WO2021022425A1 - 指纹检测装置和电子设备 - Google Patents

指纹检测装置和电子设备 Download PDF

Info

Publication number
WO2021022425A1
WO2021022425A1 PCT/CN2019/099135 CN2019099135W WO2021022425A1 WO 2021022425 A1 WO2021022425 A1 WO 2021022425A1 CN 2019099135 W CN2019099135 W CN 2019099135W WO 2021022425 A1 WO2021022425 A1 WO 2021022425A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
fingerprint
group
groups
Prior art date
Application number
PCT/CN2019/099135
Other languages
English (en)
French (fr)
Inventor
詹昶
李亮
蒋鹏
马明
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to KR1020217043026A priority Critical patent/KR20220012360A/ko
Priority to EP19940492.2A priority patent/EP3979123B1/en
Priority to CN201980004085.1A priority patent/CN111052141B/zh
Priority to PCT/CN2019/099135 priority patent/WO2021022425A1/zh
Priority to CN201921636356.9U priority patent/CN210864747U/zh
Priority to CN201980004244.8A priority patent/CN111108510B/zh
Priority to PCT/CN2019/108223 priority patent/WO2021007953A1/zh
Priority to KR1020207030945A priority patent/KR102475288B1/ko
Priority to EP19929178.2A priority patent/EP3789913B1/en
Priority to CN202110586440.XA priority patent/CN113239856B/zh
Priority to CN201980004247.1A priority patent/CN111108511B/zh
Priority to PCT/CN2019/111103 priority patent/WO2021007964A1/zh
Priority to CN201921720097.8U priority patent/CN210605739U/zh
Priority to CN201922451701.8U priority patent/CN211180842U/zh
Priority to PCT/CN2019/129434 priority patent/WO2021008088A1/zh
Priority to CN201980013671.2A priority patent/CN111801679B/zh
Priority to CN202021585659.5U priority patent/CN212933540U/zh
Priority to US17/034,981 priority patent/US11531430B2/en
Publication of WO2021022425A1 publication Critical patent/WO2021022425A1/zh
Priority to US17/646,645 priority patent/US11776301B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/80Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • This application relates to the field of fingerprint detection, and more specifically, to a fingerprint detection device and electronic equipment.
  • the fingerprint sensor mainly includes a pixel array (Pixel Array) circuit and a signal processing circuit.
  • the pixel array circuit includes a plurality of pixel units, and each pixel unit corresponds to a pixel value in the output image. When a pixel unit fails, the corresponding pixel value in the image is not output, which affects the image quality.
  • the fingerprint sensor can only process one fingerprint image, which cannot meet the requirements of different fingerprint images in different scenarios, which affects the performance of the fingerprint detection device.
  • the embodiments of the present application provide a fingerprint detection device and electronic equipment, which can meet the requirements of different images in different scenarios and improve the performance of the fingerprint detection device and its fingerprint sensor.
  • a fingerprint detection device which is suitable for under the display screen to realize under-screen optical fingerprint recognition, including: a fingerprint sensor;
  • the fingerprint sensor includes: N groups of sub-pixels, where N is a positive integer greater than 1;
  • Different groups of sub-pixels in the N groups of sub-pixels respectively receive light signals with different characteristics in the light signals returned by reflection or scattering of a finger, and the light signals received by each group of sub-pixels in the N groups of sub-pixels are used for A pixel in the fingerprint image of the finger is formed.
  • N groups of sub-pixels in the fingerprint sensor to collect light signals with different characteristics reflected or scattered by the finger, N types of corresponding fingerprint image signals can be obtained, thereby meeting the needs of different scenarios and improving the fingerprint sensor And the performance of the fingerprint detection device.
  • the optical signals with different characteristics include: optical signals in different directions.
  • the fingerprint sensor includes: M*N groups of sub-pixels, where M is a positive integer;
  • the light signals received by the N groups of sub-pixels are used to form N fingerprint images of the finger, and each fingerprint image of the N fingerprint images of the finger has M pixels.
  • each group of sub-pixels in the N groups of sub-pixels includes multiple sub-pixels, and the sum of the multiple light signals received by the multiple sub-pixels is used to form the fingerprint image of the finger.
  • One pixel is used to form the fingerprint image of the finger.
  • the number of sub-pixels in each group of sub-pixels in the N groups of sub-pixels is equal.
  • the N groups of sub-pixels include a first group of sub-pixels, a plurality of first sub-pixels in the first group of sub-pixels are not adjacent to each other, and the first group of sub-pixels A plurality of first sub-pixels in the pixels are adjacent to other sub-pixels in the N groups of pixels except for the first group of sub-pixels.
  • the N groups of sub-pixels include a first group of sub-pixels, and multiple first sub-pixels in the first group of sub-pixels are adjacent to each other.
  • each group of sub-pixels in the N groups of sub-pixels are arranged in the same manner in the N groups of sub-pixels.
  • each sub-pixel in the N groups of sub-pixels has the same shape and size, and is arranged in an array.
  • N 4.
  • each group of sub-pixels in the N groups of sub-pixels includes K sub-pixels, where K is an integer greater than 1, and the fingerprint detection device further includes: a processing unit;
  • the K sub-pixels are used to convert received optical signals into K electrical signals
  • the processing unit is used for summing the K electrical signals to obtain a pixel in the fingerprint image of the finger.
  • the processing unit includes N sub-processing units, and one of the N sub-processing units is used to sum a group of sub-pixels in the N groups of sub-pixels.
  • the processing unit includes a first sub-processing unit, the N groups of sub-pixels include a first group of sub-pixels, and the first sub-processing unit communicates with the first sub-pixels through K signal lines. K sub-pixels in the group of sub-pixels are connected.
  • the first sub-processing unit is configured to receive the K first electrical signals of the K sub-pixels in the first group of sub-pixels at the same time, and perform processing on the K first electrical signals.
  • the electrical signal is summed.
  • an electronic device including a display screen and a fingerprint detection device as in the first aspect or any possible implementation of the first aspect, wherein the fingerprint detection device is arranged below the display screen .
  • FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic diagram of a pixel arrangement of a pixel array circuit according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of circuit connection of a pixel array circuit according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of circuit connection of another pixel array circuit according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a fingerprint detection device according to an embodiment of the present application.
  • 6a to 6d are schematic diagrams of various sub-pixel arrangements according to an embodiment of the present application.
  • FIG. 7a to 7c are schematic diagrams of various sub-pixel arrangements according to another embodiment of the present application.
  • Fig. 8 is a schematic diagram of another fingerprint detection device according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of another fingerprint detection device according to an embodiment of the present application.
  • 10a to 10c are schematic diagrams of circuit connections of various pixel array circuits according to an embodiment of the present application.
  • 11a to 11b are schematic diagrams of circuit connections of various pixel array circuits according to another embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a fingerprint detection device according to an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a fingerprint detection device according to an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of another fingerprint detection device according to an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of another fingerprint detection device according to an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various fingerprint sensors, such as fingerprint sensors in optical fingerprint systems, including but not limited to optical fingerprint recognition systems and products based on optical fingerprint imaging.
  • the embodiments of this application only use optical
  • the fingerprint system is described as an example, but the embodiments of the present application should not constitute any limitation, and the embodiments of the present application are also applicable to other systems that use optical imaging technology.
  • the fingerprint sensor provided in the embodiments of the present application can be applied to smart phones, cameras, tablet computers, and other mobile terminals or other electronic devices with imaging functions.
  • the fingerprint detection device may specifically be a fingerprint detection device, which may be arranged in a partial area or an entire area below the display screen, thereby forming an under-display optical fingerprint system.
  • the fingerprint detection device may be partially or fully integrated into the display screen of the electronic device, thereby forming an in-display optical fingerprint system.
  • FIG. 1 is a schematic structural diagram of an electronic device to which an embodiment of the application can be applied.
  • the electronic device 10 includes a display screen 120 and a fingerprint detection device 130, wherein the fingerprint detection device 130 is arranged below the display screen 120 Local area.
  • the fingerprint detection device 130 includes an optical fingerprint sensor, and the optical fingerprint sensor includes a sensing array 133 having a plurality of optical sensing units 131, and the area where the sensing array 133 is located or its sensing area is the fingerprint detection of the fingerprint detection device 130 Area 103. As shown in FIG. 1, the fingerprint detection area 103 is located in the display area of the display screen 120.
  • the fingerprint detection device 130 can also be arranged in other positions, such as the side of the display screen 120 or the non-transparent area of the edge of the electronic device 10, and the optical path design is used to design the The optical signal of at least a part of the display area of the display screen 120 is guided to the fingerprint detection device 130 so that the fingerprint detection area 103 is actually located in the display area of the display screen 120.
  • the area of the fingerprint detection area 103 may be different from the area of the sensing array of the fingerprint detection device 130, for example, through optical path design such as lens imaging, reflective folding optical path design, or other optical path design such as light convergence or reflection, etc.
  • the area of the fingerprint detection area 103 of the fingerprint detection device 130 can be made larger than the area of the sensing array of the fingerprint detection device 130.
  • the fingerprint detection area 103 of the fingerprint detection device 130 can also be designed to be substantially the same as the area of the sensing array of the fingerprint detection device 130.
  • the fingerprint detection device 130 includes a light detection portion 134 and an optical component 132.
  • the light detection portion 134 includes the sensing array and is electrically connected to the sensing array.
  • the connected reading circuit and other auxiliary circuits can be fabricated on a chip (Die) by a semiconductor process, such as an optical imaging chip or an optical fingerprint sensor.
  • the sensing array is specifically a photodetector (Photodetector) array, which includes A plurality of photodetectors distributed in an array, the photodetector can be used as the optical sensing unit as described above; the optical component 132 can be arranged above the sensing array of the photodetecting part 134, which can specifically include The filter layer (Filter), the light guide layer or the light path guide structure and other optical elements, the filter layer can be used to filter out the ambient light penetrating the finger, and the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
  • the filter layer Finter
  • the light guide layer or the light path guide structure is mainly used to remove The reflected light reflected from the finger surface is guided to the sensing array for optical detection.
  • the sensing array in the fingerprint detection device may also be referred to as a pixel array
  • the optical sensing unit or sensing unit in the sensing array may also be referred to as a pixel unit.
  • the fingerprint detection device in the embodiments of the present application may also be referred to as an optical fingerprint identification module, an optical fingerprint device, a fingerprint identification module, a fingerprint module, a fingerprint acquisition device, etc., and the above terms can be replaced with each other.
  • the pixel array circuit can be the sensing array in the photodetection device in FIG. 1.
  • FIG. 2 is a schematic diagram of the pixel arrangement of the pixel array circuit 11.
  • the pixel array circuit 11 includes an array structure composed of a plurality of pixel units 111.
  • One pixel unit is used to receive a light signal and output an electrical signal value, which corresponds to a pixel value in the fingerprint image.
  • one pixel unit includes a plurality of sub-pixels (Cell), and the electrical signal value of one pixel unit is the sum of the electrical signals of the multiple sub-pixels.
  • one pixel unit 111 includes four adjacent sub-pixels, which are respectively a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel.
  • the first sub-pixel is identified as "1”
  • the second sub-pixel is identified as "2”
  • the third sub-pixel is identified as "3”
  • the fourth sub-pixel is identified as "4".
  • each sub-pixel is connected to a signal line through a switch for data output, and the values of 4 sub-pixels are summed by the processing unit 114 and output as a pixel value of a pixel unit. Further, by controlling different sub-pixels to be turned on at different times, the sub-pixels in different pixel units are sequentially summed, and the pixel values of different pixel units are sequentially output.
  • one pixel unit 111 is used to image a target area in the target object to be imaged. Therefore, the four sub-pixels in one pixel unit 111 all receive the optical signal of the same target area in the finger, and the electrical signals generated by the four sub-pixels The sum corresponds to the pixel value of the first target area in the fingerprint image of the finger.
  • a pixel unit may also include 2, 3, or any other number of sub-pixels, which is not limited in the embodiment of the present application.
  • a sub-pixel may be composed of a photodiode, a field effect transistor, etc., where the photodiode is used to receive optical signals and convert them into electrical signals.
  • the effect transistor is used to control the switch of the photodiode.
  • the pixel array circuit 11 further includes: a first driving unit 112 and a second driving unit 113.
  • the first driving unit 112 is connected to each column of sub-pixels through a plurality of signal lines. Specifically, it can be connected to the gate of the field effect transistor in each column of sub-pixels, and the photodiode is driven to receive light signals by turning on the field effect switch tube. Converted to electrical signals.
  • the first driving unit 112 sequentially drives each column of sub-pixels in the M columns of sub-pixels in the pixel array circuit 11 through a square wave driving signal.
  • the second driving unit 113 is connected to each row of sub-pixels through a plurality of signal lines. Specifically, it may be connected to the source of the field effect transistor of each row of sub-pixels for driving the transmission of electrical signals of each row of sub-pixels. Optionally, the second driving unit 113 may also sequentially drive each row of sub-pixels in the N rows of sub-pixels in the pixel array circuit 11 through a square wave driving signal.
  • the first driving unit 112 may also be connected to each row of sub-pixels through a signal line to control the switching of each row of sub-pixels.
  • the first driving unit 112 may be connected to the gate of the field effect transistor of each row of sub-pixels.
  • the second driving unit 113 can be connected to each column of sub-pixels through a signal line to control the output of the electrical signal of each column of sub-pixels.
  • the second driving unit is connected to the source of the field effect transistor of each column of sub-pixels. pole.
  • the pixel array circuit 11 further includes a plurality of processing units 114 for adding and summing the electrical signal values of the four sub-pixels in one pixel unit 111.
  • the first summation unit 1141 is one of the multiple processing units 114, and the first summation unit 1141 is connected to 4 row signal lines to connect the first target sub-pixel 1111 in the first target pixel unit.
  • the pixel values of the second target sub-pixel 1112, the third target sub-pixel 1113, and the fourth target sub-pixel 1114 are added.
  • the first driving unit 112 drives the first column of sub-pixels and the second column of sub-pixels to work.
  • the first summation unit 1141 simultaneously receives power from the first target pixel unit 1111 to the fourth target pixel unit 1114. Signal value, and the received 4 electrical signal values are added and output as the electrical signal value of the first target pixel unit.
  • the first summation unit 1141 can receive the electrical signal values of the 4 sub-pixels located in the first row and the second row, the third column and the fourth column in the t2 period, and combine the 4 sub-pixels The electrical signal values of are added and output. Therefore, in different time periods, the first summation unit 1141 can receive the electrical signal values of all sub-pixels on the first row and the second row, and sequentially add and output to obtain the pixel value of the pixel unit. Similarly, other summation units are also connected to two rows of sub-pixels, and the pixel values of pixel units corresponding to the two rows of sub-pixels are sequentially added and output.
  • one pixel unit includes 4 adjacent sub-pixels, and the electrical signal values of the 4 sub-pixels are added by the summation unit and used as the electrical signal value of the pixel unit.
  • the four adjacent sub-pixels are When any one or more sub-pixels in the pixel are damaged due to poor manufacturing process, electrostatic influence or other problems, as long as one of the four sub-pixels can be used normally, the signal of the current pixel unit can be output based on the normal sub-pixel value value.
  • FIG. 5 shows a schematic diagram of a fingerprint detection device 20 according to an embodiment of the present application.
  • the fingerprint detection device 20 is suitable for under the display screen and can realize the function of under-screen optical fingerprint recognition.
  • the fingerprint detection device 20 includes: a fingerprint sensor 200;
  • the fingerprint sensor 200 includes: N groups of sub-pixels, where N is a positive integer greater than 1;
  • Different groups of sub-pixels in the N groups of sub-pixels respectively receive light signals with different characteristics in the light signals returned by reflection or scattering of a finger, and the light signals received by each group of sub-pixels in the N groups of sub-pixels are used for A pixel in the fingerprint image of the finger is formed.
  • the N groups of sub-pixels include a first group of sub-pixels 210 and a second group of sub-pixels 220.
  • the first group of sub-pixels 210 includes at least one first sub-pixel 211
  • the second group of sub-pixels 220 includes at least one second sub-pixel 221;
  • the first sub-pixel 211 is used to receive the first light signal reflected or scattered by the finger
  • the second sub-pixel 221 is used to receive the second light signal reflected or scattered by the finger.
  • the characteristics of the first optical signal and the second optical signal are different.
  • the first light signal received by at least one first sub-pixel 211 in the first group of sub-pixels 210 is used to form a pixel value in the fingerprint image
  • at least one second sub-pixel 221 in the second group of sub-pixels 220 receives the first light signal.
  • the two light signals are used to form a pixel value in the fingerprint image.
  • At least one first sub-pixel 211 receives a first optical signal and converts the first optical signal into at least one first electrical signal, and the at least one first electrical signal is used for processing to obtain a pixel value in the fingerprint image.
  • At least one second sub-pixel 221 receives the second optical signal and converts the second optical signal into at least one second electrical signal, and the at least one second electrical signal is also used for processing to obtain a pixel value in the fingerprint image.
  • the optical signals with different characteristics include: optical signals with different characteristics in at least one of a propagation direction, a wavelength, and a polarization direction. That is, the first optical signal and the second optical signal may be optical signals of different wavelength bands, different propagation directions, different polarization directions, different intensities, etc., which are not limited in the embodiment of the present application.
  • the first optical signal and the second optical signal have different wavelengths, for example, the first optical signal is red light, the second optical signal is blue light, or the first optical signal is visible light, and the second optical signal is infrared light, etc. Wait.
  • the directions of the first light signal and the second light signal are different, in other words, the angle of incidence to the sub-pixel is different, for example, the angle between the first light signal and the plane where the sub-pixel is located is 30°, and the second light signal The angle between the signal and the plane where the sub-pixel is located is 45° and so on.
  • the polarization directions of the first optical signal and the second optical signal are different.
  • the first optical signal is a linearly polarized light signal that passes through a 0° linear polarizer
  • the second optical signal is a linearly polarized light signal that passes through a 90° linear polarizer. Polarized light and so on.
  • the structures of the first sub-pixel 211 and the second sub-pixel 221 may be the same as or similar to the sub-pixel structure in FIG. 4, and may include one or more light-emitting diodes and a switch tube for controlling the operation of the sub-pixel.
  • the number of sub-pixels in each group of sub-pixels in the N groups of sub-pixels is equal or not equal, for example: in the first group of sub-pixels 210 and the second group of sub-pixels 220
  • the number of sub-pixels is equal or unequal, which is not limited in the embodiment of the present application.
  • the number of sub-pixels in each group of sub-pixels in the N groups of sub-pixels is equal.
  • each group of sub-pixels in the N groups of sub-pixels includes a plurality of sub-pixels, and a sum of a plurality of light signals received by the plurality of sub-pixels is used to form a pixel in the fingerprint image of the finger.
  • the first group of sub-pixels 210 may include 2 or more than any number of sub-pixels, and the sum of a plurality of first light signals received by the first group of sub-pixels 210 is used to form a fingerprint of the finger. A pixel in the image.
  • the plurality of first sub-pixels 211 in the first group of sub-pixels 210 receive a first optical signal and convert the first optical signal into a plurality of electric signals, and the sum of the plurality of electric signals is used for processing to obtain The value of a pixel in the fingerprint image.
  • the N groups of sub-pixels may be arranged according to a certain rule, for example, arranged regularly in an array, or arranged in a fringe shape, or any other arrangement, which is not limited in this application.
  • each sub-pixel in the N groups of sub-pixels may be quadrangular, hexagonal, or other shapes, and the shape and size of each sub-pixel in the N groups of sub-pixels are the same or different, which is not done in the embodiment of the application. Any restrictions.
  • first group of sub-pixels 210 and the second group of sub-pixels 220 in FIG. 5 are any two groups of sub-pixels in the N groups of sub-pixels.
  • N is greater than 2
  • any other group of sub-pixels in the N groups of sub-pixels The characteristics of the light signal received by the sub-pixels are different from the characteristics of the first light signal and the second light signal, and any other group of sub-pixels can correspond to the correlation of the first group of sub-pixels 210 or the second group of pixels 220. Description and technical solutions are not repeated here.
  • N groups of sub-pixels to collect N kinds of light signals with different characteristics that are reflected or scattered by the finger, N kinds of corresponding fingerprint image signals can be obtained, so as to meet the requirements of different scenarios.
  • N types of fingerprint image signals can be fused and optimized to obtain a new optimized fingerprint image signal, which can improve the fingerprint image quality and the performance of the fingerprint sensor.
  • any one of the multiple sub-pixels is damaged, and there are other sub-pixels that can work and still form pixel values. Therefore, when extracting different feature images At the same time, the reliability and production yield of the fingerprint sensor can be improved.
  • the density of multiple sub-pixels can be increased while ensuring that two adjacent sub-pixels do not affect each other, thereby reducing the size of the fingerprint detection device.
  • the N groups of sub-pixels can respectively receive oblique light signals in different directions, first, the amount of light received by the fingerprint recognition device can be increased, thereby reducing the exposure time of the sub-pixel array.
  • the oblique light signal can also be received through N groups of sub-pixels, and the fingerprint information of the dry finger can be detected by the oblique light signal.
  • the dry hand fingerprint is not in contact with the OLED screen, the contrast between the fingerprint ridge and the fingerprint valley of the fingerprint image in the vertical direction is poor, and the image is blurred to the point where the fingerprint lines cannot be distinguished.
  • This application allows the sub-pixels to receive the light signal in the oblique direction. While obtaining normal finger fingerprints, it can better detect dry finger fingerprint images. In normal life scenarios, the fingers are usually dry and their stratum corneum is uneven. When they are pressed on the OLED screen, local areas of the fingers will have poor contact. The occurrence of this situation causes the current optical fingerprint solution to have a poor effect on dry hand fingerprint recognition.
  • the beneficial effect of this application is to improve the dry hand fingerprint imaging effect and make the dry hand fingerprint image clearer.
  • the N groups of sub-pixels in the fingerprint sensor can also expand the field of view and the field of view of the N groups of sub-pixels in the fingerprint sensor by receiving oblique light signals.
  • the field of view of the fingerprint detection device can be divided by 6 *9mm 2 is expanded to 7.5*10.5mm 2 , further improving the fingerprint recognition effect.
  • the N groups of sub-pixels receive the oblique light signal, the thickness of the optical path design of the plurality of sub-pixels can be shortened, so that the thickness of the fingerprint detection device can be effectively reduced.
  • the fingerprint sensor 200 includes: M*N groups of sub-pixels, where M is a positive integer, and the light signals received by the N groups of sub-pixels are used to form N fingerprint images of the finger.
  • M is a positive integer
  • the light signals received by the N groups of sub-pixels are used to form N fingerprint images of the finger.
  • Each of the N fingerprint images has M pixels.
  • each group of sub-pixels in the N groups of sub-pixels outputs a pixel in the fingerprint image of the finger
  • the N groups of sub-pixels are regarded as a set of pixels.
  • the fingerprint sensor 200 includes M repeated pixels
  • the first group of sub-pixels in the N groups of sub-pixels in each pixel group output a pixel value
  • the corresponding M first group of sub-pixels in the M pixel group output M pixel values, forming a finger Fingerprint image. It can be seen that a total of N fingerprint images of a finger can be output, and the pixel values in each fingerprint image are processed by sub-pixels that receive light signals with the same characteristics.
  • N fingerprint images of the finger can be applied to different scenes to meet different needs, or the N fingerprint images can be superimposed to obtain a high-resolution fingerprint image based on This high-resolution fingerprint image performs fingerprint recognition, which can improve fingerprint recognition performance.
  • the arrangement of the N groups of sub-pixels in different pixel sets is the same or different, which is not limited in the embodiment of the present application.
  • the M pixel sets are arranged in an array, and the arrangement of the N groups of sub-pixels in each pixel set is the same.
  • each group of sub-pixels in the N groups of sub-pixels includes a plurality of sub-pixels, and a sum of a plurality of light signals received by the plurality of sub-pixels is used to form a pixel in the fingerprint image of the finger.
  • the N groups of sub-pixels have multiple different arrangements.
  • the first group of sub-pixels is any group of sub-pixels in the N groups of sub-pixels.
  • the plurality of first sub-pixels in the first group of sub-pixels are not adjacent to each other, and the plurality of first sub-pixels in the first group of sub-pixels and the N Other sub-pixels in the group of pixels except for the first group of sub-pixels are adjacent.
  • multiple first sub-pixels in the first group of sub-pixels are adjacent to each other.
  • some of the first sub-pixels in the plurality of first sub-pixels in the first group of sub-pixels are adjacent to each other.
  • the N groups of sub-pixels include a first group of sub-pixels 210 and a second group of sub-pixels 220.
  • the first group of sub-pixels 210 includes four first sub-pixels 211
  • the second group of sub-pixels 220 includes four second sub-pixels 221.
  • FIGS. 6a to 6d the number of the first sub-pixel 211 and the second sub-pixel 221 is 4, and the first sub-pixel 211 is identified as "1", and the second sub-pixel 221 is identified as "2".
  • the four first sub-pixels 211 are not adjacent to each other, and the four second sub-pixels 221 are not adjacent to each other, and the four first sub-pixels 211 and the four second sub-pixels 211 are not adjacent to each other.
  • the sub-pixels 221 are arranged at intervals;
  • the four first sub-pixels 211 are adjacent to each other, and the four second sub-pixels 221 are also adjacent to each other.
  • the four first sub-pixels 211 are partially adjacent to each other, and the four second sub-pixels 221 are also partially adjacent to each other.
  • the N groups of sub-pixels include a first group of sub-pixels 210, a second group of sub-pixels 220, a third group of sub-pixels 230, and a fourth group of sub-pixels 240.
  • the first group of sub-pixels 210 includes four first sub-pixels 211
  • the second group of sub-pixels 220 includes four second sub-pixels 221
  • the third group of sub-pixels 230 includes four third sub-pixels 231.
  • the fourth group of sub-pixels 340 includes four fourth sub-pixels 241.
  • FIGS. 7a to 7c the first sub-pixel 311 is identified as "1"
  • the second sub-pixel 321 is identified as “2”
  • the third sub-pixel is identified as "3”
  • the fourth sub-pixel is identified as "4".
  • the four first sub-pixels, the four second sub-pixels, the four third sub-pixels, and the four fourth sub-pixels are not adjacent to each other. .
  • the four first sub-pixels, the four second sub-pixels, the four third sub-pixels, and the four fourth sub-pixels are all adjacent to each other.
  • each group of subpixels in the N groups of subpixels in the N groups of subpixels is the same or different, which is not limited in the embodiment of the present application.
  • each group of sub-pixels in the N groups of sub-pixels are arranged in the same manner in the N groups of sub-pixels.
  • the relative positional relationship between the plurality of first sub-pixels 211 in the first group of sub-pixels 210 and the relationship between the plurality of second sub-pixels 221 in the second group of sub-pixels 220 The relative positional relationship is the same, and the arrangement of the first group of sub-pixels 210 and the second group of sub-pixels 220 in the two groups of sub-pixels is the same.
  • the relative positional relationship between the plurality of first sub-pixels 211 in the first group of sub-pixels 210, and the relative position between the plurality of second sub-pixels 221 in the second group of sub-pixels 220 The relationship, the relative positional relationship between the plurality of third sub-pixels 231 in the third group of sub-pixels 230 and the relative positional relationship between the plurality of fourth sub-pixels 241 in the fourth group of sub-pixels 240 are the same, the first group The sub-pixels 210, the second group of sub-pixels 220, the third group of sub-pixels 230, and the fourth group of sub-pixels 240 are arranged in the same manner in the four groups of sub-pixels.
  • the different groups of sub-pixels in the N groups of sub-pixels are used to receive light signals with different characteristics.
  • the above illustration is only an example to illustrate the positional relationship and arrangement of the multiple groups of sub-pixels. Not limited.
  • each group of sub-pixels in the N groups of sub-pixels includes K sub-pixels, where K is an integer greater than 1, as shown in FIG. 8, the fingerprint detection device 20 further includes: a processing unit 300;
  • the K sub-pixels are used to convert received optical signals into K electrical signals; the processing unit is used to sum the K electrical signals to obtain a pixel in the fingerprint image of the finger.
  • the processing unit 300 may be a processor in the fingerprint detection device 20 or a processing circuit in the fingerprint sensor 300, both of which may be used to perform processing on the electrical signal value output by each of the N groups of sub-pixels. The sum is calculated and processed to obtain a pixel value in the fingerprint image.
  • the N groups of sub-pixels correspond to N sub-processing units, and one of the N sub-processing units is used to perform processing on one group of the N groups of sub-pixels. Sub-pixel summation.
  • the fingerprint sensor 200 includes a plurality of first sub-pixels 211 in the first group of pixels 210 and a plurality of second sub-pixels 221 in the second group of pixels 220.
  • the processing unit 300 includes a first sub-processing unit 310 and a second sub-processing unit 320.
  • the first sub-processing unit 310 is used to sum the first sub-pixels 211 in the first group of pixels 210
  • the second sub-processing unit 320 is used to sum the second sub-pixels 221 in the second group of pixels 220. Make a sum.
  • the first sub-processing unit 310 can be connected to a plurality of first sub-pixels 211 and the second sub-processing unit 320 can be connected to a plurality of second sub-pixels 221 in different connection manners. Under different connection modes, the image processor transfers data at different speeds.
  • the four first sub-pixels and the four second sub-pixels are respectively connected to the first sub-processing unit 310 and the second sub-processing unit 320 through one signal line.
  • the first column of sub-pixels is turned on at time t1
  • the first sub-processing unit 310 and the second sub-processing unit 320 receive the first electrical signal value respectively
  • the second column of sub-pixels is turned on at time t2
  • the first sub-processing unit 310 and The second sub-processing unit 320 receives the second electrical signal value respectively, and proceeds to time t4 in sequence.
  • the first sub-processing unit 310 and the second sub-processing unit 320 receive 4 electrical signal values, and perform processing on the 4 electrical signal values. Sum and add.
  • the four first sub-pixels and the four second sub-pixels are respectively connected to the first sub-processing unit 310 and the second sub-processing unit 320 through two signal lines.
  • the first column of pixels and the second column of pixels are turned on at t1
  • the first sub-processing unit 310 and the second sub-processing unit 320 respectively receive 2 electrical signal values
  • the third column of sub-pixels and the fourth column of pixels are turned on at t2.
  • the first sub-processing unit 310 and the second sub-processing unit 320 respectively receive two more electrical signal values, and sum and add the four electrical signal values received twice.
  • the four first sub-pixels and the four second sub-pixels are respectively connected to the first sub-processing unit 310 and the second sub-processing unit 320 through four signal lines.
  • the first column of sub-pixels, the second column of sub-pixels, the third column of sub-pixels, and the fourth column of sub-pixels can be turned on at time t1, and the first sub-processing unit 310 and the second sub-processing unit 320 respectively simultaneously receive 4 electrical signal values.
  • the received 4 electrical signal values are summed and added.
  • connection manner of the sub-processing unit and the sub-pixel may refer to the various connection manners of the above-mentioned FIGS. 10a to 10c, and the four sub-pixels of a group of sub-pixels may be connected respectively.
  • the N groups of sub-pixels include a first group of sub-pixels 210, a second group of sub-pixels 220, a third group of sub-pixels 230, and a fourth group of sub-pixels 240.
  • the processing unit 300 includes a first sub-processing unit 310, a second sub-processing unit 320, a third sub-processing unit 330, and a fourth sub-processing unit 340.
  • the third sub-processing unit 330 is used to sum the third sub-pixels 231 in the third group of pixels 230
  • the fourth sub-processing unit 340 is used to sum the fourth sub-pixels 241 in the fourth group of pixels 240. Make a sum.
  • the first sub-processing unit 310 can be connected to the plurality of first sub-pixels 211
  • the second sub-processing unit 320 can be connected to the plurality of second sub-pixels 221
  • the processing unit 330 is connected to the plurality of third sub-pixels 231
  • the fourth sub-processing unit 340 is connected to the plurality of fourth sub-pixels 241.
  • the image processor transfers data at different speeds.
  • the first sub-processing unit 310, the second sub-processing unit 320, the third sub-processing unit 330, and the fourth sub-processing unit 340 and the sub-pixels Different connection methods.
  • each sub-pixel in the 4 groups of sub-pixels is connected to an independent signal line, the first sub-processing unit 310, the second sub-processing unit 320, and the The three sub-processing units 330 and the fourth sub-processing unit 340 are sequentially connected to their corresponding 4 sub-pixels through 4 signal lines.
  • the sub-pixels from the first column to the fourth column can be simultaneously driven, and the 4 sub-processing units
  • the signal values of 4 sub-pixels are received and summed and added.
  • connection manner shown in FIG. 11a is applicable to any positional relationship and arrangement manner of the four first sub-pixels, the four second sub-pixels, the four third sub-pixels, and the four fourth sub-pixels.
  • 4 sub-pixels in each group of sub-pixels are connected to the corresponding sub-processing unit through 2 data links.
  • the first column of sub-pixels and the second column of sub-pixels are driven, and the 4 sub-processing units simultaneously receive the signal values of the 2 sub-pixels.
  • the third column of sub-pixels and the fourth column of sub-pixels are driven, and the 4 sub-processing units receive at the same time.
  • the signal values of the other 2 sub-pixels, and then the signal values of the 4 sub-pixels are summed and added.
  • the pixel signal acquisition time of FIG. 11b is twice that of the sub-pixel signal acquisition time of FIG. 11a, but the number of data signal lines is half of that of FIG. 11a.
  • the 4 sub-pixels in each group of sub-pixels can be connected to the corresponding sub-processing unit through one signal line.
  • the signal collection time of the sub-pixels is longer, but the number of data signal lines is the least.
  • the fingerprint detection device 20 may further include: an optical assembly 400;
  • the optical component 400 is used to pass optical signals with different characteristics.
  • the optical component includes a microlens array and a light-blocking layer
  • the fingerprint optical signal after reflection or refraction by the finger can be a fingerprint with different directions through the optical component.
  • Light signal can be used to pass optical signals with different characteristics.
  • the optical assembly 400 includes a microlens array 410 and at least one light blocking layer 420.
  • the microlens array 410 is configured to be arranged under the display screen and includes a plurality of microlenses
  • At least one light blocking layer 420 is disposed under the microlens array 410, and a plurality of light guide channels corresponding to each of the plurality of microlenses are formed;
  • the optical sensing pixel array includes the N groups of sub-pixels, which are arranged under at least one light-blocking layer 420, and a sub-pixel is arranged under each of the multiple light guide channels corresponding to each microlens. Pixels.
  • a plurality of sub-pixels are arranged below each microlens, and the plurality of sub-pixels arranged below each microlens are respectively used for receiving light condensed by adjacent microlenses and transmitted through the corresponding light guide channel.
  • the optical signal is used to detect fingerprint information of a finger.
  • the directions of the light guide channels corresponding to the different groups of sub-pixels in the N groups of sub-pixels are different, and the directions of the light guide channels corresponding to the same group of sub-pixels in the N groups of sub-pixels are the same.
  • the direction of the light signal passing through the light guide channel is the same.
  • the micro lens array 410 may include a first micro lens 411, a second micro lens 412 and a third micro lens 413.
  • the at least one light blocking layer 420 may include a plurality of light blocking layers, for example, the at least one light blocking layer 420 may include a first light blocking layer 421 and a second light blocking layer 422.
  • the N groups of sub-pixels include a first group of sub-pixels and a second group of sub-pixels. A plurality of first sub-pixels 211 in the first group of sub-pixels and a plurality of second sub-pixels 221 in the second group of sub-pixels are arranged in Below the second light blocking layer 422.
  • At least one light blocking layer 420 is formed with a plurality of light guide channels corresponding to each microlens in the microlens array 410, and the bottoms of the plurality of light guide channels corresponding to each microlens respectively extend to adjacent ones. Below the microlens.
  • the first light blocking layer 421 and the second light blocking layer 422 are respectively provided with each of the plurality of microlenses (that is, the first microlens 411, the second microlens 412 and at least one opening corresponding to the third microlens 413).
  • the first light blocking layer 220 is provided with a first opening 4211 and a second opening 4212 corresponding to the first microlens 411
  • the first light blocking layer 421 is also provided with a first opening 4211 and a second opening 4212 corresponding to the second microlens 412.
  • the second opening 4212 and the third opening 4213, and the first light blocking layer 421 are provided with a third opening 4213 and a fourth opening 4214 corresponding to the third microlens 413.
  • the second light blocking layer 422 is provided with a fifth opening 4221 and a sixth opening 4222 corresponding to the first microlens 411, and the second light blocking layer 422 is also provided with a second microlens 412 corresponding to The seventh opening 4223 and the eighth opening 4224, and the second light blocking layer 422 are provided with a ninth opening 4225 and a tenth opening 4226 corresponding to the third microlens 413.
  • the multiple light guide channels corresponding to the second microlens 412 may include a light guide channel formed by a second opening 4212 and a sixth opening 4222, and a third opening
  • the hole 4213 and the ninth opening 4225 form a light guide channel.
  • the light guide channel formed by the second opening 4212 and the sixth opening 4222 extends below the first microlens 411, and the light guide channel formed by the third opening 4213 and the ninth opening 4225 extends to the third microlens Below 413.
  • a sub-pixel is provided under each light guide channel of the multiple light guide channels corresponding to each microlens.
  • a second sub-pixel 221 is provided below the light guide channel formed by the second opening 4212 and the sixth opening 4222, and the third opening 4213 and the ninth opening 4225 A first sub-pixel 211 is arranged under the formed light guide channel.
  • a plurality of sub-pixels are arranged under each micro lens.
  • the multiple sub-pixels arranged under each microlens are respectively used for receiving optical signals converged by adjacent multiple microlenses and transmitted through the corresponding light guide channel, and the optical signals are used for detecting fingerprint information of a finger.
  • a first subpixel 211 and a second subpixel 221 may be disposed under the second microlens 412, where the first subpixel 211 may be used to receive The first oblique light signal converged by the first microlens 411 and transmitted through the light guide channel formed by the second opening 4212 and the seventh opening 4223, the second sub-pixel 221 can be used to receive the third microlens 413 The second oblique optical signal is converged and transmitted through the light guide channel formed by the third opening 4213 and the eighth opening 4224. Wherein, the direction of the first oblique optical signal is different from the direction of the second oblique optical signal.
  • each first sub-pixel receives the first oblique light signal
  • each second sub-pixel receives the second oblique light signal.
  • At least one light blocking layer 420 is disposed under the microlens array 410, and a light guide channel corresponding to each microlens of the plurality of microlenses is formed;
  • the N groups of sub-pixels are arranged under at least one light blocking layer 420, and a sub-pixel is arranged under the light guide channel corresponding to each microlens;
  • a sub-pixel is arranged under each microlens, and the sub-pixels arranged under each microlens are respectively used to receive optical signals converged by the microlens and transmitted through the corresponding light guide channel.
  • the directions of light guide channels corresponding to different groups of sub pixels in the N groups of sub pixels are different, and the directions of light guide channels corresponding to the same group of sub pixels in the N groups of sub pixels are the same.
  • each microlens in the microlens array 410 corresponds to a light guide channel
  • a sub-pixel is provided under a light guide channel
  • a plurality of first sub-pixels in the first group of sub-pixels 210 The direction of the light guide channel corresponding to 211 is different from the direction of the light guide channel corresponding to the plurality of second sub-pixels 221 in the second group of sub-pixels 220. Therefore, different light guide channels pass light signals in different directions.
  • the direction of the first light signal received by the sub-pixel is different from the direction of the second light signal received by the second sub-pixel.
  • the direction of the light guide channel corresponding to each of the plurality of first sub-pixels 211 in the first group of sub-pixels 210 is the same, and the direction of the light guide channel corresponding to each of the plurality of first sub-pixels 211 in the second group of sub-pixels 220 is the same.
  • the direction of the light guide channel corresponding to each second sub-pixel is the same, each first sub-pixel receives the first light signal, and each second sub-pixel receives the second light signal.
  • At least one light blocking layer 420 is disposed under the microlens array 410, and a plurality of light guide channels corresponding to each of the plurality of microlenses are formed ;
  • the N groups of sub-pixels are arranged under at least one light blocking layer 420, and a sub-pixel is arranged under each light guide channel of the plurality of light guide channels corresponding to each microlens;
  • a plurality of sub-pixels are arranged under each of the microlenses, and the plurality of sub-pixels arranged under each of the microlenses are respectively used to receive the optical signals converged through the microlenses and transmitted through the corresponding light guide channel.
  • each microlens in the microlens array 410 corresponds to multiple light guide channels, a sub-pixel is arranged under one light guide channel, and the multiple light guide channels are all located under the current microlens. It does not extend to other microlenses, for example, below the adjacent microlenses. Therefore, multiple sub-pixels are all located under the current micro lens.
  • the direction of the light guide channel corresponding to the plurality of first sub-pixels 211 is different from the direction of the light guide channel corresponding to the plurality of second sub-pixels 221, and in the plurality of first sub-pixels 211
  • the light guide channel direction corresponding to each first sub-pixel is the same, and the light guide channel direction corresponding to each second sub-pixel in the plurality of second sub-pixels 221 is the same.
  • different groups of sub-pixels in the N groups of sub-pixels can receive light signals in different directions, so that light signals in different directions can be detected.
  • the signal generates fingerprint images with multiple directional characteristics, and at the same time, it can also perform fusion processing on multiple fingerprint images with directional characteristics to optimize a high-resolution fingerprint image, improve the imaging quality of the fingerprint sensor, and use the high resolution
  • the fingerprint image of the fingerprint recognition can improve the recognition effect.
  • multiple sub-pixels can be arranged under each micro-lens in the micro-lens array, so that the spatial period of the micro-lens array and the spatial period of the N groups of sub-pixels are not equal, thereby avoiding fingerprint images Moiré fringes appear and the fingerprint recognition effect is improved.
  • an imaging light path with a single microlens and multiple sub-pixels can be formed. That is, a single microlens can multiplex optical signals of multiple angles (for example, a single microlens can multiplex optical signals of 4 angles), which can split and image light beams with different object aperture angles, effectively improving The light input of the fingerprint detection device can reduce the exposure time of the sub-pixel array.
  • the imaging light path of a single microlens and multiple sub-pixels it is possible to perform non-frontal light imaging (ie oblique light imaging) of the object beam of the fingerprint under the screen, especially the multiple sub-pixels arranged under each microlens are used separately
  • the object-side numerical aperture of the optical system can be enlarged and the optical path design of the sub-pixel array (that is, the thickness of the at least one light-blocking layer) can be shortened.
  • the thickness of the fingerprint detection device is reduced, and the robustness of the system and the tolerance tolerance of the fingerprint detection device 20 are improved.
  • the embodiment of the present application also provides an electronic device, which may include a display screen and the fingerprint detection device of the above-mentioned embodiment of the present application, wherein the fingerprint detection device is arranged below the display screen to realize off-screen Optical fingerprint detection.
  • the electronic device can be any electronic device with a display screen.
  • the display screen may be the display screen described above, such as an OLED display screen or other display screens.
  • OLED display screen or other display screens.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Image Input (AREA)

Abstract

一种指纹检测装置和电子设备,该指纹检测装置适用于显示屏下方以实现屏下光学指纹识别,包括:指纹传感器;所述指纹传感器包括:N组子像素,N为大于1的正整数;所述N组子像素中的不同组子像素分别接收经过手指反射或散射而返回的光信号中的特性不同的光信号,所述N组子像素中的每组子像素接收的光信号用于形成所述手指的指纹图像中的一个像素。

Description

指纹检测装置和电子设备 技术领域
本申请涉及指纹检测领域,并且更具体地,涉及一种指纹检测装置和电子设备。
背景技术
指纹检测装置中,通常需要采用指纹图像传感器(Image Sensor),或简称指纹传感器,将采集到的指纹光信号转换为指纹图像电信号。在指纹传感器中,主要包括像素阵列(Pixel Array)电路和信号处理电路,其中像素阵列电路中包括多个像素单元,每一个像素单元对应输出图像中的一个像素值。当一个像素单元出现故障时,则不输出图像中对应的像素值,影响图像质量。且该指纹传感器只能处理得到一张指纹图像,无法满足不同场景下不同指纹图像的需求,影响指纹检测装置的性能。
因此,如何提高指纹图像质量,满足不同场景需求,提高指纹检测装置及其指纹传感器的性能是一个亟待解决的问题。
发明内容
本申请实施例提供了一种指纹检测装置和电子设备,能够满足不同场景下不同图像的需求,提高指纹检测装置及其指纹传感器性能。
第一方面,提供了一种指纹检测装置,适用于显示屏下方以实现屏下光学指纹识别,包括:指纹传感器;
所述指纹传感器包括:N组子像素,N为大于1的正整数;
所述N组子像素中的不同组子像素分别接收经过手指反射或散射而返回的光信号中的特性不同的光信号,所述N组子像素中的每组子像素接收的光信号用于形成所述手指的指纹图像中的一个像素。
本申请的技术方案中,通过采用指纹传感器中的N组子像素采集经过手指反射或散射的不同特性的光信号,可以得到N种对应的指纹图像信号,从而满足不同场景的需求,提高指纹传感器以及指纹检测装置的性能。
在一种可能的实现方式中,所述特性不同的光信号包括:不同方向的光信号。
在一种可能的实现方式中,所述指纹传感器包括:M*N组子像素,其中,M为正整数;
所述N组子像素接收的光信号用于形成所述手指的N张指纹图像,所述手指的N张指纹图像中的每张指纹图像的像素为M个。
在一种可能的实现方式中,所述N组子像素中的每组子像素包括多个子像素,所述多个子像素接收的多个光信号之和用于形成所述手指的指纹图像中的一个像素。
在一种可能的实现方式中,所述N组子像素中的每组子像素的子像素数量相等。
在一种可能的实现方式中,所述N组子像素包括第一组子像素,所述第一组子像素中的多个第一子像素彼此互不相邻,且所述第一组子像素中的多个第一子像素与所述N组像素中除所述第一组子像素外的其它子像素相邻。
在一种可能的实现方式中,所述N组子像素包括第一组子像素,所述第一组子像素中的多个第一子像素彼此相邻。
在一种可能的实现方式中,所述N组子像素中的每一组子像素在所述N组子像素中的排列方式相同。
在一种可能的实现方式中,所述N组子像素中的每个子像素形状大小相同,且呈阵列排列。
在一种可能的实现方式中,N=4。
在一种可能的实现方式中,所述N组子像素中的每组子像素包括K个子像素,其中,K为大于1的整数,所述指纹检测装置还包括:处理单元;
所述K个子像素用于将接收的光信号转换为K个电信号;
所述处理单元用于将所述K个电信号求和,得到所述手指的指纹图像中的一个像素。
在一种可能的实现方式中,所述处理单元包括N个子处理单元,所述N个子处理单元中的一个子处理单元用于对所述N组子像素中的一组子像素求和。
在一种可能的实现方式中,所述处理单元包括第一子处理单元,所述N组子像素包括第一组子像素,所述第一子处理单元通过K条信号线与所述第一组子像素中的K个子像素连接。
在一种可能的实现方式中,所述第一子处理单元用于在同一时间接收所 述第一组子像素中的K个子像素的K个第一电信号,并对所述K个第一电信号进行求和计算。
第二方面,提供了一种电子设备,包括显示屏以及如第一方面或第一方面的任一可能的实现方式中的指纹检测装置,其中,所述指纹检测装置设置在所述显示屏下方。
附图说明
图1是本申请实施例所适用的电子设备的结构示意图。
图2是根据本申请实施例的一种像素阵列电路的像素排列示意图。
图3是根据本申请实施例的一种像素阵列电路的电路连接示意图。
图4是根据本申请实施例的另一种像素阵列电路的电路连接示意图。
图5是根据本申请实施例的一种指纹检测装置的示意图。
图6a至图6d是根据本申请一种实施例的多种子像素排列示意图。
图7a至图7c是根据本申请另一实施例的多种子像素排列示意图。
图8是根据本申请实施例的另一指纹检测装置的示意图。
图9是根据本申请实施例的另一指纹检测装置的示意图。
图10a至图10c是根据本申请一种实施例的多种像素阵列电路的电路连接示意图。
图11a至图11b是根据本申请另一实施例的多种像素阵列电路的电路连接示意图。
图12是根据本申请实施例的一种指纹检测装置的示意性框图。
图13是根据本申请实施例的一种指纹检测装置的示意性结构图。
图14是根据本申请实施例的另一指纹检测装置的示意性结构图。
图15是根据本申请实施例的另一指纹检测装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种指纹传感器,例如可以应用于光学指纹***中的指纹传感器,包括但不限于光学指纹识别***和基于光学指纹成像的产品,本申请实施例仅以光学指纹***为例进行说明,但不应对本申请实施例构成任何限定,本申请实施例同样适用于其他采用光学成像技 术的***等。
作为一种常见的应用场景,本申请实施例提供的指纹传感器可以应用在智能手机、相机、平板电脑以及其他具有成像功能的移动终端或者其他电子设备。
更具体地,在上述电子设备中,指纹检测装置可以具体为指纹检测装置,其可以设置在显示屏下方的局部区域或者全部区域,从而形成屏下(Under-display)光学指纹***。或者,所述指纹检测装置也可以部分或者全部集成至所述电子设备的显示屏内部,从而形成屏内(In-display)光学指纹***。
如图1所示为本申请实施例可以适用的电子设备的结构示意图,所述电子设备10包括显示屏120和指纹检测装置130,其中,所述指纹检测装置130设置在所述显示屏120下方的局部区域。所述指纹检测装置130包括光学指纹传感器,所述光学指纹传感器包括具有多个光学感应单元131的感应阵列133,所述感应阵列133所在区域或者其感应区域为所述指纹检测装置130的指纹检测区域103。如图1所示,所述指纹检测区域103位于所述显示屏120的显示区域之中。在一种替代实施例中,所述指纹检测装置130还可以设置在其他位置,比如所述显示屏120的侧面或者所述电子设备10的边缘非透光区域,并通过光路设计来将所述显示屏120的至少部分显示区域的光信号导引到所述指纹检测装置130,从而使得所述指纹检测区域103实际上位于所述显示屏120的显示区域。
应当理解,所述指纹检测区域103的面积可以与所述指纹检测装置130的感应阵列的面积不同,例如通过例如透镜成像的光路设计、反射式折叠光路设计或者其他光线汇聚或者反射等光路设计,可以使得所述指纹检测装置130的指纹检测区域103的面积大于所述指纹检测装置130感应阵列的面积。在其他替代实现方式中,如果采用例如光线准直方式进行光路引导,所述指纹检测装置130的指纹检测区域103也可以设计成与所述指纹检测装置130的感应阵列的面积基本一致。
作为一种可选的实现方式,如图1所示,所述指纹检测装置130包括光检测部分134和光学组件132,所述光检测部分134包括所述感应阵列以及与所述感应阵列电性连接的读取电路及其他辅助电路,其可以在通过半导体工艺制作在一个芯片(Die),比如光学成像芯片或者光学指纹传感器,所述感 应阵列具体为光探测器(Photo detector)阵列,其包括多个呈阵列式分布的光探测器,所述光探测器可以作为如上所述的光学感应单元;所述光学组件132可以设置在所述光检测部分134的感应阵列的上方,其可以具体包括滤光层(Filter)、导光层或光路引导结构以及其他光学元件,所述滤光层可以用于滤除穿透手指的环境光,而所述导光层或光路引导结构主要用于从手指表面反射回来的反射光导引至所述感应阵列进行光学检测。
还应理解,在本申请实施例中,指纹检测装置中的感应阵列也可以称为像素阵列,感应阵列中的光学感应单元或感应单元也可称为像素单元。
需要说明的是,本申请实施例中的指纹检测装置也可以称为光学指纹识别模组、光学指纹装置、指纹识别模组、指纹模组、指纹采集装置等,上述术语可相互替换。
图2至图4示出了一种像素阵列电路11的示意图。该像素阵列电路可以为图1中光检测装置中的感应阵列。
图2为像素阵列电路11的像素排列示意图。如图2所示,像素阵列电路11包括多个像素单元111构成的阵列结构,一个像素单元用于接收光信号并输出一个电信号值,该电信号值对应于指纹图像中的一个像素点值。其中,一个像素单元(Pixel)包括多个子像素(Cell),一个像素单元的电信号值为多个子像素的电信号之和。
可选地,如图2至图4所示,一个像素单元111包括相邻的4个子像素,分别为第一子像素,第二子像素,第三子像素和第四子像素。在图3和图4中,第一子像素标识为“1”,第二子像素标识为“2”,第三子像素标识为“3”,第四子像素标识为“4”。
具体地,如图3所示,每个子像素通过开关连接到信号线上进行数据输出,将4个子像素的值通过处理单元114进行求和输出为一个像素单元的像素值。进一步地,通过控制不同的子像素在不同的时间开启,依次对不同的像素单元中的子像素进行求和,依次输出不同的像素单元的像素值。
应理解,一个像素单元111用于对待成像目标物体中一个目标区域的进行成像,因此,一个像素单元111中的4个子像素均接收手指中同一目标区域的光信号,4个子像素产生的电信号之和对应于手指指纹图像中第一目标区域的像素值。
还应理解,在本申请实施例中,一个像素单元还可以包括2个,3个或 其它任意个数量的子像素,本申请实施例对此不做限定。
可选地,如图4所示,在一种可能的实施方式中,一个子像素可以由光电二极管、场效应晶体管等器件组成,其中,光电二极管用于接收光信号并转换为电信号,场效应晶体管用于控制光电二极管的开关。
如图4所示,像素阵列电路11还包括:第一驱动单元112和第二驱动单元113。所述第一驱动单元112通过多根信号线连接至每一列子像素,具体地,可以连接至每一列子像素中的场效应晶体管栅极,通过开启场效应开关管驱动光电二极管接收光信号并转换为电信号。可选地,第一驱动单元112通过方波驱动信号依次驱动像素阵列电路11中M列子像素中的每一列子像素。
所述第二驱动单元113通过多根信号线连接至每一行子像素,具体地,可以连接至每一行子像素的场效应晶体管的源极,用于驱动每一行子像素电信号的传输。可选地,第二驱动单元113也可以通过方波驱动信号依次驱动像素阵列电路11中N行子像素中的每一行子像素。
应理解,所述第一驱动单元112还可以通过信号线连接至每一行子像素,控制每一行子像素的开关,例如,第一驱动单元连接至每一行子像素的场效应晶体管的栅极。对应的,所述第二驱动单元113可以通过信号线连接至每一列子像素,控制每一列子像素的电信号的输出,例如,第二驱动单元连接至每一列子像素的场效应晶体管的源极。
如图3和图4所示,像素阵列电路11还包括:多个处理单元114,用于对一个像素单元111中的4个子像素的电信号值进行相加求和。例如,第一求和单元1141为多个处理单元114中的一个处理单元,该第一求和单元1141连接于4根行信号线,将第一目标像素单元中的第一目标子像素1111、第二目标子像素1112、第三目标子像素1113和第四目标子像素1114的像素值相加。具体地,在t1时段,第一驱动单元112驱动第一列子像素和第二列子像素工作,此时,第一求和单元1141同时接收第一目标像素单元1111至第四目标像素单元1114的电信号值,并将接收到的4个电信号值相加并输出为第一目标像素单元的电信号值。
应理解,图4中,第一求和单元1141可以在t2时段接收位于第一行和第二行以及第三列和第四列上的4个子像素的电信号值,并将该4个子像素的电信号值相加并输出。因此,在不同的时段,第一求和单元1141可以接 收第一行和第二行上所有子像素的电信号值,并依次加上输出得到像素单元的像素值。同样的,其它求和单元同样连接两行子像素,并依次将两行子像素对应的像素单元的像素值依次相加输出。
在上述像素阵列电路中,一个像素单元包括4个相邻的子像素,通过求和单元将4个子像素的电信号值相加并作为该像素单元的电信号值,当4个相邻的子像素中的任意一个或多个子像素由于制造工艺不良、静电影响或者其它问题造成损坏时,只要4个子像素中有一个子像素正常可以使用,则可以基于正常的子像素值输出当前像素单元的信号值。
但在该技术方案中,将4个相邻的子像素作为一个像素单元进行处理,所有像素单元中的4个子像素的类型相同,因此只能输出一种类型的图像,不能根据不同的需求和场景输出不同的图像。
在本申请中,提出一种能够利用多种不同的子像素接收不同特性的光信号,可以输出多张图像适应不同的需求和场景,并且,可以对多张图像进行合成以提高指纹传感器的成像质量,在提升指纹传感器的性能和可靠性的同时,还可以降低指纹检测装置的尺寸和厚度。
以下,结合图5至图15,详细介绍本申请实施例的指纹检测装置及其指纹传感器。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
应理解,在以下所示出的本申请实施例中的子像素的数量和排布方式等仅为示例性说明,而不应对本申请构成任何限定。
图5示出了本申请实施例的一种指纹检测装置20的示意图。该指纹检测装置20适用于显示屏下方,可以实现屏下光学指纹识别功能。
如图5所示,指纹检测装置20包括:指纹传感器200;
所述指纹传感器200包括:N组子像素,N为大于1的正整数;
所述N组子像素中的不同组子像素分别接收经过手指反射或散射而返回的光信号中的特性不同的光信号,所述N组子像素中的每组子像素接收的光信号用于形成所述手指的指纹图像中的一个像素。
例如,如图5所示,所述N组子像素中包括第一组子像素210和第二组子像素220。所述第一组子像素210包括至少一个第一子像素211,所述第二组子像素220包括至少一个第二子像素221;
其中,所述第一子像素211用于接收经过手指反射或散射的第一光信号,所述第二子像素221用于接收经过手指反射或散射的第二光信号。所述第一光信号和所述第二光信号的特性不同。
并且,第一组子像素210中至少一个第一子像素211接收的第一光信号用于形成指纹图像中的一个像素值,第二组子像素220中至少一个第二子像素221接收的第二光信号用于形成指纹图像中的一个像素值。
具体地,至少一个第一子像素211接收第一光信号并将第一光信号转换为至少一个第一电信号,所述至少一个第一电信号用于处理得到指纹图像中的一个像素值。至少一个第二子像素221接收第二光信号并将第二光信号转换为至少一个第二电信号,所述至少一个第二电信号同样用于处理得到指纹图像中的一个像素值。
在本申请实施例中,所述特性不同的光信号包括:传播方向,波长,偏振方向中至少一种特性不同的光信号。即,第一光信号和第二光信号可以为不同波段、不同传播方向、不同偏振方向、不同强度等等不同特性的光信号,本申请实施例对此不做限定。
可选地,第一光信号和第二光信号的波长不同,例如,第一光信号为红光,第二光信号为蓝光,或者第一光信号为可见光,第二光信号为红外光等等。
可选地,第一光信号和第二光信号的方向不同,换言之,即入射至子像素的入射角度不同,例如,第一光信号与子像素所在平面的夹角为30°,第二光信号与子像素所在平面的夹角为45°等等。
可选地,第一光信号和第二光信号的偏振方向不同,例如,第一光信号为经过0°线偏振片的线偏振光信号,第二光信号为经过90°线偏振片的线偏振光等等。
可选地,所述第一子像素211和第二子像素221的结构可以与图4中的子像素结构相同或类似,可以包括一个或多个发光二极管,以及控制子像素工作的开关管。
可选地,在本申请实施例中,所述N组子像素中的每组子像素的子像素数量相等或者不相等,例如:所述第一组子像素210和第二组子像素220中的子像素的数量相等或者不相等,本申请实施例对此不做限定。
优选地,所述N组子像素中的每组子像素的子像素数量相等。
可选地,所述N组子像素中的每组子像素包括多个子像素,所述多个子像素接收的多个光信号之和用于形成所述手指的指纹图像中的一个像素。
例如,所述第一组子像素210可以包括2个或2个以上任意数量的子像素,所述第一组子像素210接收的多个第一光信号之和用于形成所述手指的指纹图像中的一个像素。
具体地,所述第一组子像素210中的多个第一子像素211接收第一光信号并将第一光信号转换为多个电信号,所述多个电信号之和用于处理得到指纹图像中的一个像素值。
可选地,N组子像素可以按照一定规律排列,例如,呈阵列规律排列,也可以按照品字形排列,或者其它任意排列方式,本申请对此不做限定。
应理解,N组子像素中每个子像素的形状可以为四边形、六边形或者其它形状,所述N组子像素中每个子像素的形状大小相同或者不同,本申请实施例对此均不做任何限定。
还应理解,图5中的第一组子像素210和第二组子像素220为所述N组子像素中的任意两组子像素,当N大于2时,N组子像素中其它任意组子像素接收的光信号特性与第一光信号、第二光信号的特性均不同,且其它任意组子像素均可以对应的参照上述第一组子像素210或者所述第二组像素220的相关描述和技术方案,此处不再赘述。
在本申请实施例中,通过采用N组子像素采集N种经过手指反射或散射的不同特性的光信号,可以得到N种对应的指纹图像信号,从而满足不同场景的需求。此外,还可以对N种指纹图像信号进行融合优化,得到一个新的优化后的指纹图像信号,可以提高指纹图像质量和指纹传感器的性能。
此外,当多个子像素用于形成指纹图像中的一个像素值时,多个子像素中任意一个子像素损坏,还有其他子像素可以工作,仍旧能够形成像素值,因此,在提取不同特征图像的同时还可以提高指纹传感器的可靠性和生产良率。
并且,采用本申请实施例的方案,在保证相邻两个子像素不相互影响的情况下可以提升多个子像素的密度,进而能够降低所述指纹检测装置的尺寸。
特别地,当N组子像素分别能够接收到不同方向的倾斜光信号时,首先,可以提高指纹识别装置接收的进光量,由此可以降低子像素阵列的曝光时 长。
其次,还可以通过N组子像素接收倾斜光信号,并利用倾斜光信号检测干手指的指纹信息。当干手指纹与OLED屏接触不好时,垂直方向的指纹图像的指纹脊和指纹谷的对比度差,图像模糊到分辨不了指纹纹路,本申请通过让子像素接收倾斜方向光信号,在能够较好的获取正常手指指纹的同时,可以更好的检测出干手指指纹图像。在正常生活场景下,手指通常较干,其角质层不均匀,其按压在OLED屏上时,手指局部区域会出现接触不良。这种情况的出现造成当前光学指纹方案对干手指纹识别的效果不好,本申请的有益效果就是提升干手指纹成像效果,让干手指纹图像变清晰。
第三,所述指纹传感器中的N组子像素通过接收倾斜光信号还能够扩大所述指纹传感器中N组子像素的视场角和视场,例如可以所述指纹检测装置的视场由6*9mm 2扩展到7.5*10.5mm 2,进一步提升指纹识别效果。此外,N组子像素接收倾斜光信号时,能够缩短多个子像素光路设计的厚度,从而能够有效降低所述指纹检测装置的厚度。
可选地,所述指纹传感器200包括:M*N组子像素,其中,M为正整数,所述N组子像素接收的光信号用于形成所述手指的N张指纹图像,所述手指的N张指纹图像中的每张指纹图像的像素为M个。
具体地,N组子像素中的每一组子像素均输出得到所述手指的指纹图像中的一个像素,将N组子像素看成一个像素集合,当指纹传感器200中包括M个重复的像素集合时,每个像素集合中的N组子像素中的第一组子像素输出一个像素值,M个像素集合中对应的M个第一组子像素输出M个像素值,组成一张手指的指纹图像。由此可知,一共可以输出手指的N张指纹图像,且每一张指纹图像中的像素值均是由接收同一特性的光信号的子像素处理得到的。
在这种情况下,可以将手指的N张指纹图像应用于不同的场景以满足不同的需求,也可以将所述N张指纹图像进行叠加,以获取一张高分辨率的指纹图像,进而基于这张高分辨率的指纹图像进行指纹识别,能够提高指纹识别性能。应理解,M个像素集合中,不同的像素集合中的N组子像素排列方式相同或者不同,本申请实施例对此不做限定。
优选地,M个像素集合呈阵列排列,每一个像素集合中N组子像素的排列方式相同。
可选地,所述N组子像素中的每组子像素包括多个子像素,所述多个子像素接收的多个光信号之和用于形成所述手指的指纹图像中的一个像素。
可选地,所述N组子像素有多种不同的排列方式。例如,第一组子像素为N组子像素中任意一组子像素。
在一种可能的实施方式中,所述第一组子像素中的多个第一子像素彼此互不相邻,且所述第一组子像素中的多个第一子像素与所述N组像素中除所述第一组子像素外的其它子像素相邻。
在另一种可能的实施方式中,所述第一组子像素中的多个第一子像素彼此相邻。
在第三种可能的实施方式中,所述第一组子像素中的多个第一子像素中的部分第一子像素彼此相邻。
例如,N组子像素中包括第一组子像素210和第二组子像素220。其中,第一组子像素210中包括4个第一子像素211,第二组子像素220中包括4个第二子像素221。
以下结合图6a至图6d举例说明4个第一子像素211和4个第二子像素221的位置关系。在图6a至图6d中,第一子像素211和第二子像素221的数量为4,且第一子像素211标识为“1”,第二子像素221标识为“2”。
可选地,如图6a所示,4个第一子像素211之间彼此不相邻,且4个第二子像素221彼此也不相邻,4个第一子像素211和4个第二子像素221间隔排列;
可选地,如图6b和图6c所示,4个第一子像素211之间彼此相邻,且4个第二子像素221彼此之间也相邻。
可选地,如图6d所示,4个第一子像素211之间部分彼此相邻,且4个第二子像素221之间也部分彼此相邻。
又例如,N组子像素中包括第一组子像素210、第二组子像素220、第三组子像素230以及第四组子像素240。其中,第一组子像素210中包括4个第一子像素211,第二组子像素220中包括4个第二子像素221,第三组子像素230中包括4个第三子像素231,第四组子像素340中包括4个第四子像素241。
以下结合图7a至图7c举例说明4种多个子像素的位置关系。在图7a至图7c中,第一子像素311标识为“1”,第二子像素321标识为“2”,第三子 像素标识为“3”,第四子像素标识为“4”。
优选地,如图7a所示,4个第一子像素之间、4个第二子像素之间、4个第三子像素之间、以及4个第四子像素之间彼此均不相邻。
可选地,如图7b所示,4个第一子像素之间、4个第二子像素之间、4个第三子像素之间、4个第四子像素之间彼此均相邻。
可选地,如图7c所示,4个第一子像素之间、4个第二子像素之间、4个第三子像素之间、4个第四子像素中部分子像素之间彼此相邻。
应理解,上述图示仅为举例说明4个第一子像素、4个第二子像素、4个第三子像素以及4个第四子像素之间的位置关系和排列方式,本申请实施例对此不做限定。
可选地,所述N组子像素中的每一组子像素在所述N组子像素中的排列方式相同或者不同,本申请实施例对此不做限定。
优选地,所述N组子像素中的每一组子像素在所述N组子像素中的排列方式相同。
例如,如图6b、图6c、图6d中第一组子像素210中多个第一子像素211之间的相对位置关系与第二组子像素220中多个第二子像素221之间的相对位置关系相同,所述第一组子像素210与所述第二组子像素220在两组子像素中的排列方式相同。
并且,在图7a和图7b中,第一组子像素210中多个第一子像素211之间的相对位置关系、第二组子像素220中多个第二子像素221之间的相对位置关系、第三组子像素230中多个第三子像素231之间的相对位置关系以及第四组子像素240中多个第四子像素241之间的相对位置关系相同,所述第一组子像素210、所述第二组子像素220、所述第三组子像素230和所述第四组子像素240在四组子像素中的排列方式相同。
应理解,所述N组子像素中不同组的子像素用于接收不同特性的光信号,上述图示仅为举例说明多组子像素之间的位置关系以及排列方式,本申请实施例对此不做限定。
可选地,所述N组子像素中的每组子像素包括K个子像素,其中,K为大于1的整数,如图8所示,所述指纹检测装置20还包括:处理单元300;
所述K个子像素用于将接收的光信号转换为K个电信号;所述处理单元用于将所述K个电信号求和,得到所述手指的指纹图像中的一个像素。
应理解,所述处理单元300可以为指纹检测装置20中的处理器或者为指纹传感器300中的处理电路,均可以用于对N组子像素中的每一组子像素输出的电信号值进行求和计算,并处理得到指纹图像中的一个像素值。
可选地,在一种可能的实施方式中,所述N组子像素对应N个子处理单元,所述N个子处理单元中的一个子处理单元用于对所述N组子像素中的一组子像素求和。
例如,如图9所示,所述指纹传感器200包括第一组像素210中的多个第一子像素211,以及第二组像素220中的多个第二子像素221。对应的,处理单元300包括第一子处理单元310和第二子处理单元320。所述第一子处理单元310用于对第一组像素210中的第一子像素211进行求和,所述第二子处理单元320用于对第二组像素220中的第二子像素221进行求和。
可选地,可以采用不同的连接方式将第一子处理单元310连接到多个第一子像素211上,并且将第二子处理单元320连接到多个第二子像素221上。不同的连接方式下,图像处理器传输数据的速度不同。
下面,结合图10a至图10c举例说明在图6a的子像素排列方式下,第一子处理单元310和第二子处理单元320与子像素的不同连接方式。
如图10a所示,4个第一子像素和4个第二子像素分别通过1根信号线连接到第一子处理单元310和第二子处理单元320。在此情况下,t1时刻开启第一列子像素,第一子处理单元310和第二子处理单元320分别接收第一个电信号值,t2时刻开启第二列子像素,第一子处理单元310和第二子处理单元320分别接收第二个电信号值,依次进行到t4时刻,第一子处理单元310和第二子处理单元320接收到4个电信号值,并对4个电信号值进行求和相加。
如图10b所示,4个第一子像素和4个第二子像素分别通过2根信号线连接到第一子处理单元310第二子处理单元320。在此情况下,t1时刻开启第一列像素和第二列像素,第一子处理单元310和第二子处理单元320分别接收2个电信号值,t2时刻开启第三列子像素和第四列子像素,第一子处理单元310和第二子处理单元320分别再接收2个电信号值,并对两次接收的4个电信号值进行求和相加。
如图10c所示,4个第一子像素和4个第二子像素分别通过4根信号线连接到第一子处理单元310第二子处理单元320。在此情况下,t1时刻可以 开启第一列子像素、第二列子像素、第三列子像素和第四列子像素,第一子处理单元310和第二子处理单元320分别同时接收4个电信号值,并对接收的4个电信号值进行求和相加。
经过上述分析可知,两组不同的子像素,可以通过两个独立的子处理单元对信号值进行相加输出,且通过不同的连接方式,可以实现不同的处理速度,当一组子像素中的多个子像素一一对应多根信号线时,此时的计算处理速度最快,信号线数量最多。
应理解,在图6b至图6d的像素排列情况下,子处理单元与子像素的连接方式可以参考上述图10a至图10c的各种连接方式,一组子像素的4个子像素可以分别连接1根信号线,2根信号线或者4根信号线,此处不再赘述。
又例如,N组子像素中包括第一组子像素210、第二组子像素220、第三组子像素230以及第四组子像素240。对应的,处理单元300包括第一子处理单元310、第二子处理单元320、第三子处理单元330和第四子处理单元340。所述第三子处理单元330用于对第三组像素230中的第三子像素231进行求和,所述第四子处理单元340用于对第四组像素240中的第四子像素241进行求和。
可选地,可以采用不同的连接方式将第一子处理单元310连接到多个第一子像素211上,将第二子处理单元320连接到多个第二子像素221上,将第三子处理单元330连接到多个第三子像素231上,并且将第四子处理单元340连接到多个第四子像素241上。不同的连接方式下,图像处理器传输数据的速度不同。
下面,结合图11a和图11b举例说明在图7a的子像素排列方式下,第一子处理单元310、第二子处理单元320、第三子处理单元330以及第四子处理单元340与子像素的不同连接方式。
优选地,图11a所示,在一种可能的连接方式中,4组子像素中的每个子像素均连接到独立的信号线上,第一子处理单元310、第二子处理单元320、第三子处理单元330以及第四子处理单元340依次通过4根信号线连接到其对应的4个子像素上,在t1时刻,可以同时驱动第一列到第四列的子像素,4个子处理单元同时接收4个子像素的信号值并进行求和相加。
应理解,图11a所示的连接方式适用于4个第一子像素、4个第二子像素、4个第三子像素以及4个第四子像素任意一种位置关系和排列方式。
可选地,如图11b所示,每一组子像素中的4个子像素通过2根数据链连接到对应的子处理单元。在t1时刻,驱动第一列子像素和第二列子像素,4个子处理单元同时接收2个子像素的信号值,在t2时刻,驱动第三列子像素和第四列子像素,4个子处理单元同时再接收另外2个子像素的信号值,然后将4个子像素的信号值进行求和相加。
图11b与图11a的连接方式相比,图11b的像素信号采集时间是图11a的子像素信号采集时间的2倍,但数据信号线的数量为图11a的一半。
可选地,每一组子像素中的4个子像素可以通过1根信号线连接到对应的子处理单元上,此时子像素的信号采集时间更长,但数据信号线的数量最少。
可选地,如图12所示,所述指纹检测装置20还可以包括:光学组件400;
所述光学组件400用于通过不同特性的光信号,例如,当光学组件包括微透镜阵列和挡光层时,经过手指反射或折射后的指纹光信号,再通过光学组件可以为方向不同的指纹光信号。
优选地,在一种可能的实施方式中,光学组件400包括微透镜阵列410和至少一个挡光层420。
微透镜阵列410用于设置在所述显示屏的下方,且包括多个微透镜;
至少一个挡光层420设置在微透镜阵列410的下方,且形成有所述多个微透镜中每个微透镜对应的多个导光通道;
光学感应像素阵列,包括所述N组子像素,设置在至少一个挡光层420的下方,所述每个微透镜对应的多个导光通道中的每个导光通道的下方设置有一个子像素。
其中,所述每个微透镜的下方设置有多个子像素,所述每个微透镜下方设置的多个子像素分别用于接收经由相邻的微透镜汇聚的并通过对应的导光通道传输的光信号,所述光信号用于检测手指的指纹信息。
具体地,所述N组子像素中不同组子像素对应的导光通道的方向不同,且所述N组子像素中同一组子像素对应的导光通道的方向相同,进一步的,相同方向的导光通道的通过的光信号方向相同。
例如,如图13所示,所述微透镜阵列410可以包括第一微透镜411、第二微透镜412以及第三微透镜413。至少一个挡光层420可以包括多个挡光层,例如所述至少一个挡光层420可以包括第一挡光层421和第二挡光层 422。N组子像素包括第一组子像素和第二组子像素,所述第一组子像素中的多个第一子像素211和第二组子像素中的多个第二子像素221设置在第二挡光层422下方。
其中,至少一个挡光层420形成有微透镜阵列410中的每个微透镜对应的多个导光通道,所述每个微透镜对应的多个导光通道的底部分别延伸至相邻的多个微透镜的下方。
如图13所示,所述第一挡光层421和所述第二挡光层422中分别设置有所述多个微透镜中每个微透镜(即第一微透镜411、第二微透镜412以及第三微透镜413)对应的至少一个开孔。例如,所述第一挡光层220设置有第一微透镜411对应的第一开孔4211和第二开孔4212,所述第一挡光层421还设置有第二微透镜412对应的第二开孔4212和第三开孔4213,以及所述第一挡光层421中设置有第三微透镜413对应的第三开孔4213和第四开孔4214。类似地,所述第二挡光层422设置有第一微透镜411对应的第五开孔4221和第六开孔4222,所述第二挡光层422还设置有第二微透镜412对应的第七开孔4223和第八开孔4224,以及所述第二挡光层422中设置有第三微透镜413对应的第九开孔4225和第十开孔4226。
以所述第二微透镜412为例,所述第二微透镜412对应的多个导光通道可以包括由第二开孔4212和第六开孔4222形成的导光通道,以及由第三开孔4213和第九开孔4225形成的导光通道。由第二开孔4212和第六开孔4222形成的导光通道延伸至第一微透镜411的下方,由第三开孔4213和第九开孔4225形成的导光通道延伸至第三微透镜413的下方。
进一步地,每个微透镜对应的多个导光通道中的每个导光通道的下方设置有一个子像素。
以所述第二微透镜412为例,由第二开孔4212和第六开孔4222形成的导光通道的下方设置有第二子像素221,由第三开孔4213和第九开孔4225形成的导光通道的下方设置有第一子像素211。
更进一步地,每个微透镜的下方设置有多个子像素。所述每个微透镜下方设置的多个子像素分别用于接收经由相邻的多个微透镜汇聚的并通过对应的导光通道传输的光信号,所述光信号用于检测手指的指纹信息。
以所述第二微透镜412为例,所述第二微透镜412的下方可以设置有一个第一子像素211和一个第二子像素221,其中,该第一子像素211可以用 于接收经过第一微透镜411汇聚的并通过由第二开孔4212和第七开孔4223形成的导光通道传输的第一倾斜光信号,该第二子像素221可以用于接收经过第三微透镜413汇聚的并通过由第三开孔4213和第八开孔4224形成的导光通道传输的第二倾斜光信号。其中,第一倾斜光信号的方向与第二倾斜光信号的方向不同。
与此同时,第一组子像素210中的多个第一子像素211中每个第一子像素对应的导光通道方向相同,且第二组子像素220中的多个第二子像素221中每个第二子像素对应的导光通道方向相同,因此,每个第一子像素均接收第一倾斜光信号,每个第二子像素均接收第二倾斜光信号。
可选地,在另一种可能的实施方式中,至少一个挡光层420设置在微透镜阵列410的下方,且形成有所述多个微透镜中每个微透镜对应的一个导光通道;
所述N组子像素,设置在至少一个挡光层420的下方,所述每个微透镜对应的导光通道的下方设置有一个子像素;
其中,所述每个微透镜的下方设置有一个子像素,所述每个微透镜下方设置的子像素分别用于接收经由该微透镜汇聚的并通过对应的导光通道传输的光信号。
具体地,N组子像素中不同组子像素对应的导光通道的方向不同,且所述N组子像素中同一组子像素对应的导光通道的方向相同。
例如,如图14所示,微透镜阵列410中的每个微透镜对应一个导光通道,一个导光通道的下方设置一个子像素,且第一组子像素210中的多个第一子像素211对应的导光通道的方向与第二组子像素220中的多个第二子像素221对应的导光通道的方向不同,因此,不同的导光通道通过不同方向的光信号,第一组子像素接收的第一光信号的方向与第二子像素接收的第二光信号的方向不同。同样的,第一组子像素210中的多个第一子像素211中每个第一子像素对应的导光通道方向相同,且第二组子像素220中的多个第二子像素221中每个第二子像素对应的导光通道方向相同,每个第一子像素均接收第一光信号,每个第二子像素均接收第二光信号。
可选地,在另一种可能的实施方式中,至少一个挡光层420设置在微透镜阵列410的下方,且形成有所述多个微透镜中每个微透镜对应的多个导光通道;
所述N组子像素,设置在至少一个挡光层420的下方,所述每个微透镜对应的多个导光通道的每个导光通道的下方设置有一个子像素;
其中,所述每个微透镜的下方设置有多个子像素,所述每个微透镜下方设置的多个子像素分别用于接收经由该微透镜汇聚的并通过对应的导光通道传输的光信号。
例如,如图15所示,微透镜阵列410中的每个微透镜对应多个导光通道,一个导光通道的下方设置一个子像素,且多个导光通道均位于当前微透镜的下方,而没有延伸至其它微透镜,例如相邻微透镜的下方。因此,多个子像素均位于当前微透镜下方。同样的,在本申请实施例中,多个第一子像素211对应的导光通道的方向与多个第二子像素221对应的导光通道的方向不同,且多个第一子像素211中每个第一子像素对应的导光通道方向相同,多个第二子像素221中每个第二子像素对应的导光通道方向相同。
在本申请实施例中,基于微透镜阵列和至少一个挡光层的光学组件的设计,可以使N组子像素中的不同组子像素接收不同方向的光信号,因而可以对多种方向的光信号生成多张方向特征的指纹图像,与此同时还可以对多张方向特征的指纹图像进行融合处理,优化成一张高分辨率的指纹图像,提升指纹传感器的成像质量,且利用该高分辨率的指纹图像进行指纹识别,能够提升识别效果。
此外,采用本申请实施例的技术方案,微透镜阵列中每个微透镜下方设置可以多个子像素,使得微透镜阵列的空间周期和N组子像素的空间周期不相等,进而能够避免指纹图像中出现莫尔条纹并提升指纹识别效果。
并且,通过为每个微透镜设计多个导光通道,可以形成单个微透镜与多个子像素搭配的成像光路。即通过单个微透镜可以复用多个角度的光信号(例如通过单个微透镜可以复用4个角度的光信号),由此可以对不同的物方孔径角的光束进行分割成像,有效提高了指纹检测装置的进光量,由此可以降低子像素阵列的曝光时长。
通过单个微透镜与多子像素搭配的成像光路可以对屏下指纹的物方光束进行非正对光成像(即倾斜光成像),尤其是所述每个微透镜下方设置的多个子像素分别用于接收经由相邻的多个微透镜汇聚的光信号,由此能够扩大光学***的物方数值孔径并缩短子像素阵列的光路设计(即所述至少一个挡光层)的厚度,最终能够有效降低所述指纹检测装置的厚度,以及提高系 统的鲁棒性以及指纹检测装置20的公差容忍度。
本申请实施例还提供了一种电子设备,该电子设备可以包括显示屏以及上述本申请实施例的指纹检测装置,其中,所述指纹检测的装置设置于所述显示屏下方,以实现屏下光学指纹检测。
该电子设备可以为任何具有显示屏的电子设备。
显示屏可以采用以上描述中的显示屏,例如OLED显示屏或其他显示屏,显示屏的相关说明可以参考以上描述中关于显示屏的描述,为了简洁,在此不再赘述。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种指纹检测装置,其特征在于,适用于显示屏下方以实现屏下光学指纹识别,所述装置包括:指纹传感器;
    所述指纹传感器包括:N组子像素,N为大于1的正整数;
    所述N组子像素中的不同组子像素分别接收经过手指反射或散射而返回的光信号中的特性不同的光信号,所述N组子像素中的每组子像素接收的光信号用于形成所述手指的指纹图像中的一个像素。
  2. 根据权利要求1所述的指纹检测装置,其特征在于,所述特性不同的光信号包括:不同方向的光信号。
  3. 根据权利要求1或2所述的指纹检测装置,其特征在于,所述指纹传感器包括:M*N组子像素,其中,M为正整数;
    所述N组子像素接收的光信号用于形成所述手指的N张指纹图像,所述手指的N张指纹图像中的每张指纹图像的像素为M个。
  4. 根据权利要求1-3中任一项所述的指纹检测装置,其特征在于,所述N组子像素中的每组子像素包括多个子像素,所述多个子像素接收的多个光信号之和用于形成所述手指的指纹图像中的一个像素。
  5. 根据权利要求1-4中任一项所述的指纹检测装置,其特征在于,所述N组子像素中的每组子像素的子像素数量相等。
  6. 根据权利要求1-5中任一项所述的指纹检测装置,其特征在于,所述N组子像素包括第一组子像素,所述第一组子像素中的多个第一子像素彼此互不相邻,且所述第一组子像素中的多个第一子像素与所述N组子像素中除所述第一组子像素外的其它子像素相邻。
  7. 根据权利要求1-5中任一项所述的指纹检测装置,其特征在于,所述N组子像素包括第一组子像素,所述第一组子像素中的多个第一子像素彼此相邻。
  8. 根据权利要求1-7中任一项所述的指纹检测装置,其特征在于,所述N组子像素中的每一组子像素在所述N组子像素中的排列方式相同。
  9. 根据权利要求1-8中任一项所述的指纹检测装置,其特征在于,所述N组子像素中的每个子像素形状大小相同,且呈阵列排列。
  10. 根据权利要求1-9中任一项所述的指纹检测装置,其特征在于,N=4。
  11. 根据权利要求1-10中任一项所述的指纹检测装置,其特征在于,所 述N组子像素中的每组子像素包括K个子像素,其中,K为大于1的整数,所述指纹检测装置还包括:处理单元;
    所述K个子像素用于将接收的光信号转换为K个电信号;
    所述处理单元用于将所述K个电信号求和,得到所述手指的指纹图像中的一个像素。
  12. 根据权利要求11所述的指纹检测装置,其特征在于,所述处理单元包括N个子处理单元,所述N个子处理单元中的一个子处理单元用于对所述N组子像素中的一组子像素求和。
  13. 根据权利要求11或12所述的指纹检测装置,其特征在于,所述处理单元包括第一子处理单元,所述N组子像素包括第一组子像素,所述第一子处理单元通过K条信号线与所述第一组子像素中的K个子像素连接。
  14. 根据权利要求13所述的指纹检测装置,其特征在于,所述第一子处理单元用于在同一时间接收所述第一组子像素中的K个子像素的K个第一电信号,并对所述K个第一电信号进行求和计算。
  15. 一种电子设备,其特征在于,包括:
    显示屏以及如权利要求1至14中任一项所述的指纹检测装置,其中,所述指纹检测装置设置在所述显示屏下方。
PCT/CN2019/099135 2019-07-12 2019-08-02 指纹检测装置和电子设备 WO2021022425A1 (zh)

Priority Applications (19)

Application Number Priority Date Filing Date Title
KR1020217043026A KR20220012360A (ko) 2019-08-02 2019-08-02 지문 감지 장치 및 전자 디바이스
EP19940492.2A EP3979123B1 (en) 2019-08-02 2019-08-02 Fingerprint detection apparatus and electronic device
CN201980004085.1A CN111052141B (zh) 2019-08-02 2019-08-02 指纹检测装置和电子设备
PCT/CN2019/099135 WO2021022425A1 (zh) 2019-08-02 2019-08-02 指纹检测装置和电子设备
CN202110586440.XA CN113239856B (zh) 2019-07-12 2019-09-26 指纹检测装置和电子设备
CN201980004244.8A CN111108510B (zh) 2019-07-12 2019-09-26 指纹检测装置和电子设备
PCT/CN2019/108223 WO2021007953A1 (zh) 2019-07-12 2019-09-26 指纹检测装置和电子设备
KR1020207030945A KR102475288B1 (ko) 2019-07-12 2019-09-26 지문 검출 장치 및 전자 장치
EP19929178.2A EP3789913B1 (en) 2019-07-12 2019-09-26 Fingerprint detection apparatus and electronic device
CN201921636356.9U CN210864747U (zh) 2019-07-12 2019-09-26 指纹检测装置和电子设备
PCT/CN2019/111103 WO2021007964A1 (zh) 2019-07-12 2019-10-14 指纹检测装置和电子设备
CN201980004247.1A CN111108511B (zh) 2019-07-12 2019-10-14 指纹检测装置和电子设备
CN201921720097.8U CN210605739U (zh) 2019-07-12 2019-10-14 指纹检测装置和电子设备
CN201922451701.8U CN211180842U (zh) 2019-07-12 2019-12-27 指纹检测装置和电子设备
PCT/CN2019/129434 WO2021008088A1 (zh) 2019-07-12 2019-12-27 指纹检测装置和电子设备
CN201980013671.2A CN111801679B (zh) 2019-07-12 2019-12-27 指纹检测装置和电子设备
CN202021585659.5U CN212933540U (zh) 2019-08-02 2020-07-31 指纹检测装置和电子设备
US17/034,981 US11531430B2 (en) 2019-07-12 2020-09-28 Fingerprint detection apparatus and electronic device
US17/646,645 US11776301B2 (en) 2019-08-02 2021-12-30 Fingerprint detection apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099135 WO2021022425A1 (zh) 2019-08-02 2019-08-02 指纹检测装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/646,645 Continuation US11776301B2 (en) 2019-08-02 2021-12-30 Fingerprint detection apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2021022425A1 true WO2021022425A1 (zh) 2021-02-11

Family

ID=70244789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099135 WO2021022425A1 (zh) 2019-07-12 2019-08-02 指纹检测装置和电子设备

Country Status (5)

Country Link
US (1) US11776301B2 (zh)
EP (1) EP3979123B1 (zh)
KR (1) KR20220012360A (zh)
CN (2) CN111052141B (zh)
WO (1) WO2021022425A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111523523B (zh) * 2020-06-29 2020-09-25 深圳市汇顶科技股份有限公司 检测显示屏与指纹传感器之间距离的方法、装置和显示屏
WO2022036713A1 (zh) 2020-08-21 2022-02-24 深圳市汇顶科技股份有限公司 图像传感器、指纹检测装置和电子设备
CN112714268B (zh) * 2020-08-21 2022-02-08 深圳市汇顶科技股份有限公司 图像传感器、指纹检测装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN107169471A (zh) * 2017-06-07 2017-09-15 深圳市创艺工业技术有限公司 一种基于图像融合的指纹识别***
CN109426305A (zh) * 2017-08-22 2019-03-05 三星电子株式会社 获得生物特征信息的方法及其电子装置
CN209168144U (zh) * 2018-09-25 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置和终端设备
CN210052176U (zh) * 2019-07-12 2020-02-11 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210105A (ja) 2007-02-26 2008-09-11 Hitachi Maxell Ltd 生体情報取得デバイス
JP2010020237A (ja) 2008-07-14 2010-01-28 Sony Corp 画像検出表示装置および電子機器
US8437517B2 (en) 2010-11-03 2013-05-07 Lockheed Martin Corporation Latent fingerprint detectors and fingerprint scanners therefrom
US8428450B2 (en) 2011-06-28 2013-04-23 Lite-On Singapore Pte. Ltd. Integrated optical module
US9606606B2 (en) * 2013-06-03 2017-03-28 Qualcomm Incorporated Multifunctional pixel and display
CN104978555B (zh) 2014-04-08 2019-05-14 南昌欧菲生物识别技术有限公司 指纹识别装置
US8917387B1 (en) * 2014-06-05 2014-12-23 Secugen Corporation Fingerprint sensing apparatus
CN207851850U (zh) 2017-07-17 2018-09-11 金佶科技股份有限公司 指纹辨识装置
US10181069B2 (en) 2015-12-11 2019-01-15 Gingy Technology Inc. Fingerprint identification apparatus
CN104318205A (zh) * 2014-09-29 2015-01-28 上海箩箕技术有限公司 信息检测显示装置及其检测方法和显示方法
US10410037B2 (en) 2015-06-18 2019-09-10 Shenzhen GOODIX Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing implementing imaging lens, extra illumination or optical collimator array
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
US9906560B2 (en) 2015-08-28 2018-02-27 Nicira, Inc. Distributing remote device management attributes to service nodes for service rule processing
CN107004126A (zh) * 2015-11-02 2017-08-01 深圳市汇顶科技股份有限公司 具有反指纹欺骗光学传感的多功能指纹传感器
CN208141404U (zh) 2017-10-19 2018-11-23 金佶科技股份有限公司 指纹辨识装置
WO2017204776A1 (en) 2016-05-23 2017-11-30 Quostagni Research Llc Electronic device including processing circuitry for sensing images from spaced apart sub-arrays and related methods
US11281963B2 (en) 2016-09-26 2022-03-22 Intel Corporation Programmable neuron core with on-chip learning and stochastic time step control
WO2018119734A1 (zh) 2016-12-28 2018-07-05 深圳市柔宇科技有限公司 一种显示屏的控制方法及装置
US10311276B2 (en) 2017-02-22 2019-06-04 Synaptics Incorporated Under display optical fingerprint sensor arrangement for mitigating moiré effects
CN108537090A (zh) * 2017-03-01 2018-09-14 上海箩箕技术有限公司 指纹成像模组和电子设备
WO2018180569A1 (ja) 2017-03-30 2018-10-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、および電子機器
KR102350605B1 (ko) 2017-04-17 2022-01-14 삼성전자주식회사 이미지 센서
CN107122742B (zh) 2017-04-27 2019-12-03 上海天马微电子有限公司 一种显示装置及其指纹识别方法、以及电子设备
CN109145702A (zh) 2017-06-15 2019-01-04 神盾股份有限公司 光学指纹感测器
CN107358216B (zh) 2017-07-20 2020-12-01 京东方科技集团股份有限公司 一种指纹采集模组、显示装置及指纹识别方法
KR102419872B1 (ko) 2017-08-30 2022-07-11 아크소프트 코포레이션 리미티드 지문인식 패키지 및 지문인식 기능을 구비한 디스플레이
CN109508577A (zh) 2017-09-14 2019-03-22 上海箩箕技术有限公司 显示模组
CN109508606A (zh) 2017-09-15 2019-03-22 南昌欧菲生物识别技术有限公司 光学指纹识别组件及电子装置
KR102487063B1 (ko) * 2017-09-27 2023-01-11 삼성전자주식회사 광학 지문 센서를 구비한 전자 장치
WO2019061535A1 (zh) 2017-09-30 2019-04-04 深圳市汇顶科技股份有限公司 指纹识别的方法、装置和终端设备
KR102491855B1 (ko) 2017-12-11 2023-01-26 삼성전자주식회사 3d 지문센서 소자 및 이를 포함하는 전자 장치
SE1751613A1 (en) 2017-12-21 2019-06-22 Fingerprint Cards Ab Biometric imaging device and method for manufacturing the biometric imaging device
CN109196524B (zh) 2018-02-23 2020-05-05 深圳市汇顶科技股份有限公司 通过光学感测检测指纹的电子设备及其操作方法
US10216975B1 (en) 2018-02-23 2019-02-26 Shenzhen GOODIX Technology Co., Ltd. Optical imaging via imaging lens and imaging pinhole in under-screen optical sensor module for on-screen fingerprint sensing in devices having organic light emitting diode (OLED) screens or other screens
CN109154961A (zh) 2018-02-26 2019-01-04 深圳市汇顶科技股份有限公司 基于利用透镜-针孔模块和其他光学设计的光学成像的lcd屏上光学指纹感测
US10303921B1 (en) 2018-02-26 2019-05-28 Shenzhen GOODIX Technology Co., Ltd. On-LCD screen optical fingerprint sensing based on optical imaging with lens-pinhole module and other optical designs
CN108399392B (zh) 2018-03-07 2021-01-26 京东方科技集团股份有限公司 指纹识别结构和显示装置
KR101948870B1 (ko) 2018-07-09 2019-02-15 실리콘 디스플레이 (주) 지문 인식 센서 및 이를 포함하는 디스플레이 장치
WO2020029021A1 (zh) 2018-08-06 2020-02-13 深圳市汇顶科技股份有限公司 屏下光学指纹识别装置及电子设备
CN109032420B (zh) 2018-08-31 2021-04-16 京东方科技集团股份有限公司 显示装置及显示装置的操作方法
EP3640845A4 (en) 2018-09-06 2020-09-02 Shenzhen Goodix Technology Co., Ltd. OPTICAL IMAGE CAPTURE UNIT, OPTICAL IMAGE CAPTURE SYSTEM AND ELECTRONIC DEVICE
CN109496313B (zh) 2018-10-26 2022-05-17 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2020118640A1 (zh) * 2018-12-13 2020-06-18 深圳市汇顶科技股份有限公司 光学采集装置和电子设备
CN109740514A (zh) 2018-12-29 2019-05-10 成都指灵瞳科技有限公司 一种显示屏光学指纹识别电子装置及方法
CN109844766B (zh) 2019-01-15 2023-04-04 深圳市汇顶科技股份有限公司 光学图像采集***和电子设备
WO2020150888A1 (zh) 2019-01-22 2020-07-30 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109983471B (zh) 2019-02-02 2020-09-18 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109983472B (zh) 2019-02-22 2021-05-11 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN109858465A (zh) 2019-02-27 2019-06-07 昆山国显光电有限公司 用于指纹识别的显示装置
CN110088768B (zh) 2019-03-12 2022-03-01 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
CN209640880U (zh) 2019-04-10 2019-11-15 深圳市汇顶科技股份有限公司 光学指纹识别装置和电子设备
CN210605739U (zh) 2019-07-12 2020-05-22 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备
KR102475288B1 (ko) 2019-07-12 2022-12-06 선전 구딕스 테크놀로지 컴퍼니, 리미티드 지문 검출 장치 및 전자 장치
KR102331675B1 (ko) 2019-09-09 2021-11-30 엘지전자 주식회사 사용자의 음성을 인식하는 인공 지능 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104460115A (zh) * 2014-12-31 2015-03-25 苏州大学 一种多视角像素指向型背光模组及裸眼3d显示装置
CN107169471A (zh) * 2017-06-07 2017-09-15 深圳市创艺工业技术有限公司 一种基于图像融合的指纹识别***
CN109426305A (zh) * 2017-08-22 2019-03-05 三星电子株式会社 获得生物特征信息的方法及其电子装置
CN209168144U (zh) * 2018-09-25 2019-07-26 深圳市汇顶科技股份有限公司 指纹识别装置和终端设备
CN210052176U (zh) * 2019-07-12 2020-02-11 深圳市汇顶科技股份有限公司 指纹检测装置和电子设备

Also Published As

Publication number Publication date
EP3979123B1 (en) 2023-11-29
US20220122374A1 (en) 2022-04-21
KR20220012360A (ko) 2022-02-03
EP3979123A4 (en) 2022-06-08
CN111052141A (zh) 2020-04-21
CN212933540U (zh) 2021-04-09
CN111052141B (zh) 2022-08-02
US11776301B2 (en) 2023-10-03
EP3979123A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US10158843B2 (en) Imaging pixels with depth sensing capabilities
US20180288398A1 (en) Asymmetric angular response pixels for singl sensor stereo
KR102437162B1 (ko) 이미지 센서
US10015416B2 (en) Imaging systems with high dynamic range and phase detection pixels
US10033949B2 (en) Imaging systems with high dynamic range and phase detection pixels
US10177192B2 (en) Image sensor having photodiodes sharing one color filter and one micro-lens
JP5331107B2 (ja) 撮像装置
US10455213B2 (en) Device having a 2D image sensor and depth sensor
US11776301B2 (en) Fingerprint detection apparatus and electronic device
CN111684599A (zh) 多光电二极管像素单元
WO2021072753A1 (zh) 指纹检测装置和电子设备
CN111108511B (zh) 指纹检测装置和电子设备
US8810698B2 (en) Two sided solid state image sensor and an image capture device
JPWO2010058545A1 (ja) 撮像装置
JP2014057231A (ja) 撮像装置
KR102114343B1 (ko) 센싱 픽셀 및 이를 포함하는 이미지 센서
WO2021007953A1 (zh) 指纹检测装置和电子设备
CN210119791U (zh) 指纹检测装置和电子设备
KR20210112055A (ko) 픽셀 및 이를 포함하는 이미지 센서
US20230044798A1 (en) Image sensor including color separating lens array and electronic device including the image sensor
TWI803863B (zh) 光學成像裝置
US20210280623A1 (en) Phase detection pixels with stacked microlenses
KR20180053916A (ko) 이미지 센서
TW202109355A (zh) 具有偏移微透鏡群組的光學感測器及使用其之光學感測系統
US20220344399A1 (en) Image sensor including color separating lens array and electronic apparatus including the image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217043026

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019940492

Country of ref document: EP

Effective date: 20211227

NENP Non-entry into the national phase

Ref country code: DE