WO2021015127A1 - Fuel characteristics detecting apparatus - Google Patents

Fuel characteristics detecting apparatus Download PDF

Info

Publication number
WO2021015127A1
WO2021015127A1 PCT/JP2020/027860 JP2020027860W WO2021015127A1 WO 2021015127 A1 WO2021015127 A1 WO 2021015127A1 JP 2020027860 W JP2020027860 W JP 2020027860W WO 2021015127 A1 WO2021015127 A1 WO 2021015127A1
Authority
WO
WIPO (PCT)
Prior art keywords
cetane number
detection
injection
torque equivalent
amount
Prior art date
Application number
PCT/JP2020/027860
Other languages
French (fr)
Japanese (ja)
Inventor
渡部準也
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to DE112020003571.9T priority Critical patent/DE112020003571T5/en
Priority to AU2020316159A priority patent/AU2020316159B2/en
Priority to BR112022000435A priority patent/BR112022000435A2/en
Publication of WO2021015127A1 publication Critical patent/WO2021015127A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fuel property detection device that detects the properties of fuel (fuel properties) used in a diesel engine.
  • multi-stage injection control is performed in which sub-injection is performed before and after the main injection of fuel into the cylinder.
  • Diffusion combustion shown in FIG. 20 and premixed combustion shown in FIG. 21 are known as types of combustion methods that perform multi-stage injection control, and diffusion combustion is generally used in diesel engines mounted on vehicles. ing.
  • FIG. 20 is a diagram showing an example of diffusion combustion.
  • the horizontal axis shows the crank angle (rotation angle of the crankshaft), and the vertical axis shows the execution of injection and the heat generation rate, respectively.
  • the sub-injections 101A and 102A are executed before the main injection 103A to generate the sub-combustion 101B and 102B to diffuse the intake air (oxygen) in the combustion chamber, and then the main injection. 103A is executed to generate the main combustion 103B.
  • the combustion speed of the main combustion 103B in the diffusion combustion shown in FIG. 20 is slower than that of the premixed combustion shown in FIG. 21 (the length in the crank angle direction is long).
  • FIG. 21 is a diagram showing an example of premixed combustion. Similar to FIG. 20, the horizontal axis shows the crank angle, and the vertical axis shows the execution of injection and the heat generation rate, respectively. As shown in FIG. 21, in the premixed combustion, the ignition timing of the sub-combustion 111B and 112B by the sub-injection 111A and 112A executed earlier than the main injection 113A and the ignition timing of the main combustion 113B by the main injection 113A are almost the same. The sub-combustion 111B and 112B and the main combustion 113B overlap each other to generate the superposed combustion 110B. The combustion speed of the superposed combustion 110B in the premixed combustion shown in FIG. 21 is faster than that of the diffusion combustion shown in FIG. 20 (the length in the crank angle direction is short).
  • premixed combustion improves fuel efficiency and reduces NOx emissions as compared with diffusion combustion.
  • the cetane number of fuel used in diesel engines may differ depending on the countries of the world and even within the same country depending on the region and season. In recent years, the cetane number of fuel for diesel engines ranges from about 43 to 66. Fuel is used in each country and region of the world.
  • FIG. 22 shows an example in which a fuel having a cetane number (low), a fuel having a cetane number (medium), and a fuel having a cetane number (high) are used when the diffusion combustion shown in FIG. 20 is used. ..
  • There is no change in ignition timing according to the cetane number but in the case of the cetane number (low), an abnormality has occurred in the heat generation rate, and in the case of the cetane number (low), it indicates that some correction is necessary. ing.
  • diffusive combustion in the case of cetane number (low)
  • by making a relatively simple correction such as increasing the fuel pressure in the common rail, as shown in FIG. 23, in the case of cetane number (low).
  • FIG. 24 shows an example in which a fuel having a cetane number (low), a fuel having a cetane number (medium), and a fuel having a cetane number (high) are used when the premixed combustion shown in FIG. 21 is used.
  • cetane number high
  • the ignition timing is early
  • the case of cetane number (low) the ignition timing is late
  • stable combustion cannot be obtained.
  • FIG. 25 shows a case where the injection timing and the injection amount are corrected according to the cetane number with respect to FIG. 24. Combustion with a stable ignition timing can be obtained by appropriately correcting the injection timing and injection amount according to the cetane number.
  • Patent Document 1 discloses a fuel property detection device capable of further improving the detection accuracy of the cetane number of the fuel used.
  • two levels of injection amount are prepared as the injection amount of the sub-injection during normal operation, and the generated torque and the like with respect to the change amount which is the change amount of the injection amount of the sub-injection and the like.
  • the rate of change (change sensitivity) of a specific amount of change is derived, and the cetane number of the fuel used is detected based on the change sensitivity.
  • FIG. 20 shows a case where the method described in Patent Document 1 for detecting the cetane number based on the amount of change in the generated torque by changing the injection amount of the sub-injection during normal operation of the diesel engine is applied to diffusion combustion.
  • the torques of the secondary combustions 101B and 102B will be measured.
  • it is necessary to generate a larger side combustion 101B, but the side combustion 101B before the top dead center of the piston (crank angle 0 [° CA]) is more. Increasing the size is not preferable because it may damage the engine.
  • Cited Document 1 regardless of whether the method described in Cited Document 1 is applied to diffusion combustion or premixed combustion, it is obtained from the torque fluctuation amount during normal operation of the diesel engine, so that the operation is very stable. If it is not detected in a state (such as when traveling on a horizontal road surface without unevenness at a constant speed with a constant rotation speed), the error of the detected cetane number becomes large.
  • An object of the present invention is to provide a capable fuel property detection device.
  • the first aspect of the present disclosure is to inject detection into a predetermined cylinder during a detectable period in which the diesel engine stops fuel injection and gradually decreases the cetane number while coasting.
  • a detection injection timing-related amount calculation unit that calculates an injection timing-related amount related to the injection timing of the detection injection so that the predetermined crank angle position is set in advance, and preset within the cetane number detection range.
  • the torque corresponding to the torque generated by combustion following ignition at the predetermined crank angle position by the detection injection regardless of the operating state and the environmental state of the diesel engine.
  • the detection injection amount calculation unit that calculates the injection amount of the detection injection and the torque equivalent amount according to the cetane number by the detection injection are set so that the equivalent amount becomes the preset reference torque equivalent amount.
  • the cetane number / torque equivalent characteristic which is set to be the reference torque equivalent in the case of the detection injection of the reference cetane number fuel, has the cetane number / torque equivalent characteristic.
  • the injection amount calculated by the detection injection amount calculation unit was calculated by the detection injection timing-related amount calculation unit for the predetermined cylinder.
  • a detection injection execution unit that executes the detection injection that is injected at an injection timing based on the injection timing-related amount, an actual torque equivalent amount that corresponds to the torque actually generated by the detection injection, and the cetane number. It has a cetane number detection unit that detects the cetane number based on the value / torque equivalent characteristic.
  • the detection injection is executed on the predetermined cylinder during the detectable period in which the diesel engine stops the fuel injection and gradually decreases the rotation speed while coasting.
  • It is a fuel property detection device that detects the setan value of the fuel used in the diesel engine based on the torque equivalent amount corresponding to the torque generated by the detection injection, and the fuel property detection device is n.
  • the first crank angle position to the nth crank angle position are preset as the crank angle positions at which the injected fuel ignites when an integer of 2 or more is used, regardless of the operating state and environmental state of the diesel engine.
  • the crank angle position at which the injected fuel ignites is set to the preset first crank angle position to the first crank angle position regardless of the detection range of the lower limit of detection setan value to the upper limit of detection setan value within the setan value detection range.
  • the detection injection timing-related amount calculation unit that calculates the injection timing-related amount related to the injection timing of the first detection injection to the n-th detection injection, which are the detection injections, so as to be at each of the n crank angle positions.
  • the first detection injection to the nth detection injection regardless of the operating state and the environmental state of the diesel engine, respectively.
  • the torque equivalent amount corresponding to the fuel generated by the combustion following the ignition at the first crank angle position to the nth crank angle position is the preset first reference torque equivalent amount to the nth reference torque equivalent amount. Therefore, the setan value of each of the detection injection amount calculation unit for calculating the injection amount of the first detection injection to the nth detection injection and the first detection injection to the nth detection injection is calculated.
  • the respective injection amounts calculated by the detection injection amount calculation unit for the predetermined cylinder are transmitted to the detection injection timing-related amount calculation unit.
  • the detection injection execution unit that executes the first detection injection to the nth detection injection, and the first detection injection, which injects at the injection timing based on the injection timing-related amount calculated in -First actual torque equivalent amount to nth actual torque equivalent amount corresponding to the torque actually generated in each of the nth detection injections, and the first cetane number / torque equivalent amount characteristic-the nth cetane number -It has each of the torque equivalent characteristics and a cetane number detection unit that detects the cetane number based on the characteristics.
  • the third aspect of the present disclosure is the fuel property detection device according to the second aspect, and the first cetane number corresponding to each of the first detection injection to the nth detection injection.
  • -Torque equivalent characteristic-The nth cetane number / torque equivalent characteristic is larger than the discrimination inappropriate cetane number range in which the change in the torque equivalent amount is small with respect to the difference in cetane number and the discrimination inappropriate cetane number range.
  • a fourth aspect of the present disclosure is the fuel property detection device according to the second or third aspect, after refueling the diesel engine or after starting the diesel engine.
  • the detection injection execution unit executes the first detection injection to the nth detection injection at least once, and the cetane number detection unit executes cetane number.
  • the first detection injection to the nth detection injection are based on the cetane number detected after the cetane number initial detection period. This is a fuel property detection device that executes the detection injection selected from the above by the detection injection execution unit.
  • a detection injection is executed in which the injection timing and the injection amount are appropriately corrected for the diesel engine that is coasting with the fuel injection stopped, and the detection injection is generated. Detects the amount equivalent to torque. Compared with the method of detecting the amount of change in torque due to the sub-injection of two levels of injection amount described in Patent Document 1, it is not necessary to subtract the torque equivalent amount of the main injection amount from the detected torque equivalent amount. The amount equivalent to torque can be detected with high accuracy. Therefore, the cetane number can be detected with higher accuracy.
  • the cetane number is detected based on the cetane number / torque equivalent characteristic and the actual cetane number equivalent amount, which is the reference torque equivalent amount, so that the cetane number / torque equivalent has an appropriate cetane number detection range.
  • the cetane number can be detected with higher accuracy in a wider range from low cetane number to high cetane number.
  • a detection injection having a plurality of cetane number / torque equivalent characteristics and corresponding to each cetane number / torque equivalent characteristic is executed. , Cetane number can be detected with higher accuracy.
  • cetane number detection range from the lower limit cetane number to the upper limit cetane number is very wide, one cetane number / torque equivalent characteristic cannot cover the entire cetane number detection range. In some cases. Even in such a case, it is low by performing detection injection corresponding to a plurality of cetane number / torque equivalent characteristics in which the discriminable cetane number range is appropriately assigned and each cetane number / torque equivalent characteristic. Cetane number can be detected with higher accuracy in a wider range from cetane number to high cetane number.
  • the detection injection selected from the first detection injection to the nth detection injection is performed according to the cetane number, the fuel consumption and the detection time due to the unnecessary detection injection can be reduced. It can be suppressed.
  • FIG. 2 is a diagram illustrating an example of how the ignition timing and the shape of the heat generation rate can be made the same by correcting the injection timing and the injection amount according to the operating state and the environmental state.
  • FIG. 3 is a diagram for explaining how the ignition timing is the same but the shape of the heat generation rate is different when the cetane number is different when the injection timing and the injection amount are corrected according to the operating condition and the environmental condition. Is. With respect to FIG.
  • FIG. 22 is a diagram illustrating an example in which a correction is applied in the case of a fuel having a cetane number (low) with respect to FIG. 22. It is a figure explaining the example of the difference in the heat generation rate by each fuel of a cetane number (low), a cetane number (medium), and a cetane number (high) in the case of premixed combustion.
  • FIG. 24 is a diagram illustrating an example in which the injection timing and the injection amount are appropriately corrected for the case of fuel having each cetane number.
  • An air cleaner (not shown) and an intake flow rate detecting means 21 (for example, an intake flow rate sensor) are provided on the inflow side of the intake pipe 11A.
  • the intake flow rate detecting means 21 outputs a detection signal according to the flow rate of the air taken in by the diesel engine 10 to the control device 50.
  • the intake air flow rate detecting means 21 is provided with an intake air temperature detecting means 28A (for example, an intake air temperature sensor).
  • the intake air temperature detecting means 28A outputs a detection signal corresponding to the temperature of the intake air passing through the intake air flow rate detecting means 21 to the control device 50.
  • the outflow side of the intake pipe 11A is connected to the inflow side of the compressor 35, and the outflow side of the compressor 35 is connected to the inflow side of the intake pipe 11B.
  • the turbocharger 30 includes a compressor 35 having a compressor impeller 35A and a turbine 36 having a turbine impeller 36A.
  • the compressor impeller 35A is rotationally driven by the turbine impeller 36A, which is rotationally driven by the energy of the exhaust gas, and supercharges the intake air flowing in from the intake pipe 11A by pumping it to the intake pipe 11B.
  • the intake pipe 11A on the upstream side of the compressor 35 is provided with the compressor upstream pressure detecting means 24A.
  • the compressor upstream pressure detecting means 24A is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake pipe 11A on the upstream side of the compressor 35 to the control device 50.
  • a compressor downstream pressure detecting means 24B is provided in the intake pipe 11B (position between the compressor 35 and the intercooler 16 in the intake pipe 11B) on the downstream side of the compressor 35.
  • the compressor downstream pressure detecting means 24B is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake pipe 11B on the downstream side of the compressor 35 to the control device 50.
  • the intercooler 16 is arranged on the upstream side, and the throttle device 48 is arranged on the downstream side of the intercooler 16.
  • the intercooler 16 is arranged on the downstream side of the compressor downstream pressure detecting means 24B, and lowers the temperature of the intake air supercharged by the compressor 35.
  • An intake air temperature detecting means 28B (for example, an intake air temperature sensor) is provided between the intercooler 16 and the throttle device 48.
  • the intake air temperature detecting means 28B outputs a detection signal corresponding to the temperature of the intake air whose temperature has been lowered by the intercooler 16 to the control device 50.
  • the throttle device 48 drives a throttle valve that adjusts the opening degree of the intake pipe 11B based on the control signal from the control device 50, and the intake flow rate can be adjusted.
  • the control device 50 outputs a control signal to the throttle device 48 based on the detection signal from the throttle opening detection means 48S (for example, the throttle opening sensor) and the target throttle opening, and the throttle provided in the intake pipe 11B.
  • the opening of the valve can be adjusted.
  • the control device 50 obtains a target throttle opening degree based on the accelerator pedal depression amount detected based on the detection signal from the accelerator pedal depression amount detecting means 25 and the operating state of the diesel engine 10.
  • the accelerator pedal depression amount detecting means 25 is, for example, an accelerator pedal depression angle sensor, and is provided on the accelerator pedal.
  • the control device 50 can detect the amount of depression of the accelerator pedal by the driver based on the detection signal from the accelerator pedal depression amount detecting means 25.
  • the outflow side of the EGR pipe 13 is connected to the downstream side of the throttle device 48 in the intake pipe 11B.
  • the outflow side of the intake pipe 11B is connected to the inflow side of the intake manifold 11C, and the outflow side of the intake manifold 11C is connected to the inflow side of the diesel engine 10.
  • the intake manifold 11C is provided with the intake manifold pressure detecting means 24C.
  • the intake manifold pressure detecting means 24C is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake manifold 11C to the control device 50.
  • the EGR gas flowing in from the inflow side (connection portion with the exhaust pipe 12B) of the EGR pipe 13 is discharged into the intake pipe 11B. ..
  • the path through which the EGR gas is formed in the EGR pipe 13 corresponds to the EGR path.
  • the diesel engine 10 (diesel engine) has a plurality of cylinders 45A to 45D, and injectors 43A to 43D are provided in each cylinder. Fuel is supplied to the injectors 43A to 43D via the common rail 41 and the fuel pipes 42A to 42D, and the injectors 43A to 43D are driven by a control signal from the control device 50 into the cylinders 45A to 45D, respectively. Inject fuel.
  • the diesel engine 10 is provided with a crank angle detecting means 22A and a cylinder detecting means 22B.
  • the crank angle detecting means 22A is, for example, a rotation sensor provided in the vicinity of the crankshaft, and outputs a detection signal according to the rotation angle of the crankshaft of the diesel engine 10 to the control device 50.
  • the cylinder detecting means 22B is a rotation sensor provided in the vicinity of the camshaft, and outputs a detection signal to the control device 50, for example, when the piston of the first cylinder reaches the compression top dead center.
  • the control device 50 can detect, for example, that the piston of the first cylinder is in the top dead center position based on the detection signal from the crank angle detecting means 22A and the detection signal from the cylinder detecting means 22B. It is possible to determine whether the dead center position is the position of the compression top dead center or the position of the intake top dead center.
  • the diesel engine 10 is provided with the coolant temperature detecting means 28C.
  • the coolant temperature detecting means 28C is, for example, a temperature sensor, detects the temperature of the cooling coolant circulating in the diesel engine 10, and outputs a detection signal corresponding to the detected temperature to the control device 50.
  • the inflow side of the exhaust manifold 12A is connected to the exhaust side of the diesel engine 10, and the inflow side of the exhaust pipe 12B is connected to the outflow side of the exhaust manifold 12A.
  • the outflow side of the exhaust pipe 12B is connected to the inflow side of the turbine 36, and the outflow side of the turbine 36 is connected to the inflow side of the exhaust pipe 12C.
  • the inflow side of the EGR pipe 13 is connected to the exhaust pipe 12B.
  • the EGR pipe 13 communicates the exhaust pipe 12B and the intake pipe 11B, and can recirculate a part of the exhaust gas of the exhaust pipe 12B to the intake pipe 11B. Further, the EGR pipe 13 is provided with an EGR cooler 15 and an EGR valve 14.
  • the EGR valve 14 (EGR valve) is provided on the downstream side of the EGR cooler 15 in the EGR pipe 13. Then, the EGR valve 14 adjusts the flow rate of the EGR gas flowing in the EGR pipe 13 by adjusting the opening degree of the EGR pipe 13 based on the control signal from the control device 50.
  • the EGR cooler 15 is provided in the EGR pipe 13.
  • the EGR cooler 15 is a so-called heat exchanger, and a coolant for cooling is supplied to cool the inflowed EGR gas and discharge it.
  • the EGR pipe 13, (EGR cooler 15), and EGR valve 14 described above constitute an EGR system capable of returning a part of the exhaust gas to the intake path.
  • the EGR system may or may not include the EGR cooler 15.
  • the outflow side of the exhaust pipe 12B is connected to the inflow side of the turbine 36, and the outflow side of the turbine 36 is connected to the inflow side of the exhaust pipe 12C.
  • the turbine 36 is provided with a variable nozzle 33 capable of controlling the flow velocity of the exhaust gas leading to the turbine impeller 36A (the opening degree of the flow path leading the exhaust gas to the turbine can be adjusted).
  • the opening degree is adjusted by the nozzle driving means 31.
  • the control device 50 outputs a control signal to the nozzle driving means 31 based on the detection signal from the nozzle opening detection means 32 (for example, the nozzle opening sensor) and the target nozzle opening to determine the opening of the variable nozzle 33. It is adjustable.
  • a turbine upstream pressure detecting means 26A is provided in the exhaust pipe 12B on the upstream side of the turbine 36.
  • the turbine upstream pressure detecting means 26A is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the exhaust in the exhaust pipe 12B on the upstream side of the turbine 36 to the control device 50.
  • the exhaust pipe 12C on the downstream side of the turbine 36 is provided with the turbine downstream pressure detecting means 26B.
  • the turbine downstream pressure detecting means 26B is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the exhaust in the exhaust pipe 12C on the downstream side of the turbine 36 to the control device 50.
  • the exhaust pipe 12C is provided with an oxidation catalyst 61 and a particulate filter 62.
  • a selective reduction catalyst may be provided on the downstream side of the particulate filter 62.
  • the exhaust temperature detecting means 28D is provided on the upstream side of the oxidation catalyst 61, and the exhaust temperature detecting means 28E is provided on the downstream side of the oxidation catalyst 61.
  • the exhaust temperature detecting means 28D and 28E are, for example, exhaust temperature sensors, and output a detection signal corresponding to the exhaust temperature to the control device 50.
  • the particulate filter 62 is provided with a differential pressure detecting means 26C for detecting the pressure difference between the upstream side and the downstream side of the particulate collecting filter 62.
  • the differential pressure detecting means 26C is, for example, a pressure sensor, and outputs a detection signal according to the differential pressure between the exhaust pressure on the upstream side of the particulate filter 62 and the exhaust pressure on the downstream side of the particulate filter 62. Output to the control device 50.
  • the atmospheric pressure detecting means 23 is, for example, an atmospheric pressure sensor, and is provided in the control device 50.
  • the atmospheric pressure detecting means 23 outputs a detection signal corresponding to the atmospheric pressure around the control device 50 to the control device 50.
  • the vehicle speed detecting means 27 is, for example, a vehicle speed detecting sensor, which is provided on the wheels of the vehicle or the like.
  • the vehicle speed detecting means 27 outputs a detection signal according to the rotation speed of the wheels of the vehicle to the control device 50.
  • the control device 50 is a fuel property detection device, and has at least a CPU 51 and a storage device 53.
  • the input of the control device 50 includes the intake flow rate detecting means 21, the crank angle detecting means 22A, the cylinder detecting means 22B, the atmospheric pressure detecting means 23, the accelerator pedal depression amount detecting means 25, and the compressor upstream pressure.
  • Detection means 24A compressor downstream pressure detecting means 24B, intake manifold pressure detecting means 24C, turbine upstream pressure detecting means 26A, turbine downstream pressure detecting means 26B, differential pressure detecting means 26C, vehicle speed detecting means 27, intake temperature detecting means 28A, 28B , Coolant temperature detecting means 28C, exhaust temperature detecting means 28D, 28E, nozzle opening degree detecting means 32, throttle opening degree detecting means 48S and the like.
  • the output from the control device 50 includes control signals to the injectors 43A to 43D, the EGR valve 14, the nozzle driving means 31, the throttle device 48, and the like.
  • the input / output of the control device 50 is not limited to the above-mentioned detection means and actuator. Further, the temperature, pressure, etc. of each part may be calculated by estimation calculation without mounting a sensor.
  • the control device 50 detects the operating state and the environmental state of the diesel engine 10 based on the detection signals from various detecting means including the above-mentioned detecting means, and controls various actuators including the above-mentioned actuator.
  • the storage device 53 is, for example, a storage device such as a Flash-ROM, and stores programs, data, and the like for executing control of a diesel engine, self-diagnosis, and the like.
  • the control device 50 (CPU 51) has a detection injection timing-related amount calculation unit 51A, a detection injection amount calculation unit 51B, a detection injection execution unit 51C, and a cetane number detection unit 51D. Will be described later.
  • FIG. 2 shows the same injection of fuel having the same cetan value in different operating states / environmental states of the operating state / environmental state (a), the operating state / environmental state (b), and the operating state / environmental state (c).
  • An example of the case where the same injection amount is injected at the timing is shown, and an example of the case where the injection timing and the injection amount are not corrected according to the operating state / environmental condition is shown.
  • h (a) indicates the heat generation rate in the operating state / environmental state (a)
  • h (b) indicates the heat generation rate in the operating state / environmental state (b)
  • h (c) indicates the operation.
  • the heat generation rate in the case of the state / environmental state (c) is shown. Even if fuels with the same cetane number are injected with the same injection amount at the same injection timing, the shape of the heat generation rate will differ if the operating conditions and environmental conditions are different.
  • the environmental condition of the diesel engine refers to the condition of the surrounding atmosphere that does not change depending on the operating condition of the diesel engine.
  • atmospheric pressure detected by the atmospheric pressure detecting means 23
  • outside air temperature detected by the intake air temperature detecting means 28A
  • the operating state of the diesel engine refers to the operation from the user, the control from the control device, and the operating state of the diesel engine changed accordingly, excluding the above-mentioned environmental state.
  • the accelerator pedal depression amount (detected by the accelerator pedal depression amount detecting means 25) corresponds to the operating state as an operation from the user.
  • control from the control device control of various actuators
  • control of the injectors 43A to 43D, the throttle device 48, the EGR valve 14, the nozzle driving means 31, and the like corresponds to the operating state.
  • the operating state and environmental state of the diesel engine will be described as the operating state / environmental state of the diesel engine, but when it is not necessary to distinguish between the operating state and the environmental state of the diesel engine, the operating state / environment of the diesel engine The state may be collectively described as the operating state of the diesel engine.
  • the operating state / environment can obtain almost the same heat generation rate as shown in FIG. 3 even if the operating state or the environmental state changes.
  • the injection timing and injection amount are corrected according to the state.
  • TQ target torque equivalent amount
  • T DLY 1 / ⁇ A [Fuel] B [O 2 ] C exp (-D / T cyl ) ⁇ (Equation 1)
  • A, B, C, D Constant
  • T cyl Target In-cylinder temperature at main ignition timing
  • P cyl can be obtained as follows.
  • P (P cylo + P cyl ) / 2
  • V (V cylo + V cyl ) / 2
  • the (target) ignition timing (corresponding to a preset predetermined crank angle position) even if the operating condition / environmental condition fluctuates.
  • the fuel injection timing can be appropriately controlled so as to ignite at.
  • the ignition delay time T DLY is determined by the cylinder inflow gas amount, EGR amount, exhaust manifold internal pressure, exhaust manifold internal temperature, cooling water temperature (coolant temperature), boost pressure, intercooler outlet gas temperature, and the like. It is obtained from the EGR outlet gas temperature, etc.
  • the cylinder inflow gas amount is detected based on the detection signal from the intake flow rate detecting means 21 (see FIG. 1).
  • the EGR amount is calculated from the EGR rate calculated by the control device 50, the control amount of the EGR valve 14 (see FIG. 1), and the like.
  • the pressure inside the exhaust manifold is detected based on the detection signal from the pressure detecting means when the exhaust manifold has a pressure detecting means, and when the exhaust manifold does not have the pressure detecting means, the exhaust temperature and the intake flow rate and the like. It can be estimated from the opening degree and the number of rotations of the variable nozzle.
  • the temperature inside the exhaust manifold is detected based on the detection signal from the temperature detecting means when the exhaust manifold has a temperature detecting means, and when the exhaust manifold does not have the temperature detecting means, the temperature on the upstream side of the oxidation catalyst is detected. It can be estimated from the exhaust temperature and the like.
  • the cooling water temperature (coolant temperature) is detected based on the detection signal from the coolant temperature detecting means 28C (see FIG. 1).
  • the boost pressure is detected based on the detection signal from the intake manifold pressure detecting means 24C (see FIG. 1).
  • the intercooler outlet gas temperature is detected based on the detection signal from the intake air temperature detecting means 28B (see FIG. 1).
  • the EGR outlet gas temperature is detected based on the detection signal from the temperature detecting means when the EGR pipe 13 has a temperature detecting means at the outlet, and the exhaust manifold when the temperature detecting means is not provided. It can be estimated based on the internal temperature, the coolant temperature of the EGR cooler, the amount of EGR, and the like.
  • the corrected detection injection Kinj can be executed from the control device 50.
  • the injection amount the amount of gas flowing into the cylinder, the amount of EGR, the pressure inside the exhaust manifold, the temperature inside the exhaust manifold, the cooling water temperature (coolant temperature), the boost pressure, the intercooler outlet gas temperature, and the EGR outlet gas are the same as the injection timing.
  • the injection amount including the correction can be calculated by a known method based on the operating state / environmental state of the diesel engine such as temperature. Since a known calculation method is used for the calculation, the details of the injection amount calculation method including the correction will be omitted.
  • the injection amount can be appropriately corrected so as to be.
  • An example is shown in which the detection injection Kinj is executed with fuels having different cetane numbers when the correction of the above and the correction of the injection amount are performed.
  • FIG. 5 shows an example in which the detection injection Kinj for cetane number detection is executed when the diesel engine stops fuel injection and gradually decreases the rotation speed while coasting (corresponding to the detectable period). It shows. For example, this detectable period is during coastal driving before the accelerator pedal is released and the brake pedal is depressed before the red light or the like while traveling in an urban area or the like.
  • N (d1) indicates the number of revolutions increased by the torque generated by the injection for detecting the cetane number (high) fuel
  • N (d2) is for detecting the cetane number (medium) fuel
  • the number of revolutions increased by the torque generated by the injection is shown
  • N (d3) shows the number of revolutions increased by the torque generated by the injection for detecting the cetane number (low) fuel.
  • ⁇ N which is the deviation between the rotation speed immediately before executing the detection injection Kinj (immediate rotation speed) and the rotation speed immediately after executing the detection injection Kinj (immediate rotation speed), and the immediately preceding rotation speed.
  • the torque equivalent amount TQ corresponding to the cetane number can be obtained.
  • the setan value / torque equivalent amount characteristic is defined as the setan value on the horizontal axis and the torque equivalent amount (physical quantity corresponding to torque, torque fluctuation amount, etc.) on the vertical axis.
  • the torque equivalent amount is, for example, an amount obtained by converting the amount of rotation speed fluctuation with respect to a reference rotation speed (for example, 1500 [rpm]) into torque.
  • the cetane number / torque equivalent characteristics are set based on the results of various experiments and simulations using an actual vehicle.
  • the cetane number / torque equivalent characteristic ( ⁇ ) changes in torque equivalent with respect to the difference in cetane number.
  • a small discriminant inappropriate cetane number range a region where the cetane number is lower than the discriminable lower limit cetane number SL ( ⁇ ) and a region where the cetane number is higher than the discriminable upper limit cetane number SH ( ⁇ )).
  • the cetane number torque equivalent characteristic ( ⁇ ) is such that the change in the torque equivalent amount is larger with respect to the difference in the cetane number than the undiscrimination inappropriate cetane number range.
  • the cetane number / torque equivalent characteristic ( ⁇ ) shown in FIG. 7 is used to detect the cetane number within the cetane number detection range of the detection lower limit cetane number SKL to the detection upper limit cetane number SKH.
  • the cetane number / torque equivalent characteristic ( ⁇ ) shown in FIG. 7 is used to detect the cetane number within the cetane number detection range of the detection lower limit cetane number SKL to the detection upper limit cetane number SKH.
  • the discriminable cetane number range ( ⁇ ) of the cetane number / torque equivalent characteristic ( ⁇ ) (the range from the discriminable lower limit cetane number SL ( ⁇ ) to the discriminable upper limit cetane number SH ( ⁇ )).
  • the cetane number detection range (the range from the lower limit cetane number SKL to the upper limit cetane number SKH). For example, when the detected torque equivalent amount is TQ, it can be detected that the cetane number to be detected is S based on the cetane number / torque equivalent amount characteristic ( ⁇ ) shown in FIG.
  • the control device 50 activates the process shown in FIG. 8 at each predetermined crank angle (for example, every 15 [° CA], see FIG. 12), and proceeds to step S110.
  • the crank angle detecting means 22A (see FIG. 1) outputs a detection signal every time the crankshaft rotates by 15 [° CA]
  • the cylinder detecting means 22B detects the first cylinder immediately before the position of the compression top dead center. Output a signal.
  • step S110 the control device 50 updates the value of the crank angle counter (00 to 47 (see FIG. 12)), acquires the time when the current crank angle signal is input, and obtains the value of the crank angle counter (00). It is stored in correspondence with ⁇ 47), and the process proceeds to step S115.
  • step S110 the control device 50 initializes the value of the crank angle counter to (00) when the cylinder detection signal from the cylinder detection means 22B (see FIG. 1) is detected (see FIG. 12). If the cylinder detection signal from the cylinder detection means 22B is not detected, the value of the crank angle counter is counted up by 1 (see FIG. 12). As a result, the value of the crank angle counter is updated to any value of (00 to 47) every 15 [° CA]. For example, the period when the value of the crank angle counter is (00) indicates that the crank angle is between 0 [° CA] and 15 [° CA] of the compression top dead center of the first cylinder, and the value of the crank angle counter. The period (24) indicates that the crank angle is between 360 [° CA] and 375 [° CA] of the intake top dead center of the first cylinder.
  • step S115 the control device 50 determines whether or not the execution condition of the detection injection is satisfied, and if it is satisfied (S115: Yes), the process proceeds to step S120, and if it is not satisfied (S115: Yes).
  • S115: No) proceeds to step S190.
  • the execution condition of the detection injection is indispensable for "the state where the fuel injection is currently stopped and the rotation speed is gradually decreasing while coasting", but other conditions have been added. It doesn't matter.
  • step S120 the control device 50 determines whether or not the value of the crank angle counter this time is (47), and if the value of the crank angle counter is (47) (S120: Yes), the step S125 is performed. The process proceeds, and if the value of the crank angle counter is not (47) (S120: No), the process proceeds to step S135.
  • step S125 the control device 50 executes the process SA100 and proceeds to the process to step S130.
  • the ignition delay time and the injection amount of the detection injection are calculated, and the injection start time and the injection end time are obtained from the injector of the first cylinder to execute the detection injection. This process is set in the timer, and the details of the process SA100 will be described later.
  • step S130 the control device 50 sets the detection injection execution flag to ON, sets the actuator maintenance request flag to ON (see FIG. 12), and proceeds to step S135.
  • the detection injection execution flag indicates that the detection injection has been scheduled (process SA100 has been executed), is used for determination in step S135 described later, and is set to OFF in step S160. ..
  • the actuator maintenance request flag is used for the intake / exhaust system actuator (throttle device, EGR valve) during the period from the execution of the detection injection scheduling to the execution of the detection injection to the acquisition of the fluctuation of the rotation speed (torque equivalent amount).
  • the operating state of the variable nozzle nozzle driving means, etc.) is a flag for requesting to be maintained without being changed, and is set to OFF in step S160.
  • the actuator control process not shown, when the actuator maintenance request flag is ON, the control device 50 stops the change of the operating state of the actuator and maintains the current operating state (engine brake such as regeneration). The operation related to is prohibited).
  • step S135 the control device 50 determines whether or not the detection injection execution flag is ON, and if it is ON (S135: Yes), the process proceeds to step S140, and if it is OFF. (S135: No) ends the process shown in FIG.
  • step S140 the control device 50 determines whether or not the value of the crank angle counter this time is (00), and when the value of the crank angle counter this time is (00) (S140: Yes) proceeds to step S145, and if the value of the crank angle counter this time is not (00) (S140: No), the process proceeds to step S150.
  • step S145 the control device 50 executes the process SA200 and ends the process shown in FIG.
  • the process of the process SA200 is a process of measuring the rotation speed (Ne [immediately before], see FIG. 12) immediately before executing the detection injection, and the details of the process SA200 will be described later.
  • step S150 the control device 50 determines whether or not the value of the crank angle counter this time is (03), and when the value of the crank angle counter this time is (03) (S150: Yes) proceeds to step S155, and if the value of the crank angle counter this time is not (03) (S150: No), the process shown in FIG. 8 ends.
  • step S155 the control device 50 executes the process SA300 and proceeds to the process to step S160.
  • the process of the process SA300 is a process of measuring the rotation speed (Ne [immediately after], see FIG. 12) immediately after the execution of the detection injection and detecting the cetane number, and the details of the process SA300 will be described later.
  • step S160 the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF (see FIG. 12), and ends the process shown in FIG.
  • step S190 the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and ends the process shown in FIG.
  • the processing SA100 calculates the ignition delay time T DLY of the detection injection Kinj according to the operating state / environmental state of the diesel engine, and calculates the injection amount (injection time Tinj) of the detection injection Kinj according to the operating state / environmental state. , This is a process for setting a timer for the injection start time and the injection end time.
  • the control device 50 executes the process SA100 in step S125 shown in FIG. 8, the control device 50 proceeds to the process SA110 shown in FIG.
  • step SA110 the control device 50 calculates the ignition delay time T DLY according to the operating state and environmental state of the diesel engine, and proceeds to step SA120. Since the method of calculating the ignition delay time T DLY is as described above, the description thereof will be omitted. Further, the ignition delay time T DLY corresponds to an injection timing-related amount related to the injection timing of the detection injection Kinj.
  • the injection time Tinj corresponds to the injection amount of the detection injection Kinj.
  • the control device 50 (CPU51) executing the process of step SA120 is for detecting the fuel having the reference cetane number Ss set in advance within the cetane number detection range, regardless of the operating state and the environmental state of the diesel engine.
  • (target) ignition timing 7 [° CA]
  • the injection start time of Kinj is obtained by the time when the crank angle signal whose crank angle counter value is (47) is input + T (15) + T (7) -T DLY , and the obtained injection start time is obtained by the injection start timer. Is set to and the process proceeds to step SA150.
  • step SA150 the control device 50 obtains the injection end time of the detection injection Kinj by (injection start time) + injection time Tinj, and sets the obtained injection end time in the injection end timer. The setting is made, the process shown in FIG. 9 is completed, the process returns, and the process proceeds to step S130 shown in FIG.
  • the control device 50 (CPU51) executing the processes of steps SA130 to SA150 has a detection injection amount for a predetermined cylinder during the detectable period (when the execution condition for detection injection is satisfied (step S115)).
  • the injection timing calculated by the calculation unit 51B is based on the injection timing-related amount (ignition delay time T DLY ) calculated by the detection injection timing-related amount calculation unit 51A (see FIG. 1).
  • Corresponds to the detection injection execution unit 51C (see FIG. 1) that executes the detection injection Kinj to be injected at.
  • the injection start time and the injection end time of the detection injection Kinj are set at the timing when the value of the crank angle counter shown in FIG. 12 is (47), but the value of the crank angle counter is (00). ), The injection start time and the injection end time of the detection injection Kinj may be set.
  • the process SA200 is a process for measuring Ne [immediately before] (see FIG. 12), which is the rotation speed immediately before the detection injection Kinj.
  • step SA210 the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (00) is input and the crank angle signal whose (previous) crank angle counter value is (47).
  • Ne [immediately before] (see FIG. 12), which is the rotation speed immediately before the detection injection Kinj, is calculated (measured) based on the difference (15 [° CA] time) from the time when is input.
  • the process shown in FIG. 10 is completed and returned, the process is advanced immediately after step S145 shown in FIG. 8, and the process shown in FIG. 8 is completed.
  • the process SA300 is a process of measuring Ne [immediately after] (see FIG. 12), which is the rotation speed immediately after the detection injection Kinj, and a process of detecting the cetane number.
  • Ne immediate after the detection injection Kinj
  • the control device 50 executes the process SA300 in step S155 shown in FIG. 8, the control device 50 proceeds to the process SA310 shown in FIG.
  • step SA310 the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (03) is input and the crank angle signal whose (previous) crank angle counter value is (02). Based on the difference (15 [° CA] time) from the time when is input, Ne [immediately after] (see FIG. 12), which is the rotation speed immediately after the combustion generated by the detection injection Kinj, is calculated (measured). ) And proceed to step SA320.
  • step SA320 the control device 50 is ⁇ N, which is the difference between Ne [immediately after], which is the rotation speed immediately after the detection injection Kinj, and Ne [immediately before], which is the rotation speed immediately before the detection injection Kinj. 12) is calculated. Then, the torque equivalent amount TQ is calculated based on the control device 50, the obtained ⁇ N, and Ne [immediately before], which is the rotation speed immediately before the detection injection Kinj, and the process proceeds to step SA330.
  • step SA330 the control device 50 calculates (detects) the cetane number S corresponding to the torque equivalent amount TQ based on the torque equivalent amount TQ and the cetane number / torque equivalent amount characteristic ( ⁇ ) shown in FIG. Then, the process shown in FIG. 11 is completed and returned, and the process proceeds to step S160 shown in FIG.
  • Detection injection Kinj has a cetane number / torque equivalent characteristic ( ⁇ ) in which a torque equivalent amount is set according to the cetane number, and in the case of fuel detection injection with a reference cetane number Ss, the reference torque equivalent amount TQs
  • the cetane number / torque equivalent characteristic ( ⁇ ) (see FIG. 7) is stored in the storage device 53 so as to be ( ⁇ ).
  • the control device 50 (CPU51) executing the process of step SA330 has an actual torque equivalent amount corresponding to the torque actually generated by the detection injection Kinj, and a cetane number / torque equivalent amount stored in the storage device. It corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the cetane number based on the characteristic ( ⁇ ).
  • the detected cetane number is used to correct the injection timing and injection amount of the normal fuel injection of a diesel engine.
  • the cetane number / torque equivalent amount characteristic ( ⁇ ) is a “discriminable cetane number range ( ⁇ )” capable of accurately discriminating the cetane number according to the torque equivalent amount. And, it has a “discrimination inappropriate cetane number range ( ⁇ )” which is not suitable for discriminating the cetane number according to the torque equivalent amount.
  • the detection injection for detecting the cetane number may be executed for any cylinder, but in the present embodiment, the detection injection is performed for the first cylinder as in the first embodiment. Execute.
  • the first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic corresponding to each of the first detection injection to the fourth detection injection are the torque equivalent with respect to the difference in cetane number. It has a discriminable cetane number range in which the change in the amount of torque is small and a discriminable cetane number range in which the change in the torque equivalent amount is larger than the discriminating inappropriate cetane number range.
  • the first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic are in the distinguishable cetane value range of the first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic. Is set so that the lower limit of detection cetane number to the upper limit of detection cetane number can be covered by superimposing.
  • the first crank angle position to the first crank angle position to ignite the fuel injected by the detection injection Kinj [1] to the detection injection Kinj [n].
  • step shown by the thick solid line indicates that the process is different from the flowchart of the first embodiment shown in FIG.
  • the control device 50 (CPU 51) activates the process shown in FIG. 14 at, for example, every predetermined crank angle (for example, every 15 [° CA]), and proceeds to step S210.
  • step S210 the control device 50 updates the value of the crank angle counter (00 to 47 (see FIG. 12)), acquires the time when the current crank angle signal is input, and obtains the value of the crank angle counter (00). It is stored in correspondence with ⁇ 47), and the process proceeds to step S212. Since the process of step S210 is the same as the process of step S110 shown in FIG. 8, details will be omitted.
  • the control device 50 sets the initial detection flag to ON after starting, initializes the repeat counter i to 1, and proceeds to the process to step S215.
  • the cetane number value can be detected by executing the detection injection Kinj [1] to Kinj [4] all at once. After that, the cetane number in the "distinguishable cetane number range" according to the cetane number value Ignition timing detection injection corresponding to the torque equivalent characteristic is performed.
  • the cetane number is detected by executing the detection injection Kinj [1] to Kinj [4] (for example, the value in the range of 50 to 60). After that, an example of performing the detection injection Kinj [2] and the detection injection Kinj [3] is shown.
  • step S215 the control device 50 determines whether or not the execution condition of the detection injection is satisfied, and if it is satisfied (S215: Yes), the process proceeds to step S220 and is satisfied. If not (S215: No), the process proceeds to step S290. Since the process of step S215 is the same as the process of step S115 shown in FIG. 8, the details will be omitted.
  • step S220 the control device 50 determines whether or not the value of the crank angle counter this time is (47), and when the value of the crank angle counter is (47) (S220: Yes). ) Proceeds to step S225, and if the value of the crank angle counter is not (47) (S220: No), the process proceeds to step S235.
  • step S225 the control device 50 executes the process SB100 and proceeds to the process to step S230.
  • the process SB100 the process of calculating the ignition delay time and the injection amount of the detection injection Kinj [i] and the injection start for the injector of the first cylinder to execute the detection injection Kinj [i]. This is a process of obtaining the time and the injection end time and setting the timer, and the details of the process SB100 will be described later.
  • step S230 the control device 50 sets the detection injection execution flag to ON, sets the actuator maintenance request flag to ON, and proceeds to step S235. Since the process of step S230 is the same as the process of step S130 shown in FIG. 8, the details will be omitted.
  • step S235 the control device 50 determines whether or not the detection injection execution flag is ON, and when it is ON (S235: Yes), the process proceeds to step S240, and when it is OFF. (S235: No) ends the process shown in FIG.
  • step S240 the control device 50 determines whether or not the value of the crank angle counter this time is (00), and when the value of the crank angle counter this time is (00) (S240: Yes) proceeds to step S245, and if the value of the crank angle counter this time is not (00) (S240: No), the process proceeds to step S250.
  • step S245 the control device 50 executes the process SB200 and ends the process shown in FIG.
  • the process of the process SB200 is a process of measuring the rotation speed (Ne [i] [immediately before]) immediately before executing the detection injection Kinj [i], and the details of the process SB200 will be described later.
  • step S250 the control device 50 determines whether or not the value of the crank angle counter this time is (03), and when the value of the crank angle counter this time is (03) (S250: Yes) proceeds to step S255, and if the value of the crank angle counter this time is not (03) (S250: No), the process shown in FIG. 14 ends.
  • the process SB300 is a process of measuring the rotation speed (Ne [i] [immediately after]) immediately after the execution of the detection injection Kinj [i] and detecting the (provisional) cetane number S [i]. , The details of the processing SB300 will be described later.
  • step S260 the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and proceeds to step S265.
  • step S265 the control device 50 executes the process SB400 and ends the process shown in FIG.
  • the process of the process SB400 is a process of obtaining the (final) cetane number S from each (provisional) cetane number S [i] detected by the detection injection Kinj [i], and the details of the process SB400 will be described later.
  • step S290 the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and ends the process shown in FIG.
  • the processing SB100 calculates the ignition delay time T DLY [i] of the detection injection Kinj [i] according to the operating state / environmental state of the diesel engine, and the detection injection Kinj [i] according to the operating state / environmental state. This is a process for calculating the injection amount (injection time Tinj [i]) and setting the timer for the injection start time and the injection end time.
  • the repetition counter i 1
  • the ignition time ⁇ [1] [° CA] (in this case, 7 [° CA]) using the ignition delay time T DLY [1] and the injection time Tinj [1].
  • the (provisional) cetane number S [1] is used by using the obtained torque equivalent TQ ( ⁇ [1]) and the cetane number torque equivalent characteristic ( ⁇ [1]).
  • the repetition counter i 2
  • Detection injection Kinj [2] is executed, and the (provisional) cetane number S [2] is used by using the obtained torque equivalent amount TQ ( ⁇ [2]) and the cetane number torque equivalent amount characteristic ( ⁇ [2]). 2] is calculated.
  • control device 50 executes the process SB100 in step S225 shown in FIG. 14, the control device 50 proceeds to the process SB110 shown in FIG.
  • step SB110 the control device 50 calculates the ignition delay time T DLY [i] according to the operating state and environmental state of the diesel engine, and proceeds to the process in step SB120. Since the method of calculating the ignition delay time T DLY [i] is as described above, the description thereof will be omitted. Further, the ignition delay time T DLY [i] corresponds to an injection timing-related amount related to the injection timing of the detection injection Kinj [i].
  • the control device 50 (CPU51) executing the processing of the SB 110 has a cetane number within the cetane number detection range of the lower detection lower limit cetane number to the upper limit cetane number detection regardless of the operating state and environmental state of the diesel engine.
  • the crank angle positions where the fuel injected by the injection for detection ignites are the preset first crank angle positions to the nth crank angle positions, respectively.
  • the injection time Tinj [i] corresponds to the injection amount of the detection injection Kinj [i].
  • the control device 50 (CPU51) executing the process of step SB120 is the first regardless of the operating state and the environmental state of the diesel engine. Ignition at the first crank angle position ( ⁇ [1]) to the nth crank angle position ( ⁇ [n]) by each of the detection injection (Kinj [1]) to the nth detection injection (Kinj [n]).
  • the reference torque equivalent amount TQs [i] corresponding to the torque generated by the subsequent combustion is the preset first reference torque equivalent amount (TQs [1]) to the nth reference torque equivalent amount (TQs [n]).
  • the detection injection amount calculation unit 51B that calculates the injection amount of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]).
  • the injection start time of is obtained by the time when the crank angle signal whose crank angle counter value is (47) is input + T (15) + T ( ⁇ [i])-T DLY [i], and the obtained injection start time is obtained. Is set in the injection start timer and the process proceeds to step SB150.
  • step SB150 the control device 50 obtains the injection end time of the detection injection Kinj [i] by (injection start time) + injection time Tinj [i], and sets the obtained injection end time in the injection end timer. Then, the process shown in FIG. 15 is completed and returned, and the process proceeds to step S230 shown in FIG.
  • the control device 50 (CPU51) executing the processes of steps SB130 to SB150 has a detection injection amount for a predetermined cylinder during the detectable period (when the execution condition for detection injection is satisfied (step S215)).
  • Each injection amount calculated by the calculation unit 51B is the injection timing-related amount calculated by the detection injection timing-related amount calculation unit 51A (see FIG. 1) (ignition delay time T DLY [i]).
  • the detection injection execution unit 51C corresponds to the detection injection execution unit 51C (see FIG. 1) that executes the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]) to be injected at the injection timing based on the above. ing.
  • the injection start time and the injection end time of the detection injection Kinj [i] are set at the timing when the value of the crank angle counter is (47), but the value of the crank angle counter is (00).
  • the injection start time and the injection end time of the detection injection Kinj [i] may be set at the timing of.
  • the process SB200 is a process for measuring Ne [i] [immediately before], which is the rotation speed immediately before the detection injection Kinj [i].
  • the control device 50 executes the process SB200 in step S245 shown in FIG. 14, the control device 50 proceeds to the process SB210 shown in FIG.
  • step SB210 the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (00) is input and the crank angle signal whose (previous) crank angle counter value is (47).
  • Ne [i] [immediately before] which is the number of revolutions immediately before the detection injection Kinj [i] is calculated (measured) based on the difference (15 [° CA] time) from the time when is input.
  • the process shown in FIG. 16 is completed and returned, the process is advanced immediately after step S245 shown in FIG. 14, and the process shown in FIG. 14 is completed.
  • the process SB300 is a process of measuring Ne [i] [immediately after], which is the rotation speed immediately after the detection injection Kinj [i], and a process of detecting the (provisional) cetane number S [i].
  • the control device 50 executes the process SB300 in step S255 shown in FIG. 14, the control device 50 proceeds to the process SB310 shown in FIG.
  • step SB310 the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (03) is input and the crank angle signal whose (previous) crank angle counter value is (02).
  • Ne [i] [immediately after] which is the number of revolutions immediately after the combustion generated by the detection injection Kinj [i] is calculated based on the difference (15 [° CA] time) from the time when is input ( (Measurement) and proceed to step SB320.
  • step SA320 the control device 50 has Ne [i] [immediately after] which is the rotation speed immediately after the detection injection Kinj [i] and Ne [i] which is the rotation speed immediately before the detection injection Kinj [i].
  • ⁇ N [i] which is the difference between [immediately before] and.
  • TQ ( ⁇ [i]) is calculated based on the control device 50, the obtained ⁇ N [i], and the Ne [i] [immediately before] which is the rotation speed immediately before the detection injection Kinj [i]. Calculate and proceed to step SB330.
  • step SB330 the control device 50 determines the torque equivalent amount TQ ( ⁇ [i]) based on the torque equivalent amount TQ ( ⁇ [i]) and the cetane number / torque equivalent amount characteristic ( ⁇ [i]) shown in FIG.
  • the (provisional) cetane number S [i] corresponding to [i]) is calculated (detected), the process shown in FIG. 17 is completed and returned, and the process proceeds to step S260 shown in FIG.
  • the first cetane number / torque equivalent characteristic ( ⁇ [ ⁇ [n]) is set to be the first reference torque equivalent (TQs [1]) to the nth torque equivalent (TQs [n]). 1]) to the nth cetane number / torque equivalent characteristic ( ⁇ [n]) (see FIG. 13) are stored in the storage device 53.
  • the control device 50 (CPU51) executing the process of step SB330 applies the torque actually generated in each of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]).
  • 1st actual torque equivalent to nth actual torque equivalent and 1st cetane number / torque equivalent characteristic ( ⁇ [1]) to nth cetane number / torque equivalent characteristic ( ⁇ [n]) corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the (provisional) cetane number S [i] based on.
  • the process SB400 is a process for detecting the (final) cetane number S based on the (provisional) cetane number S [i].
  • the control device 50 executes the process SB400 in step S265 shown in FIG. 14, the control device 50 proceeds to the process SB410 shown in FIG.
  • step SB410 the control device 50 determines whether or not the initial detection flag is ON after starting, and if it is ON (SB410: Yes), the process proceeds to step SB415, and if it is not ON (SB410: No). Proceeds to step SB465.
  • step SB415 the value of the repeat counter i is counted up by +1 and the process proceeds to step SB420 (preparation for the next detection injection Kinj [i]).
  • step SB420 the control device 50 determines whether or not the count-up repetition counter i is larger than the value set in "n", and if it is larger than n (SB420: Yes), the step SB425 is performed.
  • the process shown in FIG. 18 is completed and returned, the process returns to the bottom of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed.
  • step SB425 the detection injections Kinj [1] to Kinj [n] are executed in the initial detection period of the cetane number in which the initial detection flag is ON after the start, and the (provisional) cetane number S is executed. [1] to S [n] have been detected. Therefore, the control device 50 detects (calculates) the (final) cetane number S based on the (provisional) cetane numbers S [1] to S [n].
  • the start initial detection flag ON period
  • a general detection is performed in the cetane number initial detection period.
  • the cetane number is detected by the value detection unit 51D. Further, in the description of the present embodiment, in step S212, when the start-up flag transitions from ON to OFF (when the transition occurs from start-up to post-startup), the post-startup initial detection flag is set to ON. Instead, when it is detected that the fuel has been replenished based on the detection signal from the fuel amount level sensor or the like (not shown) (when it is detected that the diesel engine has been refueled), the initial detection after the start is performed. The flag may be set to ON.
  • the average of (provisional) cetane number S [1] to (provisional) cetane number S [n] is defined as the (final) cetane number S.
  • the (provisional) cetane number S [1] detected using the drug has a very small error. Therefore, when the (provisional) cetane number S [1] ⁇ 50, the (provisional) cetane number S [4] is truncated and the average of the (provisional) cetane number S [1] to (provisional) cetane number [3]. May be the (final) cetane number S.
  • the ignition timing ⁇ [1] detection injection Kinj [1] and the cetane number / torque equivalent characteristic ( ⁇ [1]).
  • step SB425 the control device 50 prepares cetane number / torque equivalent characteristic ( ⁇ [1]) to cetane number / torque equivalent characteristic ( ⁇ [n]) according to the (final) cetane number S. ]), An appropriate one is selected, the selected lower characteristic number is set to "a”, the selected upper characteristic number is set to "b”, and the process proceeds to step SB430.
  • step SB430 the control device 50 substitutes the value of "a” into the repetition counter i and proceeds to step SB435.
  • "2" is substituted for "a” in the above example, "2" is substituted for the repeat counter i.
  • step SB435 the control device 50 sets the initial detection flag to OFF after starting, ends the process shown in FIG. 18, returns, returns to the bottom of step S265 shown in FIG. 14, and ends the process shown in FIG. To do.
  • step SB465 the control device 50 counts up the value of the repeat counter i by +1 and proceeds to step SB470 (preparing for the next detection injection Kinj [i]).
  • Detection injections Kinj [a] to Kinj [b] selected from the first detection injection to the nth detection injection based on the cetane number detected after the transition from ON to OFF of the flag) are detected.
  • Execution unit 51C This is a process to be executed.
  • step SB470 the control device 50 determines whether or not the count-up repetition counter i is larger than the value set in "b", and if it is larger than b (SB470: Yes), the step SB475 is performed.
  • the process is advanced, and if it is b or less (SB470: No), the process shown in FIG. 18 is completed and returned, the process returns to the lower part of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed.
  • the value of "b" is set in step SB425 or step SB475.
  • the detection injections Kinj [1] to corresponding to each of the prepared ignition timings ⁇ [1] to ⁇ [n].
  • the detection injections corresponding to the selected ignition timings ignition timings corresponding to the selected cetane number / torque equivalent characteristics
  • the detection injection Kinj [2] and the detection injection Kinj [3] are executed in order).
  • the control device 50 detects the (provisional) cetane number S [i] corresponding to each detection injection Kinj [i].
  • step SB475 since the initial detection flag after the start is in the OFF period, the detection injections Kinj [a] to Kinj [b] are executed in a row, and the (provisional) cetane number S [a] is executed. ⁇ S [b] has been detected. Therefore, the control device 50 detects (calculates) the (final) cetane number S based on the (provisional) cetane numbers S [a] to S [b]. For example, in the control device 50, the average of the (provisional) cetane number S [a] to the (provisional) cetane number S [b] is defined as the (final) cetane number S.
  • the method of calculating the (final) cetane number S is not limited to the above averaging.
  • M is an integer of 2 or more
  • the current (final) cetane number S [(M-1) * (previous (final) cetane number S) + (this time (provisional) cetane number S [a] ⁇ It may be obtained as (provisional) average value of cetane number S [b])] / M, and various calculation methods can be considered as the calculation method of the (final) cetane number S.
  • control device 50 prepares the cetane number / torque equivalent characteristic ( ⁇ [1]) to the cetane number / torque equivalent characteristic ( ⁇ [n]) according to the (final) cetane number S in step SB475. ]), An appropriate one is selected, the selected lower characteristic number is set to "a”, the selected upper characteristic number is set to "b”, and the process proceeds to step SB480.
  • the selection and the settings of "a” and “b” are the same as those in step SB425, and thus the description thereof will be omitted.
  • step SB480 the control device 50 substitutes the value of "a" for the repetition counter i (when "2" is assigned to “a” in the above example, "2" is assigned to the repetition counter i).
  • the process shown in FIG. 18 is completed and returned, the process returns to the bottom of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed.
  • the control device 50 (CPU51) executing the processes of steps SB425 and SB475 actually generated in each of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]).
  • 1st actual torque equivalent to nth actual torque equivalent and 1st cetane number / torque equivalent characteristic ( ⁇ [1]) to nth cetane number / torque equivalent characteristic ( ⁇ [n]) Corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the (final) cetane number S from each of the above and the (provisional) cetane number S [i] based on.
  • the detected (final) cetane number S is used for correcting the injection timing and injection amount of the normal fuel injection of a diesel engine.
  • the detection injection is executed in a predetermined cylinder during the detectable period in which the diesel engine stops the fuel injection and gradually decreases the rotation speed while coasting to obtain the torque generated by the detection injection.
  • the cetane number of the fuel used in the diesel engine is detected based on the corresponding torque equivalent amount. Therefore, the torque fluctuation amount due to the difference in cetane number is higher than that of detecting the change amount of the generated torque by changing the injection amount of the sub-injection during normal operation to the injection amount of two levels as in Patent Document 1. It becomes possible to detect with high accuracy, and the cetane number can be detected with higher accuracy.
  • a stable ignition timing is realized by obtaining the ignition delay time (T DLY ) according to the operating condition and environmental condition of the diesel engine and finely adjusting (correcting) the injection timing of the detection injection.
  • T DLY ignition delay time
  • adjusting (correcting) the injection amount of the detection injection according to the operating condition and environmental condition of the diesel engine it is possible to stably generate torque according to the cetane number, and with higher accuracy. Cetane number can be detected.
  • cetane number detection range is wide and one cetane number / torque equivalent characteristic discriminable cetane number range cannot cover the required cetane number detection range, as shown in the second embodiment.
  • a plurality of cetane number / torque equivalent characteristics it is possible to appropriately detect the cetane number in the required cetane number detection range.
  • a plurality of prepared (target) ignition timing detection injections are not performed once each time, but once the (final) cetane number is detected, the (target) ignition timing can be appropriately detected. By focusing on the execution of the detection injection, unnecessary detection injection can be omitted.
  • the fuel property detection device (control device 50) of the present disclosure is not limited to the configuration, processing procedure, etc. described in the present embodiment, and various changes, additions, and deletions can be made without changing the gist of the present disclosure. is there.
  • crank angle detecting means In the description of the present embodiment, an example in which the detection signal from the crank angle detecting means is output every 15 [° CA] rotation of the crankshaft has been described, but it is limited to every 15 [° CA]. is not it. Further, an example of outputting a signal of the compression top dead center position of the first cylinder from the cylinder discriminating means has been described, but the present invention is not limited to this. There are various types of crank angle signals and cylinder discrimination signals.
  • the detection injection Kinj [1] to the detection injection Kinj [n] are sequentially executed from the detection injection Kinj [1] to the detection injection Kinj [n] to detect the (final) cetane number S.
  • the detection injection Kinj [1] to the detection injection Kinj [n] are executed in order. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Provided is a fuel characteristics detecting apparatus (50) for detecting a cetane number (S) of fuel on the basis of a torque equivalent amount (TQ) generated by performing detecting injection (Kinj) when a diesel engine (10) has stopped fuel injection and is idling. The fuel characteristics detecting apparatus (50) comprises: a detecting injection timing-related amount calculating unit (51A) for calculating an injection timing-related amount (TDLY) such that ignition occurs at a predetermined crank angle position (θ); a detecting injection amount calculating unit (51B) for calculating an injection amount (Tinj) such that a torque equivalent amount (TQ) generated in the case of fuel having a reference cetane number (Ss) becomes a reference torque equivalent amount (TQs); a storage device (53) for storing a cetane number/torque equivalent amount characteristic in which torque equivalent amounts (TQ) corresponding to the cetane number (S) are set; a detecting injection execution unit (51C) for executing detecting injection (Kinj); and a cetane number detecting unit (51D) which detects a cetane number (S) on the basis of an actual torque equivalent amount actually generated by the detecting injection (Kinj) and the cetane number/torque equivalent amount characteristic.

Description

燃料性状検出装置Fuel property detector
 本開示は、ディーゼル機関にて使用される燃料の性状(燃料性状)を検出する燃料性状検出装置に関する。 The present disclosure relates to a fuel property detection device that detects the properties of fuel (fuel properties) used in a diesel engine.
 ディーゼル機関では、燃焼騒音の発生量やNOx等の排出量を低減するために、筒内への燃料の主噴射の前後に副噴射を行う多段噴射制御が行われている。多段噴射制御を行う燃焼方式の種類としては、図20に示す拡散燃焼と、図21に示す予混合燃焼が知られており、車両に搭載されているディーゼル機関では拡散燃焼が一般的に用いられている。 In diesel engines, in order to reduce the amount of combustion noise generated and the amount of NOx and other emissions, multi-stage injection control is performed in which sub-injection is performed before and after the main injection of fuel into the cylinder. Diffusion combustion shown in FIG. 20 and premixed combustion shown in FIG. 21 are known as types of combustion methods that perform multi-stage injection control, and diffusion combustion is generally used in diesel engines mounted on vehicles. ing.
 図20は、拡散燃焼の例を示す図であり、横軸はクランク角度(クランクシャフトの回転角度)、縦軸はそれぞれ噴射の実行、熱発生率を示している。図20に示すように拡散燃焼では、主噴射103Aよりも先に副噴射101A、102Aを実行して副燃焼101B、102Bを発生させて燃焼室内の吸気(酸素)を拡散させた後、主噴射103Aを実行して主燃焼103Bを発生させている。なお図20に示す拡散燃焼における主燃焼103Bの燃焼速度は、図21に示す予混合燃焼と比較して遅い(クランク角度方向の長さが長い)。 FIG. 20 is a diagram showing an example of diffusion combustion. The horizontal axis shows the crank angle (rotation angle of the crankshaft), and the vertical axis shows the execution of injection and the heat generation rate, respectively. As shown in FIG. 20, in diffusion combustion, the sub-injections 101A and 102A are executed before the main injection 103A to generate the sub-combustion 101B and 102B to diffuse the intake air (oxygen) in the combustion chamber, and then the main injection. 103A is executed to generate the main combustion 103B. The combustion speed of the main combustion 103B in the diffusion combustion shown in FIG. 20 is slower than that of the premixed combustion shown in FIG. 21 (the length in the crank angle direction is long).
 図21は、予混合燃焼の例を示す図であり、図20と同様、横軸はクランク角度、縦軸はそれぞれ噴射の実行、熱発生率を示している。図21に示すように予混合燃焼では、主噴射113Aよりも先に実行した副噴射111A、112Aによる副燃焼111B、112Bの着火タイミングと、主噴射113Aによる主燃焼113Bの着火タイミングがほぼ同時期となるようにしており、副燃焼111B、112Bと主燃焼113Bとが1つに重なった重畳燃焼110Bを発生させる。なお図21に示す予混合燃焼における重畳燃焼110Bの燃焼速度は、図20に示す拡散燃焼と比較して速い(クランク角度方向の長さが短い)。 FIG. 21 is a diagram showing an example of premixed combustion. Similar to FIG. 20, the horizontal axis shows the crank angle, and the vertical axis shows the execution of injection and the heat generation rate, respectively. As shown in FIG. 21, in the premixed combustion, the ignition timing of the sub-combustion 111B and 112B by the sub-injection 111A and 112A executed earlier than the main injection 113A and the ignition timing of the main combustion 113B by the main injection 113A are almost the same. The sub-combustion 111B and 112B and the main combustion 113B overlap each other to generate the superposed combustion 110B. The combustion speed of the superposed combustion 110B in the premixed combustion shown in FIG. 21 is faster than that of the diffusion combustion shown in FIG. 20 (the length in the crank angle direction is short).
 予混合燃焼では、拡散燃焼と比較して、燃費が向上され、NOxの排出量も低減されることが知られている。しかしディーゼル機関で予混合燃焼を利用するには、拡散燃焼と比較して、燃料のセタン価に応じて副噴射、主噴射の噴射時期や噴射量を適切に補正することが重要となるので、より精度の高いセタン価の検出が必須となる。ディーゼル機関で用いる燃料のセタン価は、世界中の各国や、同一国内でも地域や季節等に応じて違う場合があり、ディーゼル機関用の燃料の場合、近年では約43~66の範囲のセタン価の燃料が世界中の各国、各地域で使用されている。 It is known that premixed combustion improves fuel efficiency and reduces NOx emissions as compared with diffusion combustion. However, in order to utilize premixed combustion in a diesel engine, it is important to appropriately correct the injection timing and injection amount of the sub-injection and main injection according to the cetane number of the fuel, as compared with diffusion combustion. More accurate detection of cetane number is essential. The cetane number of fuel used in diesel engines may differ depending on the countries of the world and even within the same country depending on the region and season. In recent years, the cetane number of fuel for diesel engines ranges from about 43 to 66. Fuel is used in each country and region of the world.
 図22は、図20に示す拡散燃焼を用いた場合において、セタン価(低)の燃料、セタン価(中)の燃料、セタン価(高)の燃料、を用いた場合の例を示している。セタン価に応じた着火時期の変化は無いが、セタン価(低)の場合では熱発生率に異常が発生しており、セタン価(低)の場合には何らかの補正が必要であることを示している。拡散燃焼を用いる場合、セタン価(低)の場合には、コモンレール内の燃料圧力を上昇させる等の比較的簡単な補正を行うことで、図23に示すように、セタン価(低)の場合を適切に補正することができる。つまり、拡散燃焼の場合では、低セタン価~高セタン価の範囲内において、セタン価が低い側のみを検出できればよく、セタン価の値の検出精度もあまり高い精度は要求されない。 FIG. 22 shows an example in which a fuel having a cetane number (low), a fuel having a cetane number (medium), and a fuel having a cetane number (high) are used when the diffusion combustion shown in FIG. 20 is used. .. There is no change in ignition timing according to the cetane number, but in the case of the cetane number (low), an abnormality has occurred in the heat generation rate, and in the case of the cetane number (low), it indicates that some correction is necessary. ing. When diffusive combustion is used, in the case of cetane number (low), by making a relatively simple correction such as increasing the fuel pressure in the common rail, as shown in FIG. 23, in the case of cetane number (low). Can be corrected appropriately. That is, in the case of diffusion combustion, it is sufficient to detect only the side having a low cetane number within the range of low cetane number to high cetane number, and the detection accuracy of the cetane number value is not required to be very high.
 図24は、図21に示す予混合燃焼を用いた場合において、セタン価(低)の燃料、セタン価(中)の燃料、セタン価(高)の燃料、を用いた場合の例を示している。セタン価(高)の場合では着火時期が早く、セタン価(低)の場合では着火時期が遅く、安定した燃焼を得ることができない。図25は、図24に対して、セタン価に応じた噴射時期の補正と噴射量の補正を行った場合を示している。セタン価に応じて噴射時期と噴射量を適切に補正することで、安定した着火時期の燃焼を得ることができる。つまり、ディーゼル機関で予混合燃焼を利用するためには、セタン価に応じて噴射時期と噴射量を適切に補正する必要がある。そしてセタン価に応じた噴射時期と噴射量の補正を適切に行うためには、低セタン価~高セタン価まで、より広い範囲のセタン価の値を、より高精度に検出する必要がある。 FIG. 24 shows an example in which a fuel having a cetane number (low), a fuel having a cetane number (medium), and a fuel having a cetane number (high) are used when the premixed combustion shown in FIG. 21 is used. There is. In the case of cetane number (high), the ignition timing is early, and in the case of cetane number (low), the ignition timing is late, and stable combustion cannot be obtained. FIG. 25 shows a case where the injection timing and the injection amount are corrected according to the cetane number with respect to FIG. 24. Combustion with a stable ignition timing can be obtained by appropriately correcting the injection timing and injection amount according to the cetane number. That is, in order to utilize premixed combustion in a diesel engine, it is necessary to appropriately correct the injection timing and injection amount according to the cetane number. Then, in order to appropriately correct the injection timing and the injection amount according to the cetane number, it is necessary to detect the value of the cetane number in a wider range from the low cetane number to the high cetane number with higher accuracy.
 そこで特許文献1には、使用燃料のセタン価の検出精度をより向上させることができる燃料性状検出装置が開示されている。特許文献1に記載の燃料性状検出装置では、通常の運転時の副噴射の噴射量として、2水準の噴射量を用意し、副噴射の噴射量の変化分である変更量に対する、発生トルク等の特定量の変化量の変化率(変更感度)を導出し、変更感度に基づいて使用燃料のセタン価を検出している。 Therefore, Patent Document 1 discloses a fuel property detection device capable of further improving the detection accuracy of the cetane number of the fuel used. In the fuel property detection device described in Patent Document 1, two levels of injection amount are prepared as the injection amount of the sub-injection during normal operation, and the generated torque and the like with respect to the change amount which is the change amount of the injection amount of the sub-injection and the like. The rate of change (change sensitivity) of a specific amount of change is derived, and the cetane number of the fuel used is detected based on the change sensitivity.
特開2009-144528号公報JP-A-2009-144528
 ディーゼル機関の通常の運転時において副噴射の噴射量を変更して発生トルクの変化量に基づいてセタン価を検出する特許文献1に記載の手法を拡散燃焼に適用した場合では、図20に示す副燃焼101B、102Bのトルクを計測することになる。セタン価の検出精度をより向上させるためには、より大きな副燃焼101Bを発生させる必要があるが、ピストンの上死点(クランク角度=0[°CA])よりも前の副燃焼101Bをより大きくすることはエンジンの損傷を招く可能性があるので好ましくない。 FIG. 20 shows a case where the method described in Patent Document 1 for detecting the cetane number based on the amount of change in the generated torque by changing the injection amount of the sub-injection during normal operation of the diesel engine is applied to diffusion combustion. The torques of the secondary combustions 101B and 102B will be measured. In order to further improve the detection accuracy of the cetane number, it is necessary to generate a larger side combustion 101B, but the side combustion 101B before the top dead center of the piston (crank angle = 0 [° CA]) is more. Increasing the size is not preferable because it may damage the engine.
 また、特許文献1に記載の手法を予混合燃焼に適用した場合では、図21に示す重畳燃焼110Bにて発生したトルクの中から、副燃焼111B、112Bにて発生したトルクを抽出しなければならない。この場合、重畳燃焼110Bによるトルク(重畳トルク)を計測し、主燃焼113Bによるトルク(主トルク)を計算等にて求め、重畳トルクから主トルクを減算して求めることになる。これでは検出したトルクの誤差が大きくなり、セタン価の誤差も大きくなるので、期待する精度が得られない可能性がある。 Further, when the method described in Patent Document 1 is applied to premixed combustion, the torque generated in the auxiliary combustions 111B and 112B must be extracted from the torque generated in the superposed combustion 110B shown in FIG. It doesn't become. In this case, the torque (superimposed torque) due to the superposed combustion 110B is measured, the torque (main torque) due to the main combustion 113B is obtained by calculation or the like, and the main torque is subtracted from the superposed torque. In this case, the error of the detected torque becomes large, and the error of the cetane number also becomes large, so that the expected accuracy may not be obtained.
 また、引用文献1に記載の手法を、拡散燃焼と予混合燃焼のどちらに適用した場合であっても、ディーゼル機関の通常の運転時のトルク変動量から求めているので、非常に安定した運転状態(凹凸の無い水平路面を回転数一定の一定速度で走行中など)で検出しなければ、検出したセタン価の誤差が大きくなる。 Further, regardless of whether the method described in Cited Document 1 is applied to diffusion combustion or premixed combustion, it is obtained from the torque fluctuation amount during normal operation of the diesel engine, so that the operation is very stable. If it is not detected in a state (such as when traveling on a horizontal road surface without unevenness at a constant speed with a constant rotation speed), the error of the detected cetane number becomes large.
 本開示は、このような点に鑑みて創案されたものであり、ディーゼル機関で用いる燃料のセタン価を、低セタン価~高セタン価までより広い範囲にて、より高精度に検出することができる燃料性状検出装置を提供することを課題とする。 This disclosure was devised in view of these points, and it is possible to detect the cetane number of fuel used in a diesel engine in a wider range from low cetane number to high cetane number with higher accuracy. An object of the present invention is to provide a capable fuel property detection device.
 上記課題を解決するため、本開示の第1の態様は、ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間において所定気筒に対して検出用噴射を実行し、当該検出用噴射にて発生したトルクに相当するトルク相当量に基づいて、当該ディーゼル機関で用いている燃料のセタン価を検出する燃料性状検出装置であって、前記燃料性状検出装置は、前記ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価検出範囲内のいずれのセタン価であっても、噴射された燃料が着火するクランク角度位置が、予め設定された所定クランク角度位置となるように、前記検出用噴射の噴射時期に関連する噴射時期関連量を算出する検出用噴射時期関連量算出部と、前記セタン価検出範囲内において予め設定された基準セタン価の燃料の場合では、前記ディーゼル機関の前記運転状態及び前記環境状態にかかわらず前記検出用噴射による前記所定クランク角度位置での着火に続く燃焼によって発生するトルクに相当する前記トルク相当量が予め設定された基準トルク相当量となるように、前記検出用噴射の噴射量を算出する検出用噴射量算出部と、前記検出用噴射によるセタン価に応じた前記トルク相当量が設定されたセタン価・トルク相当量特性であって、前記基準セタン価の燃料の前記検出用噴射の場合には前記基準トルク相当量となるように設定された前記セタン価・トルク相当量特性、が記憶された記憶装置と、前記検出可能期間の場合に、前記所定気筒に対して、前記検出用噴射量算出部にて算出した噴射量を、前記検出用噴射時期関連量算出部にて算出した前記噴射時期関連量に基づいた噴射時期にて噴射する前記検出用噴射を実行する検出用噴射実行部と、前記検出用噴射にて実際に発生したトルクに相当する実トルク相当量と、前記セタン価・トルク相当量特性と、に基づいてセタン価を検出するセタン価検出部と、を有する。 In order to solve the above problems, the first aspect of the present disclosure is to inject detection into a predetermined cylinder during a detectable period in which the diesel engine stops fuel injection and gradually decreases the cetane number while coasting. Is a fuel property detection device that detects the cetane number of the fuel used in the diesel engine based on the torque equivalent amount corresponding to the torque generated in the detection injection. Is the crank angle position at which the injected fuel ignites regardless of the cetane number detection range from the lower limit of detection cetane number to the upper limit of detection cetane number regardless of the operating condition and environmental condition of the diesel engine. , A detection injection timing-related amount calculation unit that calculates an injection timing-related amount related to the injection timing of the detection injection so that the predetermined crank angle position is set in advance, and preset within the cetane number detection range. In the case of a fuel having a reference cetane number, the torque corresponding to the torque generated by combustion following ignition at the predetermined crank angle position by the detection injection regardless of the operating state and the environmental state of the diesel engine. The detection injection amount calculation unit that calculates the injection amount of the detection injection and the torque equivalent amount according to the cetane number by the detection injection are set so that the equivalent amount becomes the preset reference torque equivalent amount. The cetane number / torque equivalent characteristic, which is set to be the reference torque equivalent in the case of the detection injection of the reference cetane number fuel, has the cetane number / torque equivalent characteristic. In the case of the stored storage device and the detectable period, the injection amount calculated by the detection injection amount calculation unit was calculated by the detection injection timing-related amount calculation unit for the predetermined cylinder. A detection injection execution unit that executes the detection injection that is injected at an injection timing based on the injection timing-related amount, an actual torque equivalent amount that corresponds to the torque actually generated by the detection injection, and the cetane number. It has a cetane number detection unit that detects the cetane number based on the value / torque equivalent characteristic.
 次に、本開示の第2の態様は、ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間において所定気筒に対して検出用噴射を実行し、当該検出用噴射にて発生したトルクに相当するトルク相当量に基づいて、当該ディーゼル機関で用いている燃料のセタン価を検出する燃料性状検出装置であって、前記燃料性状検出装置は、nを2以上の整数とした場合に噴射された燃料が着火するクランク角度位置として、第1クランク角度位置~第nクランク角度位置が予め設定されており、前記ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価検出範囲内のいずれのセタン価であっても、噴射された燃料が着火するクランク角度位置が、予め設定された前記第1クランク角度位置~前記第nクランク角度位置のそれぞれとなるように、前記検出用噴射である第1検出用噴射~第n検出用噴射の噴射時期に関連する噴射時期関連量を算出する検出用噴射時期関連量算出部と、前記セタン価検出範囲内において予め設定された基準セタン価の燃料の場合では、前記ディーゼル機関の前記運転状態及び前記環境状態にかかわらず前記第1検出用噴射~前記第n検出用噴射のそれぞれによる前記第1クランク角度位置~前記第nクランク角度位置での着火に続く燃焼によって発生するトルクに相当する前記トルク相当量が予め設定された第1基準トルク相当量~第n基準トルク相当量となるように、前記第1検出用噴射~前記第n検出用噴射の噴射量を算出する検出用噴射量算出部と、前記第1検出用噴射~前記第n検出用噴射のそれぞれによるセタン価に応じた前記トルク相当量が設定された第1セタン価・トルク相当量特性~第nセタン価・トルク相当量特性であって、前記基準セタン価の燃料の前記第1検出用噴射~前記第n検出用噴射の場合には前記第1基準トルク相当量~前記第nトルク相当量となるように設定された前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性、が記憶された記憶装置と、前記検出可能期間の場合に、前記所定気筒に対して、前記検出用噴射量算出部にて算出したそれぞれの噴射量を、前記検出用噴射時期関連量算出部にて算出した前記噴射時期関連量に基づいた噴射時期にて噴射する前記第1検出用噴射~第n検出用噴射を実行する検出用噴射実行部と、前記第1検出用噴射~前記第n検出用噴射のそれぞれにて実際に発生したトルクに相当する第1実トルク相当量~第n実トルク相当量と、前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性のそれぞれと、に基づいてセタン価を検出するセタン価検出部と、を有する。 Next, in the second aspect of the present disclosure, the detection injection is executed on the predetermined cylinder during the detectable period in which the diesel engine stops the fuel injection and gradually decreases the rotation speed while coasting. It is a fuel property detection device that detects the setan value of the fuel used in the diesel engine based on the torque equivalent amount corresponding to the torque generated by the detection injection, and the fuel property detection device is n. The first crank angle position to the nth crank angle position are preset as the crank angle positions at which the injected fuel ignites when an integer of 2 or more is used, regardless of the operating state and environmental state of the diesel engine. The crank angle position at which the injected fuel ignites is set to the preset first crank angle position to the first crank angle position regardless of the detection range of the lower limit of detection setan value to the upper limit of detection setan value within the setan value detection range. With the detection injection timing-related amount calculation unit that calculates the injection timing-related amount related to the injection timing of the first detection injection to the n-th detection injection, which are the detection injections, so as to be at each of the n crank angle positions. In the case of a fuel having a reference setane value set in advance within the setane value detection range, the first detection injection to the nth detection injection regardless of the operating state and the environmental state of the diesel engine, respectively. The torque equivalent amount corresponding to the fuel generated by the combustion following the ignition at the first crank angle position to the nth crank angle position is the preset first reference torque equivalent amount to the nth reference torque equivalent amount. Therefore, the setan value of each of the detection injection amount calculation unit for calculating the injection amount of the first detection injection to the nth detection injection and the first detection injection to the nth detection injection is calculated. The first setan value / torque equivalent characteristic to the nth setan value / torque equivalent characteristic in which the corresponding torque equivalent amount is set, and the first detection injection of the fuel having the reference setan value to the nth In the case of detection injection, the first setan value / torque equivalent characteristic set to be the first reference torque equivalent to the nth torque equivalent characteristic to the nth setan value / torque equivalent characteristic, In the case of the detectable period, the respective injection amounts calculated by the detection injection amount calculation unit for the predetermined cylinder are transmitted to the detection injection timing-related amount calculation unit. The detection injection execution unit that executes the first detection injection to the nth detection injection, and the first detection injection, which injects at the injection timing based on the injection timing-related amount calculated in -First actual torque equivalent amount to nth actual torque equivalent amount corresponding to the torque actually generated in each of the nth detection injections, and the first cetane number / torque equivalent amount characteristic-the nth cetane number -It has each of the torque equivalent characteristics and a cetane number detection unit that detects the cetane number based on the characteristics.
 次に、本開示の第3の態様は、上記第2の態様に係る燃料性状検出装置であって、前記第1検出用噴射~前記第n検出用噴射のそれぞれに対応する前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性は、セタン価の違いに対して前記トルク相当量の変化が小さい判別不適切セタン価範囲と、前記判別不適切セタン価範囲よりもセタン価の違いに対して前記トルク相当量の変化が大きい判別可能セタン価範囲と、を有しており、前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性は、前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性のそれぞれの前記判別可能セタン価範囲を重畳させると前記検出下限セタン価~前記検出上限セタン価をカバーできるように設定されている、燃料性状検出装置である。 Next, the third aspect of the present disclosure is the fuel property detection device according to the second aspect, and the first cetane number corresponding to each of the first detection injection to the nth detection injection. -Torque equivalent characteristic-The nth cetane number / torque equivalent characteristic is larger than the discrimination inappropriate cetane number range in which the change in the torque equivalent amount is small with respect to the difference in cetane number and the discrimination inappropriate cetane number range. It has a discriminable cetane number range in which the change in the cetane number is large with respect to the difference in cetane number, and the first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic By superimposing the discriminating cetane number ranges of the first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic, the detection lower limit cetane number to the detection upper limit cetane number can be covered. It is a fuel property detection device set in.
 次に、本開示の第4の態様は、上記第2の態様または第3の態様に係る燃料性状検出装置であって、前記ディーゼル機関への燃料の補給後、あるいは前記ディーゼル機関の始動の後、の所定期間であるセタン価初期検出期間では、前記検出用噴射実行部にて前記第1検出用噴射~前記第n検出用噴射を少なくとも1回実行して、前記セタン価検出部にてセタン価を検出し、前記セタン価初期検出期間よりも後の前記検出可能期間では、前記セタン価初期検出期間以降に検出したセタン価に基づいて前記第1検出用噴射~前記第n検出用噴射の中から選定した検出用噴射を、前記検出用噴射実行部にて実行する、燃料性状検出装置である。 Next, a fourth aspect of the present disclosure is the fuel property detection device according to the second or third aspect, after refueling the diesel engine or after starting the diesel engine. In the cetane number initial detection period, which is a predetermined period of, the detection injection execution unit executes the first detection injection to the nth detection injection at least once, and the cetane number detection unit executes cetane number. In the detectable period after the cetane number initial detection period is detected, the first detection injection to the nth detection injection are based on the cetane number detected after the cetane number initial detection period. This is a fuel property detection device that executes the detection injection selected from the above by the detection injection execution unit.
 第1の態様によれば、燃料噴射を停止して惰性回転しているディーゼル機関に対して、噴射時期と噴射量を適切に補正した検出用噴射を実行して、当該検出用噴射によって発生したトルク相当量を検出する。特許文献1に記載の2水準の噴射量の副噴射によるトルクの変化量を検出する方法と比較して、検出したトルク相当量から主噴射分のトルク相当量を減算する必要がないので、より高精度にトルク相当量を検出することができる。従って、より高精度にセタン価を検出することができる。また、基準セタン価の場合には基準トルク相当量となるセタン価・トルク相当量特性と実トルク相当量に基づいてセタン価を検出するので、適切なセタン価検出範囲を有するセタン価・トルク相当量特性を用いることで、低セタン価~高セタン価までより広い範囲にて、より高精度にセタン価を検出することができる。 According to the first aspect, a detection injection is executed in which the injection timing and the injection amount are appropriately corrected for the diesel engine that is coasting with the fuel injection stopped, and the detection injection is generated. Detects the amount equivalent to torque. Compared with the method of detecting the amount of change in torque due to the sub-injection of two levels of injection amount described in Patent Document 1, it is not necessary to subtract the torque equivalent amount of the main injection amount from the detected torque equivalent amount. The amount equivalent to torque can be detected with high accuracy. Therefore, the cetane number can be detected with higher accuracy. In the case of the reference cetane number, the cetane number is detected based on the cetane number / torque equivalent characteristic and the actual cetane number equivalent amount, which is the reference torque equivalent amount, so that the cetane number / torque equivalent has an appropriate cetane number detection range. By using the quantitative characteristic, the cetane number can be detected with higher accuracy in a wider range from low cetane number to high cetane number.
 第2の態様によれば、第1の態様の効果に加えて、複数のセタン価・トルク相当量特性を有し、各セタン価・トルク相当量特性に対応する検出用噴射を実行することで、さらに高精度にセタン価を検出することができる。 According to the second aspect, in addition to the effect of the first aspect, a detection injection having a plurality of cetane number / torque equivalent characteristics and corresponding to each cetane number / torque equivalent characteristic is executed. , Cetane number can be detected with higher accuracy.
 第3の態様によれば、検出下限セタン価~検出上限セタン価までのセタン価検出範囲が非常に広い場合、1つのセタン価・トルク相当量特性ではセタン価検出範囲の全体をカバーしきれない場合がある。このような場合であっても、判別可能セタン価範囲を適切に割り当てた複数のセタン価・トルク相当量特性と、各セタン価・トルク相当量特性に対応する検出用噴射を行うことで、低セタン価~高セタン価までより広い範囲にて、より高精度にセタン価を検出することができる。 According to the third aspect, when the cetane number detection range from the lower limit cetane number to the upper limit cetane number is very wide, one cetane number / torque equivalent characteristic cannot cover the entire cetane number detection range. In some cases. Even in such a case, it is low by performing detection injection corresponding to a plurality of cetane number / torque equivalent characteristics in which the discriminable cetane number range is appropriately assigned and each cetane number / torque equivalent characteristic. Cetane number can be detected with higher accuracy in a wider range from cetane number to high cetane number.
 第4の態様によれば、セタン価に応じて、第1検出用噴射~第n検出用噴射の中から選定した検出用噴射を行うので、不要な検出用噴射による燃料の消費や検出時間を抑制することができる。 According to the fourth aspect, since the detection injection selected from the first detection injection to the nth detection injection is performed according to the cetane number, the fuel consumption and the detection time due to the unnecessary detection injection can be reduced. It can be suppressed.
ディーゼル機関システムの全体の概略構成の例を説明する図である。It is a figure explaining an example of the whole schematic structure of a diesel engine system. 検出用噴射に対する着火時期及び熱発生率の形状が、運転状態や環境状態に応じて異なる様子を説明する図である。It is a figure explaining how the shape of the ignition timing and the heat generation rate with respect to the detection injection differ depending on an operating state and an environmental state. 図2に対して、運転状態や環境状態に応じて噴射時期及び噴射量を補正することで、着火時期及び熱発生率の形状を同じとすることができる様子の例を説明する図である。FIG. 2 is a diagram illustrating an example of how the ignition timing and the shape of the heat generation rate can be made the same by correcting the injection timing and the injection amount according to the operating state and the environmental state. 図3に対して、運転状態や環境状態に応じて噴射時期及び噴射量を補正した場合、セタン価が異なる場合では、着火時期は同じとなるが熱発生率の形状が異なる様子を説明する図である。FIG. 3 is a diagram for explaining how the ignition timing is the same but the shape of the heat generation rate is different when the cetane number is different when the injection timing and the injection amount are corrected according to the operating condition and the environmental condition. Is. 図4に対して、ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間内に実行した検出用噴射による一時的な回転数の上昇量(検出用噴射によるトルク相当量)が、セタン価に応じて異なる様子を説明する図である。With respect to FIG. 4, the amount of temporary increase in the number of revolutions due to the detection injection executed within the detectable period in which the diesel engine stops the fuel injection and gradually decreases the number of revolutions while coasting (for detection). It is a figure explaining how the torque equivalent amount by injection) differs depending on the cetane number. セタン価・トルク相当量特性の例を説明する図である。It is a figure explaining the example of the cetane number / torque equivalent amount characteristic. 第1の実施の形態におけるセタン価・トルク相当量特性(θ)を説明する図である。It is a figure explaining the cetane number / torque equivalent amount characteristic (θ) in 1st Embodiment. 第1の実施の形態における制御装置の処理(クランク角度同期処理)の例を説明するフローチャートである。It is a flowchart explaining the example of the processing (crank angle synchronization processing) of the control device in 1st Embodiment. 図8のフローチャートにおける処理SA100の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SA100 in the flowchart of FIG. 図8のフローチャートにおける処理SA200の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SA200 in the flowchart of FIG. 図8のフローチャートにおける処理SA300の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SA300 in the flowchart of FIG. 図8に示すフローチャートの処理による動作の例を説明する動作波形である。It is an operation waveform explaining an example of operation by processing of the flowchart shown in FIG. 第2の実施の形態におけるセタン価・トルク相当量特性(θ[1])、セタン価・トルク相当量特性(θ[2])、セタン価・トルク相当量特性(θ[3])、セタン価・トルク相当量特性(θ[4])の例を説明する図である。Cetane number / torque equivalent characteristic (θ [1]), cetane number / torque equivalent characteristic (θ [2]), cetane number / torque equivalent characteristic (θ [3]), cetane in the second embodiment It is a figure explaining the example of the value / torque equivalent quantity characteristic (θ [4]). 第2の実施の形態における制御装置の処理(クランク角度同期処理)の例を説明するフローチャートである。It is a flowchart explaining the example of the processing (crank angle synchronization processing) of the control device in 2nd Embodiment. 図14のフローチャートにおける処理SB100の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SB100 in the flowchart of FIG. 図14のフローチャートにおける処理SB200の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SB200 in the flowchart of FIG. 図14のフローチャートにおける処理SB300の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SB300 in the flowchart of FIG. 図14のフローチャートにおける処理SB400の処理の詳細を説明するフローチャートである。It is a flowchart explaining the details of the process of the process SB400 in the flowchart of FIG. 図14に示すフローチャートの処理による動作の例を説明する動作波形である。It is an operation waveform explaining the example of the operation by the processing of the flowchart shown in FIG. 拡散燃焼の例を説明する図である。It is a figure explaining the example of diffusion combustion. 予混合燃焼の例を説明する図である。It is a figure explaining the example of premixed combustion. 拡散燃焼の場合において、セタン価(低)、セタン価(中)、セタン価(高)の各燃料による熱発生率の違いの例を説明する図である。It is a figure explaining the example of the difference in the heat generation rate by each fuel of a cetane number (low), a cetane number (medium), and a cetane number (high) in the case of diffusion combustion. 図22に対して、セタン価(低)の燃料の場合に補正を加えた場合の例を説明する図である。FIG. 22 is a diagram illustrating an example in which a correction is applied in the case of a fuel having a cetane number (low) with respect to FIG. 22. 予混合燃焼の場合において、セタン価(低)、セタン価(中)、セタン価(高)の各燃料による熱発生率の違いの例を説明する図である。It is a figure explaining the example of the difference in the heat generation rate by each fuel of a cetane number (low), a cetane number (medium), and a cetane number (high) in the case of premixed combustion. 図24に対して、各セタン価の燃料の場合に対して噴射時期及び噴射量を適切に補正した場合の例を説明する図である。FIG. 24 is a diagram illustrating an example in which the injection timing and the injection amount are appropriately corrected for the case of fuel having each cetane number.
●[ディーゼル機関システム1の全体構成(図1)]
 以下に本開示を実施するための形態を図面を用いて説明する。まず図1を用いて、ディーゼル機関10を有するディーゼル機関システム1の全体構成の例について説明する。本実施の形態の説明では、車両に搭載されたディーゼル機関システム1を例として説明する。
● [Overall configuration of diesel engine system 1 (Fig. 1)]
Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. First, an example of the overall configuration of the diesel engine system 1 having the diesel engine 10 will be described with reference to FIG. In the description of the present embodiment, the diesel engine system 1 mounted on the vehicle will be described as an example.
 以下、システム全体について、吸気側から排気側に向かって順に説明する。吸気管11Aの流入側には、エアクリーナ(図示省略)、吸気流量検出手段21(例えば、吸気流量センサ)が設けられている。吸気流量検出手段21は、ディーゼル機関10が吸入した空気の流量に応じた検出信号を制御装置50に出力する。また吸気流量検出手段21には、吸気温度検出手段28A(例えば、吸気温度センサ)が設けられている。吸気温度検出手段28Aは、吸気流量検出手段21を通過する吸気の温度に応じた検出信号を制御装置50に出力する。 The entire system will be described below in order from the intake side to the exhaust side. An air cleaner (not shown) and an intake flow rate detecting means 21 (for example, an intake flow rate sensor) are provided on the inflow side of the intake pipe 11A. The intake flow rate detecting means 21 outputs a detection signal according to the flow rate of the air taken in by the diesel engine 10 to the control device 50. Further, the intake air flow rate detecting means 21 is provided with an intake air temperature detecting means 28A (for example, an intake air temperature sensor). The intake air temperature detecting means 28A outputs a detection signal corresponding to the temperature of the intake air passing through the intake air flow rate detecting means 21 to the control device 50.
 吸気管11Aの流出側はコンプレッサ35の流入側に接続され、コンプレッサ35の流出側は吸気管11Bの流入側に接続されている。ターボ過給機30は、コンプレッサインペラ35Aを有するコンプレッサ35と、タービンインペラ36Aを有するタービン36とを備えている。コンプレッサインペラ35Aは、排気ガスのエネルギーによって回転駆動されるタービンインペラ36Aにて回転駆動され、吸気管11Aから流入された吸気を吸気管11Bに圧送することで過給する。 The outflow side of the intake pipe 11A is connected to the inflow side of the compressor 35, and the outflow side of the compressor 35 is connected to the inflow side of the intake pipe 11B. The turbocharger 30 includes a compressor 35 having a compressor impeller 35A and a turbine 36 having a turbine impeller 36A. The compressor impeller 35A is rotationally driven by the turbine impeller 36A, which is rotationally driven by the energy of the exhaust gas, and supercharges the intake air flowing in from the intake pipe 11A by pumping it to the intake pipe 11B.
 コンプレッサ35の上流側となる吸気管11Aには、コンプレッサ上流圧力検出手段24Aが設けられている。コンプレッサ上流圧力検出手段24Aは、例えば圧力センサであり、コンプレッサ35の上流側となる吸気管11A内の吸気の圧力に応じた検出信号を制御装置50に出力する。コンプレッサ35の下流側となる吸気管11B(吸気管11Bにおけるコンプレッサ35とインタークーラ16との間の位置)には、コンプレッサ下流圧力検出手段24Bが設けられている。コンプレッサ下流圧力検出手段24Bは、例えば圧力センサであり、コンプレッサ35の下流側となる吸気管11B内の吸気の圧力に応じた検出信号を制御装置50に出力する。 The intake pipe 11A on the upstream side of the compressor 35 is provided with the compressor upstream pressure detecting means 24A. The compressor upstream pressure detecting means 24A is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake pipe 11A on the upstream side of the compressor 35 to the control device 50. A compressor downstream pressure detecting means 24B is provided in the intake pipe 11B (position between the compressor 35 and the intercooler 16 in the intake pipe 11B) on the downstream side of the compressor 35. The compressor downstream pressure detecting means 24B is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake pipe 11B on the downstream side of the compressor 35 to the control device 50.
 吸気管11Bには、上流側にインタークーラ16が配置され、インタークーラ16よりも下流側にスロットル装置48が配置されている。インタークーラ16は、コンプレッサ下流圧力検出手段24Bよりも下流側に配置されており、コンプレッサ35にて過給された吸気の温度を下げる。インタークーラ16とスロットル装置48との間には、吸気温度検出手段28B(例えば、吸気温度センサ)が設けられている。吸気温度検出手段28Bは、インタークーラ16にて温度が低下された吸気の温度に応じた検出信号を制御装置50に出力する。 In the intake pipe 11B, the intercooler 16 is arranged on the upstream side, and the throttle device 48 is arranged on the downstream side of the intercooler 16. The intercooler 16 is arranged on the downstream side of the compressor downstream pressure detecting means 24B, and lowers the temperature of the intake air supercharged by the compressor 35. An intake air temperature detecting means 28B (for example, an intake air temperature sensor) is provided between the intercooler 16 and the throttle device 48. The intake air temperature detecting means 28B outputs a detection signal corresponding to the temperature of the intake air whose temperature has been lowered by the intercooler 16 to the control device 50.
 スロットル装置48は、制御装置50からの制御信号に基づいて吸気管11Bの開度を調整するスロットルバルブを駆動し、吸気流量を調整可能である。制御装置50は、スロットル開度検出手段48S(例えば、スロットル開度センサ)からの検出信号と目標スロットル開度に基づいて、スロットル装置48に制御信号を出力して吸気管11Bに設けられたスロットルバルブの開度を調整可能である。制御装置50は、アクセルペダル踏込量検出手段25からの検出信号に基づいて検出したアクセルペダルの踏込量とディーゼル機関10の運転状態とに基づいて目標スロットル開度を求める。 The throttle device 48 drives a throttle valve that adjusts the opening degree of the intake pipe 11B based on the control signal from the control device 50, and the intake flow rate can be adjusted. The control device 50 outputs a control signal to the throttle device 48 based on the detection signal from the throttle opening detection means 48S (for example, the throttle opening sensor) and the target throttle opening, and the throttle provided in the intake pipe 11B. The opening of the valve can be adjusted. The control device 50 obtains a target throttle opening degree based on the accelerator pedal depression amount detected based on the detection signal from the accelerator pedal depression amount detecting means 25 and the operating state of the diesel engine 10.
 アクセルペダル踏込量検出手段25は、例えばアクセルペダル踏込角度センサであり、アクセルペダルに設けられている。制御装置50は、アクセルペダル踏込量検出手段25からの検出信号に基づいて、運転者によるアクセルペダルの踏込量を検出することが可能である。 The accelerator pedal depression amount detecting means 25 is, for example, an accelerator pedal depression angle sensor, and is provided on the accelerator pedal. The control device 50 can detect the amount of depression of the accelerator pedal by the driver based on the detection signal from the accelerator pedal depression amount detecting means 25.
 吸気管11Bにおけるスロットル装置48よりも下流側には、EGR配管13の流出側が接続されている。そして吸気管11Bの流出側は吸気マニホルド11Cの流入側に接続されており、吸気マニホルド11Cの流出側はディーゼル機関10の流入側に接続されている。そして吸気マニホルド11Cには、吸気マニホルド圧力検出手段24Cが設けられている。吸気マニホルド圧力検出手段24Cは、例えば圧力センサであり、吸気マニホルド11C内の吸気の圧力に応じた検出信号を制御装置50に出力する。またEGR配管13の流出側(吸気管11Bとの接続部)からは、EGR配管13の流入側(排気管12Bとの接続部)から流入してきたEGRガスが、吸気管11B内に吐出される。なおEGR配管13にて形成されるEGRガスが流れる経路は、EGR経路に相当している。 The outflow side of the EGR pipe 13 is connected to the downstream side of the throttle device 48 in the intake pipe 11B. The outflow side of the intake pipe 11B is connected to the inflow side of the intake manifold 11C, and the outflow side of the intake manifold 11C is connected to the inflow side of the diesel engine 10. The intake manifold 11C is provided with the intake manifold pressure detecting means 24C. The intake manifold pressure detecting means 24C is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the intake air in the intake manifold 11C to the control device 50. Further, from the outflow side (connection portion with the intake pipe 11B) of the EGR pipe 13, the EGR gas flowing in from the inflow side (connection portion with the exhaust pipe 12B) of the EGR pipe 13 is discharged into the intake pipe 11B. .. The path through which the EGR gas is formed in the EGR pipe 13 corresponds to the EGR path.
 ディーゼル機関10(ディーゼルエンジン)は複数のシリンダ45A~45Dを有しており、インジェクタ43A~43Dが、それぞれのシリンダに設けられている。インジェクタ43A~43Dには、コモンレール41と燃料配管42A~42Dを介して燃料が供給されており、インジェクタ43A~43Dは、制御装置50からの制御信号によって駆動され、それぞれのシリンダ45A~45D内に燃料を噴射する。 The diesel engine 10 (diesel engine) has a plurality of cylinders 45A to 45D, and injectors 43A to 43D are provided in each cylinder. Fuel is supplied to the injectors 43A to 43D via the common rail 41 and the fuel pipes 42A to 42D, and the injectors 43A to 43D are driven by a control signal from the control device 50 into the cylinders 45A to 45D, respectively. Inject fuel.
 ディーゼル機関10には、クランク角度検出手段22A、気筒検出手段22Bが設けられている。クランク角度検出手段22Aは、例えばクランクシャフトの近傍に設けられた回転センサであり、ディーゼル機関10のクランクシャフトの回転角度に応じた検出信号を制御装置50に出力する。気筒検出手段22Bは、カムシャフトの近傍に設けられた回転センサであり、例えば1番気筒のピストンが圧縮上死点に達した場合に検出信号を制御装置50に出力する。制御装置50は、クランク角度検出手段22Aからの検出信号と気筒検出手段22Bからの検出信号とに基づいて、例えば1番気筒のピストンが上死点位置にあることを検出可能であり、当該上死点位置が圧縮上死点の位置であるか吸気上死点の位置であるか、判別することができる。 The diesel engine 10 is provided with a crank angle detecting means 22A and a cylinder detecting means 22B. The crank angle detecting means 22A is, for example, a rotation sensor provided in the vicinity of the crankshaft, and outputs a detection signal according to the rotation angle of the crankshaft of the diesel engine 10 to the control device 50. The cylinder detecting means 22B is a rotation sensor provided in the vicinity of the camshaft, and outputs a detection signal to the control device 50, for example, when the piston of the first cylinder reaches the compression top dead center. The control device 50 can detect, for example, that the piston of the first cylinder is in the top dead center position based on the detection signal from the crank angle detecting means 22A and the detection signal from the cylinder detecting means 22B. It is possible to determine whether the dead center position is the position of the compression top dead center or the position of the intake top dead center.
 またディーゼル機関10には、クーラント温度検出手段28Cが設けられている。クーラント温度検出手段28Cは、例えば温度センサであり、ディーゼル機関10内に循環されている冷却用クーラントの温度を検出し、検出した温度に応じた検出信号を制御装置50に出力する。 Further, the diesel engine 10 is provided with the coolant temperature detecting means 28C. The coolant temperature detecting means 28C is, for example, a temperature sensor, detects the temperature of the cooling coolant circulating in the diesel engine 10, and outputs a detection signal corresponding to the detected temperature to the control device 50.
 ディーゼル機関10の排気側には排気マニホルド12Aの流入側が接続され、排気マニホルド12Aの流出側には排気管12Bの流入側が接続されている。排気管12Bの流出側はタービン36の流入側に接続され、タービン36の流出側は排気管12Cの流入側に接続されている。 The inflow side of the exhaust manifold 12A is connected to the exhaust side of the diesel engine 10, and the inflow side of the exhaust pipe 12B is connected to the outflow side of the exhaust manifold 12A. The outflow side of the exhaust pipe 12B is connected to the inflow side of the turbine 36, and the outflow side of the turbine 36 is connected to the inflow side of the exhaust pipe 12C.
 排気管12Bには、EGR配管13の流入側が接続されている。EGR配管13は、排気管12Bと吸気管11Bとを連通し、排気管12Bの排気ガスの一部を吸気管11Bに還流させることが可能である。またEGR配管13には、EGRクーラ15、EGR弁14が設けられている。 The inflow side of the EGR pipe 13 is connected to the exhaust pipe 12B. The EGR pipe 13 communicates the exhaust pipe 12B and the intake pipe 11B, and can recirculate a part of the exhaust gas of the exhaust pipe 12B to the intake pipe 11B. Further, the EGR pipe 13 is provided with an EGR cooler 15 and an EGR valve 14.
 EGR弁14(EGRバルブ)は、EGR配管13におけるEGRクーラ15の下流側に設けられている。そしてEGR弁14は、制御装置50からの制御信号に基づいて、EGR配管13の開度を調整することで、EGR配管13内を流れるEGRガスの流量を調整する。 The EGR valve 14 (EGR valve) is provided on the downstream side of the EGR cooler 15 in the EGR pipe 13. Then, the EGR valve 14 adjusts the flow rate of the EGR gas flowing in the EGR pipe 13 by adjusting the opening degree of the EGR pipe 13 based on the control signal from the control device 50.
 EGRクーラ15は、EGR配管13に設けられている。EGRクーラ15は、いわゆる熱交換器であり、冷却用のクーラントが供給され、流入されたEGRガスを冷却して吐出する。 The EGR cooler 15 is provided in the EGR pipe 13. The EGR cooler 15 is a so-called heat exchanger, and a coolant for cooling is supplied to cool the inflowed EGR gas and discharge it.
 上記のEGR配管13、(EGRクーラ15)、EGR弁14にて、排気ガスの一部を吸気経路に戻すことが可能なEGRシステムが構成されている。なお、EGRシステムは、EGRクーラ15を含んでも含まなくてもよい。 The EGR pipe 13, (EGR cooler 15), and EGR valve 14 described above constitute an EGR system capable of returning a part of the exhaust gas to the intake path. The EGR system may or may not include the EGR cooler 15.
 排気管12Bの流出側はタービン36の流入側に接続され、タービン36の流出側は排気管12Cの流入側に接続されている。タービン36には、タービンインペラ36Aへ導く排気ガスの流速を制御可能な(タービンへと排気ガスを導く流路の開度を調整可能な)可変ノズル33が設けられており、可変ノズル33は、ノズル駆動手段31によって開度が調整される。制御装置50は、ノズル開度検出手段32(例えば、ノズル開度センサ)からの検出信号と目標ノズル開度に基づいて、ノズル駆動手段31に制御信号を出力して可変ノズル33の開度を調整可能である。 The outflow side of the exhaust pipe 12B is connected to the inflow side of the turbine 36, and the outflow side of the turbine 36 is connected to the inflow side of the exhaust pipe 12C. The turbine 36 is provided with a variable nozzle 33 capable of controlling the flow velocity of the exhaust gas leading to the turbine impeller 36A (the opening degree of the flow path leading the exhaust gas to the turbine can be adjusted). The opening degree is adjusted by the nozzle driving means 31. The control device 50 outputs a control signal to the nozzle driving means 31 based on the detection signal from the nozzle opening detection means 32 (for example, the nozzle opening sensor) and the target nozzle opening to determine the opening of the variable nozzle 33. It is adjustable.
 タービン36の上流側となる排気管12Bには、タービン上流圧力検出手段26Aが設けられている。タービン上流圧力検出手段26Aは、例えば圧力センサであり、タービン36の上流側となる排気管12B内の排気の圧力に応じた検出信号を制御装置50に出力する。タービン36の下流側となる排気管12Cには、タービン下流圧力検出手段26Bが設けられている。タービン下流圧力検出手段26Bは、例えば圧力センサであり、タービン36の下流側となる排気管12C内の排気の圧力に応じた検出信号を制御装置50に出力する。 A turbine upstream pressure detecting means 26A is provided in the exhaust pipe 12B on the upstream side of the turbine 36. The turbine upstream pressure detecting means 26A is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the exhaust in the exhaust pipe 12B on the upstream side of the turbine 36 to the control device 50. The exhaust pipe 12C on the downstream side of the turbine 36 is provided with the turbine downstream pressure detecting means 26B. The turbine downstream pressure detecting means 26B is, for example, a pressure sensor, and outputs a detection signal corresponding to the pressure of the exhaust in the exhaust pipe 12C on the downstream side of the turbine 36 to the control device 50.
 排気管12Cには、酸化触媒61と微粒子捕集フィルタ62が設けられている。なお、微粒子捕集フィルタ62の下流側に選択式還元触媒を設けてもよい。酸化触媒61の上流側には排気温度検出手段28Dが設けられ、酸化触媒61の下流側には排気温度検出手段28Eが設けられている。排気温度検出手段28D、28Eは、例えば排気温度センサであり、排気温度に応じた検出信号を制御装置50に出力する。また微粒子捕集フィルタ62には、微粒子捕集フィルタ62の上流側と下流側の圧力差を検出する差圧検出手段26Cが設けられている。差圧検出手段26Cは、例えば圧力センサであり、微粒子捕集フィルタ62の上流側の排気の圧力と、微粒子捕集フィルタ62の下流側の排気の圧力と、の差圧に応じた検出信号を制御装置50に出力する。 The exhaust pipe 12C is provided with an oxidation catalyst 61 and a particulate filter 62. A selective reduction catalyst may be provided on the downstream side of the particulate filter 62. The exhaust temperature detecting means 28D is provided on the upstream side of the oxidation catalyst 61, and the exhaust temperature detecting means 28E is provided on the downstream side of the oxidation catalyst 61. The exhaust temperature detecting means 28D and 28E are, for example, exhaust temperature sensors, and output a detection signal corresponding to the exhaust temperature to the control device 50. Further, the particulate filter 62 is provided with a differential pressure detecting means 26C for detecting the pressure difference between the upstream side and the downstream side of the particulate collecting filter 62. The differential pressure detecting means 26C is, for example, a pressure sensor, and outputs a detection signal according to the differential pressure between the exhaust pressure on the upstream side of the particulate filter 62 and the exhaust pressure on the downstream side of the particulate filter 62. Output to the control device 50.
 大気圧検出手段23は、例えば大気圧センサであり、制御装置50に設けられている。大気圧検出手段23は、制御装置50の周囲の大気圧に応じた検出信号を制御装置50に出力する。 The atmospheric pressure detecting means 23 is, for example, an atmospheric pressure sensor, and is provided in the control device 50. The atmospheric pressure detecting means 23 outputs a detection signal corresponding to the atmospheric pressure around the control device 50 to the control device 50.
 車速検出手段27は、例えば車両速度検出センサであり、車両の車輪等に設けられている。車速検出手段27は、車両の車輪の回転速度に応じた検出信号を制御装置50に出力する。 The vehicle speed detecting means 27 is, for example, a vehicle speed detecting sensor, which is provided on the wheels of the vehicle or the like. The vehicle speed detecting means 27 outputs a detection signal according to the rotation speed of the wheels of the vehicle to the control device 50.
 制御装置50は、燃料性状検出装置であり、少なくとも、CPU51、記憶装置53を有している。制御装置50(CPU51)の入力には、上述したように、吸気流量検出手段21、クランク角度検出手段22A、気筒検出手段22B、大気圧検出手段23、アクセルペダル踏込量検出手段25、コンプレッサ上流圧力検出手段24A、コンプレッサ下流圧力検出手段24B、吸気マニホルド圧力検出手段24C、タービン上流圧力検出手段26A、タービン下流圧力検出手段26B、差圧検出手段26C、車速検出手段27、吸気温度検出手段28A、28B、クーラント温度検出手段28C、排気温度検出手段28D、28E、ノズル開度検出手段32、スロットル開度検出手段48S等からの検出信号がある。 The control device 50 is a fuel property detection device, and has at least a CPU 51 and a storage device 53. As described above, the input of the control device 50 (CPU 51) includes the intake flow rate detecting means 21, the crank angle detecting means 22A, the cylinder detecting means 22B, the atmospheric pressure detecting means 23, the accelerator pedal depression amount detecting means 25, and the compressor upstream pressure. Detection means 24A, compressor downstream pressure detecting means 24B, intake manifold pressure detecting means 24C, turbine upstream pressure detecting means 26A, turbine downstream pressure detecting means 26B, differential pressure detecting means 26C, vehicle speed detecting means 27, intake temperature detecting means 28A, 28B , Coolant temperature detecting means 28C, exhaust temperature detecting means 28D, 28E, nozzle opening degree detecting means 32, throttle opening degree detecting means 48S and the like.
 また制御装置50(CPU51)からの出力には、上述したように、インジェクタ43A~43D、EGR弁14、ノズル駆動手段31、スロットル装置48等への制御信号がある。なお、制御装置50の入出力は、上記の検出手段やアクチュエータに限定されるものではない。また、各部の温度や圧力等はセンサを搭載せずに推定計算により算出しても良い。制御装置50は、上記の検出手段を含めた各種の検出手段からの検出信号に基づいてディーゼル機関10の運転状態や環境状態を検出し、上記のアクチュエータを含む各種のアクチュエータを制御する。記憶装置53は、例えばFlash-ROM等の記憶装置であり、ディーゼル機関の制御や自己診断等を実行するためのプログラムやデータ等が記憶されている。 Further, as described above, the output from the control device 50 (CPU 51) includes control signals to the injectors 43A to 43D, the EGR valve 14, the nozzle driving means 31, the throttle device 48, and the like. The input / output of the control device 50 is not limited to the above-mentioned detection means and actuator. Further, the temperature, pressure, etc. of each part may be calculated by estimation calculation without mounting a sensor. The control device 50 detects the operating state and the environmental state of the diesel engine 10 based on the detection signals from various detecting means including the above-mentioned detecting means, and controls various actuators including the above-mentioned actuator. The storage device 53 is, for example, a storage device such as a Flash-ROM, and stores programs, data, and the like for executing control of a diesel engine, self-diagnosis, and the like.
 なお制御装置50(CPU51)は、検出用噴射時期関連量算出部51A、検出用噴射量算出部51B、検出用噴射実行部51C、セタン価検出部51Dを有しているが、これらの詳細については後述する。 The control device 50 (CPU 51) has a detection injection timing-related amount calculation unit 51A, a detection injection amount calculation unit 51B, a detection injection execution unit 51C, and a cetane number detection unit 51D. Will be described later.
●[セタン価を検出するための検出用噴射Kinjによる熱発生率(図2、図3)]
 図2は、運転状態・環境状態(a)、運転状態・環境状態(b)、運転状態・環境状態(c)の、それぞれ異なる運転状態・環境状態において、同一セタン価の燃料を、同一噴射時期にて、同一噴射量だけ噴射した場合の例を示しており、運転状態・環境状態に応じた噴射時期、噴射量の補正をしなかった場合の例を示している。h(a)は運転状態・環境状態(a)の場合の熱発生率を示し、h(b)は運転状態・環境状態(b)の場合の熱発生率を示し、h(c)は運転状態・環境状態(c)の場合の熱発生率を示している。同一セタン価の燃料を、同一噴射時期にて同一噴射量を噴射しても、運転状態や環境状態が異なると、熱発生率の形状が異なる。
● [Heat generation rate by detection injection Kinj for detecting cetane number (Figs. 2 and 3)]
FIG. 2 shows the same injection of fuel having the same cetan value in different operating states / environmental states of the operating state / environmental state (a), the operating state / environmental state (b), and the operating state / environmental state (c). An example of the case where the same injection amount is injected at the timing is shown, and an example of the case where the injection timing and the injection amount are not corrected according to the operating state / environmental condition is shown. h (a) indicates the heat generation rate in the operating state / environmental state (a), h (b) indicates the heat generation rate in the operating state / environmental state (b), and h (c) indicates the operation. The heat generation rate in the case of the state / environmental state (c) is shown. Even if fuels with the same cetane number are injected with the same injection amount at the same injection timing, the shape of the heat generation rate will differ if the operating conditions and environmental conditions are different.
 なお、ディーゼル機関の環境状態とは、ディーゼル機関の動作状態によって変化しない周囲の雰囲気の状態を指す。図1に示すディーゼル機関システムの例では、大気圧(大気圧検出手段23にて検出)、外気温度(吸気温度検出手段28Aにて検出)等が、環境状態に相当する。また、ディーゼル機関の運転状態とは、上記の環境状態を除き、ユーザからの操作や制御装置からの制御、そしてそれらに応じて変化したディーゼル機関の動作状態を指す。図1に示すディーゼル機関システムの例では、ユーザからの操作として、アクセルペダル踏込量(アクセルペダル踏込量検出手段25にて検出)が、運転状態に相当する。また制御装置からの制御(各種のアクチュエータの制御)として、インジェクタ43A~43D、スロットル装置48、EGR弁14、ノズル駆動手段31等の制御が、運転状態に相当する。 The environmental condition of the diesel engine refers to the condition of the surrounding atmosphere that does not change depending on the operating condition of the diesel engine. In the example of the diesel engine system shown in FIG. 1, atmospheric pressure (detected by the atmospheric pressure detecting means 23), outside air temperature (detected by the intake air temperature detecting means 28A), and the like correspond to environmental conditions. Further, the operating state of the diesel engine refers to the operation from the user, the control from the control device, and the operating state of the diesel engine changed accordingly, excluding the above-mentioned environmental state. In the example of the diesel engine system shown in FIG. 1, the accelerator pedal depression amount (detected by the accelerator pedal depression amount detecting means 25) corresponds to the operating state as an operation from the user. Further, as control from the control device (control of various actuators), control of the injectors 43A to 43D, the throttle device 48, the EGR valve 14, the nozzle driving means 31, and the like corresponds to the operating state.
 また、それらに応じて変化した動作状態として、吸気流量(吸気流量検出手段21にて検出)、吸気管内の吸気の圧力(コンプレッサ上流圧力検出手段24A、コンプレッサ下流圧力検出手段24B、吸気マニホルド圧力検出手段24Cにて検出)、回転数(クランク角度検出手段22Aにて検出)、クーラント温度(クーラント温度検出手段28Cにて検出)、排気管内の排気の圧力(タービン上流圧力検出手段26A、タービン下流圧力検出手段26B、差圧検出手段26Cにて検出)、排気管内の排気の温度(排気温度検出手段28D、28Eにて検出)や、推定計算によって算出した各部の温度、圧力、流量等が、運転状態に相当する。以下、上記のディーゼル機関の運転状態及び環境状態を、ディーゼル機関の運転状態・環境状態と記載するが、上記の運転状態と環境状態を区別する必要がない場合では、ディーゼル機関の運転状態・環境状態を、ディーゼル機関の運転状態、とまとめて記載する場合もある。 Further, as the operating states changed accordingly, the intake air flow rate (detected by the intake air flow rate detecting means 21) and the intake pressure in the intake pipe (compressor upstream pressure detecting means 24A, compressor downstream pressure detecting means 24B, intake manifold pressure detection). Means 24C), rotation speed (detected by crank angle detecting means 22A), coolant temperature (detected by coolant temperature detecting means 28C), exhaust pressure in the exhaust pipe (turbin upstream pressure detecting means 26A, turbine downstream pressure) Detection means 26B, differential pressure detection means 26C), exhaust temperature in the exhaust pipe (detection by exhaust temperature detection means 28D, 28E), temperature, pressure, flow rate, etc. of each part calculated by estimation calculation Corresponds to the state. Hereinafter, the operating state and environmental state of the diesel engine will be described as the operating state / environmental state of the diesel engine, but when it is not necessary to distinguish between the operating state and the environmental state of the diesel engine, the operating state / environment of the diesel engine The state may be collectively described as the operating state of the diesel engine.
 図2に示す状態ではセタン価の検出には適さないので、運転状態や環境状態が変化しても、図3に示すようにほぼ同じ熱発生率を得ることができるように、運転状態・環境状態に応じて噴射時期、噴射量を補正する。なお図3の例は、(目標)着火時期=θ[°CA]、基準セタン価(例えばセタン価=54)の燃料の場合に、(目標)トルク相当量=TQとなるように、運転状態・環境状態に応じて噴射時期と噴射量を補正した場合の例を示している。 Since the state shown in FIG. 2 is not suitable for detecting the cetane number, the operating state / environment can obtain almost the same heat generation rate as shown in FIG. 3 even if the operating state or the environmental state changes. The injection timing and injection amount are corrected according to the state. In the example of FIG. 3, in the case of fuel having (target) ignition timing = θ [° CA] and standard cetane number (for example, cetane number = 54), the operating state is such that (target) torque equivalent amount = TQ. -An example is shown when the injection timing and injection amount are corrected according to the environmental conditions.
●[ディーゼル機関の運転状態・環境状態に応じた噴射時期、噴射量の算出]
 噴射時期については、以下のようにして、ディーゼル機関の運転状態・環境状態に応じた着火遅れ時間を求める。(目標)着火時期=θ[°CA]の位置から、この着火遅れ時間だけ手前のタイミングを噴射(開始)時期として燃料を噴射することで、(目標)着火時期から燃焼を開始させることができる。従って、下記の着火遅れ時間は、ディーゼル機関の運転状態・環境状態に応じた補正を含んだ時間である。着火遅れ時間をTDLYとすると、以下の(式1)が成立することが知られている。
 TDLY=1/{A[Fuel]B[O2Cexp(-D/Tcyl)}  (式1)
A、B、C、D:定数
[Fuel]:燃料分圧
[O2]:酸素分圧
cyl:目標メイン着火時期での筒内温度
● [Calculation of injection timing and injection amount according to the operating and environmental conditions of the diesel engine]
Regarding the injection timing, the ignition delay time according to the operating condition and environmental condition of the diesel engine is obtained as follows. Combustion can be started from the (target) ignition timing by injecting fuel from the position of (target) ignition timing = θ [° CA] with the timing before this ignition delay time as the injection (start) timing. .. Therefore, the following ignition delay time is a time including correction according to the operating condition and environmental condition of the diesel engine. It is known that the following (Equation 1) holds when the ignition delay time is T DLY .
T DLY = 1 / {A [Fuel] B [O 2 ] C exp (-D / T cyl )} (Equation 1)
A, B, C, D: Constant [Fuel]: Fuel partial pressure [O 2 ]: Oxygen partial pressure T cyl : Target In-cylinder temperature at main ignition timing
 また、気体の状態方程式から、以下の(式2)~(式4)が成立する。
 Tcyl=Pcylcyl/(R・gcb・Mair)  (式2)
 gcb=gcyl+ρf・qfinr・αcb  (式3)
 αcb=ΣdQ/(ρf・qfinr・Ef)  (式4)
cyl:目標メイン着火時期での筒内圧力
cyl:目標メイン着火時期での筒内容積
air:空気平均分子量
cb:燃焼ガス量
cyl:目標メイン着火時期での空気量
qfinr:噴射量
αcb:燃焼割合
dQ:発熱量
ρf:燃料密度
f:燃料低位発熱量
Further, the following (Equation 2) to (Equation 4) are established from the gas state equation.
T cyl = P cyl V cyl / (R ・ g cb・ M air ) (Equation 2)
g cb = g cyl + ρ f・ qfinr ・ α cb (Equation 3)
α cb = ΣdQ / (ρ f・ qfinr ・ E f ) (Equation 4)
P cyl : In-cylinder pressure at target main ignition timing V cyl : In-cylinder volume at target main ignition timing M air : Air average molecular weight g cb : Combustion gas amount g cyl : Air amount at target main main ignition timing
qfinr: Injection amount α cb : Combustion ratio dQ: Calorific value ρ f : Fuel density E f : Fuel lower calorific value
 また、以下のようにしてPcylを求めることができる。
dQ=dU+PdV
  =(cv/R)・d(PV)+PdV
  =[k/(k-1)]PdV+[1/(k-1)]VdP  (式5)
ここで、P=(Pcylo+Pcyl)/2、V=(Vcylo+Vcyl)/2、
dP=Pcyl-Pcylo、dV=Vcyl-Vcyloとして離散化すると、(式5)より
cyl=[2(k-1)dQ-{(k-1)Vcyl-(k+1)Vcylo}Pcylo]
   /[(k+1)Vcyl-(k-1)Vcylo  (式6)
k:比熱比
cp:定圧比熱
v:定積比熱
V:筒内容積
P:筒内圧
U:熱量
cylo:目標メイン着火時期前回値における筒内圧力
cylo:目標メイン着火時期前回値における筒内容積
In addition, P cyl can be obtained as follows.
dQ = dU + PdV
= (C v / R) · d (PV) + PdV
= [K / (k-1)] PdV + [1 / (k-1)] VdP (Equation 5)
Here, P = (P cylo + P cyl ) / 2, V = (V cylo + V cyl ) / 2,
dP = P cyl -P cylo, Discretizing as dV = V cyl -V cylo, (Equation 5) than P cyl = [2 (k- 1) dQ - {(k-1) V cyl - (k + 1) V cylo } P cyl o]
/ [(K + 1) V cyl - (k-1) V cylo ( Equation 6)
k: Specific heat ratio cp: Constant pressure specific heat c v : Constant volume specific heat V: Cylinder volume P: Cylinder pressure U: Calorific value P cylo : Target main ignition time Cylinder pressure V cylo : Target main ignition time Cylinder at previous value Internal volume
 また以下の式が成立する。
dTw=(Qc-Qout)/mc
   ={hg(Tg-Tw)-h(Tw-thw)}/mc
   ={Qc_s(Tg-Tw)/(Tg-Tw_s)-Qc_s(Tw-thw)/(Tw_s-thw)}/mc
   =Qc_s(Tw_s-Tw)[1/(Tg-Tw_s)+1/(Tw_s-thw)]/mc  (式7)
wi+1=Tw+Qcs(Tw_s-Tw)[1/(Tg-Tw_s)+1/(Tw_s-thw)]/mc  (式8)
_s:定常時
Qc:筒内から壁面への放熱量
Qout:壁面から冷却水への放熱量
Tw:壁温度
g:燃焼ガス温度
thw:水温(冷却水温度)
g:熱伝導率(燃焼室側)
h:熱伝導率(冷却水側)
m:壁質量
c:比熱
In addition, the following equation holds.
dTw = (Qc-Qout) / mc
= {H g (T g -Tw) -h (Tw-thw)} / mc
= {Qc_s (T g- Tw) / (T g- Tw_s) -Qc_s (Tw-thw) / (Tw_s-thw)} / mc
= Qc_s (Tw_s-Tw) [1 / (T g- Tw_s) + 1 / (Tw_s-thw)] / mc (Equation 7)
T wi + 1 = Tw + Qc s (Tw_s-Tw) [1 / (T g- Tw_s) + 1 / (Tw_s-thw)] / mc (Equation 8)
_S: Steady state Qc: Heat dissipation from the cylinder to the wall surface Qout: Heat dissipation from the wall surface to the cooling water Tw: Wall temperature T g : Combustion gas temperature
thw: Water temperature (cooling water temperature)
h g : Thermal conductivity (combustion chamber side)
h: Thermal conductivity (cooling water side)
m: wall mass c: specific heat
 以上より、以下の式が成立する。
[O2]=Pcyl(na・mO2)/(nf+n)
  =Pcyl(na/nfst・mO2/[(nf/na)・(na/nfst+(na/nfst
  =Pcyl[n(1+0.25αHC)]/[φ+n(1+0.25αHC)/mO2]  (式9)
a:新気中炭素量
f:燃料中炭素量
(na/nfst:噴射あたりの空気過剰率
αHC:燃料中H/C
φ:当量比
n:燃料組成中炭素量
O2:O2濃度割合
From the above, the following equation holds.
[O 2] = P cyl ( n a · m O2) / (n f + n)
= P cyl (n a / n f ) st · m O2 / [(n f / n a ) · (n a / n f ) st + (n a / n f ) st ]
= P cyl [n (1 + 0.25α HC )] / [φ + n (1 + 0.25α HC ) / m O2 ] (Equation 9)
n a : Carbon content in fresh air n f : Carbon content in fuel (n a / n f ) st : Air excess rate per injection α HC : H / C in fuel
φ: Equivalent ratio n: Carbon amount in fuel composition m O2 : O 2 concentration ratio
 ディーゼル機関10の運転状態・環境状態に基づいて着火遅れ時間TDLYを求めることで、運転状態・環境状態が変動しても、(目標)着火時期(予め設定された所定クランク角度位置に相当)で着火するように燃料の噴射時期を適切に制御できる。なお、着火遅れ時間TDLYは、上記のように、シリンダ流入ガス量、EGR量、排気マニホルド内圧力、排気マニホルド内温度、冷却水温度(クーラント温度)、過給圧、インタークーラ出口ガス温度、EGR出口ガス温度、等から求められる。 By obtaining the ignition delay time T DLY based on the operating condition / environmental condition of the diesel engine 10, the (target) ignition timing (corresponding to a preset predetermined crank angle position) even if the operating condition / environmental condition fluctuates. The fuel injection timing can be appropriately controlled so as to ignite at. As described above, the ignition delay time T DLY is determined by the cylinder inflow gas amount, EGR amount, exhaust manifold internal pressure, exhaust manifold internal temperature, cooling water temperature (coolant temperature), boost pressure, intercooler outlet gas temperature, and the like. It is obtained from the EGR outlet gas temperature, etc.
 シリンダ流入ガス量は、吸気流量検出手段21(図1参照)からの検出信号に基づいて検出される。EGR量は、制御装置50が算出したEGR率とEGR弁14(図1参照)の制御量等から算出される。排気マニホルド内圧力は、排気マニホルドに圧力検出手段を有している場合は当該圧力検出手段からの検出信号に基づいて検出され、当該圧力検出手段を有していない場合は排気温度や吸気流量や可変ノズルの開度や回転数等から推定することができる。排気マニホルド内温度は、排気マニホルドに温度検出手段を有している場合は当該温度検出手段からの検出信号に基づいて検出され、当該温度検出手段を有していない場合は酸化触媒の上流側の排気温度等から推定することができる。冷却水温度(クーラント温度)は、クーラント温度検出手段28C(図1参照)からの検出信号に基づいて検出される。過給圧は、吸気マニホルド圧力検出手段24C(図1参照)からの検出信号に基づいて検出される。インタークーラ出口ガス温度は、吸気温度検出手段28B(図1参照)からの検出信号に基づいて検出される。EGR出口ガス温度は、EGR配管13の出口個所に温度検出手段を有している場合は当該温度検出手段からの検出信号に基づいて検出され、当該温度検出手段を有していない場合は排気マニホルド内温度やEGRクーラのクーラント温度やEGR量等に基づいて推定することができる。 The cylinder inflow gas amount is detected based on the detection signal from the intake flow rate detecting means 21 (see FIG. 1). The EGR amount is calculated from the EGR rate calculated by the control device 50, the control amount of the EGR valve 14 (see FIG. 1), and the like. The pressure inside the exhaust manifold is detected based on the detection signal from the pressure detecting means when the exhaust manifold has a pressure detecting means, and when the exhaust manifold does not have the pressure detecting means, the exhaust temperature and the intake flow rate and the like. It can be estimated from the opening degree and the number of rotations of the variable nozzle. The temperature inside the exhaust manifold is detected based on the detection signal from the temperature detecting means when the exhaust manifold has a temperature detecting means, and when the exhaust manifold does not have the temperature detecting means, the temperature on the upstream side of the oxidation catalyst is detected. It can be estimated from the exhaust temperature and the like. The cooling water temperature (coolant temperature) is detected based on the detection signal from the coolant temperature detecting means 28C (see FIG. 1). The boost pressure is detected based on the detection signal from the intake manifold pressure detecting means 24C (see FIG. 1). The intercooler outlet gas temperature is detected based on the detection signal from the intake air temperature detecting means 28B (see FIG. 1). The EGR outlet gas temperature is detected based on the detection signal from the temperature detecting means when the EGR pipe 13 has a temperature detecting means at the outlet, and the exhaust manifold when the temperature detecting means is not provided. It can be estimated based on the internal temperature, the coolant temperature of the EGR cooler, the amount of EGR, and the like.
 以上により、例えば、基準セタン価Ss=54、(目標)着火時期=θ[°CA]=7[°CA]、その場合の目標基準トルク相当量=TQ、に設定した場合において、運転状態や環境状態が変化しても、安定的に着火時期=7[°CA](着火のクランク角度位置=7[°CA])、発生トルク相当量=TQとなるように、噴射時期及び噴射量を補正した検出用噴射Kinjを、制御装置50から実行させることができる。 Based on the above, for example, when the reference cetane number Ss = 54, the (target) ignition timing = θ [° CA] = 7 [° CA], and the target reference torque equivalent amount = TQ in that case, the operating state and Even if the environmental conditions change, the injection timing and injection amount are set so that the ignition timing = 7 [° CA] (ignition crank angle position = 7 [° CA]) and the generated torque equivalent amount = TQ. The corrected detection injection Kinj can be executed from the control device 50.
 噴射量については、噴射時期と同様に、シリンダ流入ガス量、EGR量、排気マニホルド内圧力、排気マニホルド内温度、冷却水温度(クーラント温度)、過給圧、インタークーラ出口ガス温度、EGR出口ガス温度等のディーゼル機関の運転状態・環境状態に基づいて、補正を含めた噴射量を、既知の方法にて算出することができる。なお算出については既知の算出方法を用いているので、補正を含めた噴射量の算出方法の詳細については説明を省略する。これにより、運転状態・環境状態が変動しても、(目標)着火時期=θ[°CA]かつ基準セタン価(例えばセタン価=54)の燃料の場合に、(目標)トルク相当量=TQとなるように、噴射量を適切に補正することができる。 Regarding the injection amount, the amount of gas flowing into the cylinder, the amount of EGR, the pressure inside the exhaust manifold, the temperature inside the exhaust manifold, the cooling water temperature (coolant temperature), the boost pressure, the intercooler outlet gas temperature, and the EGR outlet gas are the same as the injection timing. The injection amount including the correction can be calculated by a known method based on the operating state / environmental state of the diesel engine such as temperature. Since a known calculation method is used for the calculation, the details of the injection amount calculation method including the correction will be omitted. As a result, even if the operating conditions and environmental conditions fluctuate, the (target) torque equivalent amount = TQ when the fuel has (target) ignition timing = θ [° CA] and a standard cetane number (for example, cetane number = 54). The injection amount can be appropriately corrected so as to be.
●[噴射時期及び噴射量を補正した場合におけるセタン価に応じた熱発生率(図4)と、トルク相当量(図5)]
 図4は、例えば基準セタン価Ss=54、(目標)着火時期=θ[°CA]=7[°CA]、その場合の(目標)トルク相当量=TQ、となるように上記の噴射時期の補正と、噴射量の補正を行った場合において、異なるセタン価の燃料にて検出用噴射Kinjを実行した場合の例を示している。h(d1)はセタン価(高)(例えばセタン価=60)の場合の熱発生率、h(d2)はセタン価(中)(例えばセタン価=54)の熱発生率、h(d3)はセタン価(低)(例えばセタン価=46)の熱発生率の例を示している。ディーゼル機関の運転状態・環境状態が変動しても、かつ、異なるセタン価であっても、安定的に着火時期=θ[°CA]=7[°CA]を得ることが可能であり、セタン価の値に応じた熱発生率を得ることができる。図4からわかるように、セタン価の値が大きいほど熱発生率のピークが大きく、かつ、ピークの位置が上死点(クランク角度=0[°CA])に近くなる。従って、セタン価の値が大きいほど、トルク相当量が大きくなる。
● [Heat generation rate according to cetane number when the injection timing and injection amount are corrected (Fig. 4) and torque equivalent amount (Fig. 5)]
FIG. 4 shows the above injection timing so that, for example, the reference cetane number Ss = 54, the (target) ignition timing = θ [° CA] = 7 [° CA], and the (target) torque equivalent amount in that case = TQ. An example is shown in which the detection injection Kinj is executed with fuels having different cetane numbers when the correction of the above and the correction of the injection amount are performed. h (d1) is the heat generation rate when the cetane number (high) (for example, cetane number = 60), h (d2) is the heat generation rate when the cetane number (medium) (for example, cetane number = 54), h (d3) Shows an example of the heat generation rate of cetane number (low) (for example, cetane number = 46). Even if the operating condition / environmental condition of the diesel engine fluctuates and the cetane number is different, it is possible to stably obtain the ignition timing = θ [° CA] = 7 [° CA], and the cetane number can be obtained. The heat generation rate according to the value of the value can be obtained. As can be seen from FIG. 4, the larger the value of the cetane number, the larger the peak of the heat generation rate, and the position of the peak becomes closer to the top dead center (crank angle = 0 [° CA]). Therefore, the larger the cetane number value, the larger the torque equivalent amount.
 図5は、ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている場合(検出可能期間に相当)に、セタン価検出用の検出用噴射Kinjを実行した例を示している。例えば市街地等を走行中に、赤信号等の手前でアクセルペダルから足を離してブレーキペダルを踏む前の惰性走行中が、この検出可能期間となる。 FIG. 5 shows an example in which the detection injection Kinj for cetane number detection is executed when the diesel engine stops fuel injection and gradually decreases the rotation speed while coasting (corresponding to the detectable period). It shows. For example, this detectable period is during coastal driving before the accelerator pedal is released and the brake pedal is depressed before the red light or the like while traveling in an urban area or the like.
 図5において、N(d1)はセタン価(高)の燃料の検出用噴射によって発生したトルクにて上昇した回転数を示しており、N(d2)はセタン価(中)の燃料の検出用噴射によって発生したトルクにて上昇した回転数を示しており、N(d3)はセタン価(低)の燃料の検出用噴射によって発生したトルクにて上昇した回転数を示している。検出用噴射Kinjを実行する直前の回転数(直前回転数)と、検出用噴射Kinjを実行した直後の回転数(直後回転数)と、の偏差であるΔNと、直前回転数と、に基づいてセタン価に応じたトルク相当量TQを得ることができる。 In FIG. 5, N (d1) indicates the number of revolutions increased by the torque generated by the injection for detecting the cetane number (high) fuel, and N (d2) is for detecting the cetane number (medium) fuel. The number of revolutions increased by the torque generated by the injection is shown, and N (d3) shows the number of revolutions increased by the torque generated by the injection for detecting the cetane number (low) fuel. Based on ΔN, which is the deviation between the rotation speed immediately before executing the detection injection Kinj (immediate rotation speed) and the rotation speed immediately after executing the detection injection Kinj (immediate rotation speed), and the immediately preceding rotation speed. The torque equivalent amount TQ corresponding to the cetane number can be obtained.
●[セタン価・トルク相当量特性の例(図6)]
 図6は、基準セタン価=Ssの燃料(例えばセタン価=54の燃料)を用いた場合に、着火時期=θ[°CA](例えば着火時期=7[°CA])にてトルク相当量=TQs(θ)となるように、噴射時期、噴射量を補正した場合における、セタン価・トルク相当量特性の例を示している。セタン価・トルク相当量特性は、横軸をセタン価、縦軸をトルク相当量(トルクや、回転数変動量等のトルクに相当する物理量)としている。トルク相当量は、例えば基準回転数(例えば1500[rpm])に対する回転数変動量をトルクに換算した量である。セタン価・トルク相当量特性は、実際の車両を用いた種々の実験やシミュレーション等の結果に基づいて設定されている。
● [Example of cetane number / torque equivalent characteristics (Fig. 6)]
FIG. 6 shows the torque equivalent amount at the ignition time = θ [° CA] (for example, the ignition time = 7 [° CA]) when a fuel having a reference cetane number = Ss (for example, a fuel having a cetane number = 54) is used. An example of the cetane number / torque equivalent characteristic when the injection timing and the injection amount are corrected so that = TQs (θ) is shown. The setan value / torque equivalent amount characteristic is defined as the setan value on the horizontal axis and the torque equivalent amount (physical quantity corresponding to torque, torque fluctuation amount, etc.) on the vertical axis. The torque equivalent amount is, for example, an amount obtained by converting the amount of rotation speed fluctuation with respect to a reference rotation speed (for example, 1500 [rpm]) into torque. The cetane number / torque equivalent characteristics are set based on the results of various experiments and simulations using an actual vehicle.
 また図6の例において実線にて示す特性は、基準セタン価=Ssの燃料を用いた場合に、着火時期=θ[°CA]、トルク相当量=TQs(θ)となるように設定したセタン価・トルク相当量特性を示している。また図6の例において一点鎖線にて示す特性は、基準セタン価=Ssの燃料を用いた場合に、着火時期=θ-Δθ[°CA]、トルク相当量=TQs(θ-Δθ)となるように設定したセタン価・トルク相当量特性(θ-Δθ)を示している。また図6の例において点線にて示す特性は、基準セタン価=Ssの燃料を用いた場合に、着火時期=θ+Δθ[°CA]、トルク相当量=TQs(θ+Δθ)となるように設定したセタン価・トルク相当量特性(θ+Δθ)を示している。このように、目標とする着火時期やトルク相当量に応じた、種々のセタン価・トルク相当量特性を予め作成しておくことができる。 Further, the characteristics shown by the solid line in the example of FIG. 6 are setan set so that the ignition timing = θ [° CA] and the torque equivalent amount = TQs (θ) when a fuel having a reference cetane number = Ss is used. Cetane / torque equivalent characteristics are shown. Further, in the example of FIG. 6, the characteristics shown by the alternate long and short dash line are the ignition timing = θ-Δθ [° CA] and the torque equivalent = TQs (θ-Δθ) when a fuel having a reference cetane number = Ss is used. The cetane number / torque equivalent characteristic (θ-Δθ) set as described above is shown. Further, the characteristics shown by the dotted lines in the example of FIG. 6 are setan set so that the ignition timing = θ + Δθ [° CA] and the torque equivalent amount = TQs (θ + Δθ) when a fuel having a reference cetane number = Ss is used. The cetane / torque equivalent characteristic (θ + Δθ) is shown. In this way, various cetane number / torque equivalent characteristics can be created in advance according to the target ignition timing and torque equivalent amount.
 なお、実線にて示すセタン価・トルク相当量特性(θ)(着火時期=θ)に着目すると、セタン価・トルク相当量特性(θ)は、セタン価の違いに対してトルク相当量の変化が小さい判別不適切セタン価範囲(判別可能下限セタン価SL(θ)よりもセタン価が低い領域、及び判別可能上限セタン価SH(θ)よりもセタン価が高い領域)を有している。また、セタン価トルク相当量特性(θ)は、判別不適切セタン価範囲よりもセタン価の違いに対してトルク相当量の変化が大きい判別可能セタン価範囲(判別可能下限セタン価SL(θ)以上、かつ、判別可能上限セタン価SH(θ)以下の領域)と、を有している。判別可能セタン価範囲内のセタン価であれば、トルク相当量に基づいて、より精度よくセタン価を検出することができる。これに対して判別不適切セタン価範囲のセタン価の場合、トルク相当量に基づいて検出されたセタン価は、判別可能セタン価範囲のセタン価と比較して誤差が大きい。 Focusing on the cetane number / torque equivalent characteristic (θ) (ignition time = θ) shown by the solid line, the cetane number / torque equivalent characteristic (θ) changes in torque equivalent with respect to the difference in cetane number. Has a small discriminant inappropriate cetane number range (a region where the cetane number is lower than the discriminable lower limit cetane number SL (θ) and a region where the cetane number is higher than the discriminable upper limit cetane number SH (θ)). In addition, the cetane number torque equivalent characteristic (θ) is such that the change in the torque equivalent amount is larger with respect to the difference in the cetane number than the undiscrimination inappropriate cetane number range. The region having the above and the upper limit cetane number SH (θ) or less that can be discriminated). If the cetane number is within the discriminable cetane number range, the cetane number can be detected more accurately based on the torque equivalent amount. On the other hand, in the case of a cetane number in the discriminating inappropriate cetane number range, the cetane number detected based on the torque equivalent amount has a large error as compared with the cetane number in the discriminating cetane number range.
●[第1の実施の形態の燃料性状検出装置(制御装置50)の処理(図7~図12)]
 次に図7~図12を用いて、セタン価を検出する燃料性状検出装置(制御装置50)の処理の第1の実施の形態について説明する。第1の実施の形態では、図7に示すセタン価・トルク相当量特性(θ)を用いて、検出下限セタン価SKL~検出上限セタン価SKHのセタン価検出範囲内のセタン価を検出する。図7に示すセタン価・トルク相当量特性(θ)は、基準セタン価=Ssの燃料(例えばセタン価=54の燃料)を用いた場合に、着火時期=θ[°CA](例えば7[°CA])、トルク相当量=TQs(θ)となるように設定したセタン価・トルク相当量特性である。また第1の実施の形態では、セタン価・トルク相当量特性(θ)の判別可能セタン価範囲(θ)(判別可能下限セタン価SL(θ)~判別可能上限セタン価SH(θ)の範囲)に、セタン価検出範囲(検出下限セタン価SKL~検出上限セタン価SKHの範囲)が含まれている。例えば検出したトルク相当量がTQの場合、図7に示すセタン価・トルク相当量特性(θ)に基づいて、検出対象のセタン価はSである、と検出することができる。
[Processing of the fuel property detection device (control device 50) of the first embodiment (FIGS. 7 to 12)]
Next, the first embodiment of the process of the fuel property detection device (control device 50) for detecting the cetane number will be described with reference to FIGS. 7 to 12. In the first embodiment, the cetane number / torque equivalent characteristic (θ) shown in FIG. 7 is used to detect the cetane number within the cetane number detection range of the detection lower limit cetane number SKL to the detection upper limit cetane number SKH. The cetane number / torque equivalent characteristic (θ) shown in FIG. 7 shows the ignition time = θ [° CA] (for example, 7 [] when a fuel having a reference cetane number = Ss (for example, a fuel having a cetane number = 54) is used. ° CA]), cetane number / torque equivalent characteristic set so that torque equivalent = TQs (θ). Further, in the first embodiment, the discriminable cetane number range (θ) of the cetane number / torque equivalent characteristic (θ) (the range from the discriminable lower limit cetane number SL (θ) to the discriminable upper limit cetane number SH (θ)). ) Includes the cetane number detection range (the range from the lower limit cetane number SKL to the upper limit cetane number SKH). For example, when the detected torque equivalent amount is TQ, it can be detected that the cetane number to be detected is S based on the cetane number / torque equivalent amount characteristic (θ) shown in FIG.
●[第1の実施の形態の処理手順(図8~図11)における、全体処理(図8)の処理手順]
 次に図8~図11に示すフローチャートを用いて、制御装置50によるセタン価検出処理の第1の実施の形態の処理手順について説明する。制御装置50(CPU51)は、例えば所定クランク角度毎(例えば15[°CA]毎、図12参照)にて、図8に示す処理を起動し、ステップS110に処理を進める。例えばクランク角度検出手段22A(図1参照)は、クランクシャフトが15[°CA]回転する毎に検出信号を出力し、1番気筒が圧縮上死点の位置の直前に気筒検出手段22Bが検出信号を出力する。そしてクランク角度検出手段22Aからの検出信号が入力される毎に図8に示す処理が起動される。またセタン価を検出するための検出用噴射は、どの気筒に対して実行してもよいが、本実施の形態では、1番気筒に対して検出用噴射を実行する例にて説明する。また本実施の形態では、着火時期=θ[°CA]が7[°CA]の例にて説明する。
● [Processing procedure of overall processing (FIG. 8) in the processing procedure (FIGS. 8 to 11) of the first embodiment]
Next, the processing procedure of the first embodiment of the cetane number detection processing by the control device 50 will be described with reference to the flowcharts shown in FIGS. 8 to 11. The control device 50 (CPU 51) activates the process shown in FIG. 8 at each predetermined crank angle (for example, every 15 [° CA], see FIG. 12), and proceeds to step S110. For example, the crank angle detecting means 22A (see FIG. 1) outputs a detection signal every time the crankshaft rotates by 15 [° CA], and the cylinder detecting means 22B detects the first cylinder immediately before the position of the compression top dead center. Output a signal. Then, each time the detection signal from the crank angle detecting means 22A is input, the process shown in FIG. 8 is activated. Further, the detection injection for detecting the cetane number may be executed for any cylinder, but in the present embodiment, an example of executing the detection injection for the first cylinder will be described. Further, in the present embodiment, the ignition timing = θ [° CA] will be described with an example of 7 [° CA].
 ステップS110にて制御装置50は、クランク角度カウンタの値(00~47(図12参照))を更新し、今回のクランク角度信号が入力された時刻を取得して、クランク角度カウンタの値(00~47)に対応させて記憶し、ステップS115に処理を進める。 In step S110, the control device 50 updates the value of the crank angle counter (00 to 47 (see FIG. 12)), acquires the time when the current crank angle signal is input, and obtains the value of the crank angle counter (00). It is stored in correspondence with ~ 47), and the process proceeds to step S115.
 例えば制御装置50は、ステップS110にて、気筒検出手段22B(図1参照)からの気筒検出信号が検出されている場合はクランク角度カウンタの値を(00)に初期化(図12参照)して、気筒検出手段22Bからの気筒検出信号が検出されていない場合はクランク角度カウンタの値を1だけカウントアップする(図12参照)。これにより、クランク角度カウンタの値は、15[°CA]毎に(00~47)のいずれかの値に更新される。例えばクランク角度カウンタの値が(00)の期間は、クランク角度が1番気筒の圧縮上死点の0[°CA]から15[°CA]の間であることを示し、クランク角度カウンタの値が(24)の期間は、クランク角度が1番気筒の吸気上死点の360[°CA]から375[°CA]の間であることを示す。 For example, in step S110, the control device 50 initializes the value of the crank angle counter to (00) when the cylinder detection signal from the cylinder detection means 22B (see FIG. 1) is detected (see FIG. 12). If the cylinder detection signal from the cylinder detection means 22B is not detected, the value of the crank angle counter is counted up by 1 (see FIG. 12). As a result, the value of the crank angle counter is updated to any value of (00 to 47) every 15 [° CA]. For example, the period when the value of the crank angle counter is (00) indicates that the crank angle is between 0 [° CA] and 15 [° CA] of the compression top dead center of the first cylinder, and the value of the crank angle counter. The period (24) indicates that the crank angle is between 360 [° CA] and 375 [° CA] of the intake top dead center of the first cylinder.
 ステップS115にて制御装置50は、検出用噴射の実行条件が成立しているか否かを判定し、成立している場合(S115:Yes)はステップS120に処理を進め、成立していない場合(S115:No)はステップS190に処理を進める。例えば検出用噴射の実行条件は、現在燃料噴射の停止中、かつ、惰性回転しながら回転数が徐々に低下している状態、かつ、回転数の範囲が検出下限回転数から検出上限回転数の範囲内、かつ、アクセルペダル踏込量=0、エンジンブレーキ作動状態でない、等である。なお、検出用噴射の実行条件は、「現在燃料噴射の停止中、かつ、惰性回転しながら回転数が徐々に低下している状態」については必須であるが、他の条件が追加されていても構わない。 In step S115, the control device 50 determines whether or not the execution condition of the detection injection is satisfied, and if it is satisfied (S115: Yes), the process proceeds to step S120, and if it is not satisfied (S115: Yes). S115: No) proceeds to step S190. For example, the execution conditions of the detection injection are that the fuel injection is currently stopped, the rotation speed is gradually decreasing while coasting, and the rotation speed range is from the detection lower limit rotation speed to the detection upper limit rotation speed. It is within the range, the accelerator pedal depression amount = 0, the engine brake is not in the operating state, and so on. The execution condition of the detection injection is indispensable for "the state where the fuel injection is currently stopped and the rotation speed is gradually decreasing while coasting", but other conditions have been added. It doesn't matter.
 ステップS120にて制御装置50は、今回のクランク角度カウンタの値が(47)であるか否かを判定し、クランク角度カウンタの値が(47)である場合(S120:Yes)はステップS125に処理を進め、クランク角度カウンタの値が(47)でない場合(S120:No)はステップS135に処理を進める。 In step S120, the control device 50 determines whether or not the value of the crank angle counter this time is (47), and if the value of the crank angle counter is (47) (S120: Yes), the step S125 is performed. The process proceeds, and if the value of the crank angle counter is not (47) (S120: No), the process proceeds to step S135.
 ステップS125に処理を進めた場合、制御装置50は、処理SA100を実行してステップS130に処理を進める。なお、処理SA100の処理は、検出用噴射の着火遅れ時間と噴射量を算出する処理と、検出用噴射を実行するべき1番気筒のインジェクタに対して、噴射開始時刻と噴射終了時刻を求めてタイマに設定する処理であり、処理SA100の詳細については後述する。 When the process proceeds to step S125, the control device 50 executes the process SA100 and proceeds to the process to step S130. In the processing of the processing SA100, the ignition delay time and the injection amount of the detection injection are calculated, and the injection start time and the injection end time are obtained from the injector of the first cylinder to execute the detection injection. This process is set in the timer, and the details of the process SA100 will be described later.
 ステップS130にて制御装置50は、検出用噴射実行フラグをONに設定し、アクチュエータ維持要求フラグをONに設定して(図12参照)ステップS135に処理を進める。 In step S130, the control device 50 sets the detection injection execution flag to ON, sets the actuator maintenance request flag to ON (see FIG. 12), and proceeds to step S135.
 なお、検出用噴射実行フラグは、検出用噴射のスケジューリングを行った(処理SA100を実行した)ことを示しており、後述するステップS135にて判定に使用され、ステップS160にてOFFに設定される。またアクチュエータ維持要求フラグは、検出用噴射のスケジューリング実行後から、検出用噴射が実行されて回転数の変動(トルク相当量)を取得するまでの期間、吸排気系のアクチュエータ(スロットル装置、EGR弁、可変ノズルのノズル駆動手段等)の動作状態を変更させることなく維持させることを要求するためのフラグであり、ステップS160にてOFFに設定される。制御装置50は、図示省略しているアクチュエータの制御処理において、アクチュエータ維持要求フラグがONの場合、当該アクチュエータの動作状態の変更を停止して、現在の動作状態を維持させる(回生等のエンジンブレーキに関する動作は禁止させる)。 The detection injection execution flag indicates that the detection injection has been scheduled (process SA100 has been executed), is used for determination in step S135 described later, and is set to OFF in step S160. .. The actuator maintenance request flag is used for the intake / exhaust system actuator (throttle device, EGR valve) during the period from the execution of the detection injection scheduling to the execution of the detection injection to the acquisition of the fluctuation of the rotation speed (torque equivalent amount). , The operating state of the variable nozzle nozzle driving means, etc.) is a flag for requesting to be maintained without being changed, and is set to OFF in step S160. In the actuator control process (not shown), when the actuator maintenance request flag is ON, the control device 50 stops the change of the operating state of the actuator and maintains the current operating state (engine brake such as regeneration). The operation related to is prohibited).
 ステップS135に処理を進めた場合、制御装置50は検出用噴射実行フラグがONであるか否かを判定し、ONである場合(S135:Yes)はステップS140に処理を進め、OFFである場合(S135:No)は、図8に示す処理を終了する。 When the process proceeds to step S135, the control device 50 determines whether or not the detection injection execution flag is ON, and if it is ON (S135: Yes), the process proceeds to step S140, and if it is OFF. (S135: No) ends the process shown in FIG.
 ステップS140に処理を進めた場合、制御装置50は今回のクランク角度カウンタの値が(00)であるか否かを判定し、今回のクランク角度カウンタの値が(00)である場合(S140:Yes)はステップS145に処理を進め、今回のクランク角度カウンタの値が(00)でない場合(S140:No)はステップS150に処理を進める。 When the process proceeds to step S140, the control device 50 determines whether or not the value of the crank angle counter this time is (00), and when the value of the crank angle counter this time is (00) (S140: Yes) proceeds to step S145, and if the value of the crank angle counter this time is not (00) (S140: No), the process proceeds to step S150.
 ステップS145に処理を進めた場合、制御装置50は、処理SA200を実行して、図8に示す処理を終了する。なお、処理SA200の処理は、検出用噴射を実行する直前の回転数(Ne[直前]、図12参照)を計測する処理であり、処理SA200の詳細については後述する。 When the process proceeds to step S145, the control device 50 executes the process SA200 and ends the process shown in FIG. The process of the process SA200 is a process of measuring the rotation speed (Ne [immediately before], see FIG. 12) immediately before executing the detection injection, and the details of the process SA200 will be described later.
 ステップS150に処理を進めた場合、制御装置50は今回のクランク角度カウンタの値が(03)であるか否かを判定し、今回のクランク角度カウンタの値が(03)である場合(S150:Yes)はステップS155に処理を進め、今回のクランク角度カウンタの値が(03)でない場合(S150:No)は、図8に示す処理を終了する。 When the process proceeds to step S150, the control device 50 determines whether or not the value of the crank angle counter this time is (03), and when the value of the crank angle counter this time is (03) (S150: Yes) proceeds to step S155, and if the value of the crank angle counter this time is not (03) (S150: No), the process shown in FIG. 8 ends.
 ステップS155に処理を進めた場合、制御装置50は、処理SA300を実行してステップS160に処理を進める。なお、処理SA300の処理は、検出用噴射の実行の直後の回転数(Ne[直後]、図12参照)の計測と、セタン価を検出する処理であり、処理SA300の詳細については後述する。 When the process proceeds to step S155, the control device 50 executes the process SA300 and proceeds to the process to step S160. The process of the process SA300 is a process of measuring the rotation speed (Ne [immediately after], see FIG. 12) immediately after the execution of the detection injection and detecting the cetane number, and the details of the process SA300 will be described later.
 ステップS160にて制御装置50は、検出用噴射実行フラグをOFFに設定し、アクチュエータ維持要求フラグをOFFに設定して(図12参照)、図8に示す処理を終了する。 In step S160, the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF (see FIG. 12), and ends the process shown in FIG.
 ステップS190に処理を進めた場合、制御装置50は、検出用噴射実行フラグをOFFに設定し、アクチュエータ維持要求フラグをOFFに設定して、図8に示す処理を終了する。 When the process proceeds to step S190, the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and ends the process shown in FIG.
●[処理SA100(図9)の処理手順]
 次に図9に示すフローチャートを用いて、図8に示すフローチャートにおけるステップS125の処理SA100の詳細について説明する。処理SA100は、ディーゼル機関の運転状態・環境状態に応じた検出用噴射Kinjの着火遅れ時間TDLYの算出、運転状態・環境状態に応じた検出用噴射Kinjの噴射量(噴射時間Tinj)の算出、噴射開始時刻と噴射終了時刻のタイマ設定、を行う処理である。制御装置50は、図8に示すステップS125にて処理SA100を実行する場合、図9に示すステップSA110に処理を進める。
● [Processing procedure of processing SA100 (FIG. 9)]
Next, the details of the process SA100 in step S125 in the flowchart shown in FIG. 8 will be described with reference to the flowchart shown in FIG. The processing SA100 calculates the ignition delay time T DLY of the detection injection Kinj according to the operating state / environmental state of the diesel engine, and calculates the injection amount (injection time Tinj) of the detection injection Kinj according to the operating state / environmental state. , This is a process for setting a timer for the injection start time and the injection end time. When the control device 50 executes the process SA100 in step S125 shown in FIG. 8, the control device 50 proceeds to the process SA110 shown in FIG.
 ステップSA110にて制御装置50は、ディーゼル機関の運転状態・環境状態に応じた着火遅れ時間TDLYを算出してステップSA120に処理を進める。なお、着火遅れ時間TDLYの算出方法については上述したとおりであるので説明を省略する。また着火遅れ時間TDLYは、検出用噴射Kinjの噴射時期に関連する噴射時期関連量に相当する。 In step SA110, the control device 50 calculates the ignition delay time T DLY according to the operating state and environmental state of the diesel engine, and proceeds to step SA120. Since the method of calculating the ignition delay time T DLY is as described above, the description thereof will be omitted. Further, the ignition delay time T DLY corresponds to an injection timing-related amount related to the injection timing of the detection injection Kinj.
 ステップSA110の処理を実行している制御装置50(CPU51)は、ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価範囲内のいずれのセタン価であっても、噴射された燃料が着火するクランク角度位置が、予め設定された所定クランク角度位置(この場合、(目標)着火時期=7[°CA])となるように、検出用噴射の噴射時期に関連する噴射時期関連量を算出する、検出用噴射時期関連量算出部51A(図1参照)に相当している。 The control device 50 (CPU51) executing the process of step SA110 has a cetane number within the cetane number range of the detection lower limit cetane number to the detection upper limit cetane number regardless of the operating state and the environmental state of the diesel engine. Also, at the injection timing of the detection injection, the crank angle position at which the injected fuel ignites becomes a preset predetermined crank angle position (in this case, (target) ignition timing = 7 [° CA]). It corresponds to the detection injection timing-related amount calculation unit 51A (see FIG. 1) that calculates the related injection timing-related amount.
 ステップSA120にて制御装置50は、基準セタン価Ss(例えば基準セタン価=54)の燃料、着火時期=θ(この場合、7[°CA])、現在のディーゼル機関の運転状態・環境状態に基づいて、基準トルク相当量TQsを発生させる燃料量Qを算出する。燃料量Qの算出方法については、上述したように既知の方法にて算出するので説明を省略する。そして制御装置50は、求めた燃料量Qを噴射時間Tinjに換算してステップSA130に処理を進める。また噴射時間Tinjは、検出用噴射Kinjの噴射量に相当する。 In step SA120, the control device 50 sets the fuel of the reference cetane number Ss (for example, the reference cetane number = 54), the ignition time = θ (7 [° CA] in this case), and the current operating state / environmental state of the diesel engine. Based on this, the fuel amount Q that generates the reference torque equivalent amount TQs is calculated. As for the calculation method of the fuel amount Q, since it is calculated by the known method as described above, the description thereof will be omitted. Then, the control device 50 converts the obtained fuel amount Q into the injection time Tinj and proceeds to the process in step SA130. The injection time Tinj corresponds to the injection amount of the detection injection Kinj.
 ステップSA120の処理を実行している制御装置50(CPU51)は、セタン価検出範囲内において予め設定された基準セタン価Ssの燃料の場合では、ディーゼル機関の運転状態及び環境状態にかかわらず検出用噴射による所定クランク角度位置(この場合、(目標)着火時期=7[°CA])での着火に続く燃焼によって発生するトルクに相当するトルク相当量が、予め設定された基準トルク相当量となるように(図7参照)、検出用噴射の噴射量を算出する、検出用噴射量算出部51B(図1参照)に相当している。 The control device 50 (CPU51) executing the process of step SA120 is for detecting the fuel having the reference cetane number Ss set in advance within the cetane number detection range, regardless of the operating state and the environmental state of the diesel engine. The torque equivalent amount corresponding to the torque generated by the combustion following the ignition at the predetermined crank angle position by injection (in this case, (target) ignition timing = 7 [° CA]) becomes the preset reference torque equivalent amount. As described above (see FIG. 7), it corresponds to the detection injection amount calculation unit 51B (see FIG. 1) that calculates the injection amount of the detection injection.
 ステップSA130にて制御装置50は、回転数の下降状態に基づいて次の15[°CA]の時間であるT(15)(図12参照)を予測する。また制御装置50は、T(15)に基づいて、着火時期=θ[°CA]である7[°CA]に相当する時間であるT(7)(図12参照)を予測して、ステップSA140に処理を進める。 In step SA130, the control device 50 predicts T (15) (see FIG. 12), which is the next 15 [° CA] time, based on the descending state of the rotation speed. Further, the control device 50 predicts T (7) (see FIG. 12), which is a time corresponding to 7 [° CA], which is ignition timing = θ [° CA], based on T (15), and steps. Proceed with processing to SA140.
 ステップSA140にて制御装置50は、図12に示すように、クランク角度カウンタの値が(00)のクランク角度信号が入力されてから着火時期=θ[°CA]で着火させるための検出用噴射Kinjの噴射開始時刻を、クランク角度カウンタの値が(47)のクランク角度信号が入力された時刻+T(15)+T(7)-TDLYにて求め、求めた噴射開始時刻を、噴射開始タイマに設定してステップSA150に処理を進める。 In step SA140, as shown in FIG. 12, the control device 50 is a detection injection for igniting at the ignition time = θ [° CA] after the crank angle signal whose crank angle counter value is (00) is input. The injection start time of Kinj is obtained by the time when the crank angle signal whose crank angle counter value is (47) is input + T (15) + T (7) -T DLY , and the obtained injection start time is obtained by the injection start timer. Is set to and the process proceeds to step SA150.
 ステップSA150にて制御装置50は、図12に示すように、検出用噴射Kinjの噴射終了時刻を、(噴射開始時刻)+噴射時間Tinjにて求め、求めた噴射終了時刻を、噴射終了タイマに設定して図9に示す処理を終了してリターンし、図8に示すステップS130に処理を進める。 In step SA150, as shown in FIG. 12, the control device 50 obtains the injection end time of the detection injection Kinj by (injection start time) + injection time Tinj, and sets the obtained injection end time in the injection end timer. The setting is made, the process shown in FIG. 9 is completed, the process returns, and the process proceeds to step S130 shown in FIG.
 ステップSA130~SA150の処理を実行している制御装置50(CPU51)は、検出可能期間の場合(検出用噴射の実行条件成立時(ステップS115))に、所定気筒に対して、検出用噴射量算出部51B(図1参照)にて算出した噴射量を、検出用噴射時期関連量算出部51A(図1参照)にて算出した噴射時期関連量(着火遅れ時間TDLY)に基づいた噴射時期にて噴射する検出用噴射Kinjを実行する、検出用噴射実行部51C(図1参照)に相当している。 The control device 50 (CPU51) executing the processes of steps SA130 to SA150 has a detection injection amount for a predetermined cylinder during the detectable period (when the execution condition for detection injection is satisfied (step S115)). The injection timing calculated by the calculation unit 51B (see FIG. 1) is based on the injection timing-related amount (ignition delay time T DLY ) calculated by the detection injection timing-related amount calculation unit 51A (see FIG. 1). Corresponds to the detection injection execution unit 51C (see FIG. 1) that executes the detection injection Kinj to be injected at.
 なお、本実施の形態では、図12に示すクランク角度カウンタの値が(47)のタイミングにて検出用噴射Kinjの噴射開始時刻及び噴射終了時刻を設定したが、クランク角度カウンタの値が(00)のタイミングにて検出用噴射Kinjの噴射開始時刻及び噴射終了時刻を設定するようにしてもよい。 In the present embodiment, the injection start time and the injection end time of the detection injection Kinj are set at the timing when the value of the crank angle counter shown in FIG. 12 is (47), but the value of the crank angle counter is (00). ), The injection start time and the injection end time of the detection injection Kinj may be set.
●[処理SA200(図10)の処理手順]
 次に図10に示すフローチャートを用いて、図8に示すフローチャートにおけるステップS145の処理SA200の詳細について説明する。処理SA200は、検出用噴射Kinjの直前の回転数であるNe[直前](図12参照)を計測する処理である。制御装置50は、図8に示すステップS145にて処理SA200を実行する場合、図10に示すステップSA210に処理を進める。
● [Processing procedure of processing SA200 (FIG. 10)]
Next, the details of the process SA200 in step S145 in the flowchart shown in FIG. 8 will be described with reference to the flowchart shown in FIG. The process SA200 is a process for measuring Ne [immediately before] (see FIG. 12), which is the rotation speed immediately before the detection injection Kinj. When the control device 50 executes the process SA200 in step S145 shown in FIG. 8, the control device 50 proceeds to the process SA210 shown in FIG.
 ステップSA210にて制御装置50は、(今回の)クランク角度カウンタの値が(00)のクランク角度信号が入力された時刻と、(前回の)クランク角度カウンタの値が(47)のクランク角度信号が入力された時刻と、の差(15[°CA]の時間)に基づいて、検出用噴射Kinjの直前の回転数であるNe[直前](図12参照)を算出(計測)して図10に示す処理を終了してリターンし、図8に示すステップS145の直後に処理を進め、図8に示す処理を終了する。 In step SA210, the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (00) is input and the crank angle signal whose (previous) crank angle counter value is (47). Ne [immediately before] (see FIG. 12), which is the rotation speed immediately before the detection injection Kinj, is calculated (measured) based on the difference (15 [° CA] time) from the time when is input. The process shown in FIG. 10 is completed and returned, the process is advanced immediately after step S145 shown in FIG. 8, and the process shown in FIG. 8 is completed.
●[処理SA300(図11)の処理手順]
 次に図11に示すフローチャートを用いて、図8に示すフローチャートにおけるステップS155の処理SA300の詳細について説明する。処理SA300は、検出用噴射Kinjの直後の回転数であるNe[直後](図12参照)を計測する処理と、セタン価を検出する処理である。制御装置50は、図8に示すステップS155にて処理SA300を実行する場合、図11に示すステップSA310に処理を進める。
● [Processing procedure of processing SA300 (FIG. 11)]
Next, the details of the process SA300 in step S155 in the flowchart shown in FIG. 8 will be described with reference to the flowchart shown in FIG. The process SA300 is a process of measuring Ne [immediately after] (see FIG. 12), which is the rotation speed immediately after the detection injection Kinj, and a process of detecting the cetane number. When the control device 50 executes the process SA300 in step S155 shown in FIG. 8, the control device 50 proceeds to the process SA310 shown in FIG.
 ステップSA310にて制御装置50は、(今回の)クランク角度カウンタの値が(03)のクランク角度信号が入力された時刻と、(前回の)クランク角度カウンタの値が(02)のクランク角度信号が入力された時刻と、の差(15[°CA]の時間)に基づいて、検出用噴射Kinjによって発生した燃焼の直後の回転数であるNe[直後](図12参照)を算出(計測)してステップSA320に処理を進める。 In step SA310, the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (03) is input and the crank angle signal whose (previous) crank angle counter value is (02). Based on the difference (15 [° CA] time) from the time when is input, Ne [immediately after] (see FIG. 12), which is the rotation speed immediately after the combustion generated by the detection injection Kinj, is calculated (measured). ) And proceed to step SA320.
 ステップSA320にて制御装置50は、検出用噴射Kinjの直後の回転数であるNe[直後]と、検出用噴射Kinjの直前の回転数であるNe[直前]と、の差であるΔN(図12参照)を求める。そして制御装置50、求めたΔNと、検出用噴射Kinjの直前の回転数であるNe[直前]と、に基づいてトルク相当量TQを算出し、ステップSA330に処理を進める。 In step SA320, the control device 50 is ΔN, which is the difference between Ne [immediately after], which is the rotation speed immediately after the detection injection Kinj, and Ne [immediately before], which is the rotation speed immediately before the detection injection Kinj. 12) is calculated. Then, the torque equivalent amount TQ is calculated based on the control device 50, the obtained ΔN, and Ne [immediately before], which is the rotation speed immediately before the detection injection Kinj, and the process proceeds to step SA330.
 ステップSA330にて制御装置50は、トルク相当量TQと、図7に示すセタン価・トルク相当量特性(θ)と、に基づいて、トルク相当量TQに対応するセタン価Sを算出(検出)して図11に示す処理を終了してリターンし、図8に示すステップS160に処理を進める。 In step SA330, the control device 50 calculates (detects) the cetane number S corresponding to the torque equivalent amount TQ based on the torque equivalent amount TQ and the cetane number / torque equivalent amount characteristic (θ) shown in FIG. Then, the process shown in FIG. 11 is completed and returned, and the process proceeds to step S160 shown in FIG.
 検出用噴射Kinjによるセタン価に応じたトルク相当量が設定されたセタン価・トルク相当量特性(θ)であって、基準セタン価Ssの燃料の検出用噴射の場合には基準トルク相当量TQs(θ)となるようにセタン価・トルク相当量特性(θ)(図7参照)は、記憶装置53に記憶されている。 Detection injection Kinj has a cetane number / torque equivalent characteristic (θ) in which a torque equivalent amount is set according to the cetane number, and in the case of fuel detection injection with a reference cetane number Ss, the reference torque equivalent amount TQs The cetane number / torque equivalent characteristic (θ) (see FIG. 7) is stored in the storage device 53 so as to be (θ).
 ステップSA330の処理を実行している制御装置50(CPU51)は、検出用噴射Kinjにて実際に発生したトルクに相当する実トルク相当量と、記憶装置に記憶されているセタン価・トルク相当量特性(θ)と、に基づいてセタン価を検出する、セタン価検出部51D(図1参照)に相当している。 The control device 50 (CPU51) executing the process of step SA330 has an actual torque equivalent amount corresponding to the torque actually generated by the detection injection Kinj, and a cetane number / torque equivalent amount stored in the storage device. It corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the cetane number based on the characteristic (θ).
 そして検出されたセタン価は、ディーゼル機関の通常の燃料噴射の噴射時期や噴射量の補正等に利用される。 Then, the detected cetane number is used to correct the injection timing and injection amount of the normal fuel injection of a diesel engine.
●[第2の実施の形態の燃料性状検出装置(制御装置50)の処理(図13~図19)]
 第1の実施の形態の図7に示すように、セタン価・トルク相当量特性(θ)は、トルク相当量に応じてセタン価を精度よく判別可能な「判別可能セタン価範囲(θ)」と、トルク相当量に応じてセタン価を判別するには適さない「判別不適切セタン価範囲(θ)」と、を有している。第1の実施の形態では、着火時期=θ[°CA](例えばθ[°CA]=7[°CA])のセタン価・トルク相当量特性(θ)の「判別可能セタン価範囲(θ)」が、要求されるセタン価検出範囲(検出下限セタン価SKL~検出上限セタン価SKH)をカバーできている例を示した。しかし、要求されるセタン価検出範囲が、さらに広い範囲である場合、1つのセタン価・トルク相当量特性の「判別可能セタン価範囲」ではカバーしきれない場合がある。
[Processing of the fuel property detection device (control device 50) of the second embodiment (FIGS. 13 to 19)]
As shown in FIG. 7 of the first embodiment, the cetane number / torque equivalent amount characteristic (θ) is a “discriminable cetane number range (θ)” capable of accurately discriminating the cetane number according to the torque equivalent amount. And, it has a "discrimination inappropriate cetane number range (θ)" which is not suitable for discriminating the cetane number according to the torque equivalent amount. In the first embodiment, the "discriminable cetane number range (θ)" of the cetane number / torque equivalent characteristic (θ) of ignition time = θ [° CA] (for example, θ [° CA] = 7 [° CA]) ) ”Shows an example in which the required cetane number detection range (detection lower limit cetane number SKL to detection upper limit cetane number SKH) can be covered. However, if the required cetane number detection range is a wider range, it may not be possible to cover the "discriminable cetane number range" of one cetane number / torque equivalent characteristic.
 そこで第2の実施の形態では、図13に示すように、要求されるセタン価検出範囲(検出下限セタン価SKL~検出上限セタン価SKH)が非常に広い場合、着火時期が異なる複数のセタン価・トルク相当量特性を用意する。それぞれのセタン価・トルク相当量特性は、それぞれの「判別可能セタン価範囲」を重畳させると、要求されるセタン価検出範囲をカバーできるように選定されている。 Therefore, in the second embodiment, as shown in FIG. 13, when the required cetane number detection range (detection lower limit cetane number SKL to detection upper limit cetane number SKH) is very wide, a plurality of cetane numbers having different ignition timings are used.・ Prepare torque equivalent characteristics. Each cetane number / torque equivalent characteristic is selected so as to cover the required cetane number detection range by superimposing each "discriminable cetane number range".
 図13の例では、要求されるセタン価検出範囲に対して、着火時期=θ[1][°CA]のセタン価・トルク相当量特性(θ[1])、着火時期=θ[2][°CA]のセタン価・トルク相当量特性(θ[2])、着火時期=θ[3][°CA]のセタン価・トルク相当量特性(θ[3])、着火時期=θ[4][°CA]のセタン価・トルク相当量特性(θ[4])、を用意した例を示している。第2の実施の形態の説明では、θ[1][°CA]=7[°CA]、θ[2][°CA]=9[°CA]、θ[3][°CA]=11[°CA]、θ[4][°CA]=13[°CA]に設定した例で説明するが、これらの着火時期に限定されるものではない。図13に示すように、「判別可能セタン価範囲(θ[1])」、「判別可能セタン価範囲(θ[2])」、「判別可能セタン価範囲(θ[3])」、「判別可能セタン価範囲(θ[4])」を重畳すれば、要求されるセタン価検出範囲をカバーできている。 In the example of FIG. 13, for the required cetane number detection range, the cetane number / torque equivalent characteristic (θ [1]) of ignition time = θ [1] [° CA], ignition time = θ [2]. [° CA] cetane number / torque equivalent characteristic (θ [2]), ignition timing = θ [3] [° CA] cetane number / torque equivalent characteristic (θ [3]), ignition timing = θ [ 4] An example in which the cetane number / torque equivalent characteristic (θ [4]) of [° CA] is prepared is shown. In the description of the second embodiment, θ [1] [° CA] = 7 [° CA], θ [2] [° CA] = 9 [° CA], θ [3] [° CA] = 11. The description will be given with an example in which [° CA] and θ [4] [° CA] = 13 [° CA], but the ignition timing is not limited to these. As shown in FIG. 13, "discriminable cetane number range (θ [1])", "discriminable cetane number range (θ [2])", "discriminable cetane number range (θ [3])", " By superimposing the "discriminable cetane number range (θ [4])", the required cetane number detection range can be covered.
 なお図13の例では、要求されるセタン価検出範囲に対して、4つのセタン価・トルク相当量特性を用意した(すなわち、4通りの着火時期を用意した)が、4つに限定されるものではなく、2以上の整数であればよい。つまり図13の例は、(目標)着火時期の数に相当する「n」を4に設定した例(n=4の例)を示している((目標)着火時期=7[°CA]、9[°CA]、11[°CA]、13[°CA]の4種類に設定した例を示している)。またセタン価を検出するための検出用噴射は、どの気筒に対して実行してもよいが、本実施形態では、第1の実施の形態と同様に、1番気筒に対して検出用噴射を実行する。言い換えると、第1検出用噴射~第4検出用噴射のそれぞれに対応する第1セタン価・トルク相当量特性~第4セタン価・トルク相当量特性は、セタン価の違いに対してトルク相当量の変化が小さい判別不適切セタン価範囲と、判別不適切セタン価範囲よりもセタン価の違いに対してトルク相当量の変化が大きい判別可能セタン価範囲と、を有している。そして、第1セタン価・トルク相当量特性~第4セタン価・トルク相当量特性は、第1セタン価・トルク相当量特性~第4セタン価・トルク相当量特性のそれぞれの判別可能セタン価範囲を重畳させると検出下限セタン価~検出上限セタン価をカバーできるように設定されている。 In the example of FIG. 13, four cetane number / torque equivalent characteristics are prepared (that is, four ignition timings are prepared) for the required cetane number detection range, but the number is limited to four. It may be an integer of 2 or more, not a thing. That is, the example of FIG. 13 shows an example (example of n = 4) in which "n" corresponding to the number of (target) ignition timings is set to 4 ((target) ignition timing = 7 [° CA], An example in which four types of 9 [° CA], 11 [° CA], and 13 [° CA] are set is shown). Further, the detection injection for detecting the cetane number may be executed for any cylinder, but in the present embodiment, the detection injection is performed for the first cylinder as in the first embodiment. Execute. In other words, the first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic corresponding to each of the first detection injection to the fourth detection injection are the torque equivalent with respect to the difference in cetane number. It has a discriminable cetane number range in which the change in the amount of torque is small and a discriminable cetane number range in which the change in the torque equivalent amount is larger than the discriminating inappropriate cetane number range. The first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic are in the distinguishable cetane value range of the first cetane number / torque equivalent characteristic to the fourth cetane number / torque equivalent characteristic. Is set so that the lower limit of detection cetane number to the upper limit of detection cetane number can be covered by superimposing.
 また、着火時期=θ[1]に対応する検出用噴射Kinj[1]は第1検出用噴射に相当し、着火時期=θ[n]に対応する検出用噴射Kinj[n]は第n検出用噴射に相当する。また「n」を2以上の整数とした場合に、検出用噴射Kinj[1]~検出用噴射Kinj[n]にて噴射された燃料が着火するクランク角度位置として、第1クランク角度位置~第nクランク角度位置が予め設定されている。この場合、第1クランク角度位置=7[°CA]、第2クランク角度位置=9[°CA]、第3クランク角度位置=11[°CA]、第4クランク角度位置=13[°CA]に設定されている。 Further, the detection injection Kinj [1] corresponding to the ignition timing = θ [1] corresponds to the first detection injection, and the detection injection Kinj [n] corresponding to the ignition timing = θ [n] is the nth detection. Corresponds to injection. Further, when "n" is an integer of 2 or more, the first crank angle position to the first crank angle position to ignite the fuel injected by the detection injection Kinj [1] to the detection injection Kinj [n]. n The crank angle position is preset. In this case, the first crank angle position = 7 [° CA], the second crank angle position = 9 [° CA], the third crank angle position = 11 [° CA], and the fourth crank angle position = 13 [° CA]. Is set to.
●[第2の実施の形態の処理手順(図14~図18)における、全体処理(図14)の処理手順]
 以下、図14~図18に示すフローチャートを用いて、制御装置50によるセタン価検出処理の第2の実施の形態の処理手順について説明する。なお、クランクシャフトが15[°CA]回転する毎に検出信号が出力され、1番気筒が圧縮上死点の位置の直前に気筒検出手段22Bから検出信号が出力される点、クランク角度カウンタの値を(00~47)にカウントする点等は、第1の実施の形態と同じである。なお、図14に示すフローチャートにおいて太い実線にて示すステップは、図8に示す第1の実施の形態のフローチャートとは異なる処理であることを示している。制御装置50(CPU51)は、例えば所定クランク角度毎(例えば15[°CA]毎)にて、図14に示す処理を起動し、ステップS210に処理を進める。
● [Processing procedure of overall processing (FIG. 14) in the processing procedure (FIGS. 14 to 18) of the second embodiment]
Hereinafter, the processing procedure of the second embodiment of the cetane number detection processing by the control device 50 will be described with reference to the flowcharts shown in FIGS. 14 to 18. A detection signal is output every time the crankshaft rotates by 15 [° CA], and a detection signal is output from the cylinder detecting means 22B immediately before the position of the compression top dead center of the first cylinder, that is, the crank angle counter. The point of counting the value to (00 to 47) is the same as that of the first embodiment. In the flowchart shown in FIG. 14, the step shown by the thick solid line indicates that the process is different from the flowchart of the first embodiment shown in FIG. The control device 50 (CPU 51) activates the process shown in FIG. 14 at, for example, every predetermined crank angle (for example, every 15 [° CA]), and proceeds to step S210.
 ステップS210にて制御装置50は、クランク角度カウンタの値(00~47(図12参照))を更新し、今回のクランク角度信号が入力された時刻を取得して、クランク角度カウンタの値(00~47)に対応させて記憶し、ステップS212に処理を進める。ステップS210の処理は、図8に示すステップS110の処理と同様であるので、詳細は省略する。 In step S210, the control device 50 updates the value of the crank angle counter (00 to 47 (see FIG. 12)), acquires the time when the current crank angle signal is input, and obtains the value of the crank angle counter (00). It is stored in correspondence with ~ 47), and the process proceeds to step S212. Since the process of step S210 is the same as the process of step S110 shown in FIG. 8, details will be omitted.
 ステップS212にて制御装置50は、(前回)始動時フラグ=ON、かつ、(今回)始動時フラグ=OFF、であるか否か、すなわち、始動時の状態から始動後の状態に遷移したか否かを判定し、始動時から始動後に遷移した場合(S212:Yes)はステップS213に処理を進め、そうでない場合(S212:No)はステップS215に処理を進める。 In step S212, whether the control device 50 has (previous) start-up flag = ON and (this time) start-up flag = OFF, that is, has transitioned from the start-up state to the start-up state. It is determined whether or not, and if the transition is made from the start time to the start time (S212: Yes), the process proceeds to step S213, and if not (S212: No), the process proceeds to step S215.
 ステップS213に処理を進めた場合、制御装置50は、始動後初期検出フラグをONに設定し、繰り返しカウンタiを1に初期化してステップS215に処理を進める。なお、始動後初期検出フラグは、まだセタン価の値が全く見当もつかない場合に、着火時期=θ[1]~θ[4]のそれぞれの検出用噴射Kinj[1]~Kinj[4]を一通り実行するためのフラグである(図19参照)。検出用噴射Kinj[1]~Kinj[4]を一通り実行すれば、セタン価の値が検出できるので、それ以降は、セタン価の値に応じた「判別可能セタン価範囲」のセタン価・トルク相当量特性に対応する着火時期の検出用噴射を行う。図19の例は、始動後初期検出フラグ=ONの場合に検出用噴射Kinj[1]~Kinj[4]を一通り実行してセタン価を検出(例えばセタン価が50~60の範囲の値であった場合)した後は、検出用噴射Kinj[2]と検出用噴射Kinj[3]を行う例を示している。 When the process proceeds to step S213, the control device 50 sets the initial detection flag to ON after starting, initializes the repeat counter i to 1, and proceeds to the process to step S215. The initial detection flag after starting sets the ignition timing = θ [1] to θ [4] for each detection injection Kinj [1] to Kinj [4] when the value of the cetane number is not yet known. It is a flag for executing all the steps (see FIG. 19). The cetane number value can be detected by executing the detection injection Kinj [1] to Kinj [4] all at once. After that, the cetane number in the "distinguishable cetane number range" according to the cetane number value Ignition timing detection injection corresponding to the torque equivalent characteristic is performed. In the example of FIG. 19, when the initial detection flag = ON after starting, the cetane number is detected by executing the detection injection Kinj [1] to Kinj [4] (for example, the value in the range of 50 to 60). After that, an example of performing the detection injection Kinj [2] and the detection injection Kinj [3] is shown.
 ステップS215に処理を進めた場合、制御装置50は、検出用噴射の実行条件が成立しているか否かを判定し、成立している場合(S215:Yes)はステップS220に処理を進め、成立していない場合(S215:No)はステップS290に処理を進める。ステップS215の処理は、図8に示すステップS115の処理と同様であるので、詳細は省略する。 When the process proceeds to step S215, the control device 50 determines whether or not the execution condition of the detection injection is satisfied, and if it is satisfied (S215: Yes), the process proceeds to step S220 and is satisfied. If not (S215: No), the process proceeds to step S290. Since the process of step S215 is the same as the process of step S115 shown in FIG. 8, the details will be omitted.
 ステップS220に処理を進めた場合、制御装置50は、今回のクランク角度カウンタの値が(47)であるか否かを判定し、クランク角度カウンタの値が(47)である場合(S220:Yes)はステップS225に処理を進め、クランク角度カウンタの値が(47)でない場合(S220:No)はステップS235に処理を進める。 When the process proceeds to step S220, the control device 50 determines whether or not the value of the crank angle counter this time is (47), and when the value of the crank angle counter is (47) (S220: Yes). ) Proceeds to step S225, and if the value of the crank angle counter is not (47) (S220: No), the process proceeds to step S235.
 ステップS225に処理を進めた場合、制御装置50は、処理SB100を実行してステップS230に処理を進める。なお、処理SB100の処理は、検出用噴射Kinj[i]の着火遅れ時間と噴射量を算出する処理と、検出用噴射Kinj[i]を実行するべき1番気筒のインジェクタに対して、噴射開始時刻と噴射終了時刻を求めてタイマに設定する処理であり、処理SB100の詳細については後述する。 When the process proceeds to step S225, the control device 50 executes the process SB100 and proceeds to the process to step S230. In the process SB100, the process of calculating the ignition delay time and the injection amount of the detection injection Kinj [i] and the injection start for the injector of the first cylinder to execute the detection injection Kinj [i]. This is a process of obtaining the time and the injection end time and setting the timer, and the details of the process SB100 will be described later.
 ステップS230にて制御装置50は、検出用噴射実行フラグをONに設定し、アクチュエータ維持要求フラグをONに設定してステップS235に処理を進める。ステップS230の処理は、図8に示すステップS130の処理と同様であるので、詳細は省略する。 In step S230, the control device 50 sets the detection injection execution flag to ON, sets the actuator maintenance request flag to ON, and proceeds to step S235. Since the process of step S230 is the same as the process of step S130 shown in FIG. 8, the details will be omitted.
 ステップS235に処理を進めた場合、制御装置50は検出用噴射実行フラグがONであるか否かを判定し、ONである場合(S235:Yes)はステップS240に処理を進め、OFFである場合(S235:No)は、図14に示す処理を終了する。 When the process proceeds to step S235, the control device 50 determines whether or not the detection injection execution flag is ON, and when it is ON (S235: Yes), the process proceeds to step S240, and when it is OFF. (S235: No) ends the process shown in FIG.
 ステップS240に処理を進めた場合、制御装置50は今回のクランク角度カウンタの値が(00)であるか否かを判定し、今回のクランク角度カウンタの値が(00)である場合(S240:Yes)はステップS245に処理を進め、今回のクランク角度カウンタの値が(00)でない場合(S240:No)はステップS250に処理を進める。 When the process proceeds to step S240, the control device 50 determines whether or not the value of the crank angle counter this time is (00), and when the value of the crank angle counter this time is (00) (S240: Yes) proceeds to step S245, and if the value of the crank angle counter this time is not (00) (S240: No), the process proceeds to step S250.
 ステップS245に処理を進めた場合、制御装置50は、処理SB200を実行して、図14に示す処理を終了する。なお、処理SB200の処理は、検出用噴射Kinj[i]を実行する直前の回転数(Ne[i][直前])を計測する処理であり、処理SB200の詳細については後述する。 When the process proceeds to step S245, the control device 50 executes the process SB200 and ends the process shown in FIG. The process of the process SB200 is a process of measuring the rotation speed (Ne [i] [immediately before]) immediately before executing the detection injection Kinj [i], and the details of the process SB200 will be described later.
 ステップS250に処理を進めた場合、制御装置50は今回のクランク角度カウンタの値が(03)であるか否かを判定し、今回のクランク角度カウンタの値が(03)である場合(S250:Yes)はステップS255に処理を進め、今回のクランク角度カウンタの値が(03)でない場合(S250:No)は、図14に示す処理を終了する。 When the process proceeds to step S250, the control device 50 determines whether or not the value of the crank angle counter this time is (03), and when the value of the crank angle counter this time is (03) (S250: Yes) proceeds to step S255, and if the value of the crank angle counter this time is not (03) (S250: No), the process shown in FIG. 14 ends.
 ステップS255に処理を進めた場合、制御装置50は、処理SB300を実行してステップS260に処理を進める。なお、処理SB300の処理は、検出用噴射Kinj[i]の実行の直後の回転数(Ne[i][直後])の計測と、(仮)セタン価S[i]を検出する処理であり、処理SB300の詳細については後述する。 When the process proceeds to step S255, the control device 50 executes the process SB300 and proceeds to the process to step S260. The process SB300 is a process of measuring the rotation speed (Ne [i] [immediately after]) immediately after the execution of the detection injection Kinj [i] and detecting the (provisional) cetane number S [i]. , The details of the processing SB300 will be described later.
 ステップS260にて制御装置50は、検出用噴射実行フラグをOFFに設定し、アクチュエータ維持要求フラグをOFFに設定してステップS265に処理を進める。 In step S260, the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and proceeds to step S265.
 ステップS265にて制御装置50は、処理SB400を実行して、図14に示す処理を終了する。なお、処理SB400の処理は、検出用噴射Kinj[i]によって検出した各(仮)セタン価S[i]から(最終)セタン価Sを求める処理であり、処理SB400の詳細については後述する。 In step S265, the control device 50 executes the process SB400 and ends the process shown in FIG. The process of the process SB400 is a process of obtaining the (final) cetane number S from each (provisional) cetane number S [i] detected by the detection injection Kinj [i], and the details of the process SB400 will be described later.
 ステップS290に処理を進めた場合、制御装置50は、検出用噴射実行フラグをOFFに設定し、アクチュエータ維持要求フラグをOFFに設定して、図14に示す処理を終了する。 When the process proceeds to step S290, the control device 50 sets the detection injection execution flag to OFF, sets the actuator maintenance request flag to OFF, and ends the process shown in FIG.
●[処理SB100(図15)の処理手順]
 次に図15に示すフローチャートを用いて、図14に示すフローチャートにおけるステップS225の処理SB100の詳細について説明する。処理SB100は、ディーゼル機関の運転状態・環境状態に応じた検出用噴射Kinj[i]の着火遅れ時間TDLY[i]の算出、運転状態・環境状態に応じた検出用噴射Kinj[i]の噴射量(噴射時間Tinj[i])の算出、噴射開始時刻と噴射終了時刻のタイマ設定、を行う処理である。
● [Processing procedure of processing SB100 (FIG. 15)]
Next, the details of the process SB100 in step S225 in the flowchart shown in FIG. 14 will be described with reference to the flowchart shown in FIG. The processing SB100 calculates the ignition delay time T DLY [i] of the detection injection Kinj [i] according to the operating state / environmental state of the diesel engine, and the detection injection Kinj [i] according to the operating state / environmental state. This is a process for calculating the injection amount (injection time Tinj [i]) and setting the timer for the injection start time and the injection end time.
 なお、繰り返しカウンタi=1の場合では、着火遅れ時間TDLY[1]及び噴射時間Tinj[1]を用いた、着火時期=θ[1][°CA](この場合、7[°CA])の検出用噴射Kinj[1]を実行し、求めたトルク相当量TQ(θ[1])とセタン価トルク相当量特性(θ[1])を用いて、(仮)セタン価S[1]を求める。同様に、繰り返しカウンタi=2の場合では、着火遅れ時間TDLY[2]及び噴射時間Tinj[2]を用いた、着火時期=θ[2][°CA](この場合、9[°CA])の検出用噴射Kinj[2]を実行し、求めたトルク相当量TQ(θ[2])とセタン価トルク相当量特性(θ[2])を用いて、(仮)セタン価S[2]を求める。 In the case of the repetition counter i = 1, the ignition time = θ [1] [° CA] (in this case, 7 [° CA]) using the ignition delay time T DLY [1] and the injection time Tinj [1]. ) Is executed, and the (provisional) cetane number S [1] is used by using the obtained torque equivalent TQ (θ [1]) and the cetane number torque equivalent characteristic (θ [1]). ] Is asked. Similarly, when the repetition counter i = 2, the ignition delay time T DLY [2] and the injection time Tinj [2] are used, and the ignition time = θ [2] [° CA] (in this case, 9 [° CA]. ]) Detection injection Kinj [2] is executed, and the (provisional) cetane number S [2] is used by using the obtained torque equivalent amount TQ (θ [2]) and the cetane number torque equivalent amount characteristic (θ [2]). 2] is calculated.
 制御装置50は、図14に示すステップS225にて処理SB100を実行する場合、図15に示すステップSB110に処理を進める。 When the control device 50 executes the process SB100 in step S225 shown in FIG. 14, the control device 50 proceeds to the process SB110 shown in FIG.
 ステップSB110にて制御装置50は、ディーゼル機関の運転状態・環境状態に応じた着火遅れ時間TDLY[i]を算出してステップSB120に処理を進める。なお、着火遅れ時間TDLY[i]の算出方法については上述したとおりであるので説明を省略する。また着火遅れ時間TDLY[i]は、検出用噴射Kinj[i]の噴射時期に関連する噴射時期関連量に相当する。 In step SB110, the control device 50 calculates the ignition delay time T DLY [i] according to the operating state and environmental state of the diesel engine, and proceeds to the process in step SB120. Since the method of calculating the ignition delay time T DLY [i] is as described above, the description thereof will be omitted. Further, the ignition delay time T DLY [i] corresponds to an injection timing-related amount related to the injection timing of the detection injection Kinj [i].
 SB110の処理を実行している制御装置50(CPU51)は、ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価検出範囲内のいずれのセタン価であっても、検出用噴射にて噴射された燃料が着火するクランク角度位置が、予め設定された第1クランク角度位置~第nクランク角度位置のそれぞれとなるように、検出用噴射である第1検出用噴射(検出用噴射Kinj[1])~第n検出用噴射(検出用噴射Kinj[n])の噴射時期に関連する噴射時期関連量(この場合、着火遅れ時間TDLY[i])を算出する、検出用噴射時期関連量算出部51A(図1参照)に相当している。 The control device 50 (CPU51) executing the processing of the SB 110 has a cetane number within the cetane number detection range of the lower detection lower limit cetane number to the upper limit cetane number detection regardless of the operating state and environmental state of the diesel engine. Also, for the first detection, which is the injection for detection, the crank angle positions where the fuel injected by the injection for detection ignites are the preset first crank angle positions to the nth crank angle positions, respectively. Calculate the injection timing-related amount (in this case, the ignition delay time T DLY [i]) related to the injection timing of the injection (detection injection Kinj [1]) to the nth detection injection (detection injection Kinj [n]). Corresponds to the detection injection timing-related amount calculation unit 51A (see FIG. 1).
 ステップSB120にて制御装置50は、基準セタン価Ss(例えば基準セタン価=54)の燃料、着火時期=θ[i](i=1の場合、θ[1]=7[°CA])、現在のディーゼル機関の運転状態・環境状態に基づいて、基準トルク相当量TQs(θ[i])を発生させる燃料量Q[i]を算出する。そして制御装置50は、求めた燃料量Q[i]を噴射時間Tinj[i]に換算してステップSB130に処理を進める。また噴射時間Tinj[i]は、検出用噴射Kinj[i]の噴射量に相当する。 In step SB120, the control device 50 uses fuel having a reference cetane number Ss (for example, reference cetane number = 54), ignition time = θ [i] (in the case of i = 1, θ [1] = 7 [° CA]). Based on the current operating condition and environmental condition of the diesel engine, the fuel amount Q [i] that generates the reference torque equivalent amount TQs (θ [i]) is calculated. Then, the control device 50 converts the obtained fuel amount Q [i] into the injection time Tinj [i] and proceeds to the process in step SB130. The injection time Tinj [i] corresponds to the injection amount of the detection injection Kinj [i].
 ステップSB120の処理を実行している制御装置50(CPU51)は、セタン価検出範囲内において予め設定された基準セタン価Ssの燃料の場合では、ディーゼル機関の運転状態及び環境状態にかかわらず第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])のそれぞれによる第1クランク角度位置(θ[1])~第nクランク角度位置(θ[n])での着火に続く燃焼によって発生するトルクに相当する前記基準トルク相当量TQs[i]が予め設定された第1基準トルク相当量(TQs[1])~第n基準トルク相当量(TQs[n])となるように、第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])の噴射量を算出する、検出用噴射量算出部51Bに相当している。 In the case of fuel having a reference cetane number Ss set in advance within the cetane number detection range, the control device 50 (CPU51) executing the process of step SB120 is the first regardless of the operating state and the environmental state of the diesel engine. Ignition at the first crank angle position (θ [1]) to the nth crank angle position (θ [n]) by each of the detection injection (Kinj [1]) to the nth detection injection (Kinj [n]). The reference torque equivalent amount TQs [i] corresponding to the torque generated by the subsequent combustion is the preset first reference torque equivalent amount (TQs [1]) to the nth reference torque equivalent amount (TQs [n]). As such, it corresponds to the detection injection amount calculation unit 51B that calculates the injection amount of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]).
 ステップSB130にて制御装置50は、回転数の下降状態に基づいて次の15[°CA]の時間であるT(15)を予測する。また制御装置50は、T(15)に基づいて、着火時期=θ[i][°CA](i=1の場合、θ[1]=7[°CA])に相当する時間であるT(θ[i])を予測して、ステップSB140に処理を進める。 In step SB130, the control device 50 predicts T (15), which is the next 15 [° CA] time, based on the descending state of the rotation speed. Further, the control device 50 is a time corresponding to ignition timing = θ [i] [° CA] (in the case of i = 1, θ [1] = 7 [° CA]) based on T (15). (Θ [i]) is predicted, and the process proceeds to step SB140.
 ステップSB140にて制御装置50は、クランク角度カウンタの値が(00)のクランク角度信号が入力されてから着火時期=θ[i][°CA]で着火させるための検出用噴射Kinj[i]の噴射開始時刻を、クランク角度カウンタの値が(47)のクランク角度信号が入力された時刻+T(15)+T(θ[i])-TDLY[i]にて求め、求めた噴射開始時刻を、噴射開始タイマに設定してステップSB150に処理を進める。 In step SB140, the control device 50 has a detection injection Kinj [i] for igniting at the ignition time = θ [i] [° CA] after the crank angle signal whose crank angle counter value is (00) is input. The injection start time of is obtained by the time when the crank angle signal whose crank angle counter value is (47) is input + T (15) + T (θ [i])-T DLY [i], and the obtained injection start time is obtained. Is set in the injection start timer and the process proceeds to step SB150.
 ステップSB150にて制御装置50は、検出用噴射Kinj[i]の噴射終了時刻を、(噴射開始時刻)+噴射時間Tinj[i]にて求め、求めた噴射終了時刻を、噴射終了タイマに設定して図15に示す処理を終了してリターンし、図14に示すステップS230に処理を進める。 In step SB150, the control device 50 obtains the injection end time of the detection injection Kinj [i] by (injection start time) + injection time Tinj [i], and sets the obtained injection end time in the injection end timer. Then, the process shown in FIG. 15 is completed and returned, and the process proceeds to step S230 shown in FIG.
 ステップSB130~SB150の処理を実行している制御装置50(CPU51)は、検出可能期間の場合(検出用噴射の実行条件成立時(ステップS215))に、所定気筒に対して、検出用噴射量算出部51B(図1参照)にて算出したそれぞれの噴射量を、検出用噴射時期関連量算出部51A(図1参照)にて算出した噴射時期関連量(着火遅れ時間TDLY[i])に基づいた噴射時期にて噴射する第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])を実行する、検出用噴射実行部51C(図1参照)に相当している。 The control device 50 (CPU51) executing the processes of steps SB130 to SB150 has a detection injection amount for a predetermined cylinder during the detectable period (when the execution condition for detection injection is satisfied (step S215)). Each injection amount calculated by the calculation unit 51B (see FIG. 1) is the injection timing-related amount calculated by the detection injection timing-related amount calculation unit 51A (see FIG. 1) (ignition delay time T DLY [i]). Corresponds to the detection injection execution unit 51C (see FIG. 1) that executes the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]) to be injected at the injection timing based on the above. ing.
 なお、本実施の形態では、クランク角度カウンタの値が(47)のタイミングにて検出用噴射Kinj[i]の噴射開始時刻及び噴射終了時刻を設定したが、クランク角度カウンタの値が(00)のタイミングにて検出用噴射Kinj[i]の噴射開始時刻及び噴射終了時刻を設定するようにしてもよい。 In the present embodiment, the injection start time and the injection end time of the detection injection Kinj [i] are set at the timing when the value of the crank angle counter is (47), but the value of the crank angle counter is (00). The injection start time and the injection end time of the detection injection Kinj [i] may be set at the timing of.
●[処理SB200(図16)の処理手順]
 次に図16に示すフローチャートを用いて、図14に示すフローチャートにおけるステップS245の処理SB200の詳細について説明する。処理SB200は、検出用噴射Kinj[i]の直前の回転数であるNe[i][直前]を計測する処理である。制御装置50は、図14に示すステップS245にて処理SB200を実行する場合、図16に示すステップSB210に処理を進める。
● [Processing procedure of processing SB200 (FIG. 16)]
Next, the details of the processing SB200 in step S245 in the flowchart shown in FIG. 14 will be described with reference to the flowchart shown in FIG. The process SB200 is a process for measuring Ne [i] [immediately before], which is the rotation speed immediately before the detection injection Kinj [i]. When the control device 50 executes the process SB200 in step S245 shown in FIG. 14, the control device 50 proceeds to the process SB210 shown in FIG.
 ステップSB210にて制御装置50は、(今回の)クランク角度カウンタの値が(00)のクランク角度信号が入力された時刻と、(前回の)クランク角度カウンタの値が(47)のクランク角度信号が入力された時刻と、の差(15[°CA]の時間)に基づいて、検出用噴射Kinj[i]の直前の回転数であるNe[i][直前]を算出(計測)して図16に示す処理を終了してリターンし、図14に示すステップS245の直後に処理を進め、図14に示す処理を終了する。 In step SB210, the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (00) is input and the crank angle signal whose (previous) crank angle counter value is (47). Ne [i] [immediately before], which is the number of revolutions immediately before the detection injection Kinj [i], is calculated (measured) based on the difference (15 [° CA] time) from the time when is input. The process shown in FIG. 16 is completed and returned, the process is advanced immediately after step S245 shown in FIG. 14, and the process shown in FIG. 14 is completed.
●[処理SB300(図17)の処理手順]
 次に図17に示すフローチャートを用いて、図14に示すフローチャートにおけるステップS255の処理SB300の詳細について説明する。処理SB300は、検出用噴射Kinj[i]の直後の回転数であるNe[i][直後]を計測する処理と、(仮)セタン価S[i]を検出する処理である。制御装置50は、図14に示すステップS255にて処理SB300を実行する場合、図17に示すステップSB310に処理を進める。
● [Processing procedure of processing SB300 (FIG. 17)]
Next, the details of the process SB300 in step S255 in the flowchart shown in FIG. 14 will be described with reference to the flowchart shown in FIG. The process SB300 is a process of measuring Ne [i] [immediately after], which is the rotation speed immediately after the detection injection Kinj [i], and a process of detecting the (provisional) cetane number S [i]. When the control device 50 executes the process SB300 in step S255 shown in FIG. 14, the control device 50 proceeds to the process SB310 shown in FIG.
 ステップSB310にて制御装置50は、(今回の)クランク角度カウンタの値が(03)のクランク角度信号が入力された時刻と、(前回の)クランク角度カウンタの値が(02)のクランク角度信号が入力された時刻と、の差(15[°CA]の時間)に基づいて、検出用噴射Kinj[i]によって発生した燃焼の直後の回転数であるNe[i][直後]を算出(計測)してステップSB320に処理を進める。 In step SB310, the control device 50 receives the time when the crank angle signal whose (current) crank angle counter value is (03) is input and the crank angle signal whose (previous) crank angle counter value is (02). Ne [i] [immediately after], which is the number of revolutions immediately after the combustion generated by the detection injection Kinj [i], is calculated based on the difference (15 [° CA] time) from the time when is input ( (Measurement) and proceed to step SB320.
 ステップSA320にて制御装置50は、検出用噴射Kinj[i]の直後の回転数であるNe[i][直後]と、検出用噴射Kinj[i]の直前の回転数であるNe[i][直前]と、の差であるΔN[i]を求める。そして制御装置50、求めたΔN[i]と、検出用噴射Kinj[i]の直前の回転数であるNe[i][直前]と、に基づいてトルク相当量TQ(θ[i])を算出し、ステップSB330に処理を進める。 In step SA320, the control device 50 has Ne [i] [immediately after] which is the rotation speed immediately after the detection injection Kinj [i] and Ne [i] which is the rotation speed immediately before the detection injection Kinj [i]. Find ΔN [i], which is the difference between [immediately before] and. Then, the torque equivalent amount TQ (θ [i]) is calculated based on the control device 50, the obtained ΔN [i], and the Ne [i] [immediately before] which is the rotation speed immediately before the detection injection Kinj [i]. Calculate and proceed to step SB330.
 ステップSB330にて制御装置50は、トルク相当量TQ(θ[i])と、図13に示すセタン価・トルク相当量特性(θ[i])と、に基づいて、トルク相当量TQ(θ[i])に対応する(仮)セタン価S[i]を算出(検出)して図17に示す処理を終了してリターンし、図14に示すステップS260に処理を進める。 In step SB330, the control device 50 determines the torque equivalent amount TQ (θ [i]) based on the torque equivalent amount TQ (θ [i]) and the cetane number / torque equivalent amount characteristic (θ [i]) shown in FIG. The (provisional) cetane number S [i] corresponding to [i]) is calculated (detected), the process shown in FIG. 17 is completed and returned, and the process proceeds to step S260 shown in FIG.
 第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])のそれぞれによるセタン価に応じたトルク相当量が設定された第1セタン価・トルク相当量特性(θ[1])~第nセタン価・トルク相当量特性(θ[n])であって、基準セタン価Ssの燃料の第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])の場合には第1基準トルク相当量(TQs[1])~第nトルク相当量(TQs[n])となるように設定された第1セタン価・トルク相当量特性(θ[1])~第nセタン価・トルク相当量特性(θ[n])(図13参照)は、記憶装置53に記憶されている。 The first cetane number / torque equivalent characteristic (θ [2], in which the torque equivalent amount is set according to the cetane number by each of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]). 1]) to nth cetane number / torque equivalent characteristic (θ [n]), first detection injection (Kinj [1]) to nth detection injection (Kinj [1]) of fuel with reference cetane number Ss. In the case of (n]), the first cetane number / torque equivalent characteristic (θ [θ [n]) is set to be the first reference torque equivalent (TQs [1]) to the nth torque equivalent (TQs [n]). 1]) to the nth cetane number / torque equivalent characteristic (θ [n]) (see FIG. 13) are stored in the storage device 53.
 ステップSB330の処理を実行している制御装置50(CPU51)は、第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])のそれぞれにて実際に発生したトルクに相当する第1実トルク相当量~第n実トルク相当量と、第1セタン価・トルク相当量特性(θ[1])~第nセタン価・トルク相当量特性(θ[n])のそれぞれと、に基づいて(仮)セタン価S[i]を検出する、セタン価検出部51D(図1参照)に相当している。 The control device 50 (CPU51) executing the process of step SB330 applies the torque actually generated in each of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]). Corresponding 1st actual torque equivalent to nth actual torque equivalent and 1st cetane number / torque equivalent characteristic (θ [1]) to nth cetane number / torque equivalent characteristic (θ [n]) Corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the (provisional) cetane number S [i] based on.
●[処理SB400(図18)の処理手順]
 次に図18に示すフローチャートを用いて、図14に示すフローチャートにおけるステップS265の処理SB400の詳細について説明する。処理SB400は、(仮)セタン価S[i]に基づいて(最終)セタン価Sを検出する処理である。制御装置50は、図14に示すステップS265にて処理SB400を実行する場合、図18に示すステップSB410に処理を進める。
● [Processing procedure of processing SB400 (FIG. 18)]
Next, the details of the process SB400 in step S265 in the flowchart shown in FIG. 14 will be described with reference to the flowchart shown in FIG. The process SB400 is a process for detecting the (final) cetane number S based on the (provisional) cetane number S [i]. When the control device 50 executes the process SB400 in step S265 shown in FIG. 14, the control device 50 proceeds to the process SB410 shown in FIG.
 ステップSB410にて制御装置50は、始動後初期検出フラグがONであるか否かを判定し、ONである場合(SB410:Yes)はステップSB415に処理を進め、ONでない場合(SB410:No)はステップSB465に処理を進める。 In step SB410, the control device 50 determines whether or not the initial detection flag is ON after starting, and if it is ON (SB410: Yes), the process proceeds to step SB415, and if it is not ON (SB410: No). Proceeds to step SB465.
 ステップSB415に処理を進めた場合、繰り返しカウンタiの値を+1だけカウントアップしてステップSB420に処理を進める(次の検出用噴射Kinj[i]の準備をする)。 When the process proceeds to step SB415, the value of the repeat counter i is counted up by +1 and the process proceeds to step SB420 (preparation for the next detection injection Kinj [i]).
 ステップSB420にて制御装置50は、カウントアップした繰り返しカウンタiが、「n」に設定されている値よりも大きいか否かを判定し、nよりも大きい場合(SB420:Yes)はステップSB425に処理を進め、n以下である場合(SB420:No)は図18に示す処理を終了してリターンして図14に示すステップS265の下に戻り、図14に示す処理を終了する。なお「n」の値は、図13に示すセタン価・トルク相当量特性の数(すなわち、用意した着火時期の数)であり、図13の例では「n=4」である。図13の例では、着火時期=θ[1]~θ[4](着火時期=7[°CA]、9[°CA]、11[°CA]、13[°CA])の4つを用意しているので「n=4」である。 In step SB420, the control device 50 determines whether or not the count-up repetition counter i is larger than the value set in "n", and if it is larger than n (SB420: Yes), the step SB425 is performed. When the process is advanced and the value is n or less (SB420: No), the process shown in FIG. 18 is completed and returned, the process returns to the bottom of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed. The value of "n" is the number of cetane number / torque equivalent characteristics shown in FIG. 13 (that is, the number of prepared ignition timings), and is "n = 4" in the example of FIG. In the example of FIG. 13, the ignition timing = θ [1] to θ [4] (ignition timing = 7 [° CA], 9 [° CA], 11 [° CA], 13 [° CA]) are set. Since it is prepared, it is "n = 4".
 図19に示すように、制御装置50は、始動後初期検出フラグがONであるセタン価初期検出期間では、用意したすべての着火時期=θ[1]~θ[n]のそれぞれに対応する検出用噴射Kinj[1]~Kinj[n](この場合、n=4)を順番に実行し、それぞれの検出用噴射Kinj[i]に対応する(仮)セタン価S[i]を検出する。 As shown in FIG. 19, the control device 50 detects all the prepared ignition timings = θ [1] to θ [n] in the cetane number initial detection period when the initial detection flag is ON after starting. For injection Kinj [1] to Kinj [n] (in this case, n = 4) are executed in order, and the (provisional) cetane number S [i] corresponding to each detection injection Kinj [i] is detected.
 ステップSB425に処理を進めた場合、始動後初期検出フラグがONであるセタン価初期検出期間にて検出用噴射Kinj[1]~Kinj[n]を一通り実行して、(仮)セタン価S[1]~S[n]を検出済みである。よって、制御装置50は、(仮)セタン価S[1]~S[n]に基づいて(最終)セタン価Sを検出(算出)する。 When the process proceeds to step SB425, the detection injections Kinj [1] to Kinj [n] are executed in the initial detection period of the cetane number in which the initial detection flag is ON after the start, and the (provisional) cetane number S is executed. [1] to S [n] have been detected. Therefore, the control device 50 detects (calculates) the (final) cetane number S based on the (provisional) cetane numbers S [1] to S [n].
 本実施の形態では、ディーゼル機関の始動の後(ステップS212にて判定)の所定期間となるセタン価初期検出期間(この場合、始動初期検出フラグ=ONの期間)にて、一通りの検出用噴射Kinj[1]~Kinj[n]の実行を1回のみ行う例を説明したが、より高い精度でセタン価を検出するために、一通りの検出用噴射Kinj[1]~Kinj[n]の実行を、2回以上行ってもよい。つまり、始動後初期検出フラグがONであるセタン価初期検出期間で検出用噴射実行部51Cにて一通りの検出用噴射Kinj[1]~Kinj[n]を、少なくとも1回実行して、セタン価検出部51Dにてセタン価を検出する。また、本実施の形態の説明では、ステップS212にて、始動時フラグがONからOFFに遷移した場合(始動時から始動後に遷移した場合)に始動後初期検出フラグをONに設定したが、この代わりに、図示省略した燃料量レベルセンサ等からの検出信号に基づいて燃料が補給されたことを検出した場合(ディーゼル機関への燃料の補給後であることを検出した場合)に始動後初期検出フラグをONに設定するようにしてもよい。 In the present embodiment, in the cetane number initial detection period (in this case, the start initial detection flag = ON period), which is a predetermined period after the start of the diesel engine (determined in step S212), a general detection is performed. An example in which the injection Kinj [1] to Kinj [n] is executed only once has been described, but in order to detect the cetane number with higher accuracy, a general detection injection Kinj [1] to Kinj [n] has been described. May be executed more than once. That is, during the cetane number initial detection period in which the initial detection flag is ON after starting, the detection injection execution unit 51C executes a series of detection injections Kinj [1] to Kinj [n] at least once to setan. The cetane number is detected by the value detection unit 51D. Further, in the description of the present embodiment, in step S212, when the start-up flag transitions from ON to OFF (when the transition occurs from start-up to post-startup), the post-startup initial detection flag is set to ON. Instead, when it is detected that the fuel has been replenished based on the detection signal from the fuel amount level sensor or the like (not shown) (when it is detected that the diesel engine has been refueled), the initial detection after the start is performed. The flag may be set to ON.
 例えば制御装置50は、(仮)セタン価S[1]~(仮)セタン価S[n]の平均を(最終)セタン価Sとする。なお、例えば図13の例の場合、セタン価<50の場合では、着火時期=θ[4]の検出用噴射Kinj[4]、かつ、セタン価・トルク相当量特性(θ[4])を用いて検出した(仮)セタン価S[4]は誤差が大きく、着火時期=θ[1]の検出用噴射Kinj[1]、かつ、セタン価・トルク相当量特性(θ[1])を用いて検出した(仮)セタン価S[1]は誤差が非常に小さいことがわかっている。従って、(仮)セタン価S[1]<50の場合には、(仮)セタン価S[4]を切り捨て、(仮)セタン価S[1]~(仮)セタン価[3]の平均を(最終)セタン価Sとするようにしてもよい。同様に、例えば図13の例の場合、セタン価>60の場合では、着火時期=θ[1]の検出用噴射Kinj[1]、かつ、セタン価・トルク相当量特性(θ[1])を用いて検出した(仮)セタン価S[1]は誤差が大きく、着火時期=θ[4]の検出用噴射Kinj[4]、かつ、セタン価・トルク相当量特性(θ[4])を用いて検出した(仮)セタン価S[4]は誤差が非常に小さいことがわかっている。従って、(仮)セタン価S[4]>60の場合には、(仮)セタン価S[1]を切り捨て、(仮)セタン価S[2]~(仮)セタン価[4]の平均を(最終)セタン価Sとするようにしてもよい。 For example, in the control device 50, the average of (provisional) cetane number S [1] to (provisional) cetane number S [n] is defined as the (final) cetane number S. For example, in the case of FIG. 13, when the cetane number <50, the ignition timing = θ [4] detection injection Kinj [4] and the cetane number / torque equivalent characteristic (θ [4]) are set. The (provisional) cetane number S [4] detected using the method has a large error, and the detection injection Kinj [1] of ignition time = θ [1] and the cetane number / torque equivalent characteristic (θ [1]) are obtained. It is known that the (provisional) cetane number S [1] detected using the drug has a very small error. Therefore, when the (provisional) cetane number S [1] <50, the (provisional) cetane number S [4] is truncated and the average of the (provisional) cetane number S [1] to (provisional) cetane number [3]. May be the (final) cetane number S. Similarly, for example, in the case of FIG. 13, when the cetane number> 60, the ignition timing = θ [1] detection injection Kinj [1] and the cetane number / torque equivalent characteristic (θ [1]). The (provisional) cetane number S [1] detected using the above has a large error, the ignition timing = θ [4] detection injection Kinj [4], and the cetane number / torque equivalent characteristic (θ [4]). It is known that the error of the (provisional) cetane number S [4] detected using the above is very small. Therefore, when the (provisional) cetane number S [4]> 60, the (provisional) cetane number S [1] is truncated and the average of the (provisional) cetane number S [2] to (provisional) cetane number [4]. May be the (final) cetane number S.
 また制御装置50は、ステップSB425にて、(最終)セタン価Sに応じて、用意しているセタン価・トルク相当量特性(θ[1])~セタン価・トルク相当量特性(θ[n])の中から適切なものを選定し、選定した下側の特性番号を「a」に設定し、選定した上側の特性番号を「b」に設定してステップSB430に処理を進める。 Further, in step SB425, the control device 50 prepares cetane number / torque equivalent characteristic (θ [1]) to cetane number / torque equivalent characteristic (θ [n]) according to the (final) cetane number S. ]), An appropriate one is selected, the selected lower characteristic number is set to "a", the selected upper characteristic number is set to "b", and the process proceeds to step SB430.
 例えば図13に示す例において、制御装置50は、(最終)セタン価S=55であると検出した場合、図13におけるセタン価・トルク相当量特性(θ[1])~セタン価・トルク相当量特性(θ[4])の中から、セタン価=55を検出するのに適したセタン価・トルク相当量特性を選定する(セタン価=55が判別可能セタン価範囲の中央により近いものを選定する)。この場合、セタン価・トルク相当量特性(θ[2])(特性番号=2)と、セタン価・トルク相当量特性(θ[3])(特性番号=3)を選定する。そして選定した特性番号の中から、下側の特性番号「2」を「a」に代入し、上側の特性番号「3」を「b」に代入する。 For example, in the example shown in FIG. 13, when the control device 50 detects that the (final) cetane number S = 55, the cetane number / torque equivalent characteristic (θ [1]) to the cetane number / torque equivalent in FIG. From the quantitative characteristics (θ [4]), select the cetane number / torque equivalent characteristic suitable for detecting the cetane number = 55 (the one closer to the center of the cetane number range in which the cetane number = 55 can be discriminated). Select). In this case, the cetane number / torque equivalent characteristic (θ [2]) (characteristic number = 2) and the cetane number / torque equivalent characteristic (θ [3]) (characteristic number = 3) are selected. Then, from the selected characteristic numbers, the lower characteristic number "2" is substituted for "a", and the upper characteristic number "3" is substituted for "b".
 ステップSB430にて制御装置50は、繰り返しカウンタiに「a」の値を代入してステップSB435に処理を進める。上記の例にて「a」に「2」を代入した場合、繰り返しカウンタiに「2」を代入する。 In step SB430, the control device 50 substitutes the value of "a" into the repetition counter i and proceeds to step SB435. When "2" is substituted for "a" in the above example, "2" is substituted for the repeat counter i.
 ステップSB435にて制御装置50は、始動後初期検出フラグをOFFに設定して図18に示す処理を終了してリターンして図14に示すステップS265の下に戻り、図14に示す処理を終了する。 In step SB435, the control device 50 sets the initial detection flag to OFF after starting, ends the process shown in FIG. 18, returns, returns to the bottom of step S265 shown in FIG. 14, and ends the process shown in FIG. To do.
 ステップSB465に処理を進めた場合、制御装置50は、繰り返しカウンタiの値を+1だけカウントアップしてステップSB470に処理を進める(次の検出用噴射Kinj[i]の準備をする)。 When the process proceeds to step SB465, the control device 50 counts up the value of the repeat counter i by +1 and proceeds to step SB470 (preparing for the next detection injection Kinj [i]).
 ステップSB465~SB480の処理は、セタン価初期検出期間(この場合、始動後初期検出フラグ=ONの期間)よりも後の検出可能期間の処理であり、セタン価初期検出期間以降(始動後初期検出フラグのONからOFFの遷移以降)に検出したセタン価に基づいて第1検出用噴射~前記第n検出用噴射の中から選定した検出用噴射Kinj[a]~Kinj[b]を検出用噴射実行部51C実行する処理である。 The processing of steps SB465 to SB480 is the processing of the detectable period after the cetane number initial detection period (in this case, the period of the initial detection flag after start = ON), and after the cetane number initial detection period (initial detection after start). Detection injections Kinj [a] to Kinj [b] selected from the first detection injection to the nth detection injection based on the cetane number detected after the transition from ON to OFF of the flag) are detected. Execution unit 51C This is a process to be executed.
 ステップSB470にて制御装置50は、カウントアップした繰り返しカウンタiが、「b」に設定されている値よりも大きいか否かを判定し、bよりも大きい場合(SB470:Yes)はステップSB475に処理を進め、b以下である場合(SB470:No)は図18に示す処理を終了してリターンして図14に示すステップS265の下に戻り、図14に示す処理を終了する。なお「b」の値は、ステップSB425またはステップSB475にて設定される。 In step SB470, the control device 50 determines whether or not the count-up repetition counter i is larger than the value set in "b", and if it is larger than b (SB470: Yes), the step SB475 is performed. The process is advanced, and if it is b or less (SB470: No), the process shown in FIG. 18 is completed and returned, the process returns to the lower part of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed. The value of "b" is set in step SB425 or step SB475.
 図19に示すように、始動後初期検出フラグがOFFの場合には、用意しているすべての着火時期=θ[1]~θ[n]のそれぞれに対応する検出用噴射Kinj[1]~[n](この場合、n=4)の中から、選定した着火時期(選定したセタン価・トルク相当量特性に対応する着火時期)に対応する検出用噴射を順番に実行する(図19の例では、検出用噴射Kinj[2]と検出用噴射Kinj[3]を順番に実行する)。そして制御装置50は、それぞれの検出用噴射Kinj[i]に対応する(仮)セタン価S[i]を検出する。 As shown in FIG. 19, when the initial detection flag after starting is OFF, the detection injections Kinj [1] to corresponding to each of the prepared ignition timings = θ [1] to θ [n]. From [n] (in this case, n = 4), the detection injections corresponding to the selected ignition timings (ignition timings corresponding to the selected cetane number / torque equivalent characteristics) are sequentially executed (FIG. 19). In the example, the detection injection Kinj [2] and the detection injection Kinj [3] are executed in order). Then, the control device 50 detects the (provisional) cetane number S [i] corresponding to each detection injection Kinj [i].
 ステップSB475に処理を進めた場合、始動後初期検出フラグがOFFの期間であるので、検出用噴射Kinj[a]~Kinj[b]を一通り実行して、(仮)セタン価S[a]~S[b]を検出済みである。よって、制御装置50は、(仮)セタン価S[a]~S[b]に基づいて(最終)セタン価Sを検出(算出)する。例えば制御装置50は、(仮)セタン価S[a]~(仮)セタン価S[b]の平均を(最終)セタン価Sとする。 When the process proceeds to step SB475, since the initial detection flag after the start is in the OFF period, the detection injections Kinj [a] to Kinj [b] are executed in a row, and the (provisional) cetane number S [a] is executed. ~ S [b] has been detected. Therefore, the control device 50 detects (calculates) the (final) cetane number S based on the (provisional) cetane numbers S [a] to S [b]. For example, in the control device 50, the average of the (provisional) cetane number S [a] to the (provisional) cetane number S [b] is defined as the (final) cetane number S.
 なお、(最終)セタン価Sの算出方法は、上記の平均化に限定されるものではない。例えば、Mを2以上の整数として、今回の(最終)セタン価S=[(M-1)*(前回の(最終)セタン価S)+(今回の(仮)セタン価S[a]~(仮)セタン価S[b]の平均値)]/M、として求めるようにしてもよく、(最終)セタン価Sの算出方法には、種々の算出方法が考えられる。 The method of calculating the (final) cetane number S is not limited to the above averaging. For example, assuming that M is an integer of 2 or more, the current (final) cetane number S = [(M-1) * (previous (final) cetane number S) + (this time (provisional) cetane number S [a] ~ It may be obtained as (provisional) average value of cetane number S [b])] / M, and various calculation methods can be considered as the calculation method of the (final) cetane number S.
 また制御装置50は、ステップSB475にて、(最終)セタン価Sに応じて、用意しているセタン価・トルク相当量特性(θ[1])~セタン価・トルク相当量特性(θ[n])の中から適切なものを選定し、選定した下側の特性番号を「a」に設定し、選定した上側の特性番号を「b」に設定してステップSB480に処理を進める。なお選定と「a」、「b」の設定については、ステップSB425と同じであるので説明を省略する。 Further, the control device 50 prepares the cetane number / torque equivalent characteristic (θ [1]) to the cetane number / torque equivalent characteristic (θ [n]) according to the (final) cetane number S in step SB475. ]), An appropriate one is selected, the selected lower characteristic number is set to "a", the selected upper characteristic number is set to "b", and the process proceeds to step SB480. The selection and the settings of "a" and "b" are the same as those in step SB425, and thus the description thereof will be omitted.
 ステップSB480にて制御装置50は、繰り返しカウンタiに「a」の値を代入(上記の例にて「a」に「2」を代入した場合、繰り返しカウンタiに「2」を代入)して図18に示す処理を終了してリターンして図14に示すステップS265の下に戻り、図14に示す処理を終了する。 In step SB480, the control device 50 substitutes the value of "a" for the repetition counter i (when "2" is assigned to "a" in the above example, "2" is assigned to the repetition counter i). The process shown in FIG. 18 is completed and returned, the process returns to the bottom of step S265 shown in FIG. 14, and the process shown in FIG. 14 is completed.
 ステップSB425、SB475の処理を実行している制御装置50(CPU51)は、第1検出用噴射(Kinj[1])~第n検出用噴射(Kinj[n])のそれぞれにて実際に発生したトルクに相当する第1実トルク相当量~第n実トルク相当量と、第1セタン価・トルク相当量特性(θ[1])~第nセタン価・トルク相当量特性(θ[n])のそれぞれと、に基づいた(仮)セタン価S[i]から、(最終)セタン価Sを検出する、セタン価検出部51D(図1参照)に相当している。 The control device 50 (CPU51) executing the processes of steps SB425 and SB475 actually generated in each of the first detection injection (Kinj [1]) to the nth detection injection (Kinj [n]). 1st actual torque equivalent to nth actual torque equivalent and 1st cetane number / torque equivalent characteristic (θ [1]) to nth cetane number / torque equivalent characteristic (θ [n]) Corresponds to the cetane number detection unit 51D (see FIG. 1) that detects the (final) cetane number S from each of the above and the (provisional) cetane number S [i] based on.
 そして検出された(最終)セタン価Sは、ディーゼル機関の通常の燃料噴射の噴射時期や噴射量の補正等に利用される。 Then, the detected (final) cetane number S is used for correcting the injection timing and injection amount of the normal fuel injection of a diesel engine.
●[本願の効果]
 本願では、ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間において所定気筒に検出用噴射を実行して、当該検出用噴射にて発生したトルクに相当するトルク相当量に基づいて当該ディーゼル機関で用いている燃料のセタン価を検出する。従って、特許文献1のように通常の運転時の副噴射の噴射量を2水準の噴射量に変更して発生トルクの変化量を検出するよりも、セタン価の違いによるトルク変動量をより高精度に検出することが可能となり、より高い精度でセタン価を検出することができる。
● [Effect of the present application]
In the present application, the detection injection is executed in a predetermined cylinder during the detectable period in which the diesel engine stops the fuel injection and gradually decreases the rotation speed while coasting to obtain the torque generated by the detection injection. The cetane number of the fuel used in the diesel engine is detected based on the corresponding torque equivalent amount. Therefore, the torque fluctuation amount due to the difference in cetane number is higher than that of detecting the change amount of the generated torque by changing the injection amount of the sub-injection during normal operation to the injection amount of two levels as in Patent Document 1. It becomes possible to detect with high accuracy, and the cetane number can be detected with higher accuracy.
 また、ディーゼル機関の運転状態・環境状態に応じた着火遅れ時間(TDLY)を求めて、検出用噴射の噴射時期をきめ細かく調整(補正)することで、安定した着火時期を実現している。同様に、ディーゼル機関の運転状態・環境状態に応じて検出用噴射の噴射量を調整(補正)することで、セタン価に応じたトルクを安定的に発生させることが可能となり、より高い精度でセタン価を検出することができる。 In addition, a stable ignition timing is realized by obtaining the ignition delay time (T DLY ) according to the operating condition and environmental condition of the diesel engine and finely adjusting (correcting) the injection timing of the detection injection. Similarly, by adjusting (correcting) the injection amount of the detection injection according to the operating condition and environmental condition of the diesel engine, it is possible to stably generate torque according to the cetane number, and with higher accuracy. Cetane number can be detected.
 また、要求されるセタン価検出範囲が広く、1つのセタン価・トルク相当量特性の判別可能セタン価範囲では要求されるセタン価検出範囲をカバーできない場合では、第2の実施の形態に示すように、複数のセタン価・トルク相当量特性を用意することで、要求されるセタン価検出範囲のセタン価を適切に検出することができる。また、複数用意した(目標)着火時期の検出用噴射を、毎回一通り実施するのでなく、一度(最終)セタン価を検出した後は、当該セタン価の適切に検出できる(目標)着火時期の検出用噴射の実行に絞ることで、不要な検出用噴射を省略することができる。 Further, when the required cetane number detection range is wide and one cetane number / torque equivalent characteristic discriminable cetane number range cannot cover the required cetane number detection range, as shown in the second embodiment. In addition, by preparing a plurality of cetane number / torque equivalent characteristics, it is possible to appropriately detect the cetane number in the required cetane number detection range. In addition, a plurality of prepared (target) ignition timing detection injections are not performed once each time, but once the (final) cetane number is detected, the (target) ignition timing can be appropriately detected. By focusing on the execution of the detection injection, unnecessary detection injection can be omitted.
 本開示の燃料性状検出装置(制御装置50)は、本実施の形態で説明した構成、処理手順等に限定されず、本開示の要旨を変更しない範囲で種々の変更、追加、削除が可能である。 The fuel property detection device (control device 50) of the present disclosure is not limited to the configuration, processing procedure, etc. described in the present embodiment, and various changes, additions, and deletions can be made without changing the gist of the present disclosure. is there.
 本実施の形態の説明では、クランク角度検出手段からの検出信号が、クランクシャフトが15[°CA]回転する毎に出力される例を説明したが、15[°CA]毎に限定されるものではない。また、気筒判別手段から1番気筒の圧縮上死点位置の信号を出力する例を説明したが、これに限定されるものではない。クランク角度信号、気筒判別信号には、種々のものがある。 In the description of the present embodiment, an example in which the detection signal from the crank angle detecting means is output every 15 [° CA] rotation of the crankshaft has been described, but it is limited to every 15 [° CA]. is not it. Further, an example of outputting a signal of the compression top dead center position of the first cylinder from the cylinder discriminating means has been described, but the present invention is not limited to this. There are various types of crank angle signals and cylinder discrimination signals.
 第2の実施の形態では、図13に示すように、要求されるセタン価検出範囲に対して、4つのセタン価・トルク相当量特性(θ[i])(i=1~n、図13の例ではn=4)を用意した例を説明したが、nの値は4に限定されるものではなく、2以上の整数であればよい。 In the second embodiment, as shown in FIG. 13, four cetane number / torque equivalent characteristics (θ [i]) (i = 1 to n, FIG. 13) with respect to the required cetane number detection range. In the example of, the example in which n = 4) is prepared has been described, but the value of n is not limited to 4, and may be an integer of 2 or more.
 また第2の実施の形態では、検出用噴射Kinj[1]~検出用噴射Kinj[n]まで、用意した一通りの検出用噴射を順番に実行して(最終)セタン価Sを検出した後は選定した検出用噴射のみを行う例を説明したが、(最終)セタン価を検出した後も、検出用噴射Kinj[1]~検出用噴射Kinj[n]を一通り順番に実行するようにしてもよい。 Further, in the second embodiment, after the prepared set of detection injections are sequentially executed from the detection injection Kinj [1] to the detection injection Kinj [n] to detect the (final) cetane number S. Explained an example in which only the selected detection injection is performed, but even after the (final) cetane number is detected, the detection injection Kinj [1] to the detection injection Kinj [n] are executed in order. May be.
 本実施の形態の説明では、(目標)着火時期=7[°CA]、9[°CA]、11[°CA]、13[°CA]の例を説明したが、(目標)着火時期はこれらに限定されるものではなく、種々の値に設定することができる。また基準セタン価=54とした例を説明したが、これに限定されるものではない。 In the description of the present embodiment, examples of (target) ignition timing = 7 [° CA], 9 [° CA], 11 [° CA], 13 [° CA] have been described, but the (target) ignition timing is It is not limited to these, and can be set to various values. Further, although an example in which the reference cetane number = 54 has been described, the present invention is not limited to this.
 また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。 Further, the numerical value used in the explanation of the present embodiment is an example, and is not limited to this numerical value.
 1  ディーゼル機関システム
 10  ディーゼル機関
 11A、11B  吸気管
 11C  吸気マニホルド
 12A  排気マニホルド
 12B、12C  排気管
 13  EGR配管
 14  EGR弁
 15  EGRクーラ
 21  吸気流量検出手段
 22A  クランク角度検出手段
 22B  気筒検出手段
 23  大気圧検出手段
 24A  コンプレッサ上流圧力検出手段
 24B  コンプレッサ下流圧力検出手段
 24C  吸気マニホルド圧力検出手段
 25  アクセルペダル踏込量検出手段
 26A  タービン上流圧力検出手段
 26B  タービン下流圧力検出手段
 26C  差圧検出手段
 27  車速検出手段
 28A、28B  吸気温度検出手段
 28C  クーラント温度検出手段
 28D、28E  排気温度検出手段
 30  ターボ過給機
 31  ノズル駆動手段
 32  ノズル開度検出手段
 33  可変ノズル
 35  コンプレッサ
 35A  コンプレッサインペラ
 36  タービン
 36A  タービンインペラ
 41  コモンレール
 42A~42D  燃料配管
 43A~43D  インジェクタ
 45A~45D  シリンダ
 48  スロットル装置
 48S  スロットル開度検出手段
 50  制御装置(燃料性状検出装置)
 51  CPU
 51A  検出用噴射時期関連量算出部
 51B  検出用噴射量算出部
 51C  検出用噴射実行部
 51D  セタン価検出部
 53  記憶装置
 61  酸化触媒
 62  微粒子捕集フィルタ
 Kinj、Kinj[1]~Kinj[4]  検出用噴射
 SH  判別可能上限セタン価
 SL  判別可能下限セタン価
 SKH  検出上限セタン価
 SKL  検出下限セタン価
 TDLY  着火遅れ時間(検出用噴射の噴射時期関連量)
 Tinj  噴射時間(検出用噴射の噴射量)
1 Diesel engine system 10 Diesel engine 11A, 11B Intake pipe 11C Intake manifold 12A Exhaust manifold 12B, 12C Exhaust pipe 13 EGR piping 14 EGR valve 15 EGR cooler 21 Intake flow detection means 22A Crank angle detection means 22B Cylinder detection means 23 Means 24A Compressor upstream pressure detecting means 24B Compressor downstream pressure detecting means 24C Intake manifold pressure detecting means 25 Accelerator pedal depression amount detecting means 26A Turbine upstream pressure detecting means 26B Turbine downstream pressure detecting means 26C Differential pressure detecting means 27 Vehicle speed detecting means 28A, 28B Intake temperature detecting means 28C Coolant temperature detecting means 28D, 28E Exhaust temperature detecting means 30 Turbo supercharger 31 Nozzle driving means 32 Nozzle opening detecting means 33 Variable nozzle 35 Compressor 35A Compressor impeller 36 Turbine 36A Turbine impeller 41 Common rail 42A to 42D Fuel Piping 43A to 43D Injector 45A to 45D Cylinder 48 Throttle device 48S Throttle opening detection means 50 Control device (fuel property detection device)
51 CPU
51A Detection injection timing related amount calculation unit 51B Detection injection amount calculation unit 51C Detection injection execution unit 51D Cetane number detection unit 53 Storage device 61 Oxidation catalyst 62 Fine particle collection filter Kinj, Kinj [1] to Kinj [4] Detection For injection SH Discriminating upper limit cetane number SL Discriminating lower limit cetane number SKH Detection upper limit cetane number SKL Detection lower limit cetane number T DLY Ignition delay time (amount related to injection timing of detection injection)
Tinj injection time (injection amount of detection injection)

Claims (4)

  1.  ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間において所定気筒に対して検出用噴射を実行し、当該検出用噴射にて発生したトルクに相当するトルク相当量に基づいて、当該ディーゼル機関で用いている燃料のセタン価を検出する燃料性状検出装置であって、
     前記燃料性状検出装置は、
     前記ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価検出範囲内のいずれのセタン価であっても、噴射された燃料が着火するクランク角度位置が、予め設定された所定クランク角度位置となるように、前記検出用噴射の噴射時期に関連する噴射時期関連量を算出する検出用噴射時期関連量算出部と、
     前記セタン価検出範囲内において予め設定された基準セタン価の燃料の場合では、前記ディーゼル機関の前記運転状態及び前記環境状態にかかわらず前記検出用噴射による前記所定クランク角度位置での着火に続く燃焼によって発生するトルクに相当する前記トルク相当量が予め設定された基準トルク相当量となるように、前記検出用噴射の噴射量を算出する検出用噴射量算出部と、
     前記検出用噴射によるセタン価に応じた前記トルク相当量が設定されたセタン価・トルク相当量特性であって、前記基準セタン価の燃料の前記検出用噴射の場合には前記基準トルク相当量となるように設定された前記セタン価・トルク相当量特性、が記憶された記憶装置と、
     前記検出可能期間の場合に、前記所定気筒に対して、前記検出用噴射量算出部にて算出した噴射量を、前記検出用噴射時期関連量算出部にて算出した前記噴射時期関連量に基づいた噴射時期にて噴射する前記検出用噴射を実行する検出用噴射実行部と、
     前記検出用噴射にて実際に発生したトルクに相当する実トルク相当量と、前記セタン価・トルク相当量特性と、に基づいてセタン価を検出するセタン価検出部と、
     を有する。
    During the detectable period in which the diesel engine stops fuel injection and gradually decreases the number of revolutions while coasting, the detection injection is executed for a predetermined cylinder, which corresponds to the torque generated by the detection injection. A fuel property detection device that detects the cetane number of the fuel used in the diesel engine based on the amount equivalent to torque.
    The fuel property detection device is
    Regardless of the operating condition and environmental condition of the diesel engine, the crank angle position where the injected fuel ignites is set in advance regardless of the cetane number within the detection range from the lower limit cetane number to the upper limit cetane number. A detection injection timing-related amount calculation unit that calculates an injection timing-related amount related to the injection timing of the detection injection so as to be at a set predetermined crank angle position.
    In the case of a fuel having a reference cetane number set in advance within the cetane number detection range, combustion following ignition at the predetermined crank angle position by the detection injection regardless of the operating state and the environmental state of the diesel engine. A detection injection amount calculation unit that calculates the injection amount of the detection injection so that the torque equivalent amount corresponding to the torque generated by the above is a preset reference torque equivalent amount.
    The torque equivalent amount is set according to the cetane number by the detection injection, and the cetane number / torque equivalent amount characteristic, and in the case of the detection injection of the fuel having the reference cetane number, the reference torque equivalent amount is used. A storage device that stores the cetane number / torque equivalent characteristics set so as to be
    In the case of the detectable period, the injection amount calculated by the detection injection amount calculation unit for the predetermined cylinder is based on the injection timing-related amount calculated by the detection injection timing-related amount calculation unit. A detection injection execution unit that executes the detection injection to be injected at the same injection timing,
    A cetane number detection unit that detects the cetane number based on the actual torque equivalent amount corresponding to the torque actually generated by the detection injection and the cetane number / torque equivalent amount characteristic.
    Have.
  2.  ディーゼル機関が燃料噴射を停止して惰性回転しながら回転数を徐々に低下させている検出可能期間において所定気筒に対して検出用噴射を実行し、当該検出用噴射にて発生したトルクに相当するトルク相当量に基づいて、当該ディーゼル機関で用いている燃料のセタン価を検出する燃料性状検出装置であって、
     nを2以上の整数とした場合に噴射された燃料が着火するクランク角度位置として、第1クランク角度位置~第nクランク角度位置が予め設定されており、
     前記燃料性状検出装置は、
     前記ディーゼル機関の運転状態及び環境状態にかかわらず検出下限セタン価~検出上限セタン価のセタン価検出範囲内のいずれのセタン価であっても、噴射された燃料が着火するクランク角度位置が、予め設定された前記第1クランク角度位置~前記第nクランク角度位置のそれぞれとなるように、前記検出用噴射である第1検出用噴射~第n検出用噴射の噴射時期に関連する噴射時期関連量を算出する検出用噴射時期関連量算出部と、
     前記セタン価検出範囲内において予め設定された基準セタン価の燃料の場合では、前記ディーゼル機関の前記運転状態及び前記環境状態にかかわらず前記第1検出用噴射~前記第n検出用噴射のそれぞれによる前記第1クランク角度位置~前記第nクランク角度位置での着火に続く燃焼によって発生するトルクに相当する前記トルク相当量が予め設定された第1基準トルク相当量~第n基準トルク相当量となるように、前記第1検出用噴射~前記第n検出用噴射の噴射量を算出する検出用噴射量算出部と、
     前記第1検出用噴射~前記第n検出用噴射のそれぞれによるセタン価に応じた前記トルク相当量が設定された第1セタン価・トルク相当量特性~第nセタン価・トルク相当量特性であって、前記基準セタン価の燃料の前記第1検出用噴射~前記第n検出用噴射の場合には前記第1基準トルク相当量~前記第nトルク相当量となるように設定された前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性、が記憶された記憶装置と、
     前記検出可能期間の場合に、前記所定気筒に対して、前記検出用噴射量算出部にて算出したそれぞれの噴射量を、前記検出用噴射時期関連量算出部にて算出した前記噴射時期関連量に基づいた噴射時期にて噴射する前記第1検出用噴射~第n検出用噴射を実行する検出用噴射実行部と、
     前記第1検出用噴射~前記第n検出用噴射のそれぞれにて実際に発生したトルクに相当する第1実トルク相当量~第n実トルク相当量と、前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性のそれぞれと、に基づいてセタン価を検出するセタン価検出部と、
     を有する。
    During the detectable period in which the diesel engine stops fuel injection and gradually decreases the number of revolutions while coasting, the detection injection is executed for a predetermined cylinder, which corresponds to the torque generated by the detection injection. A fuel property detection device that detects the cetane number of the fuel used in the diesel engine based on the amount equivalent to torque.
    The first crank angle position to the nth crank angle position are preset as the crank angle positions at which the injected fuel ignites when n is an integer of 2 or more.
    The fuel property detection device is
    Regardless of the operating condition and environmental condition of the diesel engine, the crank angle position where the injected fuel ignites is set in advance regardless of the cetane number within the detection range from the lower limit of detection cetane number to the upper limit of detection cetane number. An injection timing-related amount related to the injection timing of the first detection injection to the nth detection injection, which is the detection injection, so as to be each of the set first crank angle position to the nth crank angle position. The detection injection timing related amount calculation unit that calculates
    In the case of a fuel having a reference cetane number set in advance within the cetane number detection range, it depends on each of the first detection injection to the nth detection injection regardless of the operating state and the environmental state of the diesel engine. The torque equivalent amount corresponding to the torque generated by the combustion following the ignition at the first crank angle position to the nth crank angle position is the preset first reference torque equivalent amount to the nth reference torque equivalent amount. As described above, the detection injection amount calculation unit for calculating the injection amount of the first detection injection to the nth detection injection, and the detection injection amount calculation unit.
    The first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic in which the torque equivalent amount is set according to the cetane number by each of the first detection injection to the nth detection injection. In the case of the first detection injection to the nth detection injection of the fuel having the reference cetane number, the first reference torque equivalent amount to the nth torque equivalent amount are set. A storage device that stores the cetane number / torque equivalent characteristic-the nth cetane number / torque equivalent characteristic.
    In the case of the detectable period, each injection amount calculated by the detection injection amount calculation unit for the predetermined cylinder is calculated by the detection injection timing-related amount calculation unit. The detection injection execution unit that executes the first detection injection to the nth detection injection that injects at the injection timing based on
    The first actual torque equivalent amount to the nth actual torque equivalent amount corresponding to the torque actually generated in each of the first detection injection to the nth detection injection, and the first cetane number / torque equivalent amount characteristic. -A cetane number detection unit that detects the cetane number based on each of the nth cetane number and torque equivalent characteristics, and
    Have.
  3.  請求項2に記載の燃料性状検出装置であって、
     前記第1検出用噴射~前記第n検出用噴射のそれぞれに対応する前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性は、
     セタン価の違いに対して前記トルク相当量の変化が小さい判別不適切セタン価範囲と、前記判別不適切セタン価範囲よりもセタン価の違いに対して前記トルク相当量の変化が大きい判別可能セタン価範囲と、を有しており、
     前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性は、前記第1セタン価・トルク相当量特性~前記第nセタン価・トルク相当量特性のそれぞれの前記判別可能セタン価範囲を重畳させると前記検出下限セタン価~前記検出上限セタン価をカバーできるように設定されている、
     燃料性状検出装置。
    The fuel property detection device according to claim 2.
    The first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic corresponding to each of the first detection injection to the nth detection injection are
    The change in the torque equivalent amount is small with respect to the difference in cetane number. Has a price range and
    The first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic can be discriminated from each of the first cetane number / torque equivalent characteristic to the nth cetane number / torque equivalent characteristic. When the cetane number range is superimposed, it is set so as to cover the detection lower limit cetane number to the detection upper limit cetane number.
    Fuel property detector.
  4.  請求項2または3に記載の燃料性状検出装置であって、
     前記ディーゼル機関への燃料の補給後、あるいは前記ディーゼル機関の始動の後、の所定期間であるセタン価初期検出期間では、前記検出用噴射実行部にて前記第1検出用噴射~前記第n検出用噴射を少なくとも1回実行して、前記セタン価検出部にてセタン価を検出し、
     前記セタン価初期検出期間よりも後の前記検出可能期間では、
     前記セタン価初期検出期間以降に検出したセタン価に基づいて前記第1検出用噴射~前記第n検出用噴射の中から選定した検出用噴射を、前記検出用噴射実行部にて実行する、
     燃料性状検出装置。
    The fuel property detection device according to claim 2 or 3.
    In the cetane number initial detection period, which is a predetermined period after refueling the diesel engine or after starting the diesel engine, the detection injection executing unit performs the first detection injection to the nth detection. The injection is executed at least once, and the cetane number is detected by the cetane number detection unit.
    In the detectable period after the initial cetane number detection period,
    The detection injection execution unit executes the detection injection selected from the first detection injection to the nth detection injection based on the cetane number detected after the cetane number initial detection period.
    Fuel property detector.
PCT/JP2020/027860 2019-07-25 2020-07-17 Fuel characteristics detecting apparatus WO2021015127A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020003571.9T DE112020003571T5 (en) 2019-07-25 2020-07-17 FUEL PROPERTY DETECTION DEVICE
AU2020316159A AU2020316159B2 (en) 2019-07-25 2020-07-17 Fuel property detection device
BR112022000435A BR112022000435A2 (en) 2019-07-25 2020-07-17 Fuel characteristics detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019136919A JP7283290B2 (en) 2019-07-25 2019-07-25 Fuel property detector
JP2019-136919 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015127A1 true WO2021015127A1 (en) 2021-01-28

Family

ID=74193644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027860 WO2021015127A1 (en) 2019-07-25 2020-07-17 Fuel characteristics detecting apparatus

Country Status (6)

Country Link
JP (1) JP7283290B2 (en)
AU (1) AU2020316159B2 (en)
BR (1) BR112022000435A2 (en)
DE (1) DE112020003571T5 (en)
TW (1) TWI742761B (en)
WO (1) WO2021015127A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121322A (en) * 2007-11-14 2009-06-04 Toyota Motor Corp Controller for diesel engine
JP2010024870A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Antiknock property index value detecting device of fuel of diesel engine
WO2011061851A1 (en) * 2009-11-20 2011-05-26 トヨタ自動車株式会社 Fuel type determination device and fuel injection control device for internal combustion engine
US20110224886A1 (en) * 2010-03-10 2011-09-15 Gm Global Technology Operations, Inc. On-board fuel property detection using pattern recognition and power spectral analysis of cylinder pressure signal
WO2012108005A1 (en) * 2011-02-08 2012-08-16 トヨタ自動車 株式会社 Cetane number estimation device
WO2012131954A1 (en) * 2011-03-30 2012-10-04 トヨタ自動車 株式会社 Cetane number estimation device
JP2013209942A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Engine fuel property estimation apparatus
JP2019183694A (en) * 2018-04-04 2019-10-24 トヨタ自動車株式会社 Cetane number estimation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539991B2 (en) * 2006-06-02 2010-09-08 ヤンマー株式会社 Cetane number detection means and engine provided with the cetane number detection means
DE102007048650B4 (en) * 2007-10-10 2011-06-09 Audi Ag Method and apparatus for optimizing the combustion of diesel fuels with different cetane numbers in a diesel internal combustion engine
JP4941246B2 (en) * 2007-11-19 2012-05-30 株式会社デンソー Fuel injection control device and fuel injection system using the same
JP4600469B2 (en) 2007-12-11 2010-12-15 株式会社デンソー Fuel property detection device and fuel property detection method
JP4872900B2 (en) * 2007-12-17 2012-02-08 株式会社豊田中央研究所 Fuel cetane number estimation device for compression ignition type internal combustion engine and control device for compression ignition type internal combustion engine
US8899209B2 (en) * 2010-10-08 2014-12-02 Ford Global Technologies, Llc System and method for compensating cetane
US9631572B2 (en) * 2014-05-28 2017-04-25 Ford Global Technologies, Llc Method and system for pre-ignition control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121322A (en) * 2007-11-14 2009-06-04 Toyota Motor Corp Controller for diesel engine
JP2010024870A (en) * 2008-07-16 2010-02-04 Toyota Motor Corp Antiknock property index value detecting device of fuel of diesel engine
WO2011061851A1 (en) * 2009-11-20 2011-05-26 トヨタ自動車株式会社 Fuel type determination device and fuel injection control device for internal combustion engine
US20110224886A1 (en) * 2010-03-10 2011-09-15 Gm Global Technology Operations, Inc. On-board fuel property detection using pattern recognition and power spectral analysis of cylinder pressure signal
WO2012108005A1 (en) * 2011-02-08 2012-08-16 トヨタ自動車 株式会社 Cetane number estimation device
WO2012131954A1 (en) * 2011-03-30 2012-10-04 トヨタ自動車 株式会社 Cetane number estimation device
JP2013209942A (en) * 2012-03-30 2013-10-10 Toyota Motor Corp Engine fuel property estimation apparatus
JP2019183694A (en) * 2018-04-04 2019-10-24 トヨタ自動車株式会社 Cetane number estimation device

Also Published As

Publication number Publication date
JP2021021351A (en) 2021-02-18
BR112022000435A2 (en) 2022-05-17
DE112020003571T5 (en) 2022-04-28
AU2020316159B2 (en) 2023-11-16
TWI742761B (en) 2021-10-11
AU2020316159A1 (en) 2022-02-17
JP7283290B2 (en) 2023-05-30
TW202134532A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
EP1900926B1 (en) Control system for internal combustion engine
US8307695B2 (en) Cetane number estimation method
EP2803842B1 (en) Control device for internal combustion engine
JP4667346B2 (en) Control device for internal combustion engine
JP2006226188A (en) Fuel property detection device of diesel engine
US9670852B2 (en) Method and system for limiting output of a boosted engine
JP2008184908A (en) Engine control system
JP2009203918A (en) Operation control method of gasoline engine
WO2021015127A1 (en) Fuel characteristics detecting apparatus
JP2000204984A (en) Internal egr system for direct injection gasoline engine
JP3775942B2 (en) Fuel injection control device for internal combustion engine
JP2001090539A (en) Self-igniting internal combustion engine
EP2290210B1 (en) Fuel supply control system for internal combustion engine
JP4523766B2 (en) Combustion control device for internal combustion engine
JP2010019115A (en) Antiknock property index value detection device of fuel for diesel engine
JP2009203924A (en) Control device of internal combustion engine
JP7405069B2 (en) Internal combustion engine control system
JP2010190119A (en) Combustion control device for diesel engine
JP2008088972A (en) Control device for internal combustion engine
JP2008196352A (en) Fuel injection device for multi-cylinder engine
JP2023158749A (en) Control device of compression self-ignition type internal combustion engine
JP6248670B2 (en) Fuel combustibility detector
JP2023000100A (en) Control system of internal combustion engine
JP2014177911A (en) Engine control device
JP2010209741A (en) Cetane number detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844454

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000435

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020316159

Country of ref document: AU

Date of ref document: 20200717

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022101433

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112022000435

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP2019-136919 DE 25/07/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. OS DOCUMENTOS APRESENTADOS NAO ESTAO TRADUZIDOS E A DECLARACAO NAO CONTEM OS DADOS IDENTIFICADORES DA PRIORIDADE.

ENP Entry into the national phase

Ref document number: 112022000435

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220110

122 Ep: pct application non-entry in european phase

Ref document number: 20844454

Country of ref document: EP

Kind code of ref document: A1