WO2021012781A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2021012781A1
WO2021012781A1 PCT/CN2020/092800 CN2020092800W WO2021012781A1 WO 2021012781 A1 WO2021012781 A1 WO 2021012781A1 CN 2020092800 W CN2020092800 W CN 2020092800W WO 2021012781 A1 WO2021012781 A1 WO 2021012781A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
compressor
passage port
heat
reversing valve
Prior art date
Application number
PCT/CN2020/092800
Other languages
English (en)
French (fr)
Inventor
邱嵩
王淼
魏向阳
郑岩
孙亚楠
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2021012781A1 publication Critical patent/WO2021012781A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/009Indoor units, e.g. fan coil units characterised by heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the invention belongs to the technical field of air conditioners, and specifically provides an air conditioner.
  • Air conditioners are commonly used indoor environment temperature control equipment, including commercial air conditioners and household air conditioners.
  • Commercial air conditioners are mostly used in commercial buildings such as office buildings and shopping malls.
  • Household air conditioners are mostly used in residential buildings and other civil buildings.
  • Air conditioners can pass Heating can increase the indoor ambient temperature, and it can also reduce the indoor ambient temperature through cooling.
  • the outdoor temperature is generally below 10°C, while the temperature in the middle of the outdoor heat exchanger is about 0 ⁇ 1°C.
  • the temperature difference between the outdoor heat exchanger and the outdoors is small, which makes the outdoor heat exchanger difficult to get from the outside world. Obtaining heat makes the heating effect poor, especially when the outdoor temperature is below -10°C, it is even more difficult for the outdoor heat exchanger to obtain sufficient heat from the outside, which makes the heating effect worse and the heating time is long.
  • inverter air conditioners generally reduce the temperature of the outdoor heat exchanger by increasing the working frequency of the compressor to obtain more heat from the outside to improve the heating effect; fixed frequency air conditioners generally use electric auxiliary heating Device to improve the heating effect.
  • inverter air conditioners although the above-mentioned method can improve the heating effect, it will increase the power consumption of the air conditioner.
  • the present invention provides an air conditioner, which includes indoor heat exchange Heat exchanger, outdoor heat exchanger, compressor, first reversing valve, second reversing valve and heat collecting components.
  • the indoor heat exchanger, outdoor heat exchanger and compressor constitute a closed-loop refrigerant circulation system.
  • the heat collecting components are arranged in The compressor is installed on or close to the compressor, the first reversing valve is used to switch the air conditioner between cooling mode and heating mode, and the second reversing valve is set to be able to remove the heat collecting member from the air conditioner when the air conditioner is in heating mode.
  • the heat collected on the compressor is delivered to the indoor heat exchanger.
  • the second reversing valve includes a first passage port, a second passage port, a third passage port, and a fourth passage port, and the second reversing valve is set to perform the cooling mode when the air conditioner
  • the first passage port is communicated with the second passage port and the third passage port is communicated with the fourth passage port so that the refrigerant in the refrigerant circulation system does not pass through the heat collecting member
  • the second reversing valve is also set to perform control in the air conditioner
  • the first passage port is communicated with the fourth passage port
  • the second passage port is communicated with the third passage port, so that the refrigerant in the refrigerant circulation system passes through the heat collecting member.
  • the first channel port is connected to the outdoor heat exchanger
  • the second channel port is connected to the first reversing valve
  • the third channel port and the fourth channel port are respectively connected to the two ends of the heat collecting member connection.
  • the heat collecting member is sleeved on the compressor.
  • the heat collecting member is partially sleeved on the compressor.
  • the heat collecting member is a heat exchange tube cover.
  • the heat exchange tube cover is a heat exchange copper tube cover.
  • the heat collecting member is a spiral heat exchange tube.
  • the spiral heat exchange tube is a spiral heat exchange copper tube.
  • the air conditioner is provided with a second reversing valve and a heat collecting member, and the second reversing valve can pass through the refrigerant when the air conditioner is in the heating mode. Flow transfers the heat collected by the heat-collecting component from the compressor to the indoor heat exchanger.
  • the second reversing valve includes a first passage port, a second passage port, a third passage port, and a fourth passage port, and the second reversing valve is configured to connect the first passage port to the first passage port when the air conditioner performs the cooling mode.
  • the second passage port is connected and the third passage port is communicated with the fourth passage port so that the refrigerant in the refrigerant circulation system does not pass through the heat collecting member.
  • the second reversing valve is also set to turn the first valve into the air conditioner when the air conditioner performs the heating mode.
  • the passage port is communicated with the fourth passage port and the second passage port is communicated with the third passage port so that the refrigerant in the refrigerant circulation system passes through the heat collecting member.
  • the heat of the compressor during the heating process of the air conditioner It can be used to improve the heating effect of the indoor unit, and during the cooling process of the air conditioner, the heat of the compressor will not be transferred to the indoor unit and affect the cooling effect of the air conditioner. That is, the setting of the second reversing valve can achieve When the air conditioner is heating, the heating effect is improved and the cooling effect is not affected when the air conditioner is cooling, so as to meet the needs of users and further enhance the user experience.
  • the heat collecting member is sleeved on the compressor.
  • this arrangement makes the internal structure of the outdoor unit of the air conditioner compact to save space, which is beneficial to the miniaturization of the outdoor unit, and on the other hand, the heat of the compressor is not easily lost to the air. In this way, the heat of the compressor is fully absorbed by the heat collecting member.
  • the heat collecting member is partially sleeved on the compressor.
  • each part of the heat collecting components is closer to the compressor, so that the heat collecting components can collect more heat from the compressor.
  • the heat collection member is a heat exchange tube cover, and through this arrangement, the heat absorption area of the refrigerant is larger, and more heat can be absorbed.
  • the heat collecting member is a spiral heat exchange tube, and through such an arrangement, the refrigerant can flow longer near the compressor and can absorb more heat.
  • Figure 1 is a schematic structural diagram of an embodiment of the air conditioner of the present invention when performing a cooling mode
  • Fig. 2 is a schematic structural diagram of the air conditioner embodiment shown in Fig. 1 of the present invention when the heating mode is executed;
  • FIG. 3 is a schematic diagram of the structure of the heat exchange tube cover and the compressor of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the spiral heat exchange tube of the present invention.
  • the terms “upper”, “inner”, “in” and other terms indicating the direction or positional relationship are based on the direction or positional relationship shown in the drawings, which is only for convenience The description does not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • the terms “first”, “second”, “third”, “fourth” and “fifth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the terms “set”, “connected”, and “connected” should be understood in a broad sense, for example, they may be fixed connections or It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the present invention provides an air conditioner, which aims to make the heat of the compressor fully utilized, thereby achieving The heat of the compressor improves the heating effect of the air conditioner without increasing the power consumption of the air conditioner, reducing the operating cost of the air conditioner and improving the user experience.
  • the air conditioner of the present invention includes an indoor heat exchanger (not shown in the figure), an outdoor heat exchanger 1, a compressor 2, a first reversing valve 3, a second reversing valve 4 and a heat collector
  • the component 5, the indoor heat exchanger, the outdoor heat exchanger 1 and the compressor 2 constitute a closed-loop refrigerant circulation system.
  • the heat collecting component 5 is arranged on the compressor 2 or close to the compressor 2, and the first reversing valve 3 is used to make
  • the air conditioner switches between a cooling mode and a heating mode, and the second reversing valve 4 is configured to transfer the heat collected by the heat collecting member 5 from the compressor 2 to the indoor heat exchanger when the air conditioner performs the heating mode.
  • the first reversing valve 3 and the second reversing valve 4 can be a four-way valve or a six-way valve.
  • the heat collected on 2 can be delivered to the indoor heat exchanger.
  • the heat collection member 5 can be a spiral heat exchange tube or a heat exchange tube cover.
  • Those skilled in the art can flexibly set the specific structure of the heat collection member 5 in practical applications, as long as the heat collection member 5 can realize the refrigerant from It is sufficient that the heat on the compressor 2 can be absorbed when flowing through.
  • the second reversing valve 4 includes a first passage port 41, a second passage port 42, a third passage port 43 and a fourth passage port 44, as shown in Figures 1 and 2
  • the structure is based on the example that the first reversing valve 3 and the second reversing valve 4 are four-way valves.
  • the second reversing valve 4 is set to connect the first passage port 41 and the second passage port 42 when the air conditioner is performing the cooling mode.
  • the third passage port 43 and the fourth passage port 44 are communicated so that the refrigerant in the refrigerant circulation system does not pass through the heat collecting member 5, and the second reversing valve 4 is also set to connect the first valve when the air conditioner performs the heating mode
  • the passage port 41 communicates with the fourth passage port 44 and the second passage port 42 and the third passage port 43 communicate with each other so that the refrigerant in the refrigerant circulation system passes through the heat collecting member 5.
  • the first channel port 41 is connected to the outdoor heat exchanger 1
  • the second channel port 42 is connected to the first reversing valve 3
  • the third channel port 43 and the fourth channel port 44 are respectively connected to two ends of the heat collecting member 5. connection.
  • the air conditioner includes a first refrigerant circulation pipe 6, a second refrigerant circulation pipe 7, a third refrigerant circulation pipe 8, a fourth refrigerant circulation pipe 9 and a fifth refrigerant circulation pipe 10.
  • One end of the refrigerant circulation pipe 6 is in communication with the first passage port 41, the other end of the first refrigerant circulation pipe 6 is in communication with the outdoor heat exchanger 1, and one end of the second refrigerant circulation pipe 7 is in communication with the second passage port 42, and the second refrigerant
  • the other end of the circulation pipe 7 is connected to the first reversing valve 3
  • one end of the third refrigerant circulation pipe 8 communicates with the third passage port 43
  • the other end of the third refrigerant circulation pipe 8 communicates with one end of the heat collecting member 5.
  • One end of the four refrigerant circulation pipe 9 is connected to the fourth passage port 44, the other end of the fourth refrigerant circulation pipe 9 is connected to the other end of the heat collecting member 5, and one end of the fifth refrigerant circulation pipe 10 is connected to the passage port 21 of the compressor 2 Connected, the other end of the fifth refrigerant circulation pipe 10 is connected to the first reversing valve 3.
  • the second reversing valve 4 is in the first state. In the first state, the first passage port 41 and the first The second passage port 42 is in communication, the third passage port 43 is in communication with the fourth passage port 44, and the second refrigerant circulation pipe 7 and the fifth refrigerant circulation pipe 10 can be communicated through the first reversing valve 3.
  • the second reversing valve 4 When the air conditioner performs the heating mode, The second reversing valve 4 is in the second state. In the second state, the first passage port 41 is in communication with the fourth passage port 44, the second passage port 42 is in communication with the third passage port 43, and the second refrigerant circulation pipe 7 is connected to the The five refrigerant circulation pipe 10 is disconnected by the first reversing valve 3.
  • the controller of the air conditioner receives the refrigeration signal, and both the first reversing valve 3 and the second reversing valve 4 act (the sequence of actions of the first reversing valve 3 and the second reversing valve 4 is not limited), so that The air conditioner executes the cooling mode.
  • the refrigerant circulation system is in the first communication state, and the refrigerant does not flow through the heat collector.
  • Component 5 specifically, the refrigerant flows from the outdoor heat exchanger 1 to the indoor heat exchanger, then flows into the compressor 2 through the first reversing valve 3, and flows out from the passage port 21 of the compressor 2, and then sequentially passes through the first reversing valve Valve 3, the second channel port 42 and the first channel port 41 of the second reversing valve 4 flow back to the outdoor heat exchanger 1, that is, the flow path of the refrigerant is: outdoor heat exchanger 1 ⁇ indoor heat exchanger ⁇ first Reversing valve 3 ⁇ Compressor 2 ⁇ First reversing valve 3 ⁇ Second reversing valve 4 ⁇ Outdoor heat exchanger 1.
  • the controller of the air conditioner receives the heating signal, and both the first reversing valve 3 and the second reversing valve 4 act (wherein, the sequence of actions of the first reversing valve 3 and the second reversing valve 4 is not limited), Make the air conditioner execute the heating mode.
  • the refrigerant circulation system is in the second communicating state, and the refrigerant flows through the set
  • the heat component 5 absorbs the heat of the compressor 2 through the heat collection component 5 when the refrigerant flows through the heat collection component 5, and finally releases the heat absorbed from the compressor 2 to the room.
  • the refrigerant flows out of the outdoor heat exchanger 1 Then, it flows to the heat collecting member 5 through the first passage port 41 and the fourth passage port 44 of the second reversing valve 4, and then flows out from the heat collecting member 5, and then passes through the third passage port of the second reversing valve 4 in turn. 43.
  • the second passage port 42 and the first reversing valve 3 flow to the compressor 2, and then flow back to the outdoor heat exchanger 1 through the first reversing valve 3 and the indoor heat exchanger, that is, the flow path of the refrigerant is: outdoor Heat exchanger 1 ⁇ second reversing valve 4 ⁇ heat collecting member 5 ⁇ second reversing valve 4 ⁇ first reversing valve 3 ⁇ compressor 2 ⁇ first reversing valve 3 ⁇ indoor heat exchanger ⁇ outdoor heat exchange ⁇ 1.
  • the heat collecting member 5 is sleeved on the compressor 2.
  • part of the heat collecting member 5 can be sleeved on the compressor 2, or the heat collecting member 5 can be all sleeved.
  • Set on the compressor 2 this is the case shown in Figures 1 and 2).
  • the heat collecting member 5 is a heat exchange tube cover.
  • the heat exchange tube cover includes a first cylindrical plate 51 and a second cylindrical plate 52, and the compressor 2 is arranged in the In the cylindrical space enclosed by the first cylindrical plate 51, that is, the heat exchange tube cover is sleeved on the compressor 2, and an annular shape for refrigerant to flow through is formed between the first cylindrical plate 51 and the second cylindrical plate 52 Space, the heat exchange tube cover includes an inlet 53 and an outlet 54.
  • the air conditioner is cooling, the refrigerant flows in from the inlet 53 and flows out from the outlet 54 after passing through the annular space.
  • the setting position can also be other forms, that is, shown in Figure 3 is only a possible structure of the heat exchange tube cover, should not be interpreted as the present invention limit.
  • the heat exchange tube cover is a heat exchange copper tube cover.
  • the heat collecting member 5 is a spiral heat exchange tube.
  • the spiral heat exchange tube spirally rises around the compressor 2, that is, the compressor 2 is arranged in the cylindrical space formed by the spiral heat exchange tube, and the spiral heat exchange tube is sleeved on the compressor 2.
  • the spiral heat exchange tube includes an inlet 53 and an outlet 54 , The refrigerant flows in from the inlet 53 and flows out from the outlet 54.
  • the installation positions of the inlet 53 and the outlet 54 may also be in other forms. That is, the installation position shown in FIG. 4 is only a possible structure of the spiral heat exchange tube. It should not be interpreted as a limitation to the present invention.
  • the spiral heat exchange tube is a spiral heat exchange copper tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种空调器,该空调器包括室内换热器、室外换热器(1)、压缩机(2)、第一换向阀(3)、第二换向阀(4)和集热构件(5),室内换热器、室外换热器(1)和压缩机(2)构成闭环的冷媒循环***,集热构件(5)设置在压缩机(2)上或者靠近压缩机(2)设置,第一换向阀(3)用于使空调器在制冷模式和制热模式之间切换,第二换向阀(4)设置为能够在空调器执行制热模式时将集热构件(5)从压缩机(2)上收集的热量输送至室内换热器,从而使得压缩机(2)的热量可以被充分利用,实现通过压缩机(2)的热量来提高空调器的制热效果,且不会造成空调器耗电量的增加,降低空调器的运行成本,提升用户体验。

Description

空调器 技术领域
本发明属于空调器技术领域,具体提供一种空调器。
背景技术
空调器是目前常用的室内环境温度调节设备,其包括商用空调器和家用空调器,商用空调器多应用于写字楼和商场等商用建筑,家用空调器多应用于住宅等民用建筑,空调器能够通过制热来提高室内环境温度,还能够通过制冷来降低室内环境温度。当空调器执行制热模式时,室外温度一般在10℃以下,而室外换热器中部温度在0~1℃左右,室外换热器与室外的温差较小,导致室外换热器不易从外界获得热量,使得制热效果较差,尤其是当室外温度为-10℃以下时,室外换热器更是难以从外界获得充足的热量,使得制热效果更差,制热时间长。
现有的空调器中,变频空调器一般通过提高压缩机的工作频率来降低室外换热器的温度,以从外界获取更多热量来提高制热效果;定频空调器一般通过设置电辅热装置来提高制热效果。但是无论是变频空调器还是定频空调器,采用上述的方式虽然能提高制热效果,但是都会使得空调器的耗电量增加。
因此,本领域需要一种新的空调器来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有空调器在提高制热效果的同时会造成其耗电量大的问题,本发明提供了一种空调器,该空调器包括室内换热器、室外换热器、压缩机、第一换向阀、第二换向阀和集热构件,室内换热器、室外换热器和压缩机构成闭环的冷媒循环***,集热构件设置在压缩机上或者靠近压缩机设置,第一换向阀用于使空调器在制冷模式和制热模式之间切换,第二换向阀设置为能够在空调器执行制热模式时将集热构件从压缩机上收集的热量输送至室内换热器。
在上述空调器的优选技术方案中,第二换向阀包括第一通道口、第二通道口、第三通道口和第四通道口,第二换向阀设置为在空调器执行制冷模式时将第一通道口与第二通道口连通以及将第三通道口与第四通道口连通以使冷媒循环***中的冷媒不经过集热构件,第二换向阀还设置为在空调器执行制热模式时将第一通道口与第四通道口连通以及将第二通道口与第三通道口连通以使冷媒循环***中的冷媒经过集热构件。
在上述空调器的优选技术方案中,第一通道口与室外换热器连接,第二通道口与第一换向阀连接,第三通道口和第四通道口分别与集热构件的两端连接。
在上述空调器的优选技术方案中,集热构件套设在压缩机上。
在上述空调器的优选技术方案中,集热构件部分套设在压缩机上。
在上述空调器的优选技术方案中,集热构件全部套设在压缩机上。
在上述空调器的优选技术方案中,集热构件为换热管罩。
在上述空调器的优选技术方案中,换热管罩为换热铜管罩。
在上述空调器的优选技术方案中,集热构件为螺旋换热管。
在上述空调器的优选技术方案中,螺旋换热管为螺旋换热铜管。
本领域技术人员能够理解的是,在本发明的优选技术方案中,空调器中设置有第二换向阀和集热构件,第二换向阀能够在空调器执行制热模式时通过冷媒的流动将集热构件从压缩机上收集的热量输送至室内换热器,通过这样的设置,使得压缩机的热量可以被充分利用,从而实现通过压缩机的热量来提高空调器的制热效果,且不会造成空调器耗电量的增加,降低空调器的运行成本,提升用户体验。
进一步地,第二换向阀包括第一通道口、第二通道口、第三通道口和第四通道口,并且第二换向阀设置为在空调器执行制冷模式时将第一通道口与第二通道口连通以及将第三通道口与第四通道口连通以使冷媒循环***中的冷媒不经过集热构件,第二换向阀还设置为在空调 器执行制热模式时将第一通道口与第四通道口连通以及将第二通道口与第三通道口连通以使冷媒循环***中的冷媒经过集热构件,通过这样的设置,使得在空调器制热过程中压缩机的热量可以被用来提高室内机的制热效果,并且在空调器制冷过程中压缩机的热量不会输送到室内机而影响空调器的制冷效果,即,通过第二换向阀的设置能够实现在空调器制热时提高制热效果以及在空调器制冷时不影响制冷效果,从而满足用户的使用需求,进一步提升用户体验。
进一步地,集热构件套设在压缩机上,这样的设置一方面使得空调器的室外机内部结构紧凑以节省空间,有利于室外机的小型化,另一方面使得压缩机的热量不易散失至空气中,从而使得压缩机的热量被集热构件充分吸收。
进一步地,集热构件部分套设在压缩机上,通过这样的设置,当在压缩机周围没有足够空间使集热构件全部套设在压缩机上时,使得集热构件也能够套设在压缩机上,同时也使得室外机的内部空间得到合理利用。
进一步地,集热构件全部套设在压缩机上,通过这样的设置,使得集热构件的每一部分都距离压缩机较近,从而使得集热构件能够从压缩机收集到更多热量。
进一步地,集热构件为换热管罩,通过这样的设置,使得冷媒的吸热面积更大,能够吸收更多热量。
进一步地,集热构件为螺旋换热管,通过这样的设置,使得冷媒在压缩机附近流动的路程更长,能够吸收更多热量。
附图说明
图1是本发明的空调器一种实施例中执行制冷模式时的结构示意图;
图2是本发明的图1所示的空调器实施例中执行制热模式时的结构示意图;
图3是本发明的换热管罩与压缩机的结构示意图;
图4是本发明的螺旋换热管的结构示意图。
附图标记:
1、室外换热器;2、压缩机;21、通道口;3、第一换向阀; 4、第二换向阀;41、第一通道口;42、第二通道口;43、第三通道口;44、第四通道口;5、集热构件;51、第一柱形板;52、第二柱形板;53、进口;54、出口;6、第一冷媒循环管;7、第二冷媒循环管;8、第三冷媒循环管;9、第四冷媒循环管;10、第五冷媒循环管。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“内”、“中”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有空调器在提高制热效果的同时会造成其耗电量大的问题,本发明提供了一种空调器,旨在使得压缩机的热量可以被充分利用,从而实现通过压缩机的热量来提高空调器的制热效果,且不会造成空调器耗电量的增加,降低空调器的运行成本,提升用户体验。
如图1所示,本发明的空调器包括室内换热器(图中未示出)、室外换热器1、压缩机2、第一换向阀3、第二换向阀4和集热构件5,室内换热器、室外换热器1和压缩机2构成闭环的冷媒循环***,集热构件5设置在压缩机2上或者靠近压缩机2设置,第一换向阀3用于使空调器在制冷模式和制热模式之间切换,第二换向阀4设置为能够在空调器执行制热模 式时将集热构件5从压缩机2上收集的热量输送至室内换热器。其中,第一换向阀3和第二换向阀4可以采用四通阀,也可以采用六通阀等,本领域技术人员可以在实际应用中灵活地设置第一换向阀3和第二换向阀4的具体结构形式,只要通过第一换向阀3能够实现使空调器在制冷模式和制热模式之间切换以及通过第二换向阀4能够实现将集热构件5从压缩机2上收集的热量输送至室内换热器即可。集热构件5可以采用螺旋换热管,也可以采用换热管罩,本领域技术人员可以在实际应用中灵活地设置集热构件5的具体结构形式,只要通过集热构件5能够实现冷媒从其中流过时能够吸收压缩机2上的热量即可。
优选地,如图1和2所示,第二换向阀4包括第一通道口41、第二通道口42、第三通道口43和第四通道口44,图1和2中所示的结构均以第一换向阀3和第二换向阀4是四通阀为例,第二换向阀4设置为在空调器执行制冷模式时将第一通道口41与第二通道口42连通以及将第三通道口43与第四通道口44连通以使冷媒循环***中的冷媒不经过集热构件5,第二换向阀4还设置为在空调器执行制热模式时将第一通道口41与第四通道口44连通以及将第二通道口42与第三通道口43连通以使冷媒循环***中的冷媒经过集热构件5。优选地,第一通道口41与室外换热器1连接,第二通道口42与第一换向阀3连接,第三通道口43和第四通道口44分别与集热构件5的两端连接。
具体地,继续参见图1和2,空调器包括第一冷媒循环管6、第二冷媒循环管7、第三冷媒循环管8、第四冷媒循环管9和第五冷媒循环管10,第一冷媒循环管6的一端与第一通道口41连通,第一冷媒循环管6的另一端与室外换热器1连通,第二冷媒循环管7的一端与第二通道口42连通,第二冷媒循环管7的另一端与第一换向阀3连接,第三冷媒循环管8的一端与第三通道口43连通,第三冷媒循环管8的另一端与集热构件5的一端连通,第四冷媒循环管9的一端与第四通道口44连通,第四冷媒循环管9的另一端与集热构件5的另一端连通,第五冷媒循环管10的一端与压缩机2的通道口21连通,第五冷媒循环管10的另一端与第一换向阀3连接,空调器执行制冷模式时,第二换向阀4处于第一状态,在第一状态下第一通道口41与第二通道口42连通,第三通道口43与第四通道口44连通,第二冷媒循环管7与第五冷媒循环管10能够通过第一换向阀3连通,空调器 执行制热模式时,第二换向阀4处于第二状态,在第二状态下第一通道口41与第四通道口44连通,第二通道口42与第三通道口43连通,第二冷媒循环管7与第五冷媒循环管10通过第一换向阀3断开。
空调器的控制器接收到制冷信号,第一换向阀3和第二换向阀4均动作(其中,第一换向阀3和第二换向阀4的动作次序不做限制),使得空调器执行制冷模式,此时,如图1所示(图1的管路中箭头所指为冷媒在管路中的流动方向),冷媒循环***处于第一连通状态,冷媒不流经集热构件5,具体地,冷媒从室外换热器1流至室内换热器,而后经第一换向阀3流入压缩机2,从压缩机2的通道口21流出后,依次经第一换向阀3、第二换向阀4的第二通道口42和第一通道口41流回至室外换热器1,即冷媒的流动路径为:室外换热器1→室内换热器→第一换向阀3→压缩机2→第一换向阀3→第二换向阀4→室外换热器1。
空调器的控制器接收到制热信号,第一换向阀3和第二换向阀4均动作(其中,第一换向阀3和第二换向阀4的动作次序不做限制),使得空调器执行制热模式,此时,如图2所示(图2的管路中箭头所指为冷媒在管路中的流动方向),冷媒循环***处于第二连通状态,冷媒流经集热构件5,在冷媒流经集热构件5时,通过集热构件5吸收压缩机2的热量,最终将从压缩机2吸收的热量释放至室内,具体地,冷媒从室外换热器1流出后,依次经第二换向阀4的第一通道口41、第四通道口44流至集热构件5,再从集热构件5流出,依次经第二换向阀4的第三通道口43、第二通道口42与第一换向阀3流至压缩机2,而后经第一换向阀3、室内换热器流回至室外换热器1,即冷媒的流动路径为:室外换热器1→第二换向阀4→集热构件5→第二换向阀4→第一换向阀3→压缩机2→第一换向阀3→室内换热器→室外换热器1。
优选地,集热构件5套设在压缩机2上,当然,本领域技术人员能够理解的是,可以是集热构件5部分套设在压缩机2上,也可以是集热构件5全部套设在压缩机2上(图1和2示出的正是这种情况)。
在一种可能的情形中,如图3所示,集热构件5为换热管罩,换热管罩包括第一柱形板51和第二柱形板52,压缩机2设置于所述第一柱形板51围成的柱形空间内,即换热管罩套设在压缩机2上,第一柱形板51和第二柱形板52之间形成有用于冷媒流经的环形空间,换热管罩包括进 口53和出口54,在空调器制冷时冷媒从进口53流入,经过该环形空间后从出口54流出。其中,本领域技术人员可以在实际应用中灵活地设置集热构件5与压缩机2之间的相对设置位置,只要能够实现冷媒从集热构件5中流过时能够通过集热构件5收集压缩机2上的热量即可。此外,第一柱形板51和第二柱形板52除图3中示出的截面形状(圆形)外,其截面形状还可以是正方形、长方形等其他形状;另外,进口53和出口54的设置位置除图3中示出的情况外,其设置位置也可以是其他形式,即,图3中示出的仅是换热管罩的一种可能的结构,不应解释为对本发明的限制。
优选地,换热管罩为换热铜管罩。
在另一种可能的情形中,如图1、2和4所示,集热构件5为螺旋换热管。螺旋换热管围绕压缩机2螺旋上升,即压缩机2设置于螺旋换热管形成的柱形空间内,螺旋换热管套设在压缩机2上,螺旋换热管包括进口53和出口54,冷媒从进口53流入,从出口54流出。其中,进口53和出口54的设置位置除图4中示出的情况外,其设置位置也可以是其他形式,即,图4中示出的仅是螺旋换热管的一种可能的结构,不应解释为对本发明的限制。
优选地,螺旋换热管为螺旋换热铜管。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种空调器,其特征在于,所述空调器包括室内换热器、室外换热器、压缩机、第一换向阀、第二换向阀和集热构件,所述室内换热器、所述室外换热器和所述压缩机构成闭环的冷媒循环***,所述集热构件设置在所述压缩机上或者靠近所述压缩机设置,所述第一换向阀用于使所述空调器在制冷模式和制热模式之间切换,所述第二换向阀设置为能够在所述空调器执行制热模式时将所述集热构件从所述压缩机上收集的热量输送至所述室内换热器。
  2. 根据权利要求1所述的空调器,其特征在于,所述第二换向阀包括第一通道口、第二通道口、第三通道口和第四通道口,所述第二换向阀设置为在所述空调器执行制冷模式时将所述第一通道口与所述第二通道口连通以及将所述第三通道口与所述第四通道口连通以使所述冷媒循环***中的冷媒不经过所述集热构件,所述第二换向阀还设置为在所述空调器执行制热模式时将所述第一通道口与所述第四通道口连通以及将所述第二通道口与所述第三通道口连通以使所述冷媒循环***中的冷媒经过所述集热构件。
  3. 根据权利要求2所述的空调器,其特征在于,所述第一通道口与所述室外换热器连接,所述第二通道口与所述第一换向阀连接,所述第三通道口和所述第四通道口分别与所述集热构件的两端连接。
  4. 根据权利要求1所述的空调器,其特征在于,所述集热构件套设在所述压缩机上。
  5. 根据权利要求4所述的空调器,其特征在于,所述集热构件部分套设在所述压缩机上。
  6. 根据权利要求4所述的空调器,其特征在于,所述集热构件全部套设在所述压缩机上。
  7. 根据权利要求4至6中任一项所述的空调器,其特征在于,所述集热构件为换热管罩。
  8. 根据权利要求7所述的空调器,其特征在于,所述换热管罩为换热铜管罩。
  9. 根据权利要求4至6中任一项所述的空调器,其特征在于,所述集热构件为螺旋换热管。
  10. 根据权利要求9所述的空调器,其特征在于,所述螺旋换热管为螺旋换热铜管。
PCT/CN2020/092800 2019-07-25 2020-05-28 空调器 WO2021012781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910677076.0 2019-07-25
CN201910677076.0A CN112344442A (zh) 2019-07-25 2019-07-25 空调器

Publications (1)

Publication Number Publication Date
WO2021012781A1 true WO2021012781A1 (zh) 2021-01-28

Family

ID=74193256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092800 WO2021012781A1 (zh) 2019-07-25 2020-05-28 空调器

Country Status (2)

Country Link
CN (1) CN112344442A (zh)
WO (1) WO2021012781A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118080A (ja) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JPH1144462A (ja) * 1997-05-30 1999-02-16 Tabai Espec Corp 冷凍能力制御用熱交換器部付き冷凍回路
JP2004012056A (ja) * 2002-06-10 2004-01-15 Hayashi Tama 水冷式エアコン
CN103574758A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 空调器***及其除霜方法
CN104976715A (zh) * 2015-06-02 2015-10-14 珠海格力电器股份有限公司 空调***及其控制方法
CN105571221A (zh) * 2015-12-21 2016-05-11 珠海格力电器股份有限公司 空调***及空调***的控制方法
CN106016809A (zh) * 2016-05-31 2016-10-12 广东美的制冷设备有限公司 空调***及其除霜控制方法
CN208765103U (zh) * 2018-09-13 2019-04-19 珠海格力电器股份有限公司 热泵***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002238A1 (ja) * 2015-07-01 2017-01-05 三菱電機株式会社 冷凍サイクル装置
CN106288487A (zh) * 2016-08-26 2017-01-04 芜湖美智空调设备有限公司 一拖多空调及其控制方法
CN106440458B (zh) * 2016-10-31 2022-05-27 广东美的制冷设备有限公司 一种空气调节***、空调器及空气调节方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118080A (ja) * 1987-10-30 1989-05-10 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JPH1144462A (ja) * 1997-05-30 1999-02-16 Tabai Espec Corp 冷凍能力制御用熱交換器部付き冷凍回路
JP2004012056A (ja) * 2002-06-10 2004-01-15 Hayashi Tama 水冷式エアコン
CN103574758A (zh) * 2012-07-25 2014-02-12 珠海格力电器股份有限公司 空调器***及其除霜方法
CN104976715A (zh) * 2015-06-02 2015-10-14 珠海格力电器股份有限公司 空调***及其控制方法
CN105571221A (zh) * 2015-12-21 2016-05-11 珠海格力电器股份有限公司 空调***及空调***的控制方法
CN106016809A (zh) * 2016-05-31 2016-10-12 广东美的制冷设备有限公司 空调***及其除霜控制方法
CN208765103U (zh) * 2018-09-13 2019-04-19 珠海格力电器股份有限公司 热泵***

Also Published As

Publication number Publication date
CN112344442A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
US20180340700A1 (en) Variable refrigerant flow system
WO2013135136A1 (zh) 回收厨房热能的空调***
US20120305225A1 (en) Air Heat Exchanging Device, Manufacturing Method Thereof, and Integrated Heat-Exchanging Air-Conditioning Device
WO2018076461A1 (zh) 一种无水加湿空调及加湿方法
CN211013545U (zh) 一种采用压缩机排气热回收的焓差实验室
WO2021012781A1 (zh) 空调器
CN104832993A (zh) 一种节能空调
CN211716807U (zh) 热回收型多蒸发器水风一体机组
CN201548000U (zh) 湿帘空气源空调机组
WO2023207222A1 (zh) 空调器及其控制方法
CN106996643A (zh) 一种多功能热泵热水机组
CN203605382U (zh) 一种基站使用的热管空调换热装置
CN212431388U (zh) 一种三管制温湿平衡空调***
CN203454295U (zh) 空调***
CN215951605U (zh) 一种带排风热回收的住宅五恒***
CN206739618U (zh) 一种多功能热泵热水机组
KR20120081815A (ko) 공기 조화기
CN205448117U (zh) 一种提高制冷能效的空调器
CN102384602B (zh) 低温制热空调
CN212657907U (zh) 一种恒温恒湿机组
CN211372657U (zh) 空气调节***
CN103032994A (zh) 一种双蒸发双冷凝户用型中央空调热水***及其控制方法
CN112797657B (zh) 空调器及其控制方法
CN207201174U (zh) 具有微通道换热功能的节能变频空调
CN202853106U (zh) 一种空气能热水器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845063

Country of ref document: EP

Kind code of ref document: A1