WO2021022728A1 - 陆空两栖无人车控制*** - Google Patents

陆空两栖无人车控制*** Download PDF

Info

Publication number
WO2021022728A1
WO2021022728A1 PCT/CN2019/121704 CN2019121704W WO2021022728A1 WO 2021022728 A1 WO2021022728 A1 WO 2021022728A1 CN 2019121704 W CN2019121704 W CN 2019121704W WO 2021022728 A1 WO2021022728 A1 WO 2021022728A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
vehicle
data
module
land
Prior art date
Application number
PCT/CN2019/121704
Other languages
English (en)
French (fr)
Inventor
张新钰
谭启凡
李骏
郭栋
周沫
黄毅
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021022728A1 publication Critical patent/WO2021022728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Definitions

  • the invention relates to the technical field of unmanned vehicles, in particular to a land-air amphibious unmanned vehicle control system.
  • the land-air amphibious unmanned vehicle is a new type of intelligent transportation that can realize ground driving and air flight, paving the way for the development of flying cars in the future.
  • the vehicle uses a traditional four-wheel and two-wheel drive chassis as the basic structure for ground travel, and on this basis uses the rotor to achieve high-degree-of-freedom flight movements.
  • the entire vehicle is driven by a motor and is equipped with information perception modules such as GPS module, visual sensor module, and lidar module to realize autonomous driving functions such as spatial autonomous navigation and route planning of the vehicle.
  • the control system of the land-air amphibious unmanned vehicle it needs to be able to collect and process the signal data of the various sensor modules of the vehicle. In addition, it needs to be able to control the actuators including the vehicle chassis motor and the rotor motor. According to different driving modes (ground driving, air flight), the different motors are driven and distributed to control the vehicle to switch in the designated motion mode. Therefore, the design of the control system needs to be highly integrated to ensure the land-air amphibious unmanned vehicle The driving function.
  • the purpose of the present invention is to provide a land-air amphibious unmanned vehicle control system, which can reliably control the soft switching of the vehicle in flight and driving, and realize the continuous vehicle in the land-air amphibious room sport control.
  • the present invention provides a land-air amphibious unmanned vehicle control system, which is used to control the continuous movement of the unmanned vehicle's land-air amphibious room.
  • the unmanned vehicle includes a rotor motor and a chassis motor.
  • the land-air amphibious unmanned vehicle control system includes a remote service system, a vehicle data acquisition system, a motion control system, a control core system and a power control system.
  • the remote service system is used to provide target coordinate data and send the target coordinate data to the control core system;
  • the vehicle data acquisition system is used to collect vehicle data and send the vehicle data to the control core system;
  • the control core system is used to according to the target coordinate data Process vehicle data to obtain control instructions, and send the control instructions to the motion control system;
  • the motion control system is used to switch the vehicle motion mode and determine the corresponding motion mode according to the control instructions and vehicle data received from the control core system PID control parameters, realize the control of the rotor motor and/or chassis motor of the vehicle through PID control, make the vehicle move according to the specified motion mode, and send the PID control parameters and motion data to the control core system;
  • the motion mode includes the flight motion mode , Driving motion mode, flight-to-driving motion mode, and driving-to-flight motion mode.
  • the motion data includes the vehicle's flight attitude and the vehicle's driving speed and steering angle;
  • the power control system is used for the vehicle data acquisition system, control core system and motion control The system provides power
  • the motion control system includes a state switching control module, a flight rotor control module, and a vehicle chassis control module;
  • the vehicle data includes vehicle attitude data;
  • the state switching control module is used to control the vehicle attitude according to the control instructions received from the control core system The data switches the motion mode of the vehicle, and the PID control parameters corresponding to the motion mode of the vehicle are used as the output of the state switching control module;
  • the flight rotor control module is used to control the PID control output from the state switching control module according to control instructions, vehicle attitude data Parameters, through PID control, output the rotor motor control value, adjust the rotation speed of the rotor motor to determine the flying attitude of the vehicle;
  • the vehicle chassis control module is used to switch the PID control parameters output from the control module according to the control command and the state, and output the chassis through PID control
  • the motor control quantity adjusts the speed and steering angle of the chassis motor to determine the driving speed and steering angle of the vehicle.
  • the flight rotor control module includes a rotor motor, a flight attitude detection sub-module, an angle loop PID controller, and an angular velocity loop PID controller; the flight attitude detection sub-module is used to obtain the current flight attitude data of the unmanned vehicle, and fly The attitude data includes the three-axis angle and the three-axis angular velocity; the input end of the angle loop PID controller uses the current three-axis angle and control command of the unmanned vehicle obtained from the flight attitude detection sub-module as the input control quantity and the state switch control module The output terminal of the angle loop PID controller and the output terminal of the state switching control module are connected with the input terminal of the angular velocity loop PID controller.
  • the output terminal of the angular velocity loop PID controller is connected with the rotor motor, and the flight attitude detection sub-module It is connected with the input terminal of the angular velocity loop PID controller, and is used to send the current three-axis angular velocity of the unmanned vehicle to the angular velocity loop PID controller.
  • the vehicle chassis control module includes a controlled object, a speed acquisition sub-module, an angle acquisition sub-module, a speed PID controller, and a steering PID controller.
  • the controlled object includes a drive motor, a steering motor, a drive motor, and a steering motor.
  • the input terminal of the speed PID controller takes the control command as the input control quantity and is connected with the output terminal of the state switching control module, the output terminal of the speed PID controller is connected with the drive motor, and the speed acquisition sub-module is controlled by the speed PID
  • the input terminal of the controller is connected, used to send the current speed obtained from the drive motor to the speed PID controller;
  • the input terminal of the PID controller uses the control command as the input control quantity and is connected to the output terminal of the state switching control module ,
  • the output terminal of the steering PID controller is connected with the steering motor, and the angle acquisition sub-module is connected with the input terminal of the steering PID controller, and is used to send the current steering angle obtained from the steering motor to the steering PID controller.
  • the land-air amphibious unmanned vehicle control system further includes a data storage system for storing vehicle data, PID control parameters, and motion data sent by the control core system.
  • the control core system includes an upper computer, a lower computer, and a first communication module.
  • the upper computer and the lower computer are communicatively connected through the first communication module; at least one of the upper computer and the lower computer is used to receive data collected by the vehicle.
  • the upper computer is also used to receive the target coordinate data sent by the remote service system and process the received vehicle data according to the target coordinate data to obtain control instructions
  • the lower computer is also used to send the control instructions to the motion control system
  • the lower computer sends the PID control parameters and motion data to the upper computer through the first communication module.
  • the remote service system includes a remote server and a network communication module; the upper computer and the remote server are connected through the network communication module; the remote server is used to receive vehicle data, PID control parameters, motion data, and battery power data sent by the upper computer And display, and used to send the target coordinate data to the upper computer, the upper computer processes the vehicle data according to the target coordinate data to obtain the control instruction.
  • the land-air amphibious unmanned vehicle control system further includes a remote control system.
  • the remote control system includes a remote control module and a second communication module.
  • the remote control module is connected to the lower computer through the second communication module, and the lower computer receives the remote control sent by the remote control module. Command, remote control command as control command.
  • the vehicle data acquisition system includes a posture detection module and an inertial navigation module.
  • the vehicle data includes vehicle posture data and real-time vehicle acceleration data;
  • the posture detection module is used to detect vehicle posture signals to obtain vehicle posture data, and the inertial navigation module uses To collect real-time vehicle acceleration signals to obtain vehicle real-time acceleration data;
  • the lower computer receives the vehicle attitude data sent by the attitude detection module and the vehicle real-time acceleration data sent by the inertial navigation module, and sends them to the upper computer through the first communication module.
  • the vehicle data acquisition system further includes a GPS positioning module, a lidar module, and a visual detection module.
  • the vehicle data also includes vehicle position data, obstacle information data, and visual detection data;
  • the GPS positioning module is used to collect vehicle position data ,
  • the lidar module is used to collect obstacle information data, and the vision detection module is used to obtain environmental image data.
  • the host computer receives the vehicle position data sent by the GPS positioning module, the obstacle information data sent by the lidar module, and the environment image data sent by the vision detection module.
  • the control core system processes the vehicle data collected by the vehicle data acquisition system to obtain control instructions according to the target coordinate data
  • the motion control system accepts the control instructions of the control core system and switches through the state Combined with the PID control method, it realizes the coordinated control of the vehicle's flight movement and ground movement, and controls the vehicle to move in accordance with the specified movement mode, so that the vehicle not only has the ability to fly and ground movement, but also has the softness between flight movement and ground movement.
  • Sexual switching function can realize continuous motion control in air and land amphibians.
  • Fig. 1 is a structural block diagram of the land-air amphibious unmanned vehicle control system of the present invention.
  • Fig. 2 is a structural block diagram of an embodiment of a land-air amphibious unmanned vehicle control system of the present invention.
  • Fig. 3 is a PID control principle diagram of the motion control system of the embodiment of the land-air amphibious unmanned vehicle control system of Fig. 2.
  • Fig. 4 is a control flowchart of the land-air amphibious unmanned vehicle control system of the present invention.
  • the land-air amphibious unmanned vehicle control system of the present invention is used to control the continuous movement of the unmanned vehicle's land-air amphibious room.
  • the unmanned vehicle includes a rotor motor and a chassis motor.
  • the rotor motor is used to drive the land-air amphibious vehicle.
  • the movement of the flight structure including the rotor of the human and vehicle to achieve the flight of the vehicle.
  • the chassis motor is used to drive the movement of the driving structure of the land-air amphibious unmanned vehicle to realize the vehicle running on the road.
  • the driving structure may be a vehicle chassis including wheels.
  • the land-air amphibious unmanned vehicle control system includes a remote service system, a vehicle data acquisition system, a motion control system, a control core system and a power control system.
  • the land-air amphibious unmanned vehicle control system can also include a data storage system and a remote control system.
  • the remote service system is used to provide target coordinate data and send the target coordinate data to the control core system.
  • the vehicle data acquisition system is used to collect vehicle data and send the vehicle data to the control core system.
  • the control core system is used to process the vehicle data according to the target coordinate data to obtain control instructions, and send the control instructions to the motion control system.
  • the motion control system is used to switch the motion mode of the vehicle and determine the PID control parameters in the corresponding motion mode according to the control instructions and vehicle data received from the control core system, and realize the control of the rotor motor and/or chassis motor of the vehicle through PID control , To make the vehicle move according to the designated motion mode, and send PID control parameters and motion data to the control core system.
  • the sports modes include flight sports mode, driving sports mode, flight-to-car sports mode, and driving-to-fly sports mode.
  • the motion data includes the flight attitude of the vehicle and the driving speed and steering angle of the vehicle.
  • the power control system is used to provide power for the vehicle data acquisition system, control core system, and motion control system, and send battery power data to the control core system.
  • the data storage system is used to store vehicle data, PID control parameters and motion data sent by the control core system.
  • the vehicle data collection system is used to collect vehicle attitude data, vehicle real-time acceleration data, vehicle position data, obstacle information data, environmental image data, etc. during the working process of the land-air amphibious unmanned vehicle Various vehicle data.
  • the vehicle data collection system may include a posture detection module and an inertial navigation module, and the vehicle data includes vehicle posture data and vehicle real-time acceleration data.
  • the vehicle data acquisition system may also include a GPS positioning module, a lidar module, and a visual inspection module, and the vehicle data may also include vehicle position data, obstacle information data, and visual inspection data.
  • the posture detection module is used to detect vehicle posture signals to obtain vehicle posture data
  • the inertial navigation module is used to collect vehicle real-time acceleration signals to obtain vehicle real-time acceleration data.
  • the GPS positioning module is used to collect vehicle position data
  • the lidar module is used to collect obstacle information data
  • the vision detection module is used to obtain environmental image data.
  • the vehicle attitude data includes the heading angle, pitch angle, roll angle and three-axis angular velocity of the vehicle
  • the real-time acceleration data of the vehicle includes the longitudinal, lateral, and vertical acceleration of the vehicle
  • the obstacle information data passes through the lidar module to the surrounding Obstacles are generated in point clouds, and then filtered to obtain obstacle information data around the vehicle
  • the environment image data is a high-resolution image collected by the vision detection module, which is used to identify surrounding targets and perform three-dimensional reconstruction of the surrounding environment.
  • the vehicle data collection system is not limited to the above-mentioned modules, and can also reduce modules or add other modules according to the actual vehicle data collected.
  • control core system includes an upper computer, a lower computer, and a first communication module.
  • the control core system realizes the processing and calculation of decision-making and planning algorithms, upper-level perception and advanced control strategies for land-air amphibious unmanned vehicles and supports other systems (such as remote service systems, data acquisition systems, motion control systems, power control systems, and data storage systems) ) Data information deployment control.
  • the upper computer and the lower computer are communicatively connected through the first communication module.
  • At least one of the upper computer and the lower computer is used to receive the vehicle data sent by the vehicle data acquisition system, and the upper computer is also used to receive the target coordinate data sent by the remote service system and process the received vehicle data according to the target coordinate data.
  • Control instructions the lower computer is also used to send control instructions to the motion control system and receive PID control parameters and motion data sent by the motion control system.
  • the lower computer sends the PID control parameters and motion data to the upper computer through the first communication module.
  • the control instructions sent from the upper computer are first sent to the lower computer through the first communication module, and the lower computer controls the motion control system according to the control instructions, and the lower computer reads the motion control system, the vehicle data acquisition system, and the power control system from time to time. Send the data and feedback the data to the upper computer.
  • the target coordinate data are the space coordinates of the starting point and the end point of the unmanned land-air amphibious vehicle movement, which means that the land-air amphibious unmanned vehicle needs to move from a certain starting point to a certain end point.
  • the host computer generates the trajectory of the land-air amphibious unmanned vehicle according to the target coordinate data, and processes the vehicle data to obtain the control instructions.
  • the control instructions received by the motion control system include the expected posture of the vehicle, the driving speed and the steering angle of the vehicle.
  • the desired rotation speed and desired steering angle of the chassis motor that is, the desired rotation speed of the drive motor and the desired steering angle of the steering motor described later.
  • the upper computer uses ADLINK’s embedded computing platform MXE-5400 series
  • the lower computer uses STMicroelectronics’ 32-bit microcontroller STM32F series STM32F103.
  • the first communication module is SPI bus communication.
  • the highest communication rate can reach 400kHz. But it is not limited to this. According to actual needs, other products or self-developed products can also be used for the upper computer, the lower computer and the first communication module.
  • the remote service system includes a remote server and a network communication module.
  • the upper computer and the remote server are connected through the network communication module.
  • the remote server is used to receive and display vehicle data, PID control parameters, motion data and battery power data sent by the host computer, and to send target coordinate data to the host computer.
  • the host computer processes the vehicle data according to the target coordinate data to obtain control instructions .
  • the remote server includes a user operation interface through which the user can enter target coordinate data, and the user can obtain the ground and air amphibious data through the vehicle data, PID control parameters, exercise data, and battery power data displayed on the user operation interface.
  • the network communication module uses a 4G wireless router model G806-43 made by Human Technology, but it is not limited to this, and other types of network communication modules can also be selected according to actual needs.
  • both the upper computer and the lower computer are used to receive the vehicle data sent by the vehicle data acquisition system.
  • the lower computer receives the vehicle posture data sent by the posture detection module and the vehicle real-time acceleration data sent by the inertial navigation module, and sends it to the upper computer through the first communication module.
  • the host computer receives the vehicle position data sent by the GPS positioning module, the obstacle information data sent by the lidar module, and the environment image data sent by the vision detection module.
  • the attitude detection module uses InvenSense's nine-axis attitude sensor MPU-9250, which communicates with the lower computer through the I 2 C bus to transmit vehicle attitude data;
  • the inertial navigation module uses the model of Refine Star Technology Corporation It is a miniature heading and attitude reference system of AH100B-MEMS.
  • the GPS positioning module uses the Mini-M600G of Sinan Company.
  • the lidar module uses the RS-LiDAR-16 lidar of Sagitar Juchuang.
  • the vision detection module uses Intel’s Realsense D400 series camera with model D415.
  • the selection of attitude detection module, inertial navigation module, GPS positioning module, lidar module and vision detection module is not limited to this, and other models of products can be selected according to specific needs, or self-developed products can also be used.
  • the motion control system includes a state switching control module, a flight rotor control module, and a vehicle chassis control module.
  • the state switching control module realizes the switching from flight to driving motion mode and driving to flight motion mode.
  • the vehicle data includes vehicle attitude data. Vehicle attitude data is obtained through the vehicle data acquisition system.
  • the vehicle data acquisition system includes a posture detection module to obtain vehicle posture data.
  • the state switching control module is used to switch the motion mode of the vehicle according to the control command and the vehicle attitude data received from the control core system, and the PID control parameter corresponding to the motion mode of the vehicle is used as the output of the state switching control module.
  • the flight rotor control module is used to output the rotor motor control value through PID control according to the control instructions, vehicle attitude data and PID control parameters output from the state switching control module, and adjust the rotor motor speed to determine the vehicle's flight attitude.
  • the vehicle chassis control module is used to output the chassis motor control quantity through PID control according to the control command and the PID control parameters output from the state switching control module, and adjust the speed and steering angle of the chassis motor to determine the driving speed and steering angle of the vehicle.
  • the control core system processes the vehicle data collected by the vehicle data acquisition system to obtain control instructions according to the target coordinate data
  • the motion control system accepts the control instructions of the control core system and switches through the state Combined with the PID method, it realizes the coordinated control of the vehicle's flight movement and ground movement, and controls the vehicle to move in accordance with the specified movement mode, so that the vehicle not only has the ability to fly and ground movement, but also has the flexibility between flight movement and ground movement.
  • the switching function can realize the continuous motion control of the vehicle in the land and air amphibious room.
  • the state switching control module realizes the smooth switching between the flight state and the driving state.
  • the function of the state switching control module is realized by programming in a programming language (for example, C language).
  • the state switching control module compares the received control command (the desired posture of the vehicle) with the vehicle posture data obtained from the vehicle data acquisition system, and judges that the vehicle is in the flight motion mode, driving motion mode, flight to driving motion mode, and driving motion mode. Which one of the flight sports modes and which sports mode will be switched to, the PID control parameters corresponding to the state of the sports mode to be switched to are used as the output of the output terminal of the state switching control module.
  • the numbers 1, 2 , 3, 4 indicate the state of the switched sports mode
  • 1 indicates the flight sports mode
  • 2 indicates the flight-to-driving sports mode
  • 3 indicates the driving-to-fly sports mode
  • 4 indicates the driving sports mode.
  • the corresponding PID control parameters in each sports mode are The setting value can be determined by experiment and trial method to determine the PID control parameters.
  • the road conditions need to be considered.
  • the PID control parameters can also be determined by other methods.
  • the flight rotor control module realizes the control of the rotor motor through PID control
  • the vehicle chassis control module realizes the control of the chassis motor through PID control.
  • the state switching control module provides the PID control parameters of the PID controller in the flight rotor control module and the vehicle chassis control module.
  • the vehicle when the vehicle is in the driving state to the flying state, it goes through the driving motion mode, driving to flight motion mode, and flying motion mode in turn, corresponding to the three stages of before, during and after the ground.
  • the chassis control module of the vehicle controls the chassis motor to keep the vehicle at a constant speed and requires the vehicle to have sufficient straight distance.
  • the flight rotor control module controls the rotor motor to accelerate rotation, thereby gradually increasing the lift of the rotor; When the lift reaches the critical value for take-off, it will enter the second stage.
  • the flight rotor control module controls the rotor motor to accelerate, and continues to increase the lift of the rotor.
  • the rear flight rotor control module controls the rotor motor to decelerate to achieve hovering.
  • the chassis control module controls the chassis motor to decelerate to reduce battery power consumption and adjust the steering angle.
  • the vehicle is in flight motion mode, thereby realizing the vehicle's land driving state and flying state Continuous motion control between.
  • the flight rotor control module includes a rotor motor, a flight attitude detection sub-module, an angle loop PID controller, and an angular velocity loop PID controller.
  • the flight attitude detection sub-module is used to obtain the current flight attitude data of the vehicle.
  • the flight attitude data includes three-axis angle and three-axis angular velocity.
  • the three-axis angle is the heading angle, pitch angle and roll angle.
  • the input terminal of the angle loop PID controller takes the current three-axis angle and control commands of the unmanned vehicle obtained from the flight attitude detection sub-module as the input control quantity and is connected to the output terminal of the state switching control module.
  • the output terminal and the output terminal of the state switching control module are connected with the input terminal of the angular velocity loop PID controller, the output terminal of the angular velocity loop PID controller is connected with the rotor motor, and the flight attitude detection sub-module is connected with the input terminal of the angular velocity loop PID controller. It is used to send the current three-axis angular velocity of the unmanned vehicle to the angular velocity loop PID controller.
  • the flight attitude detection sub-module can be a MENS sensor.
  • the control process of the rotor motor carries out double closed-loop PID adjustment according to the current flight attitude data and control commands of the unmanned vehicle, that is, the outer loop adopts the angle loop control, and the inner loop adopts the angular velocity loop control control method, based on the angle loop PID controller and the angular velocity loop PID controller, angle loop PID controller takes the current three-axis angle and control command of the unmanned vehicle as the input control quantity.
  • the control command includes the expected posture of the vehicle (the expected posture includes the expected three-axis angle), the expected posture of the vehicle and the The current three-axis angle of the unmanned vehicle is subtracted to obtain the angle error, which is adjusted by the angle loop PID controller to output the angle control command.
  • the angular velocity loop PID controller takes the output of the angle loop PID controller as input and passes through the flight attitude detection sub-module
  • the current three-axis angular velocity of the collected unmanned vehicle is subtracted, and the control value of the rotor motor is output after the adjustment of the angular velocity loop PID controller, thereby adjusting the rotation speed of the rotor motor, so as to achieve accurate control of the vehicle's flight attitude.
  • the flight attitude data is based on the four-element Input the angle loop PID controller after calculating the posture of the numerical method.
  • the vehicle chassis control module includes a controlled object, a speed collection sub-module, an angle collection sub-module, a speed PID controller, and a steering PID controller.
  • the controlled objects include drive motor, steering motor, drive motor and steering motor as chassis motor, the speed of the drive motor represents the speed of the chassis motor, and the steering angle of the steering motor represents the steering angle of the chassis motor.
  • the input terminal of the speed PID controller takes the control command (the desired speed of the drive motor) as the input control quantity and is connected to the output terminal of the state switching control module.
  • the output terminal of the speed PID controller is connected to the drive motor, and the speed acquisition sub-module is connected to The input terminal of the speed PID controller is connected to send the current speed obtained from the drive motor to the speed PID controller; the input terminal of the steering PID controller uses the control command (the desired steering angle of the steering motor) as the input control
  • the output terminal of the steering PID controller is connected with the steering motor, and the angle acquisition sub-module is connected with the input terminal of the steering PID controller to send the current steering angle obtained from the steering motor.
  • the speed acquisition sub-module is an encoder.
  • the angle acquisition sub-module is an angle sensor.
  • Chassis motor control includes the control of the driving speed and steering angle of the vehicle based on the speed PID controller and the steering PID controller.
  • the driving motor control performs the speed control of the driving structure according to the current speed collected by the speed acquisition sub-module.
  • the speed PID controller is The current speed obtained by the drive motor and the control command are used as the input control variables.
  • the control command includes the expected speed of the drive motor.
  • the expected speed of the drive motor is subtracted from the current speed to obtain the speed error, which is adjusted by the speed PID controller to output the drive motor control Adjust the speed of the driving motor to determine the driving speed of the vehicle, so as to realize the precise control of the driving speed of the vehicle by the driving motor.
  • the steering motor control performs steering control based on the current steering angle information collected by the angle acquisition sub-module.
  • the steering PID controller takes the current steering angle of the driving structure and the control command as the input control variable.
  • the control command includes the desired steering angle of the steering motor, and the steering The desired steering angle of the motor is subtracted from the current steering angle to obtain the steering angle error.
  • the steering motor control quantity is output, and the steering motor speed is adjusted to determine the steering angle of the vehicle, thereby realizing the steering angle of the steering motor to the vehicle Precise control.
  • the data storage system consists of a 512GB large-capacity SD memory card and its file system.
  • the control core system implements the operation of reading and writing data to the SD memory card by calling the API (Application Programming Interface) of the file system .
  • the power control system includes a lithium battery and a voltage converter.
  • the battery uses a 32000mAH power lithium battery.
  • the voltage converter divides the 3.3V voltage to provide power to the control core system and provides power to other vehicles such as vehicle data acquisition systems and motion control systems.
  • the 5V voltage Collect battery power information through conventional power collection methods, and send the battery power information to the control core system.
  • Conventional power collection methods such as the resistance voltage measurement method are based on the relationship curve between battery power and battery voltage. The remaining battery power can be obtained by detecting the battery voltage and combining the voltage-power curve, thereby collecting battery power information.
  • the setting of the remote control system can manually control the vehicle in time when abnormal working conditions occur in the land-air amphibious unmanned vehicle to prevent the vehicle from losing control.
  • the remote control system includes a remote control module and a second communication module. Referring to the example shown in FIG. 2, the remote control module is connected to the lower computer through the second communication module, and the lower computer receives the remote control instruction sent by the remote control module, and the remote control instruction is used as the control instruction to control the vehicle.
  • the remote control system uses the M12 UAV dedicated link system of Yunzhuo Technology Co., Ltd.
  • the second communication module uses Nordic Semiconductor's nRF24L01 radio frequency chip to realize short-distance wireless data communication, but it is not limited to this.
  • the remote control system and the second communication module can also use other products.
  • the remote control system can communicate with the remote service system, and the remote service system controls the remote control system to send remote control commands to the lower computer.
  • the upper computer and the lower computer that control the core system are located locally on the land-air amphibious unmanned vehicle, and the upper computer and the lower computer perform local and real-time control of the land-air amphibious unmanned vehicle;
  • the remote server of the service system is located in the ground monitoring center, and is responsible for monitoring the vehicle status of the land-air amphibious unmanned vehicle and assigning work tasks, such as delivering target coordinate data, so that the vehicle can move from a certain starting point to a certain end point. After the control system is started, the remote service system starts first.
  • the user interface of the remote server displays the vehicle status in real time, including vehicle data, battery power data, and motion data.
  • the vehicle data includes vehicle attitude data, vehicle real-time acceleration data, vehicle position data, and obstacles. Object information data, visual inspection data, etc.
  • the remote server issues instructions through the network communication module, which can send instructions to the remote control system when the unmanned land-air amphibious vehicle works abnormally, so that the remote control system can manually control the vehicle's motion state, and can also send target coordinate data to the host computer.
  • the host computer collects vehicle position data, obstacle information data, and environmental image data every 1ms after the host computer is started, so as to obtain key information such as vehicle surrounding environment information and location in real time.
  • the upper computer exchanges information with the remote service system through the network communication module.
  • the global path planning is performed and combined with the surrounding environment, such as whether there are obstacles and other information, the local path planning is performed and the control instructions are finally generated.
  • the control command is sent to the lower computer for execution every 2ms.
  • the bottom layer initialization is first performed, including the initialization of the lower computer system configuration, the initialization of the internal interrupt system of the lower computer, the flight attitude detection submodule in the motion control system, the initialization of the speed acquisition submodule, the angle acquisition submodule, and the power control The power detection initialization in the system, the initialization of the first communication module, the initialization of the attitude detection module, the initialization of the data storage system, etc.
  • the initialization fails, re-initialize until the number of failures reaches a certain threshold and then report to the upper computer.
  • the upper computer reports to the remote service system, requiring manual intervention.
  • real-time control is performed according to the control mode, which includes manual control and automatic control.
  • the control command comes from the remote control system
  • the control command for automatic control comes from the upper computer.
  • the lower computer collects vehicle attitude data from the attitude detection module every 1ms.
  • the lower computer determines the motion mode to be executed by the vehicle according to the control instruction, thereby switching the motion mode, and performs PID control on the rotor motor and the chassis motor according to the PID control parameters corresponding to the motion mode.
  • the status information of the vehicle is sent to the host computer every 4ms.
  • the status information of the vehicle includes vehicle attitude data, battery power data, PID control parameters, and motion data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种陆空两栖无人车控制***,其包括用于提供目标坐标数据的远程服务***、用于采集车辆数据的车辆数据采集***、用于根据目标坐标数据对车辆数据进行处理得到控制指令的控制核心***、运动控制***以及电源控制***。运动控制***通过状态切换结合PID控制的方式,使车辆不仅具备飞行能力和地面移动能力,同时具备飞行运动和地面运动之间的软性切换功能,能够实现车辆在陆空两栖间的连续运动控制。

Description

陆空两栖无人车控制*** 技术领域
本发明涉及无人车技术领域,尤其涉及一种陆空两栖无人车控制***。
背景技术
陆空两栖无人车是一种能够实现地面行驶、空中飞行的新型智能交通工具,为未来飞行汽车发展铺平道路。车辆以传统的四轮两驱底盘作为地面行驶的基础结构,在此基础上利用旋翼实现高自由度的飞行动作。整个车辆采用电机驱动,配备有GPS模块、视觉传感器模块、激光雷达模块等信息感知模块,用以实现车辆的空间自主导航、路径规划等无人驾驶功能。
对于陆空两栖无人车的控制***,需要其能够对车辆的各种传感器模块的信号数据进行采集处理.,此外,还需要其能够控制包括车辆底盘电机和旋翼电机在内的作动器,根据不同的行驶模式(地面行驶、空中飞行)对不同的电机进行驱动分配,以控制车辆在指定的运动模式下切换,因此需要控制***的设计具有高集成度,以保证陆空两栖无人车的行驶功能。
发明内容
鉴于现有技术存在的缺陷,本发明的目的在于提供一种陆空两栖无人车控制***,其能够可靠控制车辆在飞行和行车状态下的软性切换,实现车辆在陆空两栖间的连续运动控制。
为了实现上述目的,本发明提供了一种陆空两栖无人车控制***,用于控制无人车的陆空两栖间的连续运动,无人车包括旋翼电机和底盘电机。陆空两栖无人车控制***包括远程服务***、车辆数据采集***、运动控制***、控制核心***以及电源控制***。远程服务***用于提供目标坐标数据,并将目标坐标数据发送给控制核心***;车辆数据采集***用于采集车辆数据,并将车辆数据发送给控制核心***;控制核心***用于根据目标坐标数据对车辆数据进行处理得到控制指令,并将控制指令发送给运动控制***; 运动控制***用于根据从控制核心***接收的控制指令和车辆数据,切换车辆的运动模式并确定对应的运动模式下的PID控制参数,通过PID控制实现对车辆的旋翼电机和/或底盘电机的控制,使车辆按照指定的运动模式运动,并将PID控制参数和运动数据发送给控制核心***;运动模式包括飞行运动模式、行车运动模式、飞行转行车运动模式以及行车转飞行运动模式,运动数据包括车辆的飞行姿态以及车辆的行车速度和转向角;电源控制***用于为车辆数据采集***、控制核心***以及运动控制***提供电源,并将电池电量数据发送给控制核心***。
在一实施例中,运动控制***包括状态切换控制模块、飞行旋翼控制模块以及车辆底盘控制模块;车辆数据包括车辆姿态数据;状态切换控制模块用于根据从控制核心***接收的控制指令和车辆姿态数据切换车辆的运动模式,以车辆的运动模式对应的PID控制参数作为状态切换控制模块的输出端的输出;飞行旋翼控制模块用于根据控制指令、车辆姿态数据以及从状态切换控制模块输出的PID控制参数,通过PID控制输出旋翼电机控制量,调整旋翼电机的转速,以确定车辆的飞行姿态;车辆底盘控制模块用于根据控制指令以及从状态切换控制模块输出的PID控制参数,通过PID控制输出底盘电机控制量,调整底盘电机的转速和转向角,以确定车辆的行车速度和转向角。
在一实施例中,飞行旋翼控制模块包括旋翼电机、飞行姿态检测子模块、角度环PID控制器以及角速度环PID控制器;飞行姿态检测子模块用于获得无人车当前的飞行姿态数据,飞行姿态数据包括三轴角度和三轴角速度;角度环PID控制器的输入端以从飞行姿态检测子模块得到的无人车当前的三轴角度和控制指令作为输入的控制量且与状态切换控制模块的输出端连接,角度环PID控制器的输出端和状态切换控制模块的输出端与角速度环PID控制器的输入端连接,角速度环PID控制器的输出端与旋翼电机连接,飞行姿态检测子模块与角速度环PID控制器的输入端连接,用于将无人车当前的三轴角速度送入到角速度环PID控制器中。
在一实施例中,车辆底盘控制模块包括被控对象、速度采集子模块、角度采集子模块、速度PID控制器以及转向PID控制器,被控对象包括驱动电机、转向电机,驱动电机和转向电机作为底盘电机;速度PID控制器的输入 端以控制指令作为输入的控制量且与状态切换控制模块的输出端连接,速度PID控制器的输出端与驱动电机连接,速度采集子模块与速度PID控制器的输入端连接,用于将从驱动电机获得的当前转速送入到速度PID控制器中;转向PID控制器的输入端以控制指令作为输入的控制量且与状态切换控制模块的输出端连接,转向PID控制器的输出端与转向电机连接,角度采集子模块与转向PID控制器的输入端连接,用于将从转向电机获得的当前转向角送入到转向PID控制器中。
在一实施例中,陆空两栖无人车控制***还包括数据存储***,用于存储由控制核心***发送的车辆数据、PID控制参数以及运动数据。
在一实施例中,控制核心***包括上位机、下位机以及第一通信模块,上位机与下位机通过第一通信模块通信连接;上位机和下位机中的至少一个用于接收由车辆数据采集***发送的车辆数据,上位机还用于接收由远程服务***发送的目标坐标数据并且根据目标坐标数据对接收到的车辆数据处理得到控制指令,下位机还用于将控制指令发送给运动控制***且接收由运动控制***发送的PID控制参数和运动数据,下位机通过第一通信模块将PID控制参数和运动数据发送给上位机。
在一实施例中,远程服务***包括远程服务器和网络通信模块;上位机与远程服务器通过网络通信模块连接;远程服务器用于接收上位机发送的车辆数据、PID控制参数、运动数据以及电池电量数据并显示,并且用于向上位机发送目标坐标数据,上位机根据目标坐标数据对车辆数据进行处理得到控制指令。
在一实施例中,陆空两栖无人车控制***还包括遥控***,遥控***包括遥控模块和第二通信模块,遥控模块通过第二通信模块与下位机连接,下位机接收遥控模块发送的遥控指令,遥控指令作为控制指令。
在一实施例中,车辆数据采集***包括姿态检测模块以及惯性导航模块,车辆数据包括车辆姿态数据以及车辆实时加速度数据;姿态检测模块用于检测车辆姿态信号以获取车辆姿态数据,惯性导航模块用于采集车辆实时加速度信号以获取车辆实时加速度数据;下位机接收姿态检测模块发送的车辆姿态数据以及惯性导航模块发送的车辆实时加速度数据,并通过第一通信模块发送给上位机。
在一实施例中,车辆数据采集***还包括GPS定位模块、激光雷达模块以及视觉检测模块,车辆数据还包括车辆位置数据、障碍物信息数据以及视觉检测数据;GPS定位模块用于采集车辆位置数据,激光雷达模块用于采集障碍物信息数据,视觉检测模块用于获取环境图像数据。上位机接收GPS定位模块发送的车辆位置数据、激光雷达模块发送的障碍物信息数据以及视觉检测模块发送的环境图像数据。
本发明的有益效果如下:
在本发明的陆空两栖无人车控制***中,控制核心***根据目标坐标数据对车辆数据采集***采集的车辆数据进行处理得到控制指令,运动控制***接受控制核心***的控制指令,通过状态切换结合PID控制的方式,实现对车辆的飞行运动和地面运动的协同控制,控制车辆按照指定的运动模式运动,使车辆不仅具备飞行能力和地面移动能力,同时具备飞行运动和地面运动之间的软性切换功能,能够实现在陆空两栖间的连续运动控制。
附图说明
图1是本发明的陆空两栖无人车控制***的结构框图。
图2是本发明的陆空两栖无人车控制***的一实施例的结构框图。
图3是图2的陆空两栖无人车控制***的实施例的运动控制***的PID控制原理图。
图4是本发明的陆空两栖无人车控制***的控制流程图。
具体实施方式
附图示出本发明的实施例,且将理解的是,所公开的实施例仅仅是本发明的示例,本发明可以以各种形式实施,因此,本文公开的具体细节不应被解释为限制,而是仅作为权利要求的基础且作为表示性的基础用于教导本领域普通技术人员以各种方式实施本发明。
下面参照附图详细说明根据本发明的陆空两栖无人车控制***。
参照图1,本发明的陆空两栖无人车控制***,用于控制无人车的陆空两栖间的连续运动,无人车包括旋翼电机和底盘电机,旋翼电机用于驱动陆空两栖无人车的包括旋翼的飞行结构的运动,以实现车辆飞行。底盘电机用 于驱动陆空两栖无人车的行车结构的运动,以实现车辆在路面行驶。行车结构可为包括车轮的车辆底盘。陆空两栖无人车控制***包括远程服务***、车辆数据采集***、运动控制***、控制核心***以及电源控制***。陆空两栖无人车控制***还可包括数据存储***和遥控***。
参照图1,远程服务***用于提供目标坐标数据,并将目标坐标数据发送给控制核心***。车辆数据采集***用于采集车辆数据,并将车辆数据发送给控制核心***。控制核心***用于根据目标坐标数据对车辆数据进行处理得到控制指令,并将控制指令发送给运动控制***。运动控制***用于根据从控制核心***接收的控制指令和车辆数据,切换车辆的运动模式并确定对应的运动模式下的PID控制参数,通过PID控制实现车辆的旋翼电机和/或底盘电机的控制,使车辆按照指定的运动模式运动,并将PID控制参数和运动数据发送给控制核心***。其中,运动模式包括飞行运动模式、行车运动模式、飞行转行车运动模式以及行车转飞行运动模式,运动数据包括车辆的飞行姿态以及车辆的行车速度和转向角。电源控制***用于为车辆数据采集***、控制核心***以及运动控制***提供电源,并将电池电量数据发送给控制核心***。数据存储***用于存储由控制核心***发送的车辆数据、PID控制参数以及运动数据。
参照图2所示的实施例,车辆数据采集***用于采集陆空两栖无人车在工作过程中的诸如车辆姿态数据、车辆实时加速度数据、车辆位置数据、障碍物信息数据、环境图像数据等的各项车辆数据。车辆数据采集***可包括姿态检测模块以及惯性导航模块,车辆数据包括车辆姿态数据以及车辆实时加速度数据。车辆数据采集***还可包括GPS定位模块、激光雷达模块以及视觉检测模块,车辆数据还可包括车辆位置数据、障碍物信息数据以及视觉检测数据。姿态检测模块用于检测车辆姿态信号以获取车辆姿态数据,惯性导航模块用于采集车辆实时加速度信号以获取车辆实时加速度数据。GPS定位模块用于采集车辆位置数据,激光雷达模块用于采集障碍物信息数据,视觉检测模块用于获取环境图像数据。其中,车辆姿态数据包括车辆的航向角、俯仰角、横滚角以及三轴角速度;车辆实时加速度数据包括车辆在纵向、侧向、垂向的加速度;障碍物信息数据通过激光雷达模块,对周围障碍物进行点云生成,再经过滤波处理,得到车辆周围的障碍物信息数据;环境图像数 据为视觉检测模块采集的高清晰度图像,用于对周围目标进行识别并对周围环境进行三维重建。车辆数据采集***不限于上述模块,还可以根据实际需要采集的车辆数据减少模块或增加其他模块。
在图2所示的实施例中,控制核心***包括上位机、下位机以及第一通信模块。控制核心***实现对陆空两栖无人车的决策规划算法、上层感知以及高级控制策略的处理计算并且支持其他***(例如远程服务***、数据采集***、运动控制***、电源控制***以及数据存储***)的数据信息调配控制。
参照图2所示的实施例,上位机与下位机通过第一通信模块通信连接。上位机和下位机中的至少一个用于接收由车辆数据采集***发送的车辆数据,上位机还用于接收由远程服务***发送的目标坐标数据并且根据目标坐标数据对接收到的车辆数据处理得到控制指令,下位机还用于将控制指令发送给运动控制***且接收由运动控制***发送的PID控制参数和运动数据,下位机通过第一通信模块将PID控制参数和运动数据发送给上位机。即从包括上位机发出的控制指令首先通过第一通信模块发送给下位机,下位机再根据控制指令控制运动控制***,并且下位机不时读取运动控制***、车辆数据采集***以及电源控制***所发送的数据并将数据反馈给上位机。在这里说明的是,目标坐标数据为陆空两栖无人车运动的起点的空间坐标和终点的空间坐标,就是说需要陆空两栖无人车从某个起点运动到某个终点。上位机根据目标坐标数据,生成陆空两栖无人车运动轨迹,对车辆数据进行处理得到控制指令,运动控制***所接收到的控制指令包括车辆的期望姿态、控制车辆的行车速度和转向角的底盘电机的期望转速和期望转向角(即后述的驱动电机的期望转速和转向电机的期望转向角)。在该实施例中,上位机使用凌华科技公司的嵌入式计算平台MXE-5400系列,下位机使用意法半导体公司的32位微控制器STM32F系列的STM32F103,第一通信模块为SPI总线通信,最高通信速率可达400kHz。但不限于此,根据实际需要,上位机、下位机以及第一通信模块也可使用其他产品或者自研产品。
参照图2所示的实施例,远程服务***包括远程服务器和网络通信模块。上位机与远程服务器通过网络通信模块连接。远程服务器用于接收上位机发送的车辆数据、PID控制参数、运动数据以及电池电量数据并显示,并且用 于向上位机发送目标坐标数据,上位机根据目标坐标数据对车辆数据进行处理得到控制指令。具体地,远程服务器包括用户操作界面,用户能够通过用户操作界面键入目标坐标数据,并且用户能够通过用户操作界面所显示的车辆数据、PID控制参数、运动数据以及电池电量数据来获取陆空两栖无人车的车辆实时状态。在该实施例中,网络通信模块使用有人科技的型号为G806-43的4G无线路由器,但不限于此,也可以根据实际需要选择其他类型的网络通信模块。
在图2所示的实施例中,上位机和下位机都用于接收由车辆数据采集***发送的车辆数据。下位机接收姿态检测模块发送的车辆姿态数据以及惯性导航模块发送的车辆实时加速度数据,并通过第一通信模块发送给上位机。上位机接收GPS定位模块发送的车辆位置数据、激光雷达模块发送的障碍物信息数据以及视觉检测模块发送的环境图像数据。在该实施例中,姿态检测模块使用InvenSense公司的九轴姿态传感器MPU-9250,通过I 2C总线与下位机通信以进行车辆姿态数据的传输;惯性导航模块使用瑞芬星通科技公司的型号为AH100B-MEMS的微型航姿参考***。GPS定位模块使用司南公司的Mini-M600G。激光雷达模块使用速腾聚创公司的RS-LiDAR-16激光雷达。视觉检测模块使用Intel公司的RealsenseD400系列的型号为D415的摄像头。但姿态检测模块、惯性导航模块、GPS定位模块、激光雷达模块以及视觉检测模块的选型不限于此,可根据具体需要选择其他型号的产品,也可以使用自研产品。
参照图2和图3,运动控制***包括状态切换控制模块、飞行旋翼控制模块以及车辆底盘控制模块。通过状态切换控制模块实现飞行转行车运动模式以及行车转飞行运动模式的切换。车辆数据包括车辆姿态数据。车辆姿态数据通过车辆数据采集***获得。车辆数据采集***包括姿态检测模块,以获取车辆姿态数据。状态切换控制模块用于根据从控制核心***接收的控制指令和车辆姿态数据切换车辆的运动模式,以车辆的运动模式对应的PID控制参数作为状态切换控制模块的输出端的输出。飞行旋翼控制模块用于根据控制指令、车辆姿态数据以及从状态切换控制模块输出的PID控制参数,通过PID控制输出旋翼电机控制量,调整旋翼电机的转速,以确定车辆的飞行姿态。车辆底盘控制模块用于根据控制指令以及从状态切换控制模块输出的 PID控制参数,通过PID控制输出底盘电机控制量,调整底盘电机的转速和转向角,以确定车辆的行车速度和转向角。
在本发明的陆空两栖无人车控制***中,控制核心***根据目标坐标数据对车辆数据采集***采集的车辆数据进行处理得到控制指令,运动控制***接受控制核心***的控制指令,通过状态切换结合PID的方式,实现对车辆的飞行运动和地面运动的协同控制,控制车辆按照指定的运动模式运动,使车辆不仅具备飞行能力和地面移动能力,同时具备飞行运动和地面运动之间的软性切换功能,能够实现车辆在陆空两栖间的连续运动控制。其中,通过状态切换控制模块实现飞行状态和行车状态之间的顺利切换。
参照图2和图3所示的实施例,在状态切换部分,状态切换控制模块的功能通过编程语言(例如C语言)编程实现。状态切换控制模块将所接收到的控制指令(车辆的期望姿态)与从车辆数据采集***获得的车辆姿态数据进行比较,判断车辆处于飞行运动模式、行车运动模式、飞行转行车运动模式以及行车转飞行运动模式中的哪一种以及将要切换到哪一种运动模式,将要切换到的运动模式的状态对应的PID控制参数作为状态切换控制模块的输出端的输出,在图3中,数字1、2、3、4表示所切换的运动模式状态,1表示飞行运动模式、2表示飞行转行车运动模式、3表示行车转飞行运动模式、4表示行车运动模式,各运动模式下对应的PID控制参数为整定值,可通过实验凑试法确定PID控制参数,对于PID控制参数的整定,需要考虑到路面情况。当然也可通过其他方法确定PID控制参数。飞行旋翼控制模块通过PID控制实现对旋翼电机的控制,车辆底盘控制模块通过PID控制实现对底盘电机的控制。由状态切换控制模块提供飞行旋翼控制模块和车辆底盘控制模块中的PID控制器的PID控制参数。
例如车辆在行车状态转飞行状态的情况下,依次经历行车运动模式、行车转飞行运动模式、飞行运动模式的切换,分别对应为离地前、离地中和离地后的三个阶段,在车辆离地前车辆处于行车运动模式,车辆底盘控制模块控制底盘电机使车辆保持恒速,并且要求车辆有足够的直线行驶距离,飞行旋翼控制模块控制旋翼电机加速旋转,从而逐渐增加旋翼的升力;当升力达到起飞临界值后即进入第二阶段,在离地过程中,飞行旋翼控制模块控制旋翼电机加速,继续增加旋翼的升力,将车辆抬升至安全距离后则进入第三阶 段;在离地后飞行旋翼控制模块控制旋翼电机减速,以实现悬停,同时底盘控制模块控制底盘电机减速以降低电池电量消耗并调整转向角,车辆处于飞行运动模式下,从而实现车辆在陆路行车状态和飞行状态之间的连续运动控制。
具体地,如图3所示,飞行旋翼控制模块包括旋翼电机、飞行姿态检测子模块、角度环PID控制器以及角速度环PID控制器。飞行姿态检测子模块用于获得车辆当前的飞行姿态数据,飞行姿态数据包括三轴角度和三轴角速度。其中三轴角度即为航向角、俯仰角以及横滚角。角度环PID控制器的输入端以从飞行姿态检测子模块得到的无人车当前的三轴角度和控制指令作为输入的控制量且与状态切换控制模块的输出端连接,角度环PID控制器的输出端和状态切换控制模块的输出端与角速度环PID控制器的输入端连接,角速度环PID控制器的输出端与旋翼电机连接,飞行姿态检测子模块与角速度环PID控制器的输入端连接,用于将无人车当前的三轴角速度送入到角速度环PID控制器中。飞行姿态检测子模块可为MENS传感器。旋翼电机的控制过程根据无人车当前的飞行姿态数据和控制命令进行双闭环PID调节,即外环采用角度环控制、内环采用角速度环控制的控制方式,基于角度环PID控制器和角速度环PID控制器,角度环PID控制器以无人车当前的三轴角度和控制指令作为输入的控制量,控制指令中包括车辆的期望姿态(期望姿态包括期望三轴角度),车辆的期望姿态与无人车当前的三轴角度相减得到角度误差,通过角度环PID控制器调节后输出角度控制指令,角速度环PID控制器以角度环PID控制器的输出作为输入并与通过飞行姿态检测子模块采集得到的无人车当前的三轴角速度相减,通过角速度环PID控制器调节后输出旋翼电机控制量,从而调整旋翼电机的转速,从而实现对车辆飞行姿态的准确控制。在这里补充说明的是,参照图3,为了便于控制器快速计算从飞行姿态检测子模块获得的无人车当前的飞行姿态数据并减少可能出现的姿态奇点问题,飞行姿态数据通过基于四元数方法的姿态解算后输入角度环PID控制器。
具体地,如图3所示,车辆底盘控制模块包括被控对象、速度采集子模块、角度采集子模块、速度PID控制器以及转向PID控制器。被控对象包括驱动电机、转向电机,驱动电机和转向电机作为底盘电机,驱动电机的转速 表示底盘电机的转速,转向电机的转向角表示底盘电机的转向角。速度PID控制器的输入端以控制指令(驱动电机的期望转速)作为输入的控制量且与状态切换控制模块的输出端连接,速度PID控制器的输出端与驱动电机连接,速度采集子模块与速度PID控制器的输入端连接,用于将从驱动电机获得的当前转速送入到速度PID控制器中;转向PID控制器的输入端以控制指令(转向电机的期望转向角)作为输入的控制量且与状态切换控制模块的输出端连接,转向PID控制器的输出端与转向电机连接,角度采集子模块与转向PID控制器的输入端连接,用于将从转向电机获得的当前转向角送入到转向PID控制器中。其中,速度采集子模块为编码器。角度采集子模块为角度传感器。底盘电机控制包括基于速度PID控制器和转向PID控制器对车辆的行车速度和转向角的控制,驱动电机控制根据速度采集子模块采集的当前转速进行行车结构的速度控制,速度PID控制器以从驱动电机获得的当前转速和控制指令作为输入的控制量,控制指令中包括驱动电机的期望转速,驱动电机的期望转速与当前转速相减得到转速误差,通过速度PID控制器调节后输出驱动电机控制量,调整驱动电机的转速,以确定车辆的行车速度,从而实现驱动电机对车辆的行车速度的精确控制。转向电机控制根据角度采集子模块采集的当前转向角信息进行转向控制,转向PID控制器以行车结构的当前转向角和控制指令作为输入的控制量,控制指令中包含转向电机的期望转向角,转向电机的期望转向角与当前转向角相减得到转向角误差,通过转向PID控制器调节后输出转向电机控制量,调整转向电机转速,以确定车辆的转向角,从而实现转向电机对车辆的转向角的精确控制。
数据存储***由512GB的大容量SD存储卡及其文件***构成,控制核心***通过调用文件***的API(Application Programming Interface,应用程序编程接口)实现对SD存储卡的数据读取和写入的操作。
电源控制***包括锂电池和电压转换器,电池采用32000mAH的动力锂电池,通过电压转换器分压为给控制核心***提供电源的3.3V电压以及给其他诸如车辆数据采集***、运动控制***提供电源的5V电压。通过常规电量采集方法采集电池电量信息,并将电池电量信息发送给控制核心***。常规电量采集方法如电阻分压测量方法,该方法基于电池电量和电池电压的关系曲线,通过检测电池的电压并结合电压-电量曲线可以得到电池剩余电 量,从而采集得到电池电量信息。
遥控***的设置能够在陆空两栖无人车发生异常工作情况时及时手动控制车辆而防止车辆失控,遥控***包括遥控模块和第二通信模块。参照图2所示的示例,遥控模块通过第二通信模块与下位机连接,下位机接收遥控模块发送的遥控指令,遥控指令作为控制指令,以控制车辆。在该实施例中,遥控***使用云卓科技有限公司的M12无人机专用链路***。第二通信模块使用Nordic Semiconductor公司的型号为nRF24L01的无线射频芯片,实现短距离无线数据通信,但不限于此,遥控***和第二通信模块也可使用其他产品。另外,遥控***可以和远程服务***进行通信,通过远程服务***控制遥控***向下位机发送遥控指令。
在本发明的陆空两栖无人车控制***中,控制核心***的上位机和下位机位于陆空两栖无人车本地,上位机和下位机对陆空两栖无人车进行本地实时控制;远程服务***的远程服务器位于地面监控中心,负责监控陆空两栖无人车的车辆状态并下达工作任务,例如下达目标坐标数据,以使车辆从某一起点运动到某一终点。控制***启动后首先远程服务***启动,远程服务器的用户操作界面实时显示车辆状态,包括车辆数据、电池电量数据以及运动数据等,车辆数据包括车辆姿态数据、车辆实时加速度数据、车辆位置数据、障碍物信息数据、视觉检测数据等。另外远程服务器通过网络通信模块发布指令,能够在陆空两栖无人车工作状态异常时向遥控***发送指令,使遥控***手动控制车辆的运动状态,也能够向上位机发送目标坐标数据。参照图4,上位机启动后每隔1ms采集一次车辆位置数据、障碍物信息数据以及环境图像数据,从而实时获取车辆周围环境信息和所处位置等关键信息。上位机通过网络通信模块与远程服务***进行信息交互,若收到目标坐标数据后进行全局的路径规划并结合周围环境,如是否有障碍物等信息进行本地路径规划最终生成控制指令,上位机每隔2ms将控制指令发送给下位机进行执行。下位机启动后,首先进行底层初始化,其中包括下位机***配置初始化、下位机内部中断***初始化、运动控制***中的飞行姿态检测子模块、速度采集子模块、角度采集子模块的初始化、电源控制***中的电量检测初始化、第一通信模块的初始化、姿态检测模块的初始化以及数据存储***的初始化等。其中,若初始化失败则重新进行初始化直至失败次数达到一定阈 值后上报上位机,上位机向远程服务***报告,需要人工干预。初始化完成后根据控制模式进行实时控制,其中控制模式包括手动控制和自动控制。手动控制情况下控制指令来自遥控***,自动控制的控制指令来自于上位机。为了保证整个控制***的安全,当控制失效时可以通过遥控***遥控强制进入遥控模式,此时退出自动控制模式进入手动控制模式。每隔1ms下位机从姿态检测模块采集车辆姿态数据。每隔2ms下位机根据控制指令确定车辆将要执行的运动模式,从而切换运动模式,根据运动模式对应的PID控制参数对旋翼电机和底盘电机进行PID控制。每隔4ms将车辆的状态信息发送给上位机,车辆的状态信息包括车辆姿态数据、电池电量数据、PID控制参数以及运动数据。
上面详细的说明描述多个示范性实施例,但本文不意欲限制到明确公开的组合。因此,除非另有说明,本文所公开的各种特征可以组合在一起而形成出于简明目的而未示出的多个另外组合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种陆空两栖无人车控制***,用于控制无人车的陆空两栖间的连续运动,无人车包括旋翼电机和底盘电机,其特征在于,陆空两栖无人车控制***包括远程服务***、车辆数据采集***、运动控制***、控制核心***以及电源控制***;
    远程服务***用于提供目标坐标数据,并将目标坐标数据发送给控制核心***;
    车辆数据采集***用于采集车辆数据,并将车辆数据发送给控制核心***;
    控制核心***用于根据目标坐标数据对车辆数据进行处理得到控制指令,并将控制指令发送给运动控制***;
    运动控制***用于根据从控制核心***接收的控制指令和车辆数据,切换车辆的运动模式并确定对应的运动模式下的PID控制参数,通过PID控制实现对车辆的旋翼电机和/或底盘电机的控制,使车辆按照指定的运动模式运动,并将PID控制参数和运动数据发送给控制核心***;运动模式包括飞行运动模式、行车运动模式、飞行转行车运动模式以及行车转飞行运动模式,运动数据包括车辆的飞行姿态以及车辆的行车速度和转向角;
    电源控制***用于为车辆数据采集***、控制核心***以及运动控制***提供电源,并将电池电量数据发送给控制核心***。
  2. 根据权利要求1所述的陆空两栖无人车控制***,其特征在于,运动控制***包括状态切换控制模块、飞行旋翼控制模块以及车辆底盘控制模块;
    车辆数据包括车辆姿态数据;
    状态切换控制模块用于根据从控制核心***接收的控制指令和车辆姿态数据切换车辆的运动模式,以车辆的运动模式对应的PID控制参数作为状态切换控制模块的输出端的输出;
    飞行旋翼控制模块用于根据控制指令、车辆姿态数据以及从状态切换控制模块输出的PID控制参数,通过PID控制输出旋翼电机控制量,调整旋翼 电机的转速,以确定车辆的飞行姿态;
    车辆底盘控制模块用于根据控制指令以及从状态切换控制模块输出的PID控制参数,通过PID控制输出底盘电机控制量,调整底盘电机的转速和转向角,以确定车辆的行车速度和转向角。
  3. 根据权利要求2所述的陆空两栖无人车控制***,其特征在于,飞行旋翼控制模块包括旋翼电机、飞行姿态检测子模块、角度环PID控制器以及角速度环PID控制器;
    飞行姿态检测子模块用于获得无人车当前的飞行姿态数据,飞行姿态数据包括三轴角度和三轴角速度;
    角度环PID控制器的输入端以从飞行姿态检测子模块得到的无人车当前的三轴角度和控制指令作为输入的控制量且与状态切换控制模块的输出端连接,角度环PID控制器的输出端和状态切换控制模块的输出端与角速度环PID控制器的输入端连接,角速度环PID控制器的输出端与旋翼电机连接,飞行姿态检测子模块与角速度环PID控制器的输入端连接,用于将无人车当前的三轴角速度送入到角速度环PID控制器中。
  4. 根据权利要求2所述的陆空两栖无人车控制***,其特征在于,车辆底盘控制模块包括被控对象、速度采集子模块、角度采集子模块、速度PID控制器以及转向PID控制器,被控对象包括驱动电机、转向电机,驱动电机和转向电机作为底盘电机;
    速度PID控制器的输入端以控制指令作为输入的控制量且与状态切换控制模块的输出端连接,速度PID控制器的输出端与驱动电机连接,速度采集子模块与速度PID控制器的输入端连接,用于将从驱动电机获得的当前转速送入到速度PID控制器中;
    转向PID控制器的输入端以控制指令作为输入的控制量且与状态切换控制模块的输出端连接,转向PID控制器的输出端与转向电机连接,角度采集子模块与转向PID控制器的输入端连接,用于将从转向电机获得的当前转向角送入到转向PID控制器中。
  5. 根据权利要求1所述的陆空两栖无人车控制***,其特征在于,陆空两栖无人车控制***还包括数据存储***,用于存储由控制核心***发送的车辆数据、PID控制参数以及运动数据。
  6. 根据权利要求1所述的陆空两栖无人车控制***,其特征在于,控制核心***包括上位机、下位机以及第一通信模块,上位机与下位机通过第一通信模块通信连接;
    上位机和下位机中的至少一个用于接收由车辆数据采集***发送的车辆数据,上位机还用于接收由远程服务***发送的目标坐标数据并且根据目标坐标数据对接收到的车辆数据处理得到控制指令,下位机还用于将控制指令发送给运动控制***且接收由运动控制***发送的PID控制参数和运动数据,下位机通过第一通信模块将PID控制参数和运动数据发送给上位机。
  7. 根据权利要求6所述的陆空两栖无人车控制***,其特征在于,远程服务***包括远程服务器和网络通信模块;
    上位机与远程服务器通过网络通信模块连接;
    远程服务器用于接收上位机发送的车辆数据、PID控制参数、运动数据以及电池电量数据并显示,并且用于向上位机发送目标坐标数据,上位机根据目标坐标数据对车辆数据进行处理得到控制指令。
  8. 根据权利要求6所述的陆空两栖无人车控制***,其特征在于,陆空两栖无人车控制***还包括遥控***,遥控***包括遥控模块和第二通信模块,遥控模块通过第二通信模块与下位机连接,下位机接收遥控模块发送的遥控指令,遥控指令作为控制指令。
  9. 根据权利要求6所述的陆空两栖无人车控制***,其特征在于,车辆数据采集***包括姿态检测模块以及惯性导航模块,车辆数据包括车辆姿态数据以及车辆实时加速度数据;
    姿态检测模块用于检测车辆姿态信号以获取车辆姿态数据,惯性导航模块用于采集车辆实时加速度信号以获取车辆实时加速度数据;
    下位机接收姿态检测模块发送的车辆姿态数据以及惯性导航模块发送的车辆实时加速度数据,并通过第一通信模块发送给上位机。
  10. 根据权利要求6所述的陆空两栖无人车控制***,其特征在于,车辆数据采集***还包括GPS定位模块、激光雷达模块以及视觉检测模块,车辆数据还包括车辆位置数据、障碍物信息数据以及视觉检测数据;
    GPS定位模块用于采集车辆位置数据,激光雷达模块用于采集障碍物信息数据,视觉检测模块用于获取环境图像数据。
    上位机接收GPS定位模块发送的车辆位置数据、激光雷达模块发送的障碍物信息数据以及视觉检测模块发送的环境图像数据。
PCT/CN2019/121704 2019-08-07 2019-11-28 陆空两栖无人车控制*** WO2021022728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910726907.9A CN110488598A (zh) 2019-08-07 2019-08-07 陆空两栖无人车控制***
CN201910726907.9 2019-08-07

Publications (1)

Publication Number Publication Date
WO2021022728A1 true WO2021022728A1 (zh) 2021-02-11

Family

ID=68550197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121704 WO2021022728A1 (zh) 2019-08-07 2019-11-28 陆空两栖无人车控制***

Country Status (2)

Country Link
CN (1) CN110488598A (zh)
WO (1) WO2021022728A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433820A (zh) * 2021-07-15 2021-09-24 北京航空航天大学云南创新研究院 一种六旋翼球形机器人的控制***及其轨迹控制方法
CN113607187A (zh) * 2021-07-30 2021-11-05 江苏杰瑞信息科技有限公司 信息融合姿态解算方法、装置和计算机设备
CN113848879A (zh) * 2021-08-27 2021-12-28 北京航天控制仪器研究所 一种有人船控制***快速无人化改造***
CN114185347A (zh) * 2021-12-02 2022-03-15 河北汉光重工有限责任公司 履带式无人靶车远程控制***
CN115019503A (zh) * 2022-05-12 2022-09-06 东风汽车集团股份有限公司 基于信息共享的飞行汽车混合交通流下空间轨道分配方法
CN115327959A (zh) * 2022-08-15 2022-11-11 北京航天长征飞行器研究所 一种装置特征参数实时计算与装订***及方法
CN118239017A (zh) * 2024-05-28 2024-06-25 浙江大学湖州研究院 一种陆空两栖无人机的空地切换方法、***及无人机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488598A (zh) * 2019-08-07 2019-11-22 清华大学 陆空两栖无人车控制***
CN111338370B (zh) * 2020-04-02 2023-03-31 上海海事大学 一种海空两栖旋翼机器人姿态稳定的控制方法
CN113721664B (zh) * 2020-05-26 2024-03-29 中国兵器工业计算机应用技术研究所 空地协同无人***
CN112180915A (zh) * 2020-09-16 2021-01-05 哈尔滨工业大学(威海) 基于ros的双推力无人船运动控制***及控制方法
CN112720463A (zh) * 2020-12-09 2021-04-30 中国科学院深圳先进技术研究院 控制机器人的方法、装置及终端设备
CN117908361A (zh) * 2021-01-27 2024-04-19 上海海迅机电工程有限公司 一种气垫船自航模远程控制***
CN113341932A (zh) * 2021-06-22 2021-09-03 北京理工大学 陆空两栖车辆域控制***及其控制方法
CN113813615B (zh) * 2021-09-27 2023-08-04 北京理工大学重庆创新中心 陆空两栖设备及其模式切换***、方法
CN114123423B (zh) * 2021-12-01 2023-11-03 广东汇天航空航天科技有限公司 一种具有多种驱动模式的可移动体的控制电路和控制方法
CN114578798B (zh) * 2022-02-24 2023-05-12 苏州驾驶宝智能科技有限公司 一种陆空两栖飞车的自主驾驶***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693437A (zh) * 2009-10-23 2010-04-14 吉林大学 陆空两栖智能车
CN103488173A (zh) * 2013-09-09 2014-01-01 上海电控研究所 多地形智能移动平台及其控制方法
CN206242832U (zh) * 2016-11-03 2017-06-13 东北林业大学 陆空两用四旋翼飞行器
CN106926655A (zh) * 2017-03-15 2017-07-07 上海工程技术大学 一种四旋翼智能汽车
US20180065435A1 (en) * 2016-09-03 2018-03-08 Akash Girendra Barot Flying car
CN110488598A (zh) * 2019-08-07 2019-11-22 清华大学 陆空两栖无人车控制***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393744B (zh) * 2011-11-22 2014-09-10 湖南大学 一种无人驾驶汽车的导航方法
JP6368588B2 (ja) * 2014-08-27 2018-08-01 日立オートモティブシステムズ株式会社 フィードバック制御装置、電動パワーステアリング装置
CN105068543B (zh) * 2015-08-11 2017-07-28 浙江工业大学 一种基于pid控制的背负型agv两轮同步方法
CN105573333B (zh) * 2016-01-22 2018-05-08 青岛大学 一种用于四旋翼飞行器的模块式控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693437A (zh) * 2009-10-23 2010-04-14 吉林大学 陆空两栖智能车
CN103488173A (zh) * 2013-09-09 2014-01-01 上海电控研究所 多地形智能移动平台及其控制方法
US20180065435A1 (en) * 2016-09-03 2018-03-08 Akash Girendra Barot Flying car
CN206242832U (zh) * 2016-11-03 2017-06-13 东北林业大学 陆空两用四旋翼飞行器
CN106926655A (zh) * 2017-03-15 2017-07-07 上海工程技术大学 一种四旋翼智能汽车
CN110488598A (zh) * 2019-08-07 2019-11-22 清华大学 陆空两栖无人车控制***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHONG LUNLONG: "Study of Control System for Air-ground Amphibious Robot", INDUSTRIAL CONTROL COMPUTER, vol. 31, no. 7, 25 July 2018 (2018-07-25), pages 5 - 7, XP055777627, ISSN: 1001-182X *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433820A (zh) * 2021-07-15 2021-09-24 北京航空航天大学云南创新研究院 一种六旋翼球形机器人的控制***及其轨迹控制方法
CN113607187A (zh) * 2021-07-30 2021-11-05 江苏杰瑞信息科技有限公司 信息融合姿态解算方法、装置和计算机设备
CN113607187B (zh) * 2021-07-30 2024-02-02 江苏杰瑞信息科技有限公司 信息融合姿态解算方法、装置和计算机设备
CN113848879A (zh) * 2021-08-27 2021-12-28 北京航天控制仪器研究所 一种有人船控制***快速无人化改造***
CN113848879B (zh) * 2021-08-27 2023-06-06 航天时代(青岛)海洋装备科技发展有限公司 一种有人船控制***快速无人化改造***
CN114185347A (zh) * 2021-12-02 2022-03-15 河北汉光重工有限责任公司 履带式无人靶车远程控制***
CN115019503A (zh) * 2022-05-12 2022-09-06 东风汽车集团股份有限公司 基于信息共享的飞行汽车混合交通流下空间轨道分配方法
CN115327959A (zh) * 2022-08-15 2022-11-11 北京航天长征飞行器研究所 一种装置特征参数实时计算与装订***及方法
CN118239017A (zh) * 2024-05-28 2024-06-25 浙江大学湖州研究院 一种陆空两栖无人机的空地切换方法、***及无人机

Also Published As

Publication number Publication date
CN110488598A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021022728A1 (zh) 陆空两栖无人车控制***
Achtelik et al. Onboard IMU and monocular vision based control for MAVs in unknown in-and outdoor environments
CN112987763B (zh) 一种基于ros的自主导航机器人控制***的智能小车
Liu et al. The role of the hercules autonomous vehicle during the covid-19 pandemic: An autonomous logistic vehicle for contactless goods transportation
CN108196582A (zh) 一种室内视觉导航无人机集群飞行控制***及方法
CN208110387U (zh) 一种室内视觉导航无人机集群飞行控制***
CN104597912A (zh) 一种六旋翼无人直升机跟踪飞行控制***及方法
US20090037033A1 (en) Autonomous Behaviors for a Remote Vehicle
CN106354161A (zh) 机器人运动路径规划方法
CN105182992A (zh) 无人机的控制方法、装置
KR20070072917A (ko) 차량 제어를 위한 시스템 및 방법
CN112558608A (zh) 一种基于无人机辅助的车机协同控制及路径优化方法
CN107943049A (zh) 一种无人车控制方法及无人割草车
CN105334853A (zh) 双核高速四轮微微鼠冲刺控制器
CN112068574A (zh) 一种无人车在动态复杂环境中的控制方法及***
CN203825466U (zh) 一种基于机载传感器的小型四旋翼飞行器控制***
WO2022016754A1 (zh) 基于无人洗车设备的多机器协同洗车***及方法
CN104965522A (zh) 基于gps的多旋翼无人机自动跟踪***
CN114217632B (zh) 自适应容错无人机跟踪巡航***及方法
CN112748744A (zh) 变电站两栖巡检装置及其巡检方法
CN107515622A (zh) 一种旋翼无人机在移动目标上自主着降的控制方法
CN113190020A (zh) 一种移动机器人队列***及路径规划、跟随方法
CN112684791A (zh) 一种基于5g的无人驾驶物流车
Asadi et al. An integrated aerial and ground vehicle (UAV-UGV) system for automated data collection for indoor construction sites
CN204314726U (zh) 一种六旋翼无人直升机跟踪飞行控制***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940408

Country of ref document: EP

Kind code of ref document: A1