WO2021015228A1 - Method for producing specific differentiated cells - Google Patents

Method for producing specific differentiated cells Download PDF

Info

Publication number
WO2021015228A1
WO2021015228A1 PCT/JP2020/028402 JP2020028402W WO2021015228A1 WO 2021015228 A1 WO2021015228 A1 WO 2021015228A1 JP 2020028402 W JP2020028402 W JP 2020028402W WO 2021015228 A1 WO2021015228 A1 WO 2021015228A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
cells
medium
pluripotent stem
culturing
Prior art date
Application number
PCT/JP2020/028402
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 山▲崎▼
太一 村口
信一 渡邊
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2021015228A1 publication Critical patent/WO2021015228A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • pluripotent stem cells are selected from the group consisting of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3 ⁇ inhibitors.
  • the present invention relates to a method for producing a specific differentiated cell, which comprises a step (b) of obtaining a specific differentiated cell by culturing the pluripotent stem cell obtained in (a) in a medium containing a cytokine.
  • iPS cells human induced pluripotent stem cells
  • ES cells embryonic stem cells
  • iPS cells have no ethical problems than ES cells, and are expected to be put into practical use as a cell source with stable quality.
  • in vitro tests have come to be conducted using human primary cultured hepatocytes in drug discovery screening and pharmacokinetic tests.
  • lot-to-lot differences and proliferation ability which is a barrier to research.
  • hepatocytes can also be derived from iPS cells, but the problem is that the differentiation efficiency varies depending on the method and cell line.
  • Patent Document 1 describes (1) a step of differentiating induced pluripotent stem cells into endometrial-like cells, and (2) a step of differentiating endometrial-like cells obtained in step (1) into hepatocellular-like cells.
  • a method for inducing differentiation of induced pluripotent stem cells into hepatocytes which comprises the step of performing at least a part of the culture in the presence of a histone deacetylase inhibitor and / or under oxidative stress loading conditions.
  • HDAC histone deacetylase
  • Valproic acid is a typical drug used for epilepsy, and its main action is ⁇ -amino acid (GABA) transaminase inhibitory action. Furthermore, since valproic acid exhibits an HDAC inhibitory effect, it is expected to be applied to cancer treatment.
  • GABA ⁇ -amino acid
  • Patent Document 1 it is reported that an HDAC inhibitor has an effect of promoting the induction of differentiation of hepatocyte-like cells from iPS cell-derived hepatoblast-like cells, and improves the properties of undifferentiated iPS cells themselves. It's not a thing.
  • the invention of the method for inducing iPS cells has made it possible to obtain stem cells having pluripotency equivalent to that of ES cells, and is expected to be applied to cell therapy and drug discovery support tools.
  • iPS cells have different properties depending on the cell line and clone, and there is a large difference in differentiation potential, and the marker as an iPS cell is expressed.
  • the present invention is a problem to be solved to provide a method for producing a differentiated cell capable of efficiently obtaining a specific differentiated cell of interest.
  • the present inventor efficiently differentiates pluripotent stem cells into target differentiated cells, particularly hepatocytes, by culturing them in the presence of a specific compound. I found that I could do it.
  • the present invention has been completed based on the above findings.
  • Pluripotent stem cells are selected from the group consisting of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3 ⁇ inhibitors.
  • Step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in a) in a medium containing cytokines.
  • a method for producing a specific differentiated cell including. (2) The above step (a) A first culture step in which pluripotent stem cells are cultured in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a STAT3 activator, and after the first culture step, histone deacetylase.
  • a second culture step of culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3 ⁇ inhibitor, and a STAT3 activator without an inhibitor is included (1).
  • the manufacturing method described in. (3) The method according to (1) or (2), wherein the cytokine is at least one selected from the group consisting of activin A, BMP4, bFGF, HGF, and Oncostatin M.
  • the specific differentiated cell is a cell of endoderm lineage.
  • the specific differentiated cell is a hepatocyte.
  • the cells were cultured in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor.
  • the second culture step is carried out from 3 in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor.
  • the method according to any one of (2) to (7) which is a step of culturing for 8 days and then culturing in a medium obtained by adding a GSK3 ⁇ inhibitor to the above medium for 3 to 10 days.
  • a specific differentiated cell of interest can be efficiently produced.
  • FIG. 1 shows the degree of methylation of untreated and treated iPS cell lines.
  • FIG. 2 shows the gene expression levels related to the undifferentiated state of the untreated and treated iPS cell lines.
  • FIG. 3A was obtained by measuring the expression of ASGPR1 when untreated and treated human iPS cell lines (strains A to G) were induced to differentiate into hepatocytes by flow cytometry using an Anti-ASGPR1 antibody. Shows the ASGPR1 positive rate.
  • FIG. 3B shows ASGPR1-positive cells whose expression of ASGPR1 when untreated and treated human iPS cell lines (A to G strains) were induced to differentiate into hepatocytes was measured by flow cytometry using Anti-ASGPR1 antibody.
  • FIG. 4 shows the results of measuring the amount of albumin secreted in the culture supernatant when the untreated and treated human iPS cell lines (strains A to G) were induced to differentiate into hepatocytes by the ELISA method.
  • FIG. 5 shows the expression level of an endoderm marker gene when iPS cells are differentiated into endoderm after untreated, valproic acid-treated, and compound-mixed treatment conditions.
  • ALK5 TGF-beta type I receptor
  • bFGF basic Fibroblast Growth Factor
  • BMP4 Basic Fibroblast Growth Factor 34
  • Bone Former 34 Differentiation antigen group 34
  • cTnT cardiac Troponin T
  • DMEM Dulvecco's Modified Eagle Medium
  • DMEM / F12 Dulbecco's Modified Eagle Medium / Nutrition Mixture
  • F-12 Ham DNMT3B DNA (cytosine-5) -methyltransferase beta): DNA (cytosine-5-) methyltransferase 3 beta
  • Dnmt3L DNA Methyltransphase 3 Like
  • DNA methyltransferase 3-like ECAT ES cell assisted transcripts
  • ES cell-related transcription factor ERAs ES cell ess
  • Ras expressed in Erk Extracellular signal-regulated Kinase
  • ESG Embryonic stem cell-specific gene
  • Fbx15 F-Box Protein 15
  • FGF Fibroblast growth factor
  • FOXA2 forkhead box protein A2
  • Fthl17 Ferritin heavy chain polypeptide-like 17
  • GAPDH glycosyl transferase
  • Gdf3 Glyceraldehyde three-phosphate dehydrogenase
  • Grb2 Growth factor receptor binding protein 2
  • GSK Glycogen Synthase Kinase: Glycogen synthase kinase HBM (Hepatocyte Basel Medium): Stem cell basal medium HDAC (Histone Deacetylase): Histone deacetylase IGF (Insulin-like Growth Factor) IGF (Insulin-like Growth Factor) growh factor-binding protein 4): Insulin-like growth factor binding protein 4 IL (interleukin): Interleucine-rich KDR (kinase insert domain-connecting receptor): Kinase insertion domain-containing receptor Klf (Kruppel-like receptor): Kruppell-like factor LGR5 (Leucine-rich repeat-receptor) G protein-coupled receptor containing leucine-rich repeat 5
  • LIF Leukemia inhibitory factor
  • Leukemia inhibitory factor MAP mitogen-activated protein
  • Nr5a1 nuclear receptor subfamily
  • Nr5a2 nuclear receptor subfamily 5, group A, member 2
  • Oct octamer-binding transcription factor
  • PAX6 Paired box 6
  • PCR polymerase chain reaction
  • PDGFRA polymerase chain reaction
  • PDGFRA platelet-developed growth factor receptor alpha
  • Pillot-derived growth factor receptor ⁇ PKC Protein kinase C
  • POU5F1 POU domain, class 5, transcription factor 1
  • Prdm14 PR / SET domain family 14
  • qPCR Quantitative polymerase chain reaction
  • Rex1 Reduced-expression 1
  • Low expression protein-1 ROCK Rastero-associated coiled-coil forming kinase
  • Rho-conjugated coiled-coil-forming kinase RT-PCR Reverse transcription polymerase chain reaction
  • Sall4 Sal-like
  • SCF Stem cell factor
  • Sox SRY (sex determination region Y) -box: SRY (Y chromosome sex-determining gene) Box Stat3 (Signal Transducer and Activator of Tranciption 3): Signaling and transcriptional activator 3
  • T Brachyury: Brachyury Tcl1 encoded by the T gene (T-cell leukemia / lymphoma 1A): T-cell leukemia / lymphoma 1A Tert (Telomerase Reverse Transcriptase): Telomerase Reverse Transcript TGF (Transforming growth factor): Transforming Growth Factor UTF1 (Undifferentiated Embryonic Cell Transcription Factor) Undifferentiated Cell Transcription Factor VEGF (Vascular Endothelial Growth Factor): Vascular Endothelial Growth Factor
  • the method for producing a specific differentiated cell of the present invention uses pluripotent stem cells as a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, a STAT3 activator, a protein kinase C inhibitor, a Wnt signal inhibitor and GSK3 ⁇ .
  • pluripotent stem cells By culturing in a medium containing any of the inhibitors selected from the group, pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing.
  • the step (a) of obtaining, and the step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in step (a) in a medium containing cytokines are included.
  • cells that have undergone the same operation under the same culture conditions are regarded as cells having the same properties even if they are different as individuals.
  • the degree of DNA methylation is reduced by culturing pluripotent stem cells in the presence of a specific compound, and the pluripotent stem cells having a reduced degree of DNA methylation are used.
  • the pluripotent stem cells having a reduced degree of DNA methylation are used.
  • valproic acid improves the efficiency of inducing differentiation of human iPS cells into hepatocytes.
  • the step of differentiating hepatoblast-like cells into hepatocyte-like cells is valpro. It is done in the presence of acid.
  • the HDAC inhibitor for example, valproic acid
  • the efficiency of differentiation into endoderm which is in the process of differentiation into hepatocytes, does not increase, while when valproic acid is combined with other compounds, it does not increase. It has been confirmed that the differentiation efficiency increases.
  • the pluripotent stem cell of the present invention may be an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell.
  • the somatic cell is not particularly limited, and any somatic cell can be used.
  • adult-derived somatic cells that is, mature somatic cells
  • somatic cells include (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, and (3) fibroblasts (skin cells, etc.).
  • Epithelial cells Epithelial cells, hepatocytes, lymphocytes (T cells, B cells), endothelial cells, muscle cells, hair cells, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lungs
  • Examples thereof include differentiated cells such as cells, renal cells, and skin cells.
  • the living body from which the somatic cells are derived is not particularly limited, and examples thereof include humans and non-human animals (for example, monkeys, sheep, cows, horses, dogs, cats, rabbits, rats, mice). Preferably, it is human.
  • the pluripotent stem cells of the present invention are preferably human iPS cells.
  • the reprogramming factor introduced into somatic cells is not particularly limited, but for example, Oct3 / 4, Klf4, c-Myc, Sox2, Nanog, Klf2, L-Myc, N-Myc, Klf5, Lin28, Tert, Fbx15, ERAs, ECAT15-1, ECAT15-2, Tcl1, ⁇ -catenin, ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, Fthl17, All4, Rex1, UTF1, Stella, Stat3, Grb2, Prdm14, Nr5 Cadherin can be mentioned.
  • two or more genes can be selected from these gene groups and introduced in any combination.
  • combinations having at least Oct3 / 4, Sox2, Klf4 and c-Myc, combinations having at least Oct3/4, Sox2, Klf4 and L-Myc, or combinations having at least Oct3 / 4, Sox2, Nanog and Lin28 preferable.
  • the species of the gene to be introduced is the same as the species of the cell to be introduced.
  • the gene introduced into a human-derived cell is preferably a human gene.
  • genes to be introduced into human-derived somatic cells include a combination having at least human OCT3 / 4, human SOX2, human KLF4 and human MYC, a combination having at least OCT3 / 4, SOX2, KLF4 and L-MYC, or A combination having at least human OCT3 / 4, human SOX2, human NANOG and human LIN28 is preferred.
  • the reprogramming factor gene can be introduced into somatic cells using a gene expression vector.
  • the gene expression vector is not particularly limited, and examples thereof include a viral vector, a plasmid vector, an artificial chromosome vector, and a transposon vector.
  • the viral vector include a retrovirus vector, an adenovirus vector, a Sendai virus vector, a lentiviral vector, and an adeno-associated virus vector.
  • Undifferentiated cells obtained by introducing a reprogramming factor into somatic cells may be produced by themselves by introducing a reprogramming factor into somatic cells, but cells provided or sold by research institutes or companies are obtained. You may.
  • -M1, CiRA188Ai-M1 or iRA188Ai-W1 can be obtained and used.
  • NIH National Institutes of Health
  • California Institute of Regenerative Medicine New York Stem Cell Foundation, European Bank Stem Cell, etc. can also be obtained from Stem Cell Foundation, European Bank, etc.
  • the pluripotent stem cell of the present invention may be an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell, or an undifferentiated cell in an "undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell".
  • the cell means an undifferentiated cell, and is preferably a cell having an ability to differentiate into any one or more of endometrial follicle, meso-embryonic follicle and ectodermal lobe.
  • the above-mentioned "undifferentiated cells obtained by introducing a reprogramming factor into somatic cells” is prepared on a plate coated with feeder cells or a plate coated with a scaffold such as Matrigel (registered trademark) in an appropriate medium. It can be maintained and cultured.
  • the feeder cell is not particularly limited, and examples thereof include mouse embryonic fibroblast (MEF cell) and mouse embryonic fibroblast (STO cell).
  • a commercially available medium such as mTeSR® 1 (Stemcell Technologies) or StemFlex® can be used.
  • DMEM Dulvecco Modified Eagle medium
  • F12 F12
  • Knockout TM D-MEM Invitrogen
  • KSR Knockout TM Medium Replacement (Invitrogen)), bovine fetal serum (FBS), non-essential amino acids (NEAA), L-glutamine, 2-mercaptoethanol, antibiotics (eg, streptomycin, penicillin, puromycin, mitomycin),
  • FBS bovine fetal serum
  • NEAA non-essential amino acids
  • 2-mercaptoethanol antibiotics (eg, streptomycin, penicillin, puromycin, mitomycin)
  • a medium added to any of the above basal media by arbitrarily combining additional components such as bFGF (synonymous with FGF2) can also be mentioned as a medium for maintenance culture.
  • the medium for maintenance culture preferably does not contain ascorbic acid.
  • the culture conditions for the maintenance culture are preferably 37 ° C., 5% CO 2 , 10% O 2 and the like, but are not particularly limited.
  • the "specific differentiated cell” of the present invention means any specific differentiated cell belonging to any of the endoderm lineage, the mesodermal lineage and the ectoderm lineage, and preferably any specific differentiated cell belonging to the endoderm lineage.
  • Differentiated cells such as hepatocytes.
  • pluripotent stem cells are derived from histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3 ⁇ inhibitors.
  • the proportion of 5-methylcytosine in the total cytosine of DNA was 10% or more, 15% or more, 20% or more, 25, as compared with the pluripotent stem cells before culturing. % Or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more , 90% or more, or 95% or more reduced cells.
  • the ratio of 5-methylcytosine to total cytosine of DNA is determined by converting genomic DNA extracted from pluripotent stem cells into EZ-DNA methylation TM Kit (ZYMO RESEACH) according to the procedure of Example 2 described later.
  • the methylation degree ( ⁇ value) may be calculated by converting to Bisulfite (bisulfite) and performing a methylation array analysis with Infinium (registered trademark) methylation EPIC BeadsChip Kit (illumina), but this method is limited.
  • genomic DNA extracted from the cells is treated with Bisulfite, non-methylcytosine is converted to uracil, and then the specific region is amplified by sequence analysis or PCR, and then methylation analysis by sequence analysis or restriction enzyme treatment. May be done.
  • the medium used in the step (a) is a basal medium, Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered trademark) (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific). And any combination of additives such as GlutaMAX® (Thermo Fisher Scientific) or L-Glutamin (Thermo Fisher Scientific) (preferably all of the above additives) in the basal medium.
  • any one selected from the group consisting of histone deacetylase inhibitor, MAPK / ERK kinase inhibitor, STAT3 activator, protein kinase C inhibitor, Wnt signal inhibitor and GSK3 ⁇ inhibitor is added. It may be a medium.
  • step (a) can include the first culture step and the second culture step described later.
  • the first culturing step in the present invention is a step of culturing pluripotent stem cells in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a STAT3 activator.
  • the medium containing histone deacetylase inhibitor, MAPK / ERK kinase inhibitor, and STAT3 activator was added to the basal medium as Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered).
  • Thermo Fisher Scientific (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), 1-thioglycerol, and GlutaMAX® (Registered Trademarks) (Thermo Fisher Scientific) or L-Glutamin (ThermiScientific) or L-Glutamin (Thermic) (Preferably all of the above additives) were added to the above basal medium, and histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, and STAT3 activators were added.
  • It may be a medium.
  • valproic acid or a salt thereof such as sodium valproate
  • butyric acid or a salt thereof such as sodium butyrate
  • tricostatin A apicidin and the like
  • concentration of the histone deacetylase inhibitor in the medium can be appropriately set according to the type of the histone deacetylase inhibitor and the like.
  • valproic acid it is preferably 1.0 ⁇ mol / L to 5.0 mmol / L, more preferably 0.2 mmol / L to 5.0 mmol / L, and even more preferably 0.5 mmol / L. It is ⁇ 2.0 mmol / L.
  • the MAPK / ERK kinase inhibitor (also referred to as MEK inhibitor) is not particularly limited, but for example, PD0325901 (N-[(2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2-[().
  • the concentration of the MAPK / ERK kinase inhibitor in MAPK / ERK kinase inhibitor can be appropriately set according to the type of the MAPK / ERK kinase inhibitor and the like.
  • PD0325901 it is preferably 0.3 ⁇ mol / L to 5.0 ⁇ mol /. It is L, more preferably 0.6 ⁇ mol / L to 3.0 ⁇ mol / L, because the DNA is more demethylated by culturing in a medium containing PD0325901 at a concentration of 0.6 ⁇ mol / L or more.
  • the STAT3 activator is not particularly limited, but may include a leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • human leukemia inhibitory factors are preferred.
  • the concentration of the STAT3 activator in the medium can be appropriately set according to the type of the STAT3 activator and the like. For example, in the case of LIF, it is preferably 0.1 ng / mL to 200 ng / mL, and more preferably 0.2 ng / mL to 100 ng / mL.
  • the culture conditions in the first culture step are obvious to those skilled in the art, and examples thereof include 37 ° C., 5% CO 2, and 5% O 2 conditions. In particular, it is preferable to culture under the condition of low oxygen (5% O 2 ).
  • the culture period in the first culture step is not particularly limited, but for example, it can be cultured for 1 to 5 days, preferably 2 to 4 days.
  • a MAPK / ERK kinase inhibitor In the second culture step in the present invention, after the first culture step, a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3 ⁇ inhibitor, without containing a histone deacetylase inhibitor, And a step of culturing in a medium containing a STAT3 activator.
  • the medium containing the MAPK / ERK kinase inhibitor, protein kinase C inhibitor, Wnt signal inhibitor, GSK3 ⁇ inhibitor, and STAT3 activator without the histone deacetylase inhibitor Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered trademark) (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), 1-thioglycerol, 1-thioglycerol, and 1-thioglycerol in the basal medium.
  • Additives such as Scientific) or L-Glutamin (Thermo Fisher Scientific) are optionally combined (preferably all of the above additives) and added to the basal medium described above, and further, MAPK / ERK kinase.
  • the medium may be supplemented with an inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3 ⁇ inhibitor, and a STAT3 activator.
  • the concentration of the MAPK / ERK kinase inhibitor in the medium can be appropriately set according to the type of the MAPK / ERK kinase inhibitor and the like.
  • PD0325901 it is preferably 0.3 ⁇ mol / L to 5.0 ⁇ mol / L, and more preferably 0.6 ⁇ mol / L to 3.0 ⁇ mol / L. This is because DNA is more demethylated by culturing in a medium containing PD0325901 at a concentration of 0.6 ⁇ mol / L or more.
  • the protein kinase C inhibitor (also referred to as PKC inhibitor) is not particularly limited, but is, for example, Go6983 (3- [1- [3- (dimethylamino) propyl] -5-methoxy-1H-indole-3-yl).
  • Go6983 is preferable.
  • the concentration of the PKC inhibitor in the medium can be appropriately set according to the type of the PKC inhibitor and the like. For example, in the case of Go6983, it is preferably 50 nmol / L to 100 ⁇ mol / L, and more preferably 100 nmol / L to 10 ⁇ mol / L.
  • the Wnt signal inhibitor is not particularly limited, but is limited to XAV939 (proteinase inhibitor) (CAS registration number: 284028-89-3), IWP-1, IWP-2, IWP-3, IWP-4, IWR-1, Examples thereof include low molecular weight compounds such as 53AH (above porcupine inhibitor) and KY02111 and their derivatives, and proteins such as IGFBP4, DKK1 and Wnt-C59. Of these, XAV939 is preferable.
  • the concentration of the Wnt signal inhibitor in the medium can be appropriately set according to the type of the Wnt signal inhibitor and the like. For example, in the case of XAV939, it is preferably 50 nmol / L to 100 ⁇ mol / L, and more preferably 100 nmol / L to 10 ⁇ mol / L.
  • the GSK3- ⁇ inhibitor is not particularly limited, but CHIR99021 (CAS Registry Number: 252927-06-9) is preferable.
  • the concentration of the GSK3- ⁇ inhibitor in the medium can be appropriately set according to the type of the GSK3- ⁇ inhibitor and the like.
  • CHIR99021 it is preferably 0.01 ⁇ mol / L to 1.0 ⁇ mol / L, and more preferably 0.1 ⁇ mol / L to 0.5 ⁇ mol / L.
  • the concentration of the STAT3 activator in the medium can be appropriately set according to the type of the STAT3 activator and the like.
  • LIF it is preferably 0.1 ng / mL to 100 ng / mL, and more preferably 0.2 ng / mL to 20 ng / mL.
  • the culture conditions in the second culture step are self-evident to those skilled in the art, and examples thereof include 37 ° C., 5% CO 2 , and 5% O 2 conditions. In particular, it is preferable to culture under the condition of low oxygen (5% O 2 ).
  • the medium preferably does not contain ascorbic acid.
  • the second culture step can be further divided into two culture steps.
  • the two culture steps can each use different media with or without the addition of a GSK3 ⁇ inhibitor. That is, in the second culture step, after culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor.
  • the step may be a step of further culturing in a medium in which a GSK3 ⁇ inhibitor is added to this medium.
  • the culture period in the second culture step is not particularly limited, but includes a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor.
  • a medium for, for example, 3 to 8 days, preferably 4 to 7 days the medium can be cultured in a medium containing a GSK3 ⁇ inhibitor, for example, for 3 to 10 days, preferably 4 to 9 days. ..
  • step (a) including the first and second culture steps on the pluripotent stem cells By performing step (a) including the first and second culture steps on the pluripotent stem cells, "the ratio of 5-methylcytosine in the total cytosine of the DNA as compared with the pluripotent stem cells before culture". It is possible to obtain “pluripotent stem cells with reduced”. In one embodiment of the present invention, "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA is reduced as compared with the pluripotent stem cells before culture” is specified as compared with the cells before culture. It can be said that it is a pluripotent stem cell having a high ability to differentiate into a differentiated cell.
  • the undifferentiated state was It is maintained and has an enhanced ability to differentiate into specific differentiated cells as compared to undifferentiated cells obtained by introducing a reprogramming factor into somatic cells.
  • Completion of step (a) can be evaluated by measuring the degree of methylation and reducing the degree of DNA methylation.
  • the pluripotent stem cells obtained in step (a) have a low incidence of DNA mutations.
  • the low incidence of DNA mutations can be evaluated, for example, by measuring the copy number of the long arm region of chromosome 20 by a conventional method (for example, real-time PCR).
  • the copy number of the long arm region of chromosome 20 in the pluripotent stem cell obtained in the step (a) is preferably 1.5 to 4.5, more preferably 1.5 to 3.5, and even more preferably. Is 1.5 to 2.5.
  • the undifferentiated state of the pluripotent stem cell obtained in the step (a) is not particularly limited, but can be evaluated by measuring the expression of the gene that defines the undifferentiated state.
  • the method for measuring the expression of the gene that defines undifferentiated state is not particularly limited, but for example, it can be measured by quantitative RT-PCR.
  • RT-PCR is a method of synthesizing cDNA using the mRNA to be measured as a template and amplifying it by PCR using this cDNA as a template.
  • quantitative RT-PCR for example, PCR is performed using a primer in which a quencher fluorescent dye and a reporter fluorescent dye are bound to quantify the amount of amplification product in each cycle, and the detected fluorescence intensity increases sharply.
  • a method of measuring the amount of template DNA in a sample can be mentioned.
  • Quantitative RT-PCR techniques are well known in the art and can also be performed using commercially available kits.
  • the expression level or the number of copies of a gene can be measured as a relative value to the expression level or the number of copies of a control housekeeping gene (for example, GAPDH gene).
  • the mRNA of a gene can also be measured by subjecting the amplification product obtained by amplifying the mRNA by ordinary RT-PCR or the like to gel electrophoresis, staining, and then measuring the band intensity.
  • DNA chips can be used to detect or quantify gene mRNA or cDNA.
  • the gene that defines undifferentiated state is not particularly limited, and examples thereof include NANOG, POU5F1, LIN28, SOX2, and DNMT3B.
  • the expression level of the gene defining undifferentiation in the pluripotent stem cells obtained in the step (a) of the present invention is the expression of the same gene in the control group (for example, the pluripotent stem cells not subjected to the step (a)). It is defined that undifferentiated state is maintained when the amount is equal to or higher than the amount, and the equivalent is 80 to 110% of the expression level of the same gene in the control group.
  • the expression level of NANOG in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of NANOG in the control group.
  • the expression level of POU5F1 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of POU5F1 in the control group.
  • the expression level of LIN28 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of LIN28 in the control group.
  • the expression level of SOX2 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of SOX2 in the control group.
  • the expression level of DNMT3B in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of DNMT3B in the control group.
  • the number of expressed copies of NANOG in the pluripotent stem cell obtained in step (a) is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more as a ratio to the number of expressed copies of GAPDH. , Or may be 0.05 or more.
  • the number of expressed copies of POU5F1 in the pluripotent stem cells obtained in step (a) is 0.06 or more, 0.07 or more, 0.08, 0.09 or more as a ratio to the number of expressed copies of GAPDH. It may be 0.1 or more, or 0.12 or more.
  • the number of expressed copies of LIN28 in the pluripotent stem cell obtained in step (a) is 0.003 or more, 0.004 or more, 0.005 or more, 0.006 or more as a ratio to the number of expressed copies of GAPDH. , 0.007 or more, or 0.008 or more.
  • the number of expressed copies of SOX2 in the pluripotent stem cells obtained in step (a) is preferably 5.0 ⁇ 10-5 or more, more preferably 6.0 ⁇ 10 ⁇ as a ratio to the number of expressed copies of GAPDH. It is 5 or more, more preferably 7.0 ⁇ 10-5 or more, and particularly preferably 8.0 ⁇ 10-5 or more.
  • pluripotent stem cells obtained in step (a) to differentiate into any one or more of endoderm, mesoderm and ectoderm is possessed by pluripotent stem cells before culture, endoderm, mesoderm and It is improved over the ability to differentiate into any one or more of the ectoderm. More preferably, the ability of the pluripotent stem cell obtained in step (a) to differentiate into endoderm and ectoderm is higher than the ability of the pluripotent stem cell before culture to differentiate into endoderm and ectoderm, respectively.
  • the ability of pluripotent stem cells obtained in step (a) to differentiate into endoderm and mesoderm is greater than the ability of precultured pluripotent stem cells to differentiate into endoderm and mesoderm, respectively. It is improving.
  • the ability of the pluripotent stem cell obtained in step (a) to differentiate into an endoderm is higher than the ability of the pluripotent stem cell before culturing to differentiate into an endoderm.
  • the pluripotent stem cell obtained in step (a) is a cell capable of differentiating into all endoderm, mesoderm and ectoderm.
  • the specific differentiated cell in the present invention is preferably a cell of endoderm lineage, and more preferably a hepatocyte.
  • the ability of a cell to differentiate into an endoderm, the ability of a cell to differentiate into a mesodermal, and the ability of a cell to differentiate into an ectoderm can be used to differentiate a cell into an endoderm, a mesodermal or an ectoderm. It can be evaluated by measuring the expression of each germ layer-specific gene in the cells differentiated into the above three germ layer lineages.
  • the method for measuring the expression of each germ layer-specific gene is not particularly limited, but for example, the measurement can be performed by a quantitative RT-PCR method.
  • the endoderm-specific gene is not particularly limited, and examples thereof include SOX17 and FOXA2.
  • the mesoderm-specific gene is not particularly limited, and examples thereof include T and PDGFRA.
  • the ectoderm-specific gene is not particularly limited, and examples thereof include PAX6 and MAP2.
  • the relative expression level of SOX17 in the cells obtained in step (a) differentiated into endoderm is preferably twice as much as the expression level of SOX17 in the cells obtained by differentiating the pluripotent stem cells into endoderm. More preferably, it may be 3 times or more, 5 times or more, 10 times or more, 15 times or more, 20 times or more, 25 times or more, 30 times or more, 35 times or more or 40 times or more. ..
  • the relative expression level of FOXA2 in the cells obtained by differentiating the pluripotent stem cells into the endoderm is preferably doubled with respect to the expression level of FOXA2 in the cells obtained by differentiating the pluripotent stem cells into the endoderm.
  • the above more preferably 3 times or more, 5 times or more, 8 times or more, 9 times or more, 10 times or more, or 12 times or more can be mentioned.
  • the relative expression level of T in the cells obtained in the step (a) differentiated into mesoderm is preferably 2 or more with respect to the expression level of T in the cells obtained by differentiating the pluripotent stem cells into mesoderm. It is more preferable that the number is 3 or more, 5 or more, 8 or more, 9 or more, or 10 or more.
  • the relative expression level of PDGFRA in the cells obtained by differentiating the pluripotent stem cells into mesoderm with respect to the expression level of PDGFRA in the cells obtained by differentiating the pluripotent stem cells into mesoderm is preferably 1. The case where it is 1 or more, more preferably 1.2 or more, 1.3 or more, or 1.4 or more can be mentioned.
  • the relative expression level of PAX6 in the ectoderm-differentiated cells of the pluripotent stem cells obtained in step (a) is preferably 1.1 or more with respect to the expression level of PAX6 in the cells differentiated into pluripotent stem cells. Yes, more preferably 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more.
  • the relative expression level of MAP2 in the cells obtained by differentiating the pluripotent stem cells into the ectoderm with respect to the expression level of MAP2 in the cells obtained by differentiating the pluripotent stem cells into the ectoderm is preferably 1. The case where it is 1 or more, more preferably 1.2 or more, or 1.3 or more can be mentioned.
  • the step (a) of the present invention may include a step of culturing in a medium for maintaining and culturing undifferentiated cells containing bFGF after the second culturing step.
  • This step is referred to as a third culture step in the present specification.
  • the third culture step is not an essential step in the method for producing differentiated cells of the present invention. Because "pluripotent stem cells in which the ratio of 5-methylcytosine in total cytosine of DNA is reduced as compared with pluripotent stem cells before culturing" can be obtained by carrying out the above-mentioned first and second culturing steps. Is.
  • the "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing" obtained by carrying out the above first and second culturing steps were obtained before culturing. Due to the slower growth rate compared to pluripotent stem cells, it may take time and cost to obtain the same yield.
  • a medium for maintaining and culturing undifferentiated cells a commercially available medium such as mTeSR (registered trademark) 1 (Stemcell Technologies) or StemFlex (registered trademark) can be used.
  • mTeSR Registered trademark
  • StemFlex registered trademark
  • DMEM Dulvecco Modified Eagle medium
  • DMEM / F12 1: 1
  • Knockout TM D-MEM Invitrogen
  • the medium for maintenance culture preferably does not contain ascorbic acid.
  • the culture conditions for the maintenance culture are preferably 37 ° C., 5% CO 2 , 10% O 2 and the like, but are not particularly limited.
  • the culture period in the medium for maintaining and culturing undifferentiated cells is not particularly limited, but can be cultured, for example, for 1 to 3 weeks, preferably 1 to 2 weeks. During the culture period of 1 to 3 weeks or 1 to 2 weeks, the proliferative ability can be enhanced while maintaining the ability to differentiate into specific differentiated cells. Subculture can be performed during this culture period. This is to maintain the cell density in a state suitable for maintaining undifferentiated state by performing subculture.
  • the step (b) of the present invention includes a step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in the step (a) in a medium containing a cytokine.
  • the type of differentiated cells obtained in step (b) is not particularly limited. If desired, differentiation can be induced into endoderm lineage cells, mesoderm lineage cells, or ectoderm lineage cells, and preferably into endoderm lineage cells, such as hepatocytes.
  • the culture conditions for inducing differentiation into various cells
  • conditions generally adopted in the culture of animal cells can be adopted. That is, it can be cultured in an environment of, for example, 37 ° C. and 5% CO 2 .
  • basal medium Iskov-modified Dulbecco medium (IMDM) (GIBCO, etc.), Ham F12 medium (HamF12) (SIGMA, Gibco, etc.), Dulbecco-modified Eagle's medium (D-MEM) (Nacalai Tesque, Inc., Sigma). , Gibco, etc.), Grasgo basic medium (Gibco, etc.), RPMI1640 medium, and the like can be used.
  • IMDM Iskov-modified Dulbecco medium
  • HamF12 Ham F12 medium
  • D-MEM Dulbecco-modified Eagle's medium
  • Gibco, etc. Gibco, etc.
  • Grasgo basic medium Gibco, etc.
  • RPMI1640 medium and the like
  • basal media Two or more kinds of basal media may be used in combination.
  • components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium.
  • BSA bovine serum albumin
  • antibiotics antibiotics
  • 2-mercaptoethanol 2-mercaptoethanol
  • PVA non-essential amino acids
  • insulin transferrin
  • selenium selenium
  • the medium of step (b) can contain cytokines in the basal medium.
  • the type of cytokine is not particularly limited, and examples thereof include activin A, BMP4, bFGF, HGF, Oncostatin M, VEGF, IL-11, IL-6, IGF-1, SCF, TPO, and TGF- ⁇ .
  • activin A, BMP4, bFGF, HGF, and Oncostatin M can be included.
  • the culture period of step (b) may be 1 to 4 weeks, preferably 1 to 3 weeks.
  • cells are two-dimensionally cultured using a culture dish or the like. However, three-dimensional culture may be carried out using a gel-like culture substrate, a three-dimensional culture plate, or the like.
  • the method of inducing differentiation is not particularly limited.
  • a commercially available StemDiff (registered trademark) Trillineage Differentiation Kit (Stemcell Technologies) can be used to induce differentiation into endoderm, mesoderm and ectoderm, respectively.
  • the induction of differentiation into hepatocytes can be performed by culturing the cells under the conditions described in Example 4 described later. Specifically, cells are seeded in mTeSR® 1 (Stemcell Technologies) or StemFlex® and cultured in a medium containing B27® and Activin A on the 1st to 5th days. , 6th to 10th days were cultured in a medium containing B27®, BMP4, and bFGF, and 11th to 15th days were cultured in a medium containing B27® and HGF. From the 16th day to the 20th day, differentiation can be induced into hepatocytes by culturing in HBM (registered trademark) containing Oncostatin M.
  • HBM registered trademark
  • the induction of differentiation into hepatocytes can be confirmed by analyzing the expression of ASGPR1, which is a marker of mature hepatocytes, with a flow cytometer. Induction of differentiation into hepatocytes can also be confirmed by measuring the amount of albumin secreted in the culture supernatant.
  • ASGPR1 Assay for the expression of ASGPR1, specifically, according to the procedure of Example 4 described later, the cells 20 days after the induction of differentiation were subjected to BD Pharmingen TM PE Mouse Anti-ASGPR1 antibody (Becton Dickinson Japan, Inc.). The cells may be stained and the positive rate of ASGPR1 may be analyzed by flow cytometry Attune TM NxT (Thermo Fisher Scientific). The positive rate of ASGPR1 analyzed by the above method is preferably 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, and more preferably 10% or more, 11% or more, 12% or more.
  • the positive rate of ASGPR1 is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and it is most preferable that the increase is 2 to 50 times.
  • the culture supernatant 20 days after the induction of differentiation was collected, and the amount of albumin secreted in the culture supernatant was measured by ELISA Starter Accessory. It may be quantified by an EnSpire TM plate reader (PerkinElmer) using a Kit, Enzyme Substrate, TMB, Human Albumin ELISA Quantation Set (Bethyl Laboratories, Inc).
  • the amount of albumin secreted analyzed by the above method is 30 ng / mL or more, 40 ng / mL or more, 50 ng / mL or more, 60 ng / mL or more, 70 ng / mL or more, 80 ng / mL or more, 90 ng / mL or more, 100 ng / mL or more.
  • 110 ng / mL or more 120 ng / mL or more, 130 ng / mL or more, 140 ng / mL or more, 150 ng / mL or more, 160 ng / mL or more, 170 ng / mL or more, 180 ng / mL or more, 190 ng / mL or more, 200 ng / mL or more , 250 ng / mL or more, 300 ng / mL or more, 400 ng / mL or more, or 500 ng / mL or more.
  • the amount of albumin secreted is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and the increase is more preferably 2 to 50 times, and particularly preferably 2 to 10 times.
  • the induction of differentiation into blood cells can be performed by culturing the cells under the conditions described in Example 2 of the international patent application PCT / JP2019 / 003336. Specifically, on the first day, the cells were cultured in a medium containing BMP4 and Y27634 (ROCK inhibitor), bFGF and BMP4 were added on the second day, and the cells formed spheroid-like colonies on the third day. After confirming that, the cells were cultured in a medium containing SB431542 (TGF- ⁇ receptor inhibitor), CHIR99021 (GSK3 inhibitor), bFGF and BMP4 (3rd and 4th days), 5th to 6th days.
  • Eyes are cultured in a medium containing VEGF and bFGF, and on days 7 to 10, they are cultured in a medium containing VEGF, bFGF, IL-6, IGF-1, IL-11 and SCF to give blood cells. Differentiation can be induced. The induction of differentiation into blood cells can be confirmed by analyzing the expression of blood cell markers CD34 and KDR with a flow cytometer.
  • Induction of differentiation into cardiomyocytes can be performed, for example, by culturing the cells under the conditions described in Example 5 of the international patent application PCT / JP2019 / 003336. Specifically, cells can be induced to differentiate into cardiomyocytes using a PSC Cardiomyote Difference Kit (Thermo Fisher Scientific) according to a procedure manual. Induction of differentiation into cardiomyocytes can be confirmed by measuring the expression of Cardiac Troponin T (cTnT), which is a cardiomyocyte marker, by flow cytometry.
  • cTnT Cardiac Troponin T
  • Example 5 of the international patent application PCT / JP2019 / 033366 the cells 14 days after the induction of differentiation were stained with Alexa Fluor647 Mouse Anti-Cardiac Troponin T antibody (BD Harmingen) and flowed.
  • the positive rate of cTnT may be analyzed by cytometry Attune NxT (Thermo Fisher Scientific).
  • the positive rate of cTnT analyzed by the above method is preferably 5% or more, more preferably 10% or more, further preferably 20% or more, still more preferably 30% or more, and particularly preferably. It is 40% or more, and most preferably 45% or more.
  • the positive rate of cTnT is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and it is most preferable that the increase is 2 to 50 times.
  • Induction of differentiation into neural stem cells can be performed, for example, by culturing the cells under the conditions described in Example 6 of the international patent application PCT / JP2019 / 003336. Specifically, the cells can be induced to differentiate into neural stem cells using a PSC Natural Indication Medium (Thermo Fisher Scientific) according to a procedure manual. Induction of differentiation into neural stem cells can be confirmed, for example, by immunostaining the SOX1 protein, which is a marker of neural stem cells. When the SOX1 protein is immunostained to quantify the brightness, the brightness can be increased by 1.1 to 10 times by performing the step (a) of the present invention as compared with the case where the step (a) is not performed. It is preferable, and it is more preferable that the increase is 1.5 to 5 times.
  • the pluripotent stem cells obtained in step (a) can be differentiated into endoderm cells by culturing under endoderm cell differentiation conditions.
  • the endoblast lineage cells are not particularly limited, but for example, digestive system cells (hepatocytes, hepatic sinus endothelial cells, cupper cells, hepatic stellate cells, pit cells, bile duct cells, mesenteric cells, pancreatic endocrine cells, glands). Tuft cells, conduit cells, resorbing cells, cup cells, panate cells, intestinal endocrine cells, etc.), cells of tissues such as lung and thyroid.
  • the pluripotent stem cells obtained in step (a) can be differentiated into mesoderm cells by culturing under conditions other than the above for mesoderm cell differentiation conditions.
  • the mesophyll lineage cells are not particularly limited, but are blood cell / lymphocyte lineage cells (hemogenic stem cells, erythrocytes, platelets, macrophages, granulocytes, helper T cells, killer T cells, B lymphocytes, etc.), vasculature cells (vascular lineage cells, etc.) (Vascular endothelial cells, etc.), myocardial cells (for example, atrial muscle cells, ventricular muscle cells, etc.), osteoblasts, bone cells, cartilage cells, tendon cells, fat cells, skeletal muscle cells, smooth muscle cells, and the like.
  • blood cell / lymphocyte lineage cells hemogenic stem cells, erythrocytes, platelets, macrophages, granulocytes, helper T cells, killer T cells, B lymphocytes, etc.
  • the pluripotent stem cells obtained in step (a) can be differentiated into ectoderm cells by culturing under ectoderm cell differentiation conditions other than the above.
  • the ectoderm cells include, but are not limited to, nervous system cells, sensory organ cells (lens, retina, inner ear, etc.), skin epidermal cells, hair follicles, and the like.
  • the cells induced to differentiate using the pluripotent stem cells obtained in step (a) can be used for screening drug candidate compounds for the treatment of various diseases. For example, by adding a drug candidate compound alone or in combination with other drugs to cells in which differentiation has been induced, by detecting changes in cell morphology or function, increase / decrease in various factors, gene expression profiling, etc. , Can be evaluated.
  • the cells are preferably cells having the same phenotype as the disease to be treated, and more preferably, differentiation induction from cells produced by the method of the present invention using somatic cells derived from a patient suffering from the disease. It is a cell.
  • pluripotent stem cells that is, performing the above step (a) on undifferentiated cells obtained by introducing a reprogramming factor into somatic cells
  • pluripotent stem cells that is, performing the above step (a) on undifferentiated cells obtained by introducing a reprogramming factor into somatic cells
  • the compound treatment according to the present invention is applied to pluripotent hepatocytes (that is, the above step (a) is performed on undifferentiated cells obtained by introducing a reprogramming factor into somatic cells. ),
  • the treated cells had an increased efficiency of inducing differentiation into hepatocytes in all seven pluripotent stem cell lines analyzed, as compared with the untreated cells. From the above, it has become possible to reduce the labor and cost for selecting excellent strains for differentiation.
  • the efficiency of inducing differentiation of iPS cells into liver cells can be measured by the positive rate of the hepatocyte marker ASGPR1.
  • a tissue can be prepared from the differentiated cells produced by the production method of the present invention and used in the field of regenerative medicine.
  • the prepared iPS cell-derived liver cells can be applied to the treatment of various liver diseases.
  • it is expected to be used as a material for regeneration / reconstruction of impaired (including dysfunctional) liver tissue, and is expected to contribute to regenerative medicine.
  • iPS cell-derived hepatocytes prepared by the method for inducing differentiation of the present invention.
  • iPS cell-derived hepatocytes can be used to test the metabolism of the test substance. That is, the present invention provides a method for evaluating the metabolism of a test substance.
  • Organic compounds or inorganic compounds of various molecular sizes can be used as the test substance.
  • Existing or candidate ingredients such as pharmaceuticals and nutritional foods are also preferred test substances.
  • a plant extract, a cell extract, a culture supernatant, or the like may be used as a test substance. Moreover, you may use these two or more types in combination.
  • Example 1 The following experiments were conducted to improve and improve the ability of human iPS cells to differentiate into specific cells.
  • Method 1 For human iPS cell lines, strains A to G were sold by FUJIFILM Cellular Dynamics International (FCDI).
  • FCDI FUJIFILM Cellular Dynamics International
  • ⁇ Cell culture and compound treatment> Human iPS cells are placed on a 6-well plate coated with Matrigel® (Corning) in StemFlex® (Thermo Fisher Scientific) medium at 37 ° C., 5% CO 2 , 10% O 2 It was maintained and cultured under the conditions.
  • Day 1 Human iPS cells in culture were exfoliated by treatment with TrypLE TM Select (Invitrogen) at 37 ° C. for 5 minutes to form single cells.
  • the human iPS cells were seeded with mouse embryo-derived fibroblasts (MEF, Lonza) at 0.5x10 6 cells / well ( 6 well plate) or 1x10 5 cells / well seeded in Matrigel-coated wells, as shown in Table 1. It was cultured in medium 1. After that, the cells were cultured under 37 ° C., 5% CO 2 , and 5% O 2 conditions until the 14th day. Days 2-3: Half the amount was replaced with fresh medium 1.
  • Days 4 to 8 The medium was replaced with the medium 2 in Table 1, and the medium was replaced with the same medium every other day until the 8th day.
  • 9th to 14th days Treated with TripLE TM Select at 37 ° C. for 5 minutes to detach cells, and MEF was seeded or Matrigel was seeded in medium 3 to which CHIR99021 (0.3 ⁇ mol / L, Wako) was added to medium 2. (Registered trademark) Subculture was carried out about twice on coated plates over a week. Subsequently, the cells were maintained and cultured in medium 3 under the conditions of 37 ° C., 5% CO 2 , and 5% O 2 .
  • the cells cultured in the above medium 3 were subcultured on a plate coated with Matrigel, and subcultured in StemFlex or mTeSR1 medium under the conditions of 37 ° C., 5% CO 2 , and 10% O 2 for about 2 weeks. It was.
  • human iPS cells cultured in the media 1 to 3 of Table 1 are referred to as “treated” iPS cells, and are StemFlex on a 6-well plate coated with Matrigel (registered trademark) (Corning). (Registered Trademark) (Thermo Fisher Scientific) Cells that have been maintained and cultured in medium but not cultured in media 1 to 3 in Table 1 are referred to as "untreated” iPS cells.
  • Example 2 ⁇ Changes in DNA methylation>
  • the cells were reacted with TripLE TM Select (Gibco) at 37 ° C. for 5 minutes, detached from the plate, and antibody-Feeder Cells-PE, mouse monoclonal ( After staining with Myltenyi) antibody, the MEF negative fraction, which is an iPS fraction, was fractionated with a cell sorter (FACSAriaIII), and DNA was extracted with PureLink (registered trademark) Genome DNA Mini Kit (Thermo Fisher Scientific). ..
  • This DNA was Bisulfite-converted with EZ-DNA Methylation TM Kit (ZYMO RESEACH), and methylation array analysis was performed with Infinium (registered trademark) Methylation EPIC BeadsChip Kit (illumina).
  • Infinium registered trademark
  • Methylation EPIC BeadsChip Kit Infinium (registered trademark) Methylation EPIC BeadsChip Kit (illumina).
  • FIG. 1 shows a violin plot of the degree of methylation, and the width of the graph shows the distribution of regions at each degree of methylation.
  • Example 3 ⁇ Confirmation of undifferentiated state>
  • the cells were reacted with TrypLE TM Select (Gibco) at 37 ° C. for 5 minutes, detached from the plate, and RNAy®.
  • RNA was extracted from cells with a plus Mini Kit (Qiagen).
  • RNA as a template for cDNA synthesized with High Capacity RNA-to- cDNA Kit (Thermo Fisher Scientific) as a template, TaqMan (registered trademark) Gene Expression assembly (Thermo Primer Scientific) by PCR (Thermo Primer Scientific).
  • code name (hereinafter referred to as code name): Hs02387400_g1), POU5F1 (code name: Hs04260367_gH), and LIN28 (code name: Hs00702808_s1) was analyzed.
  • the expression level was corrected with GAPDH (code name: Hs0276624_g1), which is an internal standard gene.
  • Example 4 ⁇ Differentiation into hepatocytes> To examine the ability of A to G strains to differentiate into hepatocytes, untreated or treated iPS cells were reseeded on Matrigel-coated 24-well plates, and the medium in Table 2 was placed in 0.5 mL / well. Maintenance culture was carried out for 5 days each to differentiate into hepatocytes.
  • the media used were mTeSR (registered trademark) 1 (Stemcell Technologies), RPMI1640 medium, and HBM (registered trademark).
  • the compounds used were B27 (registered trademark) (Thermo Fisher Scientific), Activin A (R & D System), bFGF (Fujifilm Wako Pure Chemical Industries), BMP4 (R & D System), HGF (Peprotech). It is M (Peprotech).
  • ⁇ Evaluation method> The efficiency of inducing differentiation into hepatocytes was evaluated by flow cytometry of the expression of ASGPR1, which is a mature hepatocyte marker, in cells 20 days after induction. Twenty days after the induction of differentiation, the cells were treated with TrypLE TM Select (Thermo Fisher Scientific) at 37 ° C. for 5 minutes to detach the cells. Dead cells were stained with ghost Dye TM Violet 510 (TONBO Bioscience). After washing, the cells were stained with BD Harmingen TM PE Mouse Anti-ASGPR1 antibody (Nippon Becton Dickinson Co., Ltd.), and the positive rate of ASGPR1 was analyzed by flow cytometry Attune TM NxT (Thermo Fisher Scientific).
  • the culture supernatant on the 20th day after the induction was collected, and the amount of albumin secreted in the culture supernatant was measured using ELISA Starter Accessory Kit, Enzyme Substrate, TMB, Human Albumin ELISA Quantation Set (Bethyl Laboratories). Quantified by EnSpire TM plate reader (PerkinElmer).
  • the untreated and treated iPS cells were induced to differentiate into hepatocytes, respectively, and the ASGPR1 positive rates in the living cells were compared by flow cytometry.
  • the positive rate of ASGPR1 indicates the efficiency of inducing differentiation of iPS cells into hepatocytes.
  • the ASGPR1 positive rate (%) was 2.90 times that of the A-share when the treated iPS cells were induced to differentiate into hepatocytes, as compared with the case where the untreated iPS cells were induced to differentiate into hepatocytes.
  • the amount of albumin secreted was significantly increased when the treated iPS cells were induced to differentiate, as compared with the case where the untreated iPS cells were induced to differentiate into hepatocytes in all 7 strains (Fig. 4). ).
  • Example 5 ⁇ Comparison of HDAC inhibitor monotherapy and the present invention in endoderm differentiation of iPS cells> The following experiments were conducted to investigate the effect of HDAC inhibitor monotherapy on endoderm differentiation of iPS cells.
  • Sodium valproate was used as the HDAC inhibitor.
  • the iPS cell the D strain was used.
  • Cells in which iPS cells are cultured in StemFlex® on MEF-seeded plates are referred to as "untreated / undifferentiated”.
  • untreated / undifferentiated cells are (1) as they are (referred to as “untreated / endoderm differentiation"), and (2) a medium in which 1 mM of sodium valproate is added to N2B27 medium (referred to as “VPA / endoderm differentiation”).
  • VPA / endoderm differentiation a medium in which 1 mM of sodium valproate is added to N2B27 medium
  • Mix / endoderm differentiation was differentiated into endoderm using the Endoderm medium of the StemDiff Trilineage Differentiation Kit (Stemcell Technologies). These cells were reacted with TripLE Select (Gibco) at 37 ° C.
  • RNeasy registered trademark
  • Mini Kit Qiagen
  • RNA was extracted from the cells with RNeasy (registered trademark) plus Mini Kit (Qiagen).
  • RNA was extracted from the cells with RNeasy (registered trademark) plus Mini Kit (Qiagen).
  • RNeasy registered trademark
  • Mini Kit Qiagen
  • RNA RNA as a template for cDNA synthesized with High Capacity RNA-to- cDNA Kit (Thermo Fisher Scientific) as a template
  • TaqMan Gene Expression assembly Thermo Fisher Scientific
  • Thermo Fisher Scientific Thermo Fisher Scientific
  • SO2 Thermo Fisher Scientific
  • the gene expression of the code name: Hs05036278_s1 was analyzed.
  • the expression level was corrected with GAPDH (code name: Hs0276624_g1), which is an internal standard gene.

Abstract

The present invention addresses the problem of providing a method for producing differentiated cells whereby target specific differentiated cells can be efficiently obtained. According to the present invention, provided is a method for producing specific differentiated cells, said method comprising: step (a) for culturing pluripotent stem cells in a medium, which contains any component selected from the group consisting of a histone deacetylase inhibitor, a MAPK/ERK kinase inhibitor, a STAT3 activator, a protein kinase C inhibitor, a Wnt signal inhibitor and a GSK3β inhibitor, to thereby give pluripotent stem cells in which the ratio of 5-methylcytosine to the total cytosines in DNA is lowered compared to the pluripotent stem cells before culturing; and step (b) for culturing the pluripotent stem cells obtained in step (a) in a cytokine-containing medium to give the specific differentiated cells.

Description

特定の分化細胞の製造方法Method for producing specific differentiated cells
 本発明は、多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを含む培地で培養することにより、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞を得る工程(a)、および工程(a)で得られる多能性幹細胞を、サイトカインを含む培地で培養することにより、特定の分化細胞を得る工程(b)を含む、特定の分化細胞の製造方法に関する。 In the present invention, pluripotent stem cells are selected from the group consisting of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3β inhibitors. A step (a) and a step of obtaining pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA is reduced as compared with the pluripotent stem cells before culturing by culturing in a medium containing any of the above. The present invention relates to a method for producing a specific differentiated cell, which comprises a step (b) of obtaining a specific differentiated cell by culturing the pluripotent stem cell obtained in (a) in a medium containing a cytokine.
 多能性幹細胞としては、ヒト人工多能性幹細胞(induced pluripotent stem cell;iPS細胞とも言う)が、2007年に山中らによって樹立され、胚性幹細胞(embryonic stem cell:ES細胞とも言う)と同様の無限の自己複製能と多分化能を有する。iPS細胞はES細胞よりも倫理的問題がなく、品質の安定した細胞供給源として実用化が期待されている。例えば、創薬のスクリーニングや薬物動態試験において、ヒト初代培養肝細胞を用いてin vitro試験が行われるようになった。しかし、ロット間差や増殖能に問題があり研究の障壁になっている。肝臓細胞もiPS細胞から誘導可能であることが知られているが、分化効率は方法や細胞株によってばらつきがあることが問題であった。 As pluripotent stem cells, human induced pluripotent stem cells (also called iPS cells) were established by Yamanaka et al. In 2007, and are similar to embryonic stem cells (embryonic stem cells: ES cells). Has infinite self-renewal ability and pluripotency. iPS cells have no ethical problems than ES cells, and are expected to be put into practical use as a cell source with stable quality. For example, in vitro tests have come to be conducted using human primary cultured hepatocytes in drug discovery screening and pharmacokinetic tests. However, there are problems with lot-to-lot differences and proliferation ability, which is a barrier to research. It is known that hepatocytes can also be derived from iPS cells, but the problem is that the differentiation efficiency varies depending on the method and cell line.
 特許文献1は、(1)人工多能性幹細胞を内胚葉様細胞へと分化させる工程、および(2)工程(1)で得られた内胚葉様細胞を肝細胞様細胞へと分化させる工程であって、ヒストン脱アセチル化酵素阻害剤の存在下及び/又は酸化ストレス負荷条件下で少なくとも一部の培養を実施する工程を含む、人工多能性幹細胞を肝細胞へ分化誘導する方法を開示する。特許文献1には、ヒストン脱アセチル化酵素(HDAC)阻害剤、特にバルプロ酸がヒトiPS細胞の肝細胞への効率的な分化誘導に効果的であることが記載されている。バルプロ酸はてんかんに用いる代表的薬物であり、その主な作用としてはγ-アミノ酸(GABA)トランスアミナーゼ阻害作用がある。さらに、バルプロ酸はHDAC阻害作用を示すことから、癌治療への応用が期待されている。特許文献1では、HDAC阻害剤はiPS細胞由来の肝芽細胞様細胞から肝細胞様細胞の分化誘導を促進する効果があるものとして報告されており、未分化のiPS細胞そのものの性質を向上させるものではない。 Patent Document 1 describes (1) a step of differentiating induced pluripotent stem cells into endometrial-like cells, and (2) a step of differentiating endometrial-like cells obtained in step (1) into hepatocellular-like cells. Disclosed is a method for inducing differentiation of induced pluripotent stem cells into hepatocytes, which comprises the step of performing at least a part of the culture in the presence of a histone deacetylase inhibitor and / or under oxidative stress loading conditions. To do. Patent Document 1 describes that histone deacetylase (HDAC) inhibitors, particularly valproic acid, are effective in inducing efficient differentiation of human iPS cells into hepatocytes. Valproic acid is a typical drug used for epilepsy, and its main action is γ-amino acid (GABA) transaminase inhibitory action. Furthermore, since valproic acid exhibits an HDAC inhibitory effect, it is expected to be applied to cancer treatment. In Patent Document 1, it is reported that an HDAC inhibitor has an effect of promoting the induction of differentiation of hepatocyte-like cells from iPS cell-derived hepatoblast-like cells, and improves the properties of undifferentiated iPS cells themselves. It's not a thing.
国際公開WO2013/183571号International release WO 2013/183571
 iPS細胞の誘導方法の発明により、ES細胞と同等の多分化能を有する幹細胞を得ることが可能となり、細胞治療や創薬支援ツールの応用が期待されている。しかし、本発明者らのこれまでの検討により、iPS細胞は、細胞株やクローンによって性質が異なり、分化能に大きな差があること、およびiPS細胞としてのマーカーが発現している場合であっても、三胚葉の何れにも分化できない細胞が存在することが見出されている。そのため、iPS細胞を、目的とする分化細胞への分化誘導に利用するためには分化優良株の選別に多くの時間とコストがかかるという実情がある。 The invention of the method for inducing iPS cells has made it possible to obtain stem cells having pluripotency equivalent to that of ES cells, and is expected to be applied to cell therapy and drug discovery support tools. However, according to the studies by the present inventors, iPS cells have different properties depending on the cell line and clone, and there is a large difference in differentiation potential, and the marker as an iPS cell is expressed. However, it has been found that there are cells that cannot differentiate in any of the three germ layers. Therefore, in order to use iPS cells for inducing differentiation into target differentiated cells, it takes a lot of time and cost to select excellent strains for differentiation.
 本発明は、目的とする特定の分化細胞を効率よく得ることができる分化細胞の製造方法を提供することを解決すべき課題とする。 The present invention is a problem to be solved to provide a method for producing a differentiated cell capable of efficiently obtaining a specific differentiated cell of interest.
 本発明者は、上記課題を解決すべく鋭意検討した結果、多能性幹細胞を、特定の化合物の存在下で培養することにより、目的とする分化細胞、特に肝臓細胞へと効率よく分化させることができることを見出した。本発明は、上記の知見に基づいて完成したものである。 As a result of diligent studies to solve the above problems, the present inventor efficiently differentiates pluripotent stem cells into target differentiated cells, particularly hepatocytes, by culturing them in the presence of a specific compound. I found that I could do it. The present invention has been completed based on the above findings.
 即ち、本発明によれば、以下の発明が提供される。
(1)多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを含む培地で培養することにより、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞を得る工程(a)、および
工程(a)で得られる多能性幹細胞を、サイトカインを含む培地で培養することにより、特定の分化細胞を得る工程(b)
を含む、特定の分化細胞の製造方法。
(2)上記工程(a)が、
多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、およびSTAT3活性化剤を含む培地で培養する第一培養工程、および
第一培養工程の後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、GSK3β阻害剤、およびSTAT3活性化剤を含む培地で培養する第二培養工程
を含む、(1)に記載の製造方法。
(3)上記サイトカインが、アクチビンA、BMP4、bFGF、HGF、およびOncostatin Mからなる群から選択される少なくとも1つである、(1)または(2)に記載の方法。
(4)上記特定の分化細胞が内胚葉系譜の細胞である、(1)から(3)の何れか一に記載の方法。
(5)上記特定の分化細胞が肝細胞である、(1)から(4)の何れか一に記載の方法。
(6)第一培養工程の培養期間が1から5日間である、(2)から(5)の何れか一に記載の方法。
(7)第二培養工程は、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で培養した後、上記培地にGSK3β阻害剤を加えた培地で培養を行う工程である、(2)から(6)の何れか一に記載の方法。
(8)第二培養工程は、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で3から8日間培養した後、上記培地にGSK3β阻害剤を加えた培地で3から10日間培養を行う工程である、(2)から(7)の何れか一に記載の方法。
(9)上記工程(b)の培養期間が1から4週間である、(1)から(8)の何れか一に記載の方法。
(10)ヒストン脱アセチル化酵素阻害剤が、バルプロ酸またはその塩である、(1)から(9)の何れか一に記載の方法。
(11)MAPK/ERKキナーゼ阻害剤がPD0325901である、(1)から(10)の何れか一に記載の方法。
(12)STAT3活性化剤が白血病阻止因子である、(1)から(11)の何れか一に記載の方法。
(13)プロテインキナーゼC阻害剤がGo6983である、(1)から(12)の何れか一に記載の方法。
(14)Wntシグナル阻害剤がXAV939である、(1)から(13)の何れか一に記載の方法。
(15)GSK3β阻害剤がCHIR99021である、(1)から(14)の何れか一に記載の方法。
(16)上記第一培養工程の培地がヒストン脱アセチル化酵素阻害剤を濃度1.0μmol/L~5.0mmol/Lの濃度で含む、(2)から(15)の何れか一に記載の方法。
(17)上記第一培養工程および第二培養工程の培地がMAPK/ERKキナーゼ阻害剤を濃度0.3μmol/L~5.0μmol/Lの範囲で含む、(2)から(16)の何れか一に記載の方法。
(18)多能性幹細胞がヒトiPS細胞である、(1)から(17)の何れか一に記載の方法。
That is, according to the present invention, the following invention is provided.
(1) Pluripotent stem cells are selected from the group consisting of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3β inhibitors. A step (a) and a step (a) of obtaining pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA is reduced as compared with the pluripotent stem cells before culturing by culturing in a medium containing any of the above. Step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in a) in a medium containing cytokines.
A method for producing a specific differentiated cell, including.
(2) The above step (a)
A first culture step in which pluripotent stem cells are cultured in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a STAT3 activator, and after the first culture step, histone deacetylase. A second culture step of culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3β inhibitor, and a STAT3 activator without an inhibitor is included (1). The manufacturing method described in.
(3) The method according to (1) or (2), wherein the cytokine is at least one selected from the group consisting of activin A, BMP4, bFGF, HGF, and Oncostatin M.
(4) The method according to any one of (1) to (3), wherein the specific differentiated cell is a cell of endoderm lineage.
(5) The method according to any one of (1) to (4), wherein the specific differentiated cell is a hepatocyte.
(6) The method according to any one of (2) to (5), wherein the culture period of the first culture step is 1 to 5 days.
(7) In the second culture step, the cells were cultured in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor. The method according to any one of (2) to (6), which is a step of culturing in a medium in which a GSK3β inhibitor is added to the above medium.
(8) The second culture step is carried out from 3 in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor. The method according to any one of (2) to (7), which is a step of culturing for 8 days and then culturing in a medium obtained by adding a GSK3β inhibitor to the above medium for 3 to 10 days.
(9) The method according to any one of (1) to (8), wherein the culture period of the step (b) is 1 to 4 weeks.
(10) The method according to any one of (1) to (9), wherein the histone deacetylase inhibitor is valproic acid or a salt thereof.
(11) The method according to any one of (1) to (10), wherein the MAPK / ERK kinase inhibitor is PD0325901.
(12) The method according to any one of (1) to (11), wherein the STAT3 activator is a leukemia inhibitory factor.
(13) The method according to any one of (1) to (12), wherein the protein kinase C inhibitor is Go6983.
(14) The method according to any one of (1) to (13), wherein the Wnt signal inhibitor is XAV939.
(15) The method according to any one of (1) to (14), wherein the GSK3β inhibitor is CHIR99021.
(16) The medium according to any one of (2) to (15), wherein the medium of the first culture step contains a histone deacetylase inhibitor at a concentration of 1.0 μmol / L to 5.0 mmol / L. Method.
(17) Any of (2) to (16), wherein the medium of the first culture step and the second culture step contains a MAPK / ERK kinase inhibitor in a concentration range of 0.3 μmol / L to 5.0 μmol / L. The method described in 1.
(18) The method according to any one of (1) to (17), wherein the pluripotent stem cell is a human iPS cell.
 本発明によれば、目的とする特定の分化細胞を効率よく製造することができる。 According to the present invention, a specific differentiated cell of interest can be efficiently produced.
図1は、未処理および処理済のiPS細胞株のメチル化度を示す。FIG. 1 shows the degree of methylation of untreated and treated iPS cell lines. 図2は、未処理および処理済のiPS細胞株の未分化性に関わる遺伝子発現量を示す。FIG. 2 shows the gene expression levels related to the undifferentiated state of the untreated and treated iPS cell lines. 図3Aは、未処理および処理済のヒトiPS細胞株(AからG株)を肝細胞に分化誘導したときのASGPR1の発現をAnti-ASGPR1抗体を用いてフローサイトメトリーにて測定して得たASGPR1陽性率を示す。FIG. 3A was obtained by measuring the expression of ASGPR1 when untreated and treated human iPS cell lines (strains A to G) were induced to differentiate into hepatocytes by flow cytometry using an Anti-ASGPR1 antibody. Shows the ASGPR1 positive rate. 図3Bは、未処理および処理済のヒトiPS細胞株(AからG株)を肝細胞に分化誘導したときのASGPR1の発現をAnti-ASGPR1抗体を用いてフローサイトメトリーにて測定したASGPR1陽性細胞数の全7株の平均値を示す。FIG. 3B shows ASGPR1-positive cells whose expression of ASGPR1 when untreated and treated human iPS cell lines (A to G strains) were induced to differentiate into hepatocytes was measured by flow cytometry using Anti-ASGPR1 antibody. The average value of all 7 strains of the number is shown. 図4は、未処理および処理済のヒトiPS細胞株(AからG株)を肝細胞に分化誘導したときの培養上清中に分泌されたアルブミン量をELISA法にて測定した結果を示す。FIG. 4 shows the results of measuring the amount of albumin secreted in the culture supernatant when the untreated and treated human iPS cell lines (strains A to G) were induced to differentiate into hepatocytes by the ELISA method. 図5は、iPS細胞を未処理、バルプロ酸処理、化合物混合処理条件後に内胚葉に分化させたときの内胚葉マーカー遺伝子の発現量を示す。FIG. 5 shows the expression level of an endoderm marker gene when iPS cells are differentiated into endoderm after untreated, valproic acid-treated, and compound-mixed treatment conditions.
 以下、本発明を実施するための形態を、詳細に説明する。
 本明細書における略号は以下の意味を有する。
ALK5(TGF-beta type I receptor):トランスフォーミング増殖因子ベータ 1型受容体
bFGF(basic Fibroblast Growth Factor):塩基性線維芽細胞成長因子
BMP4(Bone Morphogenetic Protein 4):骨形成因子
CD34(Cluster of differentiation 34):分化抗原群34
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The abbreviations used herein have the following meanings.
ALK5 (TGF-beta type I receptor): Transforming Growth Factor Beta Type 1 Receptor bFGF (basic Fibroblast Growth Factor): Basic Fibroblast Growth Factor BMP4 (Bone Morphogenetic Factor 34) Bone Former 34): Differentiation antigen group 34
cTnT(cardiac Troponin T):心筋トロポニンT
DMEM (Dulbecco’s Modified Eagle Medium):ダルベッコ改変イーグル培地
DMEM/F12(DMEM Ham’s F-12):ダルベッコ改変イーグル培地/栄養混合物F-12ハム
DNMT3B(DNA(cytosine-5-)-methyltransferase 3 beta):DNA(シトシン‐5‐)メチルトランスフェラーゼ3ベータ
Dnmt3L(DNA Methyltransferase 3 Like):DNAメチルトランスフェラーゼ3様
ECAT(ES cell associated transcripts):ES細胞関連転写因子
ERas(ES cell expressed Ras):ES細胞で発現するRas
Erk(Extracellular Signal-regulated Kinase):細胞外シグナル調節キナーゼ
cTnT (cardiac Troponin T): Myocardial troponin T
DMEM (Dulvecco's Modified Eagle Medium): Dulbecco's Modified Eagle Medium DMEM / F12 (DMEM Ham's F-12): Dulbecco's Modified Eagle Medium / Nutrition Mixture F-12 Ham DNMT3B (DNA (cytosine-5) -methyltransferase beta): DNA (cytosine-5-) methyltransferase 3 beta Dnmt3L (DNA Methyltransphase 3 Like): DNA methyltransferase 3-like ECAT (ES cell assisted transcripts): ES cell-related transcription factor ERAs (ES cell ess) Ras expressed in
Erk (Extracellular Signal-regulated Kinase): Extracellular signal-regulated kinase
ESG(Embryonal stem cell-specific gene):胚性幹細胞特異的遺伝子
Fbx15(F-Box Protein 15):Fボックス タンパク質15
FGF(Fibroblast growth factor):線維芽細胞増殖因子
FOXA2(forkhead box protein A2):フォークヘッドボックスタンパク質A2
Fthl17(Ferritin heavy polypeptide-like 17):フェリチン重鎖ポリペプチド様17
GAPDH(glyceraldehyde-3-phosphate dehydrogenase):グリセルアルデヒド-3-リン酸デヒドロゲナーゼ
Gdf3(Growth differentiation factor-3):増殖分化因子3
ESG (Embryonal stem cell-specific gene): Embryonic stem cell-specific gene Fbx15 (F-Box Protein 15): F-box protein 15
FGF (Fibroblast growth factor): Fibroblast growth factor FOXA2 (forkhead box protein A2): Forkhead box protein A2
Fthl17 (Ferritin heavy polypeptide-like 17): Ferritin heavy chain polypeptide-like 17
GAPDH (glyceraldehyde-3-phosphate dehydogenesis): Glyceraldehyde-3-phosphate dehydrogenase Gdf3 (Glyceraldehyde three-phosphate dehydrogenase): Growth differentiation factor 3
Grb2(Growth factor receptor-bound protein 2):増殖因子受容体結合タンパク質2
GSK(Glycogen Synthase Kinase):グリコーゲン合成酵素キナーゼ
HBM(Hepatocyte Basal Medium):幹細胞基本培地
HDAC(Histone Deacetylase):ヒストン脱アセチル化酵素
IGF(Insulin-like growth factor):インスリン様増殖因子
IGFBP4(Insulin-like growth factor-binding protein 4):インスリン様増殖因子結合タンパク質4
IL(interleukin):インターロイキン
KDR(kinase insert domain-containing receptor):キナーゼ挿入ドメイン含有受容体
Klf(Kruppel-like factor):クルッペル様因子
LGR5(Leucine-rich repeat-containing G-protein coupled receptor 5):ロイシンリッチリピートを含むGタンパク質共役受容体5
Grb2 (Growth factor receptor-bound protein 2): Growth factor receptor binding protein 2
GSK (Glycogen Synthase Kinase): Glycogen synthase kinase HBM (Hepatocyte Basel Medium): Stem cell basal medium HDAC (Histone Deacetylase): Histone deacetylase IGF (Insulin-like Growth Factor) IGF (Insulin-like Growth Factor) growh factor-binding protein 4): Insulin-like growth factor binding protein 4
IL (interleukin): Interleucine-rich KDR (kinase insert domain-connecting receptor): Kinase insertion domain-containing receptor Klf (Kruppel-like receptor): Kruppell-like factor LGR5 (Leucine-rich repeat-receptor) G protein-coupled receptor containing leucine-rich repeat 5
LIF(Leukemia inhibitory factor):白血病阻止因子
MAP(mitogen-activated protein):***促進因子活性化プロテインキナーゼ
Nr5a1(nuclear receptor subfamily 5,group A,member 1):核内受容体サブファミリー5、グループA、メンバー1
Nr5a2(nuclear receptor subfamily 5,group A,member 2):核内受容体サブファミリー5、グループA、メンバー2
Oct(octamer-binding transcription factor):オクタマー結合性転写因子 
PAX6(paired box 6):ペアードボックス6
PCR(polymerase chain reaction):ポリメラーゼ連鎖反応
PDGFRA(platelet-derived growth factor receptor alpha):血小板由来増殖因子受容体α
PKC(Protein kinase C):プロテインキナーゼC
LIF (Leukemia inhibitory factor): Leukemia inhibitory factor MAP (mitogen-activated protein): Mitogen-activated protein kinase Nr5a1 (nuclear receptor subfamily) Family 5, group A, group A, meb Member 1
Nr5a2 (nuclear receptor subfamily 5, group A, member 2): Nuclear receptor subfamily 5, group A, member 2
Oct (octamer-binding transcription factor): Octamar-binding transcription factor
PAX6 (paired box 6): Paired box 6
PCR (polymerase chain reaction): Polymerase chain reaction PDGFRA (platelet-developed growth factor receptor alpha): Pillot-derived growth factor receptor α
PKC (Protein kinase C): Protein kinase C
POU5F1(POU domain, class 5, transcription factor 1):POUドメイン、クラス5、転写因子1
Prdm14(PR/SET domain family 14):PR/SETドメインファミリー14
qPCR(Quantitative polymerase chain reaction):定量ポリメラーゼ連鎖反応
Rex1(Reduced-expression 1):低発現タンパク質-1
ROCK(Rho-associated coiled-coil forming kinase):Rho結合コイルドコイル形成キナーゼ
RT-PCR(Reverse Transcription polymerase chain reaction):逆転写ポリメラーゼ連鎖反応
Sall4(Sal-like protein 4):Sal様タンパク質4
SCF(Stem cell factor):幹細胞因子
POU5F1 (POU domain, class 5, transcription factor 1): POU domain, class 5, transcription factor 1
Prdm14 (PR / SET domain family 14): PR / SET domain family 14
qPCR (Quantitative polymerase chain reaction): Quantitative polymerase chain reaction Rex1 (Reduced-expression 1): Low expression protein-1
ROCK (Rho-associated coiled-coil forming kinase): Rho-conjugated coiled-coil-forming kinase RT-PCR (Reverse transcription polymerase chain reaction): Reverse transcription polymerase chain reaction Sall4 (Sal-like)
SCF (Stem cell factor): Stem cell factor
Sox:SRY (sex determining region Y)-box:SRY(Y染色体性決定遺伝子)ボックス
Stat3(Signal Transducer and Activator of Transcription 3):シグナル伝達兼転写活性化因子3
T:Brachyury:T 遺伝子にコードされたブラキウリ
Tcl1(T-cell leukemia/lymphoma 1A):T細胞白血病/リンパ腫1A
Tert(Telomerase Reverse Transcriptase):テロメラーゼ逆転写酵素
TGF(Transforming growth factor):トランスフォーミング増殖因子
UTF1(Undifferentiated Embryonic Cell Transcription Factor 1):未分化胚性幹細胞転写因子1
VEGF(Vascular Endothelial Growth Factor):血管内皮増殖因子
Sox: SRY (sex determination region Y) -box: SRY (Y chromosome sex-determining gene) Box Stat3 (Signal Transducer and Activator of Tranciption 3): Signaling and transcriptional activator 3
T: Brachyury: Brachyury Tcl1 encoded by the T gene (T-cell leukemia / lymphoma 1A): T-cell leukemia / lymphoma 1A
Tert (Telomerase Reverse Transcriptase): Telomerase Reverse Transcript TGF (Transforming growth factor): Transforming Growth Factor UTF1 (Undifferentiated Embryonic Cell Transcription Factor) Undifferentiated Cell Transcription Factor
VEGF (Vascular Endothelial Growth Factor): Vascular Endothelial Growth Factor
 本発明の特定の分化細胞の製造方法は、多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを含む培地で培養することにより、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞を得る工程(a)、および工程(a)で得られる多能性幹細胞を、サイトカインを含む培地で培養することにより、特定の分化細胞を得る工程(b)を含む。なお、本発明において、同じ培養条件で同一の操作をした細胞は、個体として別であっても同一の性質を持つ細胞とみなす。 The method for producing a specific differentiated cell of the present invention uses pluripotent stem cells as a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, a STAT3 activator, a protein kinase C inhibitor, a Wnt signal inhibitor and GSK3β. By culturing in a medium containing any of the inhibitors selected from the group, pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing. The step (a) of obtaining, and the step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in step (a) in a medium containing cytokines are included. In the present invention, cells that have undergone the same operation under the same culture conditions are regarded as cells having the same properties even if they are different as individuals.
 本発明においては、多能性幹細胞を、特定の化合物の存在下で培養することにより、そのDNAのメチル化度が低下することを見出し、DNAのメチル化度を低下させた多能性幹細胞を特定の分化細胞への分化誘導に用いることにより、効率よく特定の分化細胞を製造することに成功したものである。 In the present invention, it has been found that the degree of DNA methylation is reduced by culturing pluripotent stem cells in the presence of a specific compound, and the pluripotent stem cells having a reduced degree of DNA methylation are used. By using it to induce differentiation into specific differentiated cells, we have succeeded in efficiently producing specific differentiated cells.
 ところで、バルプロ酸がヒトiPS細胞から肝臓細胞への分化誘導効率を向上させるという報告があり(特許文献1)、この文献では、肝芽細胞様細胞を肝細胞様細胞へと分化させる工程をバルプロ酸の存在下で行っている。しかしながら、本発明者らの検討では、HDAC阻害剤(例えばバルプロ酸)単独では、未分化のiPS細胞そのものの性質が向上しないことが明らかとなった。後記の実施例では、バルプロ酸単独で処理した場合には、肝臓細胞への分化途中段階である内胚葉への分化効率が上昇しないこと、一方、バルプロ酸を他の化合物と組み合わせた場合には分化効率が上昇することを確認している。 By the way, there is a report that valproic acid improves the efficiency of inducing differentiation of human iPS cells into hepatocytes (Patent Document 1). In this document, the step of differentiating hepatoblast-like cells into hepatocyte-like cells is valpro. It is done in the presence of acid. However, in the study by the present inventors, it was clarified that the properties of undifferentiated iPS cells themselves are not improved by the HDAC inhibitor (for example, valproic acid) alone. In the examples described below, when treated with valproic acid alone, the efficiency of differentiation into endoderm, which is in the process of differentiation into hepatocytes, does not increase, while when valproic acid is combined with other compounds, it does not increase. It has been confirmed that the differentiation efficiency increases.
 本発明の多能性幹細胞は、体細胞に初期化因子を導入して得られる未分化細胞であってもよい。体細胞としては、特に限定されず、任意の体細胞を利用することができる。例えば、胎児期の体細胞のほか、成人由来の体細胞(即ち、成熟した体細胞)を用いてもよい。体細胞としては、例えば、(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)線維芽細胞(皮膚細胞等)、上皮細胞、肝細胞、リンパ球(T細胞、B細胞)、内皮細胞、筋肉細胞、毛細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞、皮膚細胞等の分化した細胞が挙げられる。体細胞の由来となる生体としては、特に限定されないが、例えば、ヒト、非ヒト動物(例えば、サル、ヒツジ、ウシ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス)が挙げられる。好ましくは、ヒトである。本発明の多能性幹細胞は、好ましくはヒトiPS細胞である。 The pluripotent stem cell of the present invention may be an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell. The somatic cell is not particularly limited, and any somatic cell can be used. For example, in addition to fetal somatic cells, adult-derived somatic cells (that is, mature somatic cells) may be used. Examples of somatic cells include (1) tissue stem cells (somatic stem cells) such as nerve stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells, (2) tissue precursor cells, and (3) fibroblasts (skin cells, etc.). ), Epithelial cells, hepatocytes, lymphocytes (T cells, B cells), endothelial cells, muscle cells, hair cells, gastric mucosal cells, intestinal cells, splenocytes, pancreatic cells (pancreatic exocrine cells, etc.), brain cells, lungs Examples thereof include differentiated cells such as cells, renal cells, and skin cells. The living body from which the somatic cells are derived is not particularly limited, and examples thereof include humans and non-human animals (for example, monkeys, sheep, cows, horses, dogs, cats, rabbits, rats, mice). Preferably, it is human. The pluripotent stem cells of the present invention are preferably human iPS cells.
 体細胞に導入される初期化因子としては特に限定されないが、例えば、Oct3/4、Klf4、c-Myc、Sox2、Nanog、Klf2、L-Myc、N-Myc、Klf5、Lin28、Tert、Fbx15、ERas、ECAT15-1、ECAT15-2、Tcl1、β-カテニン、ECAT1、Esg1、Dnmt3L、ECAT8、Gdf3、Sox15、Fthl17、Sall4、Rex1、UTF1、Stella、Stat3、Grb2、Prdm14、Nr5a1、Nr5a2、E-cadherinが挙げられる。ここで、これらの遺伝子群の中から2以上の遺伝子を選択して任意に組み合わせて導入することができる。なかでも、Oct3/4、Sox2、Klf4およびc-Mycを少なくとも有する組み合わせ、Oct3/4、Sox2、Klf4およびL-Mycを少なくとも有する組み合わせ、またはOct3/4、Sox2、NanogおよびLin28を少なくとも有する組み合わせが好ましい。 The reprogramming factor introduced into somatic cells is not particularly limited, but for example, Oct3 / 4, Klf4, c-Myc, Sox2, Nanog, Klf2, L-Myc, N-Myc, Klf5, Lin28, Tert, Fbx15, ERAs, ECAT15-1, ECAT15-2, Tcl1, β-catenin, ECAT1, Esg1, Dnmt3L, ECAT8, Gdf3, Sox15, Fthl17, All4, Rex1, UTF1, Stella, Stat3, Grb2, Prdm14, Nr5 Cadherin can be mentioned. Here, two or more genes can be selected from these gene groups and introduced in any combination. Among them, combinations having at least Oct3 / 4, Sox2, Klf4 and c-Myc, combinations having at least Oct3/4, Sox2, Klf4 and L-Myc, or combinations having at least Oct3 / 4, Sox2, Nanog and Lin28 preferable.
 また、導入する遺伝子の種は、導入先の細胞の種と同一であることが好ましい。例えば、ヒト由来の細胞へ導入される遺伝子はヒト遺伝子であることが好ましい。例えば、ヒト由来の体細胞へ導入される遺伝子としては、ヒトOCT3/4、ヒトSOX2、ヒトKLF4およびヒトMYCを少なくとも有する組み合わせ、OCT3/4、SOX2、KLF4およびL-MYCを少なくとも有する組み合わせ、またはヒトOCT3/4、ヒトSOX2、ヒトNANOGおよびヒトLIN28を少なくとも有する組み合わせが好ましい。 Further, it is preferable that the species of the gene to be introduced is the same as the species of the cell to be introduced. For example, the gene introduced into a human-derived cell is preferably a human gene. For example, genes to be introduced into human-derived somatic cells include a combination having at least human OCT3 / 4, human SOX2, human KLF4 and human MYC, a combination having at least OCT3 / 4, SOX2, KLF4 and L-MYC, or A combination having at least human OCT3 / 4, human SOX2, human NANOG and human LIN28 is preferred.
 初期化因子の遺伝子は、遺伝子発現ベクターを用いて体細胞に導入することができる。遺伝子発現ベクターとしては、特に限定されないが、例えば、ウイルスベクター、プラスミドベクター、人工染色体ベクター、トランスポゾンベクターが挙げられる。ウイルスベクターとしては、レトロウイルスベクター、アデノウイルスベクター、センダイウイルスベクター、レンチウイルスベクター、アデノ随伴ウイルスベクターが挙げられる。 The reprogramming factor gene can be introduced into somatic cells using a gene expression vector. The gene expression vector is not particularly limited, and examples thereof include a viral vector, a plasmid vector, an artificial chromosome vector, and a transposon vector. Examples of the viral vector include a retrovirus vector, an adenovirus vector, a Sendai virus vector, a lentiviral vector, and an adeno-associated virus vector.
 体細胞に初期化因子を導入して得られる未分化細胞は、体細胞に初期化因子を導入することによって自ら作製してもよいが、研究機関や企業から提供または販売されている細胞を入手してもよい。 Undifferentiated cells obtained by introducing a reprogramming factor into somatic cells may be produced by themselves by introducing a reprogramming factor into somatic cells, but cells provided or sold by research institutes or companies are obtained. You may.
 例えば、京都大学iPS細胞研究所から提供されている201B7、253G1、253G4、1201C1、1205D1、1210B2、1231A3、1383D2、1383D6、iPS-TIG120-3f7、iPS-TIG120-4f1、iPS-TIG114-4f1、CiRA086Ai-m1、CiRA188Ai-M1、またはiRA188Ai-W1を入手して、使用することができる。 For example, 201B7, 253G1, 253G4, 1201C1, 1205D1, 1210B2, 1231A3, 1383D2, 1383D6, iPS-TIG120-3f7, iPS-TIG120-4f1, iPS-TIG114-4f1, CiRA086Ai provided by the Center for iPS Cell Research and Application, Kyoto University. -M1, CiRA188Ai-M1 or iRA188Ai-W1 can be obtained and used.
 また、NIH(National Institutes of Health)やCalifornia Institute of Regenerative Medicine、New York Stem Cell Foundation、European Bank for induced Pluripotent Stem Cells等が作成しているiPS細胞バンクから入手することもできる。 In addition, NIH (National Institutes of Health), California Institute of Regenerative Medicine, New York Stem Cell Foundation, European Bank Stem Cell, etc. can also be obtained from Stem Cell Foundation, European Bank, etc.
 本発明の多能性幹細胞は、体細胞に初期化因子を導入して得られる未分化細胞であってもよく、「体細胞に初期化因子を導入して得られる未分化細胞」における未分化細胞とは、分化していない細胞を意味し、好ましくは内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力を有する細胞である。 The pluripotent stem cell of the present invention may be an undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell, or an undifferentiated cell in an "undifferentiated cell obtained by introducing a reprogramming factor into a somatic cell". The cell means an undifferentiated cell, and is preferably a cell having an ability to differentiate into any one or more of endometrial follicle, meso-embryonic follicle and ectodermal lobe.
 上記「体細胞に初期化因子を導入して得られる未分化細胞」は、フィーダー細胞をコートしたプレートまたはマトリゲル(Matrigel)(登録商標)などの足場をコートしたプレート上で、適当な培地にて維持培養することができる。フィーダー細胞としては、特に限定されないが、マウス胚性線維芽細胞(MEF細胞)、マウス胎児繊維芽細胞(STO細胞)が挙げられる。 The above-mentioned "undifferentiated cells obtained by introducing a reprogramming factor into somatic cells" is prepared on a plate coated with feeder cells or a plate coated with a scaffold such as Matrigel (registered trademark) in an appropriate medium. It can be maintained and cultured. The feeder cell is not particularly limited, and examples thereof include mouse embryonic fibroblast (MEF cell) and mouse embryonic fibroblast (STO cell).
 未分化細胞の維持培養の際の培地としては、mTeSR(登録商標)1(Stemcell Technologies)またはStemFlex(登録商標)などの市販の培地を使用することができる。あるいはまた、例えば、基礎培地として、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などが挙げられ、代替血清(KSR;KnockoutTM Serum Replacement(Invitrogen社))、ウシ胎児血清(FBS)、非必須アミノ酸(NEAA)、L-グルタミン、2-メルカプトエタノール、抗生物質(例えば、ストレプトマイシン、ペニシリン、ピューロマイシン、マイトマイシン)、bFGF(FGF2と同義である)等の添加成分を任意に組み合わせて、上記いずれかの基礎培地に添加してした培地も、維持培養の際の培地として挙げることができる。維持培養の際の培地は、アスコルビン酸を含まないことが好ましい。維持培養の培養条件は、37℃、5%CO、10%O条件下などが好ましいが、特に限定されない。 As the medium for the maintenance culture of undifferentiated cells, a commercially available medium such as mTeSR® 1 (Stemcell Technologies) or StemFlex® can be used. Alternatively, for example, DMEM (Dulvecco Modified Eagle medium), a mixed medium of DMEM and F12 (DMEM / F12 = 1: 1), Knockout TM D-MEM (Invitrogen), and the like can be mentioned as the basal medium, and alternative sera (DMEM). KSR; Knockout TM Medium Replacement (Invitrogen)), bovine fetal serum (FBS), non-essential amino acids (NEAA), L-glutamine, 2-mercaptoethanol, antibiotics (eg, streptomycin, penicillin, puromycin, mitomycin), A medium added to any of the above basal media by arbitrarily combining additional components such as bFGF (synonymous with FGF2) can also be mentioned as a medium for maintenance culture. The medium for maintenance culture preferably does not contain ascorbic acid. The culture conditions for the maintenance culture are preferably 37 ° C., 5% CO 2 , 10% O 2 and the like, but are not particularly limited.
 本発明の「特定の分化細胞」とは、内胚葉系譜、中胚葉系譜および外胚葉系譜の何れかに属する、任意の特定の分化した細胞を意味し、好ましくは内胚葉系譜に属する任意の特定の分化した細胞であり、例えば肝細胞である。 The "specific differentiated cell" of the present invention means any specific differentiated cell belonging to any of the endoderm lineage, the mesodermal lineage and the ectoderm lineage, and preferably any specific differentiated cell belonging to the endoderm lineage. Differentiated cells, such as hepatocytes.
[工程(a)]
 本発明の工程(a)は、多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを含む培地で培養することにより、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した工程(a)を得る工程である。
[Step (a)]
In step (a) of the present invention, pluripotent stem cells are derived from histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3β inhibitors. In the step (a) of obtaining the step (a) in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing by culturing in a medium containing any of the groups selected from is there.
 工程(a)で得られる多能性幹細胞は、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が、10%以上、15%以上、20%以上、25%以上、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、または95%以上低下した細胞であってもよい。DNAの全シトシンにおける5メチルシトシンの割合は、具体的には、後記の実施例2の手順に準じて、多能性幹細胞から抽出したゲノムDNAを、EZ-DNA MethylationTM Kit(ZYMO RESEACH)にてBisulfite(亜硫酸水素塩)変換し、Infinium(登録商標) Methylation EPIC BeadsChip Kit(illumina)にてメチル化アレイ解析を実施し、メチル化度(β値)を算出すればよいが、この方法に限定される必要はなく、細胞から抽出したゲノムDNAをBisulfiteで処理し、非メチルシトシンをウラシルに変換した後に、シーケンス解析やPCRによる特異的領域を増幅した後にシーケンス解析または制限酵素処理によるメチル化解析を行ってもよい。 In the pluripotent stem cells obtained in step (a), the proportion of 5-methylcytosine in the total cytosine of DNA was 10% or more, 15% or more, 20% or more, 25, as compared with the pluripotent stem cells before culturing. % Or more, 30% or more, 35% or more, 40% or more, 45% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more , 90% or more, or 95% or more reduced cells. Specifically, the ratio of 5-methylcytosine to total cytosine of DNA is determined by converting genomic DNA extracted from pluripotent stem cells into EZ-DNA methylation TM Kit (ZYMO RESEACH) according to the procedure of Example 2 described later. The methylation degree (β value) may be calculated by converting to Bisulfite (bisulfite) and performing a methylation array analysis with Infinium (registered trademark) methylation EPIC BeadsChip Kit (illumina), but this method is limited. It is not necessary to be performed, and the genomic DNA extracted from the cells is treated with Bisulfite, non-methylcytosine is converted to uracil, and then the specific region is amplified by sequence analysis or PCR, and then methylation analysis by sequence analysis or restriction enzyme treatment. May be done.
 工程(a)で用いる培地は、基礎培地に、Neurobasal(登録商標)(Thermo Fisher Scientific社)、B27(登録商標)(Thermo Fisher Scientific社)、N2(Thermo Fisher Scientific社)、1-チオグリセロール、およびGlutaMAX(登録商標)(Thermo Fisher Scientific社)またはL-Glutamin(Thermo Fisher Scientific社)などの添加成分を任意に組み合わせて(好ましくは上記の添加成分の全てを組み合わせて)、上記の基礎培地に添加し、さらに、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを添加した培地であってもよい。上記基礎培地としては、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などを挙げることができる。 The medium used in the step (a) is a basal medium, Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered trademark) (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific). And any combination of additives such as GlutaMAX® (Thermo Fisher Scientific) or L-Glutamin (Thermo Fisher Scientific) (preferably all of the above additives) in the basal medium. In addition, any one selected from the group consisting of histone deacetylase inhibitor, MAPK / ERK kinase inhibitor, STAT3 activator, protein kinase C inhibitor, Wnt signal inhibitor and GSK3β inhibitor is added. It may be a medium. Examples of the basal medium include DMEM (Dulvecco Modified Eagle medium), a mixed medium of DMEM and F12 (DMEM / F12 = 1: 1), Knockout TM D-MEM (Invitrogen), and the like.
 ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤の種類や濃度並びに培養条件は、後記の[第一培養工程について]および[第二培養工程について]にて具体的に記載する。
 上記工程(a)は、後記の第一培養工程および第二培養工程を含むことができる。
The types and concentrations of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3β inhibitors and the culture conditions are described in [First culture step] below. ] And [About the second culture step] will be described in detail.
The above step (a) can include the first culture step and the second culture step described later.
[第一培養工程について]
 本発明における第一培養工程は、多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、およびSTAT3活性化剤を含む培地で培養する工程である。
[About the first culture process]
The first culturing step in the present invention is a step of culturing pluripotent stem cells in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a STAT3 activator.
 第一培養工程において、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、およびSTAT3活性化剤を含む培地は、基礎培地に、Neurobasal(登録商標)(Thermo Fisher Scientific社)、B27(登録商標)(Thermo Fisher Scientific社)、N2(Thermo Fisher Scientific社)、1-チオグリセロール、およびGlutaMAX(登録商標)(Thermo Fisher Scientific社)またはL-Glutamin(Thermo Fisher Scientific社)などの添加成分を任意に組み合わせて(好ましくは上記の添加成分の全てを組み合わせて)、上記の基礎培地に添加し、さらに、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、およびSTAT3活性化剤を添加した培地であってもよい。上記基礎培地としては、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などを挙げることができる。 In the first culture step, the medium containing histone deacetylase inhibitor, MAPK / ERK kinase inhibitor, and STAT3 activator was added to the basal medium as Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered). Trademarks) (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), 1-thioglycerol, and GlutaMAX® (Registered Trademarks) (Thermo Fisher Scientific) or L-Glutamin (ThermiScientific) or L-Glutamin (Thermic) (Preferably all of the above additives) were added to the above basal medium, and histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, and STAT3 activators were added. It may be a medium. Examples of the basal medium include DMEM (Dulvecco Modified Eagle medium), a mixed medium of DMEM and F12 (DMEM / F12 = 1: 1), Knockout TM D-MEM (Invitrogen), and the like.
 ヒストン脱アセチル化酵素阻害剤としては、バルプロ酸またはその塩(バルプロ酸ナトリウムなど)、酪酸またはその塩(酪酸ナトリウムなど)、トリコスタチンA、およびアピシジンなどを使用することができるが、特に限定されない。培地におけるヒストン脱アセチル化酵素阻害剤の濃度は、ヒストン脱アセチル化酵素阻害剤の種類などに応じて適宜設定することができる。例えば、バルプロ酸の場合には、好ましくは1.0μmol/L~5.0mmol/Lであり、より好ましくは0.2mmol/L~5.0mmol/Lであり、さらに好ましくは0.5mmol/L~2.0mmol/Lである。 As the histone deacetylase inhibitor, valproic acid or a salt thereof (such as sodium valproate), butyric acid or a salt thereof (such as sodium butyrate), tricostatin A, apicidin and the like can be used, but is not particularly limited. .. The concentration of the histone deacetylase inhibitor in the medium can be appropriately set according to the type of the histone deacetylase inhibitor and the like. For example, in the case of valproic acid, it is preferably 1.0 μmol / L to 5.0 mmol / L, more preferably 0.2 mmol / L to 5.0 mmol / L, and even more preferably 0.5 mmol / L. It is ~ 2.0 mmol / L.
 MAPK/ERKキナーゼ阻害剤(MEK阻害剤ともいう)としては、特に限定されないが、例えば、PD0325901(N-[(2R)-2,3-ジヒドロキシプロポキシ]-3,4-ジフルオロ-2-[(2-フルオロ-4-ヨードフェニル)アミノ]-ベンズアミド;CAS登録番号:391210-10-9)、U0126(1,4-ジアミノ-2,3-ジシアノ-1,4-ビス[2-アミノフェニルチオ]ブタジエン;CAS登録番号:109511-58-2)、PD98059(2-(2-アミノ-3-メトキシフェニル)-4H-1-ベンゾピラン-4-オン;CAS登録番号:167869-21-8)、PD184352(2-(2-クロロ-4-ヨードフェニルアミノ)-N-シクロプロピルメトキシ-3,4-ジフルオロベンズアミド;CAS登録番号:212631-79-3が挙げられる。なかでも、PD0325901が好ましい。培地におけるMAPK/ERKキナーゼ阻害剤の濃度は、MAPK/ERKキナーゼ阻害剤の種類などに応じて適宜設定することができる。例えば、PD0325901の場合には、好ましくは0.3μmol/L~5.0μmol/Lであり、より好ましくは0.6μmol/L~3.0μmol/Lである。これはPD0325901を濃度0.6μmol/L以上含む培地で培養することにより、DNAがより脱メチル化されるためである。本発明の一実施態様では、DNA変異を最小限に抑えるためにはPD0325901を0.8μmol/L~2.0μmol/Lで添加することが望ましい。 The MAPK / ERK kinase inhibitor (also referred to as MEK inhibitor) is not particularly limited, but for example, PD0325901 (N-[(2R) -2,3-dihydroxypropoxy] -3,4-difluoro-2-[(). 2-Fluoro-4-iodophenyl) amino] -benzamide; CAS registration number: 391210-10-9), U0126 (1,4-diamino-2,3-dicyano-1,4-bis [2-aminophenylthio] ] Butadiene; CAS registration number: 109511-58-2), PD98059 (2- (2-amino-3-methoxyphenyl) -4H-1-benzopyran-4-one; CAS registration number: 167869-21-8), PD184352 (2- (2-chloro-4-iodophenylamino) -N-cyclopropylmethoxy-3,4-difluorobenzamide; CAS registration number: 212631-79-3; among them, PD0325901 is preferable. The concentration of the MAPK / ERK kinase inhibitor in MAPK / ERK kinase inhibitor can be appropriately set according to the type of the MAPK / ERK kinase inhibitor and the like. For example, in the case of PD0325901, it is preferably 0.3 μmol / L to 5.0 μmol /. It is L, more preferably 0.6 μmol / L to 3.0 μmol / L, because the DNA is more demethylated by culturing in a medium containing PD0325901 at a concentration of 0.6 μmol / L or more. There is. In one embodiment of the invention, it is desirable to add PD0325901 at 0.8 μmol / L to 2.0 μmol / L in order to minimize DNA mutations.
 STAT3活性化剤としては、特に限定されないが、白血病阻止因子(LIF)を挙げることができる。特に、ヒト白血病阻止因子が好ましい。培地におけるSTAT3活性化剤の濃度は、STAT3活性化剤の種類などに応じて適宜設定することができる。例えば、LIFの場合には、好ましくは0.1ng/mL~200ng/mLであり、より好ましくは0.2ng/mL~100ng/mLである。 The STAT3 activator is not particularly limited, but may include a leukemia inhibitory factor (LIF). In particular, human leukemia inhibitory factors are preferred. The concentration of the STAT3 activator in the medium can be appropriately set according to the type of the STAT3 activator and the like. For example, in the case of LIF, it is preferably 0.1 ng / mL to 200 ng / mL, and more preferably 0.2 ng / mL to 100 ng / mL.
 第一培養工程における培養条件は、当業者には自明であり、一例としては、37℃、5%CO2、5%O条件下を挙げることができる。特に、低酸素(5%O)の条件下で培養することが好ましい。 The culture conditions in the first culture step are obvious to those skilled in the art, and examples thereof include 37 ° C., 5% CO 2, and 5% O 2 conditions. In particular, it is preferable to culture under the condition of low oxygen (5% O 2 ).
 第一培養工程における培養期間は特に限定されないが、例えば、1日~5日間、好ましくは2日~4日間培養することができる。 The culture period in the first culture step is not particularly limited, but for example, it can be cultured for 1 to 5 days, preferably 2 to 4 days.
[第二培養工程について]
 本発明における第二培養工程は、第一培養工程の後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、GSK3β阻害剤、およびSTAT3活性化剤を含む培地で培養する工程である。
[About the second culture process]
In the second culture step in the present invention, after the first culture step, a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3β inhibitor, without containing a histone deacetylase inhibitor, And a step of culturing in a medium containing a STAT3 activator.
 第二培養工程において、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、GSK3β阻害剤、およびSTAT3活性化剤を含む培地は、基礎培地に、Neurobasal(登録商標)(Thermo Fisher Scientific社)、B27(登録商標)(Thermo Fisher Scientific社)、N2(Thermo Fisher Scientific社)、1-チオグリセロール、およびGlutaMAX(登録商標)(Thermo Fisher Scientific社)またはL-Glutamin (Thermo Fisher Scientific社)などの添加成分を任意に組み合わせて(好ましくは上記の添加成分の全てを組み合わせて)、上記の基礎培地に添加し、さらに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、GSK3β阻害剤、およびSTAT3活性化剤を添加した培地であってもよい。上記基礎培地としては、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などを挙げることができる。 In the second culture step, the medium containing the MAPK / ERK kinase inhibitor, protein kinase C inhibitor, Wnt signal inhibitor, GSK3β inhibitor, and STAT3 activator without the histone deacetylase inhibitor Neurobasal (registered trademark) (Thermo Fisher Scientific), B27 (registered trademark) (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), N2 (Thermo Fisher Scientific), 1-thioglycerol, 1-thioglycerol, and 1-thioglycerol in the basal medium. Additives such as Scientific) or L-Glutamin (Thermo Fisher Scientific) are optionally combined (preferably all of the above additives) and added to the basal medium described above, and further, MAPK / ERK kinase. The medium may be supplemented with an inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3β inhibitor, and a STAT3 activator. Examples of the basal medium include DMEM (Dulvecco Modified Eagle medium), a mixed medium of DMEM and F12 (DMEM / F12 = 1: 1), Knockout TM D-MEM (Invitrogen), and the like.
 MAPK/ERKキナーゼ阻害剤の具体例は上記の通りである。培地におけるMAPK/ERKキナーゼ阻害剤の濃度は、MAPK/ERKキナーゼ阻害剤の種類などに応じて適宜設定することができる。例えば、PD0325901の場合には、好ましくは0.3μmol/L~5.0μmol/Lであり、より好ましくは0.6μmol/L~3.0μmol/Lである。これはPD0325901を濃度0.6μmol/L以上含む培地で培養することにより、DNAがより脱メチル化されるためである。本発明の一実施態様では、DNA変異を最小限に抑えるためにはPD0325901を0.8μmol/L~2.0μmol/Lで添加することが望ましい。 Specific examples of the MAPK / ERK kinase inhibitor are as described above. The concentration of the MAPK / ERK kinase inhibitor in the medium can be appropriately set according to the type of the MAPK / ERK kinase inhibitor and the like. For example, in the case of PD0325901, it is preferably 0.3 μmol / L to 5.0 μmol / L, and more preferably 0.6 μmol / L to 3.0 μmol / L. This is because DNA is more demethylated by culturing in a medium containing PD0325901 at a concentration of 0.6 μmol / L or more. In one embodiment of the invention, it is desirable to add PD0325901 at 0.8 μmol / L to 2.0 μmol / L in order to minimize DNA mutations.
 プロテインキナーゼC阻害剤(PKC阻害剤ともいう)としては、特に限定されないが、例えば、Go6983(3-[1-[3-(ジメチルアミノ)プロピル]-5-メトキシ-1H-インドール-3-イル]-4-(1H-インドール-3-イル)-1H-ピロール-2,5-ジオン;CAS登録番号:133053-19-7)、GF109203X(3-(1-(3-ジメチルアミノ)プロピル)-1H-インドール-3-イル)-4-(1H-インドール-3-イル)-1H-ピロール-2,5-ジオン;CAS登録番号:133052-90-1)が挙げられる。なかでも、Go6983が好ましい。培地におけるPKC阻害剤の濃度は、PKC阻害剤の種類などに応じて適宜設定することができる。例えば、Go6983の場合には、好ましくは50nmol/L~100μmol/Lであり、より好ましくは100nmol/L~10μmol/Lである。 The protein kinase C inhibitor (also referred to as PKC inhibitor) is not particularly limited, but is, for example, Go6983 (3- [1- [3- (dimethylamino) propyl] -5-methoxy-1H-indole-3-yl). ] -4- (1H-Indole-3-yl) -1H-Pyrrole-2,5-dione; CAS registration number: 133053-19-7), GF109203X (3- (1- (3-dimethylamino) propyl)) -1H-indole-3-yl) -4- (1H-indole-3-yl) -1H-pyrrole-2,5-dione; CAS registration number: 133052-90-1). Of these, Go6983 is preferable. The concentration of the PKC inhibitor in the medium can be appropriately set according to the type of the PKC inhibitor and the like. For example, in the case of Go6983, it is preferably 50 nmol / L to 100 μmol / L, and more preferably 100 nmol / L to 10 μmol / L.
 Wntシグナル阻害剤としては、特に限定されないが、XAV939(tankyrase阻害剤)(CAS登録番号:284028-89-3)、IWP-1、IWP-2、IWP-3、IWP-4、IWR-1、53AH(以上porcupine阻害剤)、KY02111などの低分子化合物およびそれらの誘導体や、IGFBP4、DKK1、Wnt-C59などのタンパク質が挙げられる。なかでも、XAV939が好ましい。培地におけるWntシグナル阻害剤の濃度は、Wntシグナル阻害剤の種類などに応じて適宜設定することができる。例えば、XAV939の場合には、好ましくは50nmol/L~100μmol/Lであり、より好ましくは100nmol/L~10μmol/Lである。 The Wnt signal inhibitor is not particularly limited, but is limited to XAV939 (proteinase inhibitor) (CAS registration number: 284028-89-3), IWP-1, IWP-2, IWP-3, IWP-4, IWR-1, Examples thereof include low molecular weight compounds such as 53AH (above porcupine inhibitor) and KY02111 and their derivatives, and proteins such as IGFBP4, DKK1 and Wnt-C59. Of these, XAV939 is preferable. The concentration of the Wnt signal inhibitor in the medium can be appropriately set according to the type of the Wnt signal inhibitor and the like. For example, in the case of XAV939, it is preferably 50 nmol / L to 100 μmol / L, and more preferably 100 nmol / L to 10 μmol / L.
 GSK3-β阻害剤としては、特に限定されないが、CHIR99021(CAS登録番号:252927-06-9)が好ましい。培地におけるGSK3-β阻害剤の濃度は、GSK3-β阻害剤の種類などに応じて適宜設定することができる。例えば、CHIR99021の場合には、好ましくは0.01μmol/L~1.0μmol/Lであり、より好ましくは0.1μmol/L~0.5μmol/Lである。 The GSK3-β inhibitor is not particularly limited, but CHIR99021 (CAS Registry Number: 252927-06-9) is preferable. The concentration of the GSK3-β inhibitor in the medium can be appropriately set according to the type of the GSK3-β inhibitor and the like. For example, in the case of CHIR99021, it is preferably 0.01 μmol / L to 1.0 μmol / L, and more preferably 0.1 μmol / L to 0.5 μmol / L.
 STAT3活性化剤の具体例は上記の通りである。培地におけるSTAT3活性化剤の濃度は、STAT3活性化剤の種類などに応じて適宜設定することができる。例えば、LIFの場合には、好ましくは0.1ng/mL~100ng/mLであり、より好ましくは0.2ng/mL~20ng/mLである。 Specific examples of the STAT3 activator are as described above. The concentration of the STAT3 activator in the medium can be appropriately set according to the type of the STAT3 activator and the like. For example, in the case of LIF, it is preferably 0.1 ng / mL to 100 ng / mL, and more preferably 0.2 ng / mL to 20 ng / mL.
 第二培養工程における培養条件は、当業者には自明であり、一例としては、37℃、5%CO、5%O条件下を挙げることができる。特に、低酸素(5%O)の条件下で培養することが好ましい。なお、第一および第二培養工程において、培地はアスコルビン酸を含まないことが好ましい。 The culture conditions in the second culture step are self-evident to those skilled in the art, and examples thereof include 37 ° C., 5% CO 2 , and 5% O 2 conditions. In particular, it is preferable to culture under the condition of low oxygen (5% O 2 ). In the first and second culture steps, the medium preferably does not contain ascorbic acid.
 本発明の一実施態様において、第二培養工程は、さらに2つの培養工程に分けて実施することができる。2つの培養工程は、それぞれ、GSK3β阻害剤の添加の有無について異なる培地を使用することができる。すなわち、第二培養工程は、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で培養した後、この培地にGSK3β阻害剤を加えた培地でさらに培養を行う工程であってもよい。 In one embodiment of the present invention, the second culture step can be further divided into two culture steps. The two culture steps can each use different media with or without the addition of a GSK3β inhibitor. That is, in the second culture step, after culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor. , The step may be a step of further culturing in a medium in which a GSK3β inhibitor is added to this medium.
 第二培養工程における培養期間は特に限定されないが、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で、例えば、3から8日間、好ましくは4から7日間培養した後、この培地にGSK3β阻害剤を加えた培地で、例えば、3から10日間、好ましくは4から9日間培養することができる。 The culture period in the second culture step is not particularly limited, but includes a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor. After culturing in a medium for, for example, 3 to 8 days, preferably 4 to 7 days, the medium can be cultured in a medium containing a GSK3β inhibitor, for example, for 3 to 10 days, preferably 4 to 9 days. ..
 多能性幹細胞に対して、第一および第二培養工程を含む工程(a)を実施することにより、「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」を得ることができる。本発明の一実施態様において、「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」は、培養前の細胞と比較して特定の分化細胞に分化する能力が高い多能性幹細胞であるということができる。工程(a)を実施することにより得られた、「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」では、未分化状態は維持されており、且つ体細胞に初期化因子を導入して得られる未分化細胞と比較して特定の分化細胞に分化する能力が亢進されている。 By performing step (a) including the first and second culture steps on the pluripotent stem cells, "the ratio of 5-methylcytosine in the total cytosine of the DNA as compared with the pluripotent stem cells before culture". It is possible to obtain "pluripotent stem cells with reduced". In one embodiment of the present invention, "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA is reduced as compared with the pluripotent stem cells before culture" is specified as compared with the cells before culture. It can be said that it is a pluripotent stem cell having a high ability to differentiate into a differentiated cell. In the "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of the DNA was reduced as compared with the pluripotent stem cells before culture" obtained by carrying out the step (a), the undifferentiated state was It is maintained and has an enhanced ability to differentiate into specific differentiated cells as compared to undifferentiated cells obtained by introducing a reprogramming factor into somatic cells.
 工程(a)が完了したことは、メチル化度を測定し、DNAのメチル化度が低下したことで評価することができる。 Completion of step (a) can be evaluated by measuring the degree of methylation and reducing the degree of DNA methylation.
 また、工程(a)で得られる多能性幹細胞は、DNA変異の発生率が低いことが好ましい。DNA変異の発生率が低いことは、例えば、20番染色体長腕領域のコピー数を、常法(例えば、リアルタイムPCRなど)により測定することにより評価することができる。工程(a)で得られる多能性幹細胞における20番染色体長腕領域のコピー数は、好ましくは1.5~4.5であり、より好ましくは1.5~3.5であり、さらに好ましくは1.5~2.5である。 Further, it is preferable that the pluripotent stem cells obtained in step (a) have a low incidence of DNA mutations. The low incidence of DNA mutations can be evaluated, for example, by measuring the copy number of the long arm region of chromosome 20 by a conventional method (for example, real-time PCR). The copy number of the long arm region of chromosome 20 in the pluripotent stem cell obtained in the step (a) is preferably 1.5 to 4.5, more preferably 1.5 to 3.5, and even more preferably. Is 1.5 to 2.5.
 工程(a)で得られる多能性幹細胞の未分化性は、特に限定されないが、未分化性を定義する遺伝子の発現を測定することにより評価することができる。未分化性を定義する遺伝子の発現の測定方法は特に限定されないが、例えば、定量的RT-PCRにより測定を行うことができる。RT-PCRは、測定対象となるmRNAを鋳型としてcDNAを合成し、このcDNAを鋳型としてPCRにより増幅する方法である。定量的RT-PCRとしては、例えば、クエンチャー蛍光色素とレポーター蛍光色素が結合されたプライマーを用いてPCRを行って各サイクル毎に増幅産物量を定量し、検出される蛍光強度が急激に増大するサイクル数から、試料中の鋳型DNA量を測定する方法(リアルタイムPCR)等を挙げることができる。定量的RT-PCRの手法は本技術分野において周知であり、市販のキットを使用して実施することもできる。定量的RT-PCRによれば、遺伝子の発現量またはコピー数を、対照となるハウスキーピング遺伝子(例えば、GAPDH遺伝子)の発現量またはコピー数に対する相対値として測定することができる。なお、遺伝子のmRNAの測定は、通常のRT-PCRなどによりmRNAの増幅を行うことにより得た増幅産物をゲル電気泳動にかけ、染色後、バンド強度を測定することによっても行うことができる。あるいは、DNAチップを用いて遺伝子のmRNAまたはcDNAを検出または定量することもできる。 The undifferentiated state of the pluripotent stem cell obtained in the step (a) is not particularly limited, but can be evaluated by measuring the expression of the gene that defines the undifferentiated state. The method for measuring the expression of the gene that defines undifferentiated state is not particularly limited, but for example, it can be measured by quantitative RT-PCR. RT-PCR is a method of synthesizing cDNA using the mRNA to be measured as a template and amplifying it by PCR using this cDNA as a template. As quantitative RT-PCR, for example, PCR is performed using a primer in which a quencher fluorescent dye and a reporter fluorescent dye are bound to quantify the amount of amplification product in each cycle, and the detected fluorescence intensity increases sharply. From the number of cycles to be performed, a method of measuring the amount of template DNA in a sample (real-time PCR) and the like can be mentioned. Quantitative RT-PCR techniques are well known in the art and can also be performed using commercially available kits. According to quantitative RT-PCR, the expression level or the number of copies of a gene can be measured as a relative value to the expression level or the number of copies of a control housekeeping gene (for example, GAPDH gene). The mRNA of a gene can also be measured by subjecting the amplification product obtained by amplifying the mRNA by ordinary RT-PCR or the like to gel electrophoresis, staining, and then measuring the band intensity. Alternatively, DNA chips can be used to detect or quantify gene mRNA or cDNA.
 未分化性を定義する遺伝子としては、特に限定されないが、NANOG、POU5F1、LIN28、SOX2、DNMT3Bなどを挙げることができる。本発明の工程(a)で得られる多能性幹細胞における未分化性を定義する遺伝子の発現量が、対照群(例えば、工程(a)に供していない多能性幹細胞)における同じ遺伝子の発現量と同等であるか、またはそれ以上である場合に未分化性が維持されていると定義し、同等とは対照群における同じ遺伝子の発現量の80~110%とする。 The gene that defines undifferentiated state is not particularly limited, and examples thereof include NANOG, POU5F1, LIN28, SOX2, and DNMT3B. The expression level of the gene defining undifferentiation in the pluripotent stem cells obtained in the step (a) of the present invention is the expression of the same gene in the control group (for example, the pluripotent stem cells not subjected to the step (a)). It is defined that undifferentiated state is maintained when the amount is equal to or higher than the amount, and the equivalent is 80 to 110% of the expression level of the same gene in the control group.
 好ましくは、本発明の工程(a)で得られる多能性幹細胞におけるNANOGの発現量は、対照群におけるNANOGの発現量と同等であるか、またはそれ以上である。
 好ましくは、本発明の工程(a)で得られる多能性幹細胞におけるPOU5F1の発現量は、対照群におけるPOU5F1の発現量と同等であるか、またはそれ以上である。
 好ましくは、本発明の工程(a)で得られる多能性幹細胞におけるLIN28の発現量は、対照群におけるLIN28の発現量と同等であるか、またはそれ以上である。
 好ましくは、本発明の工程(a)で得られる多能性幹細胞におけるSOX2の発現量は、対照群におけるSOX2の発現量と同等であるか、またはそれ以上である。
 好ましくは、本発明の工程(a)で得られる多能性幹細胞におけるDNMT3Bの発現量は、対照群におけるDNMT3Bの発現量と同等であるか、またはそれ以上である。
Preferably, the expression level of NANOG in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of NANOG in the control group.
Preferably, the expression level of POU5F1 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of POU5F1 in the control group.
Preferably, the expression level of LIN28 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of LIN28 in the control group.
Preferably, the expression level of SOX2 in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of SOX2 in the control group.
Preferably, the expression level of DNMT3B in the pluripotent stem cells obtained in the step (a) of the present invention is equal to or higher than the expression level of DNMT3B in the control group.
 好ましくは、工程(a)で得られる多能性幹細胞におけるNANOGの発現コピー数は、GAPDHの発現コピー数に対する比率として、0.01以上、0.02以上、0.03以上、0.04以上、または0.05以上であってもよい。 Preferably, the number of expressed copies of NANOG in the pluripotent stem cell obtained in step (a) is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more as a ratio to the number of expressed copies of GAPDH. , Or may be 0.05 or more.
 好ましくは、工程(a)で得られる多能性幹細胞におけるPOU5F1の発現コピー数は、GAPDHの発現コピー数に対する比率として、0.06以上、0.07以上、0.08、0.09以上、0.1以上、または0.12以上であってもよい。 Preferably, the number of expressed copies of POU5F1 in the pluripotent stem cells obtained in step (a) is 0.06 or more, 0.07 or more, 0.08, 0.09 or more as a ratio to the number of expressed copies of GAPDH. It may be 0.1 or more, or 0.12 or more.
 好ましくは、工程(a)で得られる多能性幹細胞におけるLIN28の発現コピー数は、GAPDHの発現コピー数に対する比率として、0.003以上、0.004以上、0.005以上、0.006以上、0.007以上、または0.008以上であってもよい。 Preferably, the number of expressed copies of LIN28 in the pluripotent stem cell obtained in step (a) is 0.003 or more, 0.004 or more, 0.005 or more, 0.006 or more as a ratio to the number of expressed copies of GAPDH. , 0.007 or more, or 0.008 or more.
 工程(a)で得られる多能性幹細胞におけるSOX2の発現コピー数は、GAPDHの発現コピー数に対する比率として、好ましくは5.0×10-5以上であり、より好ましくは6.0×10-5以上であり、さらに好ましくは7.0×10-5以上であり、特に好ましくは8.0×10-5以上である。 The number of expressed copies of SOX2 in the pluripotent stem cells obtained in step (a) is preferably 5.0 × 10-5 or more, more preferably 6.0 × 10 as a ratio to the number of expressed copies of GAPDH. It is 5 or more, more preferably 7.0 × 10-5 or more, and particularly preferably 8.0 × 10-5 or more.
 工程(a)で得られる多能性幹細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力は、培養前の多能性幹細胞が有する、内胚葉、中胚葉および外胚葉の何れか一つ以上に分化する能力よりも向上している。
 より好ましくは、工程(a)で得られる多能性幹細胞が有する内胚葉および外胚葉に分化する能力は、培養前の多能性幹細胞が有する内胚葉および外胚葉に分化する能力よりもそれぞれ向上しているか、または工程(a)で得られる多能性幹細胞が有する内胚葉および中胚葉に分化する能力は、培養前の多能性幹細胞が有する内胚葉および中胚葉に分化する能力よりもそれぞれ向上している。
 特により好ましくは、工程(a)で得られる多能性幹細胞が有する内胚葉に分化する能力は、培養前の多能性幹細胞が有する内胚葉に分化する能力よりも向上している。
The ability of pluripotent stem cells obtained in step (a) to differentiate into any one or more of endoderm, mesoderm and ectoderm is possessed by pluripotent stem cells before culture, endoderm, mesoderm and It is improved over the ability to differentiate into any one or more of the ectoderm.
More preferably, the ability of the pluripotent stem cell obtained in step (a) to differentiate into endoderm and ectoderm is higher than the ability of the pluripotent stem cell before culture to differentiate into endoderm and ectoderm, respectively. The ability of pluripotent stem cells obtained in step (a) to differentiate into endoderm and mesoderm is greater than the ability of precultured pluripotent stem cells to differentiate into endoderm and mesoderm, respectively. It is improving.
Particularly preferably, the ability of the pluripotent stem cell obtained in step (a) to differentiate into an endoderm is higher than the ability of the pluripotent stem cell before culturing to differentiate into an endoderm.
 さらに好ましくは、工程(a)で得られる多能性幹細胞は、内胚葉、中胚葉および外胚葉の全てに分化することができる細胞である。 More preferably, the pluripotent stem cell obtained in step (a) is a cell capable of differentiating into all endoderm, mesoderm and ectoderm.
 本発明における特定の分化細胞は、好ましくは、内胚葉系譜の細胞であり、より好ましくは、肝細胞である。 The specific differentiated cell in the present invention is preferably a cell of endoderm lineage, and more preferably a hepatocyte.
 本発明において、細胞が有する内胚葉に分化する能力、細胞が有する中胚葉に分化する能力、および細胞が有する外胚葉に分化する能力は、細胞を内胚葉、中胚葉または外胚葉
に分化させ、上記の三胚葉系譜に分化させた細胞における各胚葉特異的遺伝子の発現を測定することにより評価することができる。
In the present invention, the ability of a cell to differentiate into an endoderm, the ability of a cell to differentiate into a mesodermal, and the ability of a cell to differentiate into an ectoderm can be used to differentiate a cell into an endoderm, a mesodermal or an ectoderm. It can be evaluated by measuring the expression of each germ layer-specific gene in the cells differentiated into the above three germ layer lineages.
 各胚葉特異的遺伝子の発現の測定方法は特に限定されないが、例えば、定量的RT-PCR法により測定を行うことができる。
 内胚葉特異的遺伝子としては、特に限定されないが、SOX17およびFOXA2などを挙げることができる。
 中胚葉特異的遺伝子としては、特に限定されないが、TおよびPDGFRAなどを挙げることができる。
 外胚葉特異的遺伝子としては、特に限定されないが、PAX6およびMAP2などを挙げることができる。
The method for measuring the expression of each germ layer-specific gene is not particularly limited, but for example, the measurement can be performed by a quantitative RT-PCR method.
The endoderm-specific gene is not particularly limited, and examples thereof include SOX17 and FOXA2.
The mesoderm-specific gene is not particularly limited, and examples thereof include T and PDGFRA.
The ectoderm-specific gene is not particularly limited, and examples thereof include PAX6 and MAP2.
 工程(a)で得られる多能性幹細胞が有する、内胚葉に分化する能力が、培養前の多能性幹細胞が有する内胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞を内胚葉に分化させた細胞におけるSOX17の発現量に対する、工程(a)で得られる多能性幹細胞を内胚葉に分化させた細胞におけるSOX17の相対発現量が、好ましくは2倍以上であり、より好ましくは3倍以上、5倍以上、10倍以上、15倍以上、20倍以上、25倍以上、30倍以上、35倍以上または40倍以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into endoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into endoderm, the ability to differentiate into endoderm is improved before culturing. The relative expression level of SOX17 in the cells obtained in step (a) differentiated into endoderm is preferably twice as much as the expression level of SOX17 in the cells obtained by differentiating the pluripotent stem cells into endoderm. More preferably, it may be 3 times or more, 5 times or more, 10 times or more, 15 times or more, 20 times or more, 25 times or more, 30 times or more, 35 times or more or 40 times or more. ..
 工程(a)で得られる多能性幹細胞が有する、内胚葉に分化する能力が、培養前の多能性幹細胞が有する内胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞を内胚葉に分化させた細胞におけるFOXA2の発現量に対する、工程(a)で得られる多能性幹細胞を内胚葉に分化させた細胞におけるFOXA2の相対発現量が、好ましくは2倍以上であり、より好ましくは3倍以上、5倍以上、8倍以上、9倍以上、10倍以上または12倍以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into endoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into endoderm, the ability to differentiate into endoderm is improved before culturing. The relative expression level of FOXA2 in the cells obtained by differentiating the pluripotent stem cells into the endoderm is preferably doubled with respect to the expression level of FOXA2 in the cells obtained by differentiating the pluripotent stem cells into the endoderm. The above, more preferably 3 times or more, 5 times or more, 8 times or more, 9 times or more, 10 times or more, or 12 times or more can be mentioned.
 工程(a)で得られる多能性幹細胞が有する、中胚葉に分化する能力が、培養前の多能性幹細胞が有する中胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞を中胚葉に分化させた細胞におけるTの発現量に対する、工程(a)で得られる多能性幹細胞を内胚葉に分化させた細胞におけるTの相対発現量が、好ましくは2以上であり、より好ましくは3以上、5以上、8以上、9以上、または10以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into mesoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into mesoderm, the ability to differentiate into mesoderm is improved before culturing. The relative expression level of T in the cells obtained in the step (a) differentiated into mesoderm is preferably 2 or more with respect to the expression level of T in the cells obtained by differentiating the pluripotent stem cells into mesoderm. It is more preferable that the number is 3 or more, 5 or more, 8 or more, 9 or more, or 10 or more.
 工程(a)で得られる多能性幹細胞が有する、中胚葉に分化する能力が、培養前の多能性幹細胞が有する中胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞を中胚葉に分化させた細胞におけるPDGFRAの発現量に対する、工程(a)で得られる多能性幹細胞を内胚葉に分化させた細胞におけるPDGFRAの相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、1.3以上または1.4以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into mesoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into mesoderm, the ability to differentiate into mesoderm is improved before culturing. The relative expression level of PDGFRA in the cells obtained by differentiating the pluripotent stem cells into mesoderm with respect to the expression level of PDGFRA in the cells obtained by differentiating the pluripotent stem cells into mesoderm is preferably 1. The case where it is 1 or more, more preferably 1.2 or more, 1.3 or more, or 1.4 or more can be mentioned.
 工程(a)で得られる多能性幹細胞が有する、外胚葉に分化する能力が、培養前の多能性幹細胞が有する外胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞に分化させた細胞におけるPAX6の発現量に対する、工程(a)で得られる多能性幹細胞を外胚葉に分化させた細胞におけるPAX6の相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、1.3以上、1.4以上または1.5以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into ectoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into ectoderm, the ability to differentiate into ectoderm is improved before culturing. The relative expression level of PAX6 in the ectoderm-differentiated cells of the pluripotent stem cells obtained in step (a) is preferably 1.1 or more with respect to the expression level of PAX6 in the cells differentiated into pluripotent stem cells. Yes, more preferably 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more.
 工程(a)で得られる多能性幹細胞が有する、外胚葉に分化する能力が、培養前の多能性幹細胞が有する外胚葉に分化する能力よりも向上している場合としては、培養前の多能性幹細胞を外胚葉に分化させた細胞におけるMAP2の発現量に対する、工程(a)で得られる多能性幹細胞を外胚葉に分化させた細胞におけるMAP2の相対発現量が、好ましくは1.1以上であり、より好ましくは1.2以上、または1.3以上である場合を挙げることができる。 When the ability of the pluripotent stem cells obtained in step (a) to differentiate into ectoderm is higher than the ability of the pluripotent stem cells before culturing to differentiate into ectoderm, the ability to differentiate into ectoderm is improved before culturing. The relative expression level of MAP2 in the cells obtained by differentiating the pluripotent stem cells into the ectoderm with respect to the expression level of MAP2 in the cells obtained by differentiating the pluripotent stem cells into the ectoderm is preferably 1. The case where it is 1 or more, more preferably 1.2 or more, or 1.3 or more can be mentioned.
[第三培養工程について]
 本発明の特定の実施態様において、本発明の工程(a)は、上記第二培養工程の後に、bFGFを含む未分化細胞を維持培養するための培地で培養する工程を含んでいてもよい。この工程を、本明細書中、第三培養工程という。第三培養工程は、本発明の分化細胞の製造方法の必須の工程ではない。「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」は、上記第一および第二培養工程を実施することにより、得られるためである。
[About the third culture process]
In a specific embodiment of the present invention, the step (a) of the present invention may include a step of culturing in a medium for maintaining and culturing undifferentiated cells containing bFGF after the second culturing step. This step is referred to as a third culture step in the present specification. The third culture step is not an essential step in the method for producing differentiated cells of the present invention. Because "pluripotent stem cells in which the ratio of 5-methylcytosine in total cytosine of DNA is reduced as compared with pluripotent stem cells before culturing" can be obtained by carrying out the above-mentioned first and second culturing steps. Is.
 上記第一および第二培養工程を実施して得られた「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」は、培養前の多能性幹細胞に比較して、増殖速度が遅いため、同じ収率を得るために時間とコストがかかる場合がある。上記第一および第二培養工程を実施して得られた「培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞」を、第三培養工程において、さらに培養することにより、特定の分化細胞に分化する能力が高い状態を維持しつつ、増殖能を亢進させることができる。 The "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing" obtained by carrying out the above first and second culturing steps were obtained before culturing. Due to the slower growth rate compared to pluripotent stem cells, it may take time and cost to obtain the same yield. The third "pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of DNA was reduced as compared with the pluripotent stem cells before culturing" obtained by carrying out the first and second culture steps. By further culturing in the culturing step, it is possible to enhance the proliferative ability while maintaining a state in which the ability to differentiate into specific differentiated cells is high.
 未分化細胞を維持培養するための培地としては、mTeSR(登録商標)1(Stemcell Technologies)またはStemFlex(登録商標)などの市販の培地を使用することができる。あるいはまた、例えば、基礎培地として、DMEM(Dulbecco Modified Eagle medium)、DMEMとF12の混合培地(DMEM/F12=1:1)、KnockoutTM D-MEM(Invitrogen社)などが挙げられ、代替血清(KSR;KnockoutTM Serum Replacement(Invitrogen社))、ウシ胎児血清(FBS)、非必須アミノ酸(NEAA)、L-グルタミン、2-メルカプトエタノール、抗生物質(例えば、ストレプトマイシン、ペニシリン、ピューロマイシン、マイトマイシン)、bFGF等の添加成分を任意に組み合わせて、上記いずれかの基礎培地に添加したものも、未分化細胞を維持培養の際の培地として、挙げることができる。維持培養の際の培地は、アスコルビン酸を含まないことが好ましい。維持培養の培養条件は、37℃、5%CO、10%O条件下などが好ましいが、特に限定されない。 As a medium for maintaining and culturing undifferentiated cells, a commercially available medium such as mTeSR (registered trademark) 1 (Stemcell Technologies) or StemFlex (registered trademark) can be used. Alternatively, for example, as the basal medium, DMEM (Dulvecco Modified Eagle medium), a mixed medium of DMEM and F12 (DMEM / F12 = 1: 1), Knockout TM D-MEM (Invitrogen), and the like can be mentioned as alternative sera (DMEM). KSR; Knockout TM Medium Replacement (Invitrogen)), fetal bovine serum (FBS), non-essential amino acids (NEAA), L-glutamine, 2-mercaptoethanol, antibiotics (eg, streptomycin, penicillin, puromycin, mitomycin), An arbitrary combination of additive components such as bFGF and addition to any of the above basal media can also be mentioned as a medium for maintenance culture of undifferentiated cells. The medium for maintenance culture preferably does not contain ascorbic acid. The culture conditions for the maintenance culture are preferably 37 ° C., 5% CO 2 , 10% O 2 and the like, but are not particularly limited.
 未分化細胞を維持培養するための培地での培養期間は、特に限定されないが、例えば、1から3週間、好ましくは1から2週間培養することができる。1から3週間あるいは1から2週間の培養期間であれば、特定の分化細胞に分化する能力を維持しつつ、増殖能を亢進させることができる。この培養期間に、継代を行うことができる。継代培養を行うことにより、細胞密度を未分化性の維持に適した状態に保つためである。 The culture period in the medium for maintaining and culturing undifferentiated cells is not particularly limited, but can be cultured, for example, for 1 to 3 weeks, preferably 1 to 2 weeks. During the culture period of 1 to 3 weeks or 1 to 2 weeks, the proliferative ability can be enhanced while maintaining the ability to differentiate into specific differentiated cells. Subculture can be performed during this culture period. This is to maintain the cell density in a state suitable for maintaining undifferentiated state by performing subculture.
[工程(b)]
 本発明の工程(b)は、工程(a)で得られる多能性幹細胞を、サイトカインを含む培地で培養することにより、特定の分化細胞を得る工程(b)を含む。工程(b)により得られる分化細胞の種類は、特に限定されない。所望により、内胚葉系譜の細胞、中胚葉系譜の細胞、または外胚葉系譜の細胞に分化誘導することができ、好ましくは内胚葉系譜の細胞、例えば肝細胞に分化誘導することができる。
[Step (b)]
The step (b) of the present invention includes a step (b) of obtaining specific differentiated cells by culturing the pluripotent stem cells obtained in the step (a) in a medium containing a cytokine. The type of differentiated cells obtained in step (b) is not particularly limited. If desired, differentiation can be induced into endoderm lineage cells, mesoderm lineage cells, or ectoderm lineage cells, and preferably into endoderm lineage cells, such as hepatocytes.
 各種細胞への分化誘導の培養条件(培養温度など)は、動物細胞の培養において一般に採用されている条件を採用することができる。すなわち、例えば37℃、5%COの環境下で培養することができる。また、基礎培地として、イスコフ改変ダルベッコ培地(IMDM)(GIBCO社等)、ハムF12培地(HamF12)(SIGMA社、Gibco社等)、ダルベッコ改変イーグル培地(D-MEM)(ナカライテスク株式会社、シグマ社、Gibco社等)、グラスゴー基本培地(Gibco社等)、RPMI1640培地等を用いることができる。二種以上の基礎培地を併用することにしてもよい。培地に添加可能な成分の例としてウシ血清アルブミン(BSA)、抗生物質、2-メルカプトエタノール、PVA、非必須アミノ酸(NEAA)、インスリン、トランスフェリン、セレニウムを挙げることができる。 As the culture conditions (culture temperature, etc.) for inducing differentiation into various cells, conditions generally adopted in the culture of animal cells can be adopted. That is, it can be cultured in an environment of, for example, 37 ° C. and 5% CO 2 . In addition, as basal medium, Iskov-modified Dulbecco medium (IMDM) (GIBCO, etc.), Ham F12 medium (HamF12) (SIGMA, Gibco, etc.), Dulbecco-modified Eagle's medium (D-MEM) (Nacalai Tesque, Inc., Sigma). , Gibco, etc.), Grasgo basic medium (Gibco, etc.), RPMI1640 medium, and the like can be used. Two or more kinds of basal media may be used in combination. Examples of components that can be added to the medium include bovine serum albumin (BSA), antibiotics, 2-mercaptoethanol, PVA, non-essential amino acids (NEAA), insulin, transferrin, and selenium.
 工程(b)の培地は、上記基礎培地に、サイトカインを含むことができる。サイトカインの種類は、特に限定されないがアクチビンA、BMP4、bFGF、HGF、Oncostatin M、VEGF、IL-11、IL-6、IGF-1、SCF、TPO、およびTGF-β等を挙げることができる。肝細胞の分化誘導をする場合には、例えばアクチビンA、BMP4、bFGF、HGF、およびOncostatin Mからなる群から選択される少なくとも1つを含むことができる。工程(b)の培養期間は、1から4週間であってもよく、好ましくは1から3週間である。典型的には培養皿などを用いて二次元的に細胞を培養する。但し、ゲル状の培養基材あるいは3次元培養プレートなどを用いた3次元培養を実施することにしてもよい。 The medium of step (b) can contain cytokines in the basal medium. The type of cytokine is not particularly limited, and examples thereof include activin A, BMP4, bFGF, HGF, Oncostatin M, VEGF, IL-11, IL-6, IGF-1, SCF, TPO, and TGF-β. When inducing differentiation of hepatocytes, for example, at least one selected from the group consisting of activin A, BMP4, bFGF, HGF, and Oncostatin M can be included. The culture period of step (b) may be 1 to 4 weeks, preferably 1 to 3 weeks. Typically, cells are two-dimensionally cultured using a culture dish or the like. However, three-dimensional culture may be carried out using a gel-like culture substrate, a three-dimensional culture plate, or the like.
 分化誘導する方法は、特に限定されない。例えば、市販のStemDiff(登録商標)Trilineage Differentiation Kit(Stemcell Technologies)を用いて、内胚葉、中胚葉および外胚葉のそれぞれに分化誘導することができる。 The method of inducing differentiation is not particularly limited. For example, a commercially available StemDiff (registered trademark) Trillineage Differentiation Kit (Stemcell Technologies) can be used to induce differentiation into endoderm, mesoderm and ectoderm, respectively.
 また、肝細胞への分化誘導は、後記する実施例4に記載の条件で細胞を培養することにより行うことができる。具体的には、細胞をmTeSR(登録商標)1(Stemcell Technologies)またはStemFlex(登録商標)に播種し、1日目~5日目は、B27(登録商標)およびActivin Aを含む培地で培養し、6日目から10日目は、B27(登録商標)、BMP4、およびbFGFを含む培地で培養し、11日目から15日目は、B27(登録商標)およびHGFを含む培地で培養し、16日目から20日目は、Oncostatin Mを含むHBM(登録商標)で培養することにより、肝細胞に分化誘導することができる。なお、肝細胞への分化誘導は、成熟化肝細胞のマーカーであるASGPR1の発現をフローサイトメーターにて解析することにより確認することができる。また、肝細胞への分化誘導は培養上清中に分泌されたアルブミンの量を測定することによっても確認することができる。 Further, the induction of differentiation into hepatocytes can be performed by culturing the cells under the conditions described in Example 4 described later. Specifically, cells are seeded in mTeSR® 1 (Stemcell Technologies) or StemFlex® and cultured in a medium containing B27® and Activin A on the 1st to 5th days. , 6th to 10th days were cultured in a medium containing B27®, BMP4, and bFGF, and 11th to 15th days were cultured in a medium containing B27® and HGF. From the 16th day to the 20th day, differentiation can be induced into hepatocytes by culturing in HBM (registered trademark) containing Oncostatin M. The induction of differentiation into hepatocytes can be confirmed by analyzing the expression of ASGPR1, which is a marker of mature hepatocytes, with a flow cytometer. Induction of differentiation into hepatocytes can also be confirmed by measuring the amount of albumin secreted in the culture supernatant.
 ASGPR1の発現について、具体的には、後記の実施例4の手順に準じて、分化誘導後20日目の細胞について、BD PharmingenTM PE Mouse Anti-ASGPR1抗体(日本ベクトン・ディッキンソン株式会社)にて染色し、フローサイトメトリーAttuneTM NxT (Thermo Fisher Scientific社)にてASGPR1の陽性率を解析すればよい。上記方法で解析したASGPR1の陽性率は、好ましくは5%以上、6%以上、7%以上、8%以上、9%以上であり、より好ましくは10%以上、11%以上、12%以上、13%以上、14%以上であり、さらに好ましくは15%以上、16%以上、17%以上、18%以上、19%以上であり、特に好ましくは20%以上、21%以上、22%以上、23%以上、24%以上、または25%以上である。本発明の工程(a)を行うことにより、工程(a)を行わない場合と比べて、ASGPR1の陽性率が1.1~100倍上昇することが好ましく、1.2~100倍上昇することがさらに好ましく、2~50倍上昇することが最も好ましい。 Regarding the expression of ASGPR1, specifically, according to the procedure of Example 4 described later, the cells 20 days after the induction of differentiation were subjected to BD Pharmingen TM PE Mouse Anti-ASGPR1 antibody (Becton Dickinson Japan, Inc.). The cells may be stained and the positive rate of ASGPR1 may be analyzed by flow cytometry Attune TM NxT (Thermo Fisher Scientific). The positive rate of ASGPR1 analyzed by the above method is preferably 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, and more preferably 10% or more, 11% or more, 12% or more. 13% or more, 14% or more, more preferably 15% or more, 16% or more, 17% or more, 18% or more, 19% or more, particularly preferably 20% or more, 21% or more, 22% or more, 23% or more, 24% or more, or 25% or more. By performing the step (a) of the present invention, the positive rate of ASGPR1 is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and it is most preferable that the increase is 2 to 50 times.
 アルブミンの分泌量について、具体的には、後記の実施例4の手順に準じて、分化誘導後20日目の培養上清を回収し、培養上清中に分泌されたアルブミン量をELISA Starter Accessory Kit、Enzyme Substrate、TMB、Human Albumin ELISA Quantitation Set(Bethyl Laboratories, Inc)を用いてEnSpireTMプレートリーダー(PerkinElmer)により定量すればよい。上記方法で解析したアルブミンの分泌量は、30ng/mL以上、40ng/mL以上、50ng/mL以上、60ng/mL以上、70ng/mL以上、80ng/mL以上、90ng/mL以上、100ng/mL以上、110ng/mL以上、120ng/mL以上、130ng/mL以上、140ng/mL以上、150ng/mL以上、160ng/mL以上、170ng/mL以上、180ng/mL以上、190ng/mL以上、200ng/mL以上、250ng/mL以上、300ng/mL以上、400ng/mL以上、または500ng/mL以上であってもよい。本発明の工程(a)を行うことにより、工程(a)を行わない場合と比べて、アルブミンの分泌量が1.1~100倍上昇することが好ましく、1.2~100倍上昇することがさらに好ましく、2~50倍上昇することがより好ましく、2~10倍上昇することが特に好ましい。 Regarding the amount of albumin secreted, specifically, according to the procedure of Example 4 described later, the culture supernatant 20 days after the induction of differentiation was collected, and the amount of albumin secreted in the culture supernatant was measured by ELISA Starter Accessory. It may be quantified by an EnSpire TM plate reader (PerkinElmer) using a Kit, Enzyme Substrate, TMB, Human Albumin ELISA Quantation Set (Bethyl Laboratories, Inc). The amount of albumin secreted analyzed by the above method is 30 ng / mL or more, 40 ng / mL or more, 50 ng / mL or more, 60 ng / mL or more, 70 ng / mL or more, 80 ng / mL or more, 90 ng / mL or more, 100 ng / mL or more. , 110 ng / mL or more, 120 ng / mL or more, 130 ng / mL or more, 140 ng / mL or more, 150 ng / mL or more, 160 ng / mL or more, 170 ng / mL or more, 180 ng / mL or more, 190 ng / mL or more, 200 ng / mL or more , 250 ng / mL or more, 300 ng / mL or more, 400 ng / mL or more, or 500 ng / mL or more. By performing the step (a) of the present invention, the amount of albumin secreted is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and the increase is more preferably 2 to 50 times, and particularly preferably 2 to 10 times.
 また、血液細胞への分化誘導は、国際特許出願PCT/JP2019/003336の実施例2に記載の条件で細胞を培養することにより行うことができる。具体的には、1日目は、BMP4およびY27634(ROCK阻害剤)を含む培地で培養し、2日目にbFGFおよびBMP4を添加し、3日目に細胞がスフェロイド状のコロニーを形成していることを確認して、SB431542(TGF-β受容体阻害剤)、CHIR99021(GSK3阻害剤)、bFGFおよびBMP4を含む培地で培養し(3日目および4日目)、5日目~6日目は、VEGFおよびbFGFを含む培地で培養し、7日目~10日目はVEGF、bFGF、IL-6、IGF-1、IL-11およびSCFを含む培地で培養することにより、血液細胞に分化誘導することができる。なお、血液細胞への分化誘導は、血液細胞のマーカーであるCD34とKDRの発現をフローサイトメーターにて解析することにより確認することができる。 Further, the induction of differentiation into blood cells can be performed by culturing the cells under the conditions described in Example 2 of the international patent application PCT / JP2019 / 003336. Specifically, on the first day, the cells were cultured in a medium containing BMP4 and Y27634 (ROCK inhibitor), bFGF and BMP4 were added on the second day, and the cells formed spheroid-like colonies on the third day. After confirming that, the cells were cultured in a medium containing SB431542 (TGF-β receptor inhibitor), CHIR99021 (GSK3 inhibitor), bFGF and BMP4 (3rd and 4th days), 5th to 6th days. Eyes are cultured in a medium containing VEGF and bFGF, and on days 7 to 10, they are cultured in a medium containing VEGF, bFGF, IL-6, IGF-1, IL-11 and SCF to give blood cells. Differentiation can be induced. The induction of differentiation into blood cells can be confirmed by analyzing the expression of blood cell markers CD34 and KDR with a flow cytometer.
 心筋細胞への分化誘導は、例えば、国際特許出願PCT/JP2019/003336の実施例5に記載の条件で細胞を培養することにより行うことができる。具体的には、細胞を、PSC Cardiomyocyte Differentiation Kit(Thermo Fisher Scientific社)を用いて手順書に従い、心筋細胞に分化誘導することができる。心筋細胞への分化誘導は、心筋細胞マーカーであるCardiac Troponin T(cTnT)の発現をフローサイトメトリーで測定することにより確認することができる。国際特許出願PCT/JP2019/003336の実施例5の手順に準じて、分化誘導後14日目の細胞について、Alexa Fluor647 Mouse Anti-Cardiac Troponin T抗体(BD Pharmingen)にて細胞内を染色し、フローサイトメトリーAttune NxT(Thermo Fisher Scientific社)にてcTnTの陽性率を解析すればよい。上記方法で解析したcTnTの陽性率は、好ましくは5%以上であり、より好ましくは10%以上であり、さらに好ましくは20%以上であり、さらに一層好ましくは30%以上であり、特に好ましくは40%以上であり、最も好ましくは45%以上である。本発明の工程(a)を行うことにより、工程(a)を行わない場合と比べて、cTnTの陽性率が1.1~100倍上昇することが好ましく、1.2~100倍上昇することがさらに好ましく、2~50倍上昇することが最も好ましい。 Induction of differentiation into cardiomyocytes can be performed, for example, by culturing the cells under the conditions described in Example 5 of the international patent application PCT / JP2019 / 003336. Specifically, cells can be induced to differentiate into cardiomyocytes using a PSC Cardiomyote Difference Kit (Thermo Fisher Scientific) according to a procedure manual. Induction of differentiation into cardiomyocytes can be confirmed by measuring the expression of Cardiac Troponin T (cTnT), which is a cardiomyocyte marker, by flow cytometry. According to the procedure of Example 5 of the international patent application PCT / JP2019 / 03336, the cells 14 days after the induction of differentiation were stained with Alexa Fluor647 Mouse Anti-Cardiac Troponin T antibody (BD Harmingen) and flowed. The positive rate of cTnT may be analyzed by cytometry Attune NxT (Thermo Fisher Scientific). The positive rate of cTnT analyzed by the above method is preferably 5% or more, more preferably 10% or more, further preferably 20% or more, still more preferably 30% or more, and particularly preferably. It is 40% or more, and most preferably 45% or more. By performing the step (a) of the present invention, the positive rate of cTnT is preferably increased 1.1 to 100 times, and 1.2 to 100 times, as compared with the case where the step (a) is not performed. Is more preferable, and it is most preferable that the increase is 2 to 50 times.
 神経幹細胞への分化誘導は、例えば、国際特許出願PCT/JP2019/003336の実施例6に記載の条件で細胞を培養することにより行うことができる。具体的には、細胞をPSC Neural Induction Medium(Thermo Fisher Sciecntific)を用いて手順書に従い、神経幹細胞に分化誘導することができる。神経幹細胞への分化誘導は、例えば、神経幹細胞のMarkerであるSOX1蛋白質を免疫染色することにより確認することができる。SOX1蛋白質を免疫染色して輝度を定量化した場合、本発明の工程(a)を行うことにより、工程(a)を行わない場合と比べて、輝度が1.1~10倍上昇することが好ましく、1.5~5倍上昇することがさらに好ましい。 Induction of differentiation into neural stem cells can be performed, for example, by culturing the cells under the conditions described in Example 6 of the international patent application PCT / JP2019 / 003336. Specifically, the cells can be induced to differentiate into neural stem cells using a PSC Natural Indication Medium (Thermo Fisher Scientific) according to a procedure manual. Induction of differentiation into neural stem cells can be confirmed, for example, by immunostaining the SOX1 protein, which is a marker of neural stem cells. When the SOX1 protein is immunostained to quantify the brightness, the brightness can be increased by 1.1 to 10 times by performing the step (a) of the present invention as compared with the case where the step (a) is not performed. It is preferable, and it is more preferable that the increase is 1.5 to 5 times.
 工程(a)で得られる多能性幹細胞は、内胚葉系細胞分化条件にて培養することにより、内胚葉系細胞へ分化することができる。内胚葉系細胞としては、特に限定されないが、例えば、消化器系細胞(肝細胞、肝類洞内皮細胞、クッパー細胞、肝星細胞、ピット細胞、胆管細胞、中皮細胞、膵内分泌細胞、腺房細胞、導管細胞、吸収細胞、杯細胞、パネート細胞、腸内分泌細胞等)、肺、甲状腺等の組織の細胞が挙げられる。 The pluripotent stem cells obtained in step (a) can be differentiated into endoderm cells by culturing under endoderm cell differentiation conditions. The endoblast lineage cells are not particularly limited, but for example, digestive system cells (hepatocytes, hepatic sinus endothelial cells, cupper cells, hepatic stellate cells, pit cells, bile duct cells, mesenteric cells, pancreatic endocrine cells, glands). Tuft cells, conduit cells, resorbing cells, cup cells, panate cells, intestinal endocrine cells, etc.), cells of tissues such as lung and thyroid.
 工程(a)で得られる多能性幹細胞は、上記以外の中胚葉系細胞分化条件にて培養することにより、中胚葉系細胞へ分化することができる。中胚葉系細胞としては、特に限定されないが、血球・リンパ球系細胞(造血幹細胞、赤血球、血小板、マクロファージ、顆粒球、ヘルパーT細胞、キラーT細胞、Bリンパ球等)、脈管系細胞(血管内皮細胞等)、心筋細胞(例えば心房筋細胞、心室筋細胞等)、骨芽細胞、骨細胞,軟骨細胞,腱細胞,脂肪細胞、骨格筋細胞、平滑筋細胞等が挙げられる。 The pluripotent stem cells obtained in step (a) can be differentiated into mesoderm cells by culturing under conditions other than the above for mesoderm cell differentiation conditions. The mesophyll lineage cells are not particularly limited, but are blood cell / lymphocyte lineage cells (hemogenic stem cells, erythrocytes, platelets, macrophages, granulocytes, helper T cells, killer T cells, B lymphocytes, etc.), vasculature cells (vascular lineage cells, etc.) (Vascular endothelial cells, etc.), myocardial cells (for example, atrial muscle cells, ventricular muscle cells, etc.), osteoblasts, bone cells, cartilage cells, tendon cells, fat cells, skeletal muscle cells, smooth muscle cells, and the like.
 工程(a)で得られる多能性幹細胞は、上記以外の外胚葉系細胞分化条件にて培養することにより、外胚葉系細胞へ分化することができる。外胚葉系細胞としては、特に限定されないが、神経系細胞、感覚器細胞(水晶体、網膜、内耳など)、皮膚表皮細胞、毛包などが挙げられる。 The pluripotent stem cells obtained in step (a) can be differentiated into ectoderm cells by culturing under ectoderm cell differentiation conditions other than the above. The ectoderm cells include, but are not limited to, nervous system cells, sensory organ cells (lens, retina, inner ear, etc.), skin epidermal cells, hair follicles, and the like.
 本発明において、工程(a)で得られる多能性幹細胞を用いて分化誘導した細胞は、各種疾患の治療用医薬品候補化合物のスクリーニングに用いることができる。例えば、単独でまたは他の薬剤と組み合わせて、医薬品候補化合物を、分化誘導した細胞に添加することによって、細胞の形態または機能的な変化、各種因子の増減、遺伝子発現プロファイリング等を検出することにより、評価を行うことができる。ここで、細胞は、治療対象となる疾患と同様の表現型を有する細胞が好ましく、より好ましくは、疾患に罹患した患者に由来する体細胞を用いて本発明の方法により製造した細胞から分化誘導した細胞である。 In the present invention, the cells induced to differentiate using the pluripotent stem cells obtained in step (a) can be used for screening drug candidate compounds for the treatment of various diseases. For example, by adding a drug candidate compound alone or in combination with other drugs to cells in which differentiation has been induced, by detecting changes in cell morphology or function, increase / decrease in various factors, gene expression profiling, etc. , Can be evaluated. Here, the cells are preferably cells having the same phenotype as the disease to be treated, and more preferably, differentiation induction from cells produced by the method of the present invention using somatic cells derived from a patient suffering from the disease. It is a cell.
 本発明による化合物処理を多能性幹細胞に施すこと(即ち、体細胞に初期化因子を導入して得られる未分化細胞に対して、上記工程(a)を実施すること)は、多能性幹細胞としての未分化性を損なわせるものではない。 Applying the compound treatment according to the present invention to pluripotent stem cells (that is, performing the above step (a) on undifferentiated cells obtained by introducing a reprogramming factor into somatic cells) is pluripotent. It does not impair the undifferentiated nature of stem cells.
 後記の実施例において、本発明による化合物処理を多能性幹細胞に施すこと(即ち、体細胞に初期化因子を導入して得られる未分化細胞に対して、上記工程(a)を実施すること)で、処理した細胞は未処理細胞と比較して、解析した全7種類の多能性幹細胞株において、肝細胞への分化誘導効率が上昇した。以上より、分化優良株を選別する労力やコスト削減が可能となった。好ましくは、iPS細胞からの肝臓細胞への分化誘導効率は、肝細胞マーカーASGPR1の陽性率により測定することができる。 In the examples described below, the compound treatment according to the present invention is applied to pluripotent hepatocytes (that is, the above step (a) is performed on undifferentiated cells obtained by introducing a reprogramming factor into somatic cells. ), The treated cells had an increased efficiency of inducing differentiation into hepatocytes in all seven pluripotent stem cell lines analyzed, as compared with the untreated cells. From the above, it has become possible to reduce the labor and cost for selecting excellent strains for differentiation. Preferably, the efficiency of inducing differentiation of iPS cells into liver cells can be measured by the positive rate of the hepatocyte marker ASGPR1.
 本発明において、本発明の製造方法により製造された分化細胞から組織を作製して、再生医療の分野で使用することができる。作製したiPS細胞由来の肝臓細胞は各種肝疾患の治療に適用可能である。特に、障害された(機能不全を含む)肝臓組織の再生・再建用の材料としての利用が想定され、再生医療への貢献が期待できる。 In the present invention, a tissue can be prepared from the differentiated cells produced by the production method of the present invention and used in the field of regenerative medicine. The prepared iPS cell-derived liver cells can be applied to the treatment of various liver diseases. In particular, it is expected to be used as a material for regeneration / reconstruction of impaired (including dysfunctional) liver tissue, and is expected to contribute to regenerative medicine.
 本発明の分化誘導方法で作成したiPS細胞由来の肝細胞の別の用途として各種のin vitroアッセイが提供される。例えば、iPS細胞由来肝細胞を用いて被験物質の代謝について試験することができる。即ち、本発明は被験物質の代謝を評価する方法を提供する。被験物質には様々な分子サイズの有機化合物または無機化合物を用いることができる。医薬や栄養食品等の既存成分あるいは候補成分も好ましい被験物質である。植物抽出液、細胞抽出液、培養上清などを被験物質として用いてもよい。またこれらの2種類以上を組み合わせて用いてもよい。 Various in vitro assays are provided as another use of iPS cell-derived hepatocytes prepared by the method for inducing differentiation of the present invention. For example, iPS cell-derived hepatocytes can be used to test the metabolism of the test substance. That is, the present invention provides a method for evaluating the metabolism of a test substance. Organic compounds or inorganic compounds of various molecular sizes can be used as the test substance. Existing or candidate ingredients such as pharmaceuticals and nutritional foods are also preferred test substances. A plant extract, a cell extract, a culture supernatant, or the like may be used as a test substance. Moreover, you may use these two or more types in combination.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples.
(実施例1)
 ヒトiPS細胞の特定細胞への分化能を改善および向上させるために以下の実験を行った。
[方法]
<細胞>
 ヒトiPS細胞株について、AからG株は、FUJIFILM Cellular Dynamics International(FCDI)より分譲を受けた。
<細胞培養および化合物処理>
 ヒトiPS細胞は、Matrigel(マトリゲル)(登録商標)(Corning)をコートした6ウェルプレート上でStemFlex(登録商標)(Thermo Fisher Scientific社)培地にて37℃、5%CO、10%O条件下で維持培養した。
(Example 1)
The following experiments were conducted to improve and improve the ability of human iPS cells to differentiate into specific cells.
[Method]
<Cell>
For human iPS cell lines, strains A to G were sold by FUJIFILM Cellular Dynamics International (FCDI).
<Cell culture and compound treatment>
Human iPS cells are placed on a 6-well plate coated with Matrigel® (Corning) in StemFlex® (Thermo Fisher Scientific) medium at 37 ° C., 5% CO 2 , 10% O 2 It was maintained and cultured under the conditions.
1日目:培養中のヒトiPS細胞をTrypLETM Select(Invitrogen)で37℃、5分間の処理により剥離し、シングルセル化した。このヒトiPS細胞を、マウス胎仔由来線維芽細胞(MEF、Lonza)を0.5x10cells/well(6well plate)で播種済またはマトリゲルコート済のウェルに1x10cells/well播種し、表1の培地1で培養した。以降14日目まで37℃、5%CO、5%O条件下で培養した。
2~3日目:新たな培地1に半量交換した。
4~8日目:表1の培地2に培地を交換し、8日目まで1日おきに同培地に交換した。
9日目~14日目:TrypLETM Selectで37℃で5分処理して細胞を剥離し、培地2にCHIR99021(0.3μmol/L、Wako)を添加した培地3でMEFを播種済またはマトリゲル(登録商標)コートしたプレートにて約2回継代培養を1週間かけて行った。以降、培地3により、細胞を37℃、5%CO、5%O条件下で維持培養した。
Day 1: Human iPS cells in culture were exfoliated by treatment with TrypLE TM Select (Invitrogen) at 37 ° C. for 5 minutes to form single cells. The human iPS cells were seeded with mouse embryo-derived fibroblasts (MEF, Lonza) at 0.5x10 6 cells / well ( 6 well plate) or 1x10 5 cells / well seeded in Matrigel-coated wells, as shown in Table 1. It was cultured in medium 1. After that, the cells were cultured under 37 ° C., 5% CO 2 , and 5% O 2 conditions until the 14th day.
Days 2-3: Half the amount was replaced with fresh medium 1.
Days 4 to 8: The medium was replaced with the medium 2 in Table 1, and the medium was replaced with the same medium every other day until the 8th day.
9th to 14th days: Treated with TripLE TM Select at 37 ° C. for 5 minutes to detach cells, and MEF was seeded or Matrigel was seeded in medium 3 to which CHIR99021 (0.3 μmol / L, Wako) was added to medium 2. (Registered trademark) Subculture was carried out about twice on coated plates over a week. Subsequently, the cells were maintained and cultured in medium 3 under the conditions of 37 ° C., 5% CO 2 , and 5% O 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その後、上記培地3で培養した細胞をマトリゲルコートしたプレート上に継代し、StemFlexまたはmTeSR1培地で、37℃、5%CO、10%O条件下で、約2週間継代培養を行った。 Then, the cells cultured in the above medium 3 were subcultured on a plate coated with Matrigel, and subcultured in StemFlex or mTeSR1 medium under the conditions of 37 ° C., 5% CO 2 , and 10% O 2 for about 2 weeks. It was.
 以下の実施例において、表1の培地1~3で培養したヒトiPS細胞を「処理済」のiPS細胞といい、Matrigel(マトリゲル)(登録商標)(Corning)をコートした6ウェルプレート上でStemFlex(登録商標)(Thermo Fisher Scientific社)培地にて維持培養したが、表1の培地1~3では培養していない細胞を「未処理」のiPS細胞という。 In the following examples, human iPS cells cultured in the media 1 to 3 of Table 1 are referred to as "treated" iPS cells, and are StemFlex on a 6-well plate coated with Matrigel (registered trademark) (Corning). (Registered Trademark) (Thermo Fisher Scientific) Cells that have been maintained and cultured in medium but not cultured in media 1 to 3 in Table 1 are referred to as "untreated" iPS cells.
(実施例2)
<DNAメチル化度の変化>
 A株について未処理または処理済のiPS細胞からMEFを除去するために、細胞をTrypLETM Select(Gibco)にて37℃5分間反応させプレートから剥離し、Anti-Feeder Cells-PE, mouse monoclonal (Myltenyi)抗体を用いて染色した後、セルソーター(FACSAriaIII)にてiPS分画であるMEF陰性分画を分取し、PureLink(登録商標) Genome DNA Mini Kit (Thermo Fisher Scientific)にてDNAを抽出した。このDNAを、EZ-DNA MethylationTM Kit (ZYMO RESEACH)にてBisulfite変換し、Infinium(登録商標) Methylation EPIC BeadsChip Kit(illumina)にてメチル化アレイ解析を実施した。解析結果は、メチル化アレイ用解析ソフトGenomeStudio(illumina)によりメチル化度((β値)=5メチルシトシン/全シトシン)を算出し、アレイ内の内部標準用プローブにて測定された値を用いて正規化した。
(Example 2)
<Changes in DNA methylation>
In order to remove MEF from untreated or treated iPS cells for strain A, the cells were reacted with TripLE TM Select (Gibco) at 37 ° C. for 5 minutes, detached from the plate, and antibody-Feeder Cells-PE, mouse monoclonal ( After staining with Myltenyi) antibody, the MEF negative fraction, which is an iPS fraction, was fractionated with a cell sorter (FACSAriaIII), and DNA was extracted with PureLink (registered trademark) Genome DNA Mini Kit (Thermo Fisher Scientific). .. This DNA was Bisulfite-converted with EZ-DNA Methylation TM Kit (ZYMO RESEACH), and methylation array analysis was performed with Infinium (registered trademark) Methylation EPIC BeadsChip Kit (illumina). For the analysis results, the degree of methylation ((β value) = 5 methylcytosine / total cytosine) was calculated using the methylation array analysis software Genome Studio (illumina), and the values measured by the internal standard probe in the array were used. Normalized.
<結果>
 処理済のiPS細胞のDNAメチル化度は、未処理のiPS細胞のメチル化度に比較し、48%低下していた(図1)。図1はメチル化度のバイオリンプロット図を表し、グラフの幅は各メチル化度にある領域の分布を表している。
<Result>
The DNA methylation degree of the treated iPS cells was 48% lower than that of the untreated iPS cells (Fig. 1). FIG. 1 shows a violin plot of the degree of methylation, and the width of the graph shows the distribution of regions at each degree of methylation.
(実施例3)
<未分化性の確認>
 AからD株について未処理または処理済のヒトiPS細胞の未分化性を評価するために、細胞をTrypLETM Select(Gibco)にて37℃5分間反応させプレートから剥離し、RNeasy(登録商標) plus Mini Kit(Qiagen)にて細胞からRNAを抽出した。このRNAを用いてHigh Capacity RNA-to-cDNA Kit(Thermo Fisher Scientific)にて合成したcDNAを鋳型にしてTaqMan(登録商標) Gene Expression assay(Thermo Fisher Scientific)によりqPCRで、NANOG(Probe primer setのコード名(以下コード名と記載):Hs02387400_g1)、 POU5F1(コード名:Hs04260367_gH)、およびLIN28(コード名:Hs00702808_s1)の遺伝子発現を解析した。発現量は内部標準遺伝子であるGAPDH(コード名:Hs02786624_g1)で補正した。
(Example 3)
<Confirmation of undifferentiated state>
In order to evaluate the undifferentiated state of untreated or treated human iPS cells for strains A to D, the cells were reacted with TrypLE TM Select (Gibco) at 37 ° C. for 5 minutes, detached from the plate, and RNAy®. RNA was extracted from cells with a plus Mini Kit (Qiagen). Using this RNA as a template for cDNA synthesized with High Capacity RNA-to- cDNA Kit (Thermo Fisher Scientific) as a template, TaqMan (registered trademark) Gene Expression assembly (Thermo Primer Scientific) by PCR (Thermo Primer Scientific). The gene expression of code name (hereinafter referred to as code name): Hs02387400_g1), POU5F1 (code name: Hs04260367_gH), and LIN28 (code name: Hs00702808_s1) was analyzed. The expression level was corrected with GAPDH (code name: Hs0276624_g1), which is an internal standard gene.
<結果>
 未処理および処理済のiPS細胞における遺伝子発現を解析したところ、AからD株の全4株で未処理のiPS細胞と比較して処理済のiPS細胞では未分化性に関わる遺伝子(NANOG、POU5F1、LIN28)の発現が同等以上であった(図2)。この結果は、上記実施例1の表1の培地1~3での培養がiPS細胞の未分化性を維持あるいは向上させるものであって、未分化性を損なわせる処理ではないこと、即ち処理済のiPS細胞が別の細胞に分化したわけではないことを示唆する。
<Result>
Analysis of gene expression in untreated and treated iPS cells revealed that all 4 strains A to D were compared with untreated iPS cells, and the treated iPS cells had genes related to undifferentiation (NANOG, POU5F1). , LIN28) was equal to or better than that (Fig. 2). The result is that the culture in the medium 1 to 3 of Table 1 of Example 1 maintains or improves the undifferentiated state of iPS cells, and is not a treatment that impairs the undifferentiated state, that is, has been treated. It is suggested that the iPS cells in the above did not differentiate into other cells.
(実施例4)
<肝細胞への分化>
 AからG株について肝細胞への分化能を検討するために、未処理または処理済のiPS細胞をマトリゲルコートした24ウェルプレートに再播種し、表2の培地を0.5mL/wellに入れ、各5日間ずつ維持培養を行い、肝細胞に分化させた。なお、使用した培地は、mTeSR(登録商標)1(Stemcell Technologies)、RPMI1640培地、HBM(登録商標)である。また、使用した化合物は、B27(登録商標)(Thermo Fisher Scientific社)、Activin A(R&D System社)、bFGF(富士フイルム和光純薬社)、BMP4(R&D System社)、HGF(Peprotech)およびOncostatin M(Peprotech)である。
Figure JPOXMLDOC01-appb-T000002
(Example 4)
<Differentiation into hepatocytes>
To examine the ability of A to G strains to differentiate into hepatocytes, untreated or treated iPS cells were reseeded on Matrigel-coated 24-well plates, and the medium in Table 2 was placed in 0.5 mL / well. Maintenance culture was carried out for 5 days each to differentiate into hepatocytes. The media used were mTeSR (registered trademark) 1 (Stemcell Technologies), RPMI1640 medium, and HBM (registered trademark). The compounds used were B27 (registered trademark) (Thermo Fisher Scientific), Activin A (R & D System), bFGF (Fujifilm Wako Pure Chemical Industries), BMP4 (R & D System), HGF (Peprotech). It is M (Peprotech).
Figure JPOXMLDOC01-appb-T000002
<評価法>
 肝細胞への分化誘導効率は誘導20日後の細胞における成熟化肝細胞マーカーであるASGPR1の発現をフローサイトメトリーにて評価した。分化誘導後20日目の細胞をTrypLETM Select(Thermo Fisher Sciecntific)を用いて37℃で5分処理して細胞を剥離した。Ghost DyeTM Violet 510 (TONBO Bioscience)にて死細胞を染色した。洗浄後、BD PharmingenTM PE Mouse Anti-ASGPR1抗体(日本ベクトン・ディッキンソン株式会社)にて染色し、フローサイトメトリーAttuneTM NxT (Thermo Fisher Scientific社)にてASGPR1の陽性率を解析した。
<Evaluation method>
The efficiency of inducing differentiation into hepatocytes was evaluated by flow cytometry of the expression of ASGPR1, which is a mature hepatocyte marker, in cells 20 days after induction. Twenty days after the induction of differentiation, the cells were treated with TrypLE TM Select (Thermo Fisher Scientific) at 37 ° C. for 5 minutes to detach the cells. Dead cells were stained with Ghost Dye TM Violet 510 (TONBO Bioscience). After washing, the cells were stained with BD Harmingen TM PE Mouse Anti-ASGPR1 antibody (Nippon Becton Dickinson Co., Ltd.), and the positive rate of ASGPR1 was analyzed by flow cytometry Attune TM NxT (Thermo Fisher Scientific).
 また、誘導後20日目の培養上清を回収し、培養上清中に分泌されたアルブミン量をELISA Starter Accessory Kit、Enzyme Substrate、TMB、Human Albumin ELISA Quantitation Set(Bethyl Laboratories, Inc)を用いてEnSpireTMプレートリーダー(PerkinElmer)により定量した。 In addition, the culture supernatant on the 20th day after the induction was collected, and the amount of albumin secreted in the culture supernatant was measured using ELISA Starter Accessory Kit, Enzyme Substrate, TMB, Human Albumin ELISA Quantation Set (Bethyl Laboratories). Quantified by EnSpire TM plate reader (PerkinElmer).
<結果>
 未処理および処理済のiPS細胞をそれぞれ肝細胞に分化誘導させ、フローサイトメトリーにて生細胞中のASGPR1陽性率を比較した。ASGPR1の陽性率はiPS細胞からの肝細胞への分化誘導効率を示す。結果、ASGPR1陽性率(%)は、未処理のiPS細胞を肝細胞に分化誘導したときと比較として、処理済のiPS細胞を肝細胞に分化誘導したときでは、A株2.90倍、B株2.19倍、C株2.97倍、D株2.09倍、E株8.68倍、F株2.69倍、およびG株2.20倍にそれぞれ増加し、全7株平均3.39倍の増加であった(図3A)。さらに、ASGPR1陽性細胞数は、未処理のiPS細胞を肝細胞に分化誘導したときと比較して、処理済のiPS細胞を肝細胞に分化誘導したときでは、全7株平均で3.45倍増加した(図3B、p=0.028)。このように、全7株で処理済のiPS細胞を分化誘導したときのASGPR1陽性率が上昇した。すなわち、肝細胞への分化誘導効率が上昇した。
 また、アルブミン分泌量については、全7株において、未処理のiPS細胞を肝細胞に分化誘導したときと比較として、処理済のiPS細胞を分化誘導したとき有意に分泌量が上昇した(図4)。
<Result>
The untreated and treated iPS cells were induced to differentiate into hepatocytes, respectively, and the ASGPR1 positive rates in the living cells were compared by flow cytometry. The positive rate of ASGPR1 indicates the efficiency of inducing differentiation of iPS cells into hepatocytes. As a result, the ASGPR1 positive rate (%) was 2.90 times that of the A-share when the treated iPS cells were induced to differentiate into hepatocytes, as compared with the case where the untreated iPS cells were induced to differentiate into hepatocytes. Shares increased 2.19 times, C shares 2.97 times, D shares 2.09 times, E shares 8.68 times, F shares 2.69 times, and G shares 2.20 times, respectively, averaging all 7 shares The increase was 3.39 times (Fig. 3A). Furthermore, the number of ASGPR1-positive cells was 3.45 times higher on average for all 7 strains when the treated iPS cells were induced to differentiate into hepatocytes than when the untreated iPS cells were induced to differentiate into hepatocytes. Increased (Fig. 3B, p = 0.028). In this way, the ASGPR1 positive rate when the treated iPS cells were induced to differentiate in all 7 strains increased. That is, the efficiency of inducing differentiation into hepatocytes increased.
Regarding the amount of albumin secreted, the amount of albumin secreted was significantly increased when the treated iPS cells were induced to differentiate, as compared with the case where the untreated iPS cells were induced to differentiate into hepatocytes in all 7 strains (Fig. 4). ).
(実施例5)
<iPS細胞の内胚葉分化におけるHDAC阻害剤単独処理と本発明の比較>
 iPS細胞の内胚葉分化におけるHDAC阻害剤単独処理の影響を検討するため、以下の実験を行った。HDAC阻害剤として、バルプロ酸ナトリウムを使用した。iPS細胞はD株を用いた。
 iPS細胞をMEF播種済のプレート上でStemFlex(登録商標)にて培養した細胞を「未処理・未分化」とする。この「未処理・未分化」細胞を(1)そのまま(「未処理・内胚葉分化」という)、(2)N2B27培地にバルプロ酸ナトリウムを1mM添加した培地(「VPA・内胚葉分化」という)、または(3)上記実施例1の培地(表1の培地1~3)(「Mix・内胚葉分化」という)にて10日間37℃、5%CO、5%Oで培養した細胞をStemDiff Trilineage Differentiation Kit (Stemcell Technologies)のEndoderm mediumを用いて内胚葉に分化させた。これらの細胞をTrypLE Select(Gibco)にて37℃5分間反応させプレートから剥離し、RNeasy(登録商標) plus Mini Kit(Qiagen)にて細胞からRNAを抽出した。このRNAを用いてHigh Capacity RNA-to-cDNA Kit(Thermo Fisher Scientific)にて合成したcDNAを鋳型にしてTaqMan Gene Expression assay(Thermo Fisher Scientific)によりqPCRで、SOX17(コード名:Hs00751752_s1)、FOXA2(コード名:Hs05036278_s1)の遺伝子発現を解析した。発現量は内部標準遺伝子であるGAPDH(コード名:Hs02786624_g1)で補正した。
(Example 5)
<Comparison of HDAC inhibitor monotherapy and the present invention in endoderm differentiation of iPS cells>
The following experiments were conducted to investigate the effect of HDAC inhibitor monotherapy on endoderm differentiation of iPS cells. Sodium valproate was used as the HDAC inhibitor. As the iPS cell, the D strain was used.
Cells in which iPS cells are cultured in StemFlex® on MEF-seeded plates are referred to as "untreated / undifferentiated". These "untreated / undifferentiated" cells are (1) as they are (referred to as "untreated / endoderm differentiation"), and (2) a medium in which 1 mM of sodium valproate is added to N2B27 medium (referred to as "VPA / endoderm differentiation"). Or (3) Cells cultured at 37 ° C., 5% CO 2 , 5% O 2 for 10 days in the medium of Example 1 (mediums 1 to 3 in Table 1) (referred to as "Mix / endoderm differentiation"). Was differentiated into endoderm using the Endoderm medium of the StemDiff Trilineage Differentiation Kit (Stemcell Technologies). These cells were reacted with TripLE Select (Gibco) at 37 ° C. for 5 minutes, detached from the plate, and RNA was extracted from the cells with RNeasy (registered trademark) plus Mini Kit (Qiagen). Using this RNA as a template for cDNA synthesized with High Capacity RNA-to- cDNA Kit (Thermo Fisher Scientific) as a template, TaqMan Gene Expression assembly (Thermo Fisher Scientific) (Thermo Fisher Scientific) (Thermo Fisher Scientific) by qPCR by qPCR, SO2 (Thermo Fisher Scientific) The gene expression of the code name: Hs05036278_s1) was analyzed. The expression level was corrected with GAPDH (code name: Hs0276624_g1), which is an internal standard gene.
<結果>
 「未処理・未分化」と比較して、「未処理・内胚葉分化」の細胞は内胚葉マーカーであるSOX17とFOXA2の発現が上昇しており(図5)、本実施例で行った分化誘導法により細胞が内胚葉分化可能であることが確認できた。そして、内胚葉分化した細胞を比較すると、「未処理・内胚葉分化」の細胞のSOX17遺伝子発現に対して、「VPA・内胚葉分化」のそれは0.14倍、「Mix・内胚葉分化」のそれは40.8倍であった。また、「未処理・内胚葉分化」の細胞のFOXA2遺伝子発現に対して、「VPA・内胚葉分化」のそれは0.21倍、「Mix・内胚葉分化」のそれは12.9倍であった(図5)。「未処理・内胚葉分化」と比較して、「Mix・内胚葉分化」では顕著にこれらの遺伝子発現が上昇したものの、「VPA・内胚葉分化」では遺伝子発現がむしろ低下した。即ち、未処理と比較して、上記実施例1の培地(表1の培地1~3)(Mix)で培養したiPS細胞は内胚葉に効率よく分化したが、バルプロ酸ナトリウムのみの処理(VPA)では内胚葉への分化が促進されないことが示された。
<Result>
Compared with "untreated / undifferentiated", the expression of endoderm markers SOX17 and FOXA2 was increased in the "untreated / endoderm differentiated" cells (Fig. 5), and the differentiation performed in this example. It was confirmed that the cells were capable of endoderm differentiation by the induction method. Comparing the endoderm-differentiated cells, the SOX17 gene expression of the "untreated / endoderm-differentiated" cells was 0.14 times that of "VPA / endoderm-differentiated", and "Mix-endoderm-differentiated". That was 40.8 times. In addition, the FOXA2 gene expression in "untreated / endoderm differentiation" cells was 0.21 times that of "VPA / endoderm differentiation" and 12.9 times that of "Mix / endoderm differentiation". (Fig. 5). Compared with "untreated / endoderm differentiation", the expression of these genes was significantly increased in "Mix / endoderm differentiation", but the gene expression was rather decreased in "VPA / endoderm differentiation". That is, as compared with the untreated iPS cells, the iPS cells cultured in the medium of Example 1 (mediums 1 to 3 in Table 1) (Mix) differentiated efficiently into endoderm, but treated with sodium valproate only (VPA). ) Showed that differentiation into endoderm was not promoted.

Claims (18)

  1. 多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、STAT3活性化剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤およびGSK3β阻害剤からなる群から選択される何れかを含む培地で培養することにより、培養前の多能性幹細胞と比較して、DNAの全シトシンにおける5メチルシトシンの割合が低下した多能性幹細胞を得る工程(a)、および
    工程(a)で得られる多能性幹細胞を、サイトカインを含む培地で培養することにより、特定の分化細胞を得る工程(b)
    を含む、特定の分化細胞の製造方法。
    Pluripotent stem cells are selected from the group consisting of histone deacetylase inhibitors, MAPK / ERK kinase inhibitors, STAT3 activators, protein kinase C inhibitors, Wnt signal inhibitors and GSK3β inhibitors. In the steps (a) and (a) of obtaining pluripotent stem cells in which the proportion of 5-methylcytosine in the total cytosine of the DNA is reduced as compared with the pluripotent stem cells before culturing by culturing in the containing medium. Step (b) of obtaining specific differentiated cells by culturing the obtained pluripotent stem cells in a medium containing cytokines.
    A method for producing a specific differentiated cell, including.
  2. 前記工程(a)が、
    多能性幹細胞を、ヒストン脱アセチル化酵素阻害剤、MAPK/ERKキナーゼ阻害剤、およびSTAT3活性化剤を含む培地で培養する第一培養工程、および
    第一培養工程の後に、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、GSK3β阻害剤、およびSTAT3活性化剤を含む培地で培養する第二培養工程
    を含む、請求項1に記載の製造方法。
    The step (a)
    A first culture step in which pluripotent stem cells are cultured in a medium containing a histone deacetylase inhibitor, a MAPK / ERK kinase inhibitor, and a STAT3 activator, and after the first culture step, histone deacetylase. 1. A second culture step of culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, a GSK3β inhibitor, and a STAT3 activator without an inhibitor. The manufacturing method described in.
  3. 前記サイトカインが、アクチビンA、BMP4、bFGF、HGF、およびOncostatin Mからなる群から選択される少なくとも1つである、請求項1または2に記載の方法。 The method of claim 1 or 2, wherein the cytokine is at least one selected from the group consisting of activin A, BMP4, bFGF, HGF, and Oncostatin M.
  4. 前記特定の分化細胞が内胚葉系譜の細胞である、請求項1から3の何れか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the specific differentiated cell is a cell of endoderm lineage.
  5. 前記特定の分化細胞が肝細胞である、請求項1から4の何れか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the specific differentiated cell is a hepatocyte.
  6. 第一培養工程の培養期間が1から5日間である、請求項2から5の何れか一項に記載の方法。 The method according to any one of claims 2 to 5, wherein the culture period of the first culture step is 1 to 5 days.
  7. 第二培養工程は、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で培養した後、前記培地にGSK3β阻害剤を加えた培地で培養を行う工程である、請求項2から6の何れか一項に記載の方法。 In the second culture step, after culturing in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without containing a histone deacetylase inhibitor, the above-mentioned The method according to any one of claims 2 to 6, which is a step of culturing in a medium in which a GSK3β inhibitor is added to the medium.
  8. 第二培養工程は、ヒストン脱アセチル化酵素阻害剤を含まずに、MAPK/ERKキナーゼ阻害剤、プロテインキナーゼC阻害剤、Wntシグナル阻害剤、およびSTAT3活性化剤を含む培地で3から8日間培養した後、前記培地にGSK3β阻害剤を加えた培地で3から10日間培養を行う工程である、請求項2から7の何れか一項に記載の方法。 The second culture step is culturing for 3 to 8 days in a medium containing a MAPK / ERK kinase inhibitor, a protein kinase C inhibitor, a Wnt signal inhibitor, and a STAT3 activator without the histone deacetylase inhibitor. The method according to any one of claims 2 to 7, which is a step of culturing in the medium to which a GSK3β inhibitor is added for 3 to 10 days.
  9. 前記工程(b)の培養期間が1から4週間である、請求項1から8の何れか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the culture period of the step (b) is 1 to 4 weeks.
  10. ヒストン脱アセチル化酵素阻害剤が、バルプロ酸またはその塩である、請求項1から9の何れか一項に記載の方法。 The method according to any one of claims 1 to 9, wherein the histone deacetylase inhibitor is valproic acid or a salt thereof.
  11. MAPK/ERKキナーゼ阻害剤がPD0325901である、請求項1から10の何れか一項に記載の方法。 The method according to any one of claims 1 to 10, wherein the MAPK / ERK kinase inhibitor is PD0325901.
  12. STAT3活性化剤が白血病阻止因子である、請求項1から11の何れか一項に記載の方法。 The method according to any one of claims 1 to 11, wherein the STAT3 activator is a leukemia inhibitory factor.
  13. プロテインキナーゼC阻害剤がGo6983である、請求項1から12の何れか一項に記載の方法。 The method according to any one of claims 1 to 12, wherein the protein kinase C inhibitor is Go6983.
  14. Wntシグナル阻害剤がXAV939である、請求項1から13の何れか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the Wnt signal inhibitor is XAV939.
  15. GSK3β阻害剤がCHIR99021である、請求項1から14の何れか一項に記載の方法。 The method according to any one of claims 1 to 14, wherein the GSK3β inhibitor is CHIR99021.
  16. 前記第一培養工程の培地がヒストン脱アセチル化酵素阻害剤を濃度1.0μmol/L~5.0mmol/Lの濃度で含む、請求項2から15の何れか一項に記載の方法。 The method according to any one of claims 2 to 15, wherein the medium of the first culture step contains a histone deacetylase inhibitor at a concentration of 1.0 μmol / L to 5.0 mmol / L.
  17. 前記第一培養工程および第二培養工程の培地がMAPK/ERKキナーゼ阻害剤を濃度0.3μmol/L~5.0μmol/Lの範囲で含む、請求項2から16の何れか一項に記載の方法。 The medium according to any one of claims 2 to 16, wherein the medium of the first culture step and the second culture step contains a MAPK / ERK kinase inhibitor in a concentration range of 0.3 μmol / L to 5.0 μmol / L. Method.
  18. 多能性幹細胞がヒトiPS細胞である、請求項1から17の何れか一項に記載の方法。 The method according to any one of claims 1 to 17, wherein the pluripotent stem cell is a human iPS cell.
PCT/JP2020/028402 2019-07-25 2020-07-22 Method for producing specific differentiated cells WO2021015228A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-137086 2019-07-25
JP2019137086 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015228A1 true WO2021015228A1 (en) 2021-01-28

Family

ID=74194217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028402 WO2021015228A1 (en) 2019-07-25 2020-07-22 Method for producing specific differentiated cells

Country Status (1)

Country Link
WO (1) WO2021015228A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517560A (en) * 2008-03-17 2011-06-16 ザ スクリプス リサーチ インスティチュート A combination of chemical and genetic techniques to generate induced pluripotent stem cells
JP2016521971A (en) * 2013-04-23 2016-07-28 イェダ リサーチ アンド ディベロップメント カンパニー リミテッド US Patent Provisional Application No. 61/932, filed Jan. 29, 2014, based on US Patent Act 119, paragraph (e). No. 935, US Provisional Application No. 61 / 878,769, filed September 17, 2013, and US Provisional Application No. 61 / 814,920, filed April 23, 2013. In addition, this application is a U.S. patent application filed simultaneously with the same applicant's co-pending applications YacubHANNA, NoaNOVERSHTERN, and YoachRAIS (name of invention "isolated naive pluripotent stem cells and methods for generating them" It also relates to ISOLATEDNAIVEPLURIPOTENSTEMCELLSANDMETHODSOFGENERATINGSAME))) (agent case record book No. 58870). The contents of the above application are incorporated herein by reference in their entirety.
JP2017525351A (en) * 2014-07-30 2017-09-07 イェダ リサーチ アンド ディベロップメント カンパニー リミテッドYeda Research And Development Co.Ltd. Culture medium for pluripotent stem cells
US20180112187A1 (en) * 2014-08-22 2018-04-26 Cambridge Enterprise Limited Resetting pluripotent stem cells
WO2019151386A1 (en) * 2018-01-31 2019-08-08 富士フイルム株式会社 Method for producing cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517560A (en) * 2008-03-17 2011-06-16 ザ スクリプス リサーチ インスティチュート A combination of chemical and genetic techniques to generate induced pluripotent stem cells
JP2016521971A (en) * 2013-04-23 2016-07-28 イェダ リサーチ アンド ディベロップメント カンパニー リミテッド US Patent Provisional Application No. 61/932, filed Jan. 29, 2014, based on US Patent Act 119, paragraph (e). No. 935, US Provisional Application No. 61 / 878,769, filed September 17, 2013, and US Provisional Application No. 61 / 814,920, filed April 23, 2013. In addition, this application is a U.S. patent application filed simultaneously with the same applicant's co-pending applications YacubHANNA, NoaNOVERSHTERN, and YoachRAIS (name of invention "isolated naive pluripotent stem cells and methods for generating them" It also relates to ISOLATEDNAIVEPLURIPOTENSTEMCELLSANDMETHODSOFGENERATINGSAME))) (agent case record book No. 58870). The contents of the above application are incorporated herein by reference in their entirety.
JP2017525351A (en) * 2014-07-30 2017-09-07 イェダ リサーチ アンド ディベロップメント カンパニー リミテッドYeda Research And Development Co.Ltd. Culture medium for pluripotent stem cells
US20180112187A1 (en) * 2014-08-22 2018-04-26 Cambridge Enterprise Limited Resetting pluripotent stem cells
WO2019151386A1 (en) * 2018-01-31 2019-08-08 富士フイルム株式会社 Method for producing cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO, G. ET AL.: "Epigenetic resetting of human pluripotency", DEVELOPMENT, vol. 144, 2017, pages 2748 - 2763, XP055456607, DOI: 10.1242/dev.146811 *

Similar Documents

Publication Publication Date Title
US20200362302A1 (en) Method for producing cell
JP6726719B2 (en) Cell reprogramming
KR101909847B1 (en) Generation and maintenance of stem cells
JP5936134B2 (en) Selection method of human induced pluripotent stem cells
JP2022037232A (en) Method for producing dopamine-producing neural progenitor cells
Chen et al. Trophoblast lineage cells derived from human induced pluripotent stem cells
JPWO2019093340A1 (en) Method for inducing primitive endoderm from naive pluripotent stem cells
JP7173496B2 (en) METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS
EP3613848A1 (en) Method for producing dopaminergic neurons
WO2021020267A1 (en) Medium for enhancing proliferation ability of naive type pluripotent stem cells and method for producing pluripotent stem cells
WO2021015228A1 (en) Method for producing specific differentiated cells
US20220396765A1 (en) Method for producing pluripotent stem cell capable of differentiating into specific cell and application thereof
JP7273141B2 (en) Method for Producing Pluripotent Stem Cells Capable of Differentiating into Specific Cells and Application Thereof
WO2015178496A1 (en) Method for producing lung progenitor cell
EP4202041A1 (en) Method for maintaining and amplifying human primordial germ cells / human primordial germ cell-like cells
JP2021019528A (en) Medium for enhancing proliferation of naive pluripotent stem cells and method for producing pluripotent stem cells
AU2017201158B2 (en) Reprogramming cells
JP2021029145A (en) Marker for differentiation potency of pluripotent cell, evaluation method for differentiation potency of pluripotent cell, production method for pluripotent cell, and method for screening candidate substances to improve differentiation potency of pluripotent cell
JP2023090959A (en) Method for producing stem cell, and method of reducing risk of transforming into cancer cell
JPWO2015133596A1 (en) Composition for cell culture
KR20240066520A (en) Method for enhancing efficiency of reprogramming of differentiated cells into induced pluripotent stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP