WO2021012753A1 - 纳米铜在切削液中的应用 - Google Patents

纳米铜在切削液中的应用 Download PDF

Info

Publication number
WO2021012753A1
WO2021012753A1 PCT/CN2020/090041 CN2020090041W WO2021012753A1 WO 2021012753 A1 WO2021012753 A1 WO 2021012753A1 CN 2020090041 W CN2020090041 W CN 2020090041W WO 2021012753 A1 WO2021012753 A1 WO 2021012753A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
cutting fluid
nano
application
mass percentage
Prior art date
Application number
PCT/CN2020/090041
Other languages
English (en)
French (fr)
Inventor
赵阳
张俊
刘德秀
范浪归
范成力
Original Assignee
富兰克科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富兰克科技(深圳)股份有限公司 filed Critical 富兰克科技(深圳)股份有限公司
Publication of WO2021012753A1 publication Critical patent/WO2021012753A1/zh
Priority to US17/581,971 priority Critical patent/US11739285B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/02Well-defined hydrocarbons
    • C10M105/06Well-defined hydrocarbons aromatic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/26Compounds containing silicon or boron, e.g. silica, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/04Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M133/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M133/08Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/44Five-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/36Polyoxyalkylenes etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/108Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles
    • C10N2050/011Oil-in-water

Definitions

  • the invention belongs to the technical field of nano copper materials, and specifically relates to the application of nano copper in cutting fluids.
  • Metal cutting fluid plays a very important role in metal cutting and grinding process. Choosing a suitable metal cutting fluid can reduce the cutting temperature by 60-150°C, reduce the surface roughness, level 1 to 2, reduce the cutting resistance by 15-30%, and double the service life of tools and grinding wheels. And can wash away iron filings and dust from the cutting area, thereby improving production efficiency and product quality. Therefore, it is extremely widely used in mechanical processing.
  • Metal cutting fluids can be divided into two categories: non-water-soluble cutting fluids and water-soluble cutting fluids. Usually should have the following functions:
  • Cooling can reduce the temperature of the cutting zone in a timely and rapid manner during the cutting process of the workpiece, that is, reduce the temperature rise usually caused by friction; cooling also affects cutting efficiency, cutting quality and tool life.
  • Lubrication can reduce the friction between the cutting tool and the workpiece.
  • the lubricating fluid can infiltrate between the tool and the workpiece and its chips to reduce friction and adhesion, reduce cutting resistance, ensure cutting quality, and extend tool life.
  • the washing function causes the chips or abrasive particles to be washed away from the processing area of the tool and the workpiece to prevent them from adhering to each other and adhering to the workpiece, the tool and the machine tool to prevent subsequent processing.
  • Anti-rust effect it should have certain anti-rust performance to prevent rust of workpiece and machine tool.
  • the above four performances of cooling, lubrication, washing, and rust prevention are not completely isolated. They have unified aspects and opposite aspects.
  • the non-water-soluble cutting fluid has better lubrication and anti-rust performance, but the cooling and cleaning performance is poor; the water-soluble cutting fluid has better cooling and washing performance, but the lubrication and anti-rust performance is poor.
  • Water-soluble cutting fluids are mainly divided into semi-synthetic cutting fluids, fully synthetic cutting fluids and emulsified cutting fluids.
  • semi-synthetic cutting fluids have gradually emerged and become the new mainstream in the processing of aluminum and magnesium alloys.
  • This type of cutting fluid performs mixed-flow machining of different parts in the same equipment, and can complete various cutting processes such as turning, drilling, milling, grinding, boring, and reaming.
  • semi-synthetic cutting fluid products are still facing the problem of large-scale industrialization.
  • the main challenges faced by existing semi-synthetic cutting fluids include: (1) The corrosion and rust prevention of alloys.
  • the rust inhibitors selected in the prior art mainly include monoethanolamine, diethanolamine, triethanolamine, boric acid, and petroleum sulfonic acid. Sodium, alkyl phosphorous acid;
  • the lubricity problem of the alloy cutting fluid system, the lubricant selected in the prior art is mainly polyether (3)
  • the antibacterial problem of the alloy cutting fluid, the fungicide selected in the prior art Including triazine, morpholine, cezolinone, etc.
  • the general rust inhibitor is added in an amount between 10% and 15%, and the lubricant is added in an amount between 5% and 10%.
  • the added amount of the fungicide itself is not large, usually around 1%, the cost of the fungicide itself is relatively high, and it will be consumed continuously with the increase of use time and need to be added repeatedly, resulting in a considerable amount of actual addition.
  • the amount of alkyl phosphorous acid added can be reduced to about 1% to 2%, but the high price of the rust inhibitor greatly limits the expansion of its application scenarios.
  • emulsified cutting fluid formulations usually contain a higher proportion (50%-80%) of mineral oil. After mixing with water, the emulsified cutting fluid can take into account the lubricity of non-aqueous cutting fluid and the good thermal conductivity of water-based cutting fluid. However, extreme pressure resistance, lubrication, antibacterial and anti-rust properties still need to be considered. Therefore, the problem of additives in the preparation of the above-mentioned semi-synthetic cutting fluid still exists during the preparation.
  • additives category currently on the market is relatively single, and all cutting fluid formulations are subject to a very limited choice of additives. Affected by international market fluctuations and trade disputes, the prices and supply of these additives are also constantly fluctuating, which brings greater uncertainty to the industry.
  • Metal nanoparticles refer to metal particles whose component phases are reduced to the nanometer level (5-100nm) in morphology.
  • the chemical bonding structure of this new type of nanomaterial is different from metal particles with the same chemical composition. Since the German Gleiter H first prepared 6nm iron nanoparticles in 1984, research on nanometals has been vigorously carried out in the world, and great progress has been made. Among them, the research of nano-copper materials has also started early, which can act as a catalyst, prepare "superplastic” steel, prepare gas sensors, and be used as a solid lubricant.
  • nano-copper powder (10-100nm) has the characteristics of small size, large specific surface area, small resistance, quantum size effect, macro quantum tunneling effect, etc., it also has some new characteristics different from conventional materials.
  • the research on preparation, performance and application has been receiving extensive attention at home and abroad.
  • Nano-copper powder has many applications, including: 1. Nano-copper powder is used in solid lubricants. Nano-copper powder can be dispersed in various lubricating oils in an appropriate manner to form a stable suspension. This oil contains several Millions of ultra-fine metal powder particles combine with the solid surface to form a smooth protective layer, while filling micro scratches, thereby greatly reducing friction and wear, especially under heavy load, low speed and high temperature vibration conditions The effect is more significant; 2. Nano copper powder is used for conductive materials. Nano copper powder has high conductivity and can be used to make conductive paste (conductive glue, magnetic conductive glue, etc.).
  • Nano-copper powder is used to manufacture nano-copper materials, and a new process is used to synthesize high density and high
  • the pure nano-copper has a grain size of only 30nm, which is one hundred thousandths of conventional copper. Further cold rolling experiments have found that its superplastic ductility at room temperature. Nano-copper can deform up to 50 times at room temperature. No cracks appeared. The relevant paper was published in Science on February 25, 2000; PG Sanders et al.
  • nano-copper powder also has high application value in modified phenolic resin, as a drug price adjustment material for treating osteoporosis and bone hyperplasia, and in the aviation field.
  • the common method for preparing nano-copper powder lubricant additives is to first prepare nano-copper powder, and then add the nano-copper powder to the lubricating oil.
  • nano-copper particles when nano-copper particles are added to the lubricating oil, it is The particle size is small, the surface energy is high, there is attraction between the particles, the tendency of automatic aggregation is great, and agglomeration is easy to occur. Even if the agglomeration is forcibly dispersed in the lubricant, the particles will reunite when they collide with each other. Thus agglomeration occurs. Once the particles are agglomerated, precipitated or denatured, they no longer have the original characteristics, and may also have a negative impact on the mechanical system based on oil lubrication design.
  • an anti-wear nano-copper lubricating oil specifically discloses a preparation method of anti-wear nano-copper lubricating oil, which uses nano-copper anhydrous ethanol suspension
  • the mutual solubility between the liquid and the base lubricating oil makes the nano-copper uniformly dispersed in the base lubricating oil, and combined with non-ionic surfactants to reduce the surface tension of the base lubricating oil, prevent the agglomeration of nano-copper particles, and improve the suspension stability of nano-copper. Thereby improving the anti-wear performance of nano copper lubricants.
  • the invention is still limited to the application of nano-copper through the method of dispersing nano-copper powder.
  • the addition of non-ionic surfactants can improve the dispersion performance of nano-copper within a certain period of time, this method cannot avoid the aggregation and sedimentation of nano-copper after a long time.
  • the application scenario of the invention is a lubricating oil system, which is very different from the water-based emulsification system of cutting fluid
  • the existing Chinese patent application number is 201611157432.9 and the title of the invention is "a nano-copper lubricating micro-emulsified cutting fluid", which specifically discloses a method for preparing nano-copper lubricating micro-emulsified cutting fluid.
  • the nano-metal copper powder added in the method has Good lubrication and anti-friction effect, but directly added to water-based cutting fluid, it is easy to polymerize and not easy to disperse, and can not achieve excellent anti-friction effect. It is necessary to use chemical oxidation synthesis method to generate polyaniline in situ on the surface of nano copper. Make it reach usable dispersibility and stability in water-based cutting fluid.
  • the technical problem to be solved by the present invention is to provide a real commercial application value of nano-copper in cutting fluid, and replace functional additives with self-dispersible nano-copper with organic long carbon chain, including preservatives.
  • Anti-rust agent, fungicide, anti-pressure agent, lubricant, one or more solve the problem that nano copper is difficult to stably exist in the cutting fluid in the prior art, and the existing cutting fluid cannot simultaneously have high-efficiency anti-corrosion , Anti-rust, anti-pressure, lubrication and sterilization performance, as well as the types of additives added, more dosages, high costs, technical problems with limited options.
  • the invention provides an application of nano-copper in a cutting fluid.
  • the nano-copper is a self-dispersible nano-copper with organic long carbon chain.
  • the nano-copper is a long carbon chain organic matter covering the copper metal surface
  • the long carbon chain organic matter is dialkyl dithiophosphoric acid (HDDP) and its derivatives
  • the carbon number of the long carbon chain is greater than 8.
  • the cutting fluid is an aqueous cutting fluid.
  • the mass percentage of the nano-copper in the cutting fluid is 1%-10%
  • the nano-copper is a paste
  • the particle size of the nano-copper is 10-50 nm.
  • the nano-copper replaces part or all of the functional additives in the cutting fluid, and the functional additives include one or more of antiseptics, rust inhibitors, bactericides, anti-pressure agents, and lubricants.
  • the cutting fluid is an aqueous aluminum alloy semi-synthetic cutting fluid, including the following components by mass percentage:
  • the cutting fluid is an aqueous aluminum alloy semi-synthetic cutting fluid, including the following components by mass percentage:
  • the cutting fluid is a water-based magnesium alloy semi-synthetic cutting fluid, including the following components by mass percentage:
  • the cutting fluid is a water-based magnesium alloy semi-synthetic cutting fluid, including the following components by mass percentage:
  • the cutting fluid is an emulsified cutting fluid, including the following components by mass percentage:
  • the cutting fluid is an emulsified cutting fluid, including the following components by mass percentage:
  • nano-copper in cutting fluid provided by the present invention
  • said nano-copper has organic long carbon chain, can be self-dispersed, and can be stabilized in cutting fluid; for water-based emulsified cutting fluid, even fully synthetic water-soluble cutting fluid
  • the nano-copper of the present invention can be directly, stably and uniformly dispersed therein, and replaces functional additives in traditional cutting fluid formulations, including one of preservatives, rust inhibitors, fungicides, anti-pressure agents, and lubricants.
  • One or more types make the cutting fluid have high-efficiency anti-corrosion, anti-rust, pressure resistance, lubrication and sterilization properties at the same time, on the other hand, it greatly simplifies the formulation system of the cutting fluid, reduces the production cost, and simplifies the production steps.
  • Fig. 1 is a schematic diagram of the stock solution of nano-copper cutting fluid and the 5% aqueous solution of nano-copper cutting fluid in Example 1 of the present invention.
  • the present invention provides the application of self-dispersible nano-copper with organic long carbon chain in cutting fluid.
  • the mass percentage of the nano-copper in the cutting fluid is 1-10%, preferably 2-5%.
  • the nano-copper is a long-chain organic matter covering the surface of metallic copper, and the long-chain organic matter is a dialkyl dithiophosphoric acid (HDDP) and its derivatives.
  • HDDP dialkyl dithiophosphoric acid
  • the preparation method of self-dispersible nano copper with organic long carbon chain includes the following steps:
  • Step 1 Mix the copper source with water to obtain a copper source solution. Place the copper source solution in a nitrogen, argon, or air atmosphere and heat it to 40°C to 75°C, preferably 50°C to 65°C , Further preferably 55°C; the copper source aqueous solution is selected from any one or more of copper sulfate pentahydrate, copper chloride, copper bromide, copper acetate, copper nitrate, and copper acetylacetonate aqueous solution.
  • Step 2 Add a reducing agent to the copper source solution heated in step 1 for reaction to obtain a reduced copper source solution;
  • the reducing agent is selected from hydrazine hydrate, sodium hypophosphite (NaH 2 PO 2 ), sodium borohydride, ascorbic acid (vitamin C ) And any one or more of sodium ascorbate.
  • Step 3 Mix the dialkyl dithiophosphoric acid coating agent with an organic solvent to obtain a coating agent solution;
  • the organic solvent is selected from petroleum ether 60-90, dichloromethane, chloroform, pentane, and acetic acid Any one or more of ethyl ester, ether, carbon tetrachloride, benzene, toluene, xylene, and base oil.
  • Step 4 Add the coating agent solution to the reduced copper source solution for reaction to obtain a nano-copper mixture.
  • the HDDP coating agent is prepared: the carbon-based alcohol compound and phosphorus pentasulfide are reacted to obtain the dialkyl dithiophosphoric acid coating agent.
  • the molar ratio of the carbon-based alcohol compound to phosphorus pentasulfide can be selected according to actual needs.
  • the molar ratio of the carbon-based alcohol compound to phosphorus pentasulfide is 2:1-8:1.
  • the carbon-based alcohol compound may be aliphatic alcohol and aromatic alcohol.
  • the carbon-based alcohol compound is at least one of saturated fatty alcohols, such as ethanol, isopropanol, isooctyl alcohol, decanol, n-dodecyl alcohol , One or more of the dodecyl isomeric alcohols.
  • saturated fatty alcohols such as ethanol, isopropanol, isooctyl alcohol, decanol, n-dodecyl alcohol , One or more of the dodecyl isomeric alcohols.
  • the molar ratio of the copper source to the dialkyl dithiophosphoric acid coating agent can be adjusted according to specific needs.
  • the molar ratio of the copper source to the dialkyl dithiophosphoric acid coating agent is 1:5 ⁇ 5:1.
  • the molar ratio of the copper source to the reducing agent is 1:20-20:1.
  • nano-copper mixture may further include: subjecting the nano-copper mixture to liquid separation treatment to remove the lower water phase to obtain the upper oil phase; centrifuging the oil phase to obtain the supernatant liquid; and concentrating the supernatant liquid Processing to obtain nano copper paste.
  • the particle size of the obtained nano copper is measured by a nano particle size detector to be 10-50 nm; the mass ratio of pure copper in the nano-copper preparation measured by a thermogravimetric analyzer is 20%-25%.
  • the water-based aluminum alloy semi-synthetic cutting fluid provided by the present invention includes the following components by mass percentage: nano-copper 1-10%, preferably 2-5%, T22 naphthenic oil 20-30%, preferably 22-25%, oil Potassium acid 2 to 10%, preferably 4 to 6%, triethanolamine 3 to 8%, preferably 4 to 6%, oleyl alcohol polyoxyethylene ether 3 to 8%, preferably 4 to 6%, methyldiethanolamine 1 to 6 %, preferably 3 to 5%, boric acid 1 to 6%, preferably 3 to 5%, oleic acid 1 to 5%, preferably 2 to 3%, coupling agent 0.5 to 1%, isopropanolamine 0.5 to 2%, preferably 0.5 to 1%, benzotriazole 0.1 to 1%, preferably 0.4 to 0.6%, defoamer 0.04 to 0.06%, and water to make up to 100%.
  • the self-dispersible nano-copper with organic long carbon chain can be directly applied to the preparation of aluminum alloy cutting fluid, and can be used as a multifunctional additive to replace rust inhibitor (alkyl phosphorous acid), lubricant (polyether), and bactericide , Significantly reduce the cost of cutting fluid production.
  • the cutting fluid provided by the present invention is a water-based magnesium alloy semi-synthetic cutting fluid, which includes the following components by mass percentage: nano-copper 1-10%, preferably 2-5%, T22 naphthenic oil 25-35%, preferably 30 ⁇ 35%, sodium petroleum sulfonate 8-15%, preferably 10-12%, anionic chelating agent 2-10%, preferably 5-8%, mixed alcohol amine 5-10%, preferably 5-8%, oleyl alcohol poly Oxyethylene ether 2 to 5%, preferably 2 to 4%, fatty alcohol polyoxyethylene ether 2 to 5%, preferably 2 to 4%, tall oil 3 to 5%, coupling agent 5 to 10%, preferably 6 to 8 %, bactericide 0.5-2%, preferably 0.5-1%, benzotriazole 0.4-0.6%, defoamer 0.04-0.06%, and water supplement to 100%.
  • the self-dispersible nano-copper with organic long carbon chain is directly applied to the blending of magnesium alloy cutting fluid, completely replacing the traditional dicarboxylic acid as an anti-corrosion additive.
  • the introduction of nano-copper also brings additional lubrication and sterilization effects to the cutting fluid system, further reducing the proportion of other additives and reducing the cost of the formulation.
  • the cutting fluid provided by the present invention is an emulsified cutting fluid, which includes the following components by mass percentage: nano-copper 1-10%, preferably 2-5%, T22 naphthenic oil 50-70%, preferably 65-70% , Sodium petroleum sulfonate 5-10%, preferably 7-9%, oleic acid 4-6%, triethanolamine 1-3%, preferably 1-2%, monoethanolamine 1-3%, preferably 1-2%, fat Alcohol polyoxyethylene ether 1 to 3%, preferably 1 to 2%, diethylene glycol butyl ether 0.5 to 2%, preferably 0.5 to 1%, boric acid 1 to 3%, preferably 1 to 2%, mixed dibasic acid ( C10-C12) 0.1 to 1%, Span 80 2 to 5%, preferably 2 to 3%, fungicide 0.5 to 2%, preferably 0.5 to 1%, benzotriazole 0.1 to 1%, preferably 0.2 to 0.5 %, 0.01 to 0.1% of defoamer, preferably 0.04 to 0.0
  • the self-dispersible nano-copper with organic long carbon chain can be directly applied to the formulation of emulsified cutting fluids, as a multifunctional additive, as a substitute for anti-pressure agent (sodium petroleum sulfonate), lubricant (polyether, Span 80), and sterilization It significantly reduces the cost of cutting fluid production.
  • the stable dispersion of the nano-copper species prepared by the present invention in the cutting fluid benefits from two main factors: First, a large amount of coating agent is introduced during the preparation of nano-copper, and the nano-copper is combined with the coating agent after formation Generate stable nano-copper clusters. Since the main mass of the clusters is the coating agent, the clusters mainly reflect the physical properties of the coating agent molecules, rather than the physical properties of the exposed nano-copper powder; second, the cutting fluid system is usually It is a mixed system that contains a large number of surfactant molecules.
  • nano-copper clusters The presence of these molecules enables the coated nano-copper clusters to be well dispersed in the micelle of the emulsion or directly dissolved in water, without forming For independent oil layers or sediments, if you simply add exposed nano-copper powder, this dispersion will be difficult to work because of the lack of effective force and position on the surface of the copper powder.
  • This embodiment is an aqueous aluminum alloy semi-synthetic cutting fluid, which includes the following components by mass percentage:
  • the preparation method of the self-dispersible nano-copper with organic long carbon chain in this embodiment is as follows:
  • First prepare HDDP coating agent add carbon-based alcohol compounds and phosphorus pentasulfide to a 250mL single-necked flask, stopper the mouth of the single-necked flask, and connect the air duct, and heat the reaction mixture to 80°C under stirring. After holding for 3 hours, the hydrogen sulfide gas released by the reaction is passed into the copper sulfate aqueous solution through the air duct. After the reaction is completed, the remaining solids in the reaction system are removed to obtain a transparent light yellow liquid, which is the dialkyl dithiophosphoric acid coating agent.
  • the hydrogen sulfide gas generated by the reaction can also be absorbed by alkaline systems such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, or emulsion. Combustion or oxidation can also be used to convert hydrogen sulfide gas into sulfur dioxide and then absorb it separately.
  • alkaline systems such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, or emulsion.
  • Combustion or oxidation can also be used to convert hydrogen sulfide gas into sulfur dioxide and then absorb it separately.
  • Step 1 Add the copper source and water to a 500mL beaker to fully dissolve the copper source in the water to obtain a copper source solution. Pour the copper source solution into the reactor, and then close the reactor; Nitrogen, and the reaction system is heated to 55°C;
  • Step 2 Add reducing agent to the reaction kettle and react for 10 minutes under stirring conditions;
  • Step 3 Mix the dialkyl dithiophosphoric acid coating agent and the organic solvent at a final concentration of 0.1 mol/L to 0.9 mol/L to obtain a coating agent solution;
  • Step 4 Add the coating agent solution to the reaction kettle, react for 2 hours, stop stirring and heating;
  • Step 5 Obtain the nano-copper mixture.
  • step 6 Pour the nano-copper mixture from the reactor, separate the liquid with a separatory funnel, remove the lower water phase, and obtain the upper oil phase; centrifuge the obtained oil phase to remove larger copper powder particles , Obtain the supernatant liquid; rotate the supernatant liquid to remove the solvent, and obtain the nano copper paste.
  • vacuum distillation or atmospheric distillation can also be used.
  • the above-prepared nano-copper is directly applied to the preparation of aluminum alloy cutting fluid, and can be used as a multifunctional additive to replace rust inhibitors (alkyl phosphorous acid), lubricants (polyether), and bactericides, significantly reducing cutting fluid The cost of production.
  • rust inhibitors alkyl phosphorous acid
  • lubricants polyether
  • bactericides significantly reducing cutting fluid The cost of production.
  • the left side is the stock solution of nano-copper cutting fluid
  • the right side is the 5% aqueous solution of nano-copper cutting fluid, in a microemulsion and translucent state.
  • This embodiment also provides a reference example 1 without adding nano-copper as a comparison.
  • the formula is shown in Table 1 below.
  • the anti-rust test was performed on the nano-copper cutting fluid of Example 1 and the reference example of the nano-copper-free cutting fluid, as shown in Table 2 below.
  • the coating agent of nano-copper is composed of dithiophosphate with long organic carbon chain.
  • the dithiophosphate itself has a very efficient binding ability to the surface of aluminum alloy, so that the surface of the aluminum alloy is covered by the coating agent molecules. Isolated from water.
  • the nano-copper clusters in the nano-copper paste can be effectively deposited on the surface of the aluminum alloy during the processing of the aluminum alloy, so that a second isolation layer is formed between the surface of the alloy and water, and the corrosion resistance is further enhanced.
  • the dithiophosphate itself has a very efficient binding ability to the surface of the aluminum alloy, forming an extreme pressure oil film, thereby generating a lubricating ability on the surface of the aluminum alloy.
  • the dithiophosphate and the steel tool undergo a chemical reaction during the machining process to form an iron sulfide film, which makes the surface of the tool have considerable extreme pressure resistance and lubrication properties.
  • the antibacterial ability of nano-copper is due to the sterilization ability of the nano-copper cluster itself. Although the surface of the nano-copper clusters is coated with phosphorodithioate, the effect is reversible. During the processing, a small amount of the coating agent molecules are freed, so that the surface of the nano-copper clusters is exposed, producing antibacterial ability.
  • This embodiment is an aqueous magnesium alloy semi-synthetic cutting fluid, which includes the following components by mass percentage:
  • the preparation method of self-dispersible nano-copper with organic long carbon chain in this embodiment is the same as that in embodiment 1, with the following differences:
  • the carbon-based alcohol compound is a mixture of 65% by mole of n-dodecyl alcohol, 20% by mole of isooctyl alcohol, and 15% by mole of ethanol.
  • the total mass is 53.9g ( 350 mmol)
  • the amount of phosphorus pentasulfide is 22.2 g (100 mmol)
  • the molar ratio of mixed alcohol to phosphorus pentasulfide is 3.5:1
  • step 1 finally obtains a dialkyl dithiophosphoric acid mixture.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4 g (150 mmol), the water for dissolving copper sulfate pentahydrate is 200 mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120 mL (about 2 mol).
  • the amount of thiophosphoric acid mixture is 48g (120mmol), the molar ratio of copper sulfate pentahydrate to reducing agent is 3:40; the molar ratio of copper sulfate pentahydrate to dialkyl dithiophosphoric acid is 5:4, and the organic solvent is Petroleum ether 60-90, the dosage is 250mL.
  • the prepared nano-copper is directly applied to the preparation of magnesium alloy cutting fluid, completely replacing the traditional dicarboxylic acid as an anti-corrosion additive.
  • the introduction of nano-copper also brings additional lubrication and sterilization effects to the cutting fluid system, further reducing the proportion of other additives and reducing the cost of the formulation.
  • This embodiment also provides a reference example 2 without adding nano-copper as a comparison.
  • the formula is shown in Table 3 below.
  • the anti-rust test was performed on the cutting fluid of Example 2 and the nano-copper-free cutting fluid of the reference example, as shown in Table 4 below.
  • the coating of nano-copper is composed of dithiophosphate with long organic carbon chain.
  • the phosphorodithioate itself has a very efficient binding ability to the surface of the magnesium alloy, so that the surface of the magnesium alloy is covered by the coating agent molecules and is isolated from water.
  • the nano-copper clusters in the nano-copper paste can be effectively deposited on the surface of the magnesium alloy during the processing of the magnesium alloy, so that a second isolation layer is formed between the surface of the alloy and the water, which further enhances the anti-corrosion performance.
  • magnesium metal will react with phosphorothioate to generate a small amount of magnesium thiophosphate, which is deposited on the metal surface to form a third isolation layer.
  • magnesium thiophosphate Because of the high corrosion resistance of long carbon chain nano-copper to magnesium alloys, the demand for this component in the magnesium alloy cutting fluid is greatly reduced, thereby significantly reducing the overall cost of the cutting fluid.
  • the proportion of other related additives has also been reduced, which is also one of the reasons for the decrease in formulation costs.
  • This embodiment is an emulsified cutting fluid, which includes the following components by mass percentage:
  • the preparation method of self-dispersible nano-copper with organic long carbon chain in this embodiment is the same as that in embodiment 1, with the following differences:
  • step 1 the carbon-based alcohol compound is isooctyl alcohol, the dosage is 45.5g (350mmol), the dosage of phosphorus pentasulfide is 22.2g (100mmol), the molar ratio of isooctyl alcohol to phosphorus pentasulfide is 3.5:1, and the final step 1 The bis(2-ethylhexyl)dithiophosphoric acid is obtained.
  • the copper source is copper sulfate pentahydrate, the amount is 37.4g (150mmol), the water to dissolve the copper sulfate pentahydrate is 200mL, the reducing agent is 80% hydrazine hydrate, and the amount is 120mL (about 2mol).
  • the dosage of ethylhexyl) dithiophosphoric acid is 42.5g (120mmol), the molar ratio of copper sulfate pentahydrate and reducing agent is 3:40; the ratio of copper sulfate pentahydrate and bis(2-ethylhexyl) dithiophosphoric acid The molar ratio is 5:4, the organic solvent is petroleum ether 60-90, and the dosage is 250 mL.
  • the above-prepared nano-copper is directly applied to the formulation of emulsified cutting fluids, and can be used as a multifunctional additive to simultaneously replace anti-pressure agents (sodium petroleum sulfonate), lubricants (polyether, Span 80), and fungicides, Significantly reduce the cost of cutting fluid production.
  • This embodiment also provides a reference example 3 without adding nano-copper as a comparison. The formula is shown in Table 5 below.
  • the anti-rust test was performed on the nano-copper cutting fluid of Example 3 and the reference example of the nano-copper-free cutting fluid, as shown in Table 6 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Lubricants (AREA)

Abstract

本发明提供一种所述纳米铜在切削液中的应用,所述纳米铜为具有有机长碳链、可自分散的纳米铜,由长碳链有机物包覆铜金属表面,所述长链有机物为二烷基二硫代磷酸(HDDP)及其衍生物。本发明将纳米铜替代功能性添加剂,包括防腐剂、防锈剂、杀菌剂、抗压剂、润滑剂中的一种或几种,解决了现有技术中切削液不能同时具备高效的防腐蚀、防锈、抗压、润滑及杀菌性能,以及添加的添加剂种类、剂量较多、成本高,选择受限的技术问题。

Description

纳米铜在切削液中的应用 技术领域
本发明属于纳米铜材料技术领域,具体涉及纳米铜在切削液中的应用。
背景技术
金属切削液在金属切削、磨削加工过程中具有相当重要的作用。选用合适的金属切削液,能降低切削温度60~150℃,降低表面粗糙度,1~2级,减少切削阻力15~30%,成倍地提高刀具和砂轮的使用寿命。并能把铁屑和灰末从切削区冲走,从而提高了生产效率和产品质量。故它在机械加工中应用极为广泛。
金属切削液可以分为非水溶性切削液和水溶性切削液两大类。通常应具备以下几方面的作用:
冷却作用,在工件切削加工过程中,能及时而迅速的降低切削区的温度,即降低通常因摩擦引起的温升;冷却也影响切削效率,切削质量及刀具寿命。
润滑作用,能减少切削刀具与工件间摩擦。润滑液能浸润到刀具与工件及其切屑之间,减少摩擦和粘结,降低切削阻力,保证切削质量,延长刀具寿命。
洗涤作用,使切屑或磨料粒子被冲洗而离开刀具和工件的加工区,以防它们相互粘结及粘附在工件、刀具和机床上妨碍后续加工。
防锈作用,应有一定的防锈性能,防止工件和机床生锈。
上述的冷却、润滑、洗涤、防锈四个性能不是完全孤立的,它们有统一的方面,又有对立方面。如非水溶性切削液的润滑、防锈性能较好,但冷却、清洗性能差;水溶性切削液的冷却、洗涤性能较好,但润滑和防锈性能差。
近几年,金属切削液逐渐向水溶性方向发展,水溶性切削液主要分为半合成切削液、全合成切削液和乳化型切削液。其中,半合成切削液逐渐兴起,成为铝、镁等合金加工领域的新主流。该类切削液对不同零件在同一台设备中进行混流加工,可完成车、钻、铣、磨、镗、铰等各种切削工序。但目前半合成切削液产品依然面临大规模产业化的难题。
现有半合成切削液面临的主要挑战包括:(1)合金的防腐蚀与防锈问题,现有技术中所选用的防锈剂主要有单乙醇胺、二乙醇胺、三乙醇胺、硼酸、石油磺酸钠、烷基亚磷酸;(2)合金切削液体系的润滑性问题,现有技术中选用的润滑剂以聚醚为主(3)合金切削液的抗菌问题,现有技术中选用的杀菌剂包括三嗪、吗啉、塞唑啉酮等。
现有技术的半合成切削液中,一般防锈剂的添加量达到10%至15%之间,润滑剂的添加量达到5%至10%之间。尽管杀菌剂本身的添加量不大,通常为1%上下,但是由于杀菌剂本身成本较高,且会随使用时间增长而被不断消耗且需反复添加,导致其实际添加量也较为可观。作为一种高效的防锈剂,烷基亚磷酸的添加量可以降低到1%至2%左右,但是该防锈剂高昂的价格则大大限制了其使用场景的拓展。
相对于半合成切削液与全合成切削液,乳化型切削液配方通常含有较高比例(50%-80%)的矿物油。与水混合以后使用,乳化型切削液可以兼顾非水性切削液的润滑性与水性切削液的良好导热性。但仍需考虑耐极压、润滑、抗菌与防锈性能。因而在配制时,仍存在上述半合成切削液配制上的添加剂问题。
此外,目前市场上的添加剂品类比较单一,所有切削液配方均受制于添加剂种类非常有限的选择。受到国际市场波动和贸易争端的影响,这些添加剂的价格和供应量也在不断波动,因而给行业带来更大的不确定性。
金属纳米粒子是指组分相在形态上被缩小至纳米程度(5~100nm)的金属颗粒,这种新型纳米材料,其化学成键结构不同于化学成分相同的金属粒子。自德国人Gleiter H于1984年首次制备出6nm的铁纳米粒子以来,世界上对纳米金属的研究蓬勃开展,并取得了很大的进展。其中纳米铜材料的研究也早有起步,其可以充当催化剂、制备“超塑”钢、制备气体传感器、以及用作固体润滑剂等。
目前为止,纳米铜的制备主要局限于固体纳米铜粉末。由于纳米铜粉(10~100nm)具有尺寸小、比表面积大、电阻小及量子尺寸效应、宏观量子隧道效应等特点,其还拥有与常规材料不同的一些新特性,近年来有关纳米铜粉的制备、性能及应用的研究在国内外一直受到广泛的关注。
纳米铜粉末具有很多应用,包括:1、纳米铜粉用于固体润滑剂,纳米 铜粉以适当方式分散于各种润滑油中可形成一种稳定的悬浮液,这种油每升中含有数百万个超细金属粉末颗粒,它们与固体表面相结合,形成一个光滑的保护层,同时填塞微划痕,从而大幅度降低摩擦和磨损,尤其是在重载、低速和高温振动条件下的作用更为显著;2、纳米铜粉用于导电材料,纳米铜粉导电率高,可用于制造导电浆料(导电胶、导磁胶等),导电浆料在工业中广泛用于制作导电布、导电封带、导电材料的连接胶等,纳米铜粉对微电子器件的小型化起着重要的作用;3、纳米铜粉用于制造纳米铜材料,采用新的工艺合成出高密度、高纯度的纳米铜,晶粒尺寸仅有30nm,是常规铜的几十万分之一,进一步的冷轧实验发现其室温下的超塑延展性,纳米铜在室温下可变形达50多倍而没有出现裂纹,有关论文发表于2000年2月25日《Science》杂志;P.G Sanders等人得到了纳米铜材(晶粒尺寸10~110nm)的拉伸力学性能,发现其屈服强度是一般退火铜(晶粒尺寸20μm)的10倍(~300MPa),延伸率也可达到8%以上;这表明铜纳米化后其强度和塑性有明显的改善,这对材料的精细加工、微型机械制造有着重要的价值。除上述应用之外,纳米铜粉还在改性酚醛树脂、作为治疗骨质疏松、骨质增生等药物调价材料、航空领域等呈现较高的应用价值。
就纳米铜粉末在润滑领域的应用而言,仍存在因其分散性差而受到极大限制的问题。现有技术中,制备纳米铜粉润滑油添加剂的常用方法是先制备出纳米铜粉,然后再将纳米铜粉添加到润滑油中制得,但是当纳米铜颗粒添加到润滑油中,因其粒度小、表面能高,颗粒之间存在吸引力,自动聚集的倾向很大,极易发生团聚,这种团聚即使在润滑油中被强行分散,颗粒之间也会在相互碰撞时再次团聚,从而发生聚沉。而颗粒一旦发生团聚、沉淀或变性,就不再具有原有特性,同时还可能对基于油润滑设计的机械***造成负面影响。
如现有中国专利申请号为201810835770.6、发明名称为“一种抗磨型纳米铜润滑油”,具体公开了一种抗磨型纳米铜润滑油的制备方法,该方法利用纳米铜无水乙醇悬浮液与基础润滑油之间的互溶性使纳米铜均匀分散在基础润滑油中,并结合非离子表面活性剂降低基础润滑油表面张力,阻止纳米铜颗粒团聚,提高了纳米铜的悬浮稳定性,从而提高了纳米铜润滑 油的抗磨性能。该发明依然局限于通过分散纳米铜粉末的方法实现纳米铜的应用。尽管添加非离子表面活性剂可以在一定时间内改善纳米铜的分散性能,但是这种方法无法避免长时间后纳米铜的聚集和沉降。且该发明所述的应用场景为润滑油油性体系,这与切削液的水性乳化体系有着很大的不同
现有中国专利申请号为201611157432.9、发明名称为“一种纳米铜润滑微乳化切削液”,具体公开了一种纳米铜润滑微乳化切削液的制备方法,该方法中加入的纳米金属铜粉具有良好的润滑减磨作用,但直接加到水基切削液中容易聚合且不容易分散,无法达到优良的减磨效果,还需利用化学氧化合成法将聚苯胺原位生成在纳米铜的表面,使其在水基切削液中达到可用的分散性和稳定性。但是该方法太过繁琐,需要先制备纳米铜粉末,然后再原位生成聚苯胺来进行包覆,这使得切削液的生产更加复杂且难以控制。同时,切削液体系的应用场景中具有长期高强度剪切力的重要因素,该作用力足以在短时间内将聚苯胺等聚合物剪切成更小的分子片段而使得聚合物失活,并进一步的在切削液体系中引入苯胺等有致癌毒性的小分子片段,大大降低切削液的使用寿命,危害工人健康。
发明内容
为此,本发明所要解决的技术问题在于提供一种真正具备商业应用价值的纳米铜在切削液中的应用,将具有有机长碳链的可自分散的纳米铜替代功能性添加剂,包括防腐剂、防锈剂、杀菌剂、抗压剂、润滑剂中的一种或几种,解决现有技术中纳米铜难以稳定的存在于切削液中,以及现有切削液不能同时具备高效的防腐蚀、防锈、抗压、润滑及杀菌性能,以及添加的添加剂种类、剂量较多、成本高,选择受限的技术问题。
本发明提供了一种纳米铜在切削液中的应用,所述纳米铜为具有有机长碳链、可自分散的纳米铜。
优选的,所述纳米铜为长碳链有机物包覆铜金属表面,所述长碳链有机物为二烷基二硫代磷酸(HDDP)及其衍生物,且其长碳链的碳数大于8,所述切削液为水性切削液。
优选的,所述纳米铜在切削液中的质量百分比为1%~10%,所述纳米铜为膏体,纳米铜粒径为10~50nm。
优选的,所述纳米铜替代切削液中功能性添加剂的部分或全部,所述功能性添加剂包括防腐剂、防锈剂、杀菌剂、抗压剂、润滑剂中的一种或几种。
优选的,所述切削液为水性铝合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000001
优选的,所述切削液为水性铝合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000002
Figure PCTCN2020090041-appb-000003
优选的,所述切削液为水性镁合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000004
优选的,所述切削液为水性镁合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000005
Figure PCTCN2020090041-appb-000006
优选的,所述切削液为乳化型切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000007
优选的,所述切削液为乳化型切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000008
Figure PCTCN2020090041-appb-000009
有益效果:
本发明提供的纳米铜在切削液中的应用,所述纳米铜具有有机长碳链、可自分散,可稳定在切削液中;对于水性的乳化型切削液,甚至全合成水溶性切削液,本发明纳米铜都能够直接地、稳定地、均匀地分散于其中,并且替代传统切削液配方中的功能性添加剂,包括防腐剂、防锈剂、杀菌剂、抗压剂、润滑剂中的一种或几种,一方面使得切削液同时具备高效的防腐蚀、防锈、抗压、润滑及杀菌性能,另一方面大大简化了切削液的配方体系,降低了生产成本,简化了生产步骤。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明。
图1为本发明实施例1纳米铜切削液原液与纳米铜切削液5%水溶液的示意图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式予以说明。
本说明书中所采用的试剂,除特殊说明外,均为市售产品。
本发明提供的具有有机长碳链可自分散纳米铜在切削液中的应用,所述纳米铜在切削液中的质量百分比为1~10%,优选2~5%。其中,所述纳米铜为长碳链有机物包覆金属铜表面,所述长链有机物为二烷基二硫代磷酸(HDDP)及其衍生物。
其中,具有有机长碳链可自分散纳米铜的制备方法,包括如下步骤:
步骤1:将铜源与水混合,得到铜源溶液,将所述铜源溶液置于氮气、氩气、或者空气气氛中,进行加热,加热至40℃~75℃,优选50℃~65℃,进一步优选为55℃;铜源水溶液选自五水硫酸铜、氯化铜、溴化铜、醋酸 铜、硝酸铜、乙酰丙酮铜水溶液中的任一种或多种。
步骤2:向步骤1加热后的铜源溶液中加入还原剂进行反应,得到还原铜源溶液;还原剂选自水合肼、次磷酸钠(NaH 2PO 2)、硼氢化钠、抗坏血酸(维生素C)和抗坏血酸钠中的任一种或多种。
步骤3:将所述二烷基二硫代磷酸包覆剂与有机溶剂进行混合,得到包覆剂溶液;有机溶剂选自石油醚60-90、二氯甲烷、三氯甲烷、戊烷、乙酸乙酯、***、四氯化碳、苯、甲苯、二甲苯、基础油中的任一种或多种。
步骤4:将所述包覆剂溶液加入到所述还原铜源溶液中进行反应,得到纳米铜混合物。
在步骤1开始前,先制备HDDP包覆剂:将碳基醇类化合物与五硫化二磷进行反应,得到二烷基二硫代磷酸包覆剂。本实施例中,碳基醇类化合物与五硫化二磷的摩尔比可以根据实际需要进行选择,优选的,所述碳基醇类化合物与五硫化二磷的摩尔比为2:1~8:1。所述碳基醇类化合物可以为脂肪醇和芳香醇,优选碳基醇类化合物为饱和脂肪醇中的至少一种,例如乙醇、异丙醇、异辛醇、癸醇、正十二烷基醇、十二烷基异构醇中的一种或几种。
其中,铜源与二烷基二硫代磷酸包覆剂的摩尔比可以根据具体需要进行调整,优选的,所述铜源与二烷基二硫代磷酸包覆剂的摩尔比为1:5~5:1。,优选的,所述铜源与还原剂的摩尔比为1:20~20:1。
还可进一步包括:将所述纳米铜混合物进行分液处理,去除下层的水相,得到上层的油相;将所述油相进行离心处理,得到上层清液;将所述上层清液进行浓缩处理,得到纳米铜膏体。所得纳米铜的粒径,经纳米粒径检测仪测定为10~50nm;经热重分析仪测定纳米铜制剂中纯铜的质量比为20%~25%。
本发明提供的水性铝合金半合成切削液,包括如下质量百分比的组分:纳米铜1~10%,优选2~5%,T22环烷基油20~30%,优选22~25%,油酸钾2~10%,优选4~6%,三乙醇胺3~8%,优选4~6%,油醇聚氧乙烯醚3~8%,优选4~6%,甲基二乙醇胺1~6%,优选3~5%,硼酸1~6%,优选3~5%,油酸1~5%,优选2~3%,耦合剂0.5~1%,异丙醇胺0.5~2%,优选0.5~1%,苯并三氮唑0.1~1%,优选0.4~0.6%,消泡剂0.04~0.06%, 水补足至100%。
将具有有机长碳链可自分散纳米铜可以直接应用于铝合金切削液的调配,并可以作为多功能添加剂同时替代防锈剂(烷基亚磷酸),润滑剂(聚醚),以及杀菌剂,显著降低切削液生产的成本。
本发明提供的所述切削液为水性镁合金半合成切削液,包括如下质量百分比的组分:纳米铜1~10%,优选2~5%,T22环烷基油25~35%,优选30~35%,石油磺酸钠8~15%,优选10~12%,阴离子螯合剂2~10%,优选5~8%,混合醇胺5~10%,优选5~8%,油醇聚氧乙烯醚2~5%,优选2~4%,脂肪醇聚氧乙烯醚2~5%,优选2~4%,妥尔油3~5%,耦合剂5~10%,优选6~8%,杀菌剂0.5~2%,优选0.5~1%,苯并三氮唑0.4~0.6%,消泡剂0.04~0.06%,水补足至100%。
将具有有机长碳链可自分散纳米铜直接应用于镁合金切削液的调配,彻底替代传统二元羧酸作为防腐蚀添加剂。同时,引入纳米铜之后还为切削液体系带来了额外的润滑作用与杀菌作用,进一步减少了其他添加剂的配比,降低了配方的成本。
本发明提供的所述切削液为乳化型切削液,包括如下质量百分比的组分:纳米铜1~10%,优选2~5%,T22环烷基油50~70%,优选65~70%,石油磺酸钠5~10%,优选7~9%,油酸4~6%,三乙醇胺1~3%,优选1~2%,一乙醇胺1~3%,优选1~2%,脂肪醇聚氧乙烯醚1~3%,优选1~2%,二乙二醇丁醚0.5~2%,优选0.5~1%,硼酸1~3%,优选1~2%,混合二元酸(C10-C12)0.1~1%,司盘80 2~5%,优选2~3%,杀菌剂0.5~2%,优选0.5~1%,苯并三氮唑0.1~1%,优选0.2~0.5%,消泡剂0.01~0.1%,优选0.04~0.06%,水补足至100%。
将具有有机长碳链可自分散纳米铜直接应用于乳化型切削液的调配,作为多功能添加剂同时替代抗压剂(石油磺酸钠),润滑剂(聚醚、司盘80),以及杀菌剂,显著降低切削液生产的成本。
本发明制得的纳米铜物种在切削液中的稳定分散性得益于两个主要因素:第一、在纳米铜制备过程中引入了大量的包覆剂,纳米铜形成以后与包覆剂结合生成稳定的纳米铜团簇,由于团簇的质量主体为包覆剂,所以团簇主要体现出包覆剂分子的物理特性,而不是裸露纳米铜粉末的物理性 质;第二、切削液体系通常为混合体系,包含大量的表面活性剂分子,这些分子的存在使得被包覆的纳米铜团簇能够很好的分散在乳化液的微乳泡(micelle)或者直接溶解于水中,而不至于形成独立的油层或者沉降物,如果只是简单添加裸露纳米铜粉末,这种分散作用就会因为铜粉表面缺乏有效作用力和作用位置而很难奏效。
实施例1
本实施例为一种水性铝合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000010
其中,本实施例中具有有机长碳链可自分散的纳米铜制备方法如下:
先制备HDDP包覆剂:在250mL的单口烧瓶中加入碳基醇类化合物和五硫化二磷,在单口***瓶口塞上塞子,并连接导气管,在搅拌条件下将反应混合物升温至80℃,并保温3h,反应释放的硫化氢气体通过导气管通入硫酸铜水溶液中。反应完成后去除反应体系中残留的固体,得到透明淡黄色液体,即为二烷基二硫代磷酸包覆剂。本实施例中,反应产生的硫化氢气体也可以通过氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液或乳浊液等碱性体系进行吸收。也可以采用燃烧或者氧化的办法,将硫化氢气体转化为二氧化硫,再另行吸收。
步骤1:在一个500mL的烧杯中加入铜源和水,使铜源在水中充分溶 解,得到铜源溶液,将所述铜源溶液倒入反应釜中,然后关闭反应釜;对反应釜进行通氮气,并将反应体系升温至55℃;
步骤2:向反应釜中加入还原剂,在搅拌条件下反应10min;
步骤3:将二烷基二硫代磷酸包覆剂与有机溶剂以终浓度为0.1mol/L至0.9mol/L进行混合,得到包覆剂溶液;
步骤4:将所述包覆剂溶液加入到反应釜中,反应2h,停止搅拌和加热;
步骤5:得到纳米铜混合物。
还进一步包括步骤6:从反应釜中倒出纳米铜混合物,用分液漏斗进行分液,除去下层水相,得到上层的油相;将得到的油相进行离心,除去较大的铜粉颗粒,得到上层清液;将上层清液进行旋蒸,去除溶剂,得到纳米铜膏体。对上层清液进行提纯时,还可以采用减压蒸馏或常压蒸馏的方式进行。
将上述制得的纳米铜直接应用于铝合金切削液的调配,并可以作为多功能添加剂同时替代防锈剂(烷基亚磷酸),润滑剂(聚醚),以及杀菌剂,显著降低切削液生产的成本。如图1所示,左侧为纳米铜切削液原液,右侧为纳米铜切削液5%水溶液,呈微乳化半透明状态。
本实施例还提供一不添加纳米铜的参考例1作为对比,配方如下表1。
表1参考例配方
  参考例1切削液(无纳米铜)
添加剂 含量(质量比%)
硼酸 3
混合二元酸(C10-C12) 2
油酸钾 5.8
苯并三氮唑 0.5
异丙醇胺 0.8
三乙醇胺 5.5
甲基二乙醇胺 3.5
36.35
氯化石蜡(C14-C17) 4
油醇聚氧乙烯醚 5.5
油酸 2
耦合剂 2
杀菌剂 2
T22环烷基油 24
纳米铜 0
消泡剂 0.05
合计 100
对本实施例1的纳米铜切削液和参考例无纳米铜切削液进行防锈测试,如下表2所示。
表2实施例1纳米铜切削液和参考例无纳米铜切削液测试对比
Figure PCTCN2020090041-appb-000011
结果表明,本实施例1切削液,纳米铜的加入保证了对铝合金防锈效果不降低的情况下,代替了价格高昂的烷基亚磷酸。同时,其显著的润滑和杀菌特性,也使得切削液不再需要聚醚和其他杀菌剂,因而大大简化了切削液的配方体系,降低成本的同时,也简化了生产步骤。对本实施例切削液还进行了沉降实验,测试结果显示6个月后仍无沉淀产生,可见本实施例水性铝合金半合成切削液中纳米铜长期、稳定、均匀的分散在其中。
本实施例应用的纳米铜之所以具有对铝合金高效的防腐蚀性能,是因为如下原因:
纳米铜的包覆剂是由长有机碳链的二硫代磷酸酯构成的,二硫代磷酸酯本身具有对于铝合金表面非常高效的结合能力,进而使得铝合金表面被包覆剂分子覆盖,与水隔离。
纳米铜膏体中的纳米铜团簇在铝合金加工过程中可以有效沉积在铝合金表面,使得合金表面与水产生第二道隔离层,进一步增强了防腐蚀的性能。
而纳米铜对于铝合金切削液润滑性的提升,则是因为:
二硫代磷酸酯本身具有对于铝合金表面非常高效的结合能力,形成耐极压油膜,从而在铝合金表面产生润滑能力。二硫代磷酸酯与钢制刀具在加工过程中发生化学反应,生成硫化铁膜,使得刀具表面产生相当的抗极压和润滑性能。纳米铜的抗菌能力则得力于纳米铜团簇本身的杀菌能力。尽管纳米铜团簇表面被二硫代磷酸酯包覆,但是该效应具有可逆性。在加工过程中少量包覆剂分子游离出来,使得纳米铜团簇的表面裸露出来,产生抗菌能力。
实施例2
本实施例为一种水性镁合金半合成切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000012
Figure PCTCN2020090041-appb-000013
本实施例中具有有机长碳链可自分散的纳米铜制备方法与实施例1中一致,不同之处如下:
步骤1中,所述碳基醇类化合物为65%摩尔百分比的正十二烷基醇、20%摩尔百分比的异辛醇、15%摩尔百分比的乙醇所构成的混合物,总质量为53.9g(350mmol),五硫化二磷的用量为22.2g(100mmol),混合醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二烷基二硫代磷酸混合物。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二烷基二硫代磷酸混合物的用量为48g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二烷基二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
将上述制得的纳米铜直接应用于镁合金切削液的调配,彻底替代传统二元羧酸作为防腐蚀添加剂。同时,引入纳米铜之后还为切削液体系带来了额外的润滑作用与杀菌作用,进一步减少了其他添加剂的配比,降低了配方的成本。本实施例还提供一不添加纳米铜的参考例2作为对比,配方如下表3。
表3参考例配方
添加剂 含量(质量比%)
阴离子螯合剂 6
苯并三氮唑 0.5
混合醇胺 6.5
22
石油磺酸钠 11
油醇聚氧乙烯醚 3.5
脂肪醇聚氧乙烯醚 3.5
耦合剂 8
杀菌剂 2
妥尔油 4
T22环烷基油 32.95
纳米铜 0
消泡剂 0.05
合计 100
对本实施例2的切削液和参考例无纳米铜切削液进行防锈测试,如下表4所示。
表4实施例2切削液和参考例无纳米铜切削液测试对比
Figure PCTCN2020090041-appb-000014
结果表明,本实施例2切削液,纳米铜的加入使得镁合金切削液中的添加配比可以降低至极具成本优势的1%左右,这与15%的二元羧酸添加比形成了鲜明的对比,充分展示了这种纳米铜在镁合金防腐蚀作用上的高效, 以及由它配制的切削液的低成本。对本实施例切削液还进行了沉降实验,测试结果显示6个月后仍无沉淀产生,可见本实施例水性铝合金半合成切削液中纳米铜长期、稳定、均匀的分散在其中。
本实施例应用的纳米铜之所以具有对镁合金高效的防腐蚀性能,是因为如下原因:
纳米铜的包覆剂是由长有机碳链的二硫代磷酸酯构成的。二硫代磷酸酯本身具有对于镁合金表面非常高效的结合能力,进而使得镁合金表面被包覆剂分子覆盖,与水隔离。
纳米铜膏体中的纳米铜团簇在镁合金加工过程中可以有效沉积在镁合金表面,使得合金表面与水产生第二道隔离层,进一步增强了防腐蚀的性能。
在加工过程中,镁金属会与硫代磷酸发生反应,生成少量的硫代磷酸镁,沉积在金属表面,从而形成第三道隔离层。因为长碳链纳米铜对于镁合金的高防腐蚀性,镁合金切削液中对该成分的需求量被大大降低,进而显著降低了切削液的整体成本。另一方面,因为纳米铜的润滑作用和杀菌作用,其他相关添加剂的配比也被缩小,这也是配方成本下降的原因之一。
实施例3
本实施例为一种乳化型切削液,包括如下质量百分比的组分:
Figure PCTCN2020090041-appb-000015
Figure PCTCN2020090041-appb-000016
本实施例中具有有机长碳链可自分散的纳米铜制备方法与实施例1中一致,不同之处如下:
步骤1中,所述碳基醇类化合物为异辛醇,用量为45.5g(350mmol),五硫化二磷的用量为22.2g(100mmol),异辛醇与五硫化二磷的摩尔比为3.5:1,步骤1最终得到二(2-乙基己基)二硫代磷酸。
步骤2中,铜源为五水硫酸铜,用量为37.4g(150mmol),溶解五水硫酸铜的水为200mL,还原剂为80%水合肼,用量为120mL(约2mol),二(2-乙基己基)二硫代磷酸的用量为42.5g(120mmol),五水硫酸铜与还原剂的摩尔比为3:40;五水硫酸铜与二(2-乙基己基)二硫代磷酸的摩尔比为5:4,有机溶剂为石油醚60-90,用量为250mL。
将上述制得的纳米铜直接应用于乳化型切削液的调配,并可以作为多功能添加剂同时替代抗压剂(石油磺酸钠),润滑剂(聚醚、司盘80),以及杀菌剂,显著降低切削液生产的成本。本实施例还提供一不添加纳米铜的参考例3作为对比,配方如下表5。
表5参考例配方
添加剂 含量(质量比%,不含纳米铜配方)
混合二元酸(C10-C12) 0.5
硼酸 1.5
苯并三氮唑 0.4
一乙醇胺 1.5
三乙醇胺 1.5
二乙二醇丁醚 1
油酸 5
3.1
石油磺酸钠 9
脂肪醇聚氧乙烯醚 2
司盘80 5
杀菌剂 2
T22环烷基油 67.45
纳米铜 0
消泡剂 0.05
合计 100
对本实施例3的纳米铜切削液和参考例无纳米铜切削液进行防锈测试,如下表6所示。
表6实施例3纳米铜切削液和参考例无纳米铜切削液测试对比
Figure PCTCN2020090041-appb-000017
结果表明,本实施例3切削液,纳米铜的加入使得乳化型切削液主要性能指标不降低的情况下,代替了常见的润滑剂和抗压剂,因而大大简化了切削液的配方体系,降低成本的同时,也简化了生产步骤。对本实施例切削液还进行了沉降实验,测试结果显示6个月后仍无沉淀产生,可见本实施例水性铝合金半合成切削液中纳米铜长期、稳定、均匀的分散在其中。其他性能优势与实施例1和实施2中所述相同,在此不再赘述。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种纳米铜在切削液中的应用,其特征在于,所述纳米铜为具有有机长碳链、可自分散的纳米铜。
  2. 根据权利要求1所述的纳米铜在切削液中的应用,其特征在于,所述纳米铜为长碳链有机物包覆铜金属表面,所述长碳链有机物为二烷基二硫代磷酸(HDDP)及其衍生物,且其长碳链的碳数大于8,所述切削液为水性切削液。
  3. 根据权利要求2所述的纳米铜在切削液中的应用,其特征在于,所述纳米铜在切削液中的质量百分比为1%~10%,所述纳米铜为膏体,纳米铜粒径为10~50nm。
  4. 根据权利要求1至3任一所述的纳米铜在切削液中的应用,其特征在于,所述纳米铜替代切削液中功能性添加剂的部分或全部,所述功能性添加剂包括防腐剂、防锈剂、杀菌剂、抗压剂、润滑剂中的一种或几种。
  5. 根据权利要求4所述的纳米铜在切削液中的应用,其特征在于,所述切削液为水性铝合金半合成切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100001
  6. 根据权利要求5所述的纳米铜在切削液中的应用,其特征在于,所 述切削液为水性铝合金半合成切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100002
  7. 根据权利要求4所述的纳米铜在切削液中的应用,其特征在于,所述切削液为水性镁合金半合成切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100003
    Figure PCTCN2020090041-appb-100004
  8. 根据权利要求7所述的纳米铜在切削液中的应用,其特征在于,所述切削液为水性镁合金半合成切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100005
  9. 根据权利要求4所述的切削液中的应用,其特征在于,所述切削液为乳化型切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100006
    Figure PCTCN2020090041-appb-100007
  10. 根据权利要求9所述的纳米铜在切削液中的应用,其特征在于,所述切削液为乳化型切削液,包括如下质量百分比的组分:
    Figure PCTCN2020090041-appb-100008
PCT/CN2020/090041 2019-07-23 2020-05-13 纳米铜在切削液中的应用 WO2021012753A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/581,971 US11739285B2 (en) 2019-07-23 2022-01-23 Application of nano copper in cutting fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910666592.3A CN112280608B (zh) 2019-07-23 2019-07-23 纳米铜在切削液中的应用
CN201910666592.3 2019-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,971 Continuation US11739285B2 (en) 2019-07-23 2022-01-23 Application of nano copper in cutting fluid

Publications (1)

Publication Number Publication Date
WO2021012753A1 true WO2021012753A1 (zh) 2021-01-28

Family

ID=74193112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090041 WO2021012753A1 (zh) 2019-07-23 2020-05-13 纳米铜在切削液中的应用

Country Status (3)

Country Link
US (1) US11739285B2 (zh)
CN (1) CN112280608B (zh)
WO (1) WO2021012753A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129110B (zh) * 2019-05-29 2021-03-26 河南大学 一种二烃基二硫代磷酸修饰氧化锌纳米粒及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554217A (zh) * 2012-02-24 2012-07-11 河南大学 一种水溶性纳米铜及其制备方法
CN104357201A (zh) * 2014-09-30 2015-02-18 苏州长盛机电有限公司 一种适用于镁合金材加工的微乳化切削液及其制备方法
CN106635354A (zh) * 2016-12-12 2017-05-10 深圳市广仁达实业有限公司 纳米切削液

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484651B2 (ja) * 2004-09-28 2010-06-16 日華化学株式会社 水溶性切削油剤組成物及びそれを用いた切削加工方法
CN101612667B (zh) * 2009-05-31 2011-01-26 河南大学 一种表面修饰油溶性纳米铜的制备方法
CN103031195A (zh) * 2011-10-10 2013-04-10 洛科斯润滑油(上海)有限公司 微乳化切削液
CN104877750B (zh) * 2014-02-27 2019-05-28 上海德润宝特种润滑剂有限公司 一种核电设备加工用水基切削液及其稀释液
CN104560331A (zh) * 2014-12-30 2015-04-29 繁昌县新科精密模具厂 一种使用范围广的多功能水基切削液及其制备方法
CN106467768A (zh) * 2016-08-30 2017-03-01 天长市润达金属防锈助剂有限公司 一种抗氧化微乳化切削液及其制备方法
CN106675720A (zh) * 2016-12-15 2017-05-17 天长市润达金属防锈助剂有限公司 一种纳米铜润滑微乳化切削液
CN107523387B (zh) * 2017-08-30 2020-10-27 河南大学 一种碳膜发动机专用润滑油及其制备方法
WO2019051596A1 (en) * 2017-09-13 2019-03-21 Mcmaster University COMPOSITIONS CONTAINING POLYMER-STABILIZED NANOPARTICLES FOR USE AS CUTTING FLUIDS AND / OR COOLING FLUIDS
CN108795537B (zh) * 2018-08-03 2021-06-15 苏州大学 一种表面修饰的润滑油用纳米铜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554217A (zh) * 2012-02-24 2012-07-11 河南大学 一种水溶性纳米铜及其制备方法
CN104357201A (zh) * 2014-09-30 2015-02-18 苏州长盛机电有限公司 一种适用于镁合金材加工的微乳化切削液及其制备方法
CN106635354A (zh) * 2016-12-12 2017-05-10 深圳市广仁达实业有限公司 纳米切削液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, FENG ET AL.: "Self-Repairing Mechanism and Tribological Properties of Nano-Cu as Lubricating Oil Additives", MATERIALS PROTECTION, vol. 51, no. 2, 28 February 2018 (2018-02-28), XP055775193, ISSN: 1001-1560 *

Also Published As

Publication number Publication date
CN112280608B (zh) 2021-08-17
CN112280608A (zh) 2021-01-29
US11739285B2 (en) 2023-08-29
US20220145210A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
CN103468382B (zh) 一种无硼、无氯、无甲醛微乳化切削液及其应用
CN100485018C (zh) 防锈切削液
WO2018032853A1 (zh) 一种微乳切削液及其制备工艺
CN111378520B (zh) 一种含MoS2的水溶性微量润滑液
CN104277902A (zh) 一种重负荷金属加工全合成切削液及其制备方法与应用
CN100582204C (zh) 高效节能纳米抗磨剂及其制备方法和应用
EP1491615B1 (en) Metal soap-coated particle, article made with the same, lubricating coating agent, and lubricating coating film
WO2021012753A1 (zh) 纳米铜在切削液中的应用
WO2021012754A1 (zh) 具有长有机碳链可自分散纳米铜的制备方法、纳米铜制剂及其应用
CN102604723A (zh) 一种润滑脂组合物及制备方法
Anand et al. Bio-based nano-lubricants for sustainable manufacturing
CN107418673A (zh) 一种基于聚异丁烯基琥珀酸酐的新型乳化体系的切削液及其制备方法和应用
CN103555392A (zh) 一种含有离子液体的微乳化金属切削液及其制备方法和应用
CN111303971B (zh) 一种无硫磷氯切削油及其制备方法与应用
Wang et al. Experimental study on the suspension stability and tribological properties of nano-copper in LCKD-320# lubricating oil
CN108456590A (zh) 一种环保型微量润滑切削液组合物
CN110734804B (zh) 一种纳米切削油及其制备方法和应用
CN103865623B (zh) 一种多功能无毒水基防锈切割液
CN113355150B (zh) 一种微乳切削液及其制备方法和应用
CN111019745B (zh) 一种含MoS2的非水溶性微量润滑液
CN103451000A (zh) 一种汽车刹车盘全合成切削液及其制备方法
CN106350183A (zh) 一种油酸改性微乳化切削液及其制备方法
CN113201392A (zh) 一种钢板带表面加工功能型润滑剂、制备方法及在线检测***
CN100413931C (zh) 用作润滑油添加剂的纳米铜的制备方法
CN102304412B (zh) 一种非金属研磨悬浮油及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843480

Country of ref document: EP

Kind code of ref document: A1