WO2021022415A1 - 调整功率的方法和终端设备 - Google Patents

调整功率的方法和终端设备 Download PDF

Info

Publication number
WO2021022415A1
WO2021022415A1 PCT/CN2019/099090 CN2019099090W WO2021022415A1 WO 2021022415 A1 WO2021022415 A1 WO 2021022415A1 CN 2019099090 W CN2019099090 W CN 2019099090W WO 2021022415 A1 WO2021022415 A1 WO 2021022415A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
signal
control command
power
service
Prior art date
Application number
PCT/CN2019/099090
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980093552.2A priority Critical patent/CN113508623B/zh
Priority to PCT/CN2019/099090 priority patent/WO2021022415A1/zh
Publication of WO2021022415A1 publication Critical patent/WO2021022415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a method and terminal device for adjusting power.
  • the terminal equipment In a side-line communication system, the terminal equipment usually transmits at a fixed transmission power, for example, the maximum transmission power or the transmission power generated by the network equipment configured with related power parameters. This method may cause the terminal equipment to continue to use different transmission power.
  • the appropriate transmission power affects the communication performance.
  • the embodiments of the present application provide a method for adjusting power and a terminal device.
  • the power is continuously adjusted through a power negotiation mechanism between terminal devices, which is beneficial for the terminal device to transmit signals with appropriate transmission power, thereby improving communication performance.
  • a method for power adjustment includes: a first terminal device receives a first signal sent by a second terminal device; and the first terminal device sends the signal to the second terminal device according to the first signal.
  • the terminal device sends a power control command, where the power control command is used to adjust the transmission power of the second terminal device.
  • a method for power adjustment includes: a second terminal device sends a first signal to a first terminal device; and the second terminal device receives the first terminal device based on the first signal A first power control command sent, where the first power control command is used to adjust the transmission power of the second terminal device.
  • a terminal device which is used to execute any one of the foregoing first aspect to the second aspect or the method in its implementation manner.
  • the terminal device includes a functional module for executing any one of the above-mentioned first aspect to the second aspect or a method in an implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute any one of the first aspect to the second aspect or the method in the implementation manner thereof.
  • a chip is provided for implementing any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions, which cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each of its implementation modes.
  • the receiving end terminal device can feed back the corresponding power control command to the transmitting end terminal device according to the received signal, so that the transmitting end terminal device can accurately adjust the transmission power according to the feedback of the receiving end terminal device, thereby enabling power adjustment Reaching a closed-loop control process is conducive to the terminal equipment using appropriate transmission power to transmit signals, thereby improving communication performance.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is an interaction diagram of a power adjustment method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a power adjustment method according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a scenario of a distributed terminal device provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another scenario of a distributed terminal device provided by an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution LTE
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G System etc.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as sparse code multiple access (SCMA) systems, low-density signatures (Low Density Signature, LDS) system, etc.
  • SCMA sparse code multiple access
  • LDS Low Density Signature
  • SCMA system and LDS system can also be called other names in the communication field;
  • technical solutions of the embodiments of this application can be applied to multi-carriers using non-orthogonal multiple access technology Transmission systems, such as non-orthogonal multiple access technology Orthogonal Frequency Division Multiplexing (OFDM), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (Generalized Frequency Division Multiplexing) Frequency Division Multiplexing (GFDM), Filtered-OFDM (F-OFDM) systems, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • Generalized Frequency Division Multiplexing Generalized Frequency Division Multiplexing
  • GFDM Frequency Division Multiplexing
  • F-OFDM Filtered-OFDM
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network devices gNB in 5G networks, or network devices in the future evolution of public land mobile networks (Public Land Mobile Network, PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • terminal equipment includes but is not limited to User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • UE User Equipment
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., are not limited in the embodiment of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) or vehicle to everything (V2X) communication may be performed between the terminal devices 120.
  • This direct communication mode between the terminal device and the terminal device may be referred to as Sidelink (SL) communication.
  • the characteristic of this kind of communication is that the network device is no longer a control center, and the terminal device can communicate directly without a network. Taking the Internet of Vehicles as an example, vehicles can communicate with nearby vehicles for applications such as collision avoidance warning.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the communication device may include a network device 110 with a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as a mobility management entity (Mobility Management Entity, MME), a serving gateway (Serving Gateway, S-GW), or a packet data gateway (PDN Gateway, P-GW), etc. This is not limited in the embodiments of this application.
  • MME mobility management entity
  • S-GW serving gateway
  • PDN Gateway Packed Data Gateway
  • the communication between the terminal equipment and the terminal equipment may not depend on the traditional cellular communication network, so the relationship between the cellular communication network and the terminal equipment may include: the terminal equipment is in the coverage area of the cellular network or the terminal equipment is not in the cellular network Within network coverage.
  • open loop power control can be used, that is, the network device controls the transmission power between the terminal device and the terminal device. Specifically, it can be calculated by the following formula:
  • P PSSCH min ⁇ P CMAX,PSSCH ,10log 10 (M PSSCH )+P o_PSSCH + ⁇ PSSCH .PL ⁇
  • P CMAX, PSSCH are the maximum transmit power of the terminal device
  • M PSSCH is the number of resource blocks (Resource Block, RB) occupied by the terminal device
  • P o_PSSCH is the open loop power parameter configured by the network device
  • ⁇ PSSCH is the network device configuration
  • the weighting factor of path loss, PL is the path loss.
  • the transmission power of the terminal device is not controlled by the network device, and the terminal device always uses the maximum transmission power for transmission.
  • the embodiment of the present application provides a method 200 for power adjustment, which can continuously adjust the transmission power through a power negotiation mechanism between terminal devices.
  • the method 200 includes the following parts: all content:
  • the second terminal device sends a first signal to the first terminal device; accordingly, the first terminal device receives the first signal sent by the second terminal device;
  • the first terminal device sends a power control command to the second terminal device based on the first signal; accordingly, the second terminal device receives the power control command sent by the first terminal device based on the first signal, and the power control command is used to adjust The transmit power of the second terminal device.
  • the first terminal device may serve as the receiving end
  • the second terminal device may serve as the sending end.
  • the sending end can send a signal to the receiving end
  • the receiving end generates and sends a power control command to the sending end based on the signal after receiving the signal sent by the sending end, for example, a command to increase the transmission power (referred to in this article)
  • the increase power control command ), the command to reduce the transmission power (that is, the decrease power control command mentioned in this article), or the command to keep the transmission power unchanged.
  • the transmitting end receives the power control command, the transmitting power can be adjusted accordingly for the next signal transmission.
  • the receiving end can feed back a power control command to the transmitting end after each signal is received; accordingly, the transmitting end can adjust the transmission power every time it receives a power control command fed back by the receiving end. So as to achieve real-time and precise control of the transmission power to improve communication performance.
  • the power control command fed back by the receiving end to the transmitting end may not only include simple instructions of increase, decrease, or change, but also increase the corresponding change value.
  • the power control command indicates to increase the transmission power, and may also indicate to increase the power of one step, where the power of one step may be configured in advance by the network device.
  • the power control command can also directly indicate an offset.
  • the embodiment of the present application does not limit the specific content included in the power control command.
  • the transmitting power of the transmitting end is not controlled by the network device, but directly adjusts the transmitting power according to the power control command fed back by the receiving end.
  • a possible implementation is that the network device configures the corresponding power control parameters for the transmitting end, such as the open loop power parameter or path loss weighting factor in the above formula. However, the transmitting end will ignore the power control parameters configured by the network device, and instead adjust the transmitting power according to the power control command fed back by the receiving end.
  • the sender can interact with the network device in advance to notify the network device that it does not need to configure corresponding power control parameters, and the sender can adjust the transmit power according to the power control command fed back by the receiver.
  • the first terminal device sending a power control command to the second terminal device according to the first signal includes: the first terminal device sends a power control command according to the first signal At least one of the first link quality information of the signal, the service priority information of the service to which the first signal belongs and the service priority information of the service to which the second signal belongs, and the interference situation between the first signal and the third signal, to the first signal
  • the second terminal device sends the power control command, and the second signal and the third signal are both signals of terminal devices other than the second terminal device received by the first terminal device.
  • the receiving end can refer to some information to generate the power control command.
  • the receiving end may obtain the link quality information of the first signal sent by the sending end, and judge whether the link quality indicated by the link quality information is good or bad. If the link quality is not good enough to meet certain conditions, the power control command generated by the receiving end can be an increase power control command; and if the link quality is good enough to meet certain conditions, then the power control command generated by the receiving end can be a decrease power control command.
  • the link quality information can be characterized by some parameters such as bit error rate, signal-to-noise ratio, or signal strength. Taking the bit error rate as an example, when the receiving end receives the first signal, it demodulates it and obtains the bit error rate information.
  • the receiving end thinks that the transmitting end should increase the transmission power, that is Feed back the increase power control command to the sending end; on the contrary, if the bit error rate is lower than a certain threshold, the receiving end thinks that the sending end should reduce the transmission power, that is, feed back the lower power control command to the sending end.
  • one threshold can be set for the bit error rate, or two thresholds can be set. The high threshold is used as a judgment basis for generating an increase power control command, and the low threshold is used as a judgment basis for generating a power reduction control command.
  • the receiving end can also first refer to the current movement information of the receiving end relative to the sending end, and then determine whether to generate a power reduction control command, for example, relative movement speed . If the relative movement information changes greatly, it can be considered that it is not suitable to reduce the transmission power of the transmitting end, that is, the power control command may not be fed back to the transmitting end. If the relative movement information does not change much, it is considered suitable to reduce the transmission power of the sending end, that is, the power reduction control command can be fed back to the sending end. By considering the relative movement information of the receiving end and the transmitting end, the link failure problem caused by the relative movement of the two changing too fast and the power reduction is too large is avoided.
  • a power reduction control command for example, relative movement speed
  • the receiving end may determine the relative movement information by observing changes in the transmitting power of the transmitting end (that is, the receiving power of the receiving end). For example, the receiving end can record the received power of the signal every time it receives a signal from the sending end. Specifically, the signal strength can be measured, such as acquiring reference signal receiving power (Reference Signal Receiving Power, RSRP), received signal strength indication (Received Signal Strength Indication, RSSI) and other parameters.
  • RSRP Reference Signal Receiving Power
  • RSSI received Signal Strength Indication
  • some conditions can also be set. For example, a threshold can be set for the relative movement speed. When the relative movement speed indicated by the acquired relative movement information is greater than or equal to the threshold, it can be considered that the relative movement between the receiving end and the sending end has changed too much; and when the acquired relative movement If the relative movement speed indicated by the information is less than the threshold, it can be considered that the relative movement between the receiving end and the sending end does not change much.
  • any information that can characterize the change of the relative movement between the receiving end and the transmitting end may be the relative movement information in the embodiment of the present application, and is not limited to the relative movement speed illustrated above.
  • the condition for judging whether the link quality is good or bad may be determined by a quality of service (Quality of Service, QoS) requirement. That is to say, the quality of the link indicated by the first link quality information of the first signal is judged by the QoS requirements corresponding to the service to which the first signal belongs.
  • QoS Quality of Service
  • the condition for judging whether the link quality is good or bad may also be a condition of network device reconfiguration or protocol re-arrangement.
  • the transmitting end can also send power headroom information to the receiving end, that is, report the adjusted transmit power The difference from the maximum transmit power. For example, if the adjusted transmission power is the maximum transmission power, the reported power headroom information is 0.
  • the process can include:
  • Terminal device A initially transmits a signal to terminal device B with a transmission power of 1;
  • the terminal device B receives and demodulates the signal transmitted by the terminal device A to obtain a bit error rate
  • the terminal device B sends a power increase control command to the terminal device A.
  • the transmission power 1 can be adjusted to the transmission power 2, and the transmission power 2 is higher than the transmission power 1.
  • S306 Determine whether the relative mobility of terminal device B and terminal device A is high
  • terminal device B sends a power reduction control command to terminal device A.
  • the transmission power 1 can be adjusted to the transmission power 3, and the transmission power 3 is lower than the transmission power. Power 1;
  • the terminal device A may adjust the transmission power based on the received power control command, and report the power headroom information to the terminal device B.
  • the terminal device B and the terminal device A may repeat steps S301 to S308 in the subsequent time.
  • the receiving end when the receiving end generates the power control command, it may only consider the relative movement information between the receiving end and the transmitting end. For example, if the relative distance is getting farther and farther, the receiving end generates an increase power control command. ; And the relative distance gets closer and closer, the receiving end generates a power reduction control command.
  • the foregoing various embodiments may be applicable to a single-point communication mode, that is, interaction between two terminal devices, and interference from other terminal devices may not be considered when generating a power control command.
  • the foregoing various embodiments may also be applicable to a communication mode in which multiple terminal devices are distributed, that is, the interaction between one terminal device and multiple terminal devices.
  • the receiving end in addition to considering the above-mentioned link quality information, the mutual influence between other terminal equipment and the sending end can also be combined.
  • the signal sent by other terminal equipment to the receiving end interferes with the signal sent from the sending end to the receiving end, or the service priority of the signal sent by other terminal equipment to the receiving end and the signal sent from the sending end to the receiving end.
  • the receiving end may separately consider the interaction between other terminal devices and the transmitting end to generate the power control command.
  • Example 1 The receiving end is the first terminal device, the sending end is the second terminal device, and the other terminal devices are the third terminal device.
  • the signal sent by the second terminal device to the first terminal device is the first signal, and the third terminal device The signal sent by the device to the first terminal device is the third signal.
  • the first terminal device can consider that the transmission power of the second terminal device is too high, that is, send a power reduction control command to the second terminal device. Further, the first terminal device can also consider The transmission power of the third terminal device is too low, that is, the power increase control command is sent to the third terminal device; and if the third signal interferes with the first signal, the first terminal device can consider that the transmission power of the second terminal device is too low , That is, send a power increase control command to the second terminal device. Further, the first terminal device may also consider that the transmission power of the third terminal device is too high, that is, send a power reduction control command to the third terminal device.
  • Example 2 The receiving end is the first terminal device, the transmitting end is the second terminal device, and the other terminal devices are the fourth terminal device.
  • the signal sent by the second terminal device to the first terminal device is the first signal, and the fourth terminal The signal sent by the device to the first terminal device is the second signal.
  • the first terminal device may consider that the transmission power of the second terminal device needs to be increased to ensure that the signal sent by the first terminal device has high reception quality and low reception quality.
  • the bit error rate, etc., and even errors are not allowed, that is, send an increase power control command to the second terminal device.
  • the first terminal device can also consider that the signal sent by the third terminal device can allow low reception quality or delay, etc.
  • the first terminal device may consider that the transmission power of the second terminal device needs to be reduced, that is, to The second terminal device sends a power reduction control command. Further, the first terminal device may also consider that it is necessary to increase the transmission power of the third terminal device, that is, send the power increase control command to the third terminal device.
  • the first terminal device when the first terminal device generates the power control command, it may also comprehensively consider the link quality information of the signal sent by each terminal device, the interference of the signal sent by different terminal devices, and the service priority of the signal sent by different terminal devices.
  • the link quality information can be combined with the interference situation. Assuming that the first signal sent by the second terminal device causes interference to the third signal sent by the third terminal device, the first terminal device can first determine the link of the first signal Is the quality good? If it is good at this time, the first terminal device can send a power reduction control command to the second terminal device. Otherwise, the first terminal device does not send a power reduction control command to the second terminal device, but passes The first terminal device sends a power increase control command to the third terminal device to reduce the interference of the signal sent by the second terminal device on the signal sent by the third terminal device.
  • the interference situation can be combined with service priority information. Assuming that the first signal sent by the second terminal device interferes with the third signal sent by the third terminal device, the first terminal device can first determine the service to which the first signal belongs The service priority of the service to which the third signal belongs. If the service priority of the first signal is higher than that of the third signal, then the first terminal device does not send a power reduction control command to the second terminal device, but passes to the third terminal device The power increase control command is sent to reduce the interference of the signal sent by the second terminal device to the signal sent by the third terminal device; otherwise, the first terminal device directly sends the power reduction control command to the second terminal device.
  • Figure 4 shows an application scenario diagram of multi-terminal device distribution.
  • the terminal device A can be used as the receiving end, and the terminal device B, the terminal device C, and the terminal device D can all be used as the transmitting end.
  • the terminal device A can act as the central node of this communication group.
  • terminal device A can receive signals from terminal device B, terminal device C, and terminal device D at the same time. Since terminal device B, terminal device C, and terminal device D have different relative distances from terminal device A, their signals arrive The signal strength of terminal device A will be different. Therefore, for terminal device A, the signal quality of terminal device B, terminal device C, and terminal device D are different. In some cases, terminal device B that is far away The signal of may be interfered by the signals of terminal equipment C and/or terminal equipment D that are close to each other, resulting in incorrect reception. Then the following examples can be used to improve:
  • the terminal device A receives signals from other terminal devices.
  • these signals carry service priority information, for example, it may be QoS signal quality requirement information.
  • the terminal device A judges whether the quality of each signal meets the requirements. For details, see the judgment method of link quality above.
  • terminal device A finds that the quality of some signals with high service priority does not meet the requirements (for example, the service priority of the signal of terminal device B is higher than the signal of terminal device C and/or terminal device D. Further, terminal device B The signal can belong to the anti-collision service), then the terminal device A can further adjust the transmit power of each terminal device in combination with the mobility between the terminals:
  • the terminal device A can notify the terminal device C and/or the terminal device D to reduce its transmission power to reduce interference;
  • the terminal device A can also notify the terminal device B to increase its transmission power.
  • the terminal device A can repeat the above steps in the subsequent time to continuously monitor and coordinate the service requirements among multiple terminal devices.
  • FIG. 5 shows a schematic diagram of another distributed terminal device.
  • Each terminal is in a mutual communication mode, that is, the terminal device A communicates with the terminal device B and the terminal device C respectively.
  • terminal device A may only need to communicate with a few terminal devices in front or behind, that is, its transmission power only needs to ensure that the few terminal devices related to it can receive and demodulate normally. .
  • the transmission power of any terminal device is at a relatively low and sufficient level, and the final result is the power of the entire SL communication system. At a relatively low level, mutual interference is relatively low, and the overall power efficiency is optimized.
  • power control can be performed in the manner of the embodiment of this application, that is, the transmitting end sends a signal to the receiving end, and the receiving end feeds back power to the transmitting end based on the various embodiments described above. control commands.
  • one terminal device may send signals to multiple terminal devices, and the terminal device may receive power control commands fed back by multiple terminal devices. Then the terminal device can adjust the transmit power in the following two ways:
  • the terminal device sends signals to multiple terminal devices in a one-to-many mode, that is, a multicast mode, if the power control commands fed back by multiple terminal devices are consistent, for example, all feedback is an increase power control command, then the terminal The device increases the transmission power; if the power control commands fed back by multiple terminal devices are inconsistent, for example, some feedback is to increase the power control command, while others feedback is to reduce the power control command, then the terminal device needs to combine the received power control command Multiple power control commands are used to comprehensively consider whether to increase or decrease the transmission power.
  • multiple terminal devices can also feed back signal strength to the terminal device.
  • the terminal device can determine whether to increase or decrease the transmission power in combination with the signal strength fed back by each terminal device.
  • Transmission power may characterize the distance, relative mobility, etc. between each terminal device and the terminal device. For example, for the terminal devices that feed back the power control command to reduce the transmission, if the relative mobility of these terminal devices is high, the terminal device can ignore the power reduction control command and directly increase the transmission power according to the power control command increase.
  • the terminal device can adjust the transmission power according to the power control commands fed back by each terminal device.
  • terminal A in FIG. 5 we use terminal A in FIG. 5 as an example to describe an embodiment of the present application.
  • terminal A transmits an initial signal to other surrounding terminals (here, it is assumed that the surrounding terminals are B and C).
  • the transmitted signal carries its initial transmission power intensity P 0 .
  • terminals B and C After terminals B and C receive the initial signal of A, they feed back to terminal A the signal strengths P 1 and P 2 of the receiving end and their respective power control commands.
  • the power control command includes increasing or decreasing the transmission power.
  • Terminals B and C can give power control commands by considering factors such as received link quality information and relative mobility. For example, in the case of low bit error rate and low mobility, a command to lower the power can be given. On the contrary, increase, not decrease or decrease a lower power command.
  • terminal A After terminal A receives P 1 and P 2 and their respective power control commands from terminal B and terminal C, it can roughly know the current terminal distance information and relative mobility information according to P 1 and P 2 . Terminal A adjusts the transmit power to terminal B and terminal C:
  • a and B, A and C can be independent adjustment processes, or A can be combined with the power control commands of B and C for unified processing. This depends on the type of business between A and B and A and C. If A is a one-to-many broadcast service at this time, A will only take an action to increase, decrease or maintain the current power, and if A is a one-to-one service with B and C at this time, A can be alone Adjust the corresponding power, etc. Optionally, if it is a one-to-one service, the signal sent by A to B or C carries identification information of B or C, respectively, to ensure that B and C receive their own signals respectively.
  • the terminal B and the terminal C monitor the power changes between them and the terminal A, and dynamically adjust the power of the terminal A as described in steps 2 and 3.
  • the transmission power of terminal A can be maintained at a relatively low but sufficient level.
  • other terminals can also achieve the same effect.
  • the power level of the entire SL communication system can be kept at a low level to avoid mutual interference.
  • the power control commands and auxiliary power information fed back by the relevant communication terminals can ensure that the power of the transmitter terminal is appropriate, and ultimately maintain the power balance of the distributed system.
  • the interaction between the second terminal device at the sending end and the first terminal device at the receiving end and related characteristics and functions correspond to the relevant characteristics and functions of the first terminal device.
  • the relevant content has been described in detail in the above method 200, and is not repeated here for brevity.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • the power adjustment method according to the embodiment of the present application is described in detail above.
  • the power adjustment device according to the embodiment of the present application will be described below in conjunction with FIG. 6 to FIG. 8.
  • the technical features described in the method embodiment are applicable to the following device implementation example.
  • FIG. 6 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device is a first terminal device, and the terminal device 300 includes:
  • the transceiver unit 310 is configured to receive the first signal sent by the second terminal device, and
  • a power control command is sent to the second terminal device, where the power control command is used to adjust the transmission power of the second terminal device.
  • the transceiving unit is specifically configured to: prioritize services based on the first link quality information for sending the first signal, the service to which the first signal belongs and the service to which the second signal belongs At least one of the level information and the interference between the first signal and the third signal, the power control command is sent to the second terminal device, and the second signal and the third signal are both the A signal of a terminal device other than the second terminal device received by the first terminal device.
  • the sending and receiving unit sends the power control command to the second terminal device according to the first link quality information for sending the first signal, including: If the link quality indicated by the link quality information is good enough to meet the first condition, send a power reduction control command to the second terminal device; or, if the link quality indicated by the first link quality information is poor In the case that the first condition is not met, a power increase control command is sent to the second terminal device.
  • the terminal device further includes: a processing unit, configured to obtain if the link quality indicated by the first link quality information is good enough to meet the first condition Relative movement information between the first terminal device and the second terminal device; when the link quality indicated by the first link quality information is good enough to meet the first condition, the transceiver unit Sending a power reduction control command to the second terminal device includes: sending the power reduction control command to the second terminal device when the relative movement speed indicated by the relative movement information is low enough to meet a second condition .
  • the first condition is determined by the quality of service QoS corresponding to the service to which the first signal belongs.
  • the first link quality information includes at least one of the following information: bit error rate, signal-to-noise ratio, and signal strength.
  • the transceiving unit is further configured to: receive power headroom information sent by the second terminal device, where the power headroom information is used to characterize the power headroom information adjusted according to the power control command The difference between the transmit power and the maximum transmit power.
  • the transceiving unit is further configured to: receive the third signal sent by a third terminal device; the transceiving unit is based on the interference between the first signal and the third signal, Sending the power control command to the second terminal device includes: if the third signal is interfered by the first signal, sending a power reduction control command to the second terminal device; or, if the first signal The signal is interfered by the third signal, and a power increase control command is sent to the second terminal device.
  • the transceiving unit is further configured to: if the third signal is interfered by the first signal, send a power increase control command to the third terminal device; or, if The first signal is interfered with by the third signal, and a power reduction control command is sent to the third terminal device.
  • the transceiving unit is further configured to: receive the second signal sent by the fourth terminal device; the transceiving unit is based on the business of the first signal and the business of the second signal
  • Sending the power control command to the second terminal device includes: if the service priority of the service to which the second signal belongs is higher than the service priority of the service to which the first signal belongs, sending the power control command to the The second terminal device sends a power reduction control command; or, if the service priority of the service to which the first signal belongs is higher than the service priority of the service to which the second signal belongs, send the power increase control to the second terminal device command.
  • the transceiving unit is further configured to: if the service priority of the service to which the second signal belongs is higher than the service priority of the service to which the first signal belongs, to the fourth signal
  • the terminal device sends a power increase control command; or, if the service priority of the service to which the first signal belongs is higher than the service priority of the service to which the second signal belongs, a power decrease control command is sent to the fourth terminal device.
  • the transceiving unit is further configured to feed back the signal strength of the first signal to the second terminal device.
  • terminal device 300 may correspond to the first terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to implement the method in FIG. 2 respectively.
  • the corresponding process of the first terminal device in the first terminal device will not be repeated here.
  • FIG. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device is a second terminal device, and the terminal device 400 includes:
  • the transceiver unit 410 is configured to send a first signal to the first terminal device, and
  • the terminal device further includes: a processing unit, configured to increase the transmission power if the first power control command is an increase power control command; or, if the first power control command is an increase power control command;
  • the power control command is a power control command to reduce the transmission power.
  • the transceiving unit is further configured to: after the second terminal device adjusts the transmit power according to the first power control command, transmit power to the first terminal device Margin information.
  • the first signal carries service priority information of the service to which the first signal belongs.
  • the transceiver unit is further configured to: send a second signal to a third terminal device; receive a second power control command sent by the third terminal device based on the second signal, The second power control command is used to adjust the transmit power of the second terminal device.
  • the terminal device further includes: a processing unit, configured to adjust the transmit power of the second terminal device for the first terminal device according to the first power control command , And adjusting the transmit power of the second terminal device for the third terminal device according to the second power control command.
  • the terminal device further includes: a processing unit, configured to adjust the second terminal device's focus on multiple power control commands according to the first power control command and the second power control command.
  • Transmission power of a terminal device, the plurality of terminal devices include the first terminal device and the third terminal device.
  • the transceiving unit is further configured to: the second terminal device receives the first signal strength of the first signal sent by the first terminal device and the third terminal device The second signal strength of the second signal sent by the device; the processing unit is specifically configured to: when the first power control command is inconsistent with the second power control command, the second terminal device according to the The first signal strength and the second signal strength are adjusted to transmit power of the second terminal device for the multiple terminal devices.
  • terminal device 400 may correspond to the second terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to implement the method in FIG. 2 respectively.
  • the corresponding process of the second terminal device in the second terminal device will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 8 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding procedures implemented by the terminal device in each method of the embodiments of the present application. For brevity, details are not repeated here. .
  • FIG. 9 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 600 shown in FIG. 9 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 10 is a schematic block diagram of a communication system 700 according to an embodiment of the present application. As shown in FIG. 10, the communication system 700 includes a first terminal device 710 and a second terminal device 720.
  • the first terminal device 710 can be used to implement the corresponding function implemented by the first terminal device in the above method
  • the second terminal device 720 can be used to implement the corresponding function implemented by the second terminal device in the above method
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of this application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种功率调整的方法和终端设备,该方法包括:第一终端设备接收第二终端设备发送的第一信号;所述第一终端设备根据所述第一信号,向所述第二终端设备发送功率控制命令,所述功率控制命令用于调整所述第二终端设备的发送功率。本申请实施例的方法和终端设备,通过终端设备之间的功率协商机制来调整功率,有利于终端设备采用合适的发送功率发射信号,从而可以提高通信性能。

Description

调整功率的方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种调整功率的方法和终端设备。
背景技术
在侧行通信***中,终端设备通常是以一个固定的发送功率进行发射,例如,最大发送功率或者由网络设备配置相关功率参数以生成的发送功率,这种方式可能会导致终端设备持续采用不合适的发送功率,从而影响了通信性能。
发明内容
本申请实施例提供一种调整功率的方法和终端设备,通过终端设备之间的功率协商机制来不断调整功率,有利于终端设备采用合适的发送功率发射信号,从而可以提高通信性能。
第一方面,提供了一种功率调整的方法,该方法包括:第一终端设备接收第二终端设备发送的第一信号;所述第一终端设备根据所述第一信号,向所述第二终端设备发送功率控制命令,所述功率控制命令用于调整所述第二终端设备的发送功率。
第二方面,提供了一种功率调整的方法,该方法包括:第二终端设备向第一终端设备发送第一信号;所述第二终端设备接收所述第一终端设备基于所述第一信号发送的第一功率控制命令,所述第一功率控制命令用于调整所述第二终端设备的发送功率。
第三方面,提供了一种终端设备,用于执行上述第一方面至第二方面中任一方面或其实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面至第二方面中任一方面或其实现方式中的方法的功能模块。
第四方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第二方面中任一方面或其实现方式中的方法。
第五方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,接收端终端设备可以根据接收到的信号,向发送端终端设备反馈相应的功率控制命令,使得发送端终端设备可以精确根据接收端终端设备的反馈调整发送功率,从而使得功率调整达到一个闭环控制的过程,有利于终端设备采用合适的发送功率发射信号,从而可以提高通信性能。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图。
图2是本申请实施例提供的一种功率调整的方法的交互图。
图3是本申请实施例的功率调整的方法的示意性流程图。
图4是本申请实施例提供的分布式终端设备的场景示意图。
图5是本申请实施例提供的分布式终端设备的另一场景示意图。
图6是本申请实施例提供的一种终端设备的示意性框图。
图7是本申请实施例提供的一种终端设备的示意性框图。
图8是本申请实施例提供的一种通信设备的示意性框图。
图9是本申请实施例提供的一种芯片的示意性框图。
图10是本申请实施例提供的一种通信***的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进LTE***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、新无线(New Radio,NR)或未来的5G***等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信***,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)***、低密度签名(Low Density Signature,LDS)***等,当然SCMA***和LDS***在通信领域也可以被称 为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输***,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)***等。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备gNB或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本发明实施例并不限定。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)或车联网(vehicle to everything,V2X)通信。这种终端设备与终端设备之间的直接通信模式可以称为侧行(Sidelink,SL)通信。这种通信的特点是网络设备不再是控制中心,且终端设备可以在没有网络的情况下直接通信。以车联网为例,车辆间可以跟附近的车辆通信,进行防撞预警等应用。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1 示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如移动性管理实体(Mobility Management Entity,MME),服务网关(Serving Gateway,S-GW)或分组数据网关(PDN Gateway,P-GW)等,本申请实施例中对此不做限定。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在SL通信***中,终端设备与终端设备之间的通信可以不依赖于传统的蜂窝通信网络,那么蜂窝通信网络与终端设备的关系可以包括:终端设备在蜂窝网络覆盖区域内或终端设备不在蜂窝网络覆盖范围内。
目前,当终端设备在蜂窝网络覆盖区域内时,可以采用开环功率控制,即由网络设备控制终端设备对终端设备之间的发送功率。具体地,可以通过以下公式计算获得:
P PSSCH=min{P CMAX,PSSCH,10log 10(M PSSCH)+P o_PSSCHPSSCH.PL}
其中,P CMAX,PSSCH为终端设备的最大发送功率,M PSSCH为终端设备所占用的资源块(Resource Block,RB)数目,P o_PSSCH为网络设备配置的开环功率参数,α PSSCH为网络设备配置的路径损耗加权系数,PL是路径损耗。
当终端设备不在蜂窝网络覆盖区域内时,终端设备的发送功率不受网络设备的控制,终端设备始终采用最大发送功率进行发射。
无论是采用上述哪种方式的发送功率发射,都可能会导致终端设备持续采用不合适的发送功率,从而影响了通信性能。
因此,本申请实施例提供了一种功率调整的方法200,该方法可以通过终端设备之间的功率协商机制来不断调整发送功率,具体地,如图2所示,该方法200包括以下部分或全部内容:
S210,第二终端设备向第一终端设备发送第一信号;相应地,第一终端设备接收第二终端设备发送的第一信号;
S220,第一终端设备基于第一信号,向第二终端设备发送功率控制命令;相应地,第二终端设备接收第一终端设备基于第一信号发送的功率控制命令,该功率控制命令用于调整该第二终端设备的发送功率。
具体地,在SL通信中,第一终端设备可以作为接收端,第二终端设备可以作为发送端。发送端可以向接收端发送信号,而接收端则在接收到发送端发送的信号之后,基于该信号,生成并向发送端发送功率控制命令,例如,增加发送功率的命令(即本文中提到的增加功率控制命令)、降低发送功率的命令(即本文中提到的降低功率控制命令)或发送功率保持不变的命令。进而,在发送端接收到该功率控制命令之后,可以对发送功率做相应的调整,以用于下一次信号的发送。接收端可以在每一次接收到信号之后, 都可以向发送端反馈功率控制命令;相应的,发送端在每一次接收到接收端反馈的功率控制命令,都可以对发送功率进行调整。从而达到实时精准地控制发送功率,以提高通信性能。
可选地,接收端向发送端反馈的功率控制命令,除了包括增加、降低、不变的简单指示之外,还可以增加相应的变化值。例如,该功率控制命令指示增加发送功率,还可以指示增加一个步长的功率,其中,该一个步长的功率可以由网络设备提前配置好。或者,该功率控制命令还可以直接指示一个偏移量。本申请实施例对功率控制命令包括的具体内容不作限定。
当发送端不位于蜂窝网络覆盖区域中,发送端的发送功率不受网络设备的控制,而是直接根据接收端反馈的功率控制命令调整发送功率。
当发送端位于蜂窝网络覆盖区域中,一种可能的实现方式是,网络设备会为发送端配置相应的功率控制参数,例如上述公式中的开环功率参数或路径损耗加权系数等。但发送端会忽略网络设备配置的功率控制参数,而是根据接收端反馈的功率控制命令调整发送功率。另一种可能的实现方式是,发送端可以提前与网络设备进行交互,通知网络设备不需要向其配置相应的功率控制参数,进而发送端可以根据接收端反馈的功率控制命令调整发送功率。
可选地,在本申请实施例中,所述第一终端设备根据所述第一信号,向所述第二终端设备发送功率控制命令,包括:所述第一终端设备根据发送所述第一信号的第一链路质量信息、所述第一信号所属业务与第二信号所属业务的业务优先级信息和所述第一信号与第三信号的干扰情况中的至少一种,向所述第二终端设备发送所述功率控制命令,所述第二信号和所述第三信号均为所述第一终端设备接收的除所述第二终端设备之外的终端设备的信号。
具体地,接收端可以参考一些信息来生成功率控制命令。例如,接收端可以获取发送端发送的第一信号的链路质量信息,并判断该链路质量信息指示的链路质量的好坏。若链路质量不好到满足一定条件,那么接收端生成的功率控制命令可以是增加功率控制命令;而若链路质量好到满足一定条件,那么接收端生成的功率控制命令可以是降低功率控制命令。该链路质量信息可以通过误码率、信噪比或信号强度等一些参数来表征。以误码率为例,当接收端接收到第一信号之后,对其进行解调并得到误码率信息,如果误码率高于一定门限,则接收端认为发送端应该增加发送功率,即向发送端反馈增加功率控制命令;相反地,如果误码率低于一定门限,则接收端认为发送端应该降低发送功率,即向发送端反馈降低功率控制命令。其中,可以针对误码率设置一个门限,也可以设置两个门限,高的门限用来作为生成增加功率控制命令的判断依据,而低的门限用来作为生成降低功率控制命令的判断依据。
可选地,当接收端判断出来链路质量好到满足一定条件时,接收端也可以先参考当前接收端相对于发送端的移动信息,再确定要不要生成降低功率控制命令,例如,相对移动速度。如果该相对移动信息变化较大,则可以认为不适合降低发送端的发送功率, 也就是说,可以不向发送端反馈功率控制命令。如果该相对移动信息变化不大,则认为适合降低发送端的发送功率,也就是说,可以向发送端反馈降低功率控制命令。通过考虑接收端与发送端的相对移动信息,避免二者相对移动变化过快且功率降低过大导致的链路失败问题。可选地,接收端可以通过观测发送端的发送功率(即接收端的接收功率)的变化情况来确定相对移动信息。例如,接收端可以每接收到一次发送端的信号,就记录该信号的接收功率。具体地,可以测量信号强度,如获取参考信号接收功率(Reference Signal Receiving Power,RSRP)、接收的信号强度指示(Received Signal Strength Indication,RSSI)等参数。
类似地,确定接收端与发送端的相对移动的变化情况,也可以设置一些条件。例如,可以为相对移动速度设置一个门限,当获取的相对移动信息指示的相对移动速度大于或等于该门限,则可以认为接收端与发送端之间相对移动变化过大;而当获取的相对移动信息指示的相对移动速度小于该门限,则可以认为接收端与发送端之间相对移动变化不大。
需要说明的是,任何可以表征接收端与发送端的相对移动的变化情况的信息都可以是本申请实施例中的相对移动信息,并不限定于是上述所举例说明的相对移动速度。
可选地,判断链路质量好坏的条件可以是由服务质量(Quality of Service,QoS)要求确定的。也就是说,上述第一信号的第一链路质量信息所指示的链路质量的好坏是由第一信号所属业务对应的QoS要求判断的。可替代地,判断链路质量好坏的条件还可以是网络设备重新配置或者协议重新约定的一个条件。
可选地,在发送端接收到接收端反馈的功率控制命令之后,若发送端对发送功率进行了调整,那么发送端还可以向接收端发送功率余量信息,也就是上报调整后的发送功率与最大发送功率之间的差值。如,调整后的发送功率为最大发送功率,那么上报的功率余量信息则为0。
下面将结合图3描述本申请一个实施例的详细流程。本领域技术人员理解,该流程仅用于示意,并不用于限定。
如图3所示,该流程可以包括:
S301,终端设备A初始以发送功率1向终端设备B发射信号;
S302,终端设备B对终端设备A发射的信号进行接收解调得到误码率;
S303,终端设备B判断误码率是否高于预设门限;
S304,若高于,则终端设备B向终端设备A发送增加功率控制命令,例如,可以将发送功率1调整到发送功率2,发送功率2高于发送功率1;
S305,若低于,则终端设备B可以继续观测与终端设备A的相对移动信息;
S306,判断终端设备B与终端设备A的相对移动性是否较高;
S307,若终端设备B与终端设备A的相对移动性较高,则终端设备B不向终端设备A反馈功率控制命令;
S308,若终端设备B与终端设备A的相对移动性不高,则终端设备B向终端设备A 发送降低功率控制命令,例如,可以将发送功率1调整到发送功率3,发送功率3低于发送功率1;
S309,终端设备A可以基于接收到的功率控制命令,调整发送功率,并向终端设备B上报功率余量信息。
终端设备B和终端设备A可以在后续时间内重复步骤S301~S308。
可选地,在本申请实施例中,接收端在生成功率控制命令时,也可以只考虑接收端与发送端的相对移动信息,例如,相对距离越来越远,那么接收端生成增加功率控制命令;而相对距离越来越近,则接收端生成降低功率控制命令。
上述各种实施例可以适用于单点通信模式,即两个终端设备之间的交互,在生成功率控制命令时可以不考虑其他终端设备的干扰。上述各种实施例也可以适用于多终端设备分布的通信模式,也就是说一个终端设备与多个终端设备之间的交互。那么作为接收端来说,除了考虑上述链路质量信息之外,还可以结合其他终端设备与发送端之间的相互影响。例如,其他终端设备向接收端发送的信号对发送端向接收端发送的信号的干扰或者其他终端设备向接收端发送的信号与发送端向接收端发送的信号的业务优先级等。或者,接收端可以单独考虑其他终端设备与发送端之间的相互影响,以生成功率控制命令。
示例一,接收端为第一终端设备,发送端为第二终端设备,其他终端设备为第三终端设备,其中,第二终端设备向第一终端设备发送的信号为第一信号,第三终端设备向第一终端设备发送的信号为第三信号。
若第一信号对第三信号有干扰,那么第一终端设备可以认为第二终端设备的发送功率过高,即向第二终端设备发送降低功率控制命令,进一步地,第一终端设备还可以认为第三终端设备的发送功率过低,即向第三终端设备发送增加功率控制命令;而若第三信号对第一信号有干扰,那么第一终端设备可以认为第二终端设备的发送功率过低,即向第二终端设备发送增加功率控制命令,进一步地,第一终端设备还可以认为第三终端设备的发送功率过高,即向第三终端设备发送降低功率控制命令。
示例二,接收端为第一终端设备,发送端为第二终端设备,其他终端设备为第四终端设备,其中,第二终端设备向第一终端设备发送的信号为第一信号,第四终端设备向第一终端设备发送的信号为第二信号。
若第一信号所属业务比第二信号所属业务的优先级高,那么第一终端设备可以认为需要增加第二终端设备的发送功率,以保证第一终端设备发送的信号有高的接收质量、低的误码率等,甚至不允许出错,即向第二终端设备发送增加功率控制命令,进一步地,第一终端设备还可以认为第三终端设备发送的信号可以允许低的接收质量或延时等,即向第三终端设备发送降低功率控制命令;而若第一信号所属业务比第二信号所属业务的优先级低,那么第一终端设备可以认为需要降低第二终端设备的发送功率,即向第二终端设备发送降低功率控制命令,进一步地,第一终端设备还可以认为需要增加第三终端设备的发送功率,即向第三终端设备发送增加功率控制命令。
可选地,第一终端设备在生成功率控制命令时,也可以综合考虑各个终端设备发送信号的链路质量信息、不同终端设备发送信号的干扰情况以及不同终端设备发送信号的业务优先级。
例如,可以将链路质量信息与干扰情况结合,假设第二终端设备发送的第一信号对第三终端设备发送的第三信号造成干扰,第一终端设备可以先判断一下第一信号的链路质量是否较好,若此时较好,那么第一终端设备可以向第二终端设备发送降低功率控制命令,反之,则第一终端设备不向第二终端设备发送降低功率控制命令,而是通过第一终端设备向第三终端设备发送增加功率控制命令来降低第二终端设备发送的信号对第三终端设备发送的信号的干扰。
再例如,可以将干扰情况与业务优先级信息结合,假设第二终端设备发送的第一信号对第三终端设备发送的第三信号造成干扰,第一终端设备可以先判断一下第一信号所属业务与第三信号所属业务的业务优先级,若第一信号的业务优先级高于第三信号,那么第一终端设备不向第二终端设备发送降低功率控制命令,而是通过向第三终端设备发送增加功率控制命令来降低第二终端设备发送的信号对第三终端设备发送的信号的干扰;反之,则第一终端设备直接向第二终端设备发送降低功率控制命令。
需要说明的是,上述列举的用于生成功率控制命令的可参考信息可以组合成各种不同实施例,为了简洁,此处不再穷举,但本领域技术人员应理解,本申请实施例不限于此。
图4示出了一种多终端设备分布的应用场景图。在图4中,终端设备A可以作为接收端,而终端设备B、终端设备C和终端设备D均可以作为发送端。其中,终端设备A可以充当这个通信组的中心节点。也就是说,终端设备A可以同时接收来自终端设备B、终端设备C以及终端设备D的信号,由于终端设备B、终端设备C以及终端设备D与终端设备A的相对距离不同,它们的信号到达终端设备A时的信号强度就会出现差异,因此,对于终端设备A来说,终端设备B、终端设备C以及终端设备D的信号质量不同,在某些情况下,离得远的终端设备B的信号可能会被离得近的终端设备C和/或终端设备D的信号干扰,从而导致无法正确接收。那么可以通过以下实施例来进行改善:
首先,终端设备A接收来自其他终端设备的信号。可选地,这些信号中携带有业务优先级信息,例如,可以是QoS信号质量要求信息等。
其次,终端设备A判断各个信号质量是否满足要求,详见上述链路质量的判断方式。
再次,终端设备A发现某些业务优先级高的信号质量不满足要求(例如,终端设备B的信号的业务优先级高于终端设备C和/或终端设备D的信号,进一步地,终端设备B的信号可以属于防撞业务),那么终端设备A可以进一步地结合终端间的移动性情况来对各个终端设备的发送功率进行调整:
若终端设备A与终端设备C和/或终端设备D的相对移动性不高,终端设备A可以通知终端设备C和/或终端设备D降低其发送功率以减少干扰;
终端设备A还可以通知终端设备B来增加其发送功率。
终端设备A可以在后续时间内重复上述各个步骤持续监测并协调多个终端设备间的业务需求。
图5示出了另外一种分布式终端设备的示意图。其中各个终端处于互相通信的模式,也就是说,终端设备A分别与终端设备B和终端设备C互相通信。
在实际SL通信运行中,以车联网为例,在终端设备A周围会有很多其它终端设备,但终端设备A不需要跟所有的终端进行通信。以简单的防撞为例,终端设备A可能只需要跟前面或后面的少数几个终端设备进行通信即可,也即其发送功率只需要保证与其相关的少数终端设备能够正常接收解调就可以。这样,当所有终端设备都按照这种逻辑来进行功率的协商时,从任何一个终端设备看其发送功率都出于一个比较低且够用的水平,而最终的结果是整个SL通信***的功率处于一个比较低的水平,相互干扰也比较低,达到了整体功率效率的最优化。
对于相互通信的两个终端设备来说,可以采用本申请实施例的方式来进行功率控制,也就是说,发送端向接收端发送信号,而接收端基于上述各种实施例向发送端反馈功率控制命令。在分布式终端设备的场景下,一个终端设备可能会向多个终端设备发送信号,而该终端设备就可能收到多个终端设备反馈的功率控制命令。那么该终端设备可以通过以下两种方式进行发送功率的调整:
如果该终端设备向多个终端设备发送信号属于一对多的方式,也即多播方式,若多个终端设备反馈的功率控制命令一致,例如,都反馈的是增加功率控制命令,那么该终端设备就增加发送功率;若多个终端设备反馈的功率控制命令不一致,例如,一些反馈的是增加功率控制命令,而另外一些反馈的是降低功率控制命令,那么该终端设备就需要结合接收到的多个功率控制命令来综合考虑到底是增加发送功率还是降低发送功率。可选地,多个终端设备除了向该终端设备反馈功率控制命令之外,还可以向该终端设备反馈信号强度,那么该终端设备可以结合各个终端设备反馈的信号强度来确定增加发送功率还是降低发送功率。具体地,该信号强度可以表征各个终端设备与该终端设备之间的距离、相对移动性等。例如,对于反馈的是降低发送功率控制命令的终端设备来说,若这些终端设备的相对移动性较高,那么终端设备可以忽略降低功率控制命令,而直接根据增加功率控制命令来增加发送功率。
如果该终端设备向多个终端设备发送信号属于一对一的方式,那么该终端设备可以分别针对各个终端设备反馈的功率控制命令调整发送功率。
下面我们以图5中的终端A为例阐述本申请一个实施例。
1、在初始阶段,终端A向周边的其它终端(此处假设周边的终端为B和C)发射初始信号,可选地,发射的信号中携带了其初始发射功率强度P 0
2、终端B和C接收到A的初始信号后向终端A反馈接收端的信号强度P 1和P 2,以及各自的功率控制命令。
其中,功率控制命令包括增加或减少发送功率。
终端B和C可以通过考虑接收链路质量信息、相对移动性等因素,给出功率控制命 令。如在误码率低、移动性低的情况下,可以给出降低较大功率的命令。反之则增加、不降低或降低一个较小功率的命令。
3、终端A收到来自终端B和终端C的P 1和P 2以及各自的功率控制命令后,根据P 1和P 2可大致知道当前的终端间距信息及相对移动性信息。终端A调整对终端B及终端C的发送功率:
此处A跟B、A跟C可以为相互独立的调整过程,也可以为A结合B及C的功率控制命令后进行统一处理这取决于A跟B及A跟C之间进行的业务类型,如A此时为一对多的广播式业务则A将只会采取一种增加、减少或维持当前功率的动作,而如果A此时为与B跟C的一对一业务,则A可以单独进行相应功率的调整等。可选地,若为一对一业务,A向B或C发送的信号中分别携带B或C的标识信息,以确保B和C分别接收到属于自己的信号。
终端B和终端C监测其与终端A的功率变化情况,并如步骤2和3所述对终端A的功率进行动态调整。
因此,通过以上方式,终端A的发送功率可维持在一个相对较低但够用的水平。与之类似的处理方式,其它终端也可以达到相同的效果。最终整个SL通信***的功率水平可以保持一个较低的水平,避免互相干扰。通过相关通信终端反馈的功率控制命令及辅助功率信息等可以确保发射端终端的功率合适,最终维持分布式***的功率平衡。
应理解,发送端描述的第二终端设备与接收端的第一终端设备之间的交互及相关特性、功能等与第一终端设备的相关特性、功能相应。并且相关内容在上述方法200中已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的功率调整的方法,下面将结合图6至图8,描述根据本申请实施例的功率调整的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图6示出了本申请实施例的终端设备300的示意性框图。如图6所示,所述终端设备为第一终端设备,所述终端设备300包括:
收发单元310,用于接收第二终端设备发送的第一信号,以及
根据所述第一信号,向所述第二终端设备发送功率控制命令,所述功率控制命令用于调整所述第二终端设备的发送功率。
可选地,在本申请实施例中,所述收发单元具体用于:根据发送所述第一信号的第一链路质量信息、所述第一信号所属业务与第二信号所属业务的业务优先级信息和所述第一信号与第三信号的干扰情况中的至少一种,向所述第二终端设备发送所述功率控制命令,所述第二信号和所述第三信号均为所述第一终端设备接收的除所述第二终端设备之外的终端设备的信号。
可选地,在本申请实施例中,所述收发单元根据发送所述第一信号的第一链路质量信息,向所述第二终端设备发送所述功率控制命令,包括:在所述第一链路质量信息指示的链路质量好到满足第一条件的情况下,向所述第二终端设备发送降低功率控制命令;或,在所述第一链路质量信息指示的链路质量差到不满足所述第一条件的情况下,向所述第二终端设备发送增加功率控制命令。
可选地,在本申请实施例中,所述终端设备还包括:处理单元,用于在所述第一链路质量信息指示的链路质量好到满足所述第一条件的情况下,获取所述第一终端设备与所述第二终端设备之间的相对移动信息;在所述第一链路质量信息指示的链路质量好到满足所述第一条件的情况下,所述收发单元向所述第二终端设备发送降低功率控制命令,包括:在所述相对移动信息指示的相对移动速度低到满足第二条件的情况下,向所述第二终端设备发送所述降低功率控制命令。
可选地,在本申请实施例中,所述第一条件是由所述第一信号所属业务对应的服务质量QoS确定的。
可选地,在本申请实施例中,所述第一链路质量信息包括以下信息中的至少一种信息:误码率、信噪比和信号强度。
可选地,在本申请实施例中,所述收发单元还用于:接收所述第二终端设备发送的功率余量信息,所述功率余量信息用于表征根据所述功率控制命令调整后的发送功率与最大发送功率之间的差值。
可选地,在本申请实施例中,所述收发单元还用于:接收第三终端设备发送的所述第三信号;所述收发单元根据所述第一信号与第三信号的干扰情况,向所述第二终端设备发送所述功率控制命令,包括:若所述第三信号被所述第一信号干扰,向所述第二终端设备发送降低功率控制命令;或,若所述第一信号被所述第三信号干扰,向所述第二终端设备发送增加功率控制命令。
可选地,在本申请实施例中,所述收发单元还用于:若所述第三信号被所述第一信号干扰,向所述第三终端设备发送增加功率控制命令;或,若所述第一信号被所述第三信号干扰,向所述第三终端设备发送降低功率控制命令。
可选地,在本申请实施例中,所述收发单元还用于:接收第四终端设备发送的所述第二信号;所述收发单元根据所述第一信号所属业务与第二信号所属业务的业务优先级信息,向所述第二终端设备发送所述功率控制命令,包括:若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级,向所述第二终端设备发送降低功率控制命令;或,若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,向所述第二终端设备发送增加功率控制命令。
可选地,在本申请实施例中,所述收发单元还用于:若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级,向所述第四终端设备发送增加功率控制命令;或,若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,向所述第四终端设备发送降低功率控制命令。
可选地,在本申请实施例中,所述收发单元还用于:向所述第二终端设备反馈所述第一信号的信号强度。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的第一终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中第一终端设备的相应流程,为了简洁,在此不再赘述。
图7示出了本申请实施例的终端设备400的示意性框图。如图7所示,所述终端设备为第二终端设备,所述终端设备400包括:
收发单元410,用于向第一终端设备发送第一信号,以及
接收所述第一终端设备基于所述第一信号发送的第一功率控制命令,所述第一功率控制命令用于调整所述第二终端设备的发送功率。
可选地,在本申请实施例中,所述终端设备还包括:处理单元,用于若所述第一功率控制命令为增加功率控制命令,增加所述发送功率;或,若所述第一功率控制命令为降低功率控制命令,降低所述发送功率。
可选地,在本申请实施例中,所述收发单元还用于:在所述第二终端设备根据所述第一功率控制命令调整所述发送功率之后,向所述第一终端设备发送功率余量信息。
可选地,在本申请实施例中,所述第一信号携带所述第一信号所属业务的业务优先级信息。
可选地,在本申请实施例中,所述收发单元还用于:向第三终端设备发送第二信号;接收所述第三终端设备基于所述第二信号发送的第二功率控制命令,所述第二功率控制命令用于调整所述第二终端设备的发送功率。
可选地,在本申请实施例中,所述终端设备还包括:处理单元,用于根据所述第一功率控制命令,调整所述第二终端设备针对于所述第一终端设备的发送功率,以及根据所述第二功率控制命令,调整所述第二终端设备针对于所述第三终端设备的发送功率。
可选地,在本申请实施例中,所述终端设备还包括:处理单元,用于根据所述第一功率控制命令和所述第二功率控制命令,调整所述第二终端设备针对于多个终端设备的发送功率,所述多个终端设备包括所述第一终端设备和所述第三终端设备。
可选地,在本申请实施例中,所述收发单元还用于:所述第二终端设备接收所述第一终端设备发送的所述第一信号的第一信号强度以及所述第三终端设备发送的所述第二信号的第二信号强度;所述处理单元具体用于:在所述第一功率控制命令与所述第二功率控制命令不一致时,所述第二终端设备根据所述第一信号强度和所述第二信号强度,调整所述第二终端设备针对于所述多个终端设备的发送功率。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的第二终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2方法中第二终端设备的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一种通信设备500示意性结构图。图8所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请 实施例中的方法。
可选地,如图8所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图8所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
图10是本申请实施例提供的一种通信***700的示意性框图。如图10所示,该通信***700包括第一终端设备710和第二终端设备720。
其中,该第一终端设备710可以用于实现上述方法中由第一终端设备实现的相应的功能,以及该第二终端设备720可以用于实现上述方法中由第二终端设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal  Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流 程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (45)

  1. 一种功率调整的方法,其特征在于,包括:
    第一终端设备接收第二终端设备发送的第一信号;
    所述第一终端设备根据所述第一信号,向所述第二终端设备发送功率控制命令,所述功率控制命令用于调整所述第二终端设备的发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端设备根据所述第一信号,向所述第二终端设备发送功率控制命令,包括:
    所述第一终端设备根据发送所述第一信号的第一链路质量信息、所述第一信号所属业务与第二信号所属业务的业务优先级信息和所述第一信号与第三信号的干扰情况中的至少一种,向所述第二终端设备发送所述功率控制命令,所述第二信号和所述第三信号均为所述第一终端设备接收的来自于所述第二终端设备之外的终端设备的信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一终端设备根据发送所述第一信号的第一链路质量信息,向所述第二终端设备发送所述功率控制命令,包括:
    在所述第一链路质量信息指示的链路质量满足第一条件的情况下,所述第一终端设备向所述第二终端设备发送降低功率控制命令;或,
    在所述第一链路质量信息指示的链路质量不满足所述第一条件的情况下,所述第一终端设备向所述第二终端设备发送增加功率控制命令。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一链路质量信息指示的链路质量满足第一条件的情况下,所述第一终端设备向所述第二终端设备发送降低功率控制命令,包括:
    在所述第一链路质量信息指示的链路质量满足所述第一条件的情况下,所述第一终端设备获取所述第一终端设备与所述第二终端设备之间的相对移动信息;
    在所述相对移动信息指示的相对移动速度满足第二条件的情况下,所述第一终端设备向所述第二终端设备发送所述降低功率控制命令。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一条件由所述第一信号所属业务对应的服务质量QoS要求确定。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述第一链路质量信息包括以下信息中的至少一种信息:误码率、信噪比和信号强度。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收所述第二终端设备发送的功率余量信息,所述功率余量信息用于表征根据所述功率控制命令调整后的发送功率与最大发送功率之间的差值。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第三终端设备发送的所述第三信号;
    所述第一终端设备根据所述第一信号与第三信号的干扰情况,向所述第二终端设备发送所述功率控制命令,包括:
    若所述第三信号被所述第一信号干扰,所述第一终端设备向所述第二终端设备发送降低功率控制命令;或,
    若所述第一信号被所述第三信号干扰,所述第一终端设备向所述第二终端设备发送增加功率控制命令。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    若所述第三信号被所述第一信号干扰,所述第一终端设备向所述第三终端设备发送增加功率控制命令;或,
    若所述第一信号被所述第三信号干扰,所述第一终端设备向所述第三终端设备发送降低功率控制命令。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收第四终端设备发送的所述第二信号;
    所述第一终端设备根据所述第一信号所属业务与第二信号所属业务的业务优先级信息,向所述第二终端设备发送所述功率控制命令,包括:
    若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级,所述第一终端设备向所述第二终端设备发送降低功率控制命令;或,
    若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,所述第一终端设备向所述第二终端设备发送增加功率控制命令。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级,所述第一终端设备向所述第四终端设备发送增加功率控制命令;或,
    若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,所述第一终端设备向所述第四终端设备发送降低功率控制命令。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备反馈所述第一信号的信号强度。
  13. 一种功率调整的方法,其特征在于,包括:
    第二终端设备向第一终端设备发送第一信号;
    所述第二终端设备接收所述第一终端设备基于所述第一信号发送的第一功率控制命令,所述第一功率控制命令用于调整所述第二终端设备的发送功率。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    若所述第一功率控制命令为增加功率控制命令,所述第二终端设备增加所述发送功率;或,
    若所述第一功率控制命令为降低功率控制命令,所述第二终端设备降低所述发送功率。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    在所述第二终端设备根据所述第一功率控制命令调整所述发送功率之后,所述第二终端设备向所述第一终端设备发送功率余量信息。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一信号携带所述第一信号所属业务的业务优先级信息。
  17. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备向第三终端设备发送第二信号;
    所述第二终端设备接收所述第三终端设备基于所述第二信号发送的第二功率控制命令,所述第二功率控制命令用于调整所述第二终端设备的发送功率。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第一功率控制命令,调整所述第二终端设备针对于所述第一终端设备的发送功率;
    所述第二终端设备根据所述第二功率控制命令,调整所述第二终端设备针对于所述第三终端设备的发送功率。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第一功率控制命令和所述第二功率控制命令,调整所述第二终端设备针对于多个终端设备的发送功率,所述多个终端设备包括所述第一终端设备和所述第三终端设备。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述第二终端设备接收所述第一终端设备发送的所述第一信号的第一信号强度以及所述第三终端设备发送的所述第二信号的第二信号强度;
    所述第二终端设备根据所述第一功率控制命令和所述第二功率控制命令,调整所述第二终端设备针对于多个终端设备的发送功率,包括:
    在所述第一功率控制命令与所述第二功率控制命令不一致时,所述第二终端设备根据所述第一信号强度和所述第二信号强度,调整所述第二终端设备针对于所述多个终端设备的发送功率。
  21. 一种终端设备,其特征在于,所述终端设备为第一终端设备,所述终端设备包括:
    收发单元,用于接收第二终端设备发送的第一信号,以及
    根据所述第一信号,向所述第二终端设备发送功率控制命令,所述功率控制命令用于调整所述第二终端设备的发送功率。
  22. 根据权利要求21所述的终端设备,其特征在于,所述收发单元具体用于:
    根据发送所述第一信号的第一链路质量信息、所述第一信号所属业务与第二信号所属业务的业务优先级信息和所述第一信号与第三信号的干扰情况中的至少一种,向所述第二终端设备发送所述功率控制命令,所述第二信号和所述第三信号均为所述第一终端设备接收的除所述第二终端设备之外的终端设备的信号。
  23. 根据权利要求22所述的终端设备,其特征在于,所述收发单元根据发送所述第一信号的第一链路质量信息,向所述第二终端设备发送所述功率控制命令,包括:
    在所述第一链路质量信息指示的链路质量好到满足第一条件的情况下,向所述第二 终端设备发送降低功率控制命令;或,
    在所述第一链路质量信息指示的链路质量差到不满足所述第一条件的情况下,向所述第二终端设备发送增加功率控制命令。
  24. 根据权利要求23所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于在所述第一链路质量信息指示的链路质量好到满足所述第一条件的情况下,获取所述第一终端设备与所述第二终端设备之间的相对移动信息;
    在所述第一链路质量信息指示的链路质量好到满足所述第一条件的情况下,所述收发单元向所述第二终端设备发送降低功率控制命令,包括:
    在所述相对移动信息指示的相对移动速度低到满足第二条件的情况下,向所述第二终端设备发送所述降低功率控制命令。
  25. 根据权利要求23或24所述的终端设备,其特征在于,所述第一条件是由所述第一信号所属业务对应的服务质量QoS要求确定的。
  26. 根据权利要求22至25中任一项所述的终端设备,其特征在于,所述第一链路质量信息包括以下信息中的至少一种信息:误码率、信噪比和信号强度。
  27. 根据权利要求21至26中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收所述第二终端设备发送的功率余量信息,所述功率余量信息用于表征根据所述功率控制命令调整后的发送功率与最大发送功率之间的差值。
  28. 根据权利要求22至27中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第三终端设备发送的所述第三信号;
    所述收发单元根据所述第一信号与第三信号的干扰情况,向所述第二终端设备发送所述功率控制命令,包括:
    若所述第三信号被所述第一信号干扰,向所述第二终端设备发送降低功率控制命令;或,
    若所述第一信号被所述第三信号干扰,向所述第二终端设备发送增加功率控制命令。
  29. 根据权利要求28所述的终端设备,其特征在于,所述收发单元还用于:
    若所述第三信号被所述第一信号干扰,向所述第三终端设备发送增加功率控制命令;或,
    若所述第一信号被所述第三信号干扰,向所述第三终端设备发送降低功率控制命令。
  30. 根据权利要求22至29中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    接收第四终端设备发送的所述第二信号;
    所述收发单元根据所述第一信号所属业务与第二信号所属业务的业务优先级信息,向所述第二终端设备发送所述功率控制命令,包括:
    若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级, 向所述第二终端设备发送降低功率控制命令;或,
    若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,向所述第二终端设备发送增加功率控制命令。
  31. 根据权利要求30所述的终端设备,其特征在于,所述收发单元还用于:
    若所述第二信号所属业务的业务优先级高于所述第一信号所属业务的业务优先级,向所述第四终端设备发送增加功率控制命令;或,
    若所述第一信号所属业务的业务优先级高于所述第二信号所属业务的业务优先级,向所述第四终端设备发送降低功率控制命令。
  32. 根据权利要求21至31中任一项所述的终端设备,其特征在于,所述收发单元还用于:
    向所述第二终端设备反馈所述第一信号的信号强度。
  33. 一种终端设备,其特征在于,所述终端设备为第二终端设备,所述终端设备包括:
    收发单元,用于向第一终端设备发送第一信号,以及
    接收所述第一终端设备基于所述第一信号发送的第一功率控制命令,所述第一功率控制命令用于调整所述第二终端设备的发送功率。
  34. 根据权利要求33所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于若所述第一功率控制命令为增加功率控制命令,增加所述发送功率;或,
    若所述第一功率控制命令为降低功率控制命令,降低所述发送功率。
  35. 根据权利要求33或34所述的终端设备,其特征在于,所述收发单元还用于:
    在所述第二终端设备根据所述第一功率控制命令调整所述发送功率之后,向所述第一终端设备发送功率余量信息。
  36. 根据权利要求33至35中任一项所述的终端设备,其特征在于,所述第一信号携带所述第一信号所属业务的业务优先级信息。
  37. 根据权利要求33所述的终端设备,其特征在于,所述收发单元还用于:
    向第三终端设备发送第二信号;
    接收所述第三终端设备基于所述第二信号发送的第二功率控制命令,所述第二功率控制命令用于调整所述第二终端设备的发送功率。
  38. 根据权利要求37所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述第一功率控制命令,调整所述第二终端设备针对于所述第一终端设备的发送功率,以及
    根据所述第二功率控制命令,调整所述第二终端设备针对于所述第三终端设备的发送功率。
  39. 根据权利要求37所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据所述第一功率控制命令和所述第二功率控制命令,调整所述第 二终端设备针对于多个终端设备的发送功率,所述多个终端设备包括所述第一终端设备和所述第三终端设备。
  40. 根据权利要求39所述的终端设备,其特征在于,所述收发单元还用于:
    所述第二终端设备接收所述第一终端设备发送的所述第一信号的第一信号强度以及所述第三终端设备发送的所述第二信号的第二信号强度;
    所述处理单元具体用于:
    在所述第一功率控制命令与所述第二功率控制命令不一致时,所述第二终端设备根据所述第一信号强度和所述第二信号强度,调整所述第二终端设备针对于所述多个终端设备的发送功率。
  41. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至20中任一项所述的方法。
  42. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法。
  45. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
PCT/CN2019/099090 2019-08-02 2019-08-02 调整功率的方法和终端设备 WO2021022415A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980093552.2A CN113508623B (zh) 2019-08-02 2019-08-02 调整功率的方法和终端设备
PCT/CN2019/099090 WO2021022415A1 (zh) 2019-08-02 2019-08-02 调整功率的方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/099090 WO2021022415A1 (zh) 2019-08-02 2019-08-02 调整功率的方法和终端设备

Publications (1)

Publication Number Publication Date
WO2021022415A1 true WO2021022415A1 (zh) 2021-02-11

Family

ID=74503049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099090 WO2021022415A1 (zh) 2019-08-02 2019-08-02 调整功率的方法和终端设备

Country Status (2)

Country Link
CN (1) CN113508623B (zh)
WO (1) WO2021022415A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745976A (zh) * 2013-12-12 2016-07-06 Lg电子株式会社 基于功率信息发送和接收干扰控制信号的方法及其装置
WO2018053808A1 (zh) * 2016-09-23 2018-03-29 富士通株式会社 功率控制方法、装置以及通信***
CN109257810A (zh) * 2017-07-12 2019-01-22 华为技术有限公司 一种功率控制方法和终端设备
CN109392069A (zh) * 2017-08-10 2019-02-26 中兴通讯股份有限公司 一种功率控制方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498713A (en) * 2012-01-18 2013-07-31 Renesas Mobile Corp Power control for transmission of a discovery signal for a specific communication mode
WO2014123393A1 (ko) * 2013-02-07 2014-08-14 삼성전자주식회사 디바이스간 직접 통신 네트워크의 전송전력 제어 방법 및 장치
US9838975B2 (en) * 2014-04-20 2017-12-05 Lg Electronics Inc. Method for determining transmission power for direct communication between terminals in wireless communication system, and apparatus for same
CN105722200B (zh) * 2014-12-02 2020-08-11 索尼公司 无线通信***中的电子设备和无线通信方法
CN106332113B (zh) * 2015-06-16 2020-07-03 诸暨易和项目投资有限公司 通讯方法和终端
CN109088661B (zh) * 2017-06-14 2021-01-08 维沃移动通信有限公司 一种基于多波束的功率控制方法、用户终端和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105745976A (zh) * 2013-12-12 2016-07-06 Lg电子株式会社 基于功率信息发送和接收干扰控制信号的方法及其装置
WO2018053808A1 (zh) * 2016-09-23 2018-03-29 富士通株式会社 功率控制方法、装置以及通信***
CN109257810A (zh) * 2017-07-12 2019-01-22 华为技术有限公司 一种功率控制方法和终端设备
CN109392069A (zh) * 2017-08-10 2019-02-26 中兴通讯股份有限公司 一种功率控制方法及装置

Also Published As

Publication number Publication date
CN113508623B (zh) 2023-08-22
CN113508623A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2021147001A1 (zh) 功率控制参数确定方法、终端、网络设备及存储介质
WO2021026715A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2018232718A1 (zh) 无线通信方法和设备
WO2020164152A1 (zh) 无线通信的方法和设备
US11963173B2 (en) Data transmission method and terminal device
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2021046778A1 (zh) 无线通信的方法、终端设备和网络设备
TWI829756B (zh) 一種通訊方法、終端設備和網路設備
US11758541B2 (en) Information transmission method, terminal device and network device
US11696274B2 (en) Wireless communications method and device
AU2017437155A1 (en) Data transmission method, terminal device and network device
WO2020001582A1 (zh) 一种配置pdcch检测的方法及相关设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020143048A1 (zh) 一种信息处理方法及终端设备
TW201914344A (zh) 無線通訊方法、網路設備和終端設備
WO2019047185A1 (zh) 无线通信方法、终端设备和发射节点
US11412488B2 (en) Resource allocation method and device
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020034220A1 (zh) 无线通信方法和通信设备
WO2021022415A1 (zh) 调整功率的方法和终端设备
WO2019242378A1 (zh) 确定信道接入类型的方法、终端设备及网络设备
WO2020107477A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19940919

Country of ref document: EP

Kind code of ref document: A1