WO2021020398A1 - Corner part shaping device and corner part shaping method - Google Patents

Corner part shaping device and corner part shaping method Download PDF

Info

Publication number
WO2021020398A1
WO2021020398A1 PCT/JP2020/028913 JP2020028913W WO2021020398A1 WO 2021020398 A1 WO2021020398 A1 WO 2021020398A1 JP 2020028913 W JP2020028913 W JP 2020028913W WO 2021020398 A1 WO2021020398 A1 WO 2021020398A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
corner portion
shaping
injection nozzle
gas
Prior art date
Application number
PCT/JP2020/028913
Other languages
French (fr)
Japanese (ja)
Inventor
沓名宗春
Original Assignee
有限会社中島精工
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社中島精工 filed Critical 有限会社中島精工
Priority to JP2020572561A priority Critical patent/JP6868316B1/en
Publication of WO2021020398A1 publication Critical patent/WO2021020398A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/02Deburring or deflashing

Definitions

  • the present invention relates to a corner shaping device and a corner shaping method for performing deburring and chamfering of corners of cut parts, molded parts, cast products, etc. by laser.
  • Burrs may occur in resin molding using two or more molds, metal casting, cutting, etc.
  • the corners of the processed parts may be sharply angular or have irregularities, and if a hand touches such sharp and sharp corners, there is a safety and health problem such as injury.
  • corner portions such as deburring and chamfering have been shaped by using a cutter, a rotary bar, a brush, sandpaper and the like.
  • a deburring device using a laser has been proposed (for example, Patent Documents 1 to 3).
  • burrs are removed by ablation, which irradiates the burrs with a laser beam and vaporizes or plasmaizes the burrs to a temperature far exceeding the melting temperature of metals and other deburring objects. ..
  • the method of deburring by ablation with a laser has a problem that the end face of the corner portion after deburring is rough and secondary burrs are generated. Further, the chamfering of the corner portion is finished to be a flat and smooth surface mainly by machine cutting, but it is difficult to finish the corner portion having a non-planar shape such as a curved surface. Furthermore, there is a demand for precise shaping of corners such as deburring and chamfering in a short time without human intervention.
  • a laser which is a heat source having a good light-collecting property, is used to create a sharp corner portion of an object made of a material such as metal, resin, ceramics, stone, or glass, with a smooth curved surface or a smooth surface.
  • the purpose is to precisely and quickly shape the corners so that they have any cross-sectional shape including. Further, it is an object of the present invention to easily and quickly remove burrs formed in corners, and at the same time to form smooth curved surfaces and corners of various shapes.
  • the present invention is a corner shaping device that shapes a corner portion of an object by using a laser beam, and the corner shaping device is relative to the corner portion in a corner shaping direction at a predetermined speed. While moving relative to the laser head that irradiates the corner portion with the laser beam and the corner portion at a predetermined speed in the corner shaping direction, at least one from the molten pool generated by the laser beam. It is a corner portion shaping apparatus including a gas injection nozzle that injects a high-pressure gas of 0.1 MPa to 2.0 MPa for pulling the melt of the portion from the object.
  • the corner portion can be melted, and immediately after that, the excess melt in the corner portion can be blown off by the high pressure gas, so that the corner portion can be easily shaped in a short time.
  • the small amount of melt that remains without being blown off is formed into a rounded and smooth corner portion due to its surface tension, or is formed into a shape similar to the nozzle shape due to the influence of high pressure gas.
  • the corners can be shaped efficiently and the device can be simplified.
  • a burr is formed at the corner portion, the laser beam from the laser head is irradiated to the boundary portion between the burr and the product portion, and the high-pressure gas ejected from the gas injection nozzle is said. It is preferable that the burr is sprayed toward the boundary portion to separate the burr from the product portion.
  • the corners can be chamfered at the same time as deburring.
  • the high-pressure gas is air, oxygen, nitrogen, CO 2 gas, an inert gas, or a mixed gas thereof, and as a result of injecting the high-pressure gas into the corner portion, the melt remaining in the molten pool is due to surface tension. It is preferable to be rounded.
  • the tip of the gas injection nozzle is a circular, elliptical, semicircular, rectangular, C-shaped, I-shaped, V-shaped, S-shaped, or W-shaped hole or slit, and the corner portion has the shape of the gas injection nozzle. It is preferable that the shape is shaped according to the shape.
  • the angle from the horizontal direction to the vertical direction of the center line of the gas injection nozzle is 0 to 60 degrees. It is preferable that the gas injection nozzle injects the high-pressure gas into the corner portion in the direction of shaping the corner portion.
  • the corners that are still in a flowing state at the time of shaping the corners tend to be smoothed by the surface tension and the mounding force of the gas.
  • angles of the laser head and the gas injection nozzle from the corner shaping direction are variable.
  • the optimum angle can be adjusted according to the shape, size, material, etc. of the corner.
  • the relative moving speed of the laser head with respect to the object is 1 mm / s to 4000 mm / s
  • the gas injection nozzle is arranged so that the gas injection position is behind the laser irradiation position, and the corners are relative to each other. It is preferable to move.
  • the corners can be shaped stably.
  • the present invention is a corner portion shaping method for shaping a corner portion of an object by using a laser beam, wherein the laser beam is irradiated to the corner portion from the laser head and the corner portion is relatively moved in the corner shaping direction.
  • the melt removing step includes a melting step of melting a corner portion and a melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state to separate a part of the melt from the object.
  • the corner portion is a corner portion shaping method characterized in that the corner portion is solidified in a state without corners due to the surface tension of the melt remaining on the object side.
  • Burrs are formed in the corners, and in the melting step, the laser beam from the laser head is applied to the boundary between the burrs and the product, and at least the boundary is melted.
  • the melt removing step it is preferable that the gas from the gas injection nozzle is injected toward the boundary portion and the burr is separated from the product portion.
  • the present invention is a corner portion shaping method for shaping a corner portion of an object by using a laser beam, wherein the corner portion is irradiated with a laser beam from a laser head and the corner portion is relatively moved in the corner shaping direction.
  • the melt removing step includes a melting step of melting a corner portion and a melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state and separating a part of the melt from the object.
  • the corner portion is a corner portion shaping method characterized in that the melt remaining on the object side is formed into a shape similar to the cross-sectional shape of the gas injection nozzle.
  • the corner portion can be shaped in a short time regardless of the material, the shape of the corner portion, and the presence or absence of burrs. Further, since the end face of the corner portion after shaping is smooth and a smooth curved surface is formed at the corner portion and the edge portion, it is possible to obtain a product having a shape that is gentle on the human body. Further, since deburring can be easily performed and the spot diameter of the laser beam is as fine as several tens of ⁇ m, the corner portion can be chamfered into a curved surface or a complicated shape so precise that post-processing is not required.
  • FIG. 1 It is a perspective view explaining the corner part shaping apparatus 1 in 1st Embodiment of this invention. It is a front view explaining the corner part shaping apparatus 1 in 1st Embodiment of this invention. It is a left side view explaining the corner shaping apparatus 1 in 1st Embodiment of this invention. It is a front view explaining the corner part shaping apparatus 1 (in the process of corner part shaping) in 1st Embodiment of this invention.
  • (A) is a schematic view showing the relationship between the work and the laser head of the present invention
  • (b) is a schematic view showing the relationship between the work and the laser head in the case of ablation processing. It is a photograph of the work after the corner portion is shaped according to the embodiment.
  • Corner shaping device 1 includes a laser oscillator (not shown), a laser head 2 for outputting laser by the laser oscillator, the gas injection nozzle 3 for injecting the high-pressure shielding gas, the object of burrs W V (hereinafter referred to as the workpiece W It is equipped with a fixing jig for fixing) and a control device (not shown).
  • the material of the work W is not limited, and the work W made of various materials such as thermoplastic resin, thermosetting resin, metal, ceramics, stone, and glass can be used.
  • the corner portion shaping device 1 also acts as a deburring device, and at the same time as deburring, the corner portion C is shaped into a curved surface shape.
  • the corner portion shaping apparatus 1 is applicable to a burr W V no workpiece W, it is chamfered to finish a sharp corner portion C in a gentle curved shape.
  • Figure 1-5 the rectangular workpiece W as an example, represents a state in which shaping the corner portion C with a burr W V rising from one side to the vertical.
  • Workpiece W including the Beauty W V and the product portion W P.
  • Boundary B between the burr W V and the product portion W P is a corner portion C.
  • Corner shaping device 1 takes the burr W V, and, shaping the corner portion C burr W V was formed to have a curved shape.
  • a burr removal direction indicated by the arrow in FIGS. 1 and 2 at a predetermined speed The corner portion C is shaped by moving in the Z-axis direction in the figure, which is the corner shaping direction), and deburring.
  • the gas injection position by the gas injection nozzle 3 is located behind the laser irradiation position by the laser head 2 by a predetermined distance (upstream side in the corner shaping direction), that is, the gas injection position is Z with the laser irradiation position.
  • the laser head 2 and the gas injection nozzle 3 are moved so as to follow from behind while maintaining a constant distance in the axial direction (see FIG. 4).
  • the distance between the gas injection location and the laser irradiation position is at each position (boundary B between the burr W V and the product portion W P) corner station C, a pressure of shield gas immediately melted by laser injection It is set in advance so that it will be performed.
  • the moving speed of the laser irradiation position with respect to the work W is preferably 1 mm / s to 4000 mm / s depending on the laser processing conditions and the material of the work W. Further, the moving speed of the gas injection position with respect to the laser irradiation position is preferably 0 mm / s to 1000 mm / s. Preferably, the laser head 2 and the gas injection nozzle 3 are moved so that the gas injection position has the same movement speed as the laser irradiation position.
  • a position adjusting robot provided with a jig for holding both the laser head 2 and the gas injection nozzle 3 has an angle and an initial position of the laser head 2 and the gas injection nozzle 3 by a control means such as a robot controller, a PLC, and a personal computer. It determines the laser head 2 and the gas injection nozzle 3 is moved in the Z axis direction along the burr W V and the corner portion C.
  • the angles of the gas injection nozzle 3 and the laser head 2 can be changed by a control means such as a robot controller, PLC, or a personal computer, or manually.
  • the laser beam 4 from the laser head 2 is condensed by the condenser lens (not shown), is irradiated toward the boundary portion B between the product portion W P and burrs W V of the workpiece W Is adjusted so that.
  • the boundary portion B corresponds to a part of the corner portion C.
  • Laser power and the moving speed of the laser head 2, the moving speed of the laser irradiation position, material and burrs W V of the magnitude of the work W, is determined by the shape of the corner portion C. Even when corners shaping without burrs W V workpiece W, likewise, the laser beam 4 is irradiated to the corner portion C of the object.
  • Laser processing conditions such as laser output, beam spot diameter, and moving speed of laser head 2 are determined.
  • a carbon dioxide laser wavelength 10.6 ⁇ m
  • a thulium laser wavelength about 2 ⁇ m
  • the laser output is preferably 100 to 1000 W
  • the moving speed of the laser head 2 is preferably 10 to 200 mm / s.
  • the beam spot diameter is preferably 0.05 to 0.5 mm.
  • the distance between the laser head 2 and the corner portion C is appropriately adjusted according to the type of laser and the laser head system (type of lens, etc.).
  • FIG. 5 (a) the laser beam 4 a burr W V and the boundary portion between the product portion W P B (i.e., the corner portion C) a laser head 2 so as to irradiate the gas
  • the position of the injection nozzle 3 is adjusted, and the laser beam 4 irradiates toward the corner portion C of the work W.
  • the traveling direction of the laser beam 4 the entire product portion W P of the workpiece W may be present.
  • the laser used in the present invention is to adjust the power density, is not the laser beam 4 is cut or damage the product portion W P of the workpiece W.
  • FIG. 5 (b) for irradiating a laser beam 4 of high power laser to prevent cutting and damage to the product portion W P of the workpiece W beam 4 so as not be exposed to the product portion W P of the workpiece W.
  • corner portion C corner portion, edge portion immediately after deburring is not a smooth curved surface but a flat end surface. (See FIG. 5 (b)).
  • the type of high-pressure gas injected from the gas injection nozzle 3 is preferably oxygen, carbon dioxide, air, nitrogen, argon, helium, or a mixed gas thereof, and is determined by the material of the work W.
  • the work W is made of carbon steel, it is preferable to flow oxygen gas because heat of oxidation reaction is generated and the processing speed is improved.
  • nitrogen or argon is selected.
  • the high-pressure gas, oxidation of the material not only suppressing the combustion or the like, blowing the melt of the molten pool surface burrs W V and corner station C, a responsible for shaping the end face.
  • the pressure of the high-pressure gas injected from the gas injection nozzle 3, the flow rate is appropriately changed by adjusting such pressure regulating valve located upstream of the gas injection nozzle 3, the shape of burr W V, size, material and gas It is determined by the nozzle diameter and the nozzle shape of the injection nozzle 3.
  • Gas ejected is ejected gas pressure 0.1 ⁇ 0.8 MPa, flow rate 5 ⁇ 30L / min are preferred, with sufficient pressure and flow rate from the molten corner portion C (the boundary portion B) separate the burr W V There is.
  • the shape of the corner portion C after shaping is dominated by the surface tension of the melt remaining in the molten pool.
  • the pressure of the high-pressure gas is preferably 0.3 to 0.8 MPa, and the surface tension of the molten material in the molten pool is low.
  • the pressure of the high pressure gas is preferably 0.1 to 0.4 MPa.
  • the nozzle diameter at the ejection port of the gas injection nozzle 3 is preferably 0.1 to 2 mm.
  • the distance between the tip of the gas injection nozzle 3 and the molten pool (boundary portion B) is preferably 5 to 30 mm.
  • the shielding gas is injected into the molten pool from the traveling direction rearward and upward direction, the melt of the corner portion C from the molten pool Pull a part apart.
  • the shield gas may be injected at a low flow rate before starting the irradiation of the laser beam 4 in order to form an atmospheric gas with a non-combustible gas such as nitrogen or an inert gas.
  • Focal Remove length of the laser in order to change the beam spot diameter is preferably changeable, burrs W V by the size and shape or other appropriate determination can be changed. It is preferably ⁇ 20 to +20 mm. Adjust appropriately according to the type of laser and the configuration of the laser head system.
  • Examples of the laser that can be used in the present invention include a semiconductor laser, a fiber laser, a disk laser, a thulium laser, a carbon dioxide gas laser, a YAG laser, and the like, and can be appropriately selected.
  • the mode may be single mode or multimode. Further, an ultrashort pulse YAG laser may be used.
  • the oscillation mode may be a continuous oscillation laser or a pulse oscillation laser.
  • the angle between the gas injection nozzle 3 and the laser head 2 can be determined, the laser output and the moving speed of the laser head 2, the gas pressure from the gas injection nozzle 3 and the gas ejection flow rate can be controlled as follows.
  • a corner portion shaping device 1 Selecting a corner portion shaping device 1 whether to cognitive determination of the shape of burrs W V at use and after obtaining data AI an image input system such as a camera, the operator has previously prepared the shape of the corner portion C visually Select from the items and input them to the control means such as robot controller, PLC, and personal computer. Further, the operator inputs the material or physical properties (melting point, dimensions) of the work W to the control means.
  • the control means has a program for determining the angle between the gas injection nozzle 3 and the laser head 2 based on the conditions. Also, as the control means does not exceed the threshold value of the ablation, and burrs W V is sufficiently melted, as molten pool forms, having a program for determining the moving speed of the laser output and the laser head 2.
  • the laser head 2 the initial position is determined as described above, the laser beam 4 emitted from the laser oscillator is irradiated to the boundary B between the burr W V and the product portion W P, the corner-shaping direction At least the boundary portion B is melted while moving relative to each other. At this time, burr W V may also be melted, all burrs W V is a portion not melted may remain in the solid state.
  • the gas injection nozzle 3 that moves at the same speed in the deburring direction while maintaining a predetermined distance from the laser head 2 melts the high-pressure shield gas. blown in the boundary portion B, blow burr W V and weld pool part of the melt. At this time, the angle from the horizontal line when the gas injection nozzle 3 has a burr removal direction and horizontal toward 0-45 degrees tilt, for blowing laterally to the boundary B, easily burr W V from the boundary portion B Will be removed.
  • the corner shaping device 101 of the second embodiment will be described with reference to FIGS. 9 to 10. Since the corner shaping device 101 basically has the same configuration as the corner shaping device 1, the common description will refer to the illustration and description of the first embodiment and explain the differences. As for the code attached to each element, the corresponding number of the first embodiment is in the 100s. In the first embodiment, the corner portion C has a round edge formed by surface tension, whereas in the second embodiment, the gas injection nozzle 103 has a tip tip 108 in which holes or slits H of various shapes are formed. A shield gas having a higher pressure than that of the first embodiment is injected from the hole or the slit H of the tip tip 108.
  • the corner portion C is formed into a shape similar to the shape of the hole or the slit H of the tip tip 108.
  • Workpiece W includes a burr W V and the product portion W P, boundary B between the burr W V and the product portion W P is a corner portion C.
  • Corner shaping device 101 takes the burr W V, and is shaped so that the corner portion C burr W V has been formed as a smooth planar shape.
  • the laser beam 104 focused by the condenser lens 105 irradiates the corner portion C.
  • the molten pool 106 is formed in the corner portion C.
  • high pressure gas is injected toward the molten pool 106 from the gas injection nozzle 103 to which the tip tip 108 having an I-shaped slit is attached.
  • the high-pressure gas, a part of the melt and vapor of the molten pool 106 is blown, at the same time burr W V is removed, also the surface of the molten pool 106 is pressed by the pressure of the gas is cooled and solidified, the shape of the I The corresponding planar corner portion C is formed.
  • FIG. 10 shows an example of a tip tip 108 having holes or slits H having various shapes.
  • the tip tip 108 has a substantially truncated cone shape with a reduced diameter on the downstream side, and a hole or a slit H is formed at the tip portion.
  • the cross-sectional area of the gas ejection port is preferably 0.02 to 0.1 times that on the inlet side of the tip tip 108. As shown in 108a to 108g of FIG.
  • a high-pressure gas having a pressure of 0.1 MPa to 2 MPa is ejected from the hole or slit H of the tip tip 108.
  • the injected high-pressure gas blows off excess melt from the molten pool 106 formed in the corner portion C by the laser beam 104 irradiated from the laser head 102, and the shape of the surface of the molten pool 106 is the hole of the tip tip 108.
  • the shape is controlled to be the same as that of the slit H.
  • the shape of the corner portion C is affected by various factors such as atmospheric pressure, surface tension, gas pressure of high-pressure gas, gravity, and vibration (induction of liquid), but is above a certain pressure from holes or slits H of various shapes.
  • the high-pressure gas of No. 1 acts on the surface of the molten pool, the pressing force of the high-pressure gas on the surface of the molten pool is large, and the cooling action of the gas is also enhanced. Therefore, the shape of the corner portion C after shaping is more like the tip tip 108 than the surface tension.
  • the shape of the hole or slit H becomes dominant.
  • the pressure of the high-pressure gas is preferably 0.5 to 1.5 MPa, and the pressure of the molten material of the molten pool 106 is preferably 0.5 to 1.5 MPa.
  • the pressure of the high pressure gas is preferably 0.3 to 0.8 MPa.
  • the corner shaping device 101 can be applied even when the work W has no burr Wv, the corner C is irradiated with a laser to form a molten pool 106, and the high pressure gas from the gas injection nozzle 103 is generated. Excess melt can be blown off from the molten pool 106, and the corner portion C can be formed into a desired shape corresponding to the hole or slit H of the tip tip 108.
  • first and second embodiments have been described above, various aspects such as modification and addition of the present invention can be carried out without departing from the spirit of the present invention.
  • it is moved along the laser head 2 and the gas injection nozzle 3 in Bali W V of the workpiece W, by fixing the laser head 2 and the gas injection nozzle 3, the workpiece W You may move the position of.
  • the corner portion C (corresponding to the boundary portion B when there is a burr Wv) is basically melted, but may be partially vaporized.
  • FIG. 6 shows a photograph of the product after deburring obtained as a result of deburring under the above conditions
  • FIG. 7 shows a 100x image of the deburred end portion by a laser microscope.
  • the waveform in FIG. 7 shows the altitude of the surface of the corner portion C.
  • the numerical values in the figure indicate the upper limit value and the lower limit value of the altitude in the measurement range, but the numerical values other than the corner portion C are also picked up.
  • the altitude difference was 0.125 mm. Consequently sharp burrs W V is eliminated, the corner portion C by the surface tension of the molten pool 106, changes as small clean curved surfaces altitude differences.
  • a work W having the same shape was ablated with a high-power laser and deburred.
  • Each condition in the comparative example is as follows. Since the product portion W P itself when irradiated with high-power laser to the workpiece W is disconnected, in the direction as in FIG. 5 (b), was irradiated with laser only in Bari W V.
  • Work material Carbon steel Burr length: 2 mm
  • Laser type Fiber laser Laser output: 500W Laser nozzle movement speed: 60 mm / min Defocus distance: 8 mm Laser beam diameter: 3 mm
  • FIG. 8 shows a 100x image of the end portion after deburring by ablation under the above conditions with a laser microscope.
  • the end face is not rounded and the surface is rough, and secondary burrs are generated around the end face.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A corner part is smoothly shaped in a short period of time. A corner part shaping device 1 that shapes a corner part C of an object using a laser beam 4, wherein the corner part shaping device 1 is characterized by including: a laser head 2 that irradiates the corner part C with the laser beam 4 while moving relative to the corner part C at a prescribed speed in a corner part shaping direction; and a gas spray nozzle 3 that sprays a high-pressure gas at a pressure of 0.1-2.0 MPa for separating at least some molten product, which is from a molten pool produced by the laser beam, from the object while moving relative to the corner part at a prescribed speed in the corner part shaping direction.

Description

コーナー部整形装置及びコーナー部整形方法Corner shaping device and corner shaping method
 本発明は、レーザによる、切削加工部品、成形部品、鋳造品などのコーナー部のバリ取り加工や、面取り加工を行う、コーナー部整形装置およびコーナー部整形方法に関する。 The present invention relates to a corner shaping device and a corner shaping method for performing deburring and chamfering of corners of cut parts, molded parts, cast products, etc. by laser.
 二つ以上の型枠を用いる樹脂成形や、金属の鋳造や切削加工等において、バリが生じることがある。また、加工部品のコーナー部が鋭く角ばったり、凹凸部がある場合があり、このような鋭く鋭角なコーナー部に手が触れた場合、怪我をする等の安全衛生上の問題がある。このような問題を解決するために、従来は、カッター、ロータリバー、ブラシ、サンドペーパー等を用いてバリ取りや面取り加工などのコーナー部の整形を行ってきた。 Burrs may occur in resin molding using two or more molds, metal casting, cutting, etc. In addition, the corners of the processed parts may be sharply angular or have irregularities, and if a hand touches such sharp and sharp corners, there is a safety and health problem such as injury. In order to solve such a problem, conventionally, corner portions such as deburring and chamfering have been shaped by using a cutter, a rotary bar, a brush, sandpaper and the like.
 しかしながら、従来のバリ取りや面取り加工は人の手によるため時間がかかる上に、樹脂等の柔らかい素材に発生したバリに関してはバリ自体のコシが柔らかく刃物から逃げてしまい切除が難しいという問題があった。また、バリの除去中や面取り加工中に切りくずが空中に舞う事による安全衛生上の問題があった。 However, conventional deburring and chamfering are time-consuming because they are done manually, and there is a problem that burrs generated on soft materials such as resin are difficult to cut because the burrs themselves are soft and escape from the blade. It was. In addition, there is a safety and health problem due to chips flying in the air during deburring and chamfering.
 バリ取りに関しては、レーザを用いたバリ取り装置が提案されている(例えば、特許文献1~3)。これらのバリ取り装置では、バリにレーザビームを照射し、金属やその他バリ取り対象物の溶融温度をはるかに超えた温度にして気化やプラズマ化させて消滅させる、アブレーションによりバリを除去している。 Regarding deburring, a deburring device using a laser has been proposed (for example, Patent Documents 1 to 3). In these deburring devices, burrs are removed by ablation, which irradiates the burrs with a laser beam and vaporizes or plasmaizes the burrs to a temperature far exceeding the melting temperature of metals and other deburring objects. ..
特開2008-114458号公報Japanese Unexamined Patent Publication No. 2008-114458 特開昭64-18590号公報Japanese Unexamined Patent Publication No. 64-18590 特開2018-158375号公報JP-A-2018-158375
 しかしながら、レーザによるアブレーションによりバリ取りをする方法では、バリ除去後のコーナー部端面が粗く、二次バリが発生してしまうという問題があった。また、コーナー部の面取りは、主に機械切削加工により、平らで滑らかな面に仕上げているが、例えば曲面などの平面でない形状を持つコーナー部への仕上げは困難であった。さらに、バリ取りや面取り加工等のコーナー部の整形を人の手によらず短時間で精密に行いたいという要望がある。 However, the method of deburring by ablation with a laser has a problem that the end face of the corner portion after deburring is rough and secondary burrs are generated. Further, the chamfering of the corner portion is finished to be a flat and smooth surface mainly by machine cutting, but it is difficult to finish the corner portion having a non-planar shape such as a curved surface. Furthermore, there is a demand for precise shaping of corners such as deburring and chamfering in a short time without human intervention.
 そこで、本発明では、集光性のよい熱源であるレーザを用いて、金属や樹脂、セラミックス、石材、ガラス等の材料から成る対象物の鋭いコーナー部を、滑らかな曲面形状や平滑な面を含む任意の断面形状のコーナー部になるように、精密に、素早く整形することを目的とする。さらに、コーナー部に形成されたバリを容易に素早く取り、同時に滑らかな曲面や各種形状のコーナー部を形成することを目的とする。 Therefore, in the present invention, a laser, which is a heat source having a good light-collecting property, is used to create a sharp corner portion of an object made of a material such as metal, resin, ceramics, stone, or glass, with a smooth curved surface or a smooth surface. The purpose is to precisely and quickly shape the corners so that they have any cross-sectional shape including. Further, it is an object of the present invention to easily and quickly remove burrs formed in corners, and at the same time to form smooth curved surfaces and corners of various shapes.
 本発明は、レーザビームを用いて対象物のコーナー部の整形をするコーナー部整形装置であって、前記コーナー部整形装置は、前記コーナー部に対して、コーナー部整形方向に所定速度で相対的に移動しながら、レーザビームを前記コーナー部に照射するレーザヘッドと、前記コーナー部に対して、コーナー部整形方向に所定速度で相対的に移動しながら、レーザビームにより生じた溶融池から少なくとも一部の溶融物を前記対象物から引き離すための0.1MPa~2.0MPaの高圧ガスを噴射する、ガス噴射ノズルとを含むことを特徴とするコーナー部整形装置である。 The present invention is a corner shaping device that shapes a corner portion of an object by using a laser beam, and the corner shaping device is relative to the corner portion in a corner shaping direction at a predetermined speed. While moving relative to the laser head that irradiates the corner portion with the laser beam and the corner portion at a predetermined speed in the corner shaping direction, at least one from the molten pool generated by the laser beam. It is a corner portion shaping apparatus including a gas injection nozzle that injects a high-pressure gas of 0.1 MPa to 2.0 MPa for pulling the melt of the portion from the object.
 これによれば、コーナー部を溶融させ、その直後に高圧ガスによりコーナー部の余分な溶融物を吹き飛ばすことができるため、容易に、短時間でコーナー部の整形ができる。吹き飛ばされずに残った少量の溶融物はその表面張力により丸みのある滑らかなコーナー部が形成されるか、高圧ガスの影響によりノズル形状と同様の形状に形成される。効率的にコーナー部の整形ができ、装置もシンプルにできる。 According to this, the corner portion can be melted, and immediately after that, the excess melt in the corner portion can be blown off by the high pressure gas, so that the corner portion can be easily shaped in a short time. The small amount of melt that remains without being blown off is formed into a rounded and smooth corner portion due to its surface tension, or is formed into a shape similar to the nozzle shape due to the influence of high pressure gas. The corners can be shaped efficiently and the device can be simplified.
 前記コーナー部にはバリが形成されており、前記レーザヘッドからの前記レーザビームは前記バリと製品部との間の境界部に照射され、前記ガス噴射ノズルから噴射された前記高圧ガスは、前記境界部に向けて噴射され、前記バリを前記製品部から引き離すことが好ましい。 A burr is formed at the corner portion, the laser beam from the laser head is irradiated to the boundary portion between the burr and the product portion, and the high-pressure gas ejected from the gas injection nozzle is said. It is preferable that the burr is sprayed toward the boundary portion to separate the burr from the product portion.
 これによれば、バリ取りと同時にコーナー部の面取り加工が出来る。 According to this, the corners can be chamfered at the same time as deburring.
 前記高圧ガスは空気、酸素、窒素、CO2ガス、不活性ガス、またはこれらの混合ガスであり、前記高圧ガスを前記コーナー部に噴射した結果、前記溶融池に残った溶融物は表面張力により丸くなることが好ましい。 The high-pressure gas is air, oxygen, nitrogen, CO 2 gas, an inert gas, or a mixed gas thereof, and as a result of injecting the high-pressure gas into the corner portion, the melt remaining in the molten pool is due to surface tension. It is preferable to be rounded.
 前記ガス噴射ノズルの先端部は円形、楕円、半円、矩形、C字形、I字形、V字形、S字形、またはW字形の孔またはスリットであり、前記コーナー部は前記ガス噴射ノズルの形状に合わせた形状で整形されることが好ましい。 The tip of the gas injection nozzle is a circular, elliptical, semicircular, rectangular, C-shaped, I-shaped, V-shaped, S-shaped, or W-shaped hole or slit, and the corner portion has the shape of the gas injection nozzle. It is preferable that the shape is shaped according to the shape.
 前記レーザヘッドは前記対象物に向けて前記レーザビームを照射し、前記コーナー部整形方向を水平とした場合、前記ガス噴射ノズルの中心線の水平方向から垂直方向に向かう角度が、0~60度であり、前記ガス噴射ノズルが前記コーナー部に前記高圧ガスを前記コーナー部整形方向に向かって噴射することが好ましい。 When the laser head irradiates the laser beam toward the object and the corner shaping direction is horizontal, the angle from the horizontal direction to the vertical direction of the center line of the gas injection nozzle is 0 to 60 degrees. It is preferable that the gas injection nozzle injects the high-pressure gas into the corner portion in the direction of shaping the corner portion.
 これによれば、コーナー部整形時にまだ流動状態であるコーナー部が表面張力およびガスの墳射力により滑らかになりやすい。 According to this, the corners that are still in a flowing state at the time of shaping the corners tend to be smoothed by the surface tension and the mounding force of the gas.
 前記レーザヘッドおよび前記ガス噴射ノズルの、コーナー部整形方向からの角度が可変であることが好ましい。 It is preferable that the angles of the laser head and the gas injection nozzle from the corner shaping direction are variable.
 これによれば、コーナーの形状、大きさ、材質等により、最適な角度を調整できる。 According to this, the optimum angle can be adjusted according to the shape, size, material, etc. of the corner.
 前記レーザヘッドの前記対象物に対する相対移動速度は1mm/s~4000mm/sであり、前記ガス噴射ノズルは、ガス噴射位置がレーザ照射位置よりも後方となるように配置され、前記コーナー部を相対移動することが好ましい。 The relative moving speed of the laser head with respect to the object is 1 mm / s to 4000 mm / s, the gas injection nozzle is arranged so that the gas injection position is behind the laser irradiation position, and the corners are relative to each other. It is preferable to move.
 これによれば、安定的にコーナーを整形することができる。 According to this, the corners can be shaped stably.
 前記コーナー部に形成されたバリの形状、バリの大きさ、バリの材質の条件から、前記レーザヘッドおよび前記ガス噴射ノズルの前記バリに対する角度、前記対象物に対する前記レーザヘッドおよび前記ガス噴射ノズルの相対移動速度、およびレーザ出力を決定するプログラムを有することが好ましい。 From the conditions of the shape of the burr formed in the corner portion, the size of the burr, and the material of the burr, the angle of the laser head and the gas injection nozzle with respect to the burr, and the laser head and the gas injection nozzle with respect to the object. It is preferable to have a program that determines the relative moving speed and the laser output.
 また、本発明は、レーザビームを用いて対象物のコーナー部を整形するコーナー部整形方法であって、レーザヘッドからレーザビームを前記コーナー部に照射し、コーナー部整形方向に相対移動させながら前記コーナー部を溶融させる溶融工程と、溶融状態の前記コーナー部にガス噴射ノズルからガスを噴射し、溶融物の一部を前記対象物から引き離す溶融物除去工程と、を含み、前記溶融物除去工程後に、前記コーナー部は、前記対象物側に残った溶融物の表面張力により角がない状態で固化することを特徴とする、コーナー部整形方法である。 Further, the present invention is a corner portion shaping method for shaping a corner portion of an object by using a laser beam, wherein the laser beam is irradiated to the corner portion from the laser head and the corner portion is relatively moved in the corner shaping direction. The melt removing step includes a melting step of melting a corner portion and a melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state to separate a part of the melt from the object. Later, the corner portion is a corner portion shaping method characterized in that the corner portion is solidified in a state without corners due to the surface tension of the melt remaining on the object side.
 前記コーナー部にはバリが形成されており、前記溶融工程において、前記レーザヘッドからの前記レーザビームが前記バリと製品部との間の境界部に照射され、少なくとも前記境界部が溶融され、前記溶融物除去工程において、前記ガス噴射ノズルからのガスが前記境界部に向けて噴射され、前記バリが前記製品部から引き離されることが好ましい。 Burrs are formed in the corners, and in the melting step, the laser beam from the laser head is applied to the boundary between the burrs and the product, and at least the boundary is melted. In the melt removing step, it is preferable that the gas from the gas injection nozzle is injected toward the boundary portion and the burr is separated from the product portion.
 また、本発明は、レーザビームを用いて対象物のコーナー部を整形するコーナー部整形方法であって、レーザヘッドからレーザビームを前記コーナー部に照射し、コーナー部整形方向に相対移動させながら前記コーナー部を溶融させる溶融工程と、溶融状態の前記コーナー部にガス噴射ノズルからガスを噴射し、溶融物の一部を前記対象物から引き離す溶融物除去工程と、を含み、前記溶融物除去工程後に、前記コーナー部は、前記対象物側に残った溶融物がガス噴射ノズルの断面形状に近似した形状で成形されることを特徴とする、コーナー部整形方法である。 Further, the present invention is a corner portion shaping method for shaping a corner portion of an object by using a laser beam, wherein the corner portion is irradiated with a laser beam from a laser head and the corner portion is relatively moved in the corner shaping direction. The melt removing step includes a melting step of melting a corner portion and a melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state and separating a part of the melt from the object. Later, the corner portion is a corner portion shaping method characterized in that the melt remaining on the object side is formed into a shape similar to the cross-sectional shape of the gas injection nozzle.
 本発明によれば、材質、コーナー部の形状、バリの有無にかかわらず、短時間でコーナー部の整形が可能になる。また、コーナー部の整形後の端面が滑らかであり、角部、縁部となるコーナー部に滑らかな曲面が形成されるため、人体に優しい形状の製品を得ることができる。また、容易にバリ取りができ、レーザビームのスポット径が数10μmと微細なため、コーナー部を後加工が不要なほど精密な曲面や複雑形状に面取り加工することができる。 According to the present invention, the corner portion can be shaped in a short time regardless of the material, the shape of the corner portion, and the presence or absence of burrs. Further, since the end face of the corner portion after shaping is smooth and a smooth curved surface is formed at the corner portion and the edge portion, it is possible to obtain a product having a shape that is gentle on the human body. Further, since deburring can be easily performed and the spot diameter of the laser beam is as fine as several tens of μm, the corner portion can be chamfered into a curved surface or a complicated shape so precise that post-processing is not required.
本発明の第1実施形態におけるコーナー部整形装置1を説明する斜視図である。It is a perspective view explaining the corner part shaping apparatus 1 in 1st Embodiment of this invention. 本発明の第1実施形態におけるコーナー部整形装置1を説明する正面図である。It is a front view explaining the corner part shaping apparatus 1 in 1st Embodiment of this invention. 本発明の第1実施形態におけるコーナー部整形装置1を説明する左側面図である。It is a left side view explaining the corner shaping apparatus 1 in 1st Embodiment of this invention. 本発明の第1実施形態におけるコーナー部整形装置1(コーナー部整形途中)を説明する正面図である。It is a front view explaining the corner part shaping apparatus 1 (in the process of corner part shaping) in 1st Embodiment of this invention. (a)は本発明のワークとレーザヘッドとの関係を示す概略図、(b)はアブレーション加工の場合のワークとレーザヘッドとの関係を示す概略図である。(A) is a schematic view showing the relationship between the work and the laser head of the present invention, and (b) is a schematic view showing the relationship between the work and the laser head in the case of ablation processing. 実施例によりコーナー部整形加工した後のワークの写真である。It is a photograph of the work after the corner portion is shaped according to the embodiment. 実施例によりコーナー部整形加工した後のコーナー部整形加工部(縁部)のレーザ顕微鏡による100倍画像である。It is a 100 times image by the laser microscope of the corner part shaping processing part (edge part) after the corner part shaping processing by Example. 比較例によりコーナー部整形加工した後のコーナー部整形加工部(縁部)のレーザ顕微鏡による100倍画像である。It is a 100 times image by the laser microscope of the corner part shaping part (edge part) after the corner part shaping processing by the comparative example. 本発明の第2実施形態におけるコーナー部C整形を説明する図である。It is a figure explaining the corner part C shaping in the 2nd Embodiment of this invention. 本発明の第2実施形態の先端チップの正面図、側面図、および斜視図である。It is a front view, a side view, and a perspective view of the tip of the tip of the 2nd Embodiment of this invention.
 以下、図1~5を参照しながら、本発明の好ましい第1実施形態について説明する。コーナー部整形装置1は、図示しないレーザ発振器と、レーザ発振器によりレーザを出力するレーザヘッド2と、高圧のシールドガスを噴射するガス噴射ノズル3、バリWのある対象物(以下、ワークWという。)を固定する固定治具、および図示しない制御装置を備えている。ワークWの材料は限定されず、熱可塑性樹脂、熱硬化性樹脂、金属、セラミックス、石材、ガラス等、各種材料から成るワークWに対応が可能である。第1実施形態においては、コーナー部整形装置1は、バリ取り装置としても作用し、バリ取りと同時に、コーナー部Cを曲面形状に整形する。なお、コーナー部整形装置1は、バリWがないワークWにも適用可能であり、鋭角なコーナー部Cをなだらかな曲面形状に仕上げる面取り加工ができる。 Hereinafter, a preferred first embodiment of the present invention will be described with reference to FIGS. 1 to 5. Corner shaping device 1 includes a laser oscillator (not shown), a laser head 2 for outputting laser by the laser oscillator, the gas injection nozzle 3 for injecting the high-pressure shielding gas, the object of burrs W V (hereinafter referred to as the workpiece W It is equipped with a fixing jig for fixing) and a control device (not shown). The material of the work W is not limited, and the work W made of various materials such as thermoplastic resin, thermosetting resin, metal, ceramics, stone, and glass can be used. In the first embodiment, the corner portion shaping device 1 also acts as a deburring device, and at the same time as deburring, the corner portion C is shaped into a curved surface shape. Incidentally, the corner portion shaping apparatus 1 is applicable to a burr W V no workpiece W, it is chamfered to finish a sharp corner portion C in a gentle curved shape.
 図1~5は、例として直方体のワークWに、一辺から垂直に立ち上がるバリWのあるコーナー部Cを整形している状態を表す。ワークWは、バリWと製品部Wを含む。バリWと製品部Wの間の境界部Bはコーナー部Cとなる。コーナー部整形装置1は、バリWを取り、かつ、バリWが形成されていたコーナー部Cを曲面形状となるように整形する。図1の矢印で示すように、レーザヘッド2およびガス噴射ノズル3はそれぞれのバリWおよびコーナー部Cに対する角度を保ったまま、所定速度で図1、2中の矢印で示すバリ除去方向(コーナー部整形方向)である図中Z軸方向に移動し、バリ取りを行い、コーナー部Cの整形をする。 Figure 1-5 the rectangular workpiece W as an example, represents a state in which shaping the corner portion C with a burr W V rising from one side to the vertical. Workpiece W, including the Bali W V and the product portion W P. Boundary B between the burr W V and the product portion W P is a corner portion C. Corner shaping device 1 takes the burr W V, and, shaping the corner portion C burr W V was formed to have a curved shape. As shown by the arrows in FIG. 1, while the laser head 2 and the gas injection nozzle 3 was maintained angles for each validator W V and corner station C, a burr removal direction indicated by the arrow in FIGS. 1 and 2 at a predetermined speed ( The corner portion C is shaped by moving in the Z-axis direction in the figure, which is the corner shaping direction), and deburring.
 本実施形態では、ガス噴射ノズル3によるガス噴射位置がレーザヘッド2によるレーザ照射位置よりも所定距離後方(コーナー部整形方向の上流側)になるよう、すなわち、ガス噴射位置がレーザ照射位置とZ軸方向において一定の距離を保って後方から追いかけるように、レーザヘッド2およびガス噴射ノズル3を移動させている(図4参照)。ガス噴射位置とレーザ照射位置との間の距離は、コーナー部C(バリWと製品部Wとの間の境界部B)の各位置において、レーザにより溶融直後に高圧のシールドガスが噴射されるよう、予め設定する。 In the present embodiment, the gas injection position by the gas injection nozzle 3 is located behind the laser irradiation position by the laser head 2 by a predetermined distance (upstream side in the corner shaping direction), that is, the gas injection position is Z with the laser irradiation position. The laser head 2 and the gas injection nozzle 3 are moved so as to follow from behind while maintaining a constant distance in the axial direction (see FIG. 4). The distance between the gas injection location and the laser irradiation position is at each position (boundary B between the burr W V and the product portion W P) corner station C, a pressure of shield gas immediately melted by laser injection It is set in advance so that it will be performed.
 レーザ照射位置のワークWに対する移動速度はレーザ加工条件およびワークWの材質などにより、1mm/s~4000mm/sであることが好ましい。また、ガス噴射位置のレーザ照射位置に対する移動速度は0mm/s~1000mm/sであることが好ましい。好ましくは、ガス噴射位置がレーザ照射位置と同じ移動速度となるように、レーザヘッド2およびガス噴射ノズル3を移動させる。好ましくは、レーザヘッド2およびガス噴射ノズル3両方を保持する治具を備えた位置調整ロボットが、ロボットコントローラー、PLC、パソコン等の制御手段により、レーザヘッド2およびガス噴射ノズル3の角度、初期位置を決定し、バリWおよびコーナー部Cに沿ってレーザヘッド2およびガス噴射ノズル3をZ軸方向に移動させる。 The moving speed of the laser irradiation position with respect to the work W is preferably 1 mm / s to 4000 mm / s depending on the laser processing conditions and the material of the work W. Further, the moving speed of the gas injection position with respect to the laser irradiation position is preferably 0 mm / s to 1000 mm / s. Preferably, the laser head 2 and the gas injection nozzle 3 are moved so that the gas injection position has the same movement speed as the laser irradiation position. Preferably, a position adjusting robot provided with a jig for holding both the laser head 2 and the gas injection nozzle 3 has an angle and an initial position of the laser head 2 and the gas injection nozzle 3 by a control means such as a robot controller, a PLC, and a personal computer. It determines the laser head 2 and the gas injection nozzle 3 is moved in the Z axis direction along the burr W V and the corner portion C.
 ワークWの正面視(図2参照)において、バリ整形方向を水平とした場合の、すなわち、コーナー部Cの稜線を水平とした場合の、YZ平面におけるレーザヘッド2の中心線の垂直方向(Y軸方向)からの角度θ1、YZ平面におけるガス噴射ノズル3の中心線の水平方向(Z軸逆方向)からの角度θ2、側面視(図3参照)において、XY平面におけるレーザヘッド2の中心線の垂直方向(Y軸方向)からの角度θ3、XY平面におけるガス噴射ノズル3の中心線の水平方向(X軸方向)からの角度θ4は、コーナー部CやバリWの形状、大きさにより適宜変更可能である。θ1は0~45度、θ2は0~60度、θ3は30~60度、θ4は30~60度が好ましい。さらに、θ2は0~45度がより好ましい。ロボットコントローラー、PLC、パソコン等の制御手段もしくは手動により、ガス噴射ノズル3とレーザヘッド2の角度がそれぞれ変更できる。 In the front view of the work W (see FIG. 2), when the burr shaping direction is horizontal, that is, when the ridgeline of the corner portion C is horizontal, the vertical direction (Y) of the center line of the laser head 2 in the YZ plane. The angle θ1 from the axial direction), the angle θ2 from the horizontal direction (opposite direction of the Z axis) of the center line of the gas injection nozzle 3 in the YZ plane, and the center line of the laser head 2 in the XY plane in the side view (see FIG. 3). angle θ3 from the vertical direction (Y axis direction) of the angle θ4 from the horizontal direction (X axis direction) of the center line of the gas injection nozzle 3 in the XY plane, the shape of the corner portion C and the burr W V, depending on the size It can be changed as appropriate. It is preferable that θ1 is 0 to 45 degrees, θ2 is 0 to 60 degrees, θ3 is 30 to 60 degrees, and θ4 is 30 to 60 degrees. Further, θ2 is more preferably 0 to 45 degrees. The angles of the gas injection nozzle 3 and the laser head 2 can be changed by a control means such as a robot controller, PLC, or a personal computer, or manually.
 図1に示されるように、レーザヘッド2からのレーザビーム4は図示しない集光レンズにより集光され、ワークWの製品部WとバリWとの間の境界部Bに向けて照射するように調整される。境界部Bは、コーナー部Cの一部に相当する。レーザの出力および、レーザヘッド2の移動速度、レーザ照射位置の移動速度は、ワークWの材質やバリWの大きさ、コーナー部Cの形状等によって決定する。なお、バリWがないワークWのコーナー部整形の場合でも、同様に、レーザビーム4は対象物のコーナー部Cに照射される。 As shown in FIG. 1, the laser beam 4 from the laser head 2 is condensed by the condenser lens (not shown), is irradiated toward the boundary portion B between the product portion W P and burrs W V of the workpiece W Is adjusted so that. The boundary portion B corresponds to a part of the corner portion C. Laser power and the moving speed of the laser head 2, the moving speed of the laser irradiation position, material and burrs W V of the magnitude of the work W, is determined by the shape of the corner portion C. Even when corners shaping without burrs W V workpiece W, likewise, the laser beam 4 is irradiated to the corner portion C of the object.
 本実施形態では、従来技術であるアブレーションさせるよりはるかに低いエネルギー密度のレーザビーム4を与え、コーナー部C(バリWがある場合は境界部Bに相当)近傍の材料を溶融させ、溶融物は溶融池を形成し、高圧噴射ガスにより溶融池内の一部の溶融物やバリWを吹き飛ばすことに特徴があり、その後の溶融池に残った溶融物がその表面張力により丸く、滑らかになる。レーザ照射によるエネルギー密度が閾値を超えれば、アブレーションが起きてしまうため、その閾値を超えないように、かつ、コーナー部C(境界部B)が十分溶融できるように、レーザの種類(波長)、レーザ出力、ビームスポット径およびレーザヘッド2の移動速度などのレーザ加工条件を決定する。例えば、樹脂のコーナー整形では、レーザ波長の長い炭酸ガスレーザ(波長10.6μm)やツリウムレーザ(波長約2μm)を用いることが好ましい。レーザ出力は、100~1000Wが好ましく、レーザヘッド2の移動速度は10~200mm/sが好ましい。ビームスポット径は0.05~0.5mmが好ましい。 In the present embodiment, given a laser beam 4 of much lower energy density than is ablated is prior art, (if there are burrs W V corresponding to the boundary portion B) corner portion C to melt the vicinity of the material, the melt forms a molten pool, is characterized in that blow the melt and burrs W V of part of the molten weld pool by a high pressure injection gas, melt remaining in the subsequent molten pool round by its surface tension, smooth .. If the energy density due to laser irradiation exceeds the threshold value, ablation will occur. Therefore, the type of laser (wavelength), so that the corner portion C (boundary portion B) can be sufficiently melted so as not to exceed the threshold value. Laser processing conditions such as laser output, beam spot diameter, and moving speed of laser head 2 are determined. For example, in resin corner shaping, it is preferable to use a carbon dioxide laser (wavelength 10.6 μm) or a thulium laser (wavelength about 2 μm) having a long laser wavelength. The laser output is preferably 100 to 1000 W, and the moving speed of the laser head 2 is preferably 10 to 200 mm / s. The beam spot diameter is preferably 0.05 to 0.5 mm.
 レーザヘッド2とコーナー部Cとの距離はレーザの種類やレーザヘッドシステム(レンズの種類等)により適切に調整する。 The distance between the laser head 2 and the corner portion C is appropriately adjusted according to the type of laser and the laser head system (type of lens, etc.).
 本発明においては、図5(a)に示すように、レーザビーム4をバリWと製品部Wの間の境界部B(すなわち、コーナー部C)に照射するようにレーザヘッド2とガス噴射ノズル3の位置が調整され、レーザビーム4はワークWのコーナー部Cに向かって照射する。この時、レーザビーム4の進行方向に、ワークWの製品部W全体が存在してよい。この際、本発明で用いるレーザは出力密度を調整しているため、レーザビーム4がワークWの製品部Wを切断や損傷することがない。それに対して、従来技術であるアブレーションの場合には、図5(b)に示すように、高出力のレーザビーム4を照射するため、ワークWの製品部Wの切断および損傷を防ぐためにレーザビーム4はワークWの製品部Wが当たらないようにする。 In the present invention, FIG. 5 (a), the laser beam 4 a burr W V and the boundary portion between the product portion W P B (i.e., the corner portion C) a laser head 2 so as to irradiate the gas The position of the injection nozzle 3 is adjusted, and the laser beam 4 irradiates toward the corner portion C of the work W. At this time, the traveling direction of the laser beam 4, the entire product portion W P of the workpiece W may be present. At this time, since the laser used in the present invention is to adjust the power density, is not the laser beam 4 is cut or damage the product portion W P of the workpiece W. In contrast, in the case of ablation is prior art, as shown in FIG. 5 (b), for irradiating a laser beam 4 of high power laser to prevent cutting and damage to the product portion W P of the workpiece W beam 4 so as not be exposed to the product portion W P of the workpiece W.
 本実施形態ではレーザビーム4を製品のコーナー部Cに対して照射し、コーナー部Cやコーナー部CにあるバリWを溶融させ、溶融池を作る。この溶融池表面に高圧ガスを進行方向の後方かつ上方向から噴射し、溶融池表面の溶融物を吹き飛ばす。その直後には製品のコーナー部C端面全体には溶融物が一部残った状態であり、残存する溶融物は表面張力により滑らかな端面となる。また、バリWが形成されていたコーナー部Cは表面張力により側面視で丸いエッジとなる。(図5(a)参照)。一方、アブレーションによりバリ取りした場合は、レーザ切断のような状態となり、バリ取り直後のコーナー部C(角部、縁部)は滑らかな曲面ではなく、また平坦な端面になる。(図5(b)参照)。 In this embodiment it is irradiated with a laser beam 4 with respect to the corner portion C of the product, to melt the burrs W V in the corner portion C and the corner portion C, forming a molten pool. High-pressure gas is injected onto the surface of the molten pool from behind and above in the traveling direction to blow off the melt on the surface of the molten pool. Immediately after that, a part of the melt remains on the entire corner C end face of the product, and the remaining melt becomes a smooth end face due to surface tension. Further, a corner portion C burr W V has been formed becomes rounded edges when viewed from the side due to surface tension. (See FIG. 5 (a)). On the other hand, when deburring is performed by ablation, a state similar to laser cutting occurs, and the corner portion C (corner portion, edge portion) immediately after deburring is not a smooth curved surface but a flat end surface. (See FIG. 5 (b)).
 ガス噴射ノズル3から噴射される高圧ガスの種類は、酸素、炭酸ガス、空気、窒素、アルゴン、ヘリウムおよびこれらの混合ガスが好ましく、ワークWの材料によって決定する。例えば、ワークWが炭素鋼製の場合は、酸素ガスを流すと酸化反応熱が生じて、加工速度が向上するので好ましい。ワークWが可燃性の樹脂などでは、窒素やアルゴンを選択する。本発明において、高圧ガスは、材料の酸化、燃焼等を抑えるだけではなく、バリWやコーナー部Cの溶融池表面の溶融物を吹き飛ばし、端面を整形する役割を担う。 The type of high-pressure gas injected from the gas injection nozzle 3 is preferably oxygen, carbon dioxide, air, nitrogen, argon, helium, or a mixed gas thereof, and is determined by the material of the work W. For example, when the work W is made of carbon steel, it is preferable to flow oxygen gas because heat of oxidation reaction is generated and the processing speed is improved. When the work W is a flammable resin or the like, nitrogen or argon is selected. In the invention, the high-pressure gas, oxidation of the material, not only suppressing the combustion or the like, blowing the melt of the molten pool surface burrs W V and corner station C, a responsible for shaping the end face.
 ガス噴射ノズル3から噴射される高圧ガスの圧力、流量は、ガス噴射ノズル3の上流に位置する圧力調整弁等の調整により適宜変更可能であり、バリWの形状、大きさ、材質及びガス噴射ノズル3のノズル径およびノズル形状によって決定する。噴出されるガスは、噴出ガス圧力0.1~0.8MPa、流量5~30L/分が好ましく、溶融したコーナー部C(境界部B)からバリWを引き離すのに十分な圧力と流量を有している。第1実施形態においては、整形後のコーナー部Cの形状は、溶融池に残った溶融物の表面張力が支配的に作用する。溶融池の溶融材料の表面張力が高い(1000~2000dynes/cm)場合、例えば鉄の場合は、高圧ガスの圧力は0.3~0.8MPaが好ましく、溶融池の溶融材料の表面張力が低い(300~999dynes/cm)場合、例えば、アルミニウム合金の場合には、高圧ガスの圧力は0.1~0.4MPaが好ましい。 The pressure of the high-pressure gas injected from the gas injection nozzle 3, the flow rate is appropriately changed by adjusting such pressure regulating valve located upstream of the gas injection nozzle 3, the shape of burr W V, size, material and gas It is determined by the nozzle diameter and the nozzle shape of the injection nozzle 3. Gas ejected is ejected gas pressure 0.1 ~ 0.8 MPa, flow rate 5 ~ 30L / min are preferred, with sufficient pressure and flow rate from the molten corner portion C (the boundary portion B) separate the burr W V There is. In the first embodiment, the shape of the corner portion C after shaping is dominated by the surface tension of the melt remaining in the molten pool. When the surface tension of the molten material in the molten pool is high (1000 to 2000 dynes / cm), for example, in the case of iron, the pressure of the high-pressure gas is preferably 0.3 to 0.8 MPa, and the surface tension of the molten material in the molten pool is low. In the case of (300 to 999 dynes / cm), for example, in the case of an aluminum alloy, the pressure of the high pressure gas is preferably 0.1 to 0.4 MPa.
 ガス噴射ノズル3の噴出出口におけるノズル径は0.1~2mmが好ましい。ガス噴射ノズル3の先端と溶融池(境界部B)との間の距離は、5~30mmが好ましい。上述したように、高圧のシールドガスはコーナー部Cの稜線に対して0~60度(θ2)で噴射されるため、コーナー部Cの溶融池表面に進行方向後方かつ上方向から溶融物の一部やバリWを引き離す。なお、バリWがないワークWの面取り加工等のコーナー部整形の場合でも、同様に、シールドガスは進行方向後方かつ上方向から溶融池に噴射され、溶融池からコーナー部Cの溶融物の一部を引き離す。 The nozzle diameter at the ejection port of the gas injection nozzle 3 is preferably 0.1 to 2 mm. The distance between the tip of the gas injection nozzle 3 and the molten pool (boundary portion B) is preferably 5 to 30 mm. As described above, since the high-pressure shield gas is injected at 0 to 60 degrees (θ2) with respect to the ridgeline of the corner portion C, one of the melts is injected onto the surface of the molten pool of the corner portion C from the rear and above in the traveling direction. separate the parts and burrs W V. Even if burrs W V no workpiece W chamfered like corner shapes in the same manner, the shielding gas is injected into the molten pool from the traveling direction rearward and upward direction, the melt of the corner portion C from the molten pool Pull a part apart.
 なお、シールドガスは、窒素や不活性化ガスの不燃ガスにより雰囲気ガスを形成するために、レーザビーム4の照射を始める前に低い流量で噴射してもよい。 The shield gas may be injected at a low flow rate before starting the irradiation of the laser beam 4 in order to form an atmospheric gas with a non-combustible gas such as nitrogen or an inert gas.
 レーザの焦点はずし距離は、ビームスポット径を変更するために、変更可能であることが好ましく、バリWの大きさや形状等により、適宜決定し、変更できる。好ましくは、-20~+20mmである。レーザの種類、レーザヘッドシステムの構成により適切に調整する。 Focal Remove length of the laser, in order to change the beam spot diameter is preferably changeable, burrs W V by the size and shape or other appropriate determination can be changed. It is preferably −20 to +20 mm. Adjust appropriately according to the type of laser and the configuration of the laser head system.
 本発明に使用できるレーザの種類としては、半導体レーザ、ファイバーレーザ、ディスクレーザ、ツリウムレーザ、炭酸ガスレーザ、YAGレーザ等が挙げられ、適宜選択可能である。モードはシングルモードでもマルチモードでもよい。また、超短パルスYAGレーザでもよい。発振モードとしては、連続発振レーザでも、パルス発振レーザでもよい。 Examples of the laser that can be used in the present invention include a semiconductor laser, a fiber laser, a disk laser, a thulium laser, a carbon dioxide gas laser, a YAG laser, and the like, and can be appropriately selected. The mode may be single mode or multimode. Further, an ultrashort pulse YAG laser may be used. The oscillation mode may be a continuous oscillation laser or a pulse oscillation laser.
 上記のガス噴射ノズル3とレーザヘッド2の角度の決定や、レーザ出力およびレーザヘッド2の移動速度、ガス噴射ノズル3からのガス圧やガス噴出流量は、次のように制御することができる。 The angle between the gas injection nozzle 3 and the laser head 2 can be determined, the laser output and the moving speed of the laser head 2, the gas pressure from the gas injection nozzle 3 and the gas ejection flow rate can be controlled as follows.
 コーナー部整形装置1がカメラなどの画像入力システムを使用しデータを取得後AIにてバリWの形状の認知判断を行うか、作業者が目視によりコーナー部Cの形状を予め用意された選択項目の中から選択し、それをロボットコントローラー、PLC、パソコン等の制御手段に入力する。また、作業者が制御手段にワークWの材料または物性(融点、寸法)を入力する。制御手段は、その条件を基に、ガス噴射ノズル3とレーザヘッド2の角度を決定するプログラムを有する。また、制御手段が上記アブレーションの閾値を超えないように、かつバリWが十分に溶融し、溶融池が形成するように、レーザ出力およびレーザヘッド2の移動速度を決定するプログラムを有する。 Selecting a corner portion shaping device 1 whether to cognitive determination of the shape of burrs W V at use and after obtaining data AI an image input system such as a camera, the operator has previously prepared the shape of the corner portion C visually Select from the items and input them to the control means such as robot controller, PLC, and personal computer. Further, the operator inputs the material or physical properties (melting point, dimensions) of the work W to the control means. The control means has a program for determining the angle between the gas injection nozzle 3 and the laser head 2 based on the conditions. Also, as the control means does not exceed the threshold value of the ablation, and burrs W V is sufficiently melted, as molten pool forms, having a program for determining the moving speed of the laser output and the laser head 2.
 また、レーザヘッド2およびガス噴射ノズル3の初期位置は、コーナー部整形装置1がカメラ等の画像入力システムによりバリWの位置または鋭利なコーナー部Cの位置を把握するか、作業者が目視によりバリWの位置または鋭利なコーナー部Cの位置を把握し入力することにより、決定する。 The initial position of the laser head 2 and the gas injection nozzle 3, or the corner portion shaping apparatus 1 to grasp the position of the position or sharp corners C of the burr W V by the image input system such as a camera, the operator visually by grasping the position or location of sharp corners C of the burr W V input, the determining.
 次にコーナー部整形装置1の動作について説明する。上述したように初期位置が決定されたレーザヘッド2により、レーザ発振器から出力されたレーザビーム4は、バリWと製品部Wとの間の境界部Bに照射し、コーナー部整形方向に相対移動させながら少なくとも境界部Bを溶融させる。この時、バリWも溶融していてもよいし、バリW全てが溶融せず一部が固体の状態のままでもよい。 Next, the operation of the corner shaping device 1 will be described. The laser head 2 the initial position is determined as described above, the laser beam 4 emitted from the laser oscillator is irradiated to the boundary B between the burr W V and the product portion W P, the corner-shaping direction At least the boundary portion B is melted while moving relative to each other. At this time, burr W V may also be melted, all burrs W V is a portion not melted may remain in the solid state.
 境界部Bが溶融し流動化している状態になった直後に、レーザヘッド2と所定間隔を保持しながらバリ除去方向へ同じ速度で移動するガス噴射ノズル3が、高圧のシールドガスを溶融状態の境界部Bに吹きつけ、バリWおよび溶融池内の一部の溶融物を吹き飛ばす。この時、ガス噴射ノズル3がバリ除去方向を水平とした場合の水平線からの角度を0~45度傾むけて、境界部Bに横方向から吹き付けるため、容易にバリWは境界部Bから取り除かれる。 Immediately after the boundary portion B is melted and fluidized, the gas injection nozzle 3 that moves at the same speed in the deburring direction while maintaining a predetermined distance from the laser head 2 melts the high-pressure shield gas. blown in the boundary portion B, blow burr W V and weld pool part of the melt. At this time, the angle from the horizontal line when the gas injection nozzle 3 has a burr removal direction and horizontal toward 0-45 degrees tilt, for blowing laterally to the boundary B, easily burr W V from the boundary portion B Will be removed.
 バリWが吹き飛ばされた直後、吹き飛ばされずに残った製品部位のコーナー部Cの端面には一部溶融物が残っており、その残った溶融物の表面張力により滑らかな状態となり、固化する。上記説明は一定場所に限定した場合の順序であって、実際にはコーナー部整形方向に平行的に上記動作が行われ、すべてのコーナー部Cの位置において上記動作が終了した時に、コーナー部整形加工は終了する。 Immediately after the burr W V is blown, there remains some melt the end face of the corner portion C of the product portion remaining without being blown, a smooth state by the surface tension of the remaining melt solidifies. The above description is an order when limited to a certain place, and when the operation is actually performed in parallel with the corner shaping direction and the above operation is completed at all the corner C positions, the corner shaping is performed. Processing is finished.
 バリWがないコーナー部Cの整形の場合も、同様に、レーザビーム4がコーナー部Cを溶融し溶融池を形成し、ガス噴射ノズル3が高圧ガスをコーナー部Cに吹き付け、溶融池表面の溶融物を吹き飛ばす。吹き飛ばされずに残った溶融物はその表面張力により滑らかな状態となり、固化し、コーナー部整形加工は終了する。 In the case of shaping the burrs W V no corner portion C, similarly, the laser beam 4 to melt the corner portion C to form a molten pool, gas injection nozzle 3 is sprayed with high pressure gas to the corner portion C, the molten pool surface Blow off the melt. The melt that remains without being blown off becomes smooth due to its surface tension and solidifies, and the corner shaping process is completed.
 次に、図9~10を参照しながら、第2実施形態のコーナー部整形装置101について説明する。このコーナー部整形装置101は基本的にはコーナー部整形装置1と同様の構成を備えるので、共通する説明は第1実施形態の図示及び記載を援用するとともに、相違点を説明する。各要素に付す符号は実施形態1の対応番号を100番台とする。第1実施形態では、コーナー部Cは表面張力により丸いエッジが形成されるのに対して、第2実施形態では、ガス噴射ノズル103が各種形状の孔またはスリットHが形成された先端チップ108を備え、先端チップ108の孔またはスリットHから、第1実施形態よりもさらに高圧のシールドガスを噴射する。ガス噴射ノズル103に先端チップ108がつけられることによって、孔またはスリットHからガス噴き出し時の流速が変わる。また、先端チップ108の形状で高圧ガスが噴出するため、噴流の影響が非常に大きくなる。それによって、第2実施形態では、コーナー部Cは先端チップ108の孔またはスリットHの形状に似た形状に成形される。 Next, the corner shaping device 101 of the second embodiment will be described with reference to FIGS. 9 to 10. Since the corner shaping device 101 basically has the same configuration as the corner shaping device 1, the common description will refer to the illustration and description of the first embodiment and explain the differences. As for the code attached to each element, the corresponding number of the first embodiment is in the 100s. In the first embodiment, the corner portion C has a round edge formed by surface tension, whereas in the second embodiment, the gas injection nozzle 103 has a tip tip 108 in which holes or slits H of various shapes are formed. A shield gas having a higher pressure than that of the first embodiment is injected from the hole or the slit H of the tip tip 108. By attaching the tip 108 to the gas injection nozzle 103, the flow velocity at the time of gas ejection from the hole or the slit H changes. Further, since the high pressure gas is ejected in the shape of the tip tip 108, the influence of the jet flow becomes very large. Thereby, in the second embodiment, the corner portion C is formed into a shape similar to the shape of the hole or the slit H of the tip tip 108.
 図9は、バリWが形成されていたコーナー部Cから、バリWを除去して滑らかな平面形状となるように整形する例である。ワークWは、バリWと製品部Wを含んでおり、バリWと製品部Wの間の境界部Bはコーナー部Cである。コーナー部整形装置101は、バリWを取り、かつ、バリWが形成されていたコーナー部Cを滑らかな平面形状となるように整形する。 9, from the corner portion C burr W V has been formed, it is an example of shaping so as to smooth planar shape to remove burrs W V. Workpiece W includes a burr W V and the product portion W P, boundary B between the burr W V and the product portion W P is a corner portion C. Corner shaping device 101 takes the burr W V, and is shaped so that the corner portion C burr W V has been formed as a smooth planar shape.
 図9に示すように、集光レンズ105により集光されたレーザビーム104は、コーナー部Cに照射される。その結果、コーナー部Cに溶融池106が形成される。その直後、溶融池106に向かって、Iの字のスリットをもつ先端チップ108が取り付けられたガス噴射ノズル103から高圧ガスが噴射される。高圧ガスにより、溶融池106の一部の溶融物や蒸気が吹き飛ばされ、同時にバリWは取り除かれ、また、ガスの圧力により溶融池106の表面が押し付けられ、冷却固化され、Iの字に対応した平面形状のコーナー部Cが形成される。レーザヘッド102およびガス噴射ノズル103はそれぞれのバリWおよびコーナー部Cに対する角度を保ったまま、所定速度で図9中の矢印で示すコーナー部整形方向に移動し、バリ取りを行い、コーナー部Cの整形をする。 As shown in FIG. 9, the laser beam 104 focused by the condenser lens 105 irradiates the corner portion C. As a result, the molten pool 106 is formed in the corner portion C. Immediately after that, high pressure gas is injected toward the molten pool 106 from the gas injection nozzle 103 to which the tip tip 108 having an I-shaped slit is attached. The high-pressure gas, a part of the melt and vapor of the molten pool 106 is blown, at the same time burr W V is removed, also the surface of the molten pool 106 is pressed by the pressure of the gas is cooled and solidified, the shape of the I The corresponding planar corner portion C is formed. While the laser head 102 and the gas injection nozzle 103 is maintained an angle with respect to each of the burr W V and corner station C, a move to the corner portion shaping the direction indicated by the arrow in FIG. 9 at a predetermined speed, performs deburring, corner Shape C.
 図10は、様々な形状の孔またはスリットHをもつ先端チップ108の例を示す。先端チップ108は、下流側に縮径する略円錐台形状であって、先端部には孔またはスリットHが形成されている。先端チップ108をつけることによって、ガス噴出口の断面積は、先端チップ108入口側の0.02~0.1倍となることが好ましい。図10の108a~108gに示すように、円形(108a)、矩形(108b)、S字形(108c)、I字形(108d)、V字形(108e)、C字形(108f)またはW字形(108g)の形状の孔またはスリットHをもつことが可能である。また、図示していないが楕円形、半円等の孔またはスリットHも可能である。先端チップ108の孔またはスリットHから、圧力が0.1MPa~2MPaの高圧ガスを噴出させる。噴射される高圧ガスは、レーザヘッド102から照射されたレーザビーム104によってコーナー部Cに形成された溶融池106から余分な溶融物を吹き飛ばし、かつ、溶融池106表面の形状を先端チップ108の孔またはスリットHと同様の形状に制御する。 FIG. 10 shows an example of a tip tip 108 having holes or slits H having various shapes. The tip tip 108 has a substantially truncated cone shape with a reduced diameter on the downstream side, and a hole or a slit H is formed at the tip portion. By attaching the tip tip 108, the cross-sectional area of the gas ejection port is preferably 0.02 to 0.1 times that on the inlet side of the tip tip 108. As shown in 108a to 108g of FIG. 10, a circle (108a), a rectangle (108b), an S-shape (108c), an I-shape (108d), a V-shape (108e), a C-shape (108f) or a W-shape (108g). It is possible to have a hole or slit H in the shape of. Further, although not shown, a hole such as an ellipse or a semicircle or a slit H is also possible. A high-pressure gas having a pressure of 0.1 MPa to 2 MPa is ejected from the hole or slit H of the tip tip 108. The injected high-pressure gas blows off excess melt from the molten pool 106 formed in the corner portion C by the laser beam 104 irradiated from the laser head 102, and the shape of the surface of the molten pool 106 is the hole of the tip tip 108. Alternatively, the shape is controlled to be the same as that of the slit H.
 コーナー部Cの形状は、大気の圧力、表面張力、高圧ガスのガス圧、重力、振動(液体の誘導)など様々な因子に影響されるが、各種形状の孔またはスリットHから一定の圧力以上の高圧ガスが溶融池表面に働く場合、高圧ガスによる溶融池表面への押し付け力が大きく、またガスによる冷却作用も高まるため、整形後のコーナー部Cの形状は、表面張力よりも先端チップ108の孔またはスリットHの形状が支配的になる。溶融池106の溶融材料の表面張力が高い(1000~2000dynes/cm)の場合、例えば、鉄の場合は、高圧ガスの圧力は0.5~1.5MPaが好ましく、溶融池106の溶融材料の表面張力が低い(300~999dynes/cm)の場合、例えばアルミニウム合金の場合には、高圧ガスの圧力は0.3~0.8MPaが好ましい。 The shape of the corner portion C is affected by various factors such as atmospheric pressure, surface tension, gas pressure of high-pressure gas, gravity, and vibration (induction of liquid), but is above a certain pressure from holes or slits H of various shapes. When the high-pressure gas of No. 1 acts on the surface of the molten pool, the pressing force of the high-pressure gas on the surface of the molten pool is large, and the cooling action of the gas is also enhanced. Therefore, the shape of the corner portion C after shaping is more like the tip tip 108 than the surface tension. The shape of the hole or slit H becomes dominant. When the surface tension of the molten material of the molten pool 106 is high (1000 to 2000 dynes / cm), for example, in the case of iron, the pressure of the high-pressure gas is preferably 0.5 to 1.5 MPa, and the pressure of the molten material of the molten pool 106 is preferably 0.5 to 1.5 MPa. When the surface tension is low (300 to 999 dynes / cm), for example, in the case of an aluminum alloy, the pressure of the high pressure gas is preferably 0.3 to 0.8 MPa.
 第2実施形態においても、コーナー部整形装置101はワークWにバリWvがない場合にも適用でき、コーナー部Cがレーザ照射され溶融池106が形成され、ガス噴射ノズル103からの高圧ガスは、余分な溶融物を溶融池106から吹き飛ばし、かつ、コーナー部Cを先端チップ108の孔またはスリットHに対応する目的の形状に成形できる。 Also in the second embodiment, the corner shaping device 101 can be applied even when the work W has no burr Wv, the corner C is irradiated with a laser to form a molten pool 106, and the high pressure gas from the gas injection nozzle 103 is generated. Excess melt can be blown off from the molten pool 106, and the corner portion C can be formed into a desired shape corresponding to the hole or slit H of the tip tip 108.
 以上、第1、第2実施形態を説明したが、本発明の趣旨を逸脱しない範囲で本発明を適宜、変更、追加等した種々なる態様を実施できる。例えば、第1、第2実施形態においては、レーザヘッド2およびガス噴射ノズル3をワークWのバリWに沿って移動させたが、レーザヘッド2とガス噴射ノズル3を固定して、ワークWの位置を移動してもよい。 Although the first and second embodiments have been described above, various aspects such as modification and addition of the present invention can be carried out without departing from the spirit of the present invention. For example, in the first and second embodiments, it is moved along the laser head 2 and the gas injection nozzle 3 in Bali W V of the workpiece W, by fixing the laser head 2 and the gas injection nozzle 3, the workpiece W You may move the position of.
 本発明において、コーナー部C(バリWvがある場合は境界部Bに相当)は基本的には溶融しているが、一部気化していてもよい。 In the present invention, the corner portion C (corresponding to the boundary portion B when there is a burr Wv) is basically melted, but may be partially vaporized.
 本発明による、コーナー部整形加工の実施例を示す。第1実施形態の実施例である。本実施例における各条件は以下のとおりである。
 ワークの材質:炭素鋼
 バリの高さ:最高2mm
 バリの長さ:30mm
 レーザー種類:ファイバーレーザ  (連続発振)
 レーザー出力:500W
 レーザーノズルの移動速度:30mm/秒
 焦点はずし距離:8mm
 ビームスポット径:0.5mm
 レーザーノズルの角度θ1:20度
 レーザーノズルの角度θ3:45度
 ガス噴射ノズルの角度θ2:30度
 ガス噴射ノズルの移動速度:30mm/秒
 ガス噴射ノズルの形状:円形
 シールドガス種類:窒素ガス
 シールドガス圧力:0.2MPa
 シールドガス流量:流量10L/分
An example of corner shaping processing according to the present invention is shown. It is an embodiment of the first embodiment. Each condition in this embodiment is as follows.
Work material: Carbon steel Burr height: Maximum 2 mm
Bali length: 30mm
Laser type: Fiber laser (continuous oscillation)
Laser output: 500W
Laser nozzle movement speed: 30 mm / sec Defocus distance: 8 mm
Beam spot diameter: 0.5 mm
Laser nozzle angle θ1: 20 degrees Laser nozzle angle θ3: 45 degrees Gas injection nozzle angle θ2: 30 degrees Gas injection nozzle movement speed: 30 mm / sec Gas injection nozzle shape: Circular Shield gas type: Nitrogen gas Shield gas Pressure: 0.2 MPa
Shield gas flow rate: Flow rate 10 L / min
 ワークWは略直方体であり、一辺から垂直にバリWが連続的に形成されていた。上記条件により、バリ取り加工した結果として得られたバリ取り後の製品の写真を図6に、バリ除去した端部のレーザ顕微鏡による100倍画像を図7に示す。なお、図7中の波形はコーナー部Cの表面の高度を示すものである。図中の数値は、測定範囲における高度の上限値と下限値を示しているが、コーナー部C以外の数値も拾っている。コーナー部Cに限定する(図中3-3間)と、高度差は0.125mmであった。結果として鋭利なバリWは無くなり、コーナー部Cは溶融池106の表面張力により、高度差の少ないきれいな曲面として変化した。 Workpiece W is substantially rectangular parallelepiped, the vertical burr W V were formed continuously from one side. FIG. 6 shows a photograph of the product after deburring obtained as a result of deburring under the above conditions, and FIG. 7 shows a 100x image of the deburred end portion by a laser microscope. The waveform in FIG. 7 shows the altitude of the surface of the corner portion C. The numerical values in the figure indicate the upper limit value and the lower limit value of the altitude in the measurement range, but the numerical values other than the corner portion C are also picked up. When limited to the corner portion C (between 3 and 3 in the figure), the altitude difference was 0.125 mm. Consequently sharp burrs W V is eliminated, the corner portion C by the surface tension of the molten pool 106, changes as small clean curved surfaces altitude differences.
比較例Comparative example
 比較対象として、同形状のワークWを、高出力レーザによりアブレーションし、バリ取り加工した。比較例における各条件は以下の通りである。高出力レーザをワークWに照射すると製品部W自体が切断されてしまうため、図5(b)のような方向で、バリWにのみレーザを照射した。
 ワークの材質:炭素鋼
 バリの長さ:2mm
 レーザー種類:ファイバーレーザ― 
 レーザー出力:500W
 レーザーノズルの移動速度:60mm/分
 焦点はずし距離:8mm
 レーザーのビーム径:3mm
For comparison, a work W having the same shape was ablated with a high-power laser and deburred. Each condition in the comparative example is as follows. Since the product portion W P itself when irradiated with high-power laser to the workpiece W is disconnected, in the direction as in FIG. 5 (b), was irradiated with laser only in Bari W V.
Work material: Carbon steel Burr length: 2 mm
Laser type: Fiber laser
Laser output: 500W
Laser nozzle movement speed: 60 mm / min Defocus distance: 8 mm
Laser beam diameter: 3 mm
 上記条件でアブレーションによるバリ取り加工後の端部のレーザ顕微鏡による100倍画像を図8に示す。端面は丸みがなく表面が粗く、また端面の周囲には二次バリが発生している。 FIG. 8 shows a 100x image of the end portion after deburring by ablation under the above conditions with a laser microscope. The end face is not rounded and the surface is rough, and secondary burrs are generated around the end face.
1、101・・・コーナー部整形装置
2、102・・・レーザヘッド
3、103・・・ガス噴射ノズル
4、104・・・レーザビーム
105・・・集光レンズ
106・・・溶融池
108・・・先端チップ
W・・・ワーク(対象物)
・・・バリ
・・・製品部
B・・・境界部
C・・・コーナー部
H・・・孔またはスリット
1, 101 ... Corner shaping device 2, 102 ... Laser head 3, 103 ... Gas injection nozzle 4, 104 ... Laser beam 105 ... Condensing lens 106 ... Molten pond 108.・ ・ Tip tip W ・ ・ ・ Work (object)
W V · · · burrs W P · · · product portion B · · · boundary portion C · · · corners H · · · hole or slit

Claims (11)

  1.  レーザビームを用いて対象物のコーナー部の整形をするコーナー部整形装置であって、
     前記コーナー部整形装置は、
     前記コーナー部に対して、コーナー部整形方向に所定速度で相対的に移動しながら、レーザビームを前記コーナー部に照射するレーザヘッドと、
     前記コーナー部に対して、前記コーナー部整形方向に所定速度で相対的に移動しながら、前記レーザビームにより生じた溶融池から少なくとも一部の溶融物を前記対象物から引き離すための0.1MPa~2.0MPaの高圧ガスを噴射する、ガス噴射ノズルとを含むことを特徴とするコーナー部整形装置。
    A corner shaping device that shapes the corners of an object using a laser beam.
    The corner shaping device is
    A laser head that irradiates the corner portion with a laser beam while moving relative to the corner portion at a predetermined speed in the corner shaping direction.
    0.1 MPa to 2.0 for pulling at least a part of the melt from the molten pool generated by the laser beam from the object while moving relative to the corner portion in the corner shaping direction at a predetermined speed. A corner shaping device including a gas injection nozzle that injects high-pressure gas of MPa.
  2.  前記コーナー部にはバリが形成されており、
     前記レーザヘッドからの前記レーザビームは前記バリと製品部との間の境界部に照射され、
     前記ガス噴射ノズルから噴射された前記高圧ガスは、前記境界部に向けて噴射され、前記バリを前記製品部から引き離すことを特徴とする、請求項1に記載のコーナー部整形装置。
    Burrs are formed at the corners,
    The laser beam from the laser head is applied to the boundary portion between the burr and the product portion.
    The corner shaping apparatus according to claim 1, wherein the high-pressure gas jetted from the gas injection nozzle is jetted toward the boundary portion to separate the burr from the product portion.
  3.  前記高圧ガスは空気、酸素、窒素、CO2ガス、不活性ガス、またはこれらの混合ガスであり、前記高圧ガスを前記コーナー部に噴射した結果、前記溶融池に残った溶融物は表面張力により丸くなることを特徴とする、請求項1または2に記載のコーナー部整形装置。 The high-pressure gas is air, oxygen, nitrogen, CO 2 gas, an inert gas, or a mixed gas thereof, and as a result of injecting the high-pressure gas into the corner portion, the melt remaining in the molten pool is due to surface tension. The corner shaping apparatus according to claim 1 or 2, wherein the corner portion is rounded.
  4.  前記ガス噴射ノズルの先端部は円形、楕円、半円、矩形、C字形、I字形、V字形、S字形、またはW字形の孔またはスリットであり、前記コーナー部は前記ガス噴射ノズルの形状に合わせた形状で整形されることを特徴とする、請求項1または2に記載のコーナー部整形装置。 The tip of the gas injection nozzle is a circular, elliptical, semicircular, rectangular, C-shaped, I-shaped, V-shaped, S-shaped, or W-shaped hole or slit, and the corner portion has the shape of the gas injection nozzle. The corner shaping apparatus according to claim 1 or 2, wherein the corner shaping device is shaped into a combined shape.
  5.  前記レーザヘッドは前記対象物に向けて前記レーザビームを照射し、
     前記コーナー部整形方向を水平とした場合、前記ガス噴射ノズルの中心線の水平方向から垂直方向に向かう角度が0~60度であり、
     前記ガス噴射ノズルが、前記コーナー部に前記高圧ガスを前記コーナー部整形方向に向かって噴射する請求項1~4のいずれかに記載のコーナー部整形装置。
    The laser head irradiates the laser beam toward the object,
    When the corner shaping direction is horizontal, the angle of the center line of the gas injection nozzle from the horizontal direction to the vertical direction is 0 to 60 degrees.
    The corner shaping device according to any one of claims 1 to 4, wherein the gas injection nozzle injects the high-pressure gas into the corner portion in the corner shaping direction.
  6.  前記レーザヘッドおよび前記ガス噴射ノズルの、前記コーナー部整形方向からの角度が可変である、請求項1~5のいずれかに記載のコーナー部整形装置。 The corner shaping device according to any one of claims 1 to 5, wherein the angles of the laser head and the gas injection nozzle from the corner shaping direction are variable.
  7.  前記レーザヘッドの前記対象物に対する相対移動速度は1mm/s~4000mm/sであり、前記ガス噴射ノズルは、ガス噴射位置がレーザ照射位置よりも後方となるように配置され、前記コーナー部を相対移動する、請求項1~6のいずれかに記載のコーナー部整形装置。 The relative moving speed of the laser head with respect to the object is 1 mm / s to 4000 mm / s, the gas injection nozzle is arranged so that the gas injection position is behind the laser irradiation position, and the corners are relative to each other. The corner shaping device according to any one of claims 1 to 6, which moves.
  8.  前記コーナー部に形成されたバリの形状、バリの大きさ、バリの材質の条件から、前記レーザヘッドおよび前記ガス噴射ノズルの前記バリに対する角度、前記対象物に対する前記レーザヘッドおよび前記ガス噴射ノズルの相対移動速度、およびレーザ出力を決定するプログラムを有する、請求項2に記載のコーナー部整形装置。 From the conditions of the shape of the burr formed in the corner portion, the size of the burr, and the material of the burr, the angle of the laser head and the gas injection nozzle with respect to the burr, and the laser head and the gas injection nozzle with respect to the object. The corner shaping apparatus according to claim 2, further comprising a program for determining a relative moving speed and a laser output.
  9.  レーザビームを用いて対象物のコーナー部を整形するコーナー部整形方法であって、レーザヘッドからレーザビームを前記コーナー部に照射し、コーナー部整形方向に相対移動させながら前記コーナー部を溶融させる溶融工程と、
     溶融状態の前記コーナー部にガス噴射ノズルからガスを噴射し、溶融物の一部を前記対象物から引き離す溶融物除去工程と、を含み、
     前記溶融物除去工程後に、前記コーナー部は、前記対象物側に残った溶融物の表面張力により角がない状態で固化することを特徴とする、コーナー部整形方法。
    A corner shaping method for shaping a corner portion of an object using a laser beam, in which the corner portion is irradiated with a laser beam from a laser head, and the corner portion is melted while being relatively moved in the corner shaping direction. Process and
    A melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state and pulling a part of the melt away from the object is included.
    A method for shaping a corner portion, which comprises solidifying the corner portion in a state without corners due to the surface tension of the melt remaining on the object side after the melt removing step.
  10.  前記コーナー部にはバリが形成されており、
     前記溶融工程において、前記レーザヘッドからの前記レーザビームが前記バリと製品部との間の境界部に照射され、少なくとも前記境界部が溶融され、
     前記溶融物除去工程において、前記ガス噴射ノズルからの前記ガスが前記境界部に向けて噴射され、前記バリが前記製品部から引き離されることを特徴とする、請求項9に記載のコーナー部整形方法。
    Burrs are formed at the corners,
    In the melting step, the laser beam from the laser head irradiates the boundary portion between the burr and the product portion, and at least the boundary portion is melted.
    The corner shaping method according to claim 9, wherein in the melt removing step, the gas from the gas injection nozzle is injected toward the boundary portion and the burr is separated from the product portion. ..
  11.  レーザビームを用いて対象物のコーナー部を整形するコーナー部整形方法であって、
     レーザヘッドからレーザビームを前記コーナー部に照射し、コーナー部整形方向に相対移動させながら前記コーナー部を溶融させる溶融工程と、
     溶融状態の前記コーナー部にガス噴射ノズルからガスを噴射し、溶融物の一部を前記対象物から引き離す溶融物除去工程と、を含み、
     前記溶融物除去工程後に、前記コーナー部は、前記対象物側に残った溶融物が前記ガス噴射ノズルの断面形状に近似した形状で成形されることを特徴とする、コーナー部整形方法。
    It is a corner shaping method that shapes the corners of an object using a laser beam.
    A melting step in which the corner portion is irradiated with a laser beam from the laser head and the corner portion is melted while being relatively moved in the corner shaping direction.
    A melt removing step of injecting gas from a gas injection nozzle into the corner portion in a molten state and pulling a part of the melt away from the object is included.
    A method for shaping a corner portion, wherein after the melt removing step, the melt remaining on the object side is formed into a shape similar to the cross-sectional shape of the gas injection nozzle.
PCT/JP2020/028913 2019-07-29 2020-07-28 Corner part shaping device and corner part shaping method WO2021020398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572561A JP6868316B1 (en) 2019-07-29 2020-07-28 Corner shaping device and corner shaping method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019138700 2019-07-29
JP2019-138700 2019-07-29
JP2019-165219 2019-09-11
JP2019165219 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021020398A1 true WO2021020398A1 (en) 2021-02-04

Family

ID=74229101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028913 WO2021020398A1 (en) 2019-07-29 2020-07-28 Corner part shaping device and corner part shaping method

Country Status (2)

Country Link
JP (1) JP6868316B1 (en)
WO (1) WO2021020398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049547A (en) * 2019-09-25 2021-04-01 ファナック株式会社 Deburring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151981A (en) * 1982-03-03 1983-09-09 Toshiba Corp Deburring device for steel strip
JPS62247553A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2018078182A (en) * 2016-11-09 2018-05-17 Tdk株式会社 Method for manufacturing rare earth magnet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678508B (en) * 2007-06-11 2013-07-17 日立金属株式会社 Laser working method for piece with edge
WO2013177590A1 (en) * 2012-05-25 2013-11-28 Shiloh Industries, Inc. Sheet metal piece having weld notch and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151981A (en) * 1982-03-03 1983-09-09 Toshiba Corp Deburring device for steel strip
JPS62247553A (en) * 1986-04-18 1987-10-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2018078182A (en) * 2016-11-09 2018-05-17 Tdk株式会社 Method for manufacturing rare earth magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049547A (en) * 2019-09-25 2021-04-01 ファナック株式会社 Deburring device
JP7272921B2 (en) 2019-09-25 2023-05-12 ファナック株式会社 Deburring device

Also Published As

Publication number Publication date
JP6868316B1 (en) 2021-05-12
JPWO2021020398A1 (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP6018744B2 (en) Laser cutting method and laser cutting apparatus
JP5868559B1 (en) Laser processing method and laser processing apparatus
US7241965B2 (en) Method and apparatus for laser welding with plasma suppression
EP1018395A2 (en) Laser machining apparatus
US10155287B2 (en) Method for removing, by means of a laser beam, a bulge deposited on the surface of a workpiece when a through hole is formed
JPH09206975A (en) Laser beam machining method and device therefor
JP2000084686A (en) Laser piercing method, laser machining nozzle and laser cutting device
JP2000042780A (en) Laser beam machining method and laser beam machine
JP2000517244A (en) Laser processing method and apparatus
WO2021020398A1 (en) Corner part shaping device and corner part shaping method
US20120160818A1 (en) Laser machining apparatus and laser machining method
JP3768368B2 (en) Laser welding method
CN117083144A (en) Laser cutting method for cutting out a workpiece part
JPH06218572A (en) Machining head of laser beam machine
JP5196147B2 (en) Brazing wire cutting method
JP7272921B2 (en) Deburring device
US8658938B2 (en) Method of cutting with a laser
JP4983918B2 (en) Laser processing method and wire for oil ring
JP4775699B2 (en) Laser double-sided groove processing apparatus and double-sided groove processing method
JPH08290285A (en) Laser machining method
JPH0237985A (en) Method and device for laser beam processing
JPH11123583A (en) Laser cutting device and method therefor
JP5986775B2 (en) Laser processing method and laser processing apparatus
JP2009190064A (en) Laser beam machining method and laser beam machining mechanism
JP6704640B2 (en) Additive manufacturing equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020572561

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848648

Country of ref document: EP

Kind code of ref document: A1