WO2021022477A1 - 反射式电极及其阵列基板、显示装置 - Google Patents

反射式电极及其阵列基板、显示装置 Download PDF

Info

Publication number
WO2021022477A1
WO2021022477A1 PCT/CN2019/099442 CN2019099442W WO2021022477A1 WO 2021022477 A1 WO2021022477 A1 WO 2021022477A1 CN 2019099442 W CN2019099442 W CN 2019099442W WO 2021022477 A1 WO2021022477 A1 WO 2021022477A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
reflective electrode
reflectivity
reflective
Prior art date
Application number
PCT/CN2019/099442
Other languages
English (en)
French (fr)
Inventor
***
曾亭
许占齐
杨忠正
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/958,326 priority Critical patent/US11822192B2/en
Priority to PCT/CN2019/099442 priority patent/WO2021022477A1/zh
Priority to CN201980001269.2A priority patent/CN112654918B/zh
Publication of WO2021022477A1 publication Critical patent/WO2021022477A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and more particularly, to a reflective electrode, an array substrate thereof, and a display device.
  • the reflective display panel has attracted more and more attention due to its advantages such as no backlight source and low power consumption.
  • the embodiments of the present disclosure provide a reflective electrode, an array substrate thereof, and a display device.
  • a reflective electrode in one aspect of the present disclosure, includes a reflective conductive layer and a color compensation layer on the reflective conductive layer.
  • the reflective conductive layer has a first reflectivity for first light having a first wavelength and a second reflectivity for second light having a second wavelength. The first light and the second light can be combined into white light. The first reflectivity is less than the second reflectivity.
  • the color compensation layer is configured so that the reflective electrode has a third reflectivity for the first light and a fourth reflectivity for the second light. The ratio of the absolute value of the difference between the third reflectance and the fourth reflectance to the third reflectance is less than 16.4%.
  • the range of the first wavelength is 420-460 nm
  • the range of the second wavelength is 550-600 nm
  • the range of the third reflectivity is 0.79-0.93
  • the range of the fourth reflectivity is 0.84-0.92.
  • the color compensation layer includes a stack of at least one layer having a first refractive index and at least one layer having a second refractive index.
  • the first refractive index is greater than the second refractive index.
  • the laminate includes a first layer having a refractive index of 2.34 and a thickness of 30 nm, a second layer having a refractive index of 1.4 and a thickness of 90 nm, and a refractive index of 2.34 that are sequentially stacked.
  • the third layer has a high efficiency and has a thickness of 65 nm and the fourth layer has a refractive index of 1.4 and has a thickness of 60 nm.
  • the first layer is the layer closest to the reflective conductive layer in the stack.
  • the materials of the first layer and the third layer include Nb 2 O 5 .
  • the material of the second layer and the fourth layer includes SiO 2 .
  • the third reflectance ranges from 0.9 to 0.93
  • the fourth reflectance ranges from 0.87 to 0.92.
  • the laminate includes a first layer having a refractive index of 2.0 and a thickness of 45 nm, a second layer having a refractive index of 1.4 and a thickness of 90 nm, and a second layer having a refractive index of 2.0 that are sequentially stacked.
  • the third layer has a high efficiency and has a thickness of 80 nm and the fourth layer has a refractive index of 1.4 and has a thickness of 60 nm.
  • the first layer is the layer closest to the reflective conductive layer in the stack.
  • the materials of the first layer and the third layer include SiN.
  • the material of the second layer and the fourth layer includes SiO 2 .
  • the range of the third reflectivity is 0.79-0.84, and the range of the fourth reflectivity is 0.84-0.88.
  • the value of the parameter B in the CIE LAB chromaticity coordinate system of the light reflected by the reflective electrode is less than or equal to 2.63
  • the B value is -0.74.
  • the reflective electrode further includes a light-transmitting layer on the color compensation layer.
  • the light-transmitting layer has a first transmittance for the first light and a second transmittance for the second light.
  • the first transmittance is less than the second transmittance.
  • the thickness of the light-transmitting layer is in the range of 60-120 nm.
  • the material of the light-transmitting layer is polyimide.
  • the reflective conductive layer includes a metal layer and a transparent conductive layer on the metal layer.
  • the metal includes silver
  • the transparent conductive layer includes indium tin oxide.
  • an array substrate in another aspect of the present disclosure, includes: a substrate; a thin film transistor on the substrate; and the above-mentioned reflective electrode on the thin film transistor.
  • the reflective electrode is connected to the source/drain electrode layer of the thin film transistor.
  • a display device in yet another aspect of the present disclosure, includes the array substrate as described above.
  • Fig. 1 shows a schematic cross-sectional view of a reflective electrode according to an embodiment of the present disclosure.
  • Fig. 2 shows a schematic cross-sectional view of a color compensation layer according to an embodiment of the present disclosure.
  • FIG. 3 shows a graph of the reflectance of the reflective electrode of the embodiment of the present disclosure to light in the wavelength range of 380 nm to 780 nm.
  • 4a and 4b show enlarged views of part of the band in FIG. 3.
  • FIG. 5 shows a schematic cross-sectional view of a reflective conductive layer according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic cross-sectional view of a reflective electrode according to an embodiment of the present disclosure.
  • FIG. 7 shows a schematic cross-sectional view of an array substrate according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic cross-sectional view of a display device according to an embodiment of the present disclosure.
  • each layer is referred to as being “on” another part, it means that it is directly on the other part, or there may be other components in between. Conversely, when a component is referred to as being “directly” on another component, it means that there is no other component in between.
  • Reflective display devices rely on reflecting ambient light to provide a display light source. However, when the ambient light is weak, the application range of the reflective display device is limited due to the low brightness.
  • the material of the reflective electrode of the reflective display device is metal (for example, Al) and/or alloy (for example, AlNd).
  • metal for example, Al
  • alloy for example, AlNd
  • Al or AlNd has a low level of reflectivity to light, which also limits the application range of reflective display devices.
  • a liquid crystal alignment layer needs to be formed on the reflective electrode.
  • the liquid crystal alignment layer also reduces the reflectivity of the reflective electrode to light of a specific wavelength.
  • the liquid crystal alignment layer is a polyimide layer
  • the reflectivity of the reflective electrode to blue light will be reduced, thereby causing the light reflected by the reflective electrode as a whole to become yellowish.
  • the present disclosure provides a reflective electrode, which can improve the reflection characteristics of the reflective electrode in the visible light range (380nm-780nm) to obtain white light or composite light close to white light, thereby improving the display effect of the display device.
  • Fig. 1 shows a schematic cross-sectional view of a reflective electrode according to an embodiment of the present disclosure.
  • the reflective electrode 10 includes a reflective conductive layer 1 and a color compensation layer 2 on the reflective conductive layer 1.
  • the reflective conductive layer 1 has a first reflectance R1 for the first light L1 having the first wavelength W1 and a second reflectance R2 for the second light L2 having the second wavelength W2.
  • the first light L1 and the second light L2 can be combined into white light.
  • the first reflectance R1 may be less than the second reflectance R2.
  • the color compensation layer 2 is configured so that the reflective electrode 10 (that is, a stack including the reflective conductive layer 1 and the color compensation layer 2) has a third reflectance R3 for the first light L1 and The second light L2 has a fourth reflectance R4.
  • the ratio of the absolute value of the difference between the third reflectance R3 and the fourth reflectance R4 to the third reflectance R3 may be less than 16.4%.
  • the range of the first wavelength W1 may be 420-460 nm, and the range of the second wavelength W2 may be 550-600 nm.
  • the range of the third reflectance R3 may be 0.79-0.93, and the range of the fourth reflectance R4 may be 0.84-0.92.
  • the first light may include blue light
  • the second light may include yellow light.
  • the intensity of the reflected yellow light is greater than that of the reflected light. The intensity of the blue light thus obtains a yellowish composite light (ie, reflected light), which causes the display screen of the display device to be yellowish.
  • the embodiment of the present disclosure provides a color compensation layer 2, which can compensate the difference between the reflectance of the reflective conductive layer 1 for blue light and the reflectance for yellow light, so as to reduce the third reflectance R3 (ie, the reflectance
  • /R3 ) Control is less than 16.4%. Therefore, the light reflected by the reflective electrode can be as close as possible to white light, thereby improving the display effect of the display device.
  • the color compensation layer includes a stack of at least one layer having a first refractive index and at least one layer having a second refractive index.
  • the laminated layer may include two layers, three layers, or four layers, etc., which is not specifically limited in the present disclosure.
  • the first refractive index is greater than the second refractive index.
  • the layer closest to the reflective conductive layer in the stack is a layer having the first refractive index.
  • the color compensation layer ie, laminated layer
  • Fig. 2 shows a schematic cross-sectional view of a color compensation layer according to an embodiment of the present disclosure.
  • the color compensation layer 2 may include two structures, namely, a first laminate layer and a second laminate layer.
  • the first layer stack may include a first layer 21 having a refractive index of 2.34 and a thickness of 30 nm, a refractive index of 1.4 and having a The second layer 22 having a thickness of 90 nm, the third layer 23 having a refractive index of 2.34 and having a thickness of 65 nm, and the fourth layer 24 having a refractive index of 1.4 and having a thickness of 60 nm.
  • the first layer 21 is the layer closest to the reflective conductive layer 1 in the first stack.
  • the material of the first layer 21 and the third layer 23 may include Nb 2 O 5 .
  • the material of the second layer 22 and the fourth layer 24 may include SiO 2 .
  • the second stack may include a first layer 21 having a refractive index of 2.0 and a thickness of 45 nm that are sequentially stacked.
  • the second layer 22 having a refractive index of 1.4 and a thickness of 90 nm, a third layer 23 having a refractive index of 2.0 and a thickness of 80 nm, and a fourth layer 24 having a refractive index of 1.4 and a thickness of 60 nm.
  • the first layer 21 is the layer closest to the reflective conductive layer 1 in the second stack.
  • the material of the first layer 21 and the third layer 23 includes SiN.
  • the material of the second layer 22 and the fourth layer 24 includes SiO 2 .
  • FIG. 3 shows a graph of the reflectance of the reflective electrode of the embodiment of the present disclosure to light in the wavelength range of 380 nm to 780 nm.
  • the dotted line represents the reflectance curve of the reflective electrode 10 to light in the wavelength range of 380 nm to 780 nm when the color compensation layer is the first stack.
  • the solid line represents the reflectance curve of the reflective electrode 10 to light in the wavelength range of 380 nm to 780 nm when the color compensation layer is the second stack.
  • FIG. 4a and 4b show enlarged views of part of the band in FIG. 3.
  • FIG. 4a shows a graph of the reflectivity of the reflective electrode to the first light in the wavelength range of 420 nm-460 nm according to an embodiment of the present disclosure.
  • Fig. 4b shows a graph of the reflectivity of the reflective electrode to the second light in the wavelength range of 550nm-600nm according to an embodiment of the present disclosure.
  • Fig. 4a Shown in Fig. 4a is a curve of the reflectivity of the reflective electrode 10 including the first stack and the second stack to the first light in the wavelength range of 420nm-460nm. Shown in FIG. 4b is a curve of the reflectivity of the reflective electrode 10 including the first stack and the second stack to the second light in the wavelength range of 550 nm to 600 nm.
  • FIG. 4a shows a curve of reflectivity of the reflective electrode 10 to blue light.
  • the dashed line represents the reflectivity curve of the reflective electrode 10 including the first stack to blue light
  • the solid line represents the reflectivity curve of the reflective electrode 10 including the second stack to blue light.
  • FIG. 4b shows a curve of the reflectance of the reflective electrode 10 to yellow light.
  • the dashed line represents the reflectance curve of the reflective electrode 10 including the first laminate layer to yellow light
  • the solid line represents the reflectance curve of the reflective electrode 10 including the second laminate layer to yellow light.
  • the third reflectance R3 ie, the reflectivity of the reflective electrode 10 to blue light
  • the fourth reflectivity The range of R4 (ie, the reflectance of the reflective electrode 10 to yellow light) is 0.87-0.92.
  • the third reflectance R3 ranges from 0.79 to 0.84
  • the fourth reflectance R4 ranges from 0.84 to 0.88.
  • the value of the parameter B in the CIE LAB chromaticity coordinate system of the light reflected by the reflective electrode 10 is less than or equal to 2.63.
  • the B value of the light reflected by the reflective electrode 10 is 2.63.
  • the B value of the light reflected by the reflective electrode 10 is -0.74.
  • FIG. 5 shows a schematic cross-sectional view of a reflective conductive layer according to an embodiment of the present disclosure.
  • the reflective conductive layer 1 may include a metal layer 11 and a transparent conductive layer on the metal layer 11.
  • the material of the metal 11 may include silver.
  • the material of the transparent conductive layer 12 may include indium tin oxide (ITO). It should be understood that the transparent conductive layer 12 can be used to prevent the metal layer from being oxidized without affecting the reflective properties of the metal layer.
  • ITO indium tin oxide
  • FIG. 6 shows a schematic cross-sectional view of a reflective electrode according to an embodiment of the present disclosure.
  • the reflective electrode 10 when applied to a reflective liquid crystal display device, optionally, as shown in FIG. 6, the reflective electrode 10 may further include a light-transmitting layer 3 on the color compensation layer 2. It should be noted that the light-transmitting layer 3 serves as a liquid crystal alignment layer.
  • the light-transmitting layer 3 has a first transmittance T1 for the first light L1 and a second transmittance T2 for the second light L2.
  • the first transmittance T1 is less than the second transmittance T2.
  • the thickness of the light-transmitting layer 3 may range from 60-120 nm.
  • the material of the light-transmitting layer 3 may be polyimide.
  • the embodiment of the present disclosure also provides a method for preparing a reflective electrode.
  • the method may include: providing a reflective conductive layer; and forming a color compensation layer on the reflective conductive layer.
  • providing a reflective conductive layer may include: depositing a metal layer on a given substrate; depositing a transparent conductive layer on the metal layer; and patterning the metal layer and the transparent conductive layer to form the reflective conductive layer.
  • forming the color compensation layer may include: depositing a color compensation material layer on a given substrate and the reflective conductive layer; and patterning the color compensation material layer to form the color compensation layer.
  • depositing the color compensation material layer may include sequentially depositing the first layer 21, the second layer 22, the third layer 23, and the fourth layer. Layer 24. It should be noted that the specific details of the first to fourth layers are as described above, and will not be repeated here.
  • An embodiment of the present disclosure also provides an array substrate.
  • the array substrate may include: a substrate; a thin film transistor on the substrate; and the reflective electrode as described above on the thin film transistor.
  • FIG. 7 shows a schematic cross-sectional view of an array substrate according to an embodiment of the present disclosure.
  • the array substrate 100 includes: a substrate 101; a thin film transistor 102 on the substrate 101; and a reflective electrode 10 on the thin film transistor.
  • the reflective electrode 10 may be connected to the source/drain electrode layer of the thin film transistor 102, as described below.
  • the thin film transistor 102 may include: a gate electrode 1021 on the substrate 101; a gate insulating layer 1022 covering the substrate 101 and the gate electrode 1021; The active layer 1023 on the electrode insulating layer 1022; and the source/drain electrode layer 1024 on the gate insulating layer 1022 and the active layer 1023.
  • the materials of each layer of the thin film transistor 102 can be commonly used materials known in the art, and the present disclosure does not specifically limit it herein.
  • the array substrate 100 further includes: a buffer layer 103 between the thin film transistor 102 and the reflective electrode 10; and a passivation layer 104 between the buffer layer 103 and the reflective electrode 10,
  • the passivation layer 104 has a via 1041 exposing the source/drain electrode layer 1024 of the thin film transistor 102.
  • the reflective electrode 10 is connected to the source/drain electrode layer 1024 of the thin film transistor 102 via a via 1041.
  • the material of the buffer layer 103 may include an organic material. It should be understood that the material of the passivation layer 104 can be commonly used materials known in the art, and the disclosure is not specifically limited herein.
  • the embodiment of the present disclosure also provides a display device.
  • the display device includes the array substrate as described above.
  • FIG. 8 shows a schematic cross-sectional view of a display device according to an embodiment of the present disclosure.
  • the display device 1000 includes: an array substrate 100; and a color filter substrate 200 on the array substrate.
  • FIG. 8 shows an embodiment in which the array substrate 100 is applied to a liquid crystal display device.
  • the array substrate 100 of the embodiment of the present disclosure may also be applied to other types of display devices, for example, OLED display devices.
  • the display device 1000 may further include liquid crystals located between the array substrate 100 and the color filter substrate 200. At this time, the display device 1000 functions as a reflective liquid crystal display device.
  • the color filter substrate 200 may include: a substrate 201; a filter layer 202 on the side of the substrate 201 close to the liquid crystal 300; and a polarizer 203 on the side of the substrate 201 away from the liquid crystal 300.
  • the filter layer 202 may include, for example, a red filter, a green filter, and a blue filter.
  • the reflective electrode 10 may further include a light-transmitting layer 3 as a liquid crystal alignment layer.
  • a light-transmitting layer 3 As a liquid crystal alignment layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种反射式电极(10)及其阵列基板(100)、显示装置(1000),其中所述反射式电极(10)包括反射导电层(1)和位于所述反射导电层(1)上的颜色补偿层(2)。所述反射导电层(1)对具有第一波长的第一光具有第一反射率以及对具有第二波长的第二光具有第二反射率。所述第一光和所述第二光能够组合成白光。所述第一反射率小于所述第二反射率。所述颜色补偿层(2)被配置为使所述反射式电极(10)对所述第一光具有第三反射率以及对所述第二光具有第四反射率。所述第三反射率和所述第四反射率之差的绝对值与所述第三反射率的比小于16.4%。

Description

反射式电极及其阵列基板、显示装置 技术领域
本公开的实施例涉及显示技术领域,更特别地,涉及一种反射式电极及其阵列基板、显示装置。
背景技术
随着显示技术的发展,显示面板在人们的生产和生活中得到了广泛的应用。反射式显示面板由于其无需背光源以及低功耗等优点越来越受到人们的关注。
发明内容
本公开的实施例提供了一种反射式电极及其阵列基板、显示装置。
在本公开的一方面,提供了一种反射式电极。所述反射式电极包括反射导电层和位于所述反射导电层上的颜色补偿层。所述反射导电层对具有第一波长的第一光具有第一反射率以及对具有第二波长的第二光具有第二反射率。所述第一光和所述第二光能够组合成白光。所述第一反射率小于所述第二反射率。所述颜色补偿层被配置为使所述反射式电极对所述第一光具有第三反射率以及对所述第二光具有第四反射率。所述第三反射率和所述第四反射率之差的绝对值与所述第三反射率的比小于16.4%。
在本公开的实施例中,所述第一波长的范围为420-460nm,所述第二波长的范围为550-600nm。所述第三反射率的范围为0.79-0.93,所述第四反射率的范围为0.84-0.92。
在本公开的实施例中,所述颜色补偿层包括至少一个具有第一折射率的层和至少一个具有第二折射率的层的叠层。所述第一折射率大于所述第二折射率。
在本公开的实施例中,所述叠层包括依次层叠的具有2.34的折射率且具有30nm的厚度的第一层、具有1.4的折射率且具有90nm的厚度的第二 层、具有2.34的折射率且具有65nm的厚度的第三层和具有1.4的折射率且具有60nm的厚度的第四层。所述第一层为所述叠层中最靠近所述反射导电层的层。
在本公开的实施例中,所述第一层和所述第三层的材料包括Nb 2O 5。所述第二层和所述第四层的材料包括SiO 2
在本公开的实施例中,所述第三反射率的范围为0.9-0.93,所述第四反射率的范围为0.87-0.92。
在本公开的实施例中,所述叠层包括依次层叠的具有2.0的折射率且具有45nm的厚度的第一层、具有1.4的折射率且具有90nm的厚度的第二层、具有2.0的折射率且具有80nm的厚度的第三层和具有1.4的折射率且具有60nm的厚度的第四层。所述第一层为所述叠层中最靠近所述反射导电层的层。
在本公开的实施例中,所述第一层和所述第三层的材料包括SiN。所述第二层和所述第四层的材料包括SiO 2
在本公开的实施例中,所述第三反射率的范围为0.79-0.84,所述第四反射率的范围为0.84-0.88。
在本公开的实施例中,当入射到所述反射式电极上的光为白光时,由所述反射式电极反射的光的CIE LAB色度坐标***中的参数B的值小于等于2.63
在本公开的实施例中,所述B值为-0.74。
在本公开的实施例中,所述反射式电极还包括位于所述颜色补偿层上的透光层。所述透光层对所述第一光具有第一透射率以及对所述第二光具有第二透射率。所述第一透射率小于所述第二透射率。
在本公开的实施例中,所述透光层的厚度的范围为60-120nm。
在本公开的实施例中,所述透光层的材料为聚酰亚胺。
在本公开的实施例中,所述反射导电层包括金属层和位于所述金属层上的透明导电层。
在本公开的实施例中,所述金属包括银,所述透明导电层包括氧化铟锡。
在本公开的另一方面,提供了一种阵列基板。所述阵列基板包括:基板;位于所述基板上的薄膜晶体管;以及位于所述薄膜晶体管上的如上所述的反射式电极。所述反射式电极连接到所述薄膜晶体管的源/漏电极层。
在本公开的又一方面,提供了一种显示装置。所述显示装置包括如上所述的阵列基板。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理解,本申请的各个方面可以单独或者与一个或多个其他方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示出了根据本公开的实施例的反射式电极的横截面示意图。
图2示出了根据本公开的实施例的颜色补偿层的横截面示意图。
图3示出了本公开实施例的反射式电极对380nm-780nm波长范围内的光的反射率的曲线图。
图4a和图4b示出了图3中的部分波段的放大图。
图5示出了根据本公开的实施例的反射导电层的横截面示意图。
图6示出了根据本公开的实施例的反射式电极的横截面示意图。
图7示出了根据本公开的实施例的阵列基板的横截面示意图。
图8示出了根据本公开的实施例的显示装置的横截面示意图。
贯穿这些附图的各个视图,相应的参考编号指示相应的部件或特征。
具体实施方式
首先,需要说明的是,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中另有说明。在本文中使用术语“实例”之处,特别是当其位于一组术语之后时,所述“实例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
另外,还需要说明的是,当介绍本申请的元素及其实施例时,冠词“一”、“一个”、“该”和“所述”旨在表示存在一个或者多个要素;除非另有说明,“多个”的含义是两个或两个以上;用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素;术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
此外,在附图中,为了清楚起见夸大了各层的厚度及区域。应当理解的是,当提到层、区域、或组件在别的部分“上”时,指其直接位于别的部分上,或者也可能有别的组件介于其间。相反,当某个组件被提到“直接”位于别的组件上时,指并无别的组件介于其间。
本公开中描绘的流程图仅仅是一个例子。在不脱离本公开精神的情况下,可以存在该流程图或其中描述的步骤的很多变型。例如,所述步骤可以以不同的顺序进行,或者可以添加、删除或者修改步骤。这些变型都被认为是所要求保护的方面的一部分。
现将参照附图更全面地描述示例性的实施例。
反射式显示器件依靠反射环境光来提供显示光源。然而,在环境光较弱时,由于光亮度低,限制了反射式显示器件的应用范围。
目前,反射式显示器件的反射式电极的材料采用金属(例如,Al)和/或合金(例如,AlNd)。然而,Al或者AlNd的对光的反射率水平较低,由此也限制了反射式显示器件的应用范围。
发明人通过大量的研究发现,当使用Ag作为反射式电极的材料时,反射式电极对光的反射率较高。然而,由于Ag在使用过程中会劣化,使得经反射式电极反射的光的颜色偏黄,由此影响显示器件的显示效果。
此外,在反射式液晶显示器件的情况下,需要在反射式电极上形成液晶配向层。该液晶配向层也会降低反射式电极对特定波长的光的反射率。例如,在液晶配向层为聚酰亚胺层时,会降低反射式电极对蓝光的反射率,从而导致反射式电极整体反射的光偏黄。
本公开提供了一种反射式电极,能够改善反射式电极在可见光范围(380nm-780nm)内的反射特性,得到白光或接近白光的复合光,从而提高显示器件的显示效果。
图1示出了根据本公开的实施例的反射式电极的横截面示意图。如图1所示,反射式电极10包括反射导电层1和位于反射导电层1上的颜色补偿层2。
在本公开的实施例中,反射导电层1对具有第一波长W1的第一光L1具有第一反射率R1以及对具有第二波长W2的第二光L2具有第二反射率R2。在本公开的示例性实施例中,第一光L1和第二光L2能够组合成白光。在本公开的示例性实施例中,第一反射率R1可以小于第二反射率R2。
在本公开的实施例中,颜色补偿层2被配置为使反射式电极10(也就是,包括反射导电层1和颜色补偿层2的叠层)对第一光L1具有第三反射率R3以及对第二光L2具有第四反射率R4。在本公开的示例性实施例中,第三反射率R3和第四反射率R4之差的绝对值与第三反射率R3的比(|R3-R4|/R3)可以小于16.4%。
在本公开的示例性实施例中,第一波长W1的范围可以为420-460nm,第二波长W2的范围可以为550-600nm。在本公开的示例性实施例中,第三反射率R3的范围可以为0.79-0.93,第四反射率R4的范围可以为0.84-0.92。
在本公开的示例性实施例中,第一光可以包括蓝光,第二光可以包括 黄光。需要说明的是,由于反射导电层1对第一光(即,蓝光)的反射率小于对第二光(即,黄光)的反射率,因此使得被反射的黄光的强度大于被反射的蓝光的强度,由此得到偏黄的复合光(即,反射光),从而造成显示器件的显示画面偏黄。
因此,本公开的实施例提供了一种颜色补偿层2,能够补偿反射导电层1对蓝光的反射率与对黄光的反射率之间的差异,以将第三反射率R3(即,反射式电极10对蓝光的反射率)和第四反射率R4(即,反射式电极10对黄光的反射率)之差的绝对值与第三反射率R3的比(|R3-R4|/R3)控制为小于16.4%。由此,反射式电极所反射的光能够尽可能接近白光,从而改善显示器件的显示效果。
在本公开的实施例中,颜色补偿层包括至少一个具有第一折射率的层和至少一个具有第二折射率的层的叠层。作为示例,叠层可以包括两个层、三个层或四个层等,本公开在此不作具体限定。在本公开的示例性实施例中,第一折射率大于第二折射率。在本公开的示例性实施例中,叠层中最靠近反射导电层的层为具有第一折射率的层。需要说明的是,本公开的实施例的颜色补偿层(即,叠层)应用干涉相消原理,使得被反射导电层反射的黄光的强度在穿过颜色补偿层后降低,由此降低反射式电极对黄光的反射率。
图2示出了根据本公开的实施例的颜色补偿层的横截面示意图。在本公开的实施例中,颜色补偿层2可以包括两种结构,即第一叠层和第二叠层。
具体地,参考图2,在本公开的一个示例性实施例中,第一叠层可以包括依次层叠的具有2.34的折射率且具有30nm的厚度的第一层21、具有1.4的折射率且具有90nm的厚度的第二层22、具有2.34的折射率且具有65nm的厚度的第三层23和具有1.4的折射率且具有60nm的厚度的第四层24。在本公开的实施例中,第一层21为第一叠层中最靠近反射导电层1的层。
在本公开的示例性实施例中,作为示例,第一层21和第三层23的材料可以包括Nb 2O 5。作为示例,第二层22和第四层24的材料可以包括SiO 2
在本公开的实施例中,仍然参考图2,在本公开的另一个示例性实施例中,第二叠层可以包括依次层叠的具有2.0的折射率且具有45nm的厚度的第一层21、具有1.4的折射率且具有90nm的厚度的第二层22、具有2.0的折射率且具有80nm的厚度的第三层23和具有1.4的折射率且具有60nm的厚度的第四层24。在本公开的示例性实施例中,第一层21为第二叠层中最靠近反射导电层1的层。
在本公开的该实施例中,作为示例,第一层21和第三层23的材料包括SiN。作为示例,第二层22和第四层24的材料包括SiO 2
图3示出了本公开实施例的反射式电极对380nm-780nm波长范围内的光的反射率的曲线图。在图3中,虚线表示当颜色补偿层为第一叠层时反射式电极10对380nm-780nm波长范围内的光的反射率曲线。在图3中,实线表示当颜色补偿层为第二叠层时反射式电极10对380nm-780nm波长范围内的光的反射率曲线。
图4a和图4b示出了图3中的部分波段的放大图。图4a示出了本公开实施例的反射式电极对420nm-460nm波长范围内的第一光的反射率的曲线图。图4b示出了本公开实施例的反射式电极对550nm-600nm波长范围内的第二光的反射率的曲线图。
图4a中示出的是分别包括第一叠层和第二叠层的反射式电极10对420nm-460nm波长范围内的第一光的反射率的曲线。图4b中示出的是分别包括第一叠层和第二叠层的反射式电极10对550nm-600nm波长范围内的第二光的反射率的曲线。
在本公开的实施例中,图4a示出的是反射式电极10对蓝光的反射率的曲线。在图4a中,虚线表示包括第一叠层的反射式电极10对蓝光的反射率的曲线,实线表示包括第二叠层的反射式电极10对蓝光的反射率的曲线。
在本公开的实施例中,图4b示出的是反射式电极10对黄光的反射率的曲线。在图4b中,虚线表示包括第一叠层的反射式电极10对黄光的反射率的曲线,实线表示包括第二叠层的反射式电极10对黄光的反射率的曲线。
由图4a和4b可知,在反射式电极10包括第一叠层的情况下,第三反射率R3(即,反射式电极10对蓝光的反射率)的范围为0.9-0.93,第四反射率R4(即,反射式电极10对黄光的反射率)的范围为0.87-0.92。在反射式电极10包括第二叠层的情况下,第三反射率R3的范围为0.79-0.84,第四反射率R4的范围为0.84-0.88。
在本公开的实施例中,当入射到反射式电极10上的光为白光时,由反射式电极10反射的光的CIE LAB色度坐标***中的参数B的值小于等于2.63。
作为示例,在反射式电极10包括第一叠层的情况下,由反射式电极10反射的光的B值为2.63。
作为另一示例,在反射式电极10包括第二叠层的情况下,由反射式电极10反射的光的B值为-0.74。
图5示出了根据本公开的实施例的反射导电层的横截面示意图。在本公开的实施例中,反射导电层1可以包括金属层11和位于金属层11上的透明导电层。
在本公开的示例性实施例中,金属11的材料可以包括银。在本公开的示例性实施例中,透明导电层12的材料可以包括氧化铟锡(ITO)。应理解,透明导电层12可以用来防止金属层被氧化而不影响金属层的反射特性。
图6示出了根据本公开的实施例的反射式电极的横截面示意图。在本公开的实施例中,当应用于反射式液晶显示器件时,可选地,如图6所示,反射式电极10还可以包括位于颜色补偿层2上的透光层3。需要说明的是,该透光层3用作液晶配向层。
在本公开的实施例中,透光层3对第一光L1具有第一透射率T1以及对第二光L2具有第二透射率T2。第一透射率T1小于第二透射率T2。
在本公开的示例性实施例中,透光层3的厚度的范围可以为60-120nm。
在本公开的示例性实施例中,透光层3的材料可以为聚酰亚胺。
本公开的实施例还提供了一种制备反射式电极的方法。该方法可以包括:提供反射导电层;以及在反射导电层上形成颜色补偿层。
在本公开的实施例中,提供反射导电层可以包括:在给定基板上沉积金属层;在金属层上沉积透明导电层;以及图案化金属层和透明导电层以形成反射导电层。
在本公开的实施例中,形成颜色补偿层可以包括:在给定基板和反射导电层上沉积颜色补偿材料层;以及图案化颜色补偿材料层以形成颜色补偿层。
作为示例,在颜色补偿层包括上述第一叠层或第二第二叠层的情况下,沉积颜色补偿材料层可以包括依次沉积第一层21、第二层22、第三层23和第四层24。需要说明的是,关于第一层至第四层的具体细节如上所述,在此不再赘述。
在本公开的实施例还提供了一种阵列基板。该阵列基板可以包括:基板;位于所述基板上的薄膜晶体管;以及位于薄膜晶体管上的如上所述的反射式电极。
图7示出了根据本公开的实施例的阵列基板的横截面示意图。如图7所示,阵列基板100包括:基板101;位于基板101上的薄膜晶体管102;以及位于薄膜晶体管上的反射式电极10。在本公开的实施例中,反射式电极10可以连接到薄膜晶体管102的源/漏电极层,如下所述。
具体地,在本公开的示例性实施例中,如图7所示,薄膜晶体管102可以包括:位于基板101上的栅极1021;覆盖基板101和栅极1021的栅极绝缘层1022;位于栅极绝缘层1022上的有源层1023;以及位于栅极绝缘层1022和有源层1023上的源/漏电极层1024。可以理解,薄膜晶体管 102的各个层的材料可以采用本领域公知的常用材料,本公开在此不作具体限定。
在本公开的示例性实施例中,阵列基板100还包括:位于薄膜晶体管102与反射式电极10之间的缓冲层103;以及位于缓冲层103与反射式电极10之间的钝化层104,该钝化层104具有暴露薄膜晶体管102的源/漏电极层1024的过孔1041。反射式电极10经由过孔1041连接到薄膜晶体管102的源/漏电极层1024。作为示例,缓冲层103的材料可以包括有机材料。应理解,钝化层104的材料可以采用本领域公知的常用材料,本公开在此不作具体限定。
关于图7中反射式电极10的详细描述可以参考关于图1至图6的描述,在此不再赘述。
本公开的实施例还提供了一种显示装置。该显示装置包括如上所述的阵列基板。
图8示出了根据本公开的实施例的显示装置的横截面示意图。如图8所示,显示装置1000包括:阵列基板100;以及位于阵列基板上的彩膜基板200。
应注意,图8给出的是将阵列基板100应用于液晶显示装置的实施例。然而,本公开的实施例的阵列基板100也可应用于其他类型的显示装置,例如,OLED显示装置。
作为示例,在显示装置为液晶显示装置的情况下,如图8所示,显示装置1000还可以包括位于阵列基板100与彩膜基板200之间的液晶。此时,显示装置1000作为反射式液晶显示装置。
在本公开的示例性实施例中,彩膜基板200可以包括:基板201;位于基板201靠近液晶300一侧的滤光层202;以及位于基板201远离液晶300一侧的偏光片203。关于滤光层202的具体结构,本公开在此不做具体限定,本领域的技术人员可以根据实际需要来设计。例如,滤光层可以包括例如红色滤光片、绿色滤光片和蓝色滤光片。
关于图8中阵列基板100的详细描述可以参考关于图7的描述,在此不再赘述。需要说明的是,如上文所述,在应用于反射式液晶显示器件时,反射式电极10还可以包括作为液晶配向层的透光层3。关于透光层3的具体描述可以参考上文,在此不再赘述。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (20)

  1. 一种反射式电极,包括:
    反射导电层,其中,所述反射导电层对具有第一波长的第一光具有第一反射率以及对具有第二波长的第二光具有第二反射率,所述第一光和所述第二光能够组合成白光,所述第一反射率小于所述第二反射率;以及
    位于所述反射导电层上的颜色补偿层,
    其中,所述颜色补偿层被配置为使所述反射式电极对所述第一光具有第三反射率以及对所述第二光具有第四反射率,所述第三反射率和所述第四反射率之差的绝对值与所述第三反射率的比小于16.4%。
  2. 根据权利要求1所述的反射式电极,其中,所述第一波长的范围为420-460nm,所述第二波长的范围为550-600nm,所述第三反射率的范围为0.79-0.93,所述第四反射率的范围为0.84-0.92。
  3. 根据权利要求2所述的反射式电极,其中,所述颜色补偿层包括至少一个具有第一折射率的层和至少一个具有第二折射率的层的叠层,所述第一折射率大于所述第二折射率。
  4. 根据权利要求3所述的反射式电极,其中,所述叠层包括依次层叠的具有2.34的折射率且具有30nm的厚度的第一层、具有1.4的折射率且具有90nm的厚度的第二层、具有2.34的折射率且具有65nm的厚度的第三层和具有1.4的折射率且具有60nm的厚度的第四层,
    其中,所述第一层为所述叠层中最靠近所述反射导电层的层。
  5. 根据权利要求4所述的反射式电极,其中,所述第一层和所述第三层的材料包括Nb 2O 5,所述第二层和所述第四层的材料包括SiO 2
  6. 根据权利要求5所述的反射式电极,其中,所述第三反射率的范围为0.9-0.93,所述第四反射率的范围为0.87-0.92。
  7. 根据权利要求3所述的反射式电极,其中,所述叠层包括依次层叠的具有2.0的折射率且具有45nm的厚度的第一层、具有1.4的折射率且具有90nm的厚度的第二层、具有2.0的折射率且具有80nm的厚度的第三层和具有1.4的折射率且具有60nm的厚度的第四层,
    其中,所述第一层为所述叠层中最靠近所述反射导电层的层。
  8. 根据权利要求7所述的反射式电极,其中,所述第一层和所述第三层的材料包括SiN,所述第二层和所述第四层的材料包括SiO 2
  9. 根据权利要求8所述的反射式电极,其中,所述第三反射率的范围为0.79-0.84,所述第四反射率的范围为0.84-0.88。
  10. 根据权利要求2所述的反射式电极,其中,当入射到所述反射式电极上的光为白光时,由所述反射式电极反射的光的CIE LAB色度坐标***中的参数B的值小于等于2.63。
  11. 根据权利要求10所述的反射式电极,其中,所述B值为-0.74。
  12. 根据权利要求1所述的反射式电极,还包括位于所述颜色补偿层上的透光层,
    其中,所述透光层对所述第一光具有第一透射率以及对所述第二光具有第二透射率,所述第一透射率小于所述第二透射率。
  13. 根据权利要求12所述的反射式电极,其中,所述透光层的厚度的范围为60nm-120nm。
  14. 根据权利要求12所述的反射式电极,其中,所述透光层的材料为聚酰亚胺。
  15. 根据权利要求1-14中任一项所述的反射式电极,其中,所述反射导电层包括金属层和位于所述金属层上的透明导电层。
  16. 根据权利要求15所述的反射式电极,其中,所述金属包括银,所述透明导电层包括氧化铟锡。
  17. 根据权利要求16所述的反射式电极,还包括位于所述颜色补偿层上的透光层,
    其中,所述透光层对所述第一光具有第一透射率以及对所述第二光具有第二透射率,所述第一透射率小于所述第二透射率。
  18. 根据权利要求17所述的反射式电极,其中,所述透光层的厚度的范围为60nm-120nm,所述透光层的材料为聚酰亚胺。
  19. 一种阵列基板,包括:
    基板;
    位于所述基板上的薄膜晶体管;以及
    位于所述薄膜晶体管上的根据权利要求1至18中任一项所述的反射式电极,
    其中,所述反射式电极连接到所述薄膜晶体管的源/漏电极层。
  20. 一种显示装置,其包括根据权利要求19所述的阵列基板。
PCT/CN2019/099442 2019-08-06 2019-08-06 反射式电极及其阵列基板、显示装置 WO2021022477A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/958,326 US11822192B2 (en) 2019-08-06 2019-08-06 Reflective electrode, and array substrate and display device thereof
PCT/CN2019/099442 WO2021022477A1 (zh) 2019-08-06 2019-08-06 反射式电极及其阵列基板、显示装置
CN201980001269.2A CN112654918B (zh) 2019-08-06 2019-08-06 反射式电极及其阵列基板、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099442 WO2021022477A1 (zh) 2019-08-06 2019-08-06 反射式电极及其阵列基板、显示装置

Publications (1)

Publication Number Publication Date
WO2021022477A1 true WO2021022477A1 (zh) 2021-02-11

Family

ID=74503251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099442 WO2021022477A1 (zh) 2019-08-06 2019-08-06 反射式电极及其阵列基板、显示装置

Country Status (3)

Country Link
US (1) US11822192B2 (zh)
CN (1) CN112654918B (zh)
WO (1) WO2021022477A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253528A (zh) * 2021-05-14 2021-08-13 绵阳惠科光电科技有限公司 阵列基板、反射式显示面板和反射式显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654918B (zh) * 2019-08-06 2023-10-27 京东方科技集团股份有限公司 反射式电极及其阵列基板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112707A (ja) * 1997-06-13 1999-01-06 Sharp Corp 銀の増反射膜及びそれを用いた反射型液晶表示装置
CN1619362A (zh) * 2003-11-21 2005-05-25 索尼株式会社 液晶显示元件及液晶显示设备
JP2008134673A (ja) * 2008-03-05 2008-06-12 Semiconductor Energy Lab Co Ltd 液晶表示装置及びその作製方法
CN108172694A (zh) * 2017-12-21 2018-06-15 昆山维信诺科技有限公司 一种显示面板及显示装置
CN109387966A (zh) * 2017-08-14 2019-02-26 株式会社凸版巴川光学薄膜 透明导电膜、包括该透明导电膜的触摸面板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654918B (zh) * 2019-08-06 2023-10-27 京东方科技集团股份有限公司 反射式电极及其阵列基板、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112707A (ja) * 1997-06-13 1999-01-06 Sharp Corp 銀の増反射膜及びそれを用いた反射型液晶表示装置
CN1619362A (zh) * 2003-11-21 2005-05-25 索尼株式会社 液晶显示元件及液晶显示设备
JP2008134673A (ja) * 2008-03-05 2008-06-12 Semiconductor Energy Lab Co Ltd 液晶表示装置及びその作製方法
CN109387966A (zh) * 2017-08-14 2019-02-26 株式会社凸版巴川光学薄膜 透明导电膜、包括该透明导电膜的触摸面板
CN108172694A (zh) * 2017-12-21 2018-06-15 昆山维信诺科技有限公司 一种显示面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253528A (zh) * 2021-05-14 2021-08-13 绵阳惠科光电科技有限公司 阵列基板、反射式显示面板和反射式显示装置

Also Published As

Publication number Publication date
US11822192B2 (en) 2023-11-21
US20220382092A1 (en) 2022-12-01
CN112654918B (zh) 2023-10-27
CN112654918A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
US6927820B2 (en) Transflective liquid crystal display device and fabricating method thereof
US9454034B2 (en) Color filter array substrate, method for fabricating the same and display device
TWI459076B (zh) 顯示裝置
WO2015188474A1 (zh) 显示基板、显示面板及显示装置
WO2017128794A1 (zh) 减反射结构及其制造方法、显示器及其制造方法
JP7081688B2 (ja) ブラックマトリクス基板、及びブラックマトリクス基板を備えた表示装置
CN113471382B (zh) 显示面板及显示面板制作方法
WO2021022477A1 (zh) 反射式电极及其阵列基板、显示装置
KR101429942B1 (ko) 유기전계발광표시장치 및 그 제조방법
TW200905262A (en) Color filter substrate and manufacturing thereof and liquid crystal display panel
WO2021022587A1 (zh) 显示面板及其制作方法
WO2020191887A1 (zh) Oled显示面板和电子设备
WO2019192039A1 (zh) 液晶面板及其制作方法
TW200411269A (en) Transflective LCD apparatus and method for forming the same
WO2019007073A1 (zh) 阵列基板及其制作方法、反射式液晶显示装置
CN110596941B (zh) 阵列基板及液晶显示装置
CN110265462B (zh) 一种显示面板和显示装置
TWI457615B (zh) 彩色濾光片、光柵結構及顯示模組
WO2020258608A1 (zh) 显示面板及显示装置
CN114924436B (zh) 阵列基板及液晶显示面板
TW594318B (en) Transflective LCD display structure
TW201701028A (zh) 顯示裝置
JPWO2004046801A1 (ja) 液晶表示装置
JP2002182020A (ja) 半透過型反射鏡
CN113013353A (zh) 有机电致发光器件及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940314

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19940314

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19940314

Country of ref document: EP

Kind code of ref document: A1