WO2021014659A1 - Parasite-killing method and parasite-killing system - Google Patents

Parasite-killing method and parasite-killing system Download PDF

Info

Publication number
WO2021014659A1
WO2021014659A1 PCT/JP2019/034431 JP2019034431W WO2021014659A1 WO 2021014659 A1 WO2021014659 A1 WO 2021014659A1 JP 2019034431 W JP2019034431 W JP 2019034431W WO 2021014659 A1 WO2021014659 A1 WO 2021014659A1
Authority
WO
WIPO (PCT)
Prior art keywords
parasite
electrodes
control unit
stirring
pair
Prior art date
Application number
PCT/JP2019/034431
Other languages
French (fr)
Japanese (ja)
Inventor
隆男 浪平
斗艶 王
樹也 松田
井上 陽一
Original Assignee
国立大学法人 熊本大学
株式会社ジャパン・シーフーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 熊本大学, 株式会社ジャパン・シーフーズ filed Critical 国立大学法人 熊本大学
Publication of WO2021014659A1 publication Critical patent/WO2021014659A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K75/00Accessories for fishing nets; Details of fishing nets, e.g. structure
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M17/00Apparatus for the destruction of vermin in soil or in foodstuffs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M19/00Apparatus for the destruction of noxious animals, other than insects, by hot water, steam, hot air, or electricity
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/24Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/015Preserving by irradiation or electric treatment without heating effect

Definitions

  • the present invention relates to a parasite insecticidal method and a parasite insecticidal system, and more particularly to a parasite insecticidal method for killing parasites in an object.
  • Anisakis is a type of parasite that parasitizes many marine fish, including horse mackerel and mackerel. Normally, Anisakis parasitizes the internal organs, so there is no problem with safety if appropriate treatment such as removing the internal organs is performed. However, since Anisakis moves from the internal organs to the body due to an increase in fish body temperature and a decrease in freshness, if a human eats the body raw with sashimi, it will pierce the stomach wall and intestinal wall and cause food poisoning. ..
  • a frozen insecticidal method and a visual removal method are used as a method for reducing the risk of food poisoning of Anisakis in processed raw food products (Patent Document 1).
  • the frozen insecticidal method is a method of killing Anisakis in a fish body by freezing treatment at -20 ° C or lower for 24 hours or more.
  • the visual removal method is a method of manually removing Anisakis while visually checking it because Anisakis fluoresces when irradiated with black light.
  • Non-Patent Document 1 a pulse generation system as a method for exterminating sea spiders, which are arthropods having a diameter of about 1 cm.
  • the quality deteriorates, such as deterioration of the physical constitution, and even if it is for raw consumption, it is classified as "frozen food” and "thawing” labeling is obligatory, so the commercial value also decreases by about 30%. ..
  • the processing amount is about 20 kg in 24 hours, and the initial cost of a large freezer or the like alone is as high as about 6.2 million yen.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to newly provide a parasite insecticidal method or the like capable of mass processing while maintaining the quality of an object.
  • the first aspect of the present invention is a parasite insecticidal method using a parasite insecticidal system that kills parasites inside an object
  • the parasite insecticidal system includes an immersion tank for holding a liquid and a positive electrode.
  • the liquid in the immersion tank is provided with a pair of electrodes composed of electrodes and negative electrodes, a pulse power source that generates a large pulse current between the pair of electrodes, and a power supply control unit that controls the pulse power supply.
  • a pulse large current in which the object is immersed between the pair of electrodes immersed in the electrode and the power supply control unit controls the pulse power supply to generate a pulse large current between the pair of electrodes. It is a parasite killing method including an outbreak step.
  • a second aspect of the present invention is the parasite insecticidal method of the first aspect, wherein in the pulse large current generation step, the power supply control unit controls the pulse power source to generate a pulse large current a plurality of times. It is a parasite killing method to generate.
  • a third aspect of the present invention is the parasite insecticidal method according to the first or second aspect, wherein the parasite insecticidal system includes a stirring device for stirring the liquid in the immersion tank and the stirring device.
  • the stirring control unit further comprises a stirring control unit for controlling the stirring device, and the stirring control unit controls the stirring device to perform the immersion between the immersion step and the pulsed large current generation step, or in the pulsed large current generation step. It further comprises a stirring step of stirring the liquid in the tank.
  • a fourth aspect of the present invention is the parasite insecticidal method of the third aspect, wherein in the stirring step, the stirring control unit controls the stirring device and the liquid is between the pair of electrodes. Creates an upward flow.
  • a fifth aspect of the present invention is the parasite insecticidal method of the third or fourth aspect, in which in the stirring step, the stirring control unit controls the stirring device and between the pair of electrodes. Causes a flow in which the object is circulated.
  • a sixth aspect of the present invention is the parasite insecticidal method according to any one of the first to fifth aspects, wherein the parasite insecticidal system is the object between the pair of electrodes from the outside of the immersion tank.
  • a movement mechanism for moving an object to move the object to the outside of the immersion tank and a movement control unit for controlling the movement mechanism are further provided, and in the immersion step, the movement control unit is the movement mechanism.
  • the movement control unit controls the movement mechanism to move the object. Further includes a recovery step of moving the worm to the outside of the immersion tank.
  • a seventh aspect of the present invention is the parasite insecticidal method according to any one of the first to sixth aspects, in which the conductivity of the liquid is brought closer to the conductivity of the object before the immersion step. It is a parasite killing method that further includes a conductivity adjusting step.
  • the eighth aspect of the present invention is the parasite insecticidal method of the seventh aspect, wherein the conductivity is in the range of 0.05 mS / cm to 100 mS / cm.
  • the ninth aspect of the present invention is the parasite insecticidal method according to any one of the first to eighth aspects, wherein the parasite is Anisakis.
  • a tenth aspect of the present invention is a parasite insecticidal system that kills parasites in an object, which comprises a immersion tank for holding a liquid, a pair of electrodes composed of a positive electrode and a negative electrode, and the pair of electrodes. It is a parasite insecticidal system including a pulse power supply that generates a large pulse current between the two, and a power supply control unit that controls the pulse power supply.
  • the eleventh aspect of the present invention is the parasite insecticidal system of the tenth aspect, further including a stirring device for stirring the liquid in the immersion tank and a stirring control unit for controlling the stirring device.
  • the twelfth aspect of the present invention is the parasite insecticidal system according to the eleventh aspect, in which the stirring device is provided at the bottom of the immersion tank and ejects the liquid.
  • the thirteenth aspect of the present invention is the parasite insecticidal system of the twelfth aspect, in which the ejection device has three or more ejection outlets arranged on the circumference or the elliptical circumference, and the ejection device is said.
  • the outlet spouts upward with an inclination with respect to the vertical direction.
  • a fourteenth aspect of the present invention is the parasite insecticidal system according to any one of the tenth to thirteenth aspects, wherein the object is moved from the outside of the immersion tank between the pair of electrodes to obtain the above-mentioned object.
  • a moving mechanism for moving the object to the outside of the immersion tank and a moving control unit for controlling the moving mechanism are further provided.
  • a fifteenth aspect of the present invention is a parasite insecticidal system according to any one of the tenth to fourteenth aspects, in which the positive electrode is held inside the liquid in the immersion tank and above the negative electrode. A positive electrode holding portion is further provided.
  • the treatment is instantaneously performed by applying a pulse, the temperature change of the object can be suppressed, and the parasite can be removed in about 1 minute while suppressing the deterioration of the quality of the object. It becomes possible to kill insects. Further, as compared with the conventional visual removal method which requires manual work, according to the present invention, a large amount of processing becomes possible. Furthermore, since the large pulse current propagates almost uniformly, it is possible to kill not only the surface of the object but also the parasites inside.
  • the parasite insecticidal method according to the present invention can be applied to a large amount of objects.
  • the object even if there is a large amount of the object, by circulating the object between the electrodes, the object does not come off between the electrodes, and it takes time. It becomes easy to apply a large pulse current uniformly.
  • the sixth or fourteenth viewpoint of the present invention even if there are a large number of objects, it becomes easy to continuously apply a large pulse current to the objects. It is possible to carry out the process from injection to insecticidal treatment and recovery in an assembly line. Due to the assembly line work, the processing speed can be improved by about 60% as compared with the batch processing.
  • the present inventors have discovered that among a pair of electrodes, fat tends to adhere to the positive electrode side.
  • the positive electrode is located above the negative electrode, and maintenance for periodically removing the fat on the positive electrode can be performed more efficiently than in the case of the reverse arrangement.
  • FIG. 1 is a schematic diagram (a) and a photograph (b) of the parasite insecticidal system 1 of this embodiment (an example of the “parasite insecticidal system” described in the claims of the present application).
  • the parasite insecticidal system 1 includes an immersion tank 3 (an example of the "immersion tank” described in the present application claim), a positive electrode 7a which is two flat plate electrodes (an example of the "positive electrode” described in the present application claim), and a negative electrode.
  • a parallel plate electrode 7 (an example of a "pair of electrodes” described in the present application) composed of an electrode 7b (an example of the "negative electrode” described in the present application) and a pulse power source 9 connected to the parallel plate electrode 7 (the present claim). (Example of "pulse power supply” described in the section).
  • the immersion tank is filled with the immersion liquid 11 and the object 13 is immersed between the parallel plate electrodes 7 (an example of the "immersion step” described in the claims of the present application). Then, a large pulse current is generated a plurality of times between the parallel plate electrodes 7 (an example of the “pulse large current generation step” described in the claims of the present application). As a result, a large pulse current is generated between the electrodes.
  • the immersion liquid is adjusted in advance within a predetermined conductivity range (an example of the "conductivity adjusting step” described in the claims of the present application).
  • Pulsed power is instantaneous super-giant power obtained by temporarily storing electrical energy from a 200V (or 100V) power supply in a capacitor, inductor, etc., and then extracting this at the micro-nanosecond level.
  • the time required for the entire process of the parasite insecticidal method of this example is about 1 minute. Therefore, it is expected that the processing factory will be able to process a large amount of 330 kg of fish fillet per hour.
  • FIG. 2 is a photograph of the parasite before and after the treatment by the parasite insecticidal method of this example, (a) is before the treatment and (b) is after the treatment.
  • Ajifille parasitized by Anisakis was used as the object.
  • Fillet is a piece of fish when it is cut into three pieces. It can be seen that (a) Anisakis is transparent and alive before the treatment, whereas (b) it becomes cloudy and dead after the treatment. In other words, it was clarified that Anisakis can be killed by generating a large pulse current.
  • FIG. 3 is a diagram showing an example of a specific configuration of the parasite insecticidal system 1 of this embodiment.
  • the parasite insecticidal system 1 includes a discharge switch 15, a trigger 17, a first resistor 19, a first discharge capacitor 21, and a second resistor. 23, the second discharge capacitor 25, the first coil 27, the second coil 29, the first fan 31, the second fan 33, and the stirrer 35 (the "stirring device" according to the claim of the present application).
  • An example of a “spouting device”) and a stirring control unit an example of the “stirring control unit” described in the claim of the present application) (not shown) are provided.
  • One pole of the discharge switch 15 is connected to a high voltage power supply (not shown). Further, the other pole of the discharge switch 15 is connected to the negative electrode electrode 7b. Further, the discharge switch is also connected to the trigger 17. Further, the high voltage power supply, the first resistor 19, the first discharge capacitor 21, the first coil 27, and the positive electrode electrode 7a are connected in series in this order. Further, the high voltage power supply, the second resistor 23, the second discharge capacitor 25, the first coil 27, and the positive electrode electrode 7a are connected in series in this order. The first resistor 19 and the first discharge capacitor 21 and the second resistor 23 and the second discharge capacitor 25 are connected in parallel. Further, one pole of the second coil 29 is connected between the first coil 27 and the positive electrode 7a. The other pole of the second coil 29 is connected between the discharge switch 15 and the negative electrode 7b. The stirring device 35 is installed below the negative electrode electrode 7b.
  • the equivalent circuit and the high-voltage power supply connected to the positive electrode 7a and the negative electrode 7b shown in FIG. 3 are examples of the “pulse power supply” in the claims as a whole.
  • a power supply control unit (not shown) controls a high-voltage power supply, a discharge switch 15, and a trigger 17 to generate a large pulse current between a pair of electrodes, the positive electrode 7a and the negative electrode 7b.
  • the second coil 29 acts as a charging inductance.
  • the first fan 31 cools the first resistor 19 and the second resistor 23.
  • the second fan 33 cools the discharge switch 15.
  • the space between the electrodes including the positive electrode 7a and the negative electrode 7b is filled with seawater, and can be regarded as the third resistance having a resistance value of R3 on the equivalent circuit at the time of discharge.
  • the positive electrode 7a is installed above, and the negative electrode 7b is installed below. This is because the present inventors have found that dirt such as fat is likely to adhere to the positive electrode electrode 7a.
  • a positive electrode position control unit that allows the positive electrode 7a to move up and down may be further provided, and if necessary, the parasite insecticidal system 1 may further include a dirt removing mechanism attached to the positive electrode 7a. This makes it easy to remove dirt from the positive electrode 7a and perform a large amount of parasite insecticidal treatment at high speed.
  • the agitator 35 ejects seawater from the bottom to the top.
  • the stirring control unit controls the stirring device 35 to generate a water flow from bottom to top in a space filled with seawater between the pair of electrodes.
  • the stirring device 35 circulates the seawater inside the immersion tank 3 with a pump.
  • seawater buffer seawater
  • seawater (buffer seawater) in a space other than the treatment space where the temperature does not rise is introduced into the treatment space.
  • the excessive rise in the seawater temperature in the treatment space is suppressed, and the temperature rise in the fillet is suppressed.
  • the negative electrode electrode 7b has a hole at a corresponding portion so as not to obstruct the water flow of the stirring device 35.
  • the parasite insecticidal system 1 of the present embodiment further includes a moving mechanism for moving the object from the outside of the immersion tank 3 between the pair of electrodes to move the object to the outside of the immersion tank 3.
  • FIG. 4 is a diagram showing an example of (a) batch treatment and (b) flow treatment in the parasite insecticidal method of the present invention.
  • a dead time is generated for preparing and charging the fillet group and pulling it up after the processing.
  • the processing time is about 60% of the total.
  • pulse power when batch processing is performed, pulse power will be concentrated in a specific place unless stirring is performed.
  • the pulse power is concentrated in a place where the fillet group is relatively gathered and the height is high, and the insecticidal probability is lowered in other places. Therefore, uniform stirring is essential to evenly and reliably kill the entire fillet group. Further, in order to increase the insecticidal accuracy, it is necessary to increase the number of times the pulse power is applied, which requires extra energy.
  • the movement mechanism provided in the parasite insecticidal system 1 enables a flow process for performing insecticidal treatment on individual fillets.
  • This moving mechanism transports the feelers one by one from the outside of the immersion tank to the processing space between the electrodes and pulls them up to the outside of the immersion tank.
  • insecticidal treatment is always performed, so that the operating rate can be 100%. Moreover, since the fillets are processed one by one, the fillets do not overlap. As a result, stirring becomes unnecessary. Moreover, since the feeler is not extremely heated, it is possible to carry out reliable insecticidal treatment without lowering the commercial value.
  • the parasite insecticidal method of the present invention Anisakis parasitizing Ajifille can be killed. Further, according to the parasite insecticidal system and the parasite insecticidal method of the present invention, the temperature change of the object is smaller than that of the frozen insecticidal method requiring freezing of the object, so that deterioration of quality can be suppressed. Further, the parasite insecticidal method of the present invention requires less manual work, so that a large amount of treatment is possible. Moreover, since the large pulse current propagates almost uniformly, the insecticidal effect does not decrease even if the fillet is thick. In other words, it exerts an insecticidal effect not only on the surface of the object but also on the parasites inside.
  • the conductivity of the immersion liquid may be about the same as that of the object, and is preferably 0.05 mS / cm to 100 mS / cm.
  • seawater diluted 3-fold so as to have the same conductivity as Ajifille was used as the liquid to fill the immersion tank.
  • the conductivity of seawater is about 50 mS / cm, and the conductivity of tap water is about 0.1 mS / cm.
  • the parallel plate electrode may be entirely in the immersion liquid or partly in the immersion liquid.
  • the object may be placed in a basket installed between the electrodes and a pulse voltage may be applied.
  • the possibility that the object will come off between the electrodes is reduced even if the circulation is not generated. Therefore, the parasite insecticidal system may simply include a bottom-to-top ejection device under the space between the electrodes.
  • the water flow generated by the agitator does not matter the force of the water flow, the number or position of holes, as long as the object can be dispersed in the space between the pair of electrodes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Soil Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catching Or Destruction (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

The purpose of the present invention is to provide a novel parasite-killing method and the like that make it possible to achieve high-volume processing while maintaining the quality of an object. A parasite-killing method that uses a parasite-killing system that exterminates parasites inside an object. The parasite-killing system comprises an immersion tank that holds a liquid, a pair of electrodes that comprise a positive electrode and a negative electrode, a pulsed power supply that generates a large pulsed current between the pair of electrodes, and a power supply control unit that controls the pulsed power supply. The parasite-killing method includes an immersion step in which the object is immersed between the pair of electrodes as immersed in the liquid in the immersion tank and a large pulsed current generation step in which the power supply control unit controls the pulsed power supply such that a large pulsed current is generated between the pair of electrodes.

Description

寄生虫殺虫方法及び寄生虫殺虫システムParasite insecticidal method and parasite insecticidal system
 本発明は、寄生虫殺虫方法及び寄生虫殺虫システムに関し、特に、対象物中の寄生虫を殺虫する寄生虫殺虫方法等に関するものである。 The present invention relates to a parasite insecticidal method and a parasite insecticidal system, and more particularly to a parasite insecticidal method for killing parasites in an object.
 アニサキスは寄生虫の一種であり、アジ・サバをはじめ多くの海産魚に寄生している。通常、アニサキスは内臓に寄生しているため、内臓を取り出す等適切な処理を施せば安全性に問題はない。しかし、魚体温の上昇や鮮度低下によってアニサキスは内臓から身へと移動するため、刺身などで生のままその身をヒトが摂食してしまうと、胃壁や腸壁に刺入し、食中毒を引き起こす。 Anisakis is a type of parasite that parasitizes many marine fish, including horse mackerel and mackerel. Normally, Anisakis parasitizes the internal organs, so there is no problem with safety if appropriate treatment such as removing the internal organs is performed. However, since Anisakis moves from the internal organs to the body due to an increase in fish body temperature and a decrease in freshness, if a human eats the body raw with sashimi, it will pierce the stomach wall and intestinal wall and cause food poisoning. ..
 厚生労働省統計によるアニサキス食中毒報告件数は、図5に示す通り、平成19年の6件から平成29年には30倍以上の230件に激増し、細菌性のカンピロバクターに次ぐ第2位となった。加えて平成29年5月のアニサキス食中毒被害急増の一斉報道により、水産物売り場の約30%を占める生食用刺身が敬遠され、その売上は600億円(市場規模の2割)ほど減少した。 As shown in Fig. 5, the number of reports of Anisakis food poisoning according to the statistics of the Ministry of Health, Labor and Welfare increased sharply from 6 in 2007 to 230 in 2017, which is more than 30 times higher, and ranked second after bacterial Campylobacter. .. In addition, due to the mass coverage of the rapid increase in Anisakis food poisoning damage in May 2017, raw sashimi, which occupies about 30% of the marine products section, was shunned, and its sales decreased by about 60 billion yen (20% of the market size).
 一般に、生食用加工品においてアニサキス食中毒リスクを低減する方法としては、冷凍殺虫方法と目視除去方法が用いられている(特許文献1)。 Generally, a frozen insecticidal method and a visual removal method are used as a method for reducing the risk of food poisoning of Anisakis in processed raw food products (Patent Document 1).
 冷凍殺虫方法は、-20℃以下において24時間以上の冷凍処理により魚体中のアニサキスを死滅させる方法である。 The frozen insecticidal method is a method of killing Anisakis in a fish body by freezing treatment at -20 ° C or lower for 24 hours or more.
 目視除去方法は、ブラックライトを照射するとアニサキスが蛍光を発するため、それを目視で確認しながら手作業でアニサキスを除去する方法である。 The visual removal method is a method of manually removing Anisakis while visually checking it because Anisakis fluoresces when irradiated with black light.
 また、本願発明者らは、直径1cmほどの節足動物であるカイヤドリウミグモを駆除する方法として、パルス発生システムを開発した(非特許文献1)。 In addition, the inventors of the present application have developed a pulse generation system as a method for exterminating sea spiders, which are arthropods having a diameter of about 1 cm (Non-Patent Document 1).
国際公開第2017/018111号International Publication No. 2017/018111
 しかしながら、冷凍殺虫方法では、身質が劣化するなど、その品質が低下し、生食用であっても「冷凍食品」に分類され、「解凍」表示が義務付けられるため商品価値も3割ほど低下する。加えて、処理量は24時間で20kgほどであり、大型フリーザー等の初期コストだけでも620万円ほどと高い。 However, with the frozen insecticidal method, the quality deteriorates, such as deterioration of the physical constitution, and even if it is for raw consumption, it is classified as "frozen food" and "thawing" labeling is obligatory, so the commercial value also decreases by about 30%. .. In addition, the processing amount is about 20 kg in 24 hours, and the initial cost of a large freezer or the like alone is as high as about 6.2 million yen.
 また、目視除去方法では、アニサキスが魚身表面より1mm以上潜り込むと視認不可能となる。そのため、目視除去方法のみでは、魚身からアニサキスを100%除去することは不可能である。加えて、1時間当たりの処理量は19.2kgほどで、手作業で神経を使いながらの除去作業となるため、経験が作業効率に大きく影響し、その人件費も極めて高い。 In addition, with the visual removal method, if Anisakis sneaks in more than 1 mm from the surface of the fish, it becomes invisible. Therefore, it is impossible to remove 100% of Anisakis from fish meat only by the visual removal method. In addition, the amount of processing per hour is about 19.2 kg, and the removal work is performed manually while using nerves, so the experience greatly affects the work efficiency and the labor cost is extremely high.
 さらに、本願発明者らが開発したパルス発生システムは、カイヤドリウミグモに有効であったからといって生物的な構造が全く異なるアニサキスに対して有効であるかどうかは未知であった。また、カイヤドリウミグモに対して直接的にパルス電流を流した場合と異なり、魚類の体内に生息するアニサキスにはパルス電流を間接的に流すこととなる。そのため、アニサキスに対してこのような手法がどの程度有効であるかはなおさら不明であった。 Furthermore, it was unknown whether the pulse generation system developed by the inventors of the present application was effective against Anisakis, which has a completely different biological structure, even though it was effective against sea spiders. In addition, unlike the case where the pulse current is directly applied to the sea spider, the pulse current is indirectly applied to Anisakis inhabiting the body of the fish. Therefore, it was even more unclear how effective such a method was for Anisakis.
 本発明は、上記事情に鑑みてなされたものであり、対象物の品質を保ちつつ、大量処理が可能な、寄生虫殺虫方法等を新たに提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to newly provide a parasite insecticidal method or the like capable of mass processing while maintaining the quality of an object.
 本発明の第1の観点は、対象物の内部の寄生虫を死滅させる寄生虫殺虫システムを用いた寄生虫殺虫方法であって、前記寄生虫殺虫システムは、液体を保持する浸漬槽と、正極電極及び負極電極からなる一対の電極と、前記一対の電極の間にパルス大電流を発生させるパルス電源と、前記パルス電源を制御する電源制御部とを備え、前記浸漬槽の中にある前記液体に浸した前記一対の電極の間に前記対象物を浸漬する浸漬ステップと、前記電源制御部が、前記パルス電源を制御して、前記一対の電極の間にパルス大電流を発生させるパルス大電流発生ステップとを含む、寄生虫殺虫方法である。 The first aspect of the present invention is a parasite insecticidal method using a parasite insecticidal system that kills parasites inside an object, wherein the parasite insecticidal system includes an immersion tank for holding a liquid and a positive electrode. The liquid in the immersion tank is provided with a pair of electrodes composed of electrodes and negative electrodes, a pulse power source that generates a large pulse current between the pair of electrodes, and a power supply control unit that controls the pulse power supply. A pulse large current in which the object is immersed between the pair of electrodes immersed in the electrode and the power supply control unit controls the pulse power supply to generate a pulse large current between the pair of electrodes. It is a parasite killing method including an outbreak step.
 本発明の第2の観点は、第1の観点の寄生虫殺虫方法であって、前記パルス大電流発生ステップにおいて、前記電源制御部が、前記パルス電源を制御して、パルス大電流を複数回発生させる、寄生虫殺虫方法である。 A second aspect of the present invention is the parasite insecticidal method of the first aspect, wherein in the pulse large current generation step, the power supply control unit controls the pulse power source to generate a pulse large current a plurality of times. It is a parasite killing method to generate.
 本発明の第3の観点は、第1又は第2の観点の寄生虫殺虫方法であって、前記寄生虫殺虫システムは、前記浸漬槽の中の前記液体を撹拌する撹拌装置と、前記撹拌装置を制御する撹拌制御部とをさらに備え、前記浸漬ステップと前記パルス大電流発生ステップの間、又は、前記パルス大電流発生ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記浸漬槽の中の前記液体を撹拌させる撹拌ステップをさらに含む。 A third aspect of the present invention is the parasite insecticidal method according to the first or second aspect, wherein the parasite insecticidal system includes a stirring device for stirring the liquid in the immersion tank and the stirring device. The stirring control unit further comprises a stirring control unit for controlling the stirring device, and the stirring control unit controls the stirring device to perform the immersion between the immersion step and the pulsed large current generation step, or in the pulsed large current generation step. It further comprises a stirring step of stirring the liquid in the tank.
 本発明の第4の観点は、第3の観点の寄生虫殺虫方法であって、前記撹拌ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記一対の電極の間に前記液体が上方に向かう流れを生じさせる。 A fourth aspect of the present invention is the parasite insecticidal method of the third aspect, wherein in the stirring step, the stirring control unit controls the stirring device and the liquid is between the pair of electrodes. Creates an upward flow.
 本発明の第5の観点は、第3又は第4の観点の寄生虫殺虫方法であって、前記撹拌ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記一対の電極の間に前記対象物が回流する流れを生じさせる。 A fifth aspect of the present invention is the parasite insecticidal method of the third or fourth aspect, in which in the stirring step, the stirring control unit controls the stirring device and between the pair of electrodes. Causes a flow in which the object is circulated.
 本発明の第6の観点は、第1から第5のいずれかの観点の寄生虫殺虫方法であって、前記寄生虫殺虫システムは、前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させて、前記対象物を前記浸漬槽の外部に移動させる移動機構と、前記移動機構を制御する移動制御部とをさらに備え、前記浸漬ステップにおいて、前記移動制御部が、前記移動機構を制御して、前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させ、パルス大電流発生ステップの後に、前記移動制御部が、前記移動機構を制御して、前記対象物を前記浸漬槽の外部に移動させる回収ステップをさらに含む。 A sixth aspect of the present invention is the parasite insecticidal method according to any one of the first to fifth aspects, wherein the parasite insecticidal system is the object between the pair of electrodes from the outside of the immersion tank. A movement mechanism for moving an object to move the object to the outside of the immersion tank and a movement control unit for controlling the movement mechanism are further provided, and in the immersion step, the movement control unit is the movement mechanism. To move the object between the pair of electrodes from the outside of the immersion tank, and after the pulse large current generation step, the movement control unit controls the movement mechanism to move the object. Further includes a recovery step of moving the worm to the outside of the immersion tank.
 本発明の第7の観点は、第1から第6のいずれかの観点の寄生虫殺虫方法であって、前記浸漬ステップの前に、前記液体の伝導率を、前記対象物の伝導率に近づけるよう調整する伝導率調整ステップをさらに含む、寄生虫殺虫方法である。 A seventh aspect of the present invention is the parasite insecticidal method according to any one of the first to sixth aspects, in which the conductivity of the liquid is brought closer to the conductivity of the object before the immersion step. It is a parasite killing method that further includes a conductivity adjusting step.
 本発明の第8の観点は、第7の観点の寄生虫殺虫方法であって、前記伝導率が、0.05mS/cmから100mS/cmの範囲内である、寄生虫殺虫方法である。 The eighth aspect of the present invention is the parasite insecticidal method of the seventh aspect, wherein the conductivity is in the range of 0.05 mS / cm to 100 mS / cm.
 本発明の第9の観点は、第1から第8の観点のいずれかの寄生虫殺虫方法であって、前記寄生虫がアニサキスである、記載の寄生虫殺虫方法である。 The ninth aspect of the present invention is the parasite insecticidal method according to any one of the first to eighth aspects, wherein the parasite is Anisakis.
 本発明の第10の観点は、対象物中の寄生虫を死滅させる寄生虫殺虫システムであって、液体を保持する浸漬槽と、正極電極及び負極電極からなる一対の電極と、前記一対の電極の間にパルス大電流を発生させるパルス電源と、前記パルス電源を制御する電源制御部とを備える、寄生虫殺虫システムである。 A tenth aspect of the present invention is a parasite insecticidal system that kills parasites in an object, which comprises a immersion tank for holding a liquid, a pair of electrodes composed of a positive electrode and a negative electrode, and the pair of electrodes. It is a parasite insecticidal system including a pulse power supply that generates a large pulse current between the two, and a power supply control unit that controls the pulse power supply.
 本発明の第11の観点は、第10の観点の寄生虫殺虫システムであって、前記浸漬槽内の前記液体を撹拌する撹拌装置と、前記撹拌装置を制御する撹拌制御部とをさらに備える。 The eleventh aspect of the present invention is the parasite insecticidal system of the tenth aspect, further including a stirring device for stirring the liquid in the immersion tank and a stirring control unit for controlling the stirring device.
 本発明の第12の観点は、第11の観点の寄生虫殺虫システムであって、前記撹拌装置は、前記浸漬槽の底に備えられて前記液体を噴出する噴出装置である。 The twelfth aspect of the present invention is the parasite insecticidal system according to the eleventh aspect, in which the stirring device is provided at the bottom of the immersion tank and ejects the liquid.
 本発明の第13の観点は、第12の観点の寄生虫殺虫システムであって、前記噴出装置は、円周上又は楕円周上に配置された3箇所以上の噴出口を有し、前記噴出口は、鉛直方向に対して傾きのある上方に噴出する。 The thirteenth aspect of the present invention is the parasite insecticidal system of the twelfth aspect, in which the ejection device has three or more ejection outlets arranged on the circumference or the elliptical circumference, and the ejection device is said. The outlet spouts upward with an inclination with respect to the vertical direction.
 本発明の第14の観点は、第10から第13のいずれかの観点の寄生虫殺虫システムであって、前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させて、前記対象物を前記浸漬槽の外部に移動させる移動機構と、前記移動機構を制御する移動制御部とをさらに備える。 A fourteenth aspect of the present invention is the parasite insecticidal system according to any one of the tenth to thirteenth aspects, wherein the object is moved from the outside of the immersion tank between the pair of electrodes to obtain the above-mentioned object. A moving mechanism for moving the object to the outside of the immersion tank and a moving control unit for controlling the moving mechanism are further provided.
 本発明の第15の観点は、第10から第14のいずれかの観点の寄生虫殺虫システムであって、前記正極を前記浸漬槽の中の前記液体の内部であって前記負極の上部に保持する正極保持部をさらに備える。 A fifteenth aspect of the present invention is a parasite insecticidal system according to any one of the tenth to fourteenth aspects, in which the positive electrode is held inside the liquid in the immersion tank and above the negative electrode. A positive electrode holding portion is further provided.
 本発明の各観点によれば、パルスの印加により瞬間的に処理されるため、対象物の温度変化を抑えることができ、対象物の品質の劣化を抑えつつ、1分ほどで、寄生虫を殺虫することが可能になる。また、人手による作業を要する従来の目視除去方法に比べ、本発明によれば大量処理が可能になる。さらに、パルス大電流はほぼ均一に伝播するため、対象物の表面だけでなく内部にいる寄生虫も死滅させることが可能になる。 According to each viewpoint of the present invention, since the treatment is instantaneously performed by applying a pulse, the temperature change of the object can be suppressed, and the parasite can be removed in about 1 minute while suppressing the deterioration of the quality of the object. It becomes possible to kill insects. Further, as compared with the conventional visual removal method which requires manual work, according to the present invention, a large amount of processing becomes possible. Furthermore, since the large pulse current propagates almost uniformly, it is possible to kill not only the surface of the object but also the parasites inside.
 本発明の第2の観点によれば、より効果的に寄生虫を死滅させることが可能になる。 According to the second aspect of the present invention, it becomes possible to kill parasites more effectively.
 本発明の第3又は第11の観点によれば、対象物が積層した個所にパルス大電流が偏ることなく、より均一にパルス大電流を対象物に印加することが可能となる。そのため、大量の対象物に対して本発明にかかる寄生虫殺虫方法を適用可能となる。 According to the third or eleventh viewpoint of the present invention, it is possible to apply the pulse large current to the object more uniformly without biasing the pulse large current to the place where the objects are laminated. Therefore, the parasite insecticidal method according to the present invention can be applied to a large amount of objects.
 また、鱗や皮のある原魚の場合は、寄生虫が守られる形となり、殺虫するパルス大電流の印加回数が増加する。しかも、鱗や皮があるために、熱がこもって温度が上昇する傾向にある。これは、対象物の鮮度を落とすことに直結してしまう。しかし、液体を撹拌することにより、対象物の温度上昇を抑えて、品質の劣化を抑制することが可能となる。 Also, in the case of raw fish with scales and skins, the parasites are protected and the number of times a large pulse current that kills the parasites is applied increases. Moreover, due to the presence of scales and skin, heat tends to accumulate and the temperature tends to rise. This is directly linked to reducing the freshness of the object. However, by stirring the liquid, it is possible to suppress the temperature rise of the object and suppress the deterioration of quality.
 さらに、本発明の第4又は第12の観点によれば、電極間における温度上昇を抑制することが容易となる。 Further, according to the fourth or twelfth viewpoint of the present invention, it becomes easy to suppress the temperature rise between the electrodes.
 さらに、本発明の第5又は第13の観点によれば、対象物が大量にあったとしても対象物を電極間で回流させることにより、対象物が電極間から外れることなく、時間をかけて均一にパルス大電流を流すことが容易となる。 Further, according to the fifth or thirteenth viewpoint of the present invention, even if there is a large amount of the object, by circulating the object between the electrodes, the object does not come off between the electrodes, and it takes time. It becomes easy to apply a large pulse current uniformly.
 さらに、本発明の第6又は第14の観点によれば、対象物が大量にあったとしても連続的に対象物にパルス大電流を流すことが容易となる。投入から殺虫処理、回収までを流れ作業的に行うことができる。流れ作業になったことにより、バッチ処理に比べて処理速度を6割程度向上させることができる。 Further, according to the sixth or fourteenth viewpoint of the present invention, even if there are a large number of objects, it becomes easy to continuously apply a large pulse current to the objects. It is possible to carry out the process from injection to insecticidal treatment and recovery in an assembly line. Due to the assembly line work, the processing speed can be improved by about 60% as compared with the batch processing.
 さらに、本発明の第7又は第8の観点によれば、より効果的に対象物にパルス大電流を流して効果的に殺虫することが容易となる。 Further, according to the seventh or eighth viewpoint of the present invention, it becomes easy to more effectively apply a large pulse current to the object to effectively kill the insect.
 本発明者らは、一対の電極の内、正電極の側に脂が付着しやすいことを発見した。本発明の第15の観点によれば、正極が負極よりも上部にあり、逆の配置の場合よりも正極の脂を定期的に除去するメンテナンスを効率よく行うことが可能となる。 The present inventors have discovered that among a pair of electrodes, fat tends to adhere to the positive electrode side. According to the fifteenth aspect of the present invention, the positive electrode is located above the negative electrode, and maintenance for periodically removing the fat on the positive electrode can be performed more efficiently than in the case of the reverse arrangement.
本実施例の寄生虫殺虫システムの(a)概略図及び(b)写真である。It is (a) schematic diagram and (b) photograph of the parasite insecticidal system of this example. 本実施例の寄生虫殺虫方法による処理前後の寄生虫の写真である。It is a photograph of the parasite before and after the treatment by the parasite insecticidal method of this example. 本実施例の寄生虫殺虫システム1の具体的構成の一例を示す図である。It is a figure which shows an example of the specific structure of the parasite insecticidal system 1 of this Example. 寄生虫殺虫方法における(a)バッチ処理、及び、(b)フロー処理の一例を示す図である。It is a figure which shows an example of (a) batch processing and (b) flow processing in a parasite insecticidal method. 厚生労働省統計によるアニサキス食中毒報告件数を示す図である。It is a figure which shows the number of reports of Anisakis food poisoning by the statistics of the Ministry of Health, Labor and Welfare.
 以下、図面を参照して、本発明の寄生虫殺虫システム及び寄生虫殺虫方法の実施例について述べる。 Hereinafter, examples of the parasite insecticidal system and the parasite insecticidal method of the present invention will be described with reference to the drawings.
 図1は、本実施例の寄生虫殺虫システム1(本願請求項記載の「寄生虫殺虫システム」の一例)の(a)概略図及び(b)写真である。寄生虫殺虫システム1は、浸漬槽3(本願請求項記載の「浸漬槽」の一例)と、2枚の平板電極である正極電極7a(本願請求項記載の「正極電極」の一例)及び負極電極7b(本願請求項記載の「負極電極」の一例)からなる平行平板電極7(本願請求項記載の「一対の電極」の一例)と、平行平板電極7に接続するパルス電源9(本願請求項記載の「パルス電源」の一例)とを備える。 FIG. 1 is a schematic diagram (a) and a photograph (b) of the parasite insecticidal system 1 of this embodiment (an example of the “parasite insecticidal system” described in the claims of the present application). The parasite insecticidal system 1 includes an immersion tank 3 (an example of the "immersion tank" described in the present application claim), a positive electrode 7a which is two flat plate electrodes (an example of the "positive electrode" described in the present application claim), and a negative electrode. A parallel plate electrode 7 (an example of a "pair of electrodes" described in the present application) composed of an electrode 7b (an example of the "negative electrode" described in the present application) and a pulse power source 9 connected to the parallel plate electrode 7 (the present claim). (Example of "pulse power supply" described in the section).
 続いて、寄生虫殺虫システム1を用いた本実施例の寄生虫殺虫方法の工程について説明する。まず、浸漬槽を浸漬液11で満たし、平行平板電極7の間に対象物13を浸漬させる(本願請求項記載の「浸漬ステップ」の一例)。そして、平行平板電極7の間にパルス大電流を複数回発生させる(本願請求項記載の「パルス大電流発生ステップ」の一例)。これにより、電極間にパルス大電流が発生する。なお、浸漬液は事前に、所定の伝導率範囲内に調整しておく(本願請求項記載の「伝導率調整ステップ」の一例)。 Next, the process of the parasite insecticidal method of this example using the parasite insecticidal system 1 will be described. First, the immersion tank is filled with the immersion liquid 11 and the object 13 is immersed between the parallel plate electrodes 7 (an example of the "immersion step" described in the claims of the present application). Then, a large pulse current is generated a plurality of times between the parallel plate electrodes 7 (an example of the “pulse large current generation step” described in the claims of the present application). As a result, a large pulse current is generated between the electrodes. The immersion liquid is adjusted in advance within a predetermined conductivity range (an example of the "conductivity adjusting step" described in the claims of the present application).
 パルスパワーとは、200V(もしくは100V)の電源から電気エネルギーを一旦コンデンサやインダクタ等へ蓄積し、これをマイクロ~ナノ秒レベルで取り出すことで得られる瞬間的超巨大電力のことである。 Pulsed power is instantaneous super-giant power obtained by temporarily storing electrical energy from a 200V (or 100V) power supply in a capacitor, inductor, etc., and then extracting this at the micro-nanosecond level.
 パルスの印加は瞬間的な処理であるため、本実施例の寄生虫殺虫方法の全工程にかかる時間は1分ほどである。よって、加工工場においては、1時間当たり、魚フィーレ330kgの大量処理が可能になる見込みである。 Since the application of the pulse is an instantaneous process, the time required for the entire process of the parasite insecticidal method of this example is about 1 minute. Therefore, it is expected that the processing factory will be able to process a large amount of 330 kg of fish fillet per hour.
 図2は、本実施例の寄生虫殺虫方法による処理前後の寄生虫の写真であり、(a)が処理前、(b)処理後である。本実施例では、対象物として、アニサキスが寄生しているアジフィーレを用いた。フィーレは、魚を三枚におろしたときの片身である。(a)処理前は、アニサキスが透明であり生きているのに対し、(b)処理後は、白濁していて死滅していることが分かる。つまり、パルス大電流を発生させることにより、アニサキスを殺虫できることが明らかになった。 FIG. 2 is a photograph of the parasite before and after the treatment by the parasite insecticidal method of this example, (a) is before the treatment and (b) is after the treatment. In this example, Ajifille parasitized by Anisakis was used as the object. Fillet is a piece of fish when it is cut into three pieces. It can be seen that (a) Anisakis is transparent and alive before the treatment, whereas (b) it becomes cloudy and dead after the treatment. In other words, it was clarified that Anisakis can be killed by generating a large pulse current.
 また、アジフィーレに対してパルス大電流(40μS、20kA程度)を20回発生させることにより、アニサキスを100%殺虫可能であることが確認できた。 In addition, it was confirmed that 100% of Anisakis can be killed by generating a large pulse current (40 μS, about 20 kA) 20 times for Ajifille.
 図3は、本実施例の寄生虫殺虫システム1の具体的構成の一例を示す図である。図3を参照して、寄生虫殺虫システム1は、図1に示した構成に加えて、放電スイッチ15と、トリガー17と、第1抵抗19と、第1放電用コンデンサ21と、第2抵抗23と、第2放電用コンデンサ25と、第1コイル27と、第2コイル29と、第1ファン31と、第2ファン33と、撹拌装置35(本願請求項に記載の「撹拌装置」及び「噴出装置」の一例)と、図示されていない撹拌制御部(本願請求項に記載の「撹拌制御部」の一例)とを備える。 FIG. 3 is a diagram showing an example of a specific configuration of the parasite insecticidal system 1 of this embodiment. With reference to FIG. 3, in addition to the configuration shown in FIG. 1, the parasite insecticidal system 1 includes a discharge switch 15, a trigger 17, a first resistor 19, a first discharge capacitor 21, and a second resistor. 23, the second discharge capacitor 25, the first coil 27, the second coil 29, the first fan 31, the second fan 33, and the stirrer 35 (the "stirring device" according to the claim of the present application). An example of a “spouting device”) and a stirring control unit (an example of the “stirring control unit” described in the claim of the present application) (not shown) are provided.
 放電スイッチ15の一方の極は、図示されていない高圧電源に接続されている。また、放電スイッチ15の他方の極は、負極電極7bに接続されている。さらに、放電スイッチは、トリガー17にも接続されている。また、高圧電源、第1抵抗19、第1放電用コンデンサ21、第1コイル27及び正極電極7aは、順に直列に接続されている。さらに、高圧電源、第2抵抗23、第2放電用コンデンサ25、第1コイル27及び正極電極7aは、順に直列に接続されている。第1抵抗19及び第1放電用コンデンサ21と、第2抵抗23及び第2放電用コンデンサ25とは、並列に接続されている。また、第2コイル29の一方の極は、第1コイル27と正極電極7aとの間に接続されている。第2コイル29の他方の極は、放電スイッチ15と負極電極7bとの間に接続されている。撹拌装置35は、負極電極7bの下に設置されている。 One pole of the discharge switch 15 is connected to a high voltage power supply (not shown). Further, the other pole of the discharge switch 15 is connected to the negative electrode electrode 7b. Further, the discharge switch is also connected to the trigger 17. Further, the high voltage power supply, the first resistor 19, the first discharge capacitor 21, the first coil 27, and the positive electrode electrode 7a are connected in series in this order. Further, the high voltage power supply, the second resistor 23, the second discharge capacitor 25, the first coil 27, and the positive electrode electrode 7a are connected in series in this order. The first resistor 19 and the first discharge capacitor 21 and the second resistor 23 and the second discharge capacitor 25 are connected in parallel. Further, one pole of the second coil 29 is connected between the first coil 27 and the positive electrode 7a. The other pole of the second coil 29 is connected between the discharge switch 15 and the negative electrode 7b. The stirring device 35 is installed below the negative electrode electrode 7b.
 図3に示す正極電極7a及び負極電極7bに接続されている等価回路及び高圧電源は、全体として本願請求項における「パルス電源」の一例である。図示されていない電源制御部が、高圧電源、放電スイッチ15及びトリガー17を制御して、一対の電極である正極電極7aと負極電極7bの間にパルス大電流を発生させる。第2コイル29は、充電用インダクタンスとして作用する。第1ファン31は、第1抵抗19及び第2抵抗23を冷却する。第2ファン33は、放電スイッチ15を冷却する。 The equivalent circuit and the high-voltage power supply connected to the positive electrode 7a and the negative electrode 7b shown in FIG. 3 are examples of the “pulse power supply” in the claims as a whole. A power supply control unit (not shown) controls a high-voltage power supply, a discharge switch 15, and a trigger 17 to generate a large pulse current between a pair of electrodes, the positive electrode 7a and the negative electrode 7b. The second coil 29 acts as a charging inductance. The first fan 31 cools the first resistor 19 and the second resistor 23. The second fan 33 cools the discharge switch 15.
 ここで、正極電極7a及び負極電極7bを含む電極間は、海水で満たされており、放電時の等価回路上は抵抗値R3の第3抵抗とみることができる。また、正極電極7aが上に設置され、負極電極7bが下に設置されている。これは、本発明者らが正極電極7aに脂等の汚れが付着しやすいことを見出したことによる。正極電極7aを上下に移動可能とする正極位置制御部をさらに備え、必要であれば寄生虫殺虫システム1が正極電極7aに付着した汚れの除去機構をさらに備える構成としてもよい。これにより、正極電極7aの汚れを除去し、高速かつ大量に寄生虫殺虫処理を行うことが容易となる。 Here, the space between the electrodes including the positive electrode 7a and the negative electrode 7b is filled with seawater, and can be regarded as the third resistance having a resistance value of R3 on the equivalent circuit at the time of discharge. Further, the positive electrode 7a is installed above, and the negative electrode 7b is installed below. This is because the present inventors have found that dirt such as fat is likely to adhere to the positive electrode electrode 7a. A positive electrode position control unit that allows the positive electrode 7a to move up and down may be further provided, and if necessary, the parasite insecticidal system 1 may further include a dirt removing mechanism attached to the positive electrode 7a. This makes it easy to remove dirt from the positive electrode 7a and perform a large amount of parasite insecticidal treatment at high speed.
 撹拌装置35は、下から上に向けて海水を噴出する。撹拌制御部は、撹拌装置35を制御して、一対の電極間の海水で満たされた空間に下から上への水流を発生させる。具体的には、撹拌装置35は、ポンプにて浸漬槽3の内部の海水を循環させている。パルス大電流発生中は、電極間のフィーレ処理空間の海水温度が上昇する。これは、フィーレの品質低下につながるため、望ましくない。このため、その温度上昇の提言を目的として、処理空間以外の温度が上昇していない空間の海水(バッファ海水)を処理空間に導入している。これにより、処理空間の海水温度の過度な上昇を抑制し、フィーレの温度上昇を抑制する。 The agitator 35 ejects seawater from the bottom to the top. The stirring control unit controls the stirring device 35 to generate a water flow from bottom to top in a space filled with seawater between the pair of electrodes. Specifically, the stirring device 35 circulates the seawater inside the immersion tank 3 with a pump. During the generation of a large pulse current, the seawater temperature in the feel processing space between the electrodes rises. This is not desirable as it leads to poor fillet quality. Therefore, for the purpose of proposing the temperature rise, seawater (buffer seawater) in a space other than the treatment space where the temperature does not rise is introduced into the treatment space. As a result, the excessive rise in the seawater temperature in the treatment space is suppressed, and the temperature rise in the fillet is suppressed.
 また、電極間の空間に下から上への水流を発生させる。負極電極7bは、撹拌装置35の水流を妨げないように、対応する箇所に穴が開いている。例えば、中心に1箇所、中心から等距離の円周上に等間隔で3箇所の穴が開いている。この水流は、真上に向かうものでもよいが、撹拌できない空間が存在することになりがちである。そのため、中心以外の穴は、上方向かつ中心方向へ傾けられており、処理空間全体を均一に撹拌することが容易となっている。 Also, generate a water flow from bottom to top in the space between the electrodes. The negative electrode electrode 7b has a hole at a corresponding portion so as not to obstruct the water flow of the stirring device 35. For example, there is one hole in the center and three holes at equal intervals on the circumference equidistant from the center. This water flow may be directed directly upward, but there tends to be a space that cannot be agitated. Therefore, the holes other than the center are inclined upward and toward the center, and it is easy to uniformly agitate the entire processing space.
 続いて、本実施例の寄生虫殺虫システム1は、浸漬槽3の外部から一対の電極の間に対象物を移動させて、対象物を浸漬槽3の外部に移動させる移動機構をさらに備える。 Subsequently, the parasite insecticidal system 1 of the present embodiment further includes a moving mechanism for moving the object from the outside of the immersion tank 3 between the pair of electrodes to move the object to the outside of the immersion tank 3.
 図4は、本発明の寄生虫殺虫方法における(a)バッチ処理、及び、(b)フロー処理の一例を示す図である。図4(a)に示すバッチ処理を行う場合、フィーレ群を用意して投入し、処理後に引き上げるためのデッドタイムが生じる。具体的には、処理時間は全体の60%程度となってしまう。 FIG. 4 is a diagram showing an example of (a) batch treatment and (b) flow treatment in the parasite insecticidal method of the present invention. When the batch processing shown in FIG. 4A is performed, a dead time is generated for preparing and charging the fillet group and pulling it up after the processing. Specifically, the processing time is about 60% of the total.
 また、バッチ処理を行う場合、撹拌しなければパルスパワーが特定の場所に集中してしまう。例えば、比較的フィーレ群が集まって高さが高くなった場所にパルスパワーが集中し、それ以外の場所の殺虫確度が低下する。そこで、フィーレ群全体を均等かつ確実に殺虫するために均一な撹拌が必須となる。また、殺虫確度を高めるためには、パルスパワーの印加回数を増やす必要があり、余分なエネルギーを必要とする。 Also, when batch processing is performed, pulse power will be concentrated in a specific place unless stirring is performed. For example, the pulse power is concentrated in a place where the fillet group is relatively gathered and the height is high, and the insecticidal probability is lowered in other places. Therefore, uniform stirring is essential to evenly and reliably kill the entire fillet group. Further, in order to increase the insecticidal accuracy, it is necessary to increase the number of times the pulse power is applied, which requires extra energy.
 しかも、均一な撹拌ができない場合、偶然に重なり合った特定のフィーレが極端に加熱されることとなり、殺虫できたとしても商品価値が低下することとなってしまう。 Moreover, if uniform stirring is not possible, specific fillets that accidentally overlap will be extremely heated, and even if insects can be killed, the commercial value will decrease.
 そこで、本実施例では、図4(b)に示すように、寄生虫殺虫システム1が備える移動機構により、個別のフィーレに対して殺虫処理を行うフロー処理を可能とした。この移動機構は、フィーレを1枚ずつ浸漬槽の外部から電極間の処理空間に運搬し、浸漬槽の外部へと引き上げる。 Therefore, in this embodiment, as shown in FIG. 4B, the movement mechanism provided in the parasite insecticidal system 1 enables a flow process for performing insecticidal treatment on individual fillets. This moving mechanism transports the feelers one by one from the outside of the immersion tank to the processing space between the electrodes and pulls them up to the outside of the immersion tank.
 この場合、移動機構を継続的に稼動させることにより、常時殺虫処理を行うため、稼働率100%が可能となる。また、フィーレを一枚一枚処理するため、フィーレが重なることがなくなる。その結果、撹拌が不要となる。しかも、フィーレが極端に加熱されることもないため、商品価値を下げずに確実な殺虫処理を行うことが可能となる。 In this case, by continuously operating the moving mechanism, insecticidal treatment is always performed, so that the operating rate can be 100%. Moreover, since the fillets are processed one by one, the fillets do not overlap. As a result, stirring becomes unnecessary. Moreover, since the feeler is not extremely heated, it is possible to carry out reliable insecticidal treatment without lowering the commercial value.
 本発明の寄生虫殺虫方法によれば、アジフィーレに寄生しているアニサキスを殺虫可能である。また、本発明の寄生虫殺虫システム及び寄生虫殺虫方法によれば、対象物の冷凍を要する冷凍殺虫方法に比べて対象物の温度変化が少ないため、品質の劣化を抑えることができる。さらに、本発明の寄生虫殺虫方法は、人手による作業が少ないため、大量処理が可能になる。また、パルス大電流はほぼ均一に伝播するため、フィーレが厚くても殺虫効果が低下することはない。つまり、対象物の表面だけでなく、内部にいる寄生虫にも殺虫効果を発揮する。 According to the parasite insecticidal method of the present invention, Anisakis parasitizing Ajifille can be killed. Further, according to the parasite insecticidal system and the parasite insecticidal method of the present invention, the temperature change of the object is smaller than that of the frozen insecticidal method requiring freezing of the object, so that deterioration of quality can be suppressed. Further, the parasite insecticidal method of the present invention requires less manual work, so that a large amount of treatment is possible. Moreover, since the large pulse current propagates almost uniformly, the insecticidal effect does not decrease even if the fillet is thick. In other words, it exerts an insecticidal effect not only on the surface of the object but also on the parasites inside.
 なお、浸漬液の伝導率は、対象物と同程度にすると良く、0.05mS/cmから100mS/cmであることが好ましい。本実施例では、浸漬槽を満たす液体として、アジフィーレと同じ伝導率になる様に3倍に希釈した海水を用いた。なお、海水の伝導率は約50mS/cmであり、水道水の伝導率は約0.1mS/cmである。 The conductivity of the immersion liquid may be about the same as that of the object, and is preferably 0.05 mS / cm to 100 mS / cm. In this example, seawater diluted 3-fold so as to have the same conductivity as Ajifille was used as the liquid to fill the immersion tank. The conductivity of seawater is about 50 mS / cm, and the conductivity of tap water is about 0.1 mS / cm.
 また、平行平板電極は、全体が浸漬液中にあってもよいし、一部が浸漬液中にあってもよい。 Further, the parallel plate electrode may be entirely in the immersion liquid or partly in the immersion liquid.
 さらに、対象物を電極間に設置したカゴに入れてパルス電圧を印加してもよい。この場合、回流を発生させずとも対象物が電極間から外れるおそれが低下する。そのため、寄生虫殺虫システムは、単純に下から上への噴出装置を電極間の空間の下に備えるものであってもよい。 Further, the object may be placed in a basket installed between the electrodes and a pulse voltage may be applied. In this case, the possibility that the object will come off between the electrodes is reduced even if the circulation is not generated. Therefore, the parasite insecticidal system may simply include a bottom-to-top ejection device under the space between the electrodes.
 さらに、撹拌装置が発生させる水流は、対象物を一対の電極間の空間において分散させることができれば、水流の勢い、穴の数又は位置を問わない。 Furthermore, the water flow generated by the agitator does not matter the force of the water flow, the number or position of holes, as long as the object can be dispersed in the space between the pair of electrodes.
1 寄生虫殺虫装置、3 浸漬槽、7 平行平板電極、7a 正極電極、7b 負極電極、9 パルス電源、11 浸漬液、13 対象物、15 放電スイッチ、17 トリガー、19 第1抵抗、21 第1放電用コンデンサ、23 第2抵抗、25 第2放電用コンデンサ、27 第1コイル、29 第2コイル、35 撹拌装置 1 Parasite insecticidal device, 3 Immersion tank, 7 Parallel plate electrode, 7a Positive electrode, 7b Negative electrode, 9 Pulse power supply, 11 Immersion liquid, 13 Object, 15 Discharge switch, 17 Trigger, 19 1st resistance, 21 1st Discharge capacitor, 23 second resistor, 25 second discharge capacitor, 27 first coil, 29 second coil, 35 stirrer

Claims (15)

  1.  対象物の内部の寄生虫を死滅させる寄生虫殺虫システムを用いた寄生虫殺虫方法であって、
     前記寄生虫殺虫システムは、
     液体を保持する浸漬槽と、
     正極電極及び負極電極からなる一対の電極と、
     前記一対の電極の間にパルス大電流を発生させるパルス電源と、
     前記パルス電源を制御する電源制御部とを備え、
      前記浸漬槽の中にある前記液体に浸した前記一対の電極の間に前記対象物を浸漬する浸漬ステップと、
      前記電源制御部が、前記パルス電源を制御して、前記一対の電極の間にパルス大電流を発生させるパルス大電流発生ステップとを含む、寄生虫殺虫方法。
    It is a parasite insecticidal method using a parasite insecticidal system that kills parasites inside the object.
    The parasite insecticidal system
    An immersion tank that holds the liquid and
    A pair of electrodes consisting of a positive electrode and a negative electrode,
    A pulse power supply that generates a large pulse current between the pair of electrodes,
    It is provided with a power supply control unit that controls the pulse power supply.
    An immersion step of immersing the object between the pair of electrodes immersed in the liquid in the immersion tank,
    A parasite insecticidal method comprising a pulsed large current generation step in which the power supply control unit controls the pulsed power source to generate a pulsed large current between the pair of electrodes.
  2.  前記パルス大電流発生ステップにおいて、前記電源制御部が、前記パルス電源を制御して、パルス大電流を複数回発生させる、請求項1記載の寄生虫殺虫方法。 The parasite insecticidal method according to claim 1, wherein in the pulse large current generation step, the power supply control unit controls the pulse power source to generate a pulse large current a plurality of times.
  3.  前記寄生虫殺虫システムは、
     前記浸漬槽の中の前記液体を撹拌する撹拌装置と、
     前記撹拌装置を制御する撹拌制御部とをさらに備え、
      前記浸漬ステップと前記パルス大電流発生ステップの間、又は、前記パルス大電流発生ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記浸漬槽の中の前記液体を撹拌させる撹拌ステップをさらに含む、請求項1又は2記載の寄生虫殺虫方法。
    The parasite insecticidal system
    A stirring device for stirring the liquid in the immersion tank and
    Further provided with a stirring control unit for controlling the stirring device,
    A stirring step in which the stirring control unit controls the stirring device to stir the liquid in the immersion tank between the immersion step and the pulsed large current generation step, or in the pulsed large current generation step. The parasite insecticidal method according to claim 1 or 2, further comprising.
  4.  前記撹拌ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記一対の電極の間に前記液体が上方に向かう流れを生じさせる、請求項3記載の寄生虫殺虫方法。 The parasite insecticidal method according to claim 3, wherein in the stirring step, the stirring control unit controls the stirring device to generate an upward flow of the liquid between the pair of electrodes.
  5.  前記撹拌ステップにおいて、前記撹拌制御部が、前記撹拌装置を制御して、前記一対の電極の間に前記対象物が回流する流れを生じさせる、請求項3又は4記載の寄生虫殺虫方法。 The parasite insecticidal method according to claim 3 or 4, wherein in the stirring step, the stirring control unit controls the stirring device to generate a flow in which the object circulates between the pair of electrodes.
  6.  前記寄生虫殺虫システムは、
      前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させて、前記対象物を前記浸漬槽の外部に移動させる移動機構と、
      前記移動機構を制御する移動制御部とをさらに備え、
     前記浸漬ステップにおいて、前記移動制御部が、前記移動機構を制御して、前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させ、
     パルス大電流発生ステップの後に、前記移動制御部が、前記移動機構を制御して、前記対象物を前記浸漬槽の外部に移動させる回収ステップをさらに含む、請求項1から5のいずれかに記載の寄生虫殺虫方法。
    The parasite insecticidal system
    A moving mechanism that moves the object between the pair of electrodes from the outside of the immersion tank and moves the object to the outside of the immersion tank.
    Further provided with a movement control unit for controlling the movement mechanism,
    In the immersion step, the movement control unit controls the movement mechanism to move the object between the pair of electrodes from the outside of the immersion tank.
    The method according to any one of claims 1 to 5, further comprising a recovery step in which the movement control unit controls the movement mechanism to move the object to the outside of the immersion tank after the pulse large current generation step. How to kill parasites.
  7.  前記浸漬ステップの前に、前記液体の伝導率を、前記対象物の伝導率に近づけるよう調整する伝導率調整ステップをさらに含む、前記請求項1から6のいずれかに記載の寄生虫殺虫方法。 The parasite insecticidal method according to any one of claims 1 to 6, further comprising a conductivity adjusting step for adjusting the conductivity of the liquid so as to approach the conductivity of the object before the immersion step.
  8.  前記伝導率が、0.05mS/cmから100mS/cmの範囲内である、請求項7記載の寄生虫殺虫方法。 The parasite insecticidal method according to claim 7, wherein the conductivity is in the range of 0.05 mS / cm to 100 mS / cm.
  9.  前記寄生虫がアニサキスである、請求項1から8のいずれかに記載の寄生虫殺虫方法。 The parasite insecticidal method according to any one of claims 1 to 8, wherein the parasite is Anisakis.
  10.  対象物中の寄生虫を死滅させる寄生虫殺虫システムであって、
     液体を保持する浸漬槽と、
     正極電極及び負極電極からなる一対の電極と、
     前記一対の電極の間にパルス大電流を発生させるパルス電源と、
     前記パルス電源を制御する電源制御部とを備える、寄生虫殺虫システム。
    A parasite insecticidal system that kills parasites in an object
    An immersion tank that holds the liquid and
    A pair of electrodes consisting of a positive electrode and a negative electrode,
    A pulse power supply that generates a large pulse current between the pair of electrodes,
    A parasite insecticidal system including a power supply control unit that controls the pulse power supply.
  11.  前記浸漬槽内の前記液体を撹拌する撹拌装置と、
     前記撹拌装置を制御する撹拌制御部とをさらに備える、請求項10記載の寄生虫殺虫システム。
    A stirring device for stirring the liquid in the immersion tank and
    The parasite insecticidal system according to claim 10, further comprising a stirring control unit for controlling the stirring device.
  12.  前記撹拌装置は、前記浸漬槽の底に備えられて前記液体を噴出する噴出装置である、請求項11記載の寄生虫殺虫システム。 The parasite insecticidal system according to claim 11, wherein the stirring device is an ejection device provided at the bottom of the immersion tank and ejects the liquid.
  13.  前記噴出装置は、円周上又は楕円周上に配置された3箇所以上の噴出口を有し、
     前記噴出口は、鉛直方向に対して傾きのある上方に噴出する、請求項12記載の寄生虫殺虫システム。
    The ejection device has three or more ejection ports arranged on the circumference or the circumference of an ellipse.
    The parasite insecticidal system according to claim 12, wherein the spout is ejected upward at an angle with respect to the vertical direction.
  14.  前記浸漬槽の外部から前記一対の電極の間に前記対象物を移動させて、前記対象物を前記浸漬槽の外部に移動させる移動機構と、
     前記移動機構を制御する移動制御部とをさらに備える、請求項10から13のいずれかに記載の寄生虫殺虫システム。
    A moving mechanism that moves the object between the pair of electrodes from the outside of the immersion tank and moves the object to the outside of the immersion tank.
    The parasite insecticidal system according to any one of claims 10 to 13, further comprising a movement control unit that controls the movement mechanism.
  15.  前記正極を前記浸漬槽の中の前記液体の内部であって前記負極の上部に保持する正極保持部をさらに備える、請求項10から14のいずれかに記載の寄生虫殺虫システム。
     
    The parasite insecticidal system according to any one of claims 10 to 14, further comprising a positive electrode holding portion that holds the positive electrode inside the liquid in the immersion tank and above the negative electrode.
PCT/JP2019/034431 2018-07-23 2019-09-02 Parasite-killing method and parasite-killing system WO2021014659A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018137821 2018-07-23
JP2019135452A JP7394334B2 (en) 2018-07-23 2019-07-23 Parasite killing method and parasite killing system
JP2019-135452 2019-07-23

Publications (1)

Publication Number Publication Date
WO2021014659A1 true WO2021014659A1 (en) 2021-01-28

Family

ID=69587588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034431 WO2021014659A1 (en) 2018-07-23 2019-09-02 Parasite-killing method and parasite-killing system

Country Status (2)

Country Link
JP (1) JP7394334B2 (en)
WO (1) WO2021014659A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105293U (en) * 1990-02-19 1991-10-31
JPH11192490A (en) * 1997-12-29 1999-07-21 Pentel Kk Electrochemical control of aquatic organism, antifouling, and antifouling device
JP2013518583A (en) * 2010-02-05 2013-05-23 ベック,エスベン Apparatus and method for combating fish parasites
EP2837284A1 (en) * 2013-08-13 2015-02-18 Grupo Marco S.p.A. Method and device for detaching parasites that adhere to the skin of the fish
WO2018090157A1 (en) * 2016-11-17 2018-05-24 Alvarez Gatica Raul Hernan System for the elimination of parasites adhered to fish, by directly applying electricity to the fish, removing the parasites without harming the fish
JP2019054772A (en) * 2017-09-22 2019-04-11 国立大学法人 熊本大学 Apparatus and method for removing aquaculture netting attachment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105293U (en) * 1990-02-19 1991-10-31
JPH11192490A (en) * 1997-12-29 1999-07-21 Pentel Kk Electrochemical control of aquatic organism, antifouling, and antifouling device
JP2013518583A (en) * 2010-02-05 2013-05-23 ベック,エスベン Apparatus and method for combating fish parasites
EP2837284A1 (en) * 2013-08-13 2015-02-18 Grupo Marco S.p.A. Method and device for detaching parasites that adhere to the skin of the fish
WO2018090157A1 (en) * 2016-11-17 2018-05-24 Alvarez Gatica Raul Hernan System for the elimination of parasites adhered to fish, by directly applying electricity to the fish, removing the parasites without harming the fish
JP2019054772A (en) * 2017-09-22 2019-04-11 国立大学法人 熊本大学 Apparatus and method for removing aquaculture netting attachment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUZUKI, JUN, MURATA, RIE,: "A Review of Anisakiasis and Anisakis Larvae in Japan: From the Prevalence and Risk of Anisakis Infections to the Identification of Anisakis Larvae", ANNUAL REPORT OF TOKYO METROPOLITAN INSTITUTE OF PUBLIC HEALTH, vol. 62, 2011, pages 13 - 24 *
WANG D, HIRAYAMA K, TAKAMURA N, GOTO T, NAMIHIRA T, AKIYAMA H, P: "Studies of Electrical Killing on Nymphonella tapetis Using Pulsed Power Technology", PROCEEDINGS OF THE XXX INTERNATIONAL CONFERENCE ON PHENOMENA IN IONIZED GASES (ICPIG), vol. D16, 2011, Belfast, Northern Ireland, UK, XP055786320 *

Also Published As

Publication number Publication date
JP2020018296A (en) 2020-02-06
JP7394334B2 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
US11147247B2 (en) System for the elimination of parasites adhered to fish, by directly applying electricity to the fish, removing the parasites without harming the fish
US7776373B2 (en) Apparatus and method for the enhancement of food properties and food prepared therefrom
CA2995443A1 (en) Method and apparatus for the management of a soil pest
AU750429B2 (en) Humane crustacean processor
WO2021014659A1 (en) Parasite-killing method and parasite-killing system
DK1895850T3 (en) Method and arrangement for applying fish electron anesthesia
EP1143802B1 (en) Process for slaughtering fish
Martínez et al. Pulsed electric fields (PEF) applications in the inactivation of parasites in food
CA3023981C (en) Flow-through fish stunner and method of stunning fish
AU2019286119B2 (en) Apparatus for injuring or killing undesired organisms in water
EP0097645A1 (en) Sterilization process and apparatus
RU2722035C2 (en) Constant/alternating current device and method of stunning and immobilization of poultry
JP2013162779A (en) Laver culturing net
JP4912226B2 (en) Seafood breeding device and breeding method
JP2012165720A (en) Fish soothing apparatus by electricity and method for taking up fish
Onitsuka et al. Design of the Prototype Device to Kill Anisakis Using Pulsed Power Technology
WO2012158132A1 (en) Apparatus for the enhancement of food properties by electroporation or pulsed electric fields
KR20240106647A (en) Egg shell removal method using pulsed electric field
GB2366980A (en) Humane crustacean processor
AU3719299A (en) Humane crustacean processor
Kono et al. Application of asymmetric burst pulse system for preparation of transgenic medaka (Oryzias latipes)
JP2003320374A (en) Apparatus for treating seawater
CN107927521A (en) The deinsectization method of leaf vegetables
AU8145482A (en) Sterilization process and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938214

Country of ref document: EP

Kind code of ref document: A1