WO2021017893A1 - 波束测量方法及装置 - Google Patents

波束测量方法及装置 Download PDF

Info

Publication number
WO2021017893A1
WO2021017893A1 PCT/CN2020/102699 CN2020102699W WO2021017893A1 WO 2021017893 A1 WO2021017893 A1 WO 2021017893A1 CN 2020102699 W CN2020102699 W CN 2020102699W WO 2021017893 A1 WO2021017893 A1 WO 2021017893A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
sinr
cmr
imr
measurement report
Prior art date
Application number
PCT/CN2020/102699
Other languages
English (en)
French (fr)
Inventor
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017893A1 publication Critical patent/WO2021017893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communications, and in particular to a beam measurement method and device.
  • the terminal device needs to measure the beam signal sent by the network device based on the channel measurement resource (CMR) set and the interference measurement resource (IMR) set configured by the network device , And report one or more sets of measurement results to the network device based on the report quantity configured by the network device.
  • the CMR set and the IMR set can correspond to one or more beams, and each set of measurement results needs to include a CMR index, an IMR index, and a signal to interference plus noise ratio (SINR).
  • the terminal device needs to report a large number of measurement results to the network device, and the reporting overhead is relatively large.
  • the embodiments of the present application provide a beam measurement method and device, which can solve the problem of a large amount of redundant information reported in the beam interference measurement, resulting in high interference reporting overhead, which can reduce resource waste and improve communication efficiency.
  • a beam measurement method includes: a terminal device receives measurement configuration information from a network device; wherein the measurement configuration information is used to indicate a channel measurement resource CMR set, an interference measurement resource IMR set, a beam scanning mode, and a reported amount.
  • the terminal equipment receives and measures the signal from the network equipment on the CMR set and IMR set.
  • the terminal device determines the content of the measurement report according to the beam scanning mode and/or the reported amount, and sends the measurement report to the network device.
  • the terminal device can receive and measure the signal sent by the network device on the configured CMR set and IMR set, and then report from the reported amount according to the beam scanning mode and the reported amount configured by the network device
  • the redundant information is deducted from the content and then reported to the network device.
  • the redundant information includes the information that the network device already knows, the measurement results that the current communication scene does not need to care about, etc., which can effectively reduce the amount of data actually reported, thereby saving interference Report overhead, reduce resource consumption, and improve communication efficiency.
  • the foregoing measurement configuration information may be used to indicate one or more of the CMR set, IMR set, beam scanning mode, and reported amount.
  • the measurement configuration information may not be used to indicate the beam scanning mode.
  • the beam scanning mode is a fixed CMR set of transmit beams
  • the reported amount includes: CMR index, IMR index, and SINR
  • the measurement report includes IMR index and SINR, and not Includes CMR index.
  • the beam scanning mode is: fixed CMR set transmission beam
  • the reported amount includes one of CMR index and IMR index, and the signal to interference noise ratio SINR
  • the measurement report Including IMR index and SINR.
  • the beam scanning mode is: the transmit beam of the CMR set is not fixed, and the reported amount includes: one of the CMR index and the IMR index, and the signal to interference noise ratio SINR, then measure The report includes CMR index and SINR.
  • the measurement report can also be determined directly according to the reported amount to include the CMR index and the SINR, regardless of whether the beam scanning mode is
  • the transmission beam of the fixed CMR set or the transmission beam of the non-fixed CMR set is used to further simplify the process of the method for determining the content of the measurement report, thereby improving the beam measurement efficiency.
  • the beam scanning mode may be a transmission beam of a fixed CMR set, or may be a transmission beam of a non-fixed CMR set, which is not limited in the embodiment of the present application.
  • the beam scanning mode is: fixed CMR set transmission beam
  • the reported amount includes one of CMR index and IMR index, and the signal to interference noise ratio SINR
  • the measurement report Including IMR index or SINR.
  • the foregoing measurement report includes the IMR index or the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR index, and the SINR.
  • the above report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the measurement report does not include the CMR index.
  • the measurement report includes one of the IMR index and the SINR.
  • the foregoing measurement report includes one of the IMR index and the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR index.
  • the foregoing measurement report includes one of a CMR index and an IMR index, and may include: if the signal-to-interference and noise ratio SINR is greater than a third SINR threshold, the measurement report includes the CMR index and does not include the IMR index. Alternatively, if the signal-to-interference and noise ratio SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate whether the measurement report includes the CMR index, or the second indication information is used to indicate whether the measurement report includes the IMR index.
  • a beam measurement method includes: a terminal device receives measurement configuration information from a network device.
  • the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, the beam scanning mode and the reported amount.
  • the reported amount includes: one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR.
  • the terminal equipment receives and measures the signal from the network equipment on the CMR set and IMR set.
  • the terminal device determines that the measurement report includes one of the CMR index and the IMR index, and the SINR according to the beam scanning mode and/or the reported amount, and sends the measurement report to the network device.
  • the foregoing measurement report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, optionally, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the aforementioned measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the measurement configuration information is also used to indicate the beam scanning mode.
  • the beam scanning mode may be: a transmission beam of a fixed CMR set.
  • the beam scanning mode may also be: the transmission beam of the CMR set is not fixed.
  • a communication device in a third aspect, includes: a processing module and a transceiver module.
  • the transceiver module is used to receive measurement configuration information from the network device; among them, the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, the beam scanning mode, and the reported amount; the transceiver module is also used to The CMR collection and IMR collection receive signals from network equipment; processing module, used to measure the received signal; processing module, also used to determine the content of the measurement report according to the beam scanning mode and/or the reported amount; transceiver module, It is also used to send measurement reports to network devices.
  • the measurement report includes IMR index and SINR, and does not include CMR index.
  • the beam scanning mode is: a fixed CMR set of transmit beams
  • the reported amount includes one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR
  • the measurement report includes IMR index and SINR.
  • the beam scanning mode is: the transmit beam of the CMR set is not fixed, and the reported amount includes one of the CMR index and the IMR index, and the signal to interference noise ratio SINR, then the measurement report Including CMR index and SINR.
  • the measurement report includes IMR index or SINR.
  • the beam scanning mode is: a fixed CMR set of transmit beams
  • the reported amount includes one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR
  • the measurement report includes IMR index or SINR.
  • the foregoing measurement report includes the IMR index or the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR index, and the SINR.
  • the above report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the measurement report does not include the CMR index.
  • the measurement report includes one of the IMR index and the SINR.
  • the foregoing measurement report includes one of the IMR index and the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR.
  • the foregoing measurement report includes one of a CMR index and an IMR index, and may include: if the signal-to-interference and noise ratio SINR is greater than a third SINR threshold, the measurement report includes the CMR index and does not include the IMR index. Alternatively, if the signal-to-interference and noise ratio SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate whether the measurement report includes the CMR index, or the second indication information is used to indicate whether the measurement report includes the IMR index.
  • the transceiver module may include a receiving module and a sending module.
  • the receiving module is used to perform the receiving function involved in the beam measurement method described in the first aspect or the second aspect
  • the transmitting module is used to perform the transmitting function involved in the beam measurement method described in the first aspect or the second aspect.
  • the processing module is used to perform other functions in addition to the receiving function and the sending function in the beam measurement method described in the first or second aspect, such as determining the measurement report according to the beam scanning mode and/or the reported amount content.
  • the communication device of the third aspect may further include a storage module that stores a program or instruction.
  • the processing module executes the program or instruction
  • the communication device described in the third aspect can execute the beam measurement method described in the first aspect.
  • the communication device described in the third aspect may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • a communication device includes: a processing module and a transceiver module.
  • the transceiver module is used to receive measurement configuration information from the network device.
  • the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, and the reported amount.
  • the reported amount includes: one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR.
  • the transceiver module is also used to receive and measure signals from network equipment on the CMR set and IMR set.
  • the processing module is configured to determine that the measurement report includes one of the CMR index and the IMR index, and the SINR according to the beam scanning mode and/or the reported amount.
  • the transceiver module is also used to send the measurement report to the network device.
  • the foregoing measurement report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the aforementioned measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the communication device of the fourth aspect may further include a storage module that stores a program or instruction.
  • the processing module executes the program or instruction
  • the communication device described in the fourth aspect can execute the beam measurement method described in the second aspect.
  • the measurement configuration information is also used to indicate the beam scanning mode.
  • the beam scanning mode may be: a transmission beam of a fixed CMR set.
  • the beam scanning mode may also be: the transmission beam of the CMR set is not fixed.
  • the communication device described in the fourth aspect may be a terminal device, or a chip or a chip system provided in the terminal device, which is not limited in this application.
  • a communication device in a fifth aspect, includes: a processor coupled with a memory, the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the communication device executes any possible implementation as in the first aspect The beam measurement method described in the mode.
  • the communication device described in the fifth aspect may further include a transceiver.
  • the transceiver can be a transceiver circuit, a communication interface, or an input/output port.
  • the transceiver can be used for the communication device to communicate with other communication devices.
  • the transceiver may include a receiver and a transmitter.
  • the receiver is used to perform the receiving function involved in the beam measurement method described in the first aspect or the second aspect
  • the transmitter is used to perform the sending function involved in the beam measurement method described in the first aspect or the second aspect.
  • the processor is used to perform other functions in addition to the receiving function and the sending function in the beam measurement method described in the first or second aspect, such as determining the measurement report according to the beam scanning mode and/or the reported amount content.
  • the communication device described in the fifth aspect may be a terminal device, or a chip or chip system provided inside the terminal device.
  • a communication device in a sixth aspect, includes: a processor and a transceiver, the processor is coupled to the memory and the transceiver, the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, so that the communication device executes as in the first aspect Any one of the possible implementations of the beam measurement method.
  • the transceiver described in the sixth aspect may be a transceiver circuit, a communication interface, or an input/output port.
  • the transceiver can be used for the communication device to communicate with other communication devices.
  • the transceiver described in the sixth aspect may include a receiver and a transmitter.
  • the receiver is used to perform the receiving function involved in the beam measurement method described in the first aspect or the second aspect
  • the transmitter is used to perform the sending function involved in the beam measurement method described in the first aspect or the second aspect.
  • the processor is used to perform other functions in addition to the receiving function and the sending function in the beam measurement method described in the first or second aspect, such as determining the measurement report according to the beam scanning mode and/or the reported amount content.
  • the communication device described in the sixth aspect may be a terminal device, or a chip or a chip system provided in the terminal device.
  • a chip system in a seventh aspect, includes a processor and an input/output port.
  • the processor is configured to implement the processing functions involved in the first or second aspect.
  • the input/output port uses In order to achieve the above-mentioned first aspect or the second aspect involved in the transceiver function.
  • the chip system further includes a memory, which is used to store program instructions and data for realizing the functions involved in the first aspect or the second aspect.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • a communication system in an eighth aspect, includes one or more terminal devices and one or more network devices.
  • a computer-readable storage medium including: computer instructions are stored in the computer-readable storage medium; when the computer instructions are executed on a computer, the computer is caused to perform the operations described in the first aspect to the second aspect Any one of the possible implementations of the beam measurement method.
  • a computer program product containing instructions including a computer program or instruction, when the computer program or instruction runs on a computer, the computer can execute any one of the first to second aspects.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application
  • FIG. 2 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a beam measurement method provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a scene of a beam scanning manner provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram 1 of another beam scanning mode provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram 2 of another beam scanning mode provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram 3 of another beam scanning mode provided by an embodiment of the application.
  • FIG. 8 is a second structural diagram of a communication device provided by an embodiment of this application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as WiFi systems, long-term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems, and the fifth generation (5th generation, 5G) mobile communication systems, such as the new radio (NR) system, and future communication systems, such as the 6th generation (6G) mobile communication system, etc.
  • various communication systems such as WiFi systems, long-term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems, and the fifth generation (5th generation, 5G) mobile communication systems, such as the new radio (NR) system, and future communication systems, such as the 6th generation (6G) mobile communication system, etc.
  • a subscript such as W1 may be typographically erroneous as a non-subscript form such as W1.
  • FIG. 1 shows a schematic diagram of a communication system applicable to the beam measurement method according to an embodiment of the present application.
  • the communication system includes a network device, and one or more terminal devices, such as a first terminal device and a second terminal device. Among them, the terminal device is used to receive measurement configuration information from the network device.
  • Terminal equipment is also used to receive and measure signals from network equipment on the CMR set and IMR set, such as channel status information reference signal (CSI-RS), synchronization (signal/physical, SS) /Broadcast (physical broadcast channel, PBCH) signal block (SS/PBCH block, SSB).
  • CSI-RS channel status information reference signal
  • SS synchronization
  • PBCH physical broadcast channel
  • SS/PBCH block SSB
  • the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, the beam scanning mode and the reported amount.
  • the terminal device is also used to determine the content of the measurement report according to the beam scanning mode and/or the reported amount, and send the measurement report to the network device.
  • the network device is used to send measurement configuration information to the terminal device, and to send signals to the terminal device on the CMR set and the IMR set.
  • the network device is also used to receive the measurement report from the network device, and adjust the transmission beam according to the measurement report, such as selecting the
  • the CMR set may include one or more CMRs, and each CMR may be identified by a unique CMR index. That is, the CMR in the CMR set corresponds to the CMR index one to one.
  • an IMR set can contain one or more IMRs, and each IMR can be identified by a unique IMR index. In other words, the IMR in the IMR set corresponds to the IMR index one to one.
  • the above-mentioned network device is a device that is located on the network side of the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed in the device.
  • the network equipment includes but is not limited to: a base station (base station), a relay (relay) station, and an access point (access point, AP).
  • the network device may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or code division multiple access (CDMA) network, It can also be a node (Node B, NB) in Wideband Code Division Multiple Access (WCDMA), and it can also be an evolved node (evolved Node B, eNB) in long term evolution (LTE). Or eNodeB).
  • the network device may also be a radio network controller (RNC) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a g Node (g Node B, gNB) in a 5G system, or a network device in a future evolution system.
  • the network device can also be a wearable device or a vehicle-mounted device.
  • the above-mentioned terminal equipment is a terminal that is connected to the above-mentioned communication system and has a wireless transceiver function, or a chip or chip system that can be installed in the terminal.
  • User equipment UE
  • access terminal terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, terminal agent or terminal device, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G systems or terminal devices in future evolution systems, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the beam measurement method provided in the embodiments of the present application can be used between any two nodes shown in FIG. 1, such as between terminal equipment, between network equipment, and between terminal equipment and network equipment. .
  • For the communication between terminal devices if there is a network device, it is a scenario with network coverage; if there is no network device, it is a scenario without network coverage.
  • communication between terminal devices can be performed using resources configured by the network device, and in a scenario without network coverage, communication between terminal devices can be performed using pre-configured resources.
  • FIG. 1 is only a simplified schematic diagram of an example for ease of understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 1.
  • FIG. 2 is a schematic structural diagram of a communication device 200 that can be used to implement the beam measurement method provided by an embodiment of the present application.
  • the communication apparatus 200 may be a terminal device, or may be a chip or other components with terminal functions applied to the terminal device.
  • the communication device 200 may include a processor 201, a memory 202, and a transceiver 203. Among them, there is a signal connection between the processor 201, the memory 202, and the transceiver 203, such as a bus connection.
  • the components of the communication device 200 will be specifically introduced below with reference to FIG. 2:
  • the processor 201 is the control center of the communication device 200, and may be a processor or a collective name for multiple processing elements.
  • the processor 201 is one or more central processing units (CPU), or an application specific integrated circuit (ASIC), or is configured to implement one or more of the embodiments of the present application.
  • An integrated circuit for example: one or more microprocessors (digital signal processor, DSP), or one or more field programmable gate arrays (FPGA).
  • the processor 201 can execute various functions of the communication device 200 by running or executing a software program stored in the memory 202 and calling data stored in the memory 202.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 2.
  • the communication device 200 may also include multiple processors, such as the processor 201 and the processor 204 shown in FIG. 2. Each of these processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • the processor here may refer to one or more communication devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the memory 202 can be a read-only memory (ROM) or other types of static storage communication devices that can store static information and instructions, a random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage communication equipment can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, Optical disc storage (including compact disc, laser disc, optical disc, digital universal disc, Blu-ray disc, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program codes in the form of instructions or data structures and Any other medium that can be accessed by the computer, but not limited to this.
  • the memory 202 may exist independently, or may be integrated with the processor 201.
  • the memory 202 may be used to store a software program for executing the solution of the present application, and the processor 201 controls the execution.
  • the functions of the software program can refer to the following method embodiments, which will not be repeated here.
  • the transceiver 203 is used for communication with other communication devices, such as a network device or another terminal device.
  • the transceiver 203 may include a receiver (not separately shown in FIG. 2) to implement the receiving function described in the following method embodiment, and a transmitter (not separately shown in FIG. 2) to implement the following method embodiment The sending function.
  • the processor 201 is configured to perform other processing functions in addition to the receiving function and the sending function in the following method embodiments, such as determining the content of the measurement report according to the beam scanning mode and/or the reported amount. For details, please refer to the following method embodiments, which will not be repeated here.
  • the transceiver 203 may exist independently or integrated with the processor 201, which is not limited in the embodiment of the present application.
  • the structure of the communication device 200 shown in FIG. 2 does not constitute a limitation on the communication device.
  • the actual communication device may include more or less components than those shown in the figure, or combine certain components, or Different component arrangements.
  • FIG. 3 is a first schematic flowchart of a beam measurement method provided by an embodiment of this application. This beam measurement method can be applied to the communication between any two nodes shown in FIG. 1.
  • the beam measurement method includes the following steps:
  • the network device sends measurement configuration information to the terminal device.
  • the terminal device receives the measurement configuration information from the network device.
  • the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, the beam scanning mode and the reported amount.
  • the CMR set may include one or more channel measurement resources and the beam scanning mode of the CMR set.
  • the channel measurement resources are used to transmit corresponding channel measurement signals, such as one or more SSBs, and/or, one or more CSI-RS.
  • the IMR set may include one or more interference measurement resources.
  • the interference measurement resources are used to transmit corresponding interference measurement signals, such as one or more SSBs, and/or, one or more CSI-RSs.
  • both the channel measurement signal corresponding to the CMR set and the interference measurement signal corresponding to the IMR set may include one or more SSBs, and/or, one or more CSI-RS.
  • channel The measurement signal is used to simulate the signal carrying user data
  • the interference measurement signal is used to simulate other signals that interfere with the above-mentioned signal carrying user data, including but not limited to signals of other networks, signals used to carry other user data, and so on.
  • CSI-RS#n may be used to indicate a CSI-RS channel measurement resource or a CSI-RS interference measurement resource with a resource number of n.
  • SSB#n can also be used to indicate the SSB channel measurement resource or SSB interference measurement resource with the resource number n.
  • the beam scanning mode is for the CMR set
  • the existing implementation mode may be adopted, such as using CMR repetition (CMR repetition) cells to indicate.
  • CMR repetition CMR repetition
  • the beam scanning mode of the CMR set is: the network device uses a fixed transmit beam to transmit each CMR in the CMR set, and the terminal device should use a different receive beam to receive the CMR set In each CMR, thereby determining the optimal receiving beam of the terminal device.
  • the beam scanning mode of the CMR set is: the network device uses a fixed transmitting beam to send each CMR in the CMR set, and the terminal device should use a fixed receiving beam to receive the CMR Collect each CMR in the set to determine the optimal transmission beam of the network device.
  • “optimal” refers to a receiving beam or a transmitting beam that meets one or more of the following conditions in one of the above beam scanning modes: the signal received by the terminal device is the strongest, such as reference signal received power (reference signal The value of receiving power (RSRP) is the largest; or, the signal quality received by the terminal device is the best, for example, the value of reference signal receiving quality (RSRQ) is the largest.
  • the source, azimuth, and intensity of interference signals usually change continuously in the time and space domains, and there is no need to consider that the beam scanning mode of the IMR set is a fixed interference transmission beam.
  • the beam scanning mode of the IMR set is configured as ON, it can be used to fix the interference beam and select the service beam in the CMR set.
  • the base station knows the information of the interference beam, such as the IMR index, and the terminal equipment is not The IMR index needs to be fed back to the base station. Therefore, in the embodiments of the present application, the beam scanning mode of the IMR set can be configured to not fix the transmission beam of the IMR set, for example, the value of the IMR repetition cell can be configured to "OFF".
  • the default IMR repeat cell value is "OFF".
  • the above-mentioned CMR repetitive cells and IMR repetitive cells may also share the same repetition field for indication.
  • the repeated cell field is set to ON, it means that the CMR repeated cell is configured to be ON, that is, the beam scanning mode of the CMR set is fixed interference transmission beam, and the IMR repeated cell is configured to OFF, that is, the beam scanning mode of the IMR set Send beams for non-stationary interference.
  • the network device can use radio resource control (radio resource control, RRC) signaling and media access control (medium access control-control element, MAC-CE) signaling on the downlink (DL) , Downlink control information (DCI) signaling, broadcast (broadcast), system information block (system information block, SIB), etc., send measurement configuration information to the terminal device.
  • RRC radio resource control
  • MAC-CE media access control-control element
  • the network device sends a signal to the terminal device on the CMR set and the IMR set.
  • the terminal device receives and measures the signal from the network device on the CMR set and the IMR set.
  • the network device sends a signal to the terminal device on each CMR in the CMR set and on each IMR in the IMR set.
  • the terminal device receives and measures the signal from the network device on each CMR in the CMR set and on each IMR in the IMR set.
  • the simplest method for measuring the interference beam is: the terminal equipment performs the interference measurement on each of the CMR sets.
  • the resource and each resource in the IMR set are combined, and each receiving beam of the terminal device is used to measure each CMR-IMR combination.
  • the problem with this method is that the complexity is very high and the workload is large.
  • the terminal device needs to perform N_CMR*N_IMR*M_RX measurements to obtain N_CMR*N_IMR*M_RX different L1- SINR, and then select the optimal CMR-IMR combination and report it to the network device. Therefore, avoiding overly complex measurements, reducing measurement workload, and improving measurement efficiency have become one of the technical problems to be solved in this application.
  • FIG. 4 shows a schematic diagram of a scene of a beam scanning manner provided by an embodiment of the present application.
  • the CMR set includes CSI-RS1-CSI-RS4, and the beam scanning mode of the CMR set is: a fixed transmission beam, and this beam scanning mode is used for terminal equipment to train the receiving beam.
  • the repetition cell (CMR repetition) in the CMR set configuration parameter can be configured to be ON.
  • the fixed transmission beam means that the network device uses the same transmission beam, such as using transmission beam 1 to transmit CSI-RS1-CSI-RS4 in the CMR set.
  • the IMR set includes CSI-RS5-CSI-RS8.
  • the IMR set is used to simulate the interference generated by signals sent by other transmission beams of the network equipment on the signals sent by the corresponding transmission beams of the CMR set on the terminal device side.
  • the foregoing interference measurement method may specifically include the following steps:
  • Step 1 The network equipment uses the same transmitting beam to transmit the signals in the CMR set. Correspondingly, the terminal device traverses the receiving beam and selects the optimal receiving beam.
  • the network device may transmit all the CSI-RS in the CMR set in a preset order on the same transmitting beam.
  • the terminal device can use each receiving beam, measure the received signal, and select the receiving beam with the highest received signal strength as the optimal receiving beam.
  • the signal strength can be L1-RSRP.
  • Step 2 The network equipment uses different transmission beams to transmit the signals in the IMR set.
  • the terminal device uses the optimal receiving beam to receive and measure the signal strength in the IMR set.
  • the terminal device can use the optimal receiving beam to receive and measure the signal strength of CSI-RS5-CSI-RS8 in the IMR set, such as L1-RSRP of CSI-RS5-CSI-RS8.
  • Step 3 The terminal device calculates the signal-to-interference and noise ratio corresponding to each signal in the CMR set, such as L1-SINR, according to the received signal strength in the CMR set and the signal strength in the IMR set.
  • the IMR set can be used for terminal equipment to evaluate the reception on the strongest receiving beam of the L1-RSRP
  • the interference situation of the transmission beams of other network devices in the, that is, the L1-SINR is calculated by using CSI-RS2 and CSI-RS5-CSI-RS8.
  • the network device needs to send the signal in the CMR set first, and after the terminal device determines the optimal receiving beam according to the received signal in the CMR set, Send the signal in the IMR set.
  • the terminal device traverses the receiving beam and determines the optimal receiving beam, and then the terminal device uses the optimal receiving beam to measure the signals in the IMR set, that is to say, the sending order of the CMR set needs to be before the sending order of the IMR set, and
  • the amount of time advance depends on the processing time for the terminal device to traverse the receiving beam and determine the optimal receiving beam.
  • the network device also needs to send the timing advance between the CMR set and the IMR set to the terminal device.
  • the timing advance may be directly configured by the network device, or configured after being determined according to the terminal capability level reported by the terminal device, which is not limited in the embodiment of the present application.
  • the network device can also send a signal in the CMR set and a signal in the IMR set at the same time, so that the terminal device can determine the best value based on the signal quality between the CMR signal and the IMR signal, such as L1_SINR.
  • the terminal device can use each receive beam to measure the signal strength of the received CMR signal and the signal strength of the IMR signal, and then calculate the L1_SINR corresponding to each receive beam based on the above signal strength, and select the receive beam with the largest L1_SINR value It is the optimal receiving beam.
  • the network device After that, after the terminal device determines the optimal receiving beam, the network device sends other CMR signals in the CMR set and other IMR signals in the IMR set. Correspondingly, the terminal device calculates L1_SINR according to the signal strength of other CMR signals in the received CMR set and the signal strength of other IMR signals in the IMR set.
  • FIGS. 5 to 7 respectively show three schematic diagrams of another beam scanning manner provided by an embodiment of the present application.
  • the CMR set includes CSI-RS1-CSI-RS4, and the beam scanning mode of the CMR set is: sending beams are not fixed, and this beam scanning mode is used for network equipment training to send beams.
  • the repetition cell (CMR repetition) in the CMR set configuration parameter can be configured as OFF.
  • the non-fixed transmission beam refers to the reception beam of the fixed terminal device, and the CSI-RS1 to CSI-RS4 in the CMR set sent by the receiving network device using different transmission beams.
  • the following takes the interference measurement method shown in FIG. 5 as an example to describe in detail the interference measurement method in the above-mentioned beam interference measurement scenario 2.
  • the method may include the following steps:
  • Step 1 The network equipment uses different transmitting beams to transmit the signals in the CMR set.
  • the terminal equipment uses the same receiving beam to respectively receive and measure the signals in the CMR sets sent by the network equipment using different sending beams.
  • the terminal device may use the same CMR receiving beam configured by the network device to respectively receive and measure the signal strength of CSI-RS1 to CSI-RS4 in the CMR set sent by the network device on the sending beams 1 to 4.
  • Step 2 The network equipment uses different transmitting beams to transmit the signals in the IMR set.
  • the terminal equipment uses the same receiving beam to respectively receive and measure the signals in the IMR sets sent by the network equipment using different sending beams.
  • the terminal device may use an IMR receiving beam configured by the network device to respectively receive and measure the signal strength of CSI-RS5 to CSI-RS8 in the IMR set sent by the network device on the sending beams 1 to 4.
  • the same CMR receiving beam can be configured by the network device or selected by the terminal device, and the receiving beam of the CMR and the receiving beam of the IMR can be the same receiving beam or different receiving beams.
  • the beam is not limited in this embodiment of the application.
  • Step 3 The terminal device calculates the signal-to-interference and noise ratio corresponding to each signal in the CMR set, such as L1-SINR, according to the received signal strength in the CMR set and the signal strength in the IMR set.
  • the IMR set in view of the beam scanning mode in the configuration parameters of the IMR set, such as IMR repetition (IMR repetition) configured to OFF or not configured, the IMR set can be used for terminal equipment to evaluate the reception on the strongest receiving beam of the L1-RSRP
  • the interference situation of other transmission beams sent by the network equipment of the network such as using CSI-RS2-CSI-R4 and CSI-RS5-CSI-RS8 to calculate L1-SINR.
  • the specific calculation method can refer to the existing implementation, which will not be repeated here.
  • step 2 can be executed after step 1, as shown in Figure 5, all signals in the CMR set are sent first, and then all signals in the IMR set are sent, or it can be executed before step 1, as shown As shown in Figure 6, all the signals in the IMR set are sent first, and then all the signals in the CMR set are sent.
  • Step 2 and Step 1 can also be performed alternately, that is, as shown in Figure 7, the signals in the CMR set and IMR are alternately sent Signals in the collection.
  • the terminal device can determine the content of the measurement report according to the beam scanning mode and the reported amount, and report it to the network device, that is, perform S303-S304.
  • the terminal device determines the content of the measurement report according to the beam scanning mode and/or the reported amount.
  • the beam scanning mode is a fixed CMR set of transmit beams
  • the reported amount includes: CMR index, IMR index, and SINR
  • the measurement report includes IMR index and SINR, and not Includes CMR index.
  • the beam scanning mode is: fixed CMR set transmission beam
  • the reported amount includes one of CMR index and IMR index, and the signal to interference noise ratio SINR
  • the measurement report Including IMR index and SINR.
  • the beam scanning mode is a transmission beam of a fixed CMR set, that is, the network device already knows that all CMRs in the CMR set correspond to the same transmission beam. Therefore, even if the network device requires the terminal device to report the CMR index, if the configured report volume includes the CMR index, the terminal device does not need to report the CMR index, which can reduce the amount of reported data and save the reporting overhead.
  • the beam scanning mode is the transmission beam of the unfixed CMR set.
  • the network device does not know the transmission beam selected by the terminal device, and the terminal device usually needs to report The total content required to be reported, such as reporting one or more groups of measurement results including CMR index, IMR index, and signal-to-interference-to-noise ratio SINR.
  • the beam scanning mode is: the transmit beam of the CMR set is not fixed, and the reported amount includes: one of the CMR index and the IMR index, and the signal to interference noise ratio SINR, then measure The report includes CMR index and SINR.
  • the terminal device can continue to report the IMR index in the next report.
  • the next report may be a report triggered by a network device alone, or in a periodic report, the terminal device uses the next periodic report to report the IMR index.
  • the L1-SINR and IMR indexes can be reported in two steps according to the value of L1-SINR. It is easy to understand that if the L1-SINR value is large, it means that the interference received is small, and the IMR index does not need to be reported, which can further reduce the amount of reported data and reduce the reporting overhead.
  • the measurement report includes IMR index or SINR.
  • the beam scanning mode is: fixed CMR set transmission beam
  • the reported amount includes one of CMR index and IMR index, and the signal to interference noise ratio SINR
  • the measurement report Including IMR index or SINR.
  • the above measurement report includes the IMR index or the SINR, which may include one of the following: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the first SINR threshold and the second SINR threshold may be the same value or different values, which is not limited in the embodiment of the present application.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index and does not include the SINR; or, the first indication information is used to indicate that the measurement report includes the SINR and does not include the IMR index.
  • the SINR when the SINR is greater than the first SINR threshold, it means that the interference is weak and the interference beam does not need to be avoided, so there is no need to report the IMR index, and the SINR can be used by the network device to further fine-tune the transmission scheme. Such as adjusting the transmission power, modulation and coding scheme, etc., so the SINR needs to be reported.
  • the SINR is less than the fourth SINR threshold, it means that the interference is strong at this time and the interference beam needs to be avoided. Therefore, the IMR index needs to be reported. In the case of interference avoidance, there is no need and no need to further fine-tune the transmission scheme based on the SINR.
  • the terminal device can continue to report the SINR in the next report.
  • the next report may be a report triggered by a network device alone, or in a periodic report, the terminal device uses the next periodic report to report the IMR index.
  • the measurement report includes one of the CMR index and the IMR index, and the SINR.
  • the above report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the third SINR threshold and the fourth SINR threshold may be the same value or different values, which is not limited in the embodiment of the present application.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the beam scanning mode may be: a transmission beam of a fixed CMR set.
  • the beam scanning mode may also be: the transmission beam of the CMR set is not fixed.
  • the SINR when the SINR is greater than the third SINR threshold, it can be considered that the service beam corresponding to the CMR index is weakly interfered by all interference beams, and there is no need to avoid any interference. Beam, therefore, it is necessary to report the CMR index that can be used as the service beam, but it is not necessary to report the IMR index.
  • the SINR is less than the fourth SINR threshold, it can be considered that the interference beam corresponding to the IMR index has strong interference to all service beams and needs to be avoided. Therefore, the IMR index needs to be reported, but the CMR index does not need to be reported.
  • the foregoing various optional solutions for determining the content of the measurement report can be used alone or in combination, which is not limited in the embodiment of the present application.
  • the result of comparing the measurement value of the SINR with the first SINR threshold and/or the second SINR threshold may also be used to obtain information from the IMR index and SINR. Choose one to report.
  • the result of comparing the measured value of the SINR with the third SINR threshold and/or the fourth SINR threshold may be obtained from the CMR index and the IMR index. Select one of the indexes to report.
  • the measurement report does not include the CMR index. That is to say, no matter how the reported amount is configured and the measurement result, when the beam scanning mode is: fixed CMR set of transmit beams, since the network device already knows the specific information of the transmit beam, the terminal device does not need to report the CMR index .
  • the measurement report includes one of the IMR index and the SINR.
  • the foregoing measurement report includes one of the IMR index and the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR index.
  • the foregoing measurement report includes one of a CMR index and an IMR index, and may include: if the signal-to-interference and noise ratio SINR is greater than a third SINR threshold, the measurement report includes the CMR index and does not include the IMR index. Alternatively, if the signal-to-interference and noise ratio SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate whether the measurement report includes the CMR index, or the second indication information is used to indicate whether the measurement report includes the IMR index.
  • the terminal device sends a measurement report to the network device.
  • the network device receives the measurement report from the terminal device.
  • the terminal device may send the CSI measurement report to the network device through the physical uplink shared channel (PUSCH) in the uplink (UL).
  • PUSCH physical uplink shared channel
  • L1-SINR quantized value L1-SINR measured value (dB) L1-SINR_0 L1-SINR ⁇ -23 L1-SINR_1 -23 ⁇ L1-SINR ⁇ -22.5 L1-SINR_2 -22.5 ⁇ L1-SINR ⁇ -22 L1-SINR_3 -22 ⁇ L1-SINR ⁇ -21.5 L1-SINR_4 -21.5 ⁇ L1-SINR ⁇ -21 ... ... L1-SINR_123 38 ⁇ L1-SINR ⁇ 38.5 L1-SINR_124 38.5 ⁇ L1-SINR ⁇ 39 L1-SINR_125 39 ⁇ L1-SINR ⁇ 39.5 L1-SINR_126 39.5 ⁇ L1-SINR ⁇ 40 L1-SINR_127 40 ⁇ L1-SINR
  • Table 1 is the first example of the CSI measurement report. As shown in Table 1, if the reported amount includes: CMR index, IMR index, and SINR, the CSI measurement report may include: CMR index, IMR index, and SINR.
  • the CSI measurement report shown in Table 1 may include one or more sets of measurement results, such as the two sets of measurement results with measurement result indexes 0 and 1 in Table 1, where each set of results includes a CMR index , An IMR index and an L1-SINR.
  • bit width of the CMR index is ceil ⁇ Log2(N_CMR) ⁇
  • bit length of the IMR index is ceil ⁇ Log2(N_IMR) ⁇
  • ceil ⁇ is the round-up function
  • N_CMR is the CMR set
  • N_IMR is the number of elements in the IMR set.
  • bit lengths of the CMR index and the IMR index can also be unified as ceil ⁇ Log2(N_CMR+N_IMR) ⁇ .
  • Table 2 is an example of a correspondence between the measured value of L1-SINR and the quantized value. As shown in Table 2, L1-SINR can be quantified as a 7-bit value for reporting. Among them, the quantization step size is 0.5dB.
  • bit length and quantization step size in Table 2 can also be other values according to actual requirements, such as 12 bits, 1 dB, etc.
  • Table 3 is the second example of the CSI measurement report. As shown in Table 3, if the reported amount includes: CMR index, IMR index, and SINR, the CSI measurement report may include IMR index and SINR.
  • the CSI measurement report shown in Table 3 may include one or more sets of measurement results, such as the two sets of measurement results with measurement result indexes 0 and 1 in Table 3, where each set of results includes an IMR index And an L1-SINR.
  • bit width (bitwidth) of the IMR index is ceil ⁇ Log2(N_IMR) ⁇ , where ceil ⁇ is the round-up function, and N_IMR is the number of elements in the IMR set.
  • bit length of the CMR index and the IMR index may also be ceil ⁇ Log2(N_CMR+N_IMR) ⁇ , where N_CMR is the number of elements in the CMR set.
  • the L1-SINR in Table 3 can also be quantified as a 7-bit value for reporting.
  • specific implementation methods please refer to related descriptions in Table 2, which will not be repeated here.
  • Table 4 is the third example of the CSI measurement report. As shown in Table 4, if the reported amount includes: CMR index, IMR index, and signal-to-interference and noise ratio SINR, the CSI measurement report can include IMR index or signal-to-interference and noise ratio SINR, and the corresponding IMR index or signal-to-interference and noise ratio SINR Indicator bit.
  • the CSI measurement report shown in Table 4 may include one or more sets of measurement results, such as the two sets of measurement results with measurement result indexes 0 and 1 in Table 4, where each set of results includes an IMR index Or an L1-SINR, and an indicator bit corresponding to the IMR index or the signal-to-interference and noise ratio SINR.
  • the bit length of the indicator bit is 1 bit.
  • the CSI measurement result includes the IMR index
  • the CSI measurement result includes the quantized value of L1-SINR.
  • the reported IMR index or the quantized value of L1-SINR share a group of report bits, and the bit length of the group of reported bits can be: the bit length of the IMR index (bitwidth) and the bit length of the quantized value of L1-SINR are ⁇ ceil ⁇ Log2 (N_IMR) ⁇ , the maximum value of 7 ⁇ .
  • ceil ⁇ Log2(N_IMR) ⁇ when reporting L1-SINR, you only need to add 0 before or after the quantized value of L1-SINR represented by 7 bits until the bit length of the IMR index is the same .
  • ceil ⁇ Log2(N_IMR) ⁇ 7 when reporting the IMR index, 0 is added before or after the IMR index represented by the ceil ⁇ Log2(N_IMR) ⁇ bits until it is equal to the quantized value of L1-SINR The bit length is the same.
  • ceil ⁇ Log2(N_IMR) ⁇ can also be replaced by ceil ⁇ Log2(N_CMR+N_IMR) ⁇ , where N_CMR is the number of elements in the CMR set.
  • the L1-SINR in Table 4 can also be quantified as a 7-bit value for reporting.
  • specific implementation methods please refer to related descriptions in Table 2, which will not be repeated here.
  • Table 5 is Example 4 of the CSI measurement report. As shown in Table 5, if the reported amount includes one of CMR index or IMR index, and SINR, the CSI measurement report can include one of CMR index or IMR index, and SINR .
  • the CSI measurement report shown in Table 5 may include one or more sets of measurement results, such as the two sets of measurement results with measurement result indexes 0 and 1 in Table 5, where each set of results includes a CMR index Or an item in the IMR index, and an L1-SINR.
  • the IMR index and the IMR index share a group of report bits
  • the bit width of the group of report bits may be the maximum value of ceil ⁇ Log2(N_CMR) ⁇ and ceil ⁇ Log2(N_IMR) ⁇ .
  • ceil ⁇ is the round-up function
  • N_CMR is the number of elements in the CMR set
  • N_IMR is the number of elements in the IMR set.
  • the bit length of the group of reported bits can also be ceil ⁇ Log2(N_CMR+N_IMR) ⁇ .
  • ceil ⁇ Log2(N_CMR) ⁇ >ceil ⁇ Log2(N_IMR) ⁇ when reporting the IMR index, you only need to add 0 before or after the IMR index represented by the ceil ⁇ Log2(N_IMR) ⁇ bit, until it matches the CMR
  • the bit length of the index can be the same.
  • ceil ⁇ Log2(N_CMR) ⁇ ceil ⁇ Log2(N_IMR) ⁇ when reporting the CMR index, you only need to add 0 before or after the CMR index represented by the ceil ⁇ Log2(N_CMR) ⁇ bits, until and The bit length of the IMR index is the same.
  • the L1-SINR in Table 5 can also be quantified as a 7-bit value for reporting.
  • specific implementation methods refer to the related description in Table 2, which will not be repeated here.
  • the terminal device can receive and measure the signal sent by the network device on the configured CMR set and IMR set, and then according to the beam scanning mode configured by the network device and the reported amount, report from the reported amount required
  • the redundant information is deducted from the content and then reported to the network device.
  • the redundant information includes the information that the network device already knows, the measurement results that the current communication scene does not need to care about, etc., which can effectively reduce the amount of data actually reported, thereby saving interference Report overhead, reduce resource consumption, and improve communication efficiency.
  • the beam measurement method provided by the embodiment of the present application is described in detail above with reference to FIGS. 3-7.
  • the communication device provided by the embodiment of the present application will be described below with reference to FIG. 8.
  • Fig. 8 is a second structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device can be applied to the communication system shown in FIG. 1 to perform the functions of the terminal equipment in the beam measurement method shown in FIG. 3.
  • FIG. 8 only shows the main components of the communication device.
  • the communication device 800 includes: a processing module 801 and a transceiver module 802.
  • the transceiver module 802 is used to receive measurement configuration information from the network device; wherein, the measurement configuration information is used to indicate the channel measurement resource CMR set, the interference measurement resource IMR set, the beam scanning mode and the reported amount.
  • the transceiver module 802 is also used to receive signals from network devices on the CMR set and IMR set.
  • the processing module 801 is used to measure the received signal.
  • the processing module 801 is further configured to determine the content of the measurement report according to the beam scanning mode and/or the reported amount.
  • the transceiver module 802 is also used to send a measurement report to the network device.
  • the measurement report includes IMR index and SINR, and does not include CMR index.
  • the beam scanning mode is: a fixed CMR set of transmit beams
  • the reported amount includes one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR
  • the measurement report includes IMR index and SINR.
  • the beam scanning mode is: the transmit beam of the CMR set is not fixed, and the reported amount includes one of the CMR index and the IMR index, and the signal to interference noise ratio SINR, then the measurement report Including CMR index and SINR.
  • the measurement report includes IMR index or SINR.
  • the beam scanning mode is: a fixed CMR set of transmit beams
  • the reported amount includes one of the CMR index and the IMR index, and the signal-to-interference and noise ratio SINR
  • the measurement report includes IMR index or SINR.
  • the foregoing measurement report includes the IMR index or the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR index, and the SINR.
  • the above report includes one of the CMR index and the IMR index, and the SINR, and may include: if the SINR is greater than the third SINR threshold, the measurement report includes the CMR index and the SINR, and does not include the IMR index. Or, if the SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and the SINR, and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate that the measurement report includes the CMR index, or the second indication information is used to indicate that the measurement report includes the IMR index.
  • the measurement report does not include the CMR index.
  • the measurement report includes one of the IMR index and the SINR.
  • the foregoing measurement report includes one of the IMR index and the SINR, and may include: if the SINR is greater than the first SINR threshold, the measurement report includes the SINR and does not include the IMR index. Or, if the SINR is less than the second SINR threshold, the measurement report includes the IMR index and does not include the SINR.
  • the measurement report may also include the first indication information.
  • the first indication information is used to indicate that the measurement report includes the IMR index, or the first indication information is used to indicate that the measurement report includes the SINR.
  • the measurement report includes one of the CMR index and the IMR.
  • the foregoing measurement report includes one of a CMR index and an IMR index, and may include: if the signal-to-interference and noise ratio SINR is greater than a third SINR threshold, the measurement report includes the CMR index and does not include the IMR index. Alternatively, if the signal-to-interference and noise ratio SINR is less than the fourth SINR threshold, the measurement report includes the IMR index and does not include the CMR index.
  • the measurement report may also include second indication information.
  • the second indication information is used to indicate whether the measurement report includes the CMR index, or the second indication information is used to indicate whether the measurement report includes the IMR index.
  • the transceiver module 802 may include a receiving module and a sending module (not separately shown in FIG. 8).
  • the receiving module is used to perform the receiving function described in the foregoing method embodiment
  • the sending module is used to perform the sending function described in the foregoing method embodiment.
  • the processing module 801 is used to perform other processing functions in addition to the receiving function and the sending function in the foregoing method embodiment, such as determining the content of the measurement report according to the beam scanning mode and/or the reported amount.
  • the communication device 800 shown in FIG. 8 may further include a storage module (not shown in FIG. 8), and the storage module stores programs or instructions.
  • the processing module 801 executes the program or instruction
  • the communication device 800 can execute the function of the terminal device in the beam measurement method shown in FIG. 3.
  • the communication device 800 may be any terminal device shown in FIG. 1 or the communication device 200 shown in FIG. 2, or may be a chip or a chip system provided in the terminal device or communication device 200.
  • the present application The embodiment does not limit this.
  • the technical effect of the communication device 800 can be the same as the technical effect of the beam measurement method described in the foregoing method embodiment, and will not be repeated here.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and an input/output port, where the processor is used to implement the processing functions involved in the foregoing method embodiment, and the input/output port is used to implement the transceiver function involved in the foregoing method embodiment.
  • the chip system further includes a memory, which is used to store program instructions and data for implementing the functions involved in the foregoing method embodiments.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the chip system may be a baseband processing chip or a system chip that can perform baseband processing functions, which is not limited in the embodiment of the present application.
  • the embodiment of the application provides a communication system.
  • the system includes one or more terminal devices mentioned above, and one or more network devices.
  • the embodiment of the present application provides a computer-readable storage medium, including: computer instructions are stored in the computer-readable storage medium; when the computer instructions are executed on a computer, the computer is caused to perform the beam measurement described in the foregoing method embodiment method.
  • the embodiment of the present application provides a computer program product containing instructions, including a computer program or instruction, when the computer program or instruction runs on a computer, the computer is caused to execute the beam measurement method described in the foregoing method embodiment.
  • the processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), and dedicated integrated Circuit (application specific integrated circuit, ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the foregoing embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种波束测量方法及装置,能够解决波束干扰测量中上报了大量冗余信息,从而导致干扰上报开销大的问题,能够降低资源浪费,提高通信效率,可应用于LTE、NR等通信***中。该方法包括:终端设备接收来自网络设备的测量配置信息;其中,测量配置信息用于指示CMR集合、IMR集合、波束扫描方式和上报量。终端设备在CMR集合与IMR集合上,接收并测量来自网络设备的信号。终端设备根据波束扫描方式和/或上报量,确定测量报告的内容,并向网络设备发送该测量报告。

Description

波束测量方法及装置
本申请要求于2019年07月31日提交国家知识产权局、申请号为201910703160.5、申请名称为“波束测量方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种波束测量方法及装置。
背景技术
为了规避波束(beam)之间的干扰,终端设备需要基于网络设备配置的信道测量资源(channel measurement resource,CMR)集合与干扰测量资源(interference measurement resource,IMR)集合,测量网络设备发送的波束信号,并基于网络设备配置的上报量(report quantity),向网络设备上报一组或多组测量结果。其中,CMR集合与IMR集合均可对应一个或多个波束,每组测量结果均需要包括CMR索引、IMR索引以及信号干扰噪声比(signal to interference plus noise ratio,SINR)。
然而,当配置的CMR集合和/或IMR集合对应的波束数量较大时,终端设备需要向网络设备上报大量的测量结果,上报开销较大。
发明内容
本申请实施例提供一种波束测量方法及装置,能够解决波束干扰测量中上报了大量冗余信息,从而导致干扰上报开销大的问题,能够降低资源浪费,提高通信效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种波束测量方法。该波束测量方法包括:终端设备接收来自网络设备的测量配置信息;其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量。终端设备在CMR集合与IMR集合上,接收并测量来自网络设备的信号。终端设备根据波束扫描方式和/或上报量,确定测量报告的内容,并向网络设备发送测量报告。
本申请实施例提供的波束测量方法,终端设备能够接收并测量网络设备在配置的CMR集合和IMR集合上发送的信号,然后根据网络设备配置的波束扫描方式和上报量,从上报量要求的上报内容中扣除冗余信息后上报给网络设备,其中,冗余信息包括网络设备本就已获知的信息、当前通信场景不需要关心的测量结果等,可以有效减少实际上报的数据量,从而节省干扰上报开销,降低资源消耗,提高通信效率。
需要说明的是,上述测量配置信息可以用于指示CMR集合、IMR集合、波束扫描方式和上报量中的一项或多项。例如,在某些场景下,测量配置信息可以不用于指示波束扫描方式,具体可以参考下文相关描述,此处不再赘述。
在一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引和SINR,且不包括CMR索引。
或者,在另一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引和SINR。
或者,在又一种可能的设计方法中,若波束扫描方式为:不固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和SINR。
进一步地,在上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR的场景下,也可以直接根据上报量确定测量报告包括CMR索引和SINR,而不必关心波束扫描方式是固定CMR集合的发送波束,还是不固定CMR集合的发送波束,以进一步简化确定测量报告的内容的方法流程,从而提高波束测量效率。
在一种可能的设计方法中,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。在此场景下,波束扫描方式可以为固定CMR集合的发送波束,也可以为不固定CMR集合的发送波束,本申请实施例对此不作限定。
或者,在另一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
可选地,上述测量报告包括IMR索引或SINR,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计方法中,若上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和IMR索引中的一项,以及SINR。
可选地,上述报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
在一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,则测量报告不包括CMR索引。
在另一种可能的设计方法中,若上报量包括:IMR索引和信号干扰噪声比SINR中的一项或多项,则测量报告包括IMR索引和SINR中的一项。
可选地,上述测量报告包括IMR索引和SINR中的一项,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测 量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计方法中,若上报量包括:CMR索引和IMR索引中的一项或多项,则测量报告包括CMR索引和IMR中的一项。
可选地,上述测量报告包括CMR索引和IMR索引中的一项,可以包括:若信号干扰噪声比SINR大于第三SINR阈值,则测量报告包括CMR索引,且不包括IMR索引。或者,若信号干扰噪声比SINR小于第四SINR阈值,则测量报告包括IMR索引,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告是否包括CMR索引,或者第二指示信息用于指示测量报告是否包括IMR索引。
第二方面,提供一种波束测量方法。该波束测量方法包括:终端设备接收来自网络设备的测量配置信息。其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量。其中,上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR。终端设备在CMR集合与IMR集合上,接收并测量来自网络设备的信号。终端设备根据波束扫描方式和/或上报量,确定测量报告包括CMR索引和IMR索引中的一项,以及SINR,并向网络设备发送该测量报告。
示例性地,上述测量报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,可选地,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
进一步地,上述测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
可选地,测量配置信息还用于指示波束扫描方式。其中,波束扫描方式可以为:固定CMR集合的发送波束。或者,可选地,波束扫描方式也可以为:不固定CMR集合的发送波束。
第二方面所述的波束测量方法的技术效果可以参考第一方面所述的波束测量方法的技术效果,此处不再赘述。
第三方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,收发模块,用于接收来自网络设备的测量配置信息;其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量;收发模块,还用于在CMR集合与IMR集合上,接收来自网络设备的信号;处理模块,用于测量接收到的信号;处理模块,还用于根据波束扫描方式和/或上报量,确定测量报告的内容;收发模块,还用于向网络设备发送测量报告。
在一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引和SINR,且不包括CMR索引。
或者,在另一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引和SINR。
或者,在又一种可能的设计中,若波束扫描方式为:不固定CMR集合的发送波 束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和SINR。
在一种可能的设计中,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
或者,在另一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
可选地,上述测量报告包括IMR索引或SINR,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计中,若上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和IMR索引中的一项,以及SINR。
可选地,上述报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
在一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,则测量报告不包括CMR索引。
在另一种可能的设计中,若上报量包括:IMR索引和信号干扰噪声比SINR中的一项或多项,则测量报告包括IMR索引和SINR中的一项。
可选地,上述测量报告包括IMR索引和SINR中的一项,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计中,若上报量包括:CMR索引和IMR索引中的一项或多项,则测量报告包括CMR索引和IMR中的一项。
可选地,上述测量报告包括CMR索引和IMR索引中的一项,可以包括:若信号干扰噪声比SINR大于第三SINR阈值,则测量报告包括CMR索引,且不包括IMR索引。或者,若信号干扰噪声比SINR小于第四SINR阈值,则测量报告包括IMR索引,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告是否包括CMR索引,或者第二指示信息用于指示测量报告是否包括IMR索引。
可选地,收发模块可以包括接收模块和发送模块。其中,接收模块用于执行第一方面或第二方面所述的波束测量方法所涉及的接收功能,发送模块用于执行第一方面 或第二方面所述的波束测量方法所涉及的发送功能。相应地,处理模块则用于执行第一方面或第二方面所述的波束测量方法中除接收功能和发送功能之外的其他功能,如根据波束扫描方式和/或上报量,确定测量报告的内容。
可选地,第三方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的通信装置可以执行上述第一方面所述的波束测量方法。
需要说明的是,第三方面所述的通信装置可以是终端设备,也可以是设置于终端设备中的芯片或芯片***,本申请对此不做限定。
第三方面所述的通信装置的技术效果可以参考第一方面所述的波束测量方法的技术效果,此处不再赘述。
第四方面,提供一种通信装置。该通信装置包括:处理模块和收发模块。其中,收发模块,用于接收来自网络设备的测量配置信息。其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合和上报量。其中,上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR。收发模块,还用于在CMR集合与IMR集合上,接收并测量来自网络设备的信号。处理模块,用于根据波束扫描方式和/或上报量,确定测量报告包括CMR索引和IMR索引中的一项,以及SINR。收发模块,还用于向网络设备发送该测量报告。
示例性地,上述测量报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
进一步地,上述测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
可选地,第四方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的通信装置可以执行上述第二方面所述的波束测量方法。
可选地,测量配置信息还用于指示波束扫描方式。其中,波束扫描方式可以为:固定CMR集合的发送波束。或者,可选地,波束扫描方式也可以为:不固定CMR集合的发送波束。
需要说明的是,第四方面所述的通信装置可以是终端设备,也可以是设置于终端设备中的芯片或芯片***,本申请对此不做限定。
第四方面所述的通信装置的技术效果可以参考第一方面所述的波束测量方法的技术效果,此处不再赘述。
第五方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,存储器用于存储计算机程序;处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行如第一方面中任意一种可能的实现方式所述的波束测量方法。
在一种可能的设计中,第五方面所述的通信装置还可以包括收发器。该收发器可以为收发电路、通信接口或输入/输出端口。所述收发器可以用于该通信装置与其他通信装置通信。
可选地,收发器可以包括接收器和发送器。其中,接收器用于执行第一方面或第二方面所述的波束测量方法所涉及的接收功能,发送器用于执行第一方面或第二方面所述的波束测量方法所涉及的发送功能。相应地,处理器则用于执行第一方面或第二方面所述的波束测量方法中除接收功能和发送功能之外的其他功能,如根据波束扫描方式和/或上报量,确定测量报告的内容。
在本申请中,第五方面所述的通信装置可以为终端设备,或者设置于终端设备内部的芯片或芯片***。
第五方面所述的通信装置的技术效果可以参考第一方面中任意一种实现方式所述的波束测量方法的技术效果,此处不再赘述。
第六方面,提供一种通信装置。该通信装置包括:处理器和收发器,该处理器与存储器和收发器耦合,存储器用于存储计算机程序;处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行如第一方面中任意一种可能的实现方式所述的波束测量方法。
其中,第六方面所述的收发器可以为收发电路、通信接口或输入/输出端口。所述收发器可以用于该通信装置与其他通信装置通信。
在一种可能的设计中,第六方面所述的收发器可以包括接收器和发送器。其中,接收器用于执行第一方面或第二方面所述的波束测量方法所涉及的接收功能,发送器用于执行第一方面或第二方面所述的波束测量方法所涉及的发送功能。相应地,处理器则用于执行第一方面或第二方面所述的波束测量方法中除接收功能和发送功能之外的其他功能,如根据波束扫描方式和/或上报量,确定测量报告的内容。
在本申请中,第六方面所述的通信装置可以为终端设备,或者设置于终端设备内部的芯片或芯片***。
第六方面所述的通信装置的技术效果可以参考第一方面中任意一种实现方式所述的波束测量方法的技术效果,此处不再赘述。
第七方面,提供了一种芯片***,该芯片***包括处理器和输入/输出端口,所述处理器用于实现上述第一方面或第二方面所涉及的处理功能,所述输入/输出端口用于实现上述第一方面或第二方面所涉及的收发功能。
在一种可能的设计中,该芯片***还包括存储器,该存储器用于存储实现上述第一方面或第二方面所涉及功能的程序指令和数据。
该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,提供一种通信***。该***包括一个或多个终端设备,以及一个或多个网络设备。
第九方面,提供一种计算机可读存储介质,包括:该计算机可读存储介质中存储有计算机指令;当该计算机指令在计算机上运行时,使得该计算机执行如第一方面至第二方面中任意一种可能的实现方式所述的波束测量方法。
第十方面,提供了一种包含指令的计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行如第一方面至第二方面中任意一种可能的实现方式所述的波束测量方法。
附图说明
图1为本申请实施例提供的通信***的架构示意图;
图2为本申请实施例提供的通信装置的结构示意图一;
图3为本申请实施例提供的波束测量方法的流程示意图;
图4为本申请实施例提供的一种波束扫描方式的场景示意图;
图5为本申请实施例提供的另一种波束扫描方式的场景示意图一;
图6为本申请实施例提供的另一种波束扫描方式的场景示意图二;
图7为本申请实施例提供的另一种波束扫描方式的场景示意图三;
图8为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如WiFi***,长期演进(long term evolution,LTE)***、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)移动通信***,如新空口(new radio,NR)***,及未来的通信***,如第六代(6th generation,6G)移动通信***等。
本申请将围绕可包括多个设备、组件、模块等的***来呈现各个方面、实施例或特征。应当理解和明白的是,各个***可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singalling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以图1所示的通信***中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信***中,相应的名称也可以用其他移动通信***中的对应功能的名称进行替代。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。图1示出了适用于本申请实施例的波束测量方法的通信***的示意图。如图1所示,该通信***包括网络设备,以及一个或多个终端设备,如第 一终端设备和第二终端设备。其中,终端设备,用于接收来自网络设备的测量配置信息。终端设备,还用于在CMR集合与IMR集合上,接收并测量来自网络设备的信号,如信道状态信息参考信号(channel status information reference signal,CSI-RS)、同步(synchronization signal/physical,SS)/广播(physical broadcast channel,PBCH)信号块(SS/PBCH block,SSB)。其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量。终端设备,还用于根据波束扫描方式和/或上报量,确定测量报告的内容,并向网络设备发送测量报告。相应地,网络设备,用于向终端设备发送测量配置信息,以及在CMR集合与IMR集合上,向终端设备发送信号。网络设备,还用于接收来自网络设备的测量报告,并根据测量报告调整发送波束,如选择服务波束,规避干扰波束,根据干扰水平调整编码调制方案等。
在本申请实施例中,CMR集合可以包含一个或多个CMR,每个CMR均可以用唯一一个CMR索引来标识。也就是说,CMR集合中的CMR与CMR索引一一对应。同理,IMR集合可以包含一个或多个IMR,每个IMR均可以用唯一一个IMR索引来标识。也就是说,IMR集合中的IMR与IMR索引一一对应。
其中,上述网络设备为位于上述通信***的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片***。该网络设备包括但不限于:基站(base station)、中继(relay)站、接入点(access point,AP)。示例性地,该网络设备可以是全球移动通信***(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的节点(Node B,NB),还可以是长期演进(long term evolution,LTE)中的演进型节点(evolved Node B,eNB或eNodeB)。该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线网络控制器(radio network controller,RNC)。该网络设备还可以是5G***中的g节点(g Node B,gNB),或者未来演进***中的网络设备。此外,网络设备还可以是可穿戴设备或车载设备。
上述终端设备为接入上述通信***,且具有无线收发功能的终端或可设置于该终端的芯片或芯片***。用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G***中的终端设备或者未来演进***中的终端设备等。
需要说明的是,本申请实施例提供的波束测量方法,可以是用于图1所示的任意两个节点之间,如终端设备之间、网络设备之间,以及终端设备与网络设备之间。对于终端设备之间的通信,如果存在网络设备,则是有网络覆盖的场景;如果没有网络设备,则是属于无网络覆盖的场景。在有网络覆盖的场景下,终端设备之间的通信可以使用网络设备配置的资源进行,在没有网络覆盖的场景下,终端设备之间的通信可以使用预配置的资源进行。
应理解,图1仅为便于理解而示例的简化示意图,该通信***中还可以包括其他网络设备和/或其他终端设备,图1中未予以画出。
图2为可用于执行本申请实施例提供的波束测量方法的一种通信装置200的结构示意图。通信装置200可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有终端功能的部件。如图2所示,通信装置200可以包括处理器201,存储器202、收发器203。其中,处理器201,存储器202、收发器203之间存在信号连接,如可以通过总线连接。
下面结合图2对通信装置200的各个构成部件进行具体的介绍:
处理器201是通信装置200的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器201是一个或多个中央处理器(central processing unit,CPU),也可以是专用集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
其中,处理器201可以通过运行或执行存储在存储器202内的软件程序,以及调用存储在存储器202内的数据,执行通信装置200的各种功能。
在具体的实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置200也可以包括多个处理器,例如图2中所示的处理器201和处理器204。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器202可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器202可以独立存在,也可以和处理器201集成在一起。
其中,存储器202可以用于存储执行本申请方案的软件程序,并由处理器201来控制执行。该软件程序的功能可以参考下述方法实施例,此处不再赘述。
收发器203,用于与其他通信装置,如网络设备或另一终端设备之间的通信。可选地,收发器203可以包括接收器(图2中未单独示出)实现下述方法实施例所述的接收功能,以及发送器(图2中未单独示出)实现下述方法实施例所述的发送功能。相应地,处理器201则用于执行下述方法实施例中除接收功能和发送功能之外的其他处理功能,如根据波束扫描方式和/或上报量,确定测量报告的内容。具体可以参考下述方法实施例,此处不再赘述。
与存储器202类似,收发器203可以独立存在,也可以和处理器201集成在一起,本申请实施例对此不作限定。
需要说明的是,图2中示出的通信装置200的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面将结合图3-图7对本申请实施例提供的波束测量方法进行具体阐述。
图3为本申请实施例提供的波束测量方法的流程示意图一。该波束测量方法可以适用于图1所示的任意两个节点之间的通信。
如图3所示,该波束测量方法包括如下步骤:
S301,网络设备向终端设备发送测量配置信息。相应地,终端设备接收来自网络设备的测量配置信息。
其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量。
示例性地,CMR集合可以包括一个或多个信道测量资源和CMR集合的波束扫描方式。其中,信道测量资源用于发射对应的信道测量信号,如一个或多个SSB,和/或,一个或多个CSI-RS。而IMR集合可以包括一个或多个干扰测量资源。其中,干扰测量资源用于发射对应的干扰测量信号,如一个或多个SSB,和/或,一个或多个CSI-RS。
需要说明的是,CMR集合对应的信道测量信号与IMR集合对应的干扰测量信号均可以包括一个或多个SSB,和/或,一个或多个CSI-RS,两者的区别之处在于:信道测量信号用于模拟承载用户数据的信号,而干扰测量信号用于模拟对上述承载用户数据的信号进行干扰的其他信号,包括但不限于其他网络的信号、用于承载其他用户数据的信号等。
在本申请实施例中,为便于描述,可以使用CSI-RS#n表示资源编号为n的CSI-RS信道测量资源或CSI-RS干扰测量资源。同理,也可以使用SSB#n表示资源编号为n的SSB信道测量资源或SSB干扰测量资源。
示例性的,在本申请实施例中,波束扫描方式是针对CMR集合的,可以采用现有实现方式,如使用CMR重复(CMR repetition)信元来指示。例如,当CMR重复信元取值为“ON”时,CMR集合的波束扫描方式为:网络设备使用固定的发送波束发送CMR集合中的每一个CMR,终端设备应使用不同的接收波束接收CMR集合中的每个CMR,从而确定终端设备的最优接收波束。又例如,当CMR重复信元取值为“OFF”时,CMR集合的波束扫描方式为:网络设备使用固定的发送波束发送CMR集合中的每一个CMR,终端设备应使用固定的接收波束接收CMR集合中的每个CMR,从而确定网络设备的最优发送波束。其中,“最优”是指,在上述某一波束扫描方式下,满足如下一项或多项条件的接收波束或发送波束:终端设备接收到的信号最强,如参考信号接收功率(reference signal receiving power,RSRP)的值最大;或者,终端设备接收到的信号质量最佳,如参考信号接收质量(reference signal receiving quality,RSRQ)的值最大。
需要说明的是,在实际的通信场景中,干扰信号的来源、方位、强度等通常会在 时域和空域上不断变化的,不需要考虑IMR集合的波束扫描方式为固定干扰发送波束的情况。其原因在于:当IMR集合的波束扫描方式配置为ON时,可以用于固定干扰波束且在CMR集合中选择服务波束的场景,这时基站知道干扰波束的信息,如IMR索引,终端设备是不需要将IMR索引反馈给基站的。因此,在本申请实施例中,IMR集合的波束扫描方式可以配置为:不固定IMR集合的发送波束,如可以将IMR重复(IMR repetition)信元的值配置为“OFF”。当然,也可以不配置,即默认IMR重复信元的值为“OFF”。关于波束扫描方式的具体实现方式,可以参考下述S302中的相关描述,此处不再赘述。
需要说明的是,为节省配置资源,上述CMR重复信元与IMR重复信元也可以共用同一个重复信元字段(repetition field)来指示。例如,若重复信元字段配置为ON,则表示CMR重复信元配置为ON,即CMR集合的波束扫描方式为固定干扰发送波束,而IMR重复信元配置为OFF,即IMR集合的波束扫描方式为不固定干扰发送波束。
示例性地,网络设备可以在下行链路(downlink,DL)上,通过无线资源控制(radio resource control,RRC)信令、媒体接入控制(medium access control–control element,MAC-CE)信令,下行控制信息(downlink control information,DCI)信令、广播(broadcast)、***信息块(system infomatiion block,SIB)等任一方式向终端设备发送测量配置信息。
S302,网络设备在CMR集合与IMR集合上,向终端设备发送信号。相应地,终端设备在CMR集合与IMR集合上,接收并测量来自网络设备的信号。
示例性地,网络设备在CMR集合中的每个CMR上,以及在IMR集合的每个IMR上,向终端设备发送信号。相应地,终端设备在CMR集合中的每个CMR上,以及在IMR集合的每个IMR上,接收并测量来自网络设备的信号。
目前,按照步骤S301中的配置,倘若网络设备和终端设备采用遍历发送波束和接收波束的方式完成干扰测量,则一种最简单的测量干扰波束的方法为:终端设备对CMR集合中的每个资源以及IMR集合中的每个资源进行组合,并且用终端设备的每一个接收波束去测量每一个CMR-IMR组合。这种方法的问题在于:复杂度非常高,工作量大。具体地,假设网络设备配置了N_CMR个CMR资源,N_IMR个IMR资源,终端设备具有M_RX个接收波束,则终端设备需要进行N_CMR*N_IMR*M_RX次测量,获得N_CMR*N_IMR*M_RX个不同的L1-SINR,再从中选出最优的CMR-IMR组合上报给网络设备。因此,避免过于复杂的测量,降低测量工作量,提高测量效率,成为本申请需要解决的技术问题之一。
示例性地,图4示出了本申请实施例提供的一种波束扫描方式的场景示意图。如图4所示,CMR集合包括CSI-RS1-CSI-RS4,CMR集合的波束扫描方式为:固定发送波束,该波束扫描方式用于终端设备训练接收波束。例如,可以将CMR集合配置参数中的重复信元(CMR repetition)配置为ON。其中,固定发送波束是指,网络设备使用同一个发送波束,如使用发送波束1,发送CMR集合中的CSI-RS1-CSI-RS4。IMR集合包括CSI-RS5-CSI-RS8,IMR集合用于模拟在终端设备侧,网络设备的其他发送波束发送的信号对CMR集合对应的发送波束发送的信号产生的干扰。在图4所示的干扰测量场景下,上述干扰测量方法具体可以包括如下步骤:
步骤一,网络设备使用同一发送波束,发送CMR集合中的信号。相应地,终端设备遍历接收波束,并选出最优接收波束。
具体地,网络设备可以在同一发送波束上,按照预设顺序,发送CMR集合中的全部CSI-RS。相应地,终端设备可以使用每个接收波束,测量接收到的信号,并选择接收到的信号强度最大的接收波束,作为最优接收波束。其中,信号强度可以为L1-RSRP。
步骤二,网络设备使用不同发送波束,发送IMR集合中的信号。相应地,终端设备使用最优接收波束,接收并测量IMR集合中的信号强度。
具体地,终端设备可以使用最优接收波束,接收并测量IMR集合中的CSI-RS5-CSI-RS8的信号强度,如CSI-RS5-CSI-RS8的L1-RSRP。
步骤三,终端设备根据其接收到的CMR集合中的信号强度,以及IMR集合中的信号强度,计算CMR集合中每个信号对应的信号干扰噪声比,如L1-SINR。
具体地,鉴于IMR集合配置参数中的波束扫描方式,如IMR重复信元(IMR repetition)配置为OFF或者没有配置,IMR集合可以用于终端设备评估该L1-RSRP最强的接收波束上收到的其他网络设备的发送波束的干扰情况,即利用CSI-RS2的和CSI-RS5-CSI-RS8来计算L1-SINR。
在上述实现方式中,在CMR集合的波束扫描方式为固定发送波束的场景下,网络设备需要先发送CMR集合中的信号,待终端设备根据CMR集合中的接收信号确定最优接收波束之后,再发送IMR集合中的信号。相应地,终端设备遍历接收波束并确定最优接收波束,然后终端设备使用该最优接收波束去测量IMR集合中的信号,也就是说CMR集合的发送顺序需要在IMR集合的发送顺序之前,且时间提前量取决于终端设备遍历接收波束和确定最优接收波束的处理时长。因此,可选地,网络设备还需要向终端设备发送CMR集合与发送IMR集合之间的时间提前量。例如,该时间提前量可以是网络设备直接配置的,也可以是根据终端设备上报的终端能力等级确定之后配置的,本申请实施例对此不作限定。
在另一种可能的实现方式中,网络设备也可以同时发送CMR集合中的一个信号和IMR集合中的一个信号,以便终端设备依据该CMR信号与IMR信号之间的信号质量,如L1_SINR确定最优接收波束。相应地,终端设备可以使用每个接收波束,测量接收到的CMR信号的信号强度和IMR信号的信号强度,然后依据上述信号强度计算每个接收波束对应的L1_SINR,并选择L1_SINR值最大的接收波束为最优接收波束。之后,待终端设备确定最优接收波束之后,网络设备再发送CMR集合中的其他CMR信号,以及IMR集合中的其他IMR信号。相应地,终端设备再依据接收到的CMR集合中的其他CMR信号的信号强度,以及IMR集合中的其他IMR信号的信号强度,计算L1_SINR。
示例性地,图5-图7分别示出了本申请实施例提供的另一种波束扫描方式的3个场景示意图。如图5-图7所示,CMR集合包括CSI-RS1-CSI-RS4,CMR集合的波束扫描方式为:不固定发送波束,该波束扫描方式用于网络设备训练发送波束。例如,可以将CMR集合配置参数中的重复信元(CMR repetition)配置为OFF。其中,不固定发送波束是指,固定终端设备的接收波束,接收网络设备使用不同的发送波束发送 的CMR集合中的CSI-RS1至CSI-RS4。下面以图5所示的干扰测量方法为例,详细说明上述波束干扰测量场景二下的干扰测量方法。具体地,该方法可以包括如下步骤:
步骤1,网络设备使用不同的发送波束,发送CMR集合中的信号。相应地,终端设备使用同一接收波束,分别接收并测量网络设备使用不同的发送波束发送的CMR集合中的信号。
示例性地,终端设备可以使用网络设备配置的同一个CMR的接收波束,分别接收并测量网络设备在发送波束1至4上发送的CMR集合中的CSI-RS1至CSI-RS4的信号强度。
步骤2,网络设备使用不同的发送波束,发送IMR集合中的信号。相应地,终端设备使用同一接收波束,分别接收并测量网络设备使用不同的发送波束发送的IMR集合中的信号。
示例性地,终端设备可以使用网络设备配置的一个IMR的接收波束,分别接收并测量网络设备在发送波束1至4上发送的IMR集合中的CSI-RS5至CSI-RS8的信号强度。
需要说明的是,上述同一个CMR接收波束可以是网络设备配置的,也可以是终端设备自行选择的,以及CMR的接收波束与IMR的接收波束可以是相同的接收波束,也可以是不同的接收波束,本申请实施例对此不作限定。
步骤3,终端设备根据其接收到的CMR集合中的信号强度,以及IMR集合中的信号强度,计算CMR集合中每个信号对应的信号干扰噪声比,如L1-SINR。
具体地,鉴于IMR集合配置参数中的波束扫描方式,如IMR重复信元(IMR repetition)配置为OFF或者没有配置,IMR集合可以用于终端设备评估该L1-RSRP最强的接收波束上收到的网络设备发送的其他发送波束的干扰情况,如利用CSI-RS2-CSI-R4和CSI-RS5-CSI-RS8来计算L1-SINR。具体计算方法可以参考现有实现方式,此处不再赘述。
需要说明的是,鉴于CMR集合的波束扫描方式为不固定发送波束,可以用于网络设备遍历发送波束,并选择最优发送波束,而CMR集合与IMR集合的发送顺序对此目的没有影响。因此,本申请实施例不需要限定网络设备发送CMR集合与IMR集合的先后顺序。也就是说,步骤2可以在执行步骤1之后执行,即如图5所示,先发送CMR集合中的全部信号,再发送IMR集合中的全部信号,也可以在执行步骤1之前执行,即如图6所示,先发送IMR集合中的全部信号,再发送CMR集合中的全部信号,还可以将步骤2和步骤1交替执行,即如图7所示,交替发送CMR集合中的信号与IMR集合中的信号。
在执行上述步骤一至步骤三,或者执行上述步骤1至步骤3之后,终端设备即可根据波束扫描方式和上报量,确定测量报告的内容,并上报给网络设备,也就是执行S303-S304。
S303,终端设备根据波束扫描方式和/或上报量,确定测量报告的内容。
在一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引和SINR,且不包括CMR索引。
或者,在另一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引和SINR。
示例性地,对于图4所示的波束测量场景一,波束扫描方式为固定CMR集合的发送波束,即网络设备已经知道CMR集合中的所有CMR都对应相同的发送波束。因此,即使网络设备要求终端设备上报CMR索引,如配置的上报量包括CMR索引,终端设备也没有必要上报CMR索引,从而可以降低上报数据量,节省上报开销。
应理解,对于图5-图7所示的波束测量场景二,波束扫描方式为不固定CMR集合的发送波束,此时网络设备并不知道终端设备选择的发送波束,此时通常需要终端设备上报上报量要求上报的全部内容,如上报一组或多组包含有CMR索引、IMR索引和信号干扰噪声比SINR的测量结果。
或者,在又一种可能的设计方法中,若波束扫描方式为:不固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和SINR。
示例性地,对于图5-图7所示的波束测量场景二,如果终端设备上报的L1-SINR值较小,说明受到的干扰较大,终端设备可以继续在下一次上报中上报IMR索引。其中,下一次上报可以是网络设备单独触发的上报,或者在周期性的上报中终端设备利用下一个周期的上报进行IMR索引的上报。也就是说,可以根据L1-SINR取值分两步上报L1-SINR和IMR索引。容易理解,如果L1-SINR值较大,说明受到的干扰小,IMR索引就不需要上报了,从而可以进一步降低上报的数据量,降低上报开销。
在一种可能的设计方法中,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
或者,在另一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
可选地,上述测量报告包括IMR索引或SINR,可以包括如下之一:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。其中,第一SINR阈值和第二SINR阈值可以为同一个数值,也可以为不同数值,本申请实施例对此不作限定。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,且不包括SINR;或者,第一指示信息用于指示测量报告包括SINR,且不包括IMR索引。
示例性地,如图4所示,当SINR大于第一SINR阈值时,说明干扰较弱,不需要规避干扰波束,因此不需要上报IMR索引,而SINR可用于网络设备对发射方案进行进一步微调,如调整发射功率、调制编码方案等,因此需要上报SINR。当SINR小于第四SINR阈值时,说明此时干扰较强,需要规避干扰波束,因此需要上报IMR索引,而在需要规避干扰的情况下,不需要也没有必要根据SINR对发射方案进行进一步微调,上报SINR意义不大,因此不需要上报SINR。在规避干扰后,如果SINR大于第 一SINR阈值,终端设备可以继续在下一次上报中上报SINR。其中,下一次上报可以是网络设备单独触发的上报,或者在周期性的上报中终端设备利用下一个周期的上报进行IMR索引的上报。
在又一种可能的设计方法中,若上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和IMR索引中的一项,以及SINR。
可选地,上述报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
其中,第三SINR阈值和第四SINR阈值可以为同一个数值,也可以为不同数值,本申请实施例对此不作限定。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
可选地,波束扫描方式可以为:固定CMR集合的发送波束。或者,可选地,波束扫描方式也可以为:不固定CMR集合的发送波束。
示例性地,如图5-图7中任一项所示,当SINR大于第三SINR阈值时,可以视为CMR索引对应的服务波束受到所有干扰波束的干扰均较弱,不需要规避任何干扰波束,因此需要上报可用作服务波束的CMR索引,但不需要上报IMR索引。当SINR小于第四SINR阈值时,可以视为IMR索引对应的干扰波束对所有服务波束均存在强干扰,需要规避,因此需要上报IMR索引,但不需要上报CMR索引。
需要说明的是,上述各种确定测量报告的内容的可选方案可以单独使用,也可以结合使用,本申请实施例对此不作限定。例如,在根据波束扫描方式确定测量报告包括IMR索引和/或SINR的情况下,还可以根据SINR的测量值与第一SINR阈值和/或第二SINR阈值的比较结果,从IMR索引和SINR中择一上报。又例如,在根据上报量确定测量报告包括CMR索引和/或IMR索引的情况下,还可以根据SINR的测量值与第三SINR阈值和/或第四SINR阈值的比较结果,从CMR索引和IMR索引中择一上报。
在一种可能的设计方法中,若波束扫描方式为:固定CMR集合的发送波束,则测量报告不包括CMR索引。也就是说,不管上报量如何配置,以及测量结果如何,在波束扫描方式为:固定CMR集合的发送波束的情况下,鉴于网络设备已经知道发送波束的具体信息,终端设备均不需要上报CMR索引。
在另一种可能的设计方法中,若上报量包括:IMR索引和信号干扰噪声比SINR中的一项或多项,则测量报告包括IMR索引和SINR中的一项。
可选地,上述测量报告包括IMR索引和SINR中的一项,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计方法中,若上报量包括:CMR索引和IMR索引中的一项或多项,则测量报告包括CMR索引和IMR中的一项。
可选地,上述测量报告包括CMR索引和IMR索引中的一项,可以包括:若信号干扰噪声比SINR大于第三SINR阈值,则测量报告包括CMR索引,且不包括IMR索引。或者,若信号干扰噪声比SINR小于第四SINR阈值,则测量报告包括IMR索引,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告是否包括CMR索引,或者第二指示信息用于指示测量报告是否包括IMR索引。
S304,终端设备向网络设备发送测量报告。相应地,网络设备接收来自终端设备的测量报告。
示例性地,终端设备可以在上行链路(uplink,UL),通过物理上行共享信道(physical uplink shared channel,PUSCH)发送CSI测量报告给网络设备。
表1
Figure PCTCN2020102699-appb-000001
表2
L1-SINR量化值 L1-SINR测量值(dB)
L1-SINR_0 L1-SINR<-23
L1-SINR_1 -23≤L1-SINR<-22.5
L1-SINR_2 -22.5≤L1-SINR<-22
L1-SINR_3 -22≤L1-SINR<-21.5
L1-SINR_4 -21.5≤L1-SINR<-21
L1-SINR_123 38≤L1-SINR<38.5
L1-SINR_124 38.5≤L1-SINR<39
L1-SINR_125 39≤L1-SINR<39.5
L1-SINR_126 39.5≤L1-SINR<40
L1-SINR_127 40≤L1-SINR
示例性地,表1为CSI测量报告的示例一。如表1所示,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则CSI测量报告可以包括:CMR索引、IMR索引和信号干扰噪声比SINR。
需要说明的是,表1所示的CSI测量报告可能包括一组或多组测量结果,比如表1中测量结果索引为0和1的两组测量结果,其中,每组结果均包括一个CMR索引、 一个IMR索引和一个L1-SINR。
其中,CMR索引的比特长度(bitwidth)为ceil{Log2(N_CMR)},IMR索引的比特长度(bitwidth)为ceil{Log2(N_IMR)},其中ceil{}是向上取整函数,N_CMR是CMR集合中元素的个数,N_IMR是IMR集合中元素的个数。或者,可选的,CMR索引和IMR的索引的比特长度都也可以统一为ceil{Log2(N_CMR+N_IMR)}。
表2为L1-SINR的测量值与量化值的一种对应关系的示例。如表2所示,L1-SINR可以被量化为一个7比特的值进行上报。其中,量化步长为0.5dB。
需要说明的是,表2中的比特长度和量化步长也可以根据实际需求采用其他值,例如12比特、1dB等。
示例性地,表3为CSI测量报告的示例二。如表3所示,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则CSI测量报告可以包括IMR索引和信号干扰噪声比SINR。
需要说明的是,表3所示的CSI测量报告可以包括一组或多组测量结果,比如表3中测量结果索引为0和1的两组测量结果,其中,每组结果均包括一个IMR索引和一个L1-SINR。
其中,IMR索引的比特长度(bitwidth)为ceil{Log2(N_IMR)},其中ceil{}是向上取整函数,N_IMR是IMR集合中元素的个数。或者,可选的,CMR索引和IMR的索引的比特长度都也可以为ceil{Log2(N_CMR+N_IMR)},其中,N_CMR是CMR集合中元素的个数。
与表1中的L1-SINR类似,表3中的L1-SINR也可以被量化为一个7比特的值进行上报。具体实现方式可以参考表2相关描述,此处不再赘述。
表3
Figure PCTCN2020102699-appb-000002
示例性地,表4为CSI测量报告的示例三。如表4所示,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则CSI测量报告可以包括IMR索引或信号干扰噪声比SINR,以及与IMR索引或信号干扰噪声比SINR对应的指示位。
需要说明的是,表4所示的CSI测量报告可以包括一组或多组测量结果,比如表4中测量结果索引为0和1的两组测量结果,其中,每组结果均包括一个IMR索引或一个L1-SINR,以及一个与IMR索引或信号干扰噪声比SINR对应的指示位。
其中,指示位的比特长度为1比特。示例性地,当指示位为1时,该CSI测量结果中包含IMR索引,当指示位为0时,该CSI测量结果包含L1-SINR的量化值。上报的IMR索引或L1-SINR的量化值共享一组上报比特,该组上报比特的比特长度可以为:IMR索引的比特长度(bitwidth)和L1-SINR的量化值的比特长度为{ceil{Log2(N_IMR)},7}中的最大值。例如,如果ceil{Log2(N_IMR)}>7,则当上报L1-SINR时,只需要在7比特表示的L1-SINR的量化值前面或后面补0,直至与IMR 索引的比特长度相同即可。又例如,如果ceil{Log2(N_IMR)}<7,那么当上报IMR索引时,在ceil{Log2(N_IMR)}比特表示的IMR索引的前面或后面补0,直至与L1-SINR的量化值的比特长度相同即可。可选的,ceil{Log2(N_IMR)}也可以由ceil{Log2(N_CMR+N_IMR)}替换,其中N_CMR是CMR集合中元素的个数。
与表1中的L1-SINR类似,表4中的L1-SINR也可以被量化为一个7比特的值进行上报。具体实现方式可以参考表2相关描述,此处不再赘述。
表4
Figure PCTCN2020102699-appb-000003
示例性地,表5为CSI测量报告的示例四。如表5所示,若上报量包括:CMR索引或IMR索引中的一项,以及信号干扰噪声比SINR,则CSI测量报告可以包括CMR索引或IMR索引中的一项,以及信号干扰噪声比SINR。
表5
Figure PCTCN2020102699-appb-000004
需要说明的是,表5所示的CSI测量报告可以包括一组或多组测量结果,比如表5中测量结果索引为0和1的两组测量结果,其中,每组结果均包括一个CMR索引或一个IMR索引中的一项,以及一个L1-SINR。
其中,IMR索引和IMR索引共享一组上报比特,该组上报比特的比特长度(bitwidth)可以为ceil{Log2(N_CMR)}和ceil{Log2(N_IMR)}中的最大值。其中ceil{}是向上取整函数,N_CMR是CMR集合中元素的个数,N_IMR是IMR集合中元素的个数。或者,可选的,该组上报比特的比特长度都也可以为ceil{Log2(N_CMR+N_IMR)}。例如,如果ceil{Log2(N_CMR)}>ceil{Log2(N_IMR)},那么当上报IMR索引时,只需要在ceil{Log2(N_IMR)}比特表示的IMR索引前面或后面补0,直至与CMR索引的比特长度相同即可。又例如,如果ceil{Log2(N_CMR)}<ceil{Log2(N_IMR)},那么当上报CMR索引时,只需要在ceil{Log2(N_CMR)}比特表示的CMR索引前面或后面补0,直至与IMR索引的比特长度相同即可。
反之则在ceil{Log2(N_CMR)}比特表示的CMR索引前面或后面补0直至比特长度相同。可选的,也可以分为>和<=两类。
与表1中的L1-SINR类似,表5中的L1-SINR也可以被量化为一个7比特的值进行上报。具体实现方式可以参考表2相关描述,此处不再赘述。
需要说明的是,表1-表5中的测量结果索引仅仅是为了描述方便而设置的。在实际的测量报告中,是不需要上报测量结果索引的,而是只上报表1-表5中所示的一组 或多组CSI测量结果。
基于图3所示的波束测量方法,终端设备能够接收并测量网络设备在配置的CMR集合和IMR集合上发送的信号,然后根据网络设备配置的波束扫描方式和上报量,从上报量要求的上报内容中扣除冗余信息后上报给网络设备,其中,冗余信息包括网络设备本就已获知的信息、当前通信场景不需要关心的测量结果等,可以有效减少实际上报的数据量,从而节省干扰上报开销,降低资源消耗,提高通信效率。
以上结合图3-图7详细说明了本申请实施例提供的波束测量方法。以下结合图8说明本申请实施例提供的通信装置。
图8是本申请实施例提供的通信装置的结构示意图二。该通信装置可适用于图1所示出的通信***中,执行图3所示的波束测量方法中终端设备的功能。为了便于说明,图8仅示出了该通信装置的主要部件。
如图8所示,通信装置800包括:处理模块801和收发模块802。
其中,收发模块802,用于接收来自网络设备的测量配置信息;其中,测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量。
收发模块802,还用于在CMR集合与IMR集合上,接收来自网络设备的信号。
处理模块801,用于测量接收到的信号。
处理模块801,还用于根据波束扫描方式和/或上报量,确定测量报告的内容。
收发模块802,还用于向网络设备发送测量报告。
在一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引和SINR,且不包括CMR索引。
或者,在另一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引和SINR。
或者,在又一种可能的设计中,若波束扫描方式为:不固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括CMR索引和SINR。
在一种可能的设计中,若上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
或者,在另一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,且上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR,则测量报告包括IMR索引或SINR。
可选地,上述测量报告包括IMR索引或SINR,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计中,若上报量包括:CMR索引和IMR索引中的一项,以及 信号干扰噪声比SINR,则测量报告包括CMR索引和IMR索引中的一项,以及SINR。
可选地,上述报告包括CMR索引和IMR索引中的一项,以及SINR,可以包括:若SINR大于第三SINR阈值,则测量报告包括CMR索引和SINR,且不包括IMR索引。或者,若SINR小于第四SINR阈值,则测量报告包括IMR索引和SINR,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告包括CMR索引,或者,第二指示信息用于指示测量报告包括IMR索引。
在一种可能的设计中,若波束扫描方式为:固定CMR集合的发送波束,则测量报告不包括CMR索引。
在另一种可能的设计中,若上报量包括:IMR索引和信号干扰噪声比SINR中的一项或多项,则测量报告包括IMR索引和SINR中的一项。
可选地,上述测量报告包括IMR索引和SINR中的一项,可以包括:若SINR大于第一SINR阈值,则测量报告包括SINR,且不包括IMR索引。或者,若SINR小于第二SINR阈值,则测量报告包括IMR索引,且不包括SINR。
进一步地,测量报告还可以包括第一指示信息。其中,第一指示信息用于指示测量报告包括IMR索引,或者,第一指示信息用于指示测量报告包括SINR。
在又一种可能的设计中,若上报量包括:CMR索引和IMR索引中的一项或多项,则测量报告包括CMR索引和IMR中的一项。
可选地,上述测量报告包括CMR索引和IMR索引中的一项,可以包括:若信号干扰噪声比SINR大于第三SINR阈值,则测量报告包括CMR索引,且不包括IMR索引。或者,若信号干扰噪声比SINR小于第四SINR阈值,则测量报告包括IMR索引,且不包括CMR索引。
进一步地,测量报告还可以包括第二指示信息。其中,第二指示信息用于指示测量报告是否包括CMR索引,或者第二指示信息用于指示测量报告是否包括IMR索引。
可选地,收发模块802可以包括接收模块和发送模块(图8中未单独示出)。其中,接收模块用于执行上述方法实施例所述的接收功能,发送模块用于执行上述方法实施例所述的发送功能。相应地,处理模块801则用于执行上述方法实施例中除接收功能和发送功能之外的其他处理功能,如根据波束扫描方式和/或上报量,确定测量报告的内容。
可选地,图8所示的通信装置800还可以包括存储模块(图8中未示出),该存储模块存储有程序或指令。当处理模块801执行该程序或指令时,使得通信装置800可以执行图3所示的波束测量方法中终端设备的功能。
需要说明的是,上述通信装置800可以是图1所示任一终端设备或图2所示的通信装置200,也可以是设置于上述终端设备或通信装置200中的芯片或芯片***,本申请实施例对此不做限定。
通信装置800的技术效果,可以上述方法实施例所述的波束测量方法的技术效果,此处不再赘述。
本申请实施例提供一种芯片***。该芯片***包括处理器和输入/输出端口,所述处理器用于实现上述方法实施例所涉及的处理功能,所述输入/输出端口用于实现上述 方法实施例所涉及的收发功能。
在一种可能的设计中,该芯片***还包括存储器,该存储器用于存储实现上述方法实施例所涉及功能的程序指令和数据。
该芯片***,可以由芯片构成,也可以包含芯片和其他分立器件。
示例性地,该芯片***可以为基带处理芯片,也可以为可执行基带处理功能的***芯片,本申请实施例对此不作限定。
本申请实施例提供一种通信***。该***包括上述一个或多个终端设备,以及一个或多个网络设备。
本申请实施例提供一种计算机可读存储介质,包括:该计算机可读存储介质中存储有计算机指令;当该计算机指令在计算机上运行时,使得该计算机执行上述方法实施例所述的波束测量方法。
本申请实施例提供了一种包含指令的计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行上述方法实施例所述的波束测量方法。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一 个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种波束测量方法,其特征在于,包括:
    接收来自网络设备的测量配置信息;其中,所述测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量;
    在所述CMR集合与所述IMR集合上,接收来自所述网络设备的信号;
    测量接收到的信号;
    根据所述波束扫描方式和/或所述上报量,确定测量报告的内容;
    向所述网络设备发送所述测量报告。
  2. 根据权利要求1所述的波束测量方法,其特征在于,所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR;所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引;或者,
    所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述IMR索引和所述SINR;或者,
    所述波束扫描方式为:不固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述CMR索引和所述SINR。
  3. 根据权利要求1所述的波束测量方法,其特征在于,所述上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR;所述测量报告包括所述IMR索引或所述SINR;或者,
    所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述IMR索引或所述SINR。
  4. 根据权利要求3所述的波束测量方法,其特征在于,所述测量报告包括所述IMR索引或所述SINR,包括:
    若所述SINR大于第一SINR阈值,则所述测量报告包括所述SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第二SINR阈值,则所述测量报告包括所述IMR索引,且不包括所述SINR。
  5. 根据权利要求3或4所述的波束测量方法,其特征在于,所述测量报告还包括第一指示信息;其中,所述第一指示信息用于指示所述测量报告包括所述IMR索引,或者所述第一指示信息用于指示所述测量报告包括所述SINR。
  6. 根据权利要求1所述的波束测量方法,其特征在于,所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR。
  7. 根据权利要求6所述的波束测量方法,其特征在于,所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR,包括:
    若所述SINR大于第三SINR阈值,则所述测量报告包括所述CMR索引和所述 SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第四SINR阈值,则所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引。
  8. 根据权利要求6或7所述的波束测量方法,其特征在于,所述测量报告还包括第二指示信息;其中,所述第二指示信息用于指示所述测量报告包括所述CMR索引,或者所述第二指示信息用于指示所述测量报告包括所述IMR索引。
  9. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述收发模块,用于接收来自网络设备的测量配置信息;其中,所述测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量;
    所述收发模块,还用于在所述CMR集合与所述IMR集合上,接收来自所述网络设备的信号;
    所述处理模块,用于测量接收到的信号;
    所述处理模块,还用于根据所述波束扫描方式和/或所述上报量,确定测量报告的内容;
    所述收发模块,还用于向所述网络设备发送所述测量报告。
  10. 根据权利要求9所述的通信装置,其特征在于,所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR;所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引;或者,
    所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述IMR索引和所述SINR;或者,
    所述波束扫描方式为:不固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述CMR索引和所述SINR。
  11. 根据权利要求9所述的通信装置,其特征在于,所述上报量包括:CMR索引、IMR索引和信号干扰噪声比SINR;所述测量报告包括所述IMR索引或所述SINR;或者,
    所述波束扫描方式为:固定所述CMR集合的发送波束;所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述IMR索引或所述SINR。
  12. 根据权利要求11所述的通信装置,其特征在于,所述测量报告包括所述IMR索引或所述SINR,包括:
    若所述SINR大于第一SINR阈值,则所述测量报告包括所述SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第二SINR阈值,则所述测量报告包括所述IMR索引,且不包括所述SINR。
  13. 根据权利要求11或12所述的通信装置,其特征在于,所述测量报告还包括 第一指示信息;其中,所述第一指示信息用于指示所述测量报告包括所述IMR索引,或者所述第一指示信息用于指示所述测量报告包括所述SINR。
  14. 根据权利要求9所述的通信装置,其特征在于,所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR。
  15. 根据权利要求14所述的通信装置,其特征在于,所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR,包括:
    若所述SINR大于第三SINR阈值,则所述测量报告包括所述CMR索引和所述SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第四SINR阈值,则所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述测量报告还包括第二指示信息;其中,所述第二指示信息用于指示所述测量报告包括所述CMR索引,或者所述第二指示信息用于指示所述测量报告包括所述IMR索引。
  17. 一种波束测量方法,其特征在于,包括:
    接收来自网络设备的测量配置信息;其中,所述测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量,所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;
    在所述CMR集合与所述IMR集合上,接收来自所述网络设备的信号;
    测量接收到的信号;
    根据所述波束扫描方式和/或所述上报量,确定测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR;
    向所述网络设备发送所述测量报告。
  18. 根据权利要求17所述的波束测量方法,其特征在于,所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR,包括:
    若所述SINR大于第三SINR阈值,则所述测量报告包括所述CMR索引和所述SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第四SINR阈值,则所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引。
  19. 根据权利要求17或18所述的波束测量方法,其特征在于,所述测量报告还包括第二指示信息;其中,所述第二指示信息用于指示所述测量报告包括所述CMR索引,或者所述第二指示信息用于指示所述测量报告包括所述IMR索引。
  20. 一种通信装置,其特征在于,包括:处理模块和收发模块;其中,
    所述收发模块,用于接收来自网络设备的测量配置信息;其中,所述测量配置信息用于指示信道测量资源CMR集合、干扰测量资源IMR集合、波束扫描方式和上报量,所述上报量包括:CMR索引和IMR索引中的一项,以及信号干扰噪声比SINR;
    所述收发模块,还用于在所述CMR集合与所述IMR集合上,接收来自所述网络设备的信号;
    所述处理模块,用于测量接收到的信号;
    所述处理模块,还用于根据所述波束扫描方式和/或所述上报量,确定测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR;
    所述收发模块,还用于向所述网络设备发送所述测量报告。
  21. 根据权利要求20所述的通信装置,其特征在于,所述测量报告包括所述CMR索引和所述IMR索引中的一项,以及所述SINR,包括:
    若所述SINR大于第三SINR阈值,则所述测量报告包括所述CMR索引和所述SINR,且不包括所述IMR索引;或者,
    若所述SINR小于第四SINR阈值,则所述测量报告包括所述IMR索引和所述SINR,且不包括所述CMR索引。
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述测量报告还包括第二指示信息;其中,所述第二指示信息用于指示所述测量报告包括所述CMR索引,或者所述第二指示信息用于指示所述测量报告包括所述IMR索引。
  23. 一种通信装置,其特征在于,所述通信装置包括:处理器和收发器,所述处理器与存储器和所述收发器耦合,所述存储器用于存储计算机程序;所述处理器用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置执行如权利要求1-8中任一项、或权利要求17-19中任一项所述的波束测量方法。
  24. 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器与存储器耦合;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的所述计算机程序,以使得所述通信装置执行如权利要求1-8中任一项、或权利要求17-19中任一项所述的波束测量方法。
  25. 一种芯片***,其特征在于,所述芯片***包括处理器和输入/输出端口,所述处理器用于实现如权利要求1-8中任一项、或权利要求17-19中任一项所涉及的处理功能,所述输入/输出端口用于实现如权利要求1-8中任一项、或权利要求17-19中任一项所涉及的收发功能。
  26. 一种可读存储介质,其特征在于,所述可读存储介质包括程序或指令,当所述程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-8中任一项、或权利要求17-19中任一项所述的波束测量方法。
PCT/CN2020/102699 2019-07-31 2020-07-17 波束测量方法及装置 WO2021017893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910703160.5A CN112312455B (zh) 2019-07-31 2019-07-31 波束测量方法及装置
CN201910703160.5 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021017893A1 true WO2021017893A1 (zh) 2021-02-04

Family

ID=74229480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102699 WO2021017893A1 (zh) 2019-07-31 2020-07-17 波束测量方法及装置

Country Status (2)

Country Link
CN (1) CN112312455B (zh)
WO (1) WO2021017893A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116437361A (zh) * 2021-03-31 2023-07-14 中兴通讯股份有限公司 用于增强信道测量和波束管理的***和方法
CN117997397A (zh) * 2022-10-31 2024-05-07 维沃移动通信有限公司 资源配置方法、装置、通信设备及可读存储介质
CN118055420A (zh) * 2022-11-10 2024-05-17 维沃移动通信有限公司 波束测量方法、装置、终端、网络侧设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108418667A (zh) * 2017-11-17 2018-08-17 华为技术有限公司 测量csi-rs的方法和指示方法,网络设备、终端
WO2019066619A1 (ko) * 2017-09-29 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 비주기적 csi를 보고하기 위한 방법 및 이를 위한 장치
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的***和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580819B (zh) * 2012-07-31 2018-05-18 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN105744540B (zh) * 2014-12-10 2019-09-17 电信科学技术研究院 一种基于网络感知的服务策略配置方法及网络设备
CN108365939B (zh) * 2017-01-26 2024-03-01 华为技术有限公司 一种配置信息的方法、装置及***
CN108809369B (zh) * 2017-05-05 2023-11-03 华为技术有限公司 无线通信的方法、网络设备和终端设备
WO2019139369A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Method and apparatus for csi reporting in wireless communication system
CN110035450B (zh) * 2018-01-12 2020-06-23 维沃移动通信有限公司 测量上报的方法、终端设备和网络设备
CN110190941B (zh) * 2018-01-12 2022-05-10 华为技术有限公司 一种用于终端设备能力传输的方法、装置及***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019066619A1 (ko) * 2017-09-29 2019-04-04 엘지전자 주식회사 무선 통신 시스템에서 비주기적 csi를 보고하기 위한 방법 및 이를 위한 장치
CN108418667A (zh) * 2017-11-17 2018-08-17 华为技术有限公司 测量csi-rs的方法和指示方法,网络设备、终端
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的***和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Beam measurement and reporting using L1-SINR", 3GPP TSG RAN WG1 MEETING #96BIS, R1-1903976, 29 March 2019 (2019-03-29), XP051691198 *
ZTE: "Enhancements on Multi-Beam Operation", 3GPP TSG RAN WG1 MEETING #97, R1-1906237, 4 May 2019 (2019-05-04), XP051708275 *

Also Published As

Publication number Publication date
CN112312455A (zh) 2021-02-02
CN112312455B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
EP3965438B1 (en) Methods and apparatuses for signal transmission, signal measurement reporting, and positioning
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
WO2021017893A1 (zh) 波束测量方法及装置
WO2018228504A1 (zh) 功率控制方法及装置
WO2020200084A1 (zh) 用于无线资源管理rrm测量的方法和装置
WO2020029942A1 (zh) 波束测量的方法和装置
TW202044882A (zh) 具有功率節省功能的波束管理電子設備和方法
WO2021027819A1 (zh) 波束调度方法、装置、设备及存储介质
US20150188683A1 (en) Method and Access Point for Assigning Sounding Resources
US20230362867A1 (en) Measurement method and apparatus for positioning, and storage medium
TW202014030A (zh) 信號回報的方法、終端設備和網路設備
TW202207719A (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
US20220225242A1 (en) Power adjustment method and apparatus
TW202019210A (zh) 無線通訊方法和終端設備
US20240007166A1 (en) Csi feedback method and apparatus, device, and readable storage medium
WO2021062766A1 (zh) 一种干扰测量上报的方法和通信装置
TW202010331A (zh) 信號回報的方法、終端設備和網路設備
EP4236427A1 (en) Array selection method, terminal, network device, and storage medium
WO2022027386A1 (zh) 一种天线选择方法及装置
WO2019095794A1 (zh) 一种传输信道质量信息的方法和装置
WO2022205985A1 (zh) Csi报告优先级确定方法及装置
WO2024140078A1 (zh) 连续条件小区接入方法、装置及存储介质
WO2024016230A1 (zh) 信息收发方法与装置
WO2024000156A9 (zh) 信息收发方法与装置
WO2022041284A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848152

Country of ref document: EP

Kind code of ref document: A1