rotatorio automatizado (SMRA) que comprende un matraz de balón modificado con costillas internas, un condensador vertical, una entrada para dosificación de reactivos, un embudo, un recipiente para agua, una cabina de seguridad y un sensor infrarrojo; además porque las etapas b) y c) consisten en hacer reaccionar en forma química grafito con un tamaño de partícula entre 50-100 pm y permanganato de potasio (KMn04) en presencia de ácido sulfúrico/ácido fosfórico (H2S04/ H3P04); controlar la temperatura de inicio del sistema de mezclado rotatorio automatizado (SMRA) que está conectado al recirculador externo de refrigeración; controlar la temperatura del recirculador externo de refrigeración y ajustar rampas de calentamiento ascendentes de la temperatura de la reacción in situ y ex situ de 0°C hasta 50°C en un intervalo de 5 hasta 12 horas de oxidación-exfoliación dentro del SMRA; además porque el paso d) consiste en contener la reacción con H202 a una temperatura constante ex situ, controlar la temperatura del recirculador externo de refrigeración y controlar la respuesta in situ de la mezcla por medio de un dispositivo externo para monitoreo térmico infrarrojo; además porque el paso e) consiste en purificar la pasta de óxido de grafeno en presencia de H20, HC1 y CH3CH2OH mediante etapas estandarizadas de purificación; y porque la etapa f) consiste en controlar el terminado final del óxido de grafeno con funcionalización variable. 1. Method to produce graphene oxide and reduced graphene oxide nanostructured materials, the method comprises the following stages: a) selection and preparation of equipment and reagents according to the characteristics of the material to be synthesized; b) pre-oxidation; c) oxidation-exfoliation; d) containment of the reaction; e) purification; and f) finished product characterized in that step a) consists of preparing an oxidation, exfoliation and reaction containment module comprising: i) a refrigeration recirculator; ii) a water filtration system comprising three activated carbon filters and ultraviolet light, iii) a reverse osmosis water purification system; iv) an ice generating device or apparatus; v) a water container, and vi) an automated rotary mixing system (SMRA) comprising a modified balloon flask with internal ribs, a vertical condenser, a reagent dosing inlet, a funnel, a water container, a security cabin and an infrared sensor; also because steps b) and c) consist of reacting graphite with a particle size between 50-100 pm and potassium permanganate (KMn0 4 ) in the presence of sulfuric acid / phosphoric acid (H 2 S0 4 / H 3). P0 4 ); controlling the start temperature of the automated rotary mixing system (SMRA) that is connected to the external refrigeration recirculator; control the temperature of the external refrigeration recirculator and adjust ascending heating ramps of the temperature of the reaction in situ and ex situ from 0 ° C to 50 ° C in a range of 5 to 12 hours of oxidation-exfoliation within the SMRA; also because step d) consists of containing the reaction with H 2 0 2 at a constant ex situ temperature, controlling the temperature of the external refrigeration recirculator and controlling the in situ response of the mixture by means of an external device for infrared thermal monitoring ; also because step e) consists in purifying the graphene oxide paste in the presence of H 2 0, HC1 and CH 3 CH 2 OH by means of standardized purification steps; Y because step f) consists of controlling the final finish of the graphene oxide with variable functionalization.
2. El método de acuerdo con la reivindicación 1, caracterizado porque la etapa e) de purificación comprende hacer reaccionar el óxido de grafeno y filtrar de manera cíclica con H20, HC1 y CH3CH2OH para obtenerlo en forma de producto de óxido de grafeno en pasta, polvo y óxido de grafeno reducido. 2. The method according to claim 1, characterized in that purification step e) comprises reacting graphene oxide and filtering cyclically with H 2 0, HC1 and CH 3 CH 2 OH to obtain it as a product of graphene oxide paste, powder and reduced graphene oxide.
3. El método de acuerdo con la reivindicación 1, caracterizado porque la etapa f) consiste en controlar el terminado final del óxido de grafeno con funcionalización variable con diferentes porcentajes de oxidación y/o tamaños de partícula y/o pH, de acuerdo con los requerimientos de cada aplicación. 3. The method according to claim 1, characterized in that step f) consists of controlling the final finish of the graphene oxide with variable functionalization with different percentages of oxidation and / or particle sizes and / or pH, according to the requirements of each application.
4. El método de acuerdo con la reivindicación 1, caracterizado porque en la etapa c) se hace reaccionar grafito sintético (1.0 eq.) con un tamaño de partícula de < 100 pm con KMn04 (1.0 eq.) en presencia de H2S04/ H3P04 en una proporción de 9:1, controlando la temperatura de inicio a < 20°C, la temperatura de refrigeración a - 10°C y con ajuste posterior de rampas de calentamiento ascendentes de temperatura de reacción de 30 °C hasta 45 °C durante 12 hr de oxidación;. además porque en la etapa d) se contiene la reacción con 20 mi de H202 al 30% a una temperatura de <10°C durante 1 hora con temperatura de refrigeración a -10°C y adición del 10% de volumen de H20 sobre la mezcla a una temperatura de < 10°C y posterior detención de la reacción con 50% del volumen de H20 a una temperatura controlada de < 4°C; y porque en la etapa e) se purifica la mezcla de la pasta de óxido de grafeno en presencia de H20, HC130-35% y CH3CH2OH absoluto. 4. The method according to claim 1, characterized in that in step c) synthetic graphite (1.0 eq.) With a particle size of <100 pm is reacted with KMn0 4 (1.0 eq.) In the presence of H 2 S0 4 / H 3 P0 4 in a ratio of 9: 1, controlling the starting temperature at <20 ° C, the cooling temperature at - 10 ° C and with subsequent adjustment of upward heating ramps of reaction temperature of 30 ° C to 45 ° C for 12 hr oxidation ;. also because in step d) the reaction is contained with 20 ml of 30% H 2 0 2 at a temperature of <10 ° C for 1 hour with a refrigeration temperature at -10 ° C and addition of 10% by volume of H 2 0 on the mixture at a temperature of <10 ° C and subsequent stopping of the reaction with 50% of the volume of H 2 0 at a controlled temperature of <4 ° C; and because in step e) the mixture of the graphene oxide paste is purified in the presence of H 2 0, HC130-35% and absolute CH 3 CH 2 OH.
5. El método de acuerdo con la reivindicación 1, caracterizado porque en la etapa c) se hace reaccionar KMn04 (1.0 eq.) con grafito sintético refinado (1.0 eq.) con un tamaño de partícula de <50 pm, en presencia de H2SCV H3P04 en una proporción de 8.8:1, controlando la temperatura de inicio a < 5°C, temperatura de refrigeración a - 10°C y con ajuste posterior de rampas de calentamiento ascendentes de temperatura de reacción de < 15°C hasta 50°C durante un intervalo de tiempo de entre 5 y 7 hr de oxidación; además, porque en la etapa d) se contiene la reacción con 60 mi de H202 al 50% a una temperatura de <10°C, temperatura de refrigeración a -10°C y H20 a una temperatura controlada de < 4°C; y porque en la etapa e) se purifica la mezcla de la pasta de óxido de grafeno en presencia de H20, HC130-35% y CH3CH2OH absoluto. 5. The method according to claim 1, characterized in that in step c) KMn0 4 (1.0 eq.) Is reacted with refined synthetic graphite (1.0 eq.) With a particle size of <50 pm, in the presence of H 2 SCV H 3 P0 4 in a ratio of 8.8: 1, controlling the start temperature at <5 ° C, cooling temperature at - 10 ° C and with subsequent adjustment of upward heating ramps of reaction temperature of <15 ° C to 50 ° C during a time interval of between 5 and 7 hr of oxidation; Furthermore, because in step d) the reaction is contained with 60 ml of 50% H 2 0 2 at a temperature of <10 ° C, cooling temperature at -10 ° C and H 2 0 at a controlled temperature of < 4 ° C; and because in step e) the mixture of the graphene oxide paste is purified in the presence of H 2 0, HC130-35% and absolute CH 3 CH 2 OH.
6. El método de acuerdo con la reivindicación 1, caracterizado porque en la etapa c) se hace reaccionar KMn04 (~ 2.0 eq.) con grafito amorfo refinado (1.0. eq.) con un tamaño de partícula de 50-100 pm, en presencia de H2S04/H3P04 en una proporción de 8.8:1, controlando la temperatura de inicio a < 5°C, temperatura de refrigeración a - 10°C y con ajuste posterior de rampas de calentamiento ascendentes de temperatura de reacción de < 15°C hasta 50°C durante un intervalo de tiempo de entre 5 y 12 hr de oxidación; además porque en la etapa d) se contiene la reacción con 120 mi de H202 al 50% a una temperatura de <10°C, temperatura de refrigeración a -10°C y H20 a una temperatura controlada de < 4°C; y porque en la etapa e) se purifica la mezcla de la pasta de óxido de grafeno en presencia de H20, HC130-35% y CH3CH2OH absoluto. 6. The method according to claim 1, characterized in that in step c) KMn0 4 (~ 2.0 eq.) Is reacted with refined amorphous graphite (1.0. Eq.) With a particle size of 50-100 pm, in the presence of H 2 S0 4 / H 3 P0 4 in a ratio of 8.8: 1, controlling the start temperature at <5 ° C, cooling temperature at -10 ° C and with subsequent adjustment of upward heating ramps of reaction temperature from <15 ° C to 50 ° C during a time interval between 5 and 12 hr oxidation; also because in step d) the reaction is contained with 120 ml of 50% H 2 0 2 at a temperature of <10 ° C, cooling temperature at -10 ° C and H 2 0 at a controlled temperature of <4 ° C; and because in step e) the mixture of the graphene oxide paste is purified in the presence of H 2 0, HC130-35% and absolute CH 3 CH 2 OH.
7. El método de acuerdo con la reivindicación 1, caracterizado porque en la etapa c) se hace reaccionar KMn04 (~1.5 eq.) con grafito amorfo refinado (1.0. eq.) con un tamaño de partícula de 50-100 pm, en presencia de H2SCV H3P04 en una proporción de 8.8:1, controlando la temperatura de inicio a < 5°C, temperatura de refrigeración a - 10°C y con ajuste posterior de rampas de calentamiento ascendentes de temperatura de reacción de < 15°C hasta 50°C durante un intervalo de tiempo de entre 5 y 12 hr de oxidación; además, porque en la etapa d) se contiene la reacción con 25 mi de H202 al 50% a una temperatura de <10°C, temperatura de refrigeración a -10°C y H20 a una temperatura controlada de < 4°C; y porque en la etapa e) se purifica la mezcla de la pasta de óxido de grafeno en presencia de H20, HC130-35% y CH3CH2OH absoluto. 8. El método de acuerdo con la reivindicación 1, caracterizado porque en la etapa c) se hace reaccionar KMn04 (-1.0 eq.) con grafito amorfo refinado (1.0. eq.) con un tamaño de partícula de 50-100 pm, en presencia de H2S04/ H3P04 en una proporción de 8.7. The method according to claim 1, characterized in that in step c) KMn0 4 (~ 1.5 eq.) Is reacted with refined amorphous graphite (1.0. Eq.) With a particle size of 50-100 pm, in the presence of H 2 SCV H 3 P0 4 in a ratio of 8.8: 1, controlling the starting temperature at <5 ° C, the cooling temperature at - 10 ° C and with subsequent adjustment of the reaction temperature ascending heating ramps from <15 ° C to 50 ° C during a time interval of between 5 and 12 hr of oxidation; Furthermore, because in step d) the reaction is contained with 25 ml of 50% H 2 0 2 at a temperature of <10 ° C, cooling temperature at -10 ° C and H 2 0 at a controlled temperature of < 4 ° C; and because in step e) the mixture of the graphene oxide paste is purified in the presence of H 2 0, HC130-35% and absolute CH 3 CH 2 OH. 8. The method according to claim 1, characterized in that in step c) KMn0 4 (-1.0 eq.) Is reacted with refined amorphous graphite (1.0. Eq.) With a particle size of 50-100 pm, in the presence of H 2 S0 4 / H 3 P0 4 in a proportion of 8.
8:1, controlando la temperatura de inicio a < 5°C, temperatura de refrigeración a - 10°C y con ajuste posterior de rampas de calentamiento ascendentes de temperatura de reacción de < 15°C hasta 50°C durante un intervalo de tiempo de entre 5 y 12 hr de oxidación; además porque en la etapa d) se contiene la reacción con 60 mi de H202 al 50% a una temperatura de <10°C, temperatura de refrigeración a -10°C y H20 a una temperatura controlada de < 4°C; y porque en la etapa e) se purifica la mezcla de la pasta de óxido de grafeno en presencia de H20, HC130- 35% y CH3CH2OH absoluto. 8: 1, controlling start temperature at <5 ° C, cooling temperature at - 10 ° C and with subsequent adjustment of upward heating ramps of reaction temperature from <15 ° C to 50 ° C over a period of time between 5 and 12 hr of oxidation; also because in step d) the reaction is contained with 60 ml of H 2 0 2 at 50% at a temperature of <10 ° C, cooling temperature at -10 ° C and H 2 0 at a controlled temperature of <4 ° C; and because in step e) the mixture of the graphene oxide paste is purified in the presence of H 2 0, HC130-35% and absolute CH 3 CH 2 OH.
9. El método de acuerdo con cualquiera de las reivindicaciones 1 a 8, caracterizado porque se hace reaccionar óxido de grafeno rehidratado con (C2H5)20 en proporciones 1: 1-1:3 a una temperatura de 260°C durante 90-120 segundos en el interior de un horno de convección mecánica para desecado al vacío. The method according to any of claims 1 to 8, characterized in that rehydrated graphene oxide is reacted with (C 2 H 5 ) 2 0 in proportions 1: 1-1: 3 at a temperature of 260 ° C for 90-120 seconds inside a mechanical convection oven for vacuum drying.
10. El método de acuerdo a la reivindicación 9, caracterizado por la reducción del óxido de grafeno se lleva a cabo dentro de un contenedor de aluminio con tapa. 10. The method according to claim 9, characterized by the reduction of graphene oxide is carried out inside an aluminum container with a lid.
11. Sistema o ensamble operativo para la producción de óxido de grafeno, que comprende: un módulo de oxidación-exfoliación y contención de la reacción, un módulo de purificación, un módulo de descarga de lixiviados y un módulo de terminado de producto; caracterizado porque: i) el módulo A) de oxidación, exfoliación y contención de reacción que comprende un sistema de filtración de agua (1) que comprende tres filtros de carbón activado y luz ultravioleta, que distribuye el agua filtrada por medio de un tubo (a) hacia un sistema de mezclado rotatorio automatizado (SMRA) (2), a través de un tubo (b) que sale de un contenedor de agua (3) ubicado en la parte superior del SMRA; el sistema de filtración de agua (1) también distribuye el agua filtrada por medio de un tubo (c) hacia un dispositivo productor de hielo (4) o similar y finalmente, distribuye el agua filtrada por medio de un tubo (d) a un segundo sistema de filtración por osmosis inversa conformado por tres filtros (5) que proveen el agua requerida para las etapas de purificación del óxido de grafeno, el SMRA (2) comprende un matraz de balón (6) modificado con costillas internas que se inserta a 45 grados mediante un sistema hermético con anillos de seguridad, respecto al eje longitudinal de un condensador vertical (7) cuyo diseño fue modificado para crear una entrada lateral de alimentación (8) para la dosificación de reactivos en una forma indirecta a través de un embudo (9), que entra a 45 grados respecto al eje longitudinal del condensador vertical (7) con una trayectoria de 90 a 100 cm desde la parte externa de la cabina de seguridad (11) del SMRA y que llega hasta el centro interno del matraz de balón (6) un recipiente para agua (10) para sumergir el matraz y una cabina de seguridad (11) que aísla del exterior al matraz, al recipiente para agua y al condensador vertical.. El SMRA está conectado a un recirculador (12) por entradas y salidas del flujo de refrigerante a una temperatura controlada y finalmente un sensor infrarrojo externo (13) de uso manual, que permite la medición de la temperatura in situ de la reacción; ii) el módulo de purificación comprende sistemas de filtración (14) que se localizan sobre contenedores que tienen una cubierta mecanizada (15) y bastidores (16) con filtros de poliéster, cada sistema de purificación tiene una salida (17) con válvulas de apertura y cierre (18) para la descarga del lixiviado hacia la zona de recolección de residuos, el sistema completo de purificación por filtración está montado sobre tarimas (19) antiderrames, de las válvulas (18) de apertura y cierre surge una línea de descarga o tubo (20) la cual se oculta bajo el piso, y desemboca en el módulo C) de descarga de lixiviados; iii) el módulo de descarga de lixiviados comprende los contenedores (21) los cuales se encuentran soportados sobre plataformas antiderrames (22), hacia los contenedores (21) llega la tubería (20) de las líneas de descarga de los lixiviados provenientes de los sistemas de purificación (14) controlados mediante las válvulas de apertura y cierre (18), que liberan los lixiviados residuales a través del tubo (20) que se dirige por debajo del piso y llega hasta los contenedores (21) que se llenan mediante la apertura de las válvulas (23) de los contenedores (21) del módulo de descarga de lixiviados; iv) el módulo de terminado de producto comprende una cámara con extracción forzada (24), en cuyo interior está dispuesto un horno de convección mecánica para desecado al vacío (25), y un contenedor de aluminio con tapa (26). 11. System or operating assembly for the production of graphene oxide, comprising: an oxidation-exfoliation and containment module of the reaction, a purification module, a leachate discharge module and a product finishing module; characterized in that: i) module A) for oxidation, exfoliation and reaction containment comprising a water filtration system (1) comprising three activated carbon filters and ultraviolet light, which distributes the filtered water through a tube ( a) towards an automated rotary mixing system (SMRA) (2), through a tube (b) that exits a water container (3) located in the upper part of the SMRA; The water filtration system (1) also distributes the filtered water through a tube (c) to an ice-producing device (4) or similar and finally, distributes the filtered water through a tube (d) to a second inverse osmosis filtration system made up of three filters (5) that provide the water required for the graphene oxide purification stages, the SMRA (2) comprises a modified balloon flask (6) with internal ribs that is inserted into 45 degrees through a hermetic system with safety rings, with respect to the longitudinal axis of a vertical condenser (7) whose design was modified to create a lateral feed inlet (8) for the dosing of reagents in an indirect way through a funnel (9), which enters at 45 degrees with respect to the longitudinal axis of the vertical condenser (7) with a path of 90 to 100 cm from the external part of the safety cabinet (11) of the SMRA and which reaches the internal center of the flask d e balloon (6) a container for water (10) to submerge the flask and a safety cabinet (11) that isolates the flask, the container for water and the vertical condenser from the outside. The SMRA is connected to a recirculator (12 ) by inputs and outputs of the refrigerant flow at a controlled temperature and finally an external infrared sensor (13) for manual use, which allows the measurement of the reaction temperature in situ; ii) the purification module comprises filtration systems (14) that are located on containers that have a mechanized cover (15) and frames (16) with polyester filters, each purification system has an outlet (17) with opening valves and closure (18) for the discharge of leachate to the waste collection area, the complete filtration purification system is mounted on anti-spill pallets (19), from the opening and closing valves (18) a discharge line arises or tube (20) which is hidden under the floor, and empties into the leachate discharge module C); iii) the leachate discharge module comprises the containers (21) which are supported on anti-spill platforms (22), towards the containers (21) the pipe (20) of the discharge lines of the leachates from the systems arrives purification (14) controlled by the opening and closing valves (18), which release the residual leachate through the tube (20) that runs below the floor and reaches the containers (21) which are filled by opening the valves (23) of the containers (21) of the leachate discharge module; iv) the product finishing module comprises a chamber with forced extraction (24), inside which is arranged a mechanical convection oven for vacuum drying (25), and an aluminum container with a lid (26).
12. El sistema o ensamble operativo de conformidad con la reivindicación 11, caracterizado porque el condensador vertical es seleccionado entre tipo Graham, Friedrichs, Dimroth, Liebig, Allihn. 12. The operating system or assembly according to claim 11, characterized in that the vertical condenser is selected from among the Graham, Friedrichs, Dimroth, Liebig, Allihn types.
13. El sistema o ensamble operativo de conformidad con la reivindicación 11, caracterizado porque el matraz de balón esta modificado con costillas internas para el mezclado mejorado de los reactivos por medio de turbulencia interna, para un mezclado homogéneo del material. The operating system or assembly according to claim 11, characterized in that the balloon flask is modified with internal ribs for improved mixing of the reagents by means of internal turbulence, for a homogeneous mixing of the material.
14. El sistema o ensamble operativo de conformidad con la reivindicación 11, caracterizado porque los sistemas de purificación se componen de un contenedor con cubierta mecanizada que tiene un bastidor colocado en su interior con un filtro. 14. The operating system or assembly according to claim 11, characterized in that the purification systems are composed of a container with a mechanized cover that has a frame placed inside with a filter.
15. El sistema o ensamble operativo de conformidad con la reivindicación 11, caracterizado porque los sistemas de purificación están colocados sobre bases a medida y plataformas antiderrame, los sistemas están a la vez conectados a una línea de descarga directa de lixiviados residuales. The operating system or assembly according to claim 11, characterized in that the purification systems are placed on custom bases and anti-spill platforms, the systems are simultaneously connected to a direct discharge line for residual leachate.
16. El uso del óxido de grafeno funcionalizado producido de acuerdo con las reivindicaciones 1 a 10 como materia prima y/o nanorelleno en aplicaciones técnicas químicas, pinturas, impermeabilizantes, tintas, recubrimientos, aditivos, concreto, cemento y asfalto. 16. The use of the functionalized graphene oxide produced according to claims 1 to 10 as raw material and / or nano-filler in chemical technical applications, paints, waterproofing agents, inks, coatings, additives, concrete, cement and asphalt.
17. Formulación de primer alquidálico anticorrosivo y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque la pasta de óxido de grafeno es base agua con 30-40% de humedad y pH de 3.5 a 4.5 en porcentajes por peso en el rango de 0.005% y 0.10% por kilogramo del material base alquidálico. 17. Formulation of first anticorrosive alkyd and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide paste is water-based with 30-40% humidity and pH of 3.5 to 4.5 in percentages per weight in the range of 0.005% and 0.10% per kilogram of the alkyd base material.
18. Formulación de esmalte alquídico anticorrosivo y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque la pasta de óxido de grafeno es base agua con 30-40% de humedad y pH 3.5-4.5, en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de material. 18. Formulation of anticorrosive alkyd enamel and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide paste is water-based with 30-40% humidity and pH 3.5-4.5, in percentages per weight in the range of 0.005% to 0.10% per kilogram of material.
19. Formulación de pinturas antimicrobianas con base vinil-acrílica y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque la pasta de óxido de grafeno es base agua con 30-40% de humedad y pH 3.5-4.5, en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de material. 19. Formulation of antimicrobial paints based on vinyl-acrylic and graphene oxide produced according to any of claims 1 to 10, characterized because graphene oxide paste is water-based with 30-40% humidity and pH 3.5-4.5, in percentages by weight in the range of 0.005% to 0.10% per kilogram of material.
20. Formulación de pinturas antimicrobianas con base acrflica-estirenada y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque la pasta de óxido de grafeno es base agua con 30-40% de humedad y pH 3.5-4.5, en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de material. 20. Formulation of antimicrobial paints based on acrylic-styrene and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide paste is water-based with 30-40% humidity and pH 3.5-4.5 , in percentages by weight in the range of 0.005% to 0.10% per kilogram of material.
21. Formulación de pinturas anticorrosivas con base de poliuretano aromático y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en polvo con 10% de humedad y pH 6.4- 7.5, en porcentajes por peso en el rango de 0.001% a 0.05% por kilogramo de material. 21. Formulation of anticorrosive paints based on aromatic polyurethane and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is powder with 10% humidity and pH 6.4- 7.5, in percentages per weight in the range of 0.001% to 0.05% per kilogram of material.
22. Formulación de pinturas anticorrosivas con base de poliuretano alifático y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en polvo con 10% de humedad y pH 6.4- 7.5, en porcentajes por peso en el rango de 0.001% a 0.005% por kilogramo de material. 22. Formulation of anticorrosive paints based on aliphatic polyurethane and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is a powder with 10% humidity and pH 6.4- 7.5, in percentages per weight in the range of 0.001% to 0.005% per kilogram of material.
23. Formulación de pinturas anticorrosivas con base de poliuretano acuoso (base agua) y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en polvo con 10% de humedad y pH 6.4-7.5, en porcentajes por peso en el rango de 0.001% a 0.005% por kilogramo de material. 23. Formulation of anticorrosive paints based on aqueous polyurethane (water-based) and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is powder with 10% humidity and pH 6.4-7.5 , in percentages by weight in the range of 0.001% to 0.005% per kilogram of material.
24. Formulación de pinturas anticorrosivas de tráfico con base de esmalte y hule clorado y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en pasta de óxido de grafeno base agua con 30-40% de humedad y pH 3.5-4.5, en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de material. 24. Formulation of anti-corrosion traffic paints based on enamel and chlorinated rubber and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is a water-based graphene oxide paste with 30-40 % moisture and pH 3.5-4.5, in percentages by weight in the range of 0.005% to 0.10% per kilogram of material.
25. Formulación de pinturas anticorrosivas con base epóxica y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en pasta de óxido de grafeno base agua con 30-40% de humedad y pH 3.5- 4.5 en porcentajes por peso en el rango de 0.005% a 0.010% por kilogramo de material. 25. Formulation of anticorrosive paints based on epoxy and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is a water-based graphene oxide paste with 30-40% humidity and pH 3.5 - 4.5 in percentages by weight in the range of 0.005% to 0.010% per kilogram of material.
26. Formulación de tintas y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en polvo de óxido de grafeno y pH 3.5- 4.5 en porcentajes por peso en el rango de 0.001% a 0.005% por kilogramo de material. 26. Formulation of inks and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is graphene oxide powder and pH 3.5- 4.5 in percentages by weight in the range of 0.001% to 0.005% per kilogram of material.
27. Formulación de impermeabilizante con base acrflica-estirenada y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en pasta de óxido de grafeno base agua con 30-40% de humedad y pH 3.5-4.5, en porcentajes por peso en el rango de 0.005% a 0.10% por kilogramo de material. 27. Formulation of waterproofing based on acrylic-styrene and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is a water-based graphene oxide paste with 30-40% humidity and pH 3.5-4.5, in percentages by weight in the range of 0.005% to 0.10% per kilogram of material.
28. Formulación de aditivos para concreto y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en pasta de óxido de grafeno base agua con 30-40% de humedad y en cantidades en el rango del 2% a 5% en peso por litro de medio dispersante, ya sea acuoso, oleoso o polimérico. 28. Formulation of additives for concrete and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is a water-based graphene oxide paste with 30-40% humidity and in quantities in the range from 2% to 5% by weight per liter of dispersing medium, whether aqueous, oily or polymeric.
29. La formulación de conformidad con la reivindicación 28, caracterizada porque la pasta de óxido de grafeno se utiliza sin el uso de un dispersante. 29. The formulation according to claim 28, characterized in that the graphene oxide paste is used without the use of a dispersant.
30. Formulación de aditivos para cemento y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno está presente de 0.5 a 1.5 gramos por tonelada de cemento. 30. Formulation of additives for cement and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is present at 0.5 to 1.5 grams per ton of cement.
31. Formulación de aditivos para asfalto y óxido de grafeno producido de acuerdo con cualquiera de las reivindicaciones 1 a 10, caracterizada porque el óxido de grafeno es en base agua y en donde dicho óxido de grafeno esta presente de 5 a 10 gramos en 20 a 50 mililitros de un medio dispersante, por tonelada de mezcla asfáltica. 31. Formulation of additives for asphalt and graphene oxide produced according to any of claims 1 to 10, characterized in that the graphene oxide is water-based and wherein said graphene oxide is present from 5 to 10 grams in 20 to 50 milliliters of a dispersant medium, per ton of asphalt mix.
32. La formulación de conformidad con la reivindicación 31, caracterizada porque el óxido de grafeno base agua está en forma de pasta o polvo con 30-40% de humedad y pH 3.5-4.5. 32. The formulation according to claim 31, characterized in that the water-based graphene oxide is in the form of a paste or powder with 30-40% humidity and pH 3.5-4.5.
33. La formulación de conformidad con la reivindicación 31, caracterizada porque el medio dispersante es acuoso, oleoso o polimérico. 33. The formulation according to claim 31, characterized in that the dispersing medium is aqueous, oily or polymeric.
34. El método de acuerdo con la reivindicación 3, caracterizado porque el porcentaje de funcionalización esta entre 5%-50%. 34. The method according to claim 3, characterized in that the percentage of functionalization is between 5% -50%.
35. Productos obtenidos de conformidad con el método de las reivindicaciones 1 a35. Products obtained in accordance with the method of claims 1 to
10. 10.
PCT/IB2020/059446 2019-08-08 2020-10-08 Method and operative system for the high-performance production of carbon-based nanostructured materials with variable functionalization WO2021024240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2019/009450 2019-08-08
MX2019009450 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021024240A1 true WO2021024240A1 (en) 2021-02-11

Family

ID=74503941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/059446 WO2021024240A1 (en) 2019-08-08 2020-10-08 Method and operative system for the high-performance production of carbon-based nanostructured materials with variable functionalization

Country Status (1)

Country Link
WO (1) WO2021024240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014948A1 (en) * 2022-07-15 2024-01-18 Grijalva Varillas Sergio Fernando Graphene oxide-based coating ink having bactericidal properties and printing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815701B1 (en) * 2017-02-24 2017-11-14 King Saud University Synthesis of reduced graphene oxide nanoparticles
WO2018178842A1 (en) * 2017-03-31 2018-10-04 Arcelormittal A method for the manufacture of graphene oxide from kish graphite
KR20190058408A (en) * 2019-05-17 2019-05-29 전자부품연구원 Graphene oxide classification device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815701B1 (en) * 2017-02-24 2017-11-14 King Saud University Synthesis of reduced graphene oxide nanoparticles
WO2018178842A1 (en) * 2017-03-31 2018-10-04 Arcelormittal A method for the manufacture of graphene oxide from kish graphite
KR20190058408A (en) * 2019-05-17 2019-05-29 전자부품연구원 Graphene oxide classification device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAZLI-SHOKOUHI, S. ET AL.: "Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties", JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, vol. 16, no. 4, 15 July 2019 (2019-07-15), pages 983 - 997, XP036859921, ISSN: 1547-0091, DOI: 10.1007/s11998-018-00173- 3 *
WANG ET AL.: "Antibacterial [2-(Methacryloyloxy)ethyl] Trimethylammonium Chloride Functionalized Reduced Graphene Oxide/Poly(ethylene-co-vinyl alcohol) Multilayer Barrier Film for Food Packaging", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 66, no. 3, 24 January 2018 (2018-01-24), pages 732 - 739, XP055791178, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.7b04784 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014948A1 (en) * 2022-07-15 2024-01-18 Grijalva Varillas Sergio Fernando Graphene oxide-based coating ink having bactericidal properties and printing method

Similar Documents

Publication Publication Date Title
Yang et al. Bifunctional TiO 2/Ag 3 PO 4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria
Cheng et al. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst
Gu et al. Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity
Jin et al. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications
Wang et al. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light
Adhikari et al. Deposition of ZnO flowers on the surface of g-C3N4 sheets via hydrothermal process
Malik et al. One-pot hydrothermal synthesis of porous SnO2 nanostructures for photocatalytic degradation of organic pollutants
Singh et al. Transition metal doped cobalt ferrite nanoparticles: Efficient photocatalyst for photodegradation of textile dye
Pathak et al. Effect of fuel content on luminescence and antibacterial properties of zinc oxide nanocrystalline powders synthesized by the combustion method
Madima et al. Fabrication of magnetic recoverable Fe3O4/TiO2 heterostructure for photocatalytic degradation of rhodamine B dye
Lu et al. Preparation of MoO 3 QDs through combining intercalation and thermal exfoliation
Yang et al. Synthesis of spindle-shaped AgI/TiO2 nanoparticles with enhanced photocatalytic performance
Das et al. Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis
Shahi et al. Fabrication of phase and morphology controlled pure rutile and rutile/anatase TiO2 nanostructures in functional ionic liquid/water
Zhou et al. TiO2/Bi2 (BDC) 3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity
Tadjarodi et al. A green synthesis of copper oxide nanoparticles by mechanochemical method
WO2021024240A1 (en) Method and operative system for the high-performance production of carbon-based nanostructured materials with variable functionalization
Wang et al. Insights into the relationship between the color and photocatalytic property of attapulgite/CdS nanocomposites
Sharma et al. ZnO hollow pitchfork: coupled photo-piezocatalytic mechanism for antibiotic and pesticide elimination
Malik et al. Multicore‒shell nanocomposite formed by encapsulation of WO3 in zeolitic imidazolate framework (ZIF-8): as an efficient photocatalyst
Kumari et al. Self-assembled ultra-small zinc stannate nanocrystals with mesoscopic voids via a salicylate templating pathway and their photocatalytic properties
Zayyoun et al. Effect of solvent on the morphological and optical properties of CuO nanoparticles prepared by simple sol-gel process
Raula et al. Ionic liquid-based solvent-induced shape-tunable small-sized ZnO nanostructures with interesting optical properties and photocatalytic activities
Hassanien et al. Novel green route to synthesize cadmium oxide@ graphene nanocomposite: optical properties and antimicrobial activity
Wu et al. Effect of urea on the synthesis of Al-doped ZnO nanoparticle and its adsorptive properties for organic pollutants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849358

Country of ref document: EP

Kind code of ref document: A1