WO2021012547A1 - 柔性oled显示面板及其制作方法 - Google Patents

柔性oled显示面板及其制作方法 Download PDF

Info

Publication number
WO2021012547A1
WO2021012547A1 PCT/CN2019/120752 CN2019120752W WO2021012547A1 WO 2021012547 A1 WO2021012547 A1 WO 2021012547A1 CN 2019120752 W CN2019120752 W CN 2019120752W WO 2021012547 A1 WO2021012547 A1 WO 2021012547A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
flexible
display panel
flexible transparent
oled display
Prior art date
Application number
PCT/CN2019/120752
Other languages
English (en)
French (fr)
Inventor
李朝
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/622,770 priority Critical patent/US11094896B2/en
Publication of WO2021012547A1 publication Critical patent/WO2021012547A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field related to display panels, and in particular to a flexible OLED display panel and a manufacturing method thereof.
  • Flexible OLED display panels include flexible transparent substrates, TFT layers, organic light-emitting layers, encapsulation layers, etc. from bottom to top; in flexible OLED display technology, PI (polyimide) flexible transparent substrates are usually used to replace traditional glass substrates. Folding and flexible display are realized; in order to achieve better water and oxygen barrier properties, a double flexible transparent substrate is usually used instead of a single layer of flexible transparent substrate, that is, a flexible transparent substrate-buffer layer-flexible transparent substrate structure.
  • PI polyimide
  • the industry generally uses the "coating-baking" method to prepare flexible transparent substrates. Due to the thicker film of the flexible transparent substrate, the thermal stress generated in the subsequent high-temperature manufacturing process can easily cause the glass (glass substrate) to warp and affect the performance of the OLED display panel. Subsequent production, and there is a risk of peeling between the flexible layer and the buffer layer, thereby reducing the yield of the OLED display panel.
  • the embodiments of the present application provide a flexible OLED display panel and a manufacturing method thereof to solve the problem of warping of the glass substrate and peeling between the flexible layer and the buffer layer during the manufacturing process of the OLED display panel, thereby reducing the yield of the OLED display panel.
  • the embodiments of the present application provide a flexible OLED display panel, including a first flexible transparent substrate, a buffer layer covering the first flexible transparent substrate, and a second flexible transparent substrate covering the buffer layer;
  • a first rough structure is formed on the surface of the first flexible transparent substrate in contact with the buffer layer;
  • a second rough structure is formed on the surface of the buffer layer in contact with the second flexible transparent substrate.
  • the first rough structure is a plurality of first grooves or first protrusions arranged in an array
  • the second rough structure is a plurality of second grooves or second protrusions arranged in an array.
  • the groove depth of the first groove or the height of the first protrusion is 0um ⁇ 0.5um.
  • the groove depth of the second groove or the height of the second protrusion is 0um ⁇ 0.5um.
  • the distance between two adjacent first grooves or first protrusions is 10 um to 20 um.
  • the distance between two adjacent second grooves or second protrusions is 10 um to 20 um.
  • the cross-section of the first groove or the first protrusion in a direction parallel to the first flexible transparent substrate is a square with a side length of 0um-10um.
  • the cross section of the second groove or the second protrusion in a direction parallel to the buffer layer is a square with a side length of 0um-10um.
  • the material of the buffer layer is silicon oxide, and the thickness of the buffer layer is 0.5um-2um.
  • the material of the first flexible transparent substrate is polyimide, and the thickness of the first flexible transparent substrate is 8um-10um.
  • the material of the second flexible transparent substrate is polyimide, and the thickness of the second flexible transparent substrate is 5um-10um
  • the flexible OLED display panel further includes:
  • the TFT layer is provided on the side of the second flexible transparent substrate away from the buffer layer;
  • the organic light emitting layer is provided on the side of the TFT layer away from the second flexible transparent substrate.
  • the encapsulation layer is arranged on the organic light-emitting layer and is used to encapsulate the organic light-emitting layer.
  • a method for manufacturing a flexible OLED display panel which includes the following steps:
  • a second flexible transparent substrate is covered on the second rough structure.
  • the providing the first flexible transparent substrate includes the following steps:
  • the method further includes:
  • the glass substrate and the first flexible transparent substrate are peeled off.
  • the glass substrate and the first flexible transparent substrate are peeled off by means of laser peeling.
  • the forming the first flexible transparent substrate on the glass substrate includes:
  • a polyimide solution is coated on the glass substrate and heated to form a first flexible transparent substrate.
  • the first rough structure is formed on the surface of one side of the first flexible transparent substrate by dry etching.
  • a buffer layer is formed on the first rough structure by chemical vapor deposition.
  • a second rough structure is formed on the side of the buffer layer away from the first flexible transparent substrate by dry etching.
  • the forming a second flexible transparent substrate on the second rough structure includes:
  • a polyimide solution is coated on the second rough structure and heated to form a second flexible transparent substrate.
  • the beneficial effect of the present application is that by forming a first rough structure between the first flexible transparent substrate and the buffer layer, combined with the second rough structure formed between the second flexible transparent substrate and the buffer layer, the buffer layer
  • the bonding force between a flexible transparent substrate and a second flexible transparent substrate prevents the first flexible transparent substrate or the second flexible transparent substrate from peeling off the buffer layer during the subsequent binding process, which improves the binding of the flexible OLED display panel Performance; At the same time, it also reduces the thermal stress in the first flexible transparent substrate and the second flexible transparent substrate, avoids the warpage of the glass substrate caused by the subsequent high-temperature manufacturing process, and improves the stability of flexible OLED display panel manufacturing.
  • FIG. 1 is a schematic structural diagram of a flexible OLED display panel provided by an embodiment of the application
  • FIG. 2 is a top view of a first flexible transparent substrate in a flexible OLED display panel provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of another flexible OLED display panel provided by an embodiment of the application.
  • FIG. 4 is a flowchart of a manufacturing method of a flexible OLED display panel provided by an embodiment of the application.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • an embodiment of the present application provides a flexible OLED display panel, including a first flexible transparent substrate 100, a buffer layer 200 covering the first flexible transparent substrate 100, and A second flexible transparent substrate 300 covering the buffer layer 200;
  • a first rough structure 110 is formed on the surface of the first flexible transparent substrate 100 in contact with the buffer layer 200;
  • a second rough structure 210 is formed on the surface of the buffer layer 200 in contact with the second flexible transparent substrate 300.
  • the buffer layer 200 covers the first flexible On the transparent substrate 100
  • the surface of the buffer layer 200 in contact with the first flexible transparent substrate 100 is formed with a structure conforming to the shape of the first rough structure 110, so as to facilitate the first flexible transparent substrate 100 is in surface contact and is entirely covered on the first flexible transparent substrate 100;
  • the second rough structure 210 is formed on the surface of the buffer layer 200 in contact with the second flexible transparent substrate 300, the first The second flexible transparent substrate 300 is also formed with a structure adapted to the second rough structure 210, which will not be repeated here.
  • the first rough structure 110 is a plurality of first grooves 111 or first protrusions 112 arranged in an array; the second rough structure 210 is a plurality of second grooves 211 or The second protrusion 212; obviously, the first rough structure 110 is the first groove 111 or the first protrusion 112, while the second rough structure 210 is the second groove 211 or the second protrusion 212, which can only As a specific structural form of the first rough structure 110 and the second rough structure 210, of course, the first rough structure 110 and the second rough structure 210 can also be other rough structure forms that reduce thermal stress, which will not be described here. limit.
  • the first rough structure 110 and the second rough structure 210 have multiple structure forms, and the arrangement and combination make the structure of the flexible OLED display panel more diversified.
  • the first roughness structure 110 is the first groove 111 and the second roughness structure 210 is the structure of the second groove 211
  • the first roughness The structure 110 is the first protrusion 112 and the second rough structure 210 is the second protrusion 212 as an example.
  • the first rough structure 110 is the first protrusion 112 and the second protrusion 112
  • the two roughness structure 210 is the structure of the second groove 211 and so on, which will not be repeated here.
  • the groove depth of the first groove 111 or the height of the first protrusion 112 is 0um-0.5um; the groove depth of the second groove 211 or the height of the second protrusion 212 is 0um ⁇ 0.5um; the distance between two adjacent first grooves 111 or first protrusions 112 is 10um-20um, and the distance between two adjacent second grooves 211 or second protrusions 212 is 10um-20um;
  • the cross section of the first groove 111 and the second groove 211 in the direction perpendicular to the first flexible transparent substrate 100 may be V-shaped or trapezoidal; specifically, as shown in FIG.
  • the vertical cross-sections of the first groove 111 and the second groove 211 are both V-shaped; in addition, as shown in FIG. 3, schematically, the first protrusion 112 and the second protrusion 212 are perpendicular to the The cross section in the direction of the first flexible transparent substrate 100 is specifically a trapezoidal structure.
  • the cross section of the first groove 111, the first protrusion 112, the second groove 211, and the second protrusion 212 in a direction parallel to the first flexible transparent substrate 100 may be rectangular or circular.
  • the horizontal cross-section of the first groove 111 is a square; and, the first groove 111 or the first protrusion 112 is parallel to the first
  • the cross section in the direction of the flexible transparent substrate 100 is a square with a side length of 0um to 10um; the cross section of the second groove 211 or the second protrusion 212 in the direction parallel to the buffer layer 200 has a side length of 0um to 10um
  • the matrix arrangement of the first groove 111 is schematically shown.
  • first rough structure 110 or the second rough structure 210 is in other structure forms, such as the first convex
  • the arrangement form of the ridge 112, the second groove 211, the second protrusion 212, etc. can refer to the arrangement form of the first groove 111 in FIG. 2, which will not be shown one by one in this application.
  • the material of the buffer layer 200 is silicon oxide
  • the thickness of the buffer layer 200 is 0.5um-2um
  • the materials of the first flexible transparent substrate 100 and the second flexible transparent substrate 300 are both poly
  • the thickness of the first flexible transparent substrate 100 is 8 um to 10 um
  • the thickness of the second flexible transparent substrate 300 is 5 um to 10 um.
  • the flexible OLED display panel further includes:
  • the TFT layer 400 is disposed on the side of the second flexible transparent substrate 300 away from the buffer layer 200;
  • the organic light emitting layer 500 is disposed on the side of the TFT layer 400 away from the second flexible transparent substrate 300;
  • the encapsulation layer 600 is disposed on the organic light-emitting layer 500 and is used to encapsulate the organic light-emitting layer 500.
  • the flexible OLED display panel of the present application forms a first rough structure between the first flexible transparent substrate and the buffer layer, and combines the second rough structure formed between the second flexible transparent substrate and the buffer layer to enhance the separation of the buffer layer.
  • the bonding force with the first flexible transparent substrate and the second flexible transparent substrate prevents the first flexible transparent substrate or the second flexible transparent substrate from peeling off the buffer layer during the subsequent binding process, which improves the performance of the flexible OLED display panel. Binding performance; at the same time, it also reduces the thermal stress in the first flexible transparent substrate and the second flexible transparent substrate, avoids the warpage of the glass substrate caused by the subsequent high-temperature manufacturing process, and improves the stability of flexible OLED display panel manufacturing.
  • a method for manufacturing a flexible OLED display panel including:
  • Step S1 providing a first flexible transparent substrate 100; forming a first rough structure 110 on the surface of one side of the first flexible transparent substrate 100;
  • Step S2 covering the buffer layer 200 on the first rough structure 110; forming a second rough structure 210 on the side of the buffer layer 200 away from the first flexible transparent substrate 100;
  • Step S3 covering the second flexible transparent substrate 300 on the second rough structure 210.
  • step S1 the providing the first flexible transparent substrate 100 includes:
  • step S3 after covering the second flexible transparent substrate 300 on the second rough structure 210, the method further includes:
  • peel the glass substrate from the first flexible transparent substrate 100 it is understandable that the step of peeling the glass substrate from the first flexible transparent substrate 100, specifically, is in the second flexible transparent substrate After the corresponding functional layers (such as the TFT layer 400, the organic light-emitting layer 500 and the encapsulation layer 600, etc.) have been fabricated, the peeling is performed.
  • the corresponding functional layers such as the TFT layer 400, the organic light-emitting layer 500 and the encapsulation layer 600, etc.
  • first grooves 111 arranged in an array on the first flexible transparent substrate 100; wherein, on the mask, The side length of the square hole is 5um ⁇ 10um; and the distance between two adjacent square holes is 10um ⁇ 20um;
  • the buffer layer 200 is formed on the first flexible substrate, and the second grooves 211 arranged in an array are formed on the buffer layer 200 by dry etching. It can be understood that in the above two dry etching , You can use the same mask for etching, no need to change other masks. Similarly, in the present application, the structure shown in FIG. 3 (the first rough structure 110 is the first protrusion 112 and the second rough structure 210 is the second protrusion 212) may also exist. The situation of manufacturing through the same mask will not be repeated here.
  • the manufacturing method of a flexible OLED display panel of the present application forms a first rough structure between the first flexible transparent substrate and the buffer layer, and combines the second rough structure formed between the second flexible transparent substrate and the buffer layer.
  • the thermal stress in the first flexible transparent substrate and the second flexible transparent substrate is reduced, and the warpage of the glass substrate caused by the subsequent high-temperature manufacturing process is avoided; and it is also suitable for mass production, which improves the stability of flexible OLED display panel production.
  • the first rough structure is formed between the first flexible transparent substrate and the buffer layer
  • the second rough structure formed between the second flexible transparent substrate and the buffer layer is combined to enhance the buffer layer and the first rough structure.
  • the bonding force between a flexible transparent substrate and a second flexible transparent substrate prevents the first flexible transparent substrate or the second flexible transparent substrate from peeling off the buffer layer during the subsequent binding process, which improves the binding of the flexible OLED display panel Performance; At the same time, it also reduces the thermal stress in the first flexible transparent substrate and the second flexible transparent substrate, avoids the warpage of the glass substrate caused by the subsequent high-temperature manufacturing process, and improves the stability of flexible OLED display panel manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种柔性OLED显示面板及其制作方法,所述显示面板包括第一柔性透明基板(100)、覆盖在所述第一柔性透明基板(100)上的缓冲层(200)、以及覆盖在所述缓冲层(200)上的第二柔性透明基板(300);第一柔性透明基板(100)与缓冲层(200)接触的表面形成有第一粗糙结构(110);缓冲层(200)与第二柔性透明基板(300)接触的表面形成有第二粗糙结构(210)。

Description

柔性OLED显示面板及其制作方法 技术领域
本申请涉及显示面板相关技术领域,尤其涉及一种柔性OLED显示面板及其制作方法。
背景技术
柔性OLED显示面板由下到上包括柔性透明基板、TFT层、有机发光层、封装层等;在柔性OLED显示技术中,通常采用PI(聚酰亚胺)柔性透明基板取代传统的玻璃基底,以实现折叠和柔性显示;为了实现更好的水氧阻隔性能,通常采用双柔性透明基板代替单层柔性透明基板,即柔性透明基板-缓冲层-柔性透明基板结构。
技术问题
目前,业界一般采用“涂布-烘烤”法制备柔性透明基板,由于柔性透明基板膜层较厚,后续高温制程中产生的热应力容易造成glass(玻璃基板)翘曲,影响OLED显示面板的后续制作,且有导致柔性层与缓冲层之间发生Peeling(剥落)的风险,从而降低OLED显示面板的良品率。
技术解决方案
本申请实施例提供一种柔性OLED显示面板及其制作方法,以解决OLED显示面板制作过程中玻璃基板翘曲,以及柔性层与缓冲层之间发生剥落,从而降低OLED显示面板良品率的问题。
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供了一种柔性OLED显示面板,包括第一柔性透明基板、覆盖在所述第一柔性透明基板上的缓冲层、以及覆盖在所述缓冲层上的第二柔性透明基板;
所述第一柔性透明基板与所述缓冲层接触的表面形成有第一粗糙结构;
所述缓冲层与所述第二柔性透明基板接触的表面形成有第二粗糙结构。
在本申请实施例的柔性OLED显示面板中,所述第一粗糙结构为若干呈阵列布置的第一凹槽或第一凸起;
所述第二粗糙结构为若干呈阵列布置的第二凹槽或第二凸起。
在本申请实施例的柔性OLED显示面板中,所述第一凹槽的槽深或第一凸起的高度为0um~0.5um。
在本申请实施例的柔性OLED显示面板中,所述第二凹槽的槽深或第二凸起的高度为0um~0.5um。
在本申请实施例的柔性OLED显示面板中,相邻两所述第一凹槽或第一凸起的间距为10um~20um。
在本申请实施例的柔性OLED显示面板中,相邻两所述第二凹槽或第二凸起的间距为10um~20um。
在本申请实施例的柔性OLED显示面板中,所述第一凹槽或第一凸起在平行于所述第一柔性透明基板方向上的截面呈边长为0um~10um的正方形。
在本申请实施例的柔性OLED显示面板中,所述第二凹槽或第二凸起在平行于所述缓冲层方向上的截面呈边长为0um~10um的正方形。
在本申请实施例的柔性OLED显示面板中,所述缓冲层的材料为氧化硅,所述缓冲层的厚度为0.5um~2um。
在本申请实施例的柔性OLED显示面板中,所述第一柔性透明基板的材料为聚酰亚胺,所述第一柔性透明基板的厚度为8um~10um。
在本申请实施例的柔性OLED显示面板中,所述第二柔性透明基板的材料为聚酰亚胺,所述第二柔性透明基板的厚度为5um~10um
在本申请实施例的柔性OLED显示面板中,所述柔性OLED显示面板还包括:
TFT层,设于所述第二柔性透明基板远离所述缓冲层的一侧;
有机发光层,设于所述TFT层远离所述第二柔性透明基板的一侧;及
封装层,设于所述有机发光层上,用于封装所述有机发光层。
根据本申请的上述目的,还提供一种柔性OLED显示面板的制作方法,包括以下步骤:
提供第一柔性透明基板;在所述第一柔性透明基板一侧的表面形成第一粗糙结构;
在所述第一粗糙结构上覆盖缓冲层;在所述缓冲层远离所述第一柔性透明基板的一侧形成第二粗糙结构;以及
在所述第二粗糙结构上覆盖第二柔性透明基板。
在本申请实施例的柔性OLED显示面板的制作方法中,所述提供第一柔性透明基板包括以下步骤:
提供一玻璃基板;
在所述玻璃基板上形成第一柔性透明基板;以及
所述在所述第二粗糙结构上覆盖第二柔性透明基板之后,还包括:
将玻璃基板与所述第一柔性透明基板剥离。
在本申请实施例的柔性OLED显示面板的制作方法中,采用激光剥离的方式将所述玻璃基板与所述第一柔性透明基板剥离。
在本申请实施例的柔性OLED显示面板的制作方法中,所述在所述玻璃基板上形成第一柔性透明基板包括:
在所述玻璃基板上涂布聚酰亚胺溶液并加热形成第一柔性透明基板。
在本申请实施例的柔性OLED显示面板的制作方法中,通过干法蚀刻的方式在所述第一柔性透明基板一侧的表面形成第一粗糙结构。
在本申请实施例的柔性OLED显示面板的制作方法中,通过化学气相沉积的方式在所述第一粗糙结构上形成缓冲层。
在本申请实施例的柔性OLED显示面板的制作方法中,通过干法蚀刻的方式在所述缓冲层远离所述第一柔性透明基板的一侧形成第二粗糙结构。
在本申请实施例的柔性OLED显示面板的制作方法中,其中,所述在所述第二粗糙结构上形成第二柔性透明基板包括:
在所述第二粗糙结构上涂布聚酰亚胺溶液并加热形成第二柔性透明基板。
有益效果
本申请的有益效果为:通过在第一柔性透明基板与缓冲层之间形成第一粗糙结构,结合第二柔性透明基板与缓冲层之间形成的第二粗糙结构,增强了缓冲层分别与第一柔性透明基板和第二柔性透明基板的粘结力,防止后续绑定制程中造成第一柔性透明基板或第二柔性透明基板从所述缓冲层上剥落,提高了柔性OLED显示面板的绑定性能;同时,还降低了第一柔性透明基板和第二柔性透明基板中的热应力,避免了后续高温制程造成玻璃基板的翘曲,提高了柔性OLED显示面板制作的稳定性。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种柔性OLED显示面板的结构示意图;
图2为本申请实施例提供的一种柔性OLED显示面板中第一柔性透明基板的俯视图;
图3为本申请实施例提供的又一种柔性OLED显示面板的结构示意图;
图4为本申请实施例提供的一种柔性OLED显示面板的制作方法的流程框图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用来描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用来描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
示意的,如图1-图3所示,本申请实施例提供了一种柔性OLED显示面板,包括第一柔性透明基板100、覆盖在所述第一柔性透明基板100上的缓冲层200、以及覆盖在所述缓冲层200上的第二柔性透明基板300;
所述第一柔性透明基板100与所述缓冲层200接触的表面形成有第一粗糙结构110;
所述缓冲层200与所述第二柔性透明基板300接触的表面形成有第二粗糙结构210。
可以理解的是,相对于所述第一柔性透明基板100与所述缓冲层200接触的表面形成的第一粗糙结构110,在一实施例中,所述缓冲层200覆盖在所述第一柔性透明基板100上,显然,所述缓冲层200与所述第一柔性透明基板100接触的表面形成有与所述第一粗糙结构110形状相贴合的结构,以便于所述第一柔性透明基板100面接触并整体覆盖于所述第一柔性透明基板100上;同理,相对于所述缓冲层200与所述第二柔性透明基板300接触的表面形成的第二粗糙结构210,所述第二柔性透明基板300也形成有与所述第二粗糙结构210相适应的结构,在此不再赘述。
在一实施例中,所述第一粗糙结构110为若干呈阵列布置的第一凹槽111或第一凸起112;所述第二粗糙结构210为若干呈阵列布置的第二凹槽211或第二凸起212;显然,所述第一粗糙结构110为第一凹槽111或第一凸起112,同时,第二粗糙结构210为第二凹槽211或第二凸起212,只能作为第一粗糙结构110和第二粗糙结构210具体的一种结构形式,当然,所述第一粗糙结构110和第二粗糙结构210还可以为其它降低热应力的粗糙结构形式,在此不做限制。
可以理解的,所述第一粗糙结构110和第二粗糙结构210均有多种结构形式,按排列组合的方式更是使得柔性OLED显示面板的结构形式更加多样化,在一实施例中,以如图1所示,所述第一粗糙结构110为第一凹槽111且所述第二粗糙结构210为第二凹槽211的结构形式,以及如图3所示的,所述第一粗糙结构110为第一凸起112且所述第二粗糙结构210为第二凸起212的结构形式为例,关于其它的组合形式如:第一粗糙结构110为第一凸起112且所述第二粗糙结构210为第二凹槽211的结构形式等,在此不再赘述。
在一实施例中,所述第一凹槽111的槽深或第一凸起112的高度为0um~0.5um;所述第二凹槽211的槽深或第二凸起212的高度为0um~0.5um;相邻两所述第一凹槽111或第一凸起112的间距为10um~20um,相邻两所述第二凹槽211或第二凸起212的间距为10um~20um;具体的,当然,所述所述第一凹槽111和第二凹槽211在垂直于所述第一柔性透明基板100方向上的截面可以是V型或梯形;具体的,如图1所示,所述第一凹槽111和第二凹槽211的垂直截面均为V型;此外,如图3所示,示意的,所述第一凸起112和第二凸起212在垂直于所述第一柔性透明基板100方向上的截面具体是梯形结构。
可以理解的是,所述第一凹槽111、第一凸起112、第二凹槽211和第二凸起212在平行于所述第一柔性透明基板100方向上的截面可以是矩形或圆形等,具体的,如图2所示,示意的,所述第一凹槽111的水平截面为正方形;并且,所述第一凹槽111或第一凸起112在平行于所述第一柔性透明基板100方向上的截面呈边长为0um~10um的正方形;所述第二凹槽211或第二凸起212在平行于所述缓冲层200方向上的截面呈边长为0um~10um的正方形;此外,如图2所示,示意的给出了第一凹槽111矩阵排布形式,显然,当第一粗糙结构110或第二粗糙结构210为其它结构形式时,如第一凸起112、第二凹槽211和第二凸起212等的排布形式可参考图2中第一凹槽111的排布形式,本申请不再一一在图中出示。
在一实施例中,所述缓冲层200的材料为氧化硅,所述缓冲层200的厚度为0.5um~2um,所述第一柔性透明基板100和第二柔性透明基板300的材料均为聚酰亚胺,所述第一柔性透明基板100的厚度为8um~10um,所述第二柔性透明基板300的厚度为5um~10um。
在一实施例中,所述柔性OLED显示面板还包括:
TFT层400,设于所述第二柔性透明基板300远离所述缓冲层200的一侧;
有机发光层500,设于所述TFT层400远离所述第二柔性透明基板300的一侧;
封装层600,设于所述有机发光层500上,用于封装所述有机发光层500。
综上,本申请柔性OLED显示面板通过在第一柔性透明基板与缓冲层之间形成第一粗糙结构,结合第二柔性透明基板与缓冲层之间形成的第二粗糙结构,增强了缓冲层分别与第一柔性透明基板和第二柔性透明基板的粘结力,防止后续绑定制程中造成第一柔性透明基板或第二柔性透明基板从所述缓冲层上剥落,提高了柔性OLED显示面板的绑定性能;同时,还降低了第一柔性透明基板和第二柔性透明基板中的热应力,避免了后续高温制程造成玻璃基板的翘曲,提高了柔性OLED显示面板制作的稳定性。
根据本申请的上述目的,如图4所示,还提供一种柔性OLED显示面板的制作方法,包括:
步骤S1,提供第一柔性透明基板100;在所述第一柔性透明基板100一侧的表面形成第一粗糙结构110;
步骤S2,在所述第一粗糙结构110上覆盖缓冲层200;在所述缓冲层200远离所述第一柔性透明基板100的一侧形成第二粗糙结构210;
步骤S3,在所述第二粗糙结构210上覆盖第二柔性透明基板300。
在一实施例中,步骤S1中,所述提供第一柔性透明基板100包括:
提供一玻璃基板;
在所述玻璃基板上形成第一柔性透明基板100;
所述在步骤S3:在所述第二粗糙结构210上覆盖第二柔性透明基板300之后,还包括:
将玻璃基板与所述第一柔性透明基板100剥离;可以理解的是,所述将玻璃基板与所述第一柔性透明基板100剥离这一步骤,具体的,是在所述第二柔性透明基板300制作完成相应的功能层(如TFT层400、有机发光层500和封装层600等)之后,再进行剥离。
在一实施例中,以如图1所示结构为例,具体的,包括:
将聚酰亚胺溶液涂布到洁净的玻璃基板上,加热、固化形成厚度为8um~10um的第一柔性透明基板100;
在具有呈阵列排布的正方形孔的掩膜板遮蔽下,通过干法蚀刻在所述第一柔性透明基板100上形成呈阵列布置的第一凹槽111;其中,所述掩膜板上,正方形孔的边长为5um~10um;并且,相邻两正方形孔之间的间距为10um~20um;
在所述第一柔性基板上形成缓冲层200,并通过干法蚀刻的方式在所述缓冲层200上形成阵列布置的第二凹槽211,可以理解的是,在上述两次干法蚀刻中,可以使用同一掩膜板进行蚀刻,不用额外再更换其它掩膜板。同样,本申请中在以如图3所示的结构中(所述第一粗糙结构110为第一凸起112且所述第二粗糙结构210为第二凸起212的结构形式)也存在可以通过同一掩膜板进行制作的情形,在此不再赘述。
综上,本申请一种柔性OLED显示面板的制作方法通过在第一柔性透明基板与缓冲层之间形成第一粗糙结构,结合第二柔性透明基板与缓冲层之间形成的第二粗糙结构,降低了第一柔性透明基板和第二柔性透明基板中的热应力,避免了后续高温制程造成的玻璃基板的翘曲;并且也适于批量制作,提高了柔性OLED显示面板制作的稳定性。
综上所述,本申请通过在第一柔性透明基板与缓冲层之间形成第一粗糙结构,结合第二柔性透明基板与缓冲层之间形成的第二粗糙结构,增强了缓冲层分别与第一柔性透明基板和第二柔性透明基板的粘结力,防止后续绑定制程中造成第一柔性透明基板或第二柔性透明基板从所述缓冲层上剥落,提高了柔性OLED显示面板的绑定性能;同时,还降低了第一柔性透明基板和第二柔性透明基板中的热应力,避免了后续高温制程造成玻璃基板的翘曲,提高了柔性OLED显示面板制作的稳定性。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种柔性OLED显示面板,包括第一柔性透明基板、覆盖在所述第一柔性透明基板上的缓冲层、以及覆盖在所述缓冲层上的第二柔性透明基板;
    所述第一柔性透明基板与所述缓冲层接触的表面形成有第一粗糙结构;
    所述缓冲层与所述第二柔性透明基板接触的表面形成有第二粗糙结构。
  2. 根据权利要求1所述的柔性OLED显示面板,其中,所述第一粗糙结构为若干呈阵列布置的第一凹槽或第一凸起;
    所述第二粗糙结构为若干呈阵列布置的第二凹槽或第二凸起。
  3. 根据权利要求2所述的柔性OLED显示面板,其中,所述第一凹槽的槽深或第一凸起的高度为0um~0.5um。
  4. 根据权利要求2所述的柔性OLED显示面板,其中,所述第二凹槽的槽深或第二凸起的高度为0um~0.5um。
  5. 根据权利要求2所述的柔性OLED显示面板,其中,相邻两所述第一凹槽或第一凸起的间距为10um~20um。
  6. 根据权利要求2所述的柔性OLED显示面板,其中,相邻两所述第二凹槽或第二凸起的间距为10um~20um。
  7. 根据权利要求2所述的柔性OLED显示面板,其中,所述第一凹槽或第一凸起在平行于所述第一柔性透明基板方向上的截面呈边长为0um~10um的正方形。
  8. 根据权利要求2所述的柔性OLED显示面板,其中,所述第二凹槽或第二凸起在平行于所述缓冲层方向上的截面呈边长为0um~10um的正方形。
  9. 根据权利要求1所述的柔性OLED显示面板,其中,所述缓冲层的材料为氧化硅,所述缓冲层的厚度为0.5um~2um。
  10. 根据权利要求1所述的柔性OLED显示面板,其中,所述第一柔性透明基板的材料为聚酰亚胺,所述第一柔性透明基板的厚度为8um~10um。
  11. 根据权利要求1所述的柔性OLED显示面板,其中,所述第二柔性透明基板的材料为聚酰亚胺,所述第二柔性透明基板的厚度为5um~10um。
  12. 根据权利要求1所述的柔性OLED显示面板,其中,所述柔性OLED显示面板还包括:
    TFT层,设于所述第二柔性透明基板远离所述缓冲层的一侧;
    有机发光层,设于所述TFT层远离所述第二柔性透明基板的一侧;及
    封装层,设于所述有机发光层上,用于封装所述有机发光层。
  13. 一种柔性OLED显示面板的制作方法,包括以下步骤:
    提供第一柔性透明基板,在所述第一柔性透明基板一侧的表面形成第一粗糙结构;
    在所述第一粗糙结构上形成缓冲层,在所述缓冲层远离所述第一柔性透明基板的一侧形成第二粗糙结构;以及
    在所述第二粗糙结构上形成第二柔性透明基板。
  14. 根据权利要求13所述的柔性OLED显示面板的制作方法,其中,所述提供第一柔性透明基板包括以下步骤:
    提供一玻璃基板;
    在所述玻璃基板上形成第一柔性透明基板;以及
    所述在所述第二粗糙结构上覆盖第二柔性透明基板之后,还包括:
    将玻璃基板与所述第一柔性透明基板剥离。
  15. 根据权利要求14所述的柔性OLED显示面板的制作方法,其中,采用激光剥离的方式将所述玻璃基板与所述第一柔性透明基板剥离。
  16. 根据权利要求14所述的柔性OLED显示面板的制作方法,其中,所述在所述玻璃基板上形成第一柔性透明基板包括:
    在所述玻璃基板上涂布聚酰亚胺溶液并加热形成第一柔性透明基板。
  17. 根据权利要求13所述的柔性OLED显示面板的制作方法,其中,通过干法蚀刻的方式在所述第一柔性透明基板一侧的表面形成第一粗糙结构。
  18. 根据权利要求13所述的柔性OLED显示面板的制作方法,其中,通过化学气相沉积的方式在所述第一粗糙结构上形成缓冲层。
  19. 根据权利要求13所述的柔性OLED显示面板的制作方法,其中,通过干法蚀刻的方式在所述缓冲层远离所述第一柔性透明基板的一侧形成第二粗糙结构。
  20. 根据权利要求13所述的柔性OLED显示面板的制作方法,其中,所述在所述第二粗糙结构上形成第二柔性透明基板包括:
    在所述第二粗糙结构上涂布聚酰亚胺溶液并加热形成第二柔性透明基板。
PCT/CN2019/120752 2019-07-24 2019-11-25 柔性oled显示面板及其制作方法 WO2021012547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/622,770 US11094896B2 (en) 2019-07-24 2019-11-25 Flexible OLED display panel and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910669326.6A CN110429177A (zh) 2019-07-24 2019-07-24 一种柔性oled显示面板及其制作方法
CN201910669326.6 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021012547A1 true WO2021012547A1 (zh) 2021-01-28

Family

ID=68410533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120752 WO2021012547A1 (zh) 2019-07-24 2019-11-25 柔性oled显示面板及其制作方法

Country Status (3)

Country Link
US (1) US11094896B2 (zh)
CN (1) CN110429177A (zh)
WO (1) WO2021012547A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110429177A (zh) * 2019-07-24 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板及其制作方法
CN110429064B (zh) * 2019-08-01 2020-11-10 武汉华星光电半导体显示技术有限公司 缓冲结构、显示面板及缓冲结构的制作方法
CN111430413B (zh) * 2020-03-31 2023-04-18 京东方科技集团股份有限公司 柔性显示面板及柔性显示装置
CN113540156A (zh) * 2020-04-15 2021-10-22 深圳市柔宇科技有限公司 显示面板及其制备方法、电子装置
CN111415949B (zh) * 2020-04-27 2022-07-29 武汉华星光电半导体显示技术有限公司 柔性显示面板及其制造方法
KR20220029987A (ko) * 2020-09-02 2022-03-10 에스케이하이닉스 주식회사 3차원 구조의 반도체 장치
CN114283679B (zh) * 2020-09-28 2024-04-16 北京小米移动软件有限公司 柔性显示面板和电子设备
CN114283681A (zh) * 2021-12-15 2022-04-05 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN115171523A (zh) * 2022-06-09 2022-10-11 昆山国显光电有限公司 显示面板及电子设备
WO2024150719A1 (ja) * 2023-01-10 2024-07-18 東洋紡株式会社 光電変換素子の製造方法および光電変換素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392901A (zh) * 2014-10-28 2015-03-04 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN105702624A (zh) * 2016-03-30 2016-06-22 武汉华星光电技术有限公司 叠层柔性基板及制作方法
CN107394041A (zh) * 2017-07-21 2017-11-24 武汉天马微电子有限公司 柔性基底及其制作方法、柔性显示面板和柔性显示装置
CN107611162A (zh) * 2017-09-13 2018-01-19 武汉华星光电半导体显示技术有限公司 柔性oled显示面板及其制作方法
CN107968152A (zh) * 2016-10-20 2018-04-27 上海和辉光电有限公司 柔性显示器件及其制造方法
CN110429177A (zh) * 2019-07-24 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板及其制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211828B2 (en) * 2001-06-20 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic apparatus
US10991915B2 (en) * 2016-01-29 2021-04-27 University Of Florida Research Foundation, Incorporated Organic light-emitting diodes comprising grating structures and light extraction layers
KR20180034780A (ko) * 2016-09-27 2018-04-05 삼성디스플레이 주식회사 디스플레이 장치 및 디스플레이 장치의 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104392901A (zh) * 2014-10-28 2015-03-04 京东方科技集团股份有限公司 一种柔性衬底基板及其制作方法
CN105702624A (zh) * 2016-03-30 2016-06-22 武汉华星光电技术有限公司 叠层柔性基板及制作方法
CN107968152A (zh) * 2016-10-20 2018-04-27 上海和辉光电有限公司 柔性显示器件及其制造方法
CN107394041A (zh) * 2017-07-21 2017-11-24 武汉天马微电子有限公司 柔性基底及其制作方法、柔性显示面板和柔性显示装置
CN107611162A (zh) * 2017-09-13 2018-01-19 武汉华星光电半导体显示技术有限公司 柔性oled显示面板及其制作方法
CN110429177A (zh) * 2019-07-24 2019-11-08 武汉华星光电半导体显示技术有限公司 一种柔性oled显示面板及其制作方法

Also Published As

Publication number Publication date
US20210119156A1 (en) 2021-04-22
CN110429177A (zh) 2019-11-08
US11094896B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2021012547A1 (zh) 柔性oled显示面板及其制作方法
US10847596B2 (en) Bendable display panel and fabricating method thereof
US10833106B2 (en) Flexible array substrate, manufacturing method thereof, and display panel
WO2020199306A1 (zh) 显示面板和显示面板制作方法
EP3340330B1 (en) Organic light-emitting diode device, manufacturing method, and display apparatus
WO2021003848A1 (zh) 显示面板和显示面板的制备方法
WO2019144734A1 (zh) 柔性基板及其制作方法、面板以及电子装置
EP2535764B1 (en) Substrate tray and manufacturing method of a flexible electronic display device with said substrate tray
CN103943544A (zh) 制造软性元件的方法
WO2021217700A1 (zh) 显示面板及其制作方法、显示终端
US20210358966A1 (en) Flexible display substrate and preparation method thereof
WO2015000186A1 (zh) Oled面板及其封装方法
WO2020056867A1 (zh) 柔性显示面板及其制备方法
WO2020124968A1 (zh) 柔性衬底及其制备方法
US20200251683A1 (en) Organic light emitting diode display panel and preparation method thereof
CN107146857A (zh) 显示面板、显示面板的制作方法和显示装置
WO2021159584A1 (zh) Oled显示面板及其制作方法
WO2019033578A1 (zh) 柔性oled显示面板的柔性基底及其制备方法
WO2020237827A1 (zh) 有机发光二极管显示面板
WO2020228235A1 (zh) 阵列基板及其制备方法、柔性显示面板
WO2021027102A1 (zh) 柔性显示面板和柔性显示面板的制备方法
WO2021026996A1 (zh) 一种显示面板及其制备方法
WO2021003900A1 (zh) 显示面板及其制备方法
WO2020237914A1 (zh) 一种柔性基板及其制作方法、显示面板
WO2015043064A1 (zh) 显示面板、显示装置及显示面板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938864

Country of ref document: EP

Kind code of ref document: A1