WO2021018024A1 - 显示基板、显示面板和显示装置 - Google Patents

显示基板、显示面板和显示装置 Download PDF

Info

Publication number
WO2021018024A1
WO2021018024A1 PCT/CN2020/104063 CN2020104063W WO2021018024A1 WO 2021018024 A1 WO2021018024 A1 WO 2021018024A1 CN 2020104063 W CN2020104063 W CN 2020104063W WO 2021018024 A1 WO2021018024 A1 WO 2021018024A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
electrode
display panel
substrate
display
Prior art date
Application number
PCT/CN2020/104063
Other languages
English (en)
French (fr)
Inventor
谭纪风
孟宪东
赵文卿
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/265,221 priority Critical patent/US11402565B2/en
Publication of WO2021018024A1 publication Critical patent/WO2021018024A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13398Spacer materials; Spacer properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • At least one embodiment of the present disclosure relates to a display substrate, a display panel, and a display device.
  • the liquid crystal display device includes a directional liquid crystal display device.
  • the liquid crystal molecules in the liquid crystal layer present a periodically arranged liquid crystal grating, and display is realized by the diffraction/refraction of the liquid crystal grating (lens or prism).
  • At least one embodiment of the present disclosure relates to a display substrate, a display panel, and a display device.
  • At least one embodiment of the present disclosure provides a display substrate, including: an optical waveguide; a first buffer layer located on one side of the optical waveguide, the first buffer layer including a first buffer pattern and A plurality of openings defined by the pattern; and a second buffer layer located on the side of the optical waveguide where the first buffer layer is provided and covering at least the plurality of openings, wherein the refraction of the first buffer pattern
  • the refractive index is smaller than the refractive index of the optical waveguide, and the refractive index of the second buffer layer is greater than the refractive index of the optical waveguide.
  • the optical waveguide includes a first part and a second part, the first part is at the position of the first buffer pattern, and the second part is at the position of the plurality of openings; the first part is configured In order to totally reflect the light propagating in the optical waveguide irradiated thereon; the second part is configured to emit the light propagating in the optical waveguide irradiated thereon.
  • the second buffer layer includes a plurality of buffer portions, each buffer portion fills an opening, and the refractive indexes of the multiple buffer portions are different.
  • At least one embodiment of the present disclosure further provides a display panel, including any one of the above-mentioned display substrates and a counter substrate opposite to the display substrate, wherein the display substrate and the counter substrate are sealed to form a box ,
  • the box is provided with a spacer pattern, the spacer pattern includes a plurality of spacers, the space between adjacent spacers is filled with liquid crystal material, each of the plurality of spacers is It is configured to support the thickness of the box and absorb light irradiated on it.
  • the size of the space between adjacent spacers in the direction parallel to the optical waveguide is larger than the size of the opening in the direction parallel to the optical waveguide.
  • the orthographic projection of the spacer on the optical waveguide falls within the orthographic projection of the first buffer pattern on the optical waveguide.
  • the orthographic projection of the spacer on the optical waveguide and the orthographic projection of the opening on the optical waveguide do not overlap.
  • the display panel further includes a reflective element located on the side of the spacer close to the opposite substrate, the reflective element having a reflective surface, and the reflective surface is configured to reflect light.
  • the spacer includes a first surface, a second surface, a third surface, and a fourth surface, the first surface is opposite to the second surface, and the third surface is opposite to the fourth surface, The first surface is close to the optical waveguide, the second surface is close to the counter substrate, the third surface and the fourth surface are located between the first surface and the second surface, so The reflective element is located on at least one of the third surface and the fourth surface.
  • the reflection surface is inclined with respect to at least one of the optical waveguide and the counter substrate.
  • the inclination angle of the reflective surface with respect to at least one of the optical waveguide and the counter substrate is 9 degrees to 13 degrees.
  • the size of the reflective element in the direction perpendicular to the optical waveguide is less than half of the size of the spacer in the direction perpendicular to the optical waveguide.
  • the size of the reflective element in the direction perpendicular to the optical waveguide is less than one third of the size of the spacer in the direction perpendicular to the optical waveguide.
  • the display panel includes a plurality of sub-pixels, and each sub-pixel includes a plurality of reflective elements, and the plurality of reflective elements include two reflective elements with different inclination angles with respect to at least one of the optical waveguide and the counter substrate.
  • the display panel further includes a first alignment layer located on a side of the optical waveguide close to the opposite substrate and a second alignment layer located on a side of the opposite substrate close to the optical waveguide, wherein the The spacer is in contact with the first alignment layer and the second alignment layer, respectively.
  • the display panel further includes a first electrode and a second electrode, the first electrode and the second electrode are configured to form an electric field to drive the rotation of liquid crystal molecules; at least one of the first electrode and the second electrode It is a slit electrode.
  • the first electrode includes a plurality of first electrode strips
  • the second electrode includes a plurality of second electrode strips
  • the plurality of first electrode strips and the plurality of second electrode strips are in the optical waveguide.
  • the orthographic projections on the above do not overlap; or, the first electrode is a plate electrode, and the second electrode is a slit electrode.
  • one of the first electrode and the second electrode is provided on the optical waveguide, and the other of the first electrode and the second electrode is provided on the counter substrate; or, the Both the first electrode and the second electrode are arranged on the optical waveguide, or both are arranged on the opposite substrate.
  • the display panel further includes a light source provided on at least one side of the optical waveguide; the light source is configured to provide light propagating in the optical waveguide that can be totally reflected.
  • At least one embodiment of the present disclosure also provides a display device including any of the above-mentioned display panels.
  • Figure 1 is a cross-sectional view of a directional liquid crystal display panel
  • FIG. 2 is a schematic diagram of the width of the black matrix in the directional liquid crystal display panel shown in FIG. 1;
  • 3A is a cross-sectional view of a display substrate provided by an embodiment of the disclosure.
  • FIG. 3B is a schematic top view of the first buffer layer in FIG. 3A;
  • FIG. 3C is a schematic top view of the optical waveguide in FIG. 3A;
  • 3D is a cross-sectional view of another display substrate provided by another embodiment of the present disclosure.
  • FIG. 4A is a cross-sectional view of a display panel provided by an embodiment of the disclosure.
  • 4B is a light path diagram when an electric field is formed between a first electrode and a second electrode in a display panel according to an embodiment of the disclosure
  • 4C is a cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an electric field formed by a first electrode and a second electrode in a display panel provided by an embodiment of the present disclosure
  • FIG. 6 is a top view of a spacer pattern and a reflective element in a display panel provided by an embodiment of the disclosure
  • FIG. 7 is a cross-sectional view of another display panel provided by another embodiment of the present disclosure.
  • FIG. 8 is a top view of a spacer pattern and a reflective element in a display panel provided by an embodiment of the disclosure.
  • FIG. 9 is a top view of an optical waveguide and a light source in a display panel provided by an embodiment of the disclosure.
  • FIG. 10 is a top view of a spacer pattern and a reflective element in another display panel provided by another embodiment of the present disclosure
  • FIG. 11 is a cross-sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 12 is a top view of an optical waveguide and a light source in a display panel provided by an embodiment of the disclosure.
  • FIG. 13A is a cross-sectional view of a display panel provided by another embodiment of the present disclosure.
  • FIG. 13B is a top view of a spacer pattern and a reflective element in a display panel provided by an embodiment of the present disclosure
  • 14A is a cross-sectional view of a display panel provided by another embodiment of the present disclosure.
  • 14B is a cross-sectional view of another display panel provided by another embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of an electric field formed by a first electrode and a second electrode in a display panel provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a display panel provided by an embodiment of the present disclosure being viewed by an observer.
  • FIG. 1 is a cross-sectional view of a directional liquid crystal display panel.
  • the liquid crystal display panel includes a first substrate 01, a second substrate 02 disposed opposite to the first substrate 01, and a liquid crystal layer 31 located between the first substrate 01 and the second substrate 02.
  • the first substrate 01 and the second substrate 02 can be sealed by a sealant located at the edge to form a liquid crystal cell, and the liquid crystal cell is filled with a liquid crystal layer 31 of liquid crystal material.
  • a sealant located at the edge to form a liquid crystal cell
  • the liquid crystal cell is filled with a liquid crystal layer 31 of liquid crystal material.
  • the first substrate 01 includes an optical waveguide 11, a light source LS01 located on the side of the optical waveguide 11, a light extraction grating layer 12 located on the main surface of the optical waveguide 11, and a light extraction grating layer 12
  • the second substrate 02 includes a base substrate 21, a black matrix 22 on the side of the base substrate 21 close to the first substrate 01, a color filter layer 23, a first insulating layer 24, a first electrode layer 25, and a second insulating layer 26.
  • the first electrode layer 25 has a plate-like structure, and the second electrode layer 27 includes a plurality of slit electrodes.
  • the black matrix 22 may include a first black matrix 221 and a second black matrix 222.
  • the first black matrix 221 mainly plays a role of shading
  • the second black matrix 222 can play a role of preventing cross-color.
  • the light extraction grating layer 12 includes a plurality of light extraction gratings 120 and openings 121 located between adjacent light extraction gratings 120, and the openings 121 are filled with a filling layer 13.
  • the refractive index of the filling layer 13 is smaller than the refractive index of the optical waveguide 11.
  • the light emitted by the light source LS01 propagates in the optical waveguide 11, and the light reaching the portion of the optical waveguide 11 at the light extraction grating 12 is taken out, and then can be incident on the second substrate 02, and reach the optical waveguide 11 located adjacent to the light extraction
  • the part of the light at the opening 121 between the gratings 120 is totally reflected.
  • the opening 121 between adjacent light-trapping gratings 120 is the part between adjacent light-trapping gratings 120 in FIG. 1.
  • the display principle of the display panel shown in FIG. 1 is as follows.
  • the light emitted from the light extraction grating for example, can emit collimated light, and is absorbed when it enters the black matrix 22 of the second substrate 02, and light that is not displayed is emitted. At this time, it is in a dark state and no electric field is applied to the liquid crystal layer. .
  • an electric field needs to be applied to the liquid crystal layer.
  • the liquid crystal molecules present a periodically arranged liquid crystal grating, and the diffraction/refraction of the liquid crystal grating (lens or prism) is used to achieve display.
  • the collimated light emitted from the optical waveguide will be diffracted/refracted by the liquid crystal grating and emitted from the opening area between the black matrixes to display a gray scale such as L255 gray scale.
  • This can be achieved by controlling the electric field applied to the liquid crystal layer
  • the diffraction/refraction efficiency of the liquid crystal lens to the incident light is different, so as to realize any gray scale, such as any gray scale between L0-L255.
  • an electric field that controls the rotation of liquid crystal molecules in the liquid crystal layer is formed, and the degree of rotation of the liquid crystal molecules is controlled by controlling the size of the electric field. , And then display different gray scales.
  • FIG. 2 is a schematic diagram of the width of a black matrix in the directional liquid crystal display panel shown in FIG. 1.
  • FIG. 2 shows the first black matrix 221, the second black matrix 222 and the light extraction grating 120, where ⁇ is the blocking angle and ⁇ is the collimation angle, Is the transmission angle, a is the light-emitting grating width, e is a light-emitting grating unit, b is the width of the first black matrix 221, c is the width of the transmission area, d is the process deviation, and f is the width of the second black matrix 222 .
  • the second black matrix 222 does not need to be provided.
  • the width of the first black matrix 221 needs to satisfy:
  • the width b of the first black matrix 221 and the shading angle ⁇ can be obtained.
  • the width of the first black matrix 221 needs to be large, which will limit the display resolution and pixel aperture ratio. This will affect the light efficiency of the liquid crystal and reduce competitiveness.
  • the liquid crystal light efficiency of the display device composed of the display panel shown in FIG. 1 is about 1%.
  • the display substrate 10a includes an optical waveguide 101, a first buffer layer 102, and a second buffer layer 103.
  • the first buffer layer 102 is located on one side of the optical waveguide 101.
  • the first buffer layer 102 includes a first buffer pattern 102a and a plurality of openings 1020 defined by the first buffer pattern 102a.
  • the second buffer layer 103 is located on the side of the optical waveguide 101 where the first buffer layer 102 is provided, and covers at least a plurality of openings 1020.
  • the first buffer pattern 102a and the second buffer layer 103 may be formed of a common material that satisfies the aforementioned refractive index condition, for example, may be formed of at least one of an organic material and an inorganic material, but is not limited thereto.
  • the organic material includes resin, but is not limited thereto.
  • the resin includes acrylic resin, but is not limited to this, and other suitable materials can also be selected according to needs.
  • the inorganic material includes at least one of silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, and titanium oxide, but is not limited to this, and other suitable materials can also be selected according to needs.
  • the optical waveguide 101 can be made of glass, polymethyl methacrylate (PMMA) and other materials, but is not limited thereto.
  • the first buffer layer 102 includes a first opening 1021 and a second opening 1022.
  • the first buffer layer 102 is formed of one material.
  • the refractive index of the first buffer pattern 102a is the same at each position, but the embodiment of the present disclosure is not limited thereto.
  • FIG. 3C is a schematic top view of the optical waveguide in FIG. 3A. 3A and 3C, the optical waveguide 101 includes a first part 101a and a second part 101b, the first part 101a is at the position of the first buffer pattern 102a, and the second part 101b is at the position of the plurality of openings 1020.
  • the first portion 101a is configured to totally reflect the light propagating in the optical waveguide 101 irradiated thereon.
  • the second portion 101b is configured to emit light propagating in the optical waveguide 101 irradiated thereon.
  • the display substrate provided by the embodiment of the present disclosure can reduce the manufacturing difficulty, can increase the light efficiency of the liquid crystal of the display device including the display substrate by 5-6 times, and increase market competitiveness.
  • the liquid crystal light effect (light emitting light effect) of the display device made of the display substrate provided by the embodiment of the present disclosure can reach 5% or more than 5%.
  • FIG. 3D is a cross-sectional view of another display substrate provided by another embodiment of the present disclosure.
  • the difference between the display substrate 10b and the display substrate 10a is that the second buffer layer 103 includes a plurality of buffer portions, and each buffer portion fills an opening 1020, and the refractive indexes of the multiple buffer portions are different.
  • FIG. 3D shows the first buffer part 1031, the second buffer part 1032 and the third buffer part 1033.
  • the refractive index of each two of the first buffer part 1031, the second buffer part 1032 and the third buffer part 1033 are different.
  • the first buffer portion 1031, the second buffer portion 1032, and the third buffer portion 1033 may respectively correspond to sub-pixels of different colors.
  • FIGS. 3B and 3C show the first direction X and the second direction Y.
  • the first direction X and the second direction Y are directions parallel to the surface of the optical waveguide 101.
  • the first direction X intersects the second direction Y, and further for example, the first direction X is perpendicular to the second direction Y.
  • the third direction Z is a direction perpendicular to the optical waveguide 101.
  • the surface of the optical waveguide 101 is the surface where the first buffer layer 102 and the second buffer layer 103 are provided.
  • the third direction Z is perpendicular to the first direction X and perpendicular to the second direction Y.
  • FIG. 4A is a cross-sectional view of a display panel provided by an embodiment of the disclosure.
  • the display panel includes the display substrate shown in FIG. 3A.
  • the display panel provided by the embodiment of the present disclosure may include any of the above-mentioned display substrates.
  • the display panel provided by an embodiment of the present disclosure includes the display substrate 10a shown in FIG. 3A and the counter substrate 20a opposite to the display substrate 10a.
  • the display substrate 10a and the counter substrate 20a are sealed to form a box.
  • the box is provided with a spacer pattern 204.
  • the spacer pattern 204 includes a plurality of spacers 2040.
  • the space between adjacent spacers 2040 is covered by liquid crystal material.
  • each of the plurality of spacers 2040 is configured to support the thickness of the box and absorb light irradiated thereon.
  • the spacer pattern 204 can be formed of a common material with light-absorbing properties, for example, can be made of the same material as the black matrix in the common technology, but is not limited thereto.
  • the size of the space between adjacent spacers 2040 in the direction parallel to the optical waveguide 101 is larger than that of the opening 1020 in the direction parallel to the optical waveguide 101.
  • Dimension in the direction of the For example, the size of the space between adjacent spacers 2040 in the horizontal direction is larger than the size of the opening 1020 in the horizontal direction.
  • the direction parallel to the optical waveguide 101 includes the first direction X, but is not limited thereto.
  • the spacer 2040 in order to make the size between adjacent spacers in the horizontal direction larger than the size of the opening 1020 located between adjacent spacers in the horizontal direction, the spacer 2040 is in the optical waveguide 101
  • the orthographic projection on falls within the orthographic projection of the first buffer pattern 102a on the optical waveguide 101.
  • the orthographic projection of the opening 1020 on the optical waveguide 101 falls within the orthographic projection of the space between the two spacers 2040 adjacent to the opening on the optical waveguide 101.
  • the orthographic projection of the spacer 2040 on the optical waveguide 101 and the orthographic projection of the opening 1020 on the optical waveguide 101 do not overlap.
  • the display panel further includes a reflective element 205
  • the reflective element 205 is located on the side of the spacer 2040 close to the opposite substrate 20a
  • the reflective element 205 has a reflective surface 205s
  • the reflective surface 205s is configured to reflect and illuminate Light onto it.
  • the reflective element 205 can be made of a metal material, but it is not limited thereto.
  • the reflective element 205 may also be a structure formed of resin, and a reflective surface of a metal material is vapor-deposited on the surface of the structure.
  • the spacer 2040 includes a first surface s1, a second surface s2, a third surface s3, and a fourth surface s4.
  • the first surface s1 is close to the optical waveguide 101, and the second surface s2 is away from the optical waveguide 101. That is, the second surface s2 is close to the counter substrate.
  • the third surface s3 and the fourth surface s4 are located between the first surface s1 and the second surface s2.
  • the first surface s1 is opposite to the second surface s2, and the third surface s3 is opposite to the fourth surface s4.
  • the reflective element 205 is located on at least one of the third surface s3 and the fourth surface s4.
  • FIG. 4A illustrates an example in which the reflective element 205 is only located on the third surface s3.
  • the reflection surface 205s is inclined with respect to at least one of the optical waveguide 101 and the counter substrate 20a.
  • FIG. 4A illustrates an example in which the reflective surface 205s is inclined with respect to both the optical waveguide 101 and the counter substrate 20a.
  • the inclination angle ⁇ 1 of the reflective surface 205s with respect to at least one of the optical waveguide 101 and the counter substrate 20a is 9 degrees to 13 degrees.
  • the size of the reflective element 205 in the direction perpendicular to the optical waveguide 101 is smaller than one half of the size of the spacer 2040 in the direction perpendicular to the optical waveguide 101.
  • the direction perpendicular to the optical waveguide 101 is the third direction Z.
  • the size of the reflective element 205 in the direction perpendicular to the optical waveguide 101 is smaller than one-third of the size of the spacer 2040 in the direction perpendicular to the optical waveguide 101.
  • the direction perpendicular to the optical waveguide 101 is the third direction Z.
  • the display panel further includes a first alignment layer 105 on the side of the optical waveguide 101 close to the opposite substrate 20a and a second alignment layer 203 on the side of the opposite substrate 20a close to the optical waveguide 101,
  • the spacer 2040 is in contact with the first alignment layer 105 and the second alignment layer 203 respectively.
  • the display panel further includes a first electrode and a second electrode, the first electrode and the second electrode are configured to form an electric field to drive the rotation of liquid crystal molecules; at least one of the first electrode and the second electrode is a slit electrode.
  • the display panel includes a first electrode 104 and a second electrode 202.
  • the first electrode 104 is located on the side of the optical waveguide close to the counter substrate 20a, and the second electrode 202 is located on the base substrate 201 close to the display substrate 10a.
  • the first electrode 104 and the second electrode 202 are both slit electrodes.
  • the first electrode 104 and the second electrode 202 can be made of a transparent material, for example, a transparent oxide such as indium tin oxide, but not limited thereto.
  • the gray scale realization principle of the display panel is as follows: the voltage applied to the first electrode and the second electrode can be used to realize the efficiency of the liquid crystal dimming unit (sub-pixel), thereby realizing different gray scales.
  • a first electrode 104 and a second electrode 202 can be provided for each liquid crystal dimming unit.
  • the plurality of first electrodes 104 in the plurality of sub-pixels are insulated from each other to be respectively applied with signals, and the plurality of second electrodes 202 in the plurality of sub-pixels can be They are electrically connected to each other to be applied with the same signal.
  • the first electrode 104 includes a plurality of first electrode strips 1041
  • the second electrode 202 includes a plurality of second electrode strips 2021
  • the plurality of first electrode strips 1041 and the plurality of second electrode strips 2021 are The orthographic projections on the optical waveguide 101 do not overlap.
  • first electrode 104 and the second electrode 202 are provided on the optical waveguide 101, and the other of the first electrode 104 and the second electrode 202 is provided on the counter substrate 20a.
  • first electrode 104 is located on the optical waveguide
  • second electrode 202 is located on the base substrate 201 of the counter substrate 20a.
  • first electrode 104 and the second electrode 202 may both be provided on the optical waveguide 101, or both may be provided on the opposite substrate 20a.
  • the light source LS is disposed on at least one side of the optical waveguide 101; the light source LS is configured to provide light propagating in the optical waveguide 101 that can be totally reflected.
  • the light source LS may be white light or monochromatic light.
  • the light-emitting angle of the light source LS has certain requirements, which must be greater than the critical angle of total reflection of the optical waveguide.
  • the reflective element 205 is in contact with the spacer 2040, but it is not limited thereto. In other embodiments, the reflective element 205 may not be in contact with the spacer 2040, that is, the reflective element 205 may be located between two adjacent spacers 2040, and not in contact with the two spacers 2040, thereby Therefore, the entire side surface of the spacer 2040, such as all the third surface s3, can absorb light.
  • Fig. 4A is an optical path diagram when no electric field is formed between the first electrode and the second electrode.
  • FIG. 4A there is no voltage difference between the first electrode 104 and the second electrode 202, and no electric field is formed.
  • the light emitted from the opening 1020 irradiates the spacer 2040, is absorbed by the spacer 2040, and presents a black state.
  • Fig. 4B is an optical path diagram when an electric field is formed between the first electrode and the second electrode.
  • the reflected light exits from the opening 1020, thereby realizing display.
  • the light emitted from the light source enters the optical waveguide to be totally reflected and propagated, and is totally reflected and propagated in the non-opening area of the first buffer layer.
  • the refractive index of the second buffer layer is greater than that of the optical waveguide.
  • the liquid crystal molecules can rotate to form a liquid crystal grating or lens (LENS), which can disperse and modulate the angle of incident light.
  • the incident angle is modulated by 20°, the penetrating liquid crystal layer is incident on the obliquely arranged reflective surface, and the reflective surface returns to the liquid crystal layer.
  • the transmitted light wave is led out to realize the display.
  • the modulation ability of the liquid crystal grating can be controlled by the magnitude of the applied voltage, that is, the light is adjusted from the direction of incident on the spacer to the incident on the reflective surface.
  • the size of the electric field applied to the liquid crystal layer By adjusting the size of the electric field applied to the liquid crystal layer, different display gray scales can be realized. The greater the electric field, the greater the height of the liquid crystal grating and the stronger the modulation ability.
  • the presence of the reflective surface can further adjust the angle of the light, and the angle of the incident light can be adjusted to deviate from the total reflection angle, so that the light can be emitted from the optical waveguide layer to increase the light extraction efficiency.
  • the background light L0 can reach the human eye 401 through the opening, so that the human eye 401 can also observe the actual scene through the display panel.
  • the human eye 401 may only observe the display image of the display panel, but not the actual scene, which is not limited in the embodiments of the present disclosure.
  • the side where the optical waveguide 101 of the display panel is located is the display surface.
  • FIG. 4C is a cross-sectional view of a display panel provided by an embodiment of the disclosure.
  • the display substrate 10a and the counter substrate 20a are sealed by a frame sealant SLT at the edge positions of the display substrate 10a and the counter substrate 20a to form a liquid crystal cell CL.
  • the size of the spacer 2040 in the direction perpendicular to the display panel 10a is equal to the size of the sealant SLT in the direction perpendicular to the display panel 10a.
  • the liquid crystal cell CL includes a plurality of spaces SP. Each space is surrounded by adjacent spacers 2040.
  • each space SP is an independent space. Only three spaces SP are shown in FIG. 4C, and the number of spaces SP can be determined according to needs.
  • one space SP corresponds to one sub-pixel SPX (as shown in FIG. 3B).
  • FIG. 5 is a schematic diagram of the electric field formed by the first electrode and the second electrode in the display panel provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of the electric field formed by the first electrode 104 and the second electrode 202 in the display panel shown in FIG. 4A.
  • the electric field line DL1 is shown in FIG. 5.
  • FIG. 6 is a top view of a spacer pattern and a reflective element in a display panel provided by an embodiment of the disclosure. As shown in FIG. 6, a reflective element 205 is provided on one side of the spacer 2040. FIG. 6 may be a top view of the spacer pattern and the reflective element in the display panel shown in FIG. 4A.
  • FIG. 9 is a top view of an optical waveguide and a light source in a display panel provided by an embodiment of the disclosure.
  • FIG. 9 is a top view of the optical waveguide and the light source in the display panel shown in FIG. 7.
  • the first light source LS1 and the second light source LS2 are respectively provided on the left and right sides of the optical waveguide 101.
  • the light emitted by the first light source LS1 may be reflected by the first reflecting element 2051
  • the light emitted by the second light source LS2 may be reflected by the second reflecting element 2052.
  • FIG. 10 is a top view of a spacer pattern and a reflective element in another display panel provided by another embodiment of the disclosure.
  • the display panel includes a plurality of sub-pixels SPX, and each sub-pixel SPX includes a plurality of reflective elements 205.
  • each sub-pixel SPX includes four reflective elements 205: a first reflective element 2051, a second reflective element 2052, a third reflective element 2053, and a fourth reflective element 2054.
  • the first reflective element 2051, the second reflective element 2052, the third reflective element 2053, and the fourth reflective element 2054 can be formed by the same material and the same patterning process, but it is not limited thereto.
  • the first reflective element 2051, the second reflective element 2052, the third reflective element 2053, and the fourth reflective element 2054 are integrally formed, but it is not limited thereto.
  • FIG. 11 is a cross-sectional view of a display panel provided by an embodiment of the disclosure.
  • FIG. 11 may be a cross-sectional view at E-F in FIG. 10.
  • the plurality of reflection elements 205 include two reflection elements 205 having different inclination angles with respect to at least one of the optical waveguide 101 and the counter substrate 20a.
  • the inclination angles of the first reflective element 2051 and the second reflective element 2052 are the same, which may be the first inclination angle a1.
  • the inclination angles of the third reflective element 2053 and the fourth reflective element 2054 are the same, which may be the second inclination angle a2.
  • the first inclination angle a1 is different from the second inclination angle a2.
  • the first inclination angle a1 is greater than the second inclination angle a2, but it is not limited thereto. In other embodiments, the first inclination angle a1 may be less than or equal to the second inclination angle a2, and the relationship between the first inclination angle a1 and the second inclination angle a2 may be determined according to requirements.
  • FIG. 12 is a top view of an optical waveguide and a light source in a display panel provided by an embodiment of the disclosure.
  • a first light source LS1, a second light source LS2, a third light source LS3, and a fourth light source LS4 are respectively provided on the left, right, lower, and upper sides of the optical waveguide 101.
  • the light emitted by the first light source LS1 can be reflected by the first reflecting element 2051
  • the light emitted by the second light source LS2 can be reflected by the second reflecting element 2052
  • the light emitted by the third light source LS3 can be reflected by the third reflecting element 2053.
  • the light emitted by the fourth light source LS4 may be reflected by the fourth reflecting element 2054.
  • FIG. 13A is a cross-sectional view of a display panel provided by another embodiment of the present disclosure.
  • the reflective element 205 includes a first reflective element 2051 and a second reflective element 2052.
  • the first reflective element 2051 is located on the third surface s3 of the spacer 2040
  • the second reflective element 2052 is located on the fourth surface s4 of the spacer 2040.
  • FIG. 13A also shows the first light source LS11 and the first light source LS12.
  • the first light source LS11 and the first light source LS12 are arranged on opposite sides of the optical waveguide 101.
  • FIG. 13B is a top view of a spacer pattern and a reflective element in a display panel provided by an embodiment of the disclosure.
  • FIG. 13A may be a cross-sectional view at M-N in FIG. 13B.
  • the plurality of first reflecting elements 2051 and the plurality of second reflecting elements 2052 may be symmetrical with respect to the symmetry axis.
  • FIG. 14A is a cross-sectional view of a display panel provided by another embodiment of the present disclosure.
  • the first electrode 211 is a plate electrode
  • the second electrode 202 is a slit electrode.
  • the first electrode 211 and the second electrode 202 are located on the same side of the liquid crystal layer 301, forming an in-plane electric field distribution. For the rest, refer to the description about FIG. 4A.
  • FIG. 14B is a cross-sectional view of another display panel provided by another embodiment of the present disclosure.
  • the display panel provided in this embodiment is not provided with reflective elements.
  • the voltage input to at least one of the first electrode and the second electrode can be adjusted so that the light emitted from the opening 1020 is refracted by the liquid crystal molecules when passing through the liquid crystal layer, and then emitted from the opposite substrate to achieve display.
  • the display surface of the display panel is the side where the opposite substrate is located.
  • FIG. 15 is a schematic diagram of an electric field formed by a first electrode and a second electrode in a display panel provided by an embodiment of the present disclosure.
  • the electric field line DL2 is shown in FIG. 15.
  • the width of the electrode strips is W, and the distance between adjacent electrode strips is S.
  • the electrode period is the sum of W and S.
  • the period of the liquid crystal grating is one half of the electrode period.
  • FIG. 16 is a schematic diagram of a display panel provided by an embodiment of the present disclosure being viewed by an observer.
  • the image presented by the multiple sub-pixels in the display panel is observed by the human eye 401 of the observer.
  • the display panel in FIG. 16 includes a plurality of sub-pixels arranged in n rows and n columns, but the embodiment of the present disclosure is not limited to this, and the arrangement of the sub-pixels can be determined according to needs.
  • An embodiment of the present disclosure also provides a display device including any of the above-mentioned display panels.
  • the display device may be, for example, a liquid crystal display device.
  • the display device may be a liquid crystal display and any product or component with a display function such as a TV, a digital camera, a mobile phone, a watch, a tablet computer, a notebook computer, a navigator, and the like including a liquid crystal display device.
  • the patterning or patterning process may only include a photolithography process, or include a photolithography process and an etching step, or may include other processes for forming predetermined patterns such as printing and inkjet.
  • the photolithography process refers to the process including film formation, exposure, development, etc., using photoresist, mask, exposure machine, etc. to form patterns.
  • the corresponding patterning process can be selected according to the structure formed in the embodiment of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

提供一种显示基板(10a),包括:光波导(101);第一缓冲层(102),位于光波导(101)的一侧,第一缓冲层(102)包括第一缓冲图形(102a)以及由第一缓冲图形(102a)限定的多个开口(1020);以及第二缓冲层(103),位于光波导(101)的设有第一缓冲层(102)的一侧,并至少覆盖多个开口(1020),第一缓冲图形(102a)的折射率小于光波导(101)的折射率,第二缓冲层(103)的折射率大于光波导(101)的折射率。还提供一种显示面板和显示装置。

Description

显示基板、显示面板和显示装置
相关申请的交叉引用
本专利申请要求于2019年7月29日递交的中国专利申请第201910688816.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本公开的实施例的一部分。
技术领域
本公开至少一实施例涉及一种显示基板、显示面板和显示装置。
背景技术
液晶显示装置包括指向式液晶显示装置,在指向式液晶显示装置中,液晶层中的液晶分子呈现周期性排列的液晶光栅,利用液晶光栅(透镜,棱镜均可)的衍射/折射实现显示。
发明内容
本公开的至少一实施例涉及一种显示基板、显示面板和显示装置。
本公开的至少一实施例提供一种显示基板,包括:光波导;第一缓冲层,位于所述光波导的一侧,所述第一缓冲层包括第一缓冲图形以及由所述第一缓冲图形限定的多个开口;以及第二缓冲层,位于所述光波导的设有所述第一缓冲层的一侧,并至少覆盖所述多个开口,其中,所述第一缓冲图形的折射率小于所述光波导的折射率,所述第二缓冲层的折射率大于所述光波导的折射率。
例如,所述光波导包括第一部分和第二部分,所述第一部分处于所述第一缓冲图形的位置处,所述第二部分处于所述多个开口的位置处;所述第一部分被配置为对照射到其上的在所述光波导中传播的光进行全反射;所述第二部分被配置为对照射到其上的在所述光波导中传播的光进行出射。
例如,所述第二缓冲层包括多个缓冲部,每个缓冲部填充一个开口,所述多个缓冲部的折射率不同。
本公开的至少一实施例还提供一种显示面板,包括上述任一显示基板以 及与所述显示基板对置的对置基板,其中,所述显示基板和所述对置基板被密封以形成盒,所述盒中设有隔垫物图形,所述隔垫物图形包括多个隔垫物,相邻隔垫物之间的空间被液晶材料填充,所述多个隔垫物的每个被配置为支撑盒厚以及吸收照射到其上的光。
例如,相邻隔垫物之间的空间的在平行于所述光波导的方向上的尺寸大于所述开口在平行于所述光波导的方向上的尺寸。
例如,所述隔垫物在所述光波导上的正投影落入所述第一缓冲图形在所述光波导上的正投影内。
例如,所述隔垫物在所述光波导上的正投影与所述开口在所述光波导上的正投影不交叠。
例如,显示面板还包括反射元件,所述反射元件位于所述隔垫物的靠近所述对置基板的一侧,所述反射元件具有反射面,所述反射面被配置为反射光。
例如,所述隔垫物包括第一表面、第二表面、第三表面和第四表面,所述第一表面与所述第二表面相对,所述第三表面和所述第四表面相对,所述第一表面靠近所述光波导,所述第二表面靠近所述对置基板,所述第三表面和所述第四表面位于所述第一表面和所述第二表面之间,所述反射元件位于所述第三表面和所述第四表面至少之一上。
例如,所述反射面相对于所述光波导和所述对置基板至少之一倾斜。
例如,所述反射面相对于所述光波导和所述对置基板至少之一的倾斜角度为9度至13度。
例如,所述反射元件在垂直于所述光波导的方向上的尺寸小于所述隔垫物在垂直于所述光波导的方向上的尺寸的二分之一。
例如,所述反射元件在垂直于所述光波导的方向上的尺寸小于所述隔垫物在垂直于所述光波导的方向上的尺寸的三分之一。
例如,显示面板包括多个子像素,每个子像素包括多个反射元件,所述多个反射元件包括相对于所述光波导和所述对置基板至少之一的倾斜角度不同的两个反射元件。
例如,显示面板还包括位于所述光波导的靠近所述对置基板一侧的第一取向层和位于所述对置基板的靠近所述光波导一侧的第二取向层,其中,所 述隔垫物分别与所述第一取向层和所述第二取向层接触。
例如,显示面板还包括第一电极和第二电极,所述第一电极和所述第二电极被配置为形成电场以驱动液晶分子旋转;所述第一电极和所述第二电极至少之一为狭缝电极。
例如,所述第一电极包括多个第一电极条,所述第二电极包括多个第二电极条,所述多个第一电极条和所述多个第二电极条在所述光波导上的正投影不重叠;或者,所述第一电极为板状电极,所述第二电极为狭缝电极。
例如,所述第一电极和所述第二电极之一设置在所述光波导上,所述第一电极和所述第二电极之另一设置在所述对置基板上;或者,所述第一电极和所述第二电极均设置在所述光波导上,或均设置在所述对置基板上。
例如,显示面板还包括光源,所述光源设置在所述光波导的至少一侧;所述光源被配置为提供在所述光波导中传播的可被全反射的光。
本公开的至少一实施例还提供一种显示装置,包括上述任一显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种指向式液晶显示面板的剖视图;
图2为图1所示的指向式液晶显示面板中的黑矩阵的宽度的示意图;
图3A为本公开的实施例提供的一种显示基板的剖视图;
图3B为图3A中的第一缓冲层的俯视示意图;
图3C为图3A中的光波导的俯视示意图;
图3D为本公开的另一实施例提供的另一种显示基板的剖视图;
图4A为本公开的一实施例提供的一种显示面板的剖视图;
图4B为本公开的一实施例提供的一种显示面板中第一电极和第二电极之间形成电场时的光路图;
图4C为本公开一实施例提供的显示面板的剖视图;
图5为本公开一实施例提供的显示面板中的第一电极和第二电极形成的电场的示意图;
图6为本公开一实施例提供的显示面板中的隔垫物图形和反射元件的俯视图;
图7为本公开另一实施例提供的另一显示面板的剖视图;
图8为本公开一实施例提供的一种显示面板中的隔垫物图形和反射元件的俯视图;
图9为本公开一实施例提供的一种显示面板中的光波导以及光源的俯视图;
图10为本公开另一实施例提供的另一显示面板中的隔垫物图形和反射元件的俯视图;
图11为本公开一实施例提供的一种显示面板的剖视图;
图12为本公开一实施例提供的一种显示面板中的光波导以及光源的俯视图;
图13A为本公开另一实施例提供的一种显示面板的剖视图;
图13B为本公开一实施例提供的一种显示面板中的隔垫物图形和反射元件的俯视图;
图14A为本公开另一实施例提供的一种显示面板的剖视图;
图14B为本公开另一实施例提供的另一种显示面板的剖视图;
图15为本公开一实施例提供的一种显示面板中的第一电极和第二电极形成的电场的示意图;以及
图16为本公开一实施例提供的一种显示面板被观察者观看的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不 同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种指向式液晶显示面板的剖视图。如图1所示,液晶显示面板包括第一基板01、与第一基板01相对设置的第二基板02、以及位于第一基板01和第二基板02之间的液晶层31。第一基板01和第二基板02可通过位于边缘位置处的封框胶密封形成液晶盒,在液晶盒中填充液晶材料的液晶层31。如图1所示,第一基板01包括光波导11、位于光波导11的侧面的一侧的光源LS01、位于光波导11的主表面上的取光光栅层12、位于取光光栅层12之上的填充层13、以及位于填充层13之上的第一取向层14。第二基板02包括衬底基板21、位于衬底基板21的靠近第一基板01一侧的黑矩阵22、滤色器层23、第一绝缘层24、第一电极层25、第二绝缘层26、第二电极层27、以及第二取向层28等结构。第一电极层25为板状结构,第二电极层27包括多个狭缝电极。黑矩阵22可包括第一黑矩阵221和第二黑矩阵222。第一黑矩阵221主要起遮光作用,第二黑矩阵222可起到防串色的效果。
如图1所示,取光光栅层12包括多个取光光栅120和位于相邻取光光栅120之间的开口121,开口121被填充层13填充。填充层13的折射率小于光波导11的折射率。光源LS01发出的光在光波导11中传播,到达光波导11的位于取光光栅12处的部分的光被取出,进而可入射到第二基板02,而到达光波导11的位于相邻取光光栅120的之间的开口121处的部分的光发生全反射。相邻取光光栅120的之间的开口121为图1中相邻取光光栅120的之间的部分。
图1所示的显示面板的显示原理如下。由取光光栅处出射的光线,例如可出射准直光线,入射到第二基板02的黑矩阵22时被吸收,没有显示的光线出射,此时为暗态,此时不向液晶层施加电场。当显示面板进行灰阶显示时,需要向液晶层施加电场,此时液晶分子呈现周期性排列的液晶光栅,利用液晶光栅(透镜,棱镜均可)的衍射/折射实现显示。例如,从光波导中出 射的准直光,经过液晶光栅的衍射/折射,从黑矩阵之间的开口区域出射,显示灰阶例如L255灰阶,通过控制向液晶层施加的电场,即可实现液晶透镜对入射光线的衍射/折射效率的不同,从而实现任意灰阶例如L0-L255之间的任意灰阶。例如,通过向第一电极层中的板状电极以及第二电极层中的狭缝电极分别施加电压形成控制液晶层中的液晶分子旋转的电场,通过控制电场的大小来控制液晶分子的旋转程度,进而显示不同灰阶。
图2为图1所示的指向式液晶显示面板中的一种黑矩阵的宽度的示意图。图2示出了第一黑矩阵221、第二黑矩阵222和取光光栅120,α为遮挡角,θ为准直角度,
Figure PCTCN2020104063-appb-000001
为透过角,a为出光光栅宽度,e为一个出光光栅单元,b为第一黑矩阵221的宽度,c为透过区的宽度,d为工艺偏差,f为第二黑矩阵222的宽度。当黑白显示时,不需要设置第二黑矩阵222。
如图2,所示,为了保证暗态不漏光,第一黑矩阵221的宽度需要满足:
根据几何关系有:
b=a+(h*tanθ+d)*2   公式1
Figure PCTCN2020104063-appb-000002
Figure PCTCN2020104063-appb-000003
已知光栅宽度a,出光角度θ,高度h以及工艺偏差d,可求得:第一黑矩阵221宽度b及遮光角α。
举例计算,光栅宽度a=10μm,出光角度±5°,高度160μm,工艺偏差d=5μm,可求得b=48μm。
由此可见,由于光源的准直度不高及工艺偏差的存在,为了保证暗态不漏光,第一黑矩阵221的宽度需要做的很大,这将限制显示的分辨率及像素开口率,进而影响液晶光效,降低竞争力。例如,图1所示的显示面板构成的显示装置的液晶光效约为1%。
图3A为本公开的实施例提供的一种显示基板的剖视图。如图3A所示,显示基板10a包括光波导101、第一缓冲层102和第二缓冲层103。第一缓冲 层102位于光波导101的一侧,第一缓冲层102包括第一缓冲图形102a以及由第一缓冲图形102a限定的多个开口1020。第二缓冲层103位于光波导101的设有第一缓冲层102的一侧,并至少覆盖多个开口1020。图3A中以第二缓冲层103完全覆盖多个开口1020并具有超出第一缓冲层102的部分为例进行说明。第一缓冲图形102a的折射率小于光波导101的折射率,第二缓冲层103的折射率大于光波导101的折射率。例如,第一缓冲图形102a的折射率和光波导101的折射率的差值越大越好,例如,第一缓冲图形102a的折射率为1.2-1.5,但不限于此。例如,第一缓冲图形102a和第二缓冲层103均可采用绝缘材料制作。例如,第一缓冲图形102a和第二缓冲层103可采用通常的满足上述折射率条件的材料形成,例如可采用有机材料和无机材料至少之一形成,但不限于此。例如,有机材料包括树脂,但不限于此。例如,树脂包括丙烯酸树脂,但不限于此,也可根据需要选择其他适合的材料。例如,无机材料包括氧化硅、氮化硅、氮氧化硅、氧化铝、氧化钛中至少之一,但不限于此,也可根据需要选择其他适合的材料。例如,光波导101可以为玻璃,聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)等材料制成,但不限于此。
图3B为图3A中的第一缓冲层的俯视示意图。图3A可为图3B中A-B处的剖视图,但不限于此。图3A还示出了除了第一缓冲层之外的一些结构。需要说明的是,图3A中所示的第一缓冲层102的俯视示意图也不限于图3B所示。图3B中的每个开口1020可对应一个子像素SPX。例如,子像素SPX为可进行独立控制的最小显示单元。例如,多个子像素SPX可包括红色子像素,绿色子像素和蓝色子像素,但不限于此。
如图3A和图3B所示,第一缓冲层102包括第一开口1021和第二开口1022。
例如,如图3A和图3B所示,第一缓冲层102采用一种材料形成。第一缓冲图形102a的折射率在各位置处均相同,但本公开的实施例不限于此。
图3C为图3A中的光波导的俯视示意图。参考图3A和图3C,光波导101包括第一部分101a和第二部分101b,第一部分101a处于第一缓冲图形102a的位置处,第二部分101b处于多个开口1020的位置处。因光波导101与第一缓冲图形102a之间的折射率的关系可知,第一部分101a被配置为对 照射到其上的在光波导101中传播的光进行全反射。因光波导101与第二缓冲层103之间的折射率的关系可知,第二部分101b被配置为对照射到其上的在光波导101中传播的光进行出射。
本公开的实施例提供的显示基板,能够降低制造难度,可将包含该显示基板的显示装置的液晶光效提升5-6倍,增加市场竞争力。例如,由本公开的实施例提供的显示基板制作的显示装置的液晶光效(出光光效)可达5%或超过5%。
图3D为本公开的另一实施例提供的另一种显示基板的剖视图。如图3D所示,显示基板10b与显示基板10a的不同之处在于:第二缓冲层103包括多个缓冲部,每个缓冲部填充一个开口1020,多个缓冲部的折射率不同。图3D中示出了第一缓冲部1031、第二缓冲部1032和第三缓冲部1033,第一缓冲部1031、第二缓冲部1032和第三缓冲部1033中每两个的折射率不同。例如,第一缓冲部1031、第二缓冲部1032和第三缓冲部1033可分别对应不同颜色的子像素。
图3A和图3D示出了第一方向X和第三方向Z,图3B和图3C示出了第一方向X和第二方向Y。例如,第一方向X和第二方向Y为平行于的光波导101的表面的方向。第一方向X与第二方向Y相交,进一步例如,第一方向X垂直于第二方向Y。例如,第三方向Z为垂直于光波导101的方向。光波导101的表面为设置第一缓冲层102和第二缓冲层103的表面。例如,第三方向Z垂直于第一方向X,并且垂直于第二方向Y。
图4A为本公开的一实施例提供的一种显示面板的剖视图。如图4A所示,显示面板包括图3A所示的显示基板。当然,本公开的实施例提供的显示面板可包括上述任一显示基板。
例如,如图4A所示,本公开一实施例提供的显示面板包括图3A所示的显示基板10a以及与显示基板10a对置的对置基板20a。显示基板10a和对置基板20a被密封以形成盒,盒中设有隔垫物图形204,隔垫物图形204包括多个隔垫物2040,相邻隔垫物2040之间的空间被液晶材料填充,多个隔垫物2040的每个被配置为支撑盒厚以及吸收照射到其上的光。例如,隔垫物图形204可采用通常的具有吸光性能的材料形成,例如,可与通常技术中的黑矩阵采用相同的材料制成,但不限于此。
例如,如图4A所示,为了利于光线入射到隔垫物2040上,相邻隔垫物2040之间的空间的在平行于光波导101的方向上的尺寸大于开口1020在平行于光波导101的方向上的尺寸。例如,相邻隔垫物2040之间的空间的在水平方向上的尺寸大于开口1020在水平方向上的尺寸。例如,如图4A所示,平行于光波导101的方向包括第一方向X,但不限于此。
例如,如图4A所示,为了使得相邻隔垫物之间的在水平方向的尺寸大于位于相邻隔垫物之间的开口1020的在水平方向的尺寸,隔垫物2040在光波导101上的正投影落入第一缓冲图形102a在光波导101上的正投影内。例如,如图4A所示,开口1020在光波导101上的正投影落入与该开口相邻的两个隔垫物2040之间的空间在光波导101上的正投影内。例如,如图4A所示,隔垫物2040在光波导101上的正投影与开口1020在光波导101上的正投影不交叠。
例如,如图4A所示,显示面板还包括反射元件205,反射元件205位于隔垫物2040的靠近对置基板20a的一侧,反射元件205具有反射面205s,反射面205s被配置为反射照射到其上的光。例如,反射元件205可采用金属材料制成,但不限于此。反射元件205也可以为树脂形成的结构,并在该结构的表面蒸镀金属材料的反射面。
例如,如图4A所示,隔垫物2040包括第一表面s1、第二表面s2、第三表面s3和第四表面s4,第一表面s1靠近光波导101,第二表面s2远离光波导101,即,第二表面s2靠近对置基板。第三表面s3和第四表面s4位于第一表面s1和第二表面s2之间。第一表面s1和第二表面s2相对,第三表面s3和第四表面s4相对。反射元件205位于第三表面s3和第四表面s4至少之一上。图4A以反射元件205仅位于第三表面s3上为例进行说明。
例如,如图4A所示,反射面205s相对于光波导101和对置基板20a至少之一倾斜。图4A以反射面205s相对于光波导101和对置基板20a均倾斜为例进行说明。
例如,如图4A所示,反射面205s相对于光波导101和对置基板20a至少之一的倾斜角度θ1为9度至13度。
例如,如图4A所示,反射元件205在垂直于光波导101的方向上的尺寸小于隔垫物2040在垂直于光波导101的方向上的尺寸的二分之一。例如, 垂直于光波导101的方向为第三方向Z。
例如,在其他的实施例中,为了增大反射面的面积,反射元件205在垂直于光波导101的方向上的尺寸小于隔垫物2040在垂直于光波导101的方向上的尺寸的三分之一。例如,垂直于光波导101的方向为第三方向Z。
例如,如图4A所示,显示面板还包括位于光波导101的靠近对置基板20a一侧的第一取向层105和位于对置基板20a的靠近光波导101一侧的第二取向层203,为了避免漏光和串色,隔垫物2040分别与第一取向层105和第二取向层203接触。
例如,显示面板还包括第一电极和第二电极,第一电极和第二电极被配置为形成电场以驱动液晶分子旋转;第一电极和第二电极至少之一为狭缝电极。如图4A所示,显示面板包括第一电极104和第二电极202,第一电极104位于光波导的靠近对置基板20a的一侧,第二电极202位于衬底基板201的靠近显示基板10a的一侧,第一电极104和第二电极202均为狭缝电极。第一电极104和第二电极202可采用透明材料制成,例如可采用透明氧化物例如氧化铟锡制成,但不限于此。
本公开的实施例提供的显示面板的灰阶实现原理如下:可利用向第一电极和第二电极施加电压的大小来实现液晶调光单元(子像素)的效率,从而实现不同的灰阶。可为每个液晶调光单元设置第一电极104和第二电极202,多个子像素中的多个第一电极104彼此绝缘以被分别施加信号,多个子像素中的多个第二电极202可彼此电连接以被施加相同信号。
例如,如图4A所示,第一电极104包括多个第一电极条1041,第二电极202包括多个第二电极条2021,多个第一电极条1041和多个第二电极条2021在光波导101上的正投影不重叠。
例如,第一电极104和第二电极202之一设置在光波导101上,第一电极104和第二电极202之另一设置在对置基板20a上。如图4A所示,第一电极104位于光波导上,第二电极202位于对置基板20a的衬底基板201上。当然,在其他的实施例中,第一电极104和第二电极202可均设置在光波导101上,或均设置在对置基板20a上。
例如,如图4A所示,光源LS设置在光波导101的至少一侧;光源LS被配置为提供在光波导101中传播的可被全反射的光。例如,光源LS可以 为白光,或者单色光。例如,光源LS的出光角度有一定要求,要求大于光波导的全反射临界角度。
例如,如图4A所示,反射元件205与隔垫物2040接触,但不限于此。在其他实施例中,反射元件205也可不与隔垫物2040接触,即,反射元件205可位于相邻两个隔垫物2040之间,且与该两个隔垫物2040均不接触,从而,可使得隔垫物2040的整个侧面例如全部的第三表面s3均可吸收光。
图4A为第一电极和第二电极之间不形成电场时的光路图。在图4A中,第一电极104和第二电极202之间没有电压差,不形成电场,从开口1020处出射的光照射到隔垫物2040上,被隔垫物2040吸收,呈现黑态。
图4B为第一电极和第二电极之间形成电场时的光路图。第一电极104和第二电极202之间具有电压差,形成电场,可驱动液晶分子旋转,从而照射到液晶分子上的光线经折射后可被调整为朝向反射面205s入射,入射到反射面205s的光经反射从开口1020处出射,从而可实现显示。
以下具体描述显示灰阶的实现。
形成暗态时,从光源处出射的光线入射到光波导中全反射传播,在第一缓冲层的非开口区域全反射传播,在开口处,由于第二缓冲层折射率大于光波导的折射率,光线可以在此处出射,出射的光线穿透各膜层最终被隔垫物的侧面吸收,实现暗态。
实现亮态时,需要给液晶分子施加电场,即向第一电极和第二电极分别施加驱动电压,液晶分子可旋转,形成液晶光栅或透镜(LENS),可以将入射的光线角度打散,调制角度与液晶光栅周期相关。例如,当液晶光栅周期P=3μm时,调制能力约20°,此时入射角度被调制20°后,穿透液晶层入射到倾斜设置的反射面处,经反射面反射返回液晶层,最终穿透光波导出射,实现显示。
本公开的实施例中,可以通过施加电压的大小,来控制液晶光栅的调制能力,即控制光线由入射到隔垫物的方向调整到入射到反射面上。通过调节向液晶层施加的电场的大小,来实现不同的显示灰阶。电场越大,液晶光栅的高度越大,调制能力越强。本公开的实施例中,反射面的存在,可以将光线角度进一步调节,可以将入射光的角度调整到偏离全反射角,从而可以从光波导层出射,达到增加出光效率的作用。
例如,如图4B所示,当显示面板为透明显示面板时,背景光线L0可透过开口到达人眼401,从而,人眼401也可透过显示面板观察到实际景物。当然,在一些实施例中,也可使得人眼401仅观察显示面板的显示图像,而不看到实际景物,本公开的实施例对此不作限定。如图4B所示,显示面板的光波导101所在的一侧为显示面。
如图4A和图4B所示,本公开的实施例提供的显示面板,不需要设置偏光片,从而,可简化制作工艺,降低成本,利于量产,并减小显示面板的厚度。
如图4A和图4B所示,示出了两个子像素:子像素SPX1和子像素SPX2。例如,在本公开的实施例中,还可以在光波导101的背离对置基板20a的一侧设置滤色器层,以实现彩色显示。
如图4A和4B所示,显示面板还包括位于显示基板10a和对置基板20a之间的液晶层301。液晶层301被配置为形成液晶光栅/透镜(LENS),用于调制显示时入射光方向/角度。本公开的实施例提供的显示面板,与反射模式相同,施加电压时,液晶层形成液晶光栅/透镜(LENS),将原本入射到隔垫物上的光线调整到入射到反射面上,以实现从开口处出射。如图4A和图4B所示,第一电极和第二电极分设在液晶层的两侧,形成垂直电场,或者电场具有垂直分量。
本公开的实施例提供的显示面板,可通过控制光线方向实现灰阶显示。本公开的实施例提供的显示面板,无光栅取光结构,利用全反射把光波导中的光线传送到每个像素,设有取光开口,用于取光;用隔垫物将光线遮挡实现黑态,利用电场控制液晶分子以使得光线折射到反射面实现亮态。本公开的实施例提供的显示面板,从垂直方向补充对位尺寸,大角度全反射光线在传播方向上的投影面积小,需要遮挡的面积小,可以大大提升开口率。
图4C为本公开一实施例提供的显示面板的剖视图。如图4C所示,显示基板10a和对置基板20a通过位于显示基板10a和对置基板20a的边缘位置处的封框胶SLT密封形成液晶盒CL。例如,如图4C所示,隔垫物2040在垂直于显示面板10a的方向上的尺寸等于封框胶SLT在垂直于显示面板10a的方向上的尺寸。例如,本公开的实施例中,液晶盒CL包括多个空间SP。每个空间均由相邻隔垫物2040围绕。例如,每个空间SP为一个独立的空间。 图4C中仅示出了三个空间SP,空间SP的个数可根据需要而定。例如,一个空间SP对应一个子像素SPX(如图3B所示)。
图5为本公开一实施例提供的显示面板中的第一电极和第二电极形成的电场的示意图。例如,图5为图4A所示的显示面板中的第一电极104和第二电极202形成的电场的示意图。电场线DL1如图5所示。
如图5所示,电极条的宽度为W,相邻电极条之间的间距为S。电极周期为W和S之和。液晶光栅的周期与电极周期相同。
图6为本公开一实施例提供的显示面板中的隔垫物图形和反射元件的俯视图。如图6所示,隔垫物2040的一侧设置反射元件205。图6可为图4A所示的显示面板中的隔垫物图形和反射元件的俯视图。
图7为本公开另一实施例提供的另一显示面板的剖视图。图7所示的显示面板与图3A所示的显示面板相比,在隔垫物2040的两侧均设置反射元件。如图7所示,在隔垫物2040的第三表面s3和第四表面s4分别设置第一反射元件2051和第二反射元件2052,从而,可提高亮度,提高显示效果。
图8为本公开一实施例提供的一种显示面板中的隔垫物图形和反射元件的俯视图。例如,图8为图7所示的显示面板中的隔垫物图形和反射元件的俯视图。
图9为本公开一实施例提供的一种显示面板中的光波导以及光源的俯视图。例如,图9为图7所示的显示面板中的光波导以及光源的俯视图。如图9所示,在光波导101的左右两侧分别设置第一光源LS1和第二光源LS2。参考图7至图9,第一光源LS1出射的光可经第一反射元件2051反射,第二光源LS2出射的光可经第二反射元件2052反射。
图10为本公开另一实施例提供的另一显示面板中的隔垫物图形和反射元件的俯视图。例如,如图10所示,显示面板包括多个子像素SPX,每个子像素SPX包括多个反射元件205。如图10所示,每个子像素SPX包括四个反射元件205:第一反射元件2051、第二反射元件2052、第三反射元件2053和第四反射元件2054。例如,第一反射元件2051、第二反射元件2052、第三反射元件2053和第四反射元件2054可由同一材料采用同一构图工艺形成,但不限于此。例如,第一反射元件2051、第二反射元件2052、第三反射元件2053和第四反射元件2054一体形成,但不限于此。
图11为本公开一实施例提供的一种显示面板的剖视图。例如,图11可为图10中E-F处的剖视图。例如,多个反射元件205包括相对于光波导101和对置基板20a至少之一的倾斜角度不同的两个反射元件205。如图11所示,第一反射元件2051和第二反射元件2052的倾斜角度相同,可为第一倾斜角度a1。第三反射元件2053和第四反射元件2054的倾斜角度相同,可为第二倾斜角度a2。例如,第一倾斜角度a1与第二倾斜角度a2不同。例如,第一倾斜角度a1大于第二倾斜角度a2,但不限于此。在其他的实施例中,也可以第一倾斜角度a1小于或等于第二倾斜角度a2,第一倾斜角度a1和第二倾斜角度a2的关系可根据需要而定。
图12为本公开一实施例提供的一种显示面板中的光波导以及光源的俯视图。如图12所示,在光波导101的左侧、右侧、下侧和上侧分别设置有第一光源LS1、第二光源LS2、第三光源LS3和第四光源LS4。例如,第一光源LS1出射的光可经第一反射元件2051反射,第二光源LS2出射的光可经第二反射元件2052反射,第三光源LS3出射的光可经第三反射元件2053反射,第四光源LS4出射的光可经第四反射元件2054反射。
图13A为本公开另一实施例提供的一种显示面板的剖视图。图13A所示,为了利于观察者观看,反射元件205包括第一反射元件2051和第二反射元件2052。第一反射元件2051位于隔垫物2040的第三表面s3上,第二反射元件2052位于隔垫物2040的第四表面s4上。图13A还示出了第一光源LS11和第一光源LS12。第一光源LS11和第一光源LS12设置在光波导101相对的两侧。
图13B为本公开一实施例提供的一种显示面板中的隔垫物图形和反射元件的俯视图。例如,图13A可为图13B中M-N处的剖视图。如图13B所示,多个第一反射元件2051和多个第二反射元件2052可相对于对称轴对称。
图14A为本公开另一实施例提供的一种显示面板的剖视图。例如,如图14A所示,第一电极211为板状电极,第二电极202为狭缝电极。第一电极211和第二电极202位于液晶层301的同一侧,形成面内电场分布。其余可参照有关于图4A的描述。
图14B为本公开另一实施例提供的另一种显示面板的剖视图。该实施例提供的显示面板不设置反射元件。可通过调整输入到第一电极和第二电极至 少之一上的电压来使得从开口1020处出射的光经过液晶层时被液晶分子折射,进而从对置基板出射,实现显示。如图14B所示,显示面板的显示面为对置基板所在的一侧。
图15为本公开一实施例提供的一种显示面板中的第一电极和第二电极形成的电场的示意图。电场线DL2如图15所示。电极条的宽度为W,相邻电极条之间的间距为S。电极周期为W和S之和。液晶光栅的周期为电极周期的二分之一。
图16为本公开一实施例提供的一种显示面板被观察者观看的示意图。显示面板中的多个子像素呈现的图像被观察者的人眼401观察到。图16中的显示面板包括设置成n行n列的多个子像素,但本公开的实施例不限于此,子像素的设置方式可根据需要而定。
本公开一实施例还提供一种显示装置,包括上述任一显示面板。显示装置例如可为液晶显示装置。显示装置可以为液晶显示器以及包括液晶显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
需要说明的是,为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
在本公开的实施例中,构图或构图工艺可只包括光刻工艺,或包括光刻工艺以及刻蚀步骤,或者可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺是指包括成膜、曝光、显影等工艺过程,利用光刻胶、掩模板、曝光机等形成图形。可根据本公开的实施例中所形成的结构选择相应的构图工艺。
在不冲突的情况下,本公开的同一实施例及不同实施例中的特征可以相互组合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示基板,包括:
    光波导;
    第一缓冲层,位于所述光波导的一侧,所述第一缓冲层包括第一缓冲图形以及由所述第一缓冲图形限定的多个开口;以及
    第二缓冲层,位于所述光波导的设有所述第一缓冲层的一侧,并至少覆盖所述多个开口,
    其中,所述第一缓冲图形的折射率小于所述光波导的折射率,所述第二缓冲层的折射率大于所述光波导的折射率。
  2. 根据权利要求1所述的显示基板,其中,所述光波导包括第一部分和第二部分,所述第一部分处于所述第一缓冲图形的位置处,所述第二部分处于所述多个开口的位置处;
    所述第一部分被配置为对照射到其上的在所述光波导中传播的光进行全反射;
    所述第二部分被配置为对照射到其上的在所述光波导中传播的光进行出射。
  3. 根据权利要求1或2所述的显示基板,其中,所述第二缓冲层包括多个缓冲部,每个缓冲部填充一个开口,所述多个缓冲部的折射率不同。
  4. 一种显示面板,包括权利要求1-3任一项所述的显示基板以及与所述显示基板对置的对置基板,其中,所述显示基板和所述对置基板被密封以形成盒,所述盒中设有隔垫物图形,所述隔垫物图形包括多个隔垫物,相邻隔垫物之间的空间被液晶材料填充,所述多个隔垫物的每个被配置为支撑盒厚以及吸收照射到其上的光。
  5. 根据权利要求4所述的显示面板,其中,相邻隔垫物之间的空间的在平行于所述光波导的方向上的尺寸大于所述开口在平行于所述光波导的方向上的尺寸。
  6. 根据权利要求4或5所述的显示面板,其中,所述隔垫物在所述光波导上的正投影落入所述第一缓冲图形在所述光波导上的正投影内。
  7. 根据权利要求4-6任一项所述的显示面板,其中,所述隔垫物在所述光波导上的正投影与所述开口在所述光波导上的正投影不交叠。
  8. 根据权利要求4-7任一项所述的显示面板,还包括反射元件,其中, 所述反射元件位于所述隔垫物的靠近所述对置基板的一侧,所述反射元件具有反射面,所述反射面被配置为反射光。
  9. 根据权利要求8所述的显示面板,其中,所述隔垫物包括第一表面、第二表面、第三表面和第四表面,所述第一表面与所述第二表面相对,所述第三表面和所述第四表面相对,所述第一表面靠近所述光波导,所述第二表面靠近所述对置基板,所述第三表面和所述第四表面位于所述第一表面和所述第二表面之间,
    所述反射元件位于所述第三表面和所述第四表面至少之一上。
  10. 根据权利要求8或9所述的显示面板,其中,所述反射面相对于所述光波导和所述对置基板至少之一倾斜。
  11. 根据权利要求8-10任一项所述的显示面板,其中,所述反射面相对于所述光波导和所述对置基板至少之一的倾斜角度为9度至13度。
  12. 根据权利要求8-11任一项所述的显示面板,其中,所述反射元件在垂直于所述光波导的方向上的尺寸小于所述隔垫物在垂直于所述光波导的方向上的尺寸的二分之一。
  13. 根据权利要求8-11任一项所述的显示面板,其中,所述反射元件在垂直于所述光波导的方向上的尺寸小于所述隔垫物在垂直于所述光波导的方向上的尺寸的三分之一。
  14. 根据权利要求4-13任一项所述的显示面板,包括多个子像素,其中,每个子像素包括多个反射元件,所述多个反射元件包括相对于所述光波导和所述对置基板至少之一的倾斜角度不同的两个反射元件。
  15. 根据权利要求4-14任一项所述的显示面板,还包括位于所述光波导的靠近所述对置基板一侧的第一取向层和位于所述对置基板的靠近所述光波导一侧的第二取向层,其中,所述隔垫物分别与所述第一取向层和所述第二取向层接触。
  16. 根据权利要求4-15任一项所述的显示面板,还包括第一电极和第二电极,其中,所述第一电极和所述第二电极被配置为形成电场以驱动液晶分子旋转;
    所述第一电极和所述第二电极至少之一为狭缝电极。
  17. 根据权利要求16所述的显示面板,其中,
    所述第一电极包括多个第一电极条,所述第二电极包括多个第二电极条, 所述多个第一电极条和所述多个第二电极条在所述光波导上的正投影不重叠;或者,
    所述第一电极为板状电极,所述第二电极为狭缝电极。
  18. 根据权利要求16或17所述的显示面板,其中,所述第一电极和所述第二电极之一设置在所述光波导上,所述第一电极和所述第二电极之另一设置在所述对置基板上;或者,
    所述第一电极和所述第二电极均设置在所述光波导上,或均设置在所述对置基板上。
  19. 根据权利要求4-18任一项所述的显示面板,还包括光源,其中,所述光源设置在所述光波导的至少一侧;所述光源被配置为提供在所述光波导中传播的可被全反射的光。
  20. 一种显示装置,包括权利要求4-19任一项所述的显示面板。
PCT/CN2020/104063 2019-07-29 2020-07-24 显示基板、显示面板和显示装置 WO2021018024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/265,221 US11402565B2 (en) 2019-07-29 2020-07-24 Display substrate, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910688816.0A CN110286525B (zh) 2019-07-29 2019-07-29 显示基板、显示面板和显示装置
CN201910688816.0 2019-07-29

Publications (1)

Publication Number Publication Date
WO2021018024A1 true WO2021018024A1 (zh) 2021-02-04

Family

ID=68024107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104063 WO2021018024A1 (zh) 2019-07-29 2020-07-24 显示基板、显示面板和显示装置

Country Status (3)

Country Link
US (1) US11402565B2 (zh)
CN (1) CN110286525B (zh)
WO (1) WO2021018024A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828623A1 (en) * 2019-11-28 2021-06-02 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
US11874556B1 (en) * 2023-04-16 2024-01-16 Liqxtal Technology Inc. Directional liquid crystal display

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110286525B (zh) 2019-07-29 2021-11-16 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN110646982B (zh) 2019-10-08 2021-08-10 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN110727141A (zh) * 2019-10-23 2020-01-24 京东方科技集团股份有限公司 透明显示装置、制备方法和控制方法
CN111240076B (zh) * 2020-02-03 2022-08-09 京东方科技集团股份有限公司 透明显示装置
CN117687253A (zh) * 2021-02-26 2024-03-12 厦门天马微电子有限公司 一种光栅及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112831A (ja) * 2009-11-26 2011-06-09 Hitachi Maxell Ltd 積層グレーティング素子およびその製造方法
CN202486473U (zh) * 2012-01-12 2012-10-10 信利半导体有限公司 一种液晶光阀
CN207882620U (zh) * 2018-02-12 2018-09-18 京东方科技集团股份有限公司 显示装置
CN109239965A (zh) * 2018-09-30 2019-01-18 京东方科技集团股份有限公司 一种显示器件及其控制方法
CN109541850A (zh) * 2019-01-07 2019-03-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN110286525A (zh) * 2019-07-29 2019-09-27 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487304C (zh) * 2000-09-25 2009-05-13 三菱丽阳株式会社 一种光源装置
CN1811549A (zh) * 2000-09-25 2006-08-02 三菱丽阳株式会社 一种光源装置
GB2464916B (en) * 2008-10-21 2013-07-31 Iti Scotland Ltd Light Guides
WO2014061511A1 (ja) * 2012-10-18 2014-04-24 シャープ株式会社 導光体、照明装置、液晶表示装置
CN105629556B (zh) * 2016-01-06 2018-12-07 京东方科技集团股份有限公司 光阀及显示装置
CN109799655B (zh) * 2018-09-14 2020-12-25 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN109799568B (zh) * 2019-03-27 2020-04-28 京东方科技集团股份有限公司 一种背光模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112831A (ja) * 2009-11-26 2011-06-09 Hitachi Maxell Ltd 積層グレーティング素子およびその製造方法
CN202486473U (zh) * 2012-01-12 2012-10-10 信利半导体有限公司 一种液晶光阀
CN207882620U (zh) * 2018-02-12 2018-09-18 京东方科技集团股份有限公司 显示装置
CN109239965A (zh) * 2018-09-30 2019-01-18 京东方科技集团股份有限公司 一种显示器件及其控制方法
CN109541850A (zh) * 2019-01-07 2019-03-29 京东方科技集团股份有限公司 背光模组、显示装置及其驱动方法
CN110286525A (zh) * 2019-07-29 2019-09-27 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3828623A1 (en) * 2019-11-28 2021-06-02 Sumitomo Osaka Cement Co., Ltd. Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
US11874556B1 (en) * 2023-04-16 2024-01-16 Liqxtal Technology Inc. Directional liquid crystal display

Also Published As

Publication number Publication date
US20210302643A1 (en) 2021-09-30
US11402565B2 (en) 2022-08-02
CN110286525B (zh) 2021-11-16
CN110286525A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
CN107632451B (zh) 一种显示面板、显示装置及显示方法
JP2019207432A (ja) 光バルブを備えた液晶表示装置
CN109061932B (zh) 一种透明显示面板和透明显示装置
CN110888270B (zh) 一种显示面板和显示装置
US20060114374A1 (en) Liquid crystal display device
JP2007047732A (ja) 液晶表示装置及び電子機器
CN109656052B (zh) 液晶显示面板及其制作方法和显示装置
EP3505982A1 (en) Display screen and polarizing sheet thereof
US10895779B2 (en) Liquid crystal display with red, green, blue, and white subpixels having reflective and transmissive areas
WO2021174976A1 (zh) 显示面板和显示装置
JP6101388B2 (ja) 液晶表示装置
CN108710226B (zh) 一种透明显示装置及显示方法
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
WO2020015753A1 (zh) 显示面板、显示装置及其控制方法
US10884282B1 (en) Transparent display device, method of manufacturing the same, and method of controlling the same
US20140253857A1 (en) Active matrix and display panel
WO2020052079A1 (zh) 画素结构与液晶显示装置
US20070126954A1 (en) Liquid Crystal Device and Electronic Apparatus
KR101719815B1 (ko) 액정표시장치의 컬러필터 어레이기판
US8780025B2 (en) Display device
WO2017022800A1 (ja) 配光制御部材、照明装置および液晶表示装置
JP2008233137A (ja) 液晶表示装置
WO2022082448A1 (zh) 显示面板及其制造方法、显示装置
KR20110071644A (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847662

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20847662

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20847662

Country of ref document: EP

Kind code of ref document: A1