WO2021012084A1 - 相控阵发射装置、激光雷达和自动驾驶设备 - Google Patents

相控阵发射装置、激光雷达和自动驾驶设备 Download PDF

Info

Publication number
WO2021012084A1
WO2021012084A1 PCT/CN2019/096764 CN2019096764W WO2021012084A1 WO 2021012084 A1 WO2021012084 A1 WO 2021012084A1 CN 2019096764 W CN2019096764 W CN 2019096764W WO 2021012084 A1 WO2021012084 A1 WO 2021012084A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
wavelength
sub
output
phased array
Prior art date
Application number
PCT/CN2019/096764
Other languages
English (en)
French (fr)
Inventor
汪敬
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN201980002787.6A priority Critical patent/CN110720052A/zh
Priority to PCT/CN2019/096764 priority patent/WO2021012084A1/zh
Publication of WO2021012084A1 publication Critical patent/WO2021012084A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • This application relates to the field of radar technology, in particular to a phased array launcher, lidar and automatic driving equipment.
  • Lidar is a radar system that emits laser beams to detect feature vectors such as the position and speed of a target. It is widely used in technical fields such as atmospheric detection, urban surveying and mapping, ocean detection, autonomous driving, robotics, laser television, and laser three-dimensional imaging.
  • the phased array lidar emits light beams through multiple emitting units, which generates interference in space to form a far-field beam, and realizes object detection through the far-field beam, and then adjusts the phase difference of the light emitted by the emitting unit. To adjust the direction of the far-field beam to achieve 360-degree scanning.
  • the purpose of the embodiments of the present application is to provide a phased array transmitter, lidar, and automatic driving equipment, which can use a fixed wavelength laser to achieve phased array emission, thereby reducing costs.
  • a phased array emitting device including: a laser source for outputting laser signals; a multi-wavelength generating unit arranged at the output end of the laser source for The laser signal output by the laser source generates and outputs a number of optical signals with different wavelengths; a wavelength selection unit is provided at the output end of the multi-wavelength generating unit and is used to receive the plurality of optical signals output by the multi-wavelength generating unit Optical signals of different wavelengths, and select and output optical signals of one of the wavelengths; a phased array unit, arranged at the output end of the wavelength selection unit, is used to divide the optical signal output by the wavelength selection unit into several Sub-beam, and emit the sub-beam.
  • the multi-wavelength generating unit includes an optical frequency comb generator.
  • the wavelength selection unit changes the filter wavelength through thermo-optical or electro-optical effects.
  • the wavelength selection unit includes a microring resonator.
  • the phased array unit includes: a light splitting unit, which is provided at the output end of the wavelength selection unit, and is used to divide the optical signal of the preset wavelength into a plurality of sub-beams; and a phase modulation unit is provided on the The output end of the beam splitting unit is used to change the phases of the sub-beams so that the phases of the sub-beams meet the preset phase condition; the transmitting unit is arranged at the output end of the phase modulation unit and is used for transmitting the sub-beams.
  • the sub-beam is provided at the output end of the wavelength selection unit, and is used to divide the optical signal of the preset wavelength into a plurality of sub-beams.
  • a phase modulation unit is provided on the The output end of the beam splitting unit is used to change the phases of the sub-beams so that the phases of the sub-beams meet the preset phase condition
  • the transmitting unit is arranged at the output end of the phase modulation unit and is used for transmitting the sub-be
  • the phase modulation unit includes several phase modulation subunits, and an input end of the phase modulation subunit is connected to one of the output ends of the light splitting unit, so that one of the subunits output by the light splitting unit The light beam enters a phase modulation subunit.
  • the emitting unit includes several emitting subunits, the emitting subunits are arranged in an array, and the distance between any two adjacent emitting subunits is the same, and the input end of the emitting subunit is An output end of the phase modulation subunit is connected so that the sub-beam output by the phase modulation subunit enters the emission subunit.
  • the device further includes a controller, which is respectively connected to the wavelength selection unit and the phase modulation unit.
  • the multi-wavelength generation unit, the wavelength selection unit, the spectroscopic unit, the phase modulation unit and the emission unit are integrated on the same chip.
  • a laser radar including the phased array transmitting device as described above.
  • phased array transmitting device is used for emitting sub-beams
  • phased array receiving device is used for receiving the sub-beams reflected by the object under test.
  • an automatic driving device including a vehicle body and the above-mentioned lidar, and the lidar is installed on the vehicle body.
  • the laser signal is output by the laser source
  • the multi-wavelength generating unit converts the laser signal output by the laser source into several optical signals of different wavelengths
  • the wavelength selection unit receives several optical signals of different wavelengths and selects and outputs one of them.
  • the phased array unit divides the optical signal output by the wavelength selection unit into several sub-beams and emits the optical signal with a different wavelength. It can use a fixed wavelength laser to realize the phased array emission, and change the wavelength through the wavelength selection unit without using expensive Tunable lasers, thereby reducing costs.
  • Figure 1 shows a schematic structural diagram of a phased array launching device provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the connection of functional modules of a phased array transmitting device provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a lidar provided by an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present application.
  • Fig. 1 shows a schematic structural diagram of a phased array transmitting device provided by an embodiment of the present application.
  • the phased array emission device 100 includes: a laser source 110, a multi-wavelength generating unit 120, a wavelength selection unit 130 and a phased array unit 140.
  • the multi-wavelength generating unit 120 is provided at the output end of the laser source 110, the wavelength selection unit 130 is provided at the output end of the multi-wavelength generating unit 120, and the phased array unit 140 is provided at the output end of the wavelength selection unit 130.
  • the laser source 110 is used to output laser signals
  • the multi-wavelength generating unit 120 is used to generate and output several optical signals of different wavelengths according to the laser signals output by the laser source 110
  • the wavelength selection unit 130 is used to receive the output of the multi-wavelength generating unit 120 Several optical signals of different wavelengths are selected to output one of the optical signals.
  • the phased array unit 140 is used to divide the optical signal output by the wavelength selection unit 130 into several sub-beams and emit the sub-beams. In the above manner, the phased array emitting device 100 can use a laser with a fixed wavelength to achieve phased array emission without using an expensive tunable laser, thereby reducing costs.
  • the laser source 110 may be a laser array with a fixed wavelength.
  • the output end of the laser source 110 is connected to the input end of the multi-wavelength generating unit 120 to serve as a pump light source of the multi-wavelength generating unit 120.
  • the laser source 110 is specifically used to generate a laser signal with a fixed wavelength, and output the laser signal to the multi-wavelength generating unit 120.
  • the multi-wavelength generating unit 120 may be an optical frequency comb generator.
  • the optical frequency comb generator can be realized by using a silicon nitride waveguide-based microring resonator. Since the silicon nitride microring resonant cavity has a nonlinear field strength enhancement effect, compared with the laser light intensity output by the laser source 110, the light intensity in the resonant cavity cavity can be increased many times, thereby exciting the Kerr effect. Moreover, new frequency components can be generated through nonlinear effects such as four-wave mixing, and the frequency difference between the frequency components (that is, the comb tooth spacing of the optical frequency comb generator) is exactly equal to the free spectrum range of the microring resonator.
  • the new frequency resonates with the microring cavity. This resonance enhances the new frequency, and generates a newer resonance frequency through four-wave mixing with the original frequency. Repeatedly, a lot of frequency components with equal frequency intervals are generated to form an optical frequency comb, thereby generating several optical signals of different wavelengths according to the optical signal output by the laser source 110.
  • the output end of the multi-wavelength generating unit 120 is connected to the input end of the wavelength selection unit 130, so that several output optical signals of different wavelengths enter the input end of the wavelength selection unit 130.
  • the wavelength selection unit 130 can change the filter wavelength through thermo-optical or electro-optical effects.
  • the wavelength selection unit 130 may be a tunable filter.
  • the tunable filter can adopt a silicon-based microring resonator or a tunable Bragg reflection grating filter to realize the filter structure, and adopt the thermo-optical effect of silicon material to change the filter wavelength.
  • the filter spectrum exhibits a periodic shape
  • multiple wavelengths will be filtered out at one time.
  • the radius of the micro-ring resonator can be reduced to increase its period; on the other hand, the vernier effect of the micro-ring resonator can be used to filter two micro-rings with small differences in spectral periods.
  • the ring resonator forms a micro-ring resonator filter with a large filtering spectrum.
  • the spectral width of the filter should also be reduced according to the spectral width requirement of the output signal of the multi-wavelength generating unit 120. For example, assuming that the spectral width of the output signal of the multi-wavelength generating unit 120 is required to be 906 nm, and the spectral width of the signal filtered by the tunable filter is 912 nm, it should be filtered again to reduce the spectral width.
  • multiple microring resonators can be connected in series, which is equivalent to filtering the signals of the same wavelength multiple times, so that the sharp filtering spectrum only filters the required wavelength signals, and does not filter adjacent wavelength signals. Some components of other signals are filtered out.
  • the tunable filter with the Bragg reflection grating structure by optimizing the grating structure and using the Bragg emission conditions, there is only one reflection wavelength, and the reflection wavelength is used as the preset wavelength for filtering, so that only one wavelength of optical signal is output .
  • optimization can be done by adopting a cascaded Bragg grating structure, increasing the number of grating periods, and/or adopting a non-uniform grating structure.
  • the output terminal of the wavelength selection unit 130 is connected to the output terminal of the phased array unit 140, and the wavelength selection unit 130 is specifically configured to receive the optical signals of several different wavelengths output by the multi-wavelength generating unit 120 and select one of them.
  • the optical signal of one wavelength is output to the phased array unit 140.
  • the selection of the wavelength of the output optical signal can be implemented by the user by adjusting the wavelength selection unit 130.
  • the phased array unit 140 may include: a light splitting unit 141, a phase modulation unit 142, and a transmitting unit 143.
  • the spectroscopic unit 141 is provided at the output end of the wavelength selection unit 130
  • the phase modulation unit 142 is provided at the output end of the spectroscopic unit 141
  • the transmitting unit 143 is provided at the output end of the phase modulation unit 142.
  • the light splitting unit 141 may be an optical splitter, that is, an optical splitter.
  • the input end of the light splitting unit 141 is connected to the output end of the wavelength selection unit 130, and the output end of the light splitting unit 141 is connected to the input end of the phase modulation unit 142.
  • the light splitting unit 141 is provided with multiple output terminals, and each output terminal is connected to the input terminal of the phase modulation unit 142.
  • the light splitting unit 141 is used to split the optical signal output by the wavelength selection unit 130 into several sub-beams, and output to the phase modulation unit 142. Wherein, the light splitting unit 141 evenly distributes the optical signals of the preset wavelength, so that each sub-beam is the same.
  • the input end of the phase modulation unit 142 is connected to the output end of the light splitting unit 141, and the output end of the phase modulation unit 142 is connected to the input end of the transmitting unit 143.
  • the phase modulation unit 142 is used for changing the phases of the plurality of sub-beams, so that the phases of the plurality of sub-beams meet the preset phase condition.
  • the preset phase condition refers to a preset phase relationship of the sub-beams.
  • the phase difference of two adjacent sub-beams remains the same.
  • the phase difference of the sub-beams emitted by the phased array emitting device 100 is That is, the phases of the emitted sub-beams are 0, and many more.
  • the phase modulation unit 142 includes several phase modulation subunits.
  • the input end of each phase modulation subunit is connected to one of the output ends of the light splitting unit 141, so that a sub-beam output by the light splitting unit 141 enters a phase modulation subunit.
  • the phase modulation subunit may be a phase shifter, and the phase modulation unit 142 includes j phase shifters, and j is an integer greater than 2.
  • Each phase shifter receives a sub-beam and performs phase adjustment to change the phase of the sub-beam, so that the j sub-beams meet the preset phase condition.
  • the input end of the transmitting unit 143 is connected to the output end of the phase modulation unit 142, and the transmitting unit 143 is configured to receive several sub-beams output by the phase modulation unit 144 and emit the several sub-beams.
  • the transmitting unit 143 includes several transmitting sub-units.
  • the input end of an emission subunit is connected with the output end of a phase modulation subunit, so that a sub-beam output by a phase modulation subunit enters an emission subunit.
  • All emission subunits are arranged in arrays, such as circular arrays, square arrays, etc.; and the distance between any two adjacent emission subunits is the same, so as to ensure that the sub-beams emitted by the emission unit 143 can interfere with each other to form Probe light.
  • the transmitting unit 143 may be an antenna, and the transmitting unit 143 includes j antennas, and each antenna receives a sub-beam output by a phase shifter and transmits the sub-beam into a free space.
  • the multi-wavelength generation unit 120, the wavelength selection unit 130, the spectroscopic unit 141, the phase modulation unit 142, and the emission unit 143 can be integrated on the same chip, for example, processed based on a silicon-based CMOS process, thereby effectively reducing the phase
  • the size of the array launcher 100 improves the integration.
  • the phased array transmitting device 100 may further include a connecting waveguide.
  • the connecting waveguide is set between various devices to realize the propagation of the light beam and reduce the loss in the propagation process.
  • the laser source 110 outputs laser signals
  • the multi-wavelength generating unit 120 generates several optical signals of different wavelengths according to the laser signals output by the laser source 110
  • the wavelength selecting unit 130 receives several optical signals of different wavelengths and selects Output optical signals of one of the wavelengths.
  • the phased array unit 140 divides the optical signals output by the wavelength selection unit 130 into several sub-beams and emits them.
  • a laser with a fixed wavelength can be used to achieve the phased array emission, which can be changed by the wavelength selection unit 130. Wavelength, there is no need to use expensive tunable lasers, thereby reducing costs.
  • the phased array transmitting device 100 may further include a controller 150.
  • the controller 150 is respectively connected to the wavelength selection unit 130 and the phase modulation unit 142.
  • the controller 150 can be used to control the wavelength selection unit 130 to change the preset wavelength selected by the wavelength selection unit 130, and can also be used to control the phase modulation unit 142 to adjust The phase modulation unit 142 changes the phase, thereby adjusting the emission spot.
  • the controller 150 may include a processor, an Application-Specific Integrated Circuit (ASIC) with a control processing function, a Field Programmable Gate Array (FPGA), a single-chip microcomputer, and the like.
  • ASIC Application-Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the laser source 110 outputs laser signals
  • the multi-wavelength generating unit 120 generates several optical signals of different wavelengths according to the laser signals output by the laser source 110
  • the wavelength selecting unit 130 receives several optical signals of different wavelengths and selects Output optical signals of one of the wavelengths.
  • the phased array unit 140 divides the optical signals output by the wavelength selection unit 130 into several sub-beams and emits them.
  • a laser with a fixed wavelength can be used to achieve the phased array emission, which can be changed by the wavelength selection unit 130. Wavelength, there is no need to use expensive tunable lasers, thereby reducing costs.
  • Fig. 3 shows a schematic structural diagram of a lidar provided by an embodiment of the present application.
  • the lidar 300 includes: a phased array transmitting device 100.
  • phased array launching device 100 in this embodiment are the same as the phased array launching device 100 in the above embodiments.
  • phased array launching device 100 please refer to the above embodiments. I won't repeat them here.
  • the lidar 300 further includes a phased array receiving device 200.
  • the phased array transmitting device 100 is used for transmitting sub-beams
  • the phased array receiving device 200 is used for receiving the sub-beams reflected by the object to be measured.
  • the phased array transmitter 100 in the laser radar 300 outputs laser signals through the laser source 110, and the multi-wavelength generating unit 120 generates several optical signals of different wavelengths according to the laser signals output by the laser source 110.
  • the wavelength selection unit 130 receives optical signals of several different wavelengths, and selects and outputs optical signals of one of the wavelengths.
  • the phased array unit 140 divides the optical signals output by the wavelength selection unit 130 into several sub-beams and emits them.
  • a laser with a fixed wavelength can be used to achieve phase control. The wavelength is changed by the wavelength selection unit 130 without using an expensive tunable laser, thereby reducing costs.
  • Fig. 4 shows a schematic structural diagram of an automatic driving device provided by an embodiment of the present application.
  • the automatic driving device 500 includes a vehicle body 400 and a lidar 300, and the lidar 300 is installed on the vehicle body 400.
  • the structure and function of the lidar 300 in this embodiment are the same as those of the lidar 300 in the foregoing embodiment.
  • the automatic driving device 500 can detect the position and distance of surrounding objects, and make decisions based on the position and distance of the surrounding objects, thereby realizing automatic driving.
  • the phased array transmitter 100 in the automatic driving equipment 500 outputs laser signals through the laser source 110, and the multi-wavelength generating unit 120 generates several optical signals of different wavelengths according to the laser signals output by the laser source 110.
  • the wavelength is selected
  • the unit 130 receives optical signals of several different wavelengths, and selects and outputs optical signals of one of the wavelengths.
  • the phased array unit 140 divides the optical signals output by the wavelength selection unit 130 into several sub-beams and emits them, and can use a fixed wavelength laser to achieve phase
  • the emission of the array is controlled, and the wavelength is changed by the wavelength selection unit 130, eliminating the need to use an expensive tunable laser, thereby reducing costs.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features Features are indirectly contacted through intermediaries.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the first feature "below”, “below” and “below” the second feature can mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种相控阵发射装置(100)、激光雷达(300)和自动驾驶设备(500),涉及雷达技术领域。其中,相控阵发射装置(100)包括:激光源(110),用于输出激光信号;多波长生成单元(120),设于激光源(110)的输出端,用于根据激光源(110)输出的激光信号产生若干个不同波长的光信号并输出;波长选择单元(130),设于多波长生成单元(120)的输出端,用于接收多波长生成单元(120)输出的若干个不同波长的光信号,并选择输出其中一种波长的光信号;相控阵单元(140),设于波长选择单元(130)的输出端,用于将波长选择单元(130)输出的光信号分成若干子光束,并发射子光束。能够使用固定波长的激光器实现相控阵的发射,无需采用昂贵的可调谐激光器,从而降低成本。

Description

相控阵发射装置、激光雷达和自动驾驶设备 技术领域
本申请涉及雷达技术领域,特别涉及一种相控阵发射装置、激光雷达和自动驾驶设备。
背景技术
激光雷达是以发射激光光束来探测目标的位置、速度等特征向量的雷达***,其广泛应用于大气探测、城市测绘、海洋探测、自动驾驶、机器人技术、激光电视、激光三维成像等技术领域。
目前,相控阵激光雷达通过多个发射单元发射光束,在空间上产生干涉形成远场光束,通过远场光束来实现物体探测,然后再通过调整发射单元所发射的光的相位差的大小,来调整远场光束的方向,从而实现360度扫描。
但是,在本申请申请人实现本申请的过程中,发现:目前用于相控阵激光雷达的光学相控阵大多从芯片平面发射,通过改变光源波长和移相器相位实现光斑的二维扫描,但改变光源波长需要采用非常昂贵的可调谐激光器,从而使得相控阵激光雷达的成本很高。
申请内容
本申请实施例的目的在于提供一种相控阵发射装置、激光雷达和自动驾驶设备,能够使用固定波长的激光器实现相控阵的发射,从而降低成本。
根据本申请实施例的一个方面,提供了一种相控阵发射装置,包括:激光源,用于输出激光信号;多波长生成单元,设于所述激光源的输出端,用于根据所述激光源输出的所述激光信号,产生若干个不同波长的光信号并输出;波长选择单元,设于所述多波长生成单元的输出端,用于接收所述多波长生成单元输出的所述若干个不同波长的光信号,并选择输出其中一种波长的光信号;相控阵单元,设于所述波长选择单元的输出端,用于将所述波长选择单元输出的所述光信号分成若干子光束,并发射所述子光束。
可选地,所述多波长生成单元包括光频梳生成器。
可选地,所述波长选择单元通过热光或者电光效应改变滤波波长。
可选地,所述波长选择单元包括微环谐振器。
可选地,所述相控阵单元包括:分光单元,设于所述波长选择单元的输出端,用于将所述预设波长的光信号分成若干子光束;相位调制单元,设于所述分光单元的输出端,用于改变若干所述子光束的相位,以使若干所述子光束的相位满足预设相位条件;发射单元,设于所述相位调制单元的输出端,用于发射所述子光束。
可选地,所述相位调制单元包括若干相位调制子单元,一所述相位调制子单元的输入端与所述分光单元的其中一输出端连接,以使所述分光单元输出的一所述子光束进入一所述相位调制子单元。
可选地,所述发射单元包括若干发射子单元,所述发射子单元阵列排布,并且任意相邻两个所述发射子单元之间的距离相同,一所述发射子单元的输入端与一所述相位调制子单元的输出端连接,以使一所述相位调制子单元输出的一所述子光束进入一所述发射子单元。
可选地,所述装置还包括:控制器,所述控制器分别与所述波长选择单元、所述相位调制单元连接。
可选地,所述多波长生成单元、所述波长选择单元、所述分光单元、所述相位调制单元和所述发射单元集成在同一芯片上。
根据本申请实施例的另一个方面,提供了一种激光雷达,包括如上述的相控阵发射装置。
可选地,还包括相控阵接收装置,所述相控阵发射装置用于发射子光束,所述相控阵接收装置用于接收被测物体所反射的子光束。
根据本申请实施例的又一个方面,提供了一种自动驾驶设备,包括车体以及上述的激光雷达,所述激光雷达安装于所述车体。
在本申请实施例中,通过激光源输出激光信号,多波长生成单元将激光源输出的激光信号转换为若干不同波长的光信号,波长选择单元接收若干不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元将波长选择单元输出的光信号分成若干子光束并发射,能够使用固定波长的激光器实现相控阵的发射,并通过波长选择单元改变波长,无需采用昂贵的可调谐激光器,从而降低成本。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出了本申请实施例提供的一种相控阵发射装置的结构示意图;
图2示出了本申请实施例提供的一种相控阵发射装置的功能模块连接示意图;
图3示出了本申请实施例提供的一种激光雷达的结构示意图;
图4示出了本申请实施例提供的一种自动驾驶设备的结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
图1示出了本申请实施例提供的一种相控阵发射装置的结构示意图。如图1所示,该相控阵发射装置100包括:激光源110、多波长生成单元120、波长选择单元130和相控阵单元140。
其中,多波长生成单元120设于激光源110的输出端,波长选择单元130设于多波长生成单元120的输出端,相控阵单元140设于波长选择单元130的输出端。激光源110用于输出激光信号,多波长生成单元120用于根据激光源110输出的激光信号,产生若干个不同波长的光信号并输出,波长选择单元130用于接收多波长生成单元120输出的若干个不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元140用于将波长选择单元130输出的光信号分成若干子光束,并发射子光束。通过以上方式,该相控阵发射装置100能够使用固定波长的激光器实现相控阵的发射,无需采用昂贵的可调谐激光器,从而降低成本。
其中,激光源110可以为固定波长的激光器阵列。例如,红宝石激光器、掺钕钇铝石榴石激光器、氦氖激光器、氩离子激光器、集成于芯片的激光器等 等等。激光源110的输出端与多波长生成单元120的输入端连接,以作为多波长生成单元120的泵浦光源。激光源110具体用于产生一个固定波长的激光信号,并将该激光信号输出至多波长生成单元120。
其中,多波长生成单元120可以为光频梳生成器。其中,光频梳生成器可以采用基于氮化硅波导的微环谐振腔来实现。由于氮化硅微环谐振腔具有非线性场强增强效应,与激光源110输出的激光光强相比,谐振腔腔内的光强度可以增大很多倍,从而激发克尔效应。并且,通过四波混频等非线性效应能够产生新的频率分量,而频率分量之间的频率差(即光频梳生成器的梳齿间距),正好等于微环谐振腔的自由频谱范围,而使得新的频率与微环谐振腔共振。这一共振使新的频率得到增强,而与原有频率通过四波混频产生更新的共振频率。如此反复,则产生很多的等频率间距的频率分量而形成光频梳,从而根据激光源110输出的光信号产生若干个不同波长的光信号。在本实施例中,多波长生成单元120的输出端与波长选择单元130的输入端连接,以使输出的若干个不同波长的光信号进入波长选择单元130的输入端。
其中,波长选择单元130可以通过热光或者电光效应改变滤波波长。波长选择单元130可以为可调谐滤波器。可调谐滤波器可以采用硅基的微环谐振器或者可调谐布拉格反射光栅滤波器等结构来实现滤波器结构,并采用硅材料的热光效应来改变滤波波长。
其中,对于基于微环谐振器结构的可调谐滤波器,由于其滤波光谱呈现出周期性形状,一次性将会滤出多个波长。为了实现一次只有一个波长输出,一方面可以减小微环谐振器的半径,以提高其周期;另一方面可以利用微环谐振器的游标效应,通过两个滤波光谱周期有较小差异的微环谐振器组成一个滤波光谱很大的微环谐振滤波器。
其中,对于基于微环谐振器结构的可调谐滤波器,还应该根据多波长生成单元120输出信号的光谱宽度要求,降低滤波器光谱的宽度。例如,假设多波长生成单元120输出信号的光谱宽度要求为906nm,而可调谐滤波器滤出的信号的光谱宽度为912nm,则应当再次滤波,以降低光谱宽度。具体地,可以串联多个微环谐振器,则相当于多次对同一波长的信号进行滤波,从而使得尖锐的滤波光谱只对需要的波长信号进行滤波,而不会将该波长信号相邻的其他信号的部分分量滤出。
其中,对于布拉格反射光栅结构的可调谐滤波器,通过优化其光栅结构,利用布拉格发射条件,使得只有一个反射波长,将该反射波长作为滤波的预设波长,从而使得只有一个波长的光信号输出。同时,为了得到尖锐的滤波光谱,可以通过采用级联的布拉格光栅结构、增加光栅周期数、和/或采用非均匀的光栅结构等方式进行优化。
在本实施例中,波长选择单元130的输出端与相控阵单元140的输出端连接,波长选择单元130具体用于接收多波长生成单元120输出的若干不同波长的光信号,并选择其中一种波长的光信号输出至相控阵单元140。其中,选择输出的光信号的波长可以由用户通过调整波长选择单元130实现。
其中,相控阵单元140可以包括:分光单元141、相位调制单元142和发射单元143。分光单元141设于波长选择单元130的输出端,相位调制单元142设于分光单元141的输出端,发射单元143设于相位调制单元142的输出端。
其中,分光单元141可以为分光器,即光分路器。分光单元141的输入端与波长选择单元130的输出端连接,分光单元141的输出端与相位调制单元142的输入端连接。其中,分光单元141设有多个输出端,每个输出端均与相位调制单元142的输入端连接。分光单元141用于将波长选择单元130输出的光信号分成若干子光束,并输出至相位调制单元142。其中,分光单元141对预设波长的光信号进行平均分配,以使得各个子光束相同。
其中,相位调制单元142的输入端与分光单元141的输出端连接,相位调制单元142的输出端与发射单元143的输入端连接。相位调制单元142用于改变该若干子光束的相位,以使该若干子光束的相位满足预设相位条件。
可选地,预设相位条件是指预先设定的子光束的相位关系。在本实施例中,相邻两个子光束的相位差保持相同。例如,相控阵发射装置100所发射的子光束的相位差为
Figure PCTCN2019096764-appb-000001
即,所发射的子光束的相位分别为0、
Figure PCTCN2019096764-appb-000002
等等。
具体地,相位调制单元142包括若干相位调制子单元。每一相位调制子单元的输入端与分光单元141的其中一输出端连接,以使分光单元141输出的一子光束进入一相位调制子单元。在本实施例中,相位调制子单元可以为移相器,相位调制单元142包括j个移相器,j为大于2的整数。每一移相器分别接收一子光束,并进行相位调整,以改变该子光束的相位,从而使得该j个子光束满足预设相位条件。
其中,发射单元143的输入端与相位调制单元142的输出端连接,发射单元143用于接收相位调制单元144输出的若干子光束,并将该若干子光束发射出去。
具体地,发射单元143包括若干发射子单元。一发射子单元的输入端与一相位调制子单元的输出端连接,以使一相位调制子单元输出的一子光束进入一发射子单元。全部发射子单元阵列排布,例如:圆形阵列、方形阵列等等;并且,任意相邻两个发射子单元之间的距离相同,从而保证发射单元143发射的子光束能够相互干涉,以形成探测光。在本实施例中,发射单元143可以为天线,发射单元143包括j个天线,每一天线分别接收一移相器输出的一子光束,并将该子光束发射到自由空间。
在一些实施例中,多波长生成单元120、波长选择单元130、分光单元141、相位调制单元142和发射单元143可以集成在同一芯片上,例如基于硅基CMOS工艺进行加工,从而有效减小相控阵发射装置100的尺寸,提高集成度。
在一些实施例中,该相控阵发射装置100还可以包括:连接波导。连接波导设于各种器件之间,以实现光束的传播,并减少传播过程中的损耗。
在本申请实施例中,通过激光源110输出激光信号,多波长生成单元120根据激光源110输出的激光信号产生若干不同波长的光信号,波长选择单元130接收若干不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元140将波长选择单元130输出的光信号分成若干子光束并发射,能够使用固定波长的激光器实现相控阵的发射,并通过波长选择单元130改变波长,无需采用昂贵的可调谐激光器,从而降低成本。
在一些实施例中,如图2所示,该相控阵发射装置100还可以包括:控制器150。控制器150分别与波长选择单元130和相位调制单元142连接,控制器150可以用于控制波长选择单元130以改变波长选择单元130选择的预设波长,还可以用于控制相位调制单元142以调节相位调制单元142改变的相位,从而调节发射光斑。通过设置控制器150以选择波长和改变相位,无需人工调节,提高了装置的自动化。
其中,控制器150可以包括处理器、具有控制处理功能的专用集成电路(Application-Specific Integrated Circuit,ASIC)、现场可编辑门阵列 (Field Programmable Gate Array,FPGA)、单片机等。
在本申请实施例中,通过激光源110输出激光信号,多波长生成单元120根据激光源110输出的激光信号产生若干不同波长的光信号,波长选择单元130接收若干不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元140将波长选择单元130输出的光信号分成若干子光束并发射,能够使用固定波长的激光器实现相控阵的发射,并通过波长选择单元130改变波长,无需采用昂贵的可调谐激光器,从而降低成本。
图3示出了本申请实施例提供的一种激光雷达的结构示意图。如图3所示,该激光雷达300包括:相控阵发射装置100。
其中,本实施例中的相控阵发射装置100与上述实施例中的相控阵发射装置100的结构和功能均相同,对于相控阵发射装置100的具体结构和功能可参阅上述实施例,此处不再一一赘述。
其中,如图3所示,激光雷达300还包括相控阵接收装置200。在本实施例中,相控阵发射装置100用于发射子光束,相控阵接收装置200用于接收被测物体所反射的子光束。
在本申请实施例中,激光雷达300中的相控阵发射装置100通过激光源110输出激光信号,多波长生成单元120根据激光源110输出的激光信号产生若干不同波长的光信号,波长选择单元130接收若干不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元140将波长选择单元130输出的光信号分成若干子光束并发射,能够使用固定波长的激光器实现相控阵的发射,并通过波长选择单元130改变波长,无需采用昂贵的可调谐激光器,从而降低成本。
图4示出了本申请实施例提供的一种自动驾驶设备的结构示意图。如图4所示,该自动驾驶设备500包括:车体400以及激光雷达300,激光雷达300安装于车体400。
其中,本实施例中的激光雷达300与上述实施例中的激光雷达300的结构和功能均相同,对于激光雷达300的具体结构和功能可参阅上述实施例,此处不再一一赘述。
其中,自动驾驶设备500能够探测周边物体的方位和距离,并且基于周边 物体的方位和距离进行决策,从而实现自动驾驶。
在本申请实施例中,自动驾驶设备500中的相控阵发射装置100通过激光源110输出激光信号,多波长生成单元120根据激光源110输出的激光信号产生若干不同波长的光信号,波长选择单元130接收若干不同波长的光信号,并选择输出其中一种波长的光信号,相控阵单元140将波长选择单元130输出的光信号分成若干子光束并发射,能够使用固定波长的激光器实现相控阵的发射,并通过波长选择单元130改变波长,无需采用昂贵的可调谐激光器,从而降低成本。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本实施新型实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本实施新型实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本实施新型实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一 特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种相控阵发射装置(100),其特征在于,包括:
    激光源(110),用于输出激光信号;
    多波长生成单元(120),设于所述激光源(110)的输出端,用于根据所述激光源(110)输出的所述激光信号,产生若干个不同波长的光信号并输出;
    波长选择单元(130),设于所述多波长生成单元(120)的输出端,用于接收所述多波长生成单元(120)输出的所述若干个不同波长的光信号,并选择输出其中一种波长的光信号;
    相控阵单元(140),设于所述波长选择单元(130)的输出端,用于将所述波长选择单元(130)输出的所述光信号分成若干子光束,并发射所述子光束。
  2. 根据权利要求1所述的装置(100),其特征在于,
    所述多波长生成单元(120)包括光频梳生成器。
  3. 根据权利要求1所述的装置(100),其特征在于,
    所述波长选择单元(130)通过热光或者电光效应改变滤波波长。
  4. 根据权利要求3所述的装置(100),其特征在于,
    所述波长选择单元(130)包括微环谐振器。
  5. 根据权利要求1-4任一项所述的装置(100),其特征在于,所述相控阵单元(140)包括:
    分光单元(141),设于所述波长选择单元(130)的输出端,用于将所述预设波长的光信号分成若干子光束;
    相位调制单元(142),设于所述分光单元(141)的输出端,用于改变若干所述子光束的相位,以使若干所述子光束的相位满足预设相位条件;
    发射单元(143),设于所述相位调制单元(142)的输出端,用于发射所述子光束。
  6. 根据权利要求5所述的装置(100),其特征在于,所述相位调制单元(142)包括若干相位调制子单元,一所述相位调制子单元的输入端与所述分光单元(141)的其中一输出端连接,以使所述分光单元输出的一所述子光束进入一所述相位调制子单元。
  7. 根据权利要求6所述的装置(100),其特征在于,所述发射单元(143)包括若干发射子单元,所述发射子单元阵列排布,并且任意相邻两个所述发射子单元之间的距离相同,一所述发射子单元的输入端与一所述相位调制子单元的输出端连接,以使一所述相位调制子单元输出的一所述子光束进入一所述发射子单元。
  8. 根据权利要求5所述的装置,其特征在于,所述装置(100)还包括:控制器(150),所述控制器(150)分别与所述波长选择单元(130)、所述相位调制单元(142)连接。
  9. 根据权利要求5所述的装置(100),其特征在于,所述多波长生成单元(120)、所述波长选择单元(130)、所述分光单元(141)、所述相位调制单元(142)和所述发射单元(143)集成在同一芯片上。
  10. 一种激光雷达(300),其特征在于,包括如权利要求1-9中任一项所述的相控阵发射装置(100)。
  11. 根据权利要求10所述的激光雷达(300),其特征在于,还包括相控阵接收装置(200),所述相控阵发射装置(100)用于发射子光束,所述相控阵接收装置(200)用于接收被测物体所反射的子光束。
  12. 一种自动驾驶设备(500),其特征在于,包括车体(400)以及权利要求10或11所述的激光雷达(300),所述激光雷达(300)安装于所述车体(400)。
PCT/CN2019/096764 2019-07-19 2019-07-19 相控阵发射装置、激光雷达和自动驾驶设备 WO2021012084A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980002787.6A CN110720052A (zh) 2019-07-19 2019-07-19 相控阵发射装置、激光雷达和自动驾驶设备
PCT/CN2019/096764 WO2021012084A1 (zh) 2019-07-19 2019-07-19 相控阵发射装置、激光雷达和自动驾驶设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/096764 WO2021012084A1 (zh) 2019-07-19 2019-07-19 相控阵发射装置、激光雷达和自动驾驶设备

Publications (1)

Publication Number Publication Date
WO2021012084A1 true WO2021012084A1 (zh) 2021-01-28

Family

ID=69216692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096764 WO2021012084A1 (zh) 2019-07-19 2019-07-19 相控阵发射装置、激光雷达和自动驾驶设备

Country Status (2)

Country Link
CN (1) CN110720052A (zh)
WO (1) WO2021012084A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872697B (zh) * 2020-06-30 2023-09-12 华为技术有限公司 光发送机和光调制的方法
CN112684467A (zh) * 2020-12-09 2021-04-20 长沙思木锐信息技术有限公司 一种三维扫描激光雷达***及其测量方法
CN117665771A (zh) * 2022-08-29 2024-03-08 上海禾赛科技有限公司 激光雷达的发射模块、收发装置和激光雷达

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144847A (zh) * 2017-05-26 2017-09-08 吉林大学 一种激光雷达收发***
CN107272016A (zh) * 2017-05-09 2017-10-20 中国科学院半导体研究所 基于光开关的波束扫描光控相控阵雷达
WO2017223299A1 (en) * 2016-06-22 2017-12-28 Massachusetts Institute Of Technology Methods and systems for optical beam steering
CN108693504A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 相控阵激光发射单元及控制方法、激光雷达
US20180306925A1 (en) * 2017-04-25 2018-10-25 Analog Photonics LLC Wavelength division multiplexed lidar
US20190056634A1 (en) * 2017-01-31 2019-02-21 Analog Photonics LLC Phase front shaping in one and two-dimensional optical phased arrays
CN109459816A (zh) * 2018-10-12 2019-03-12 上海交通大学 硅基光学任意波形发生芯片

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810577B (zh) * 2015-06-30 2020-12-22 瑞典爱立信有限公司 用于相控阵天线的波束形成装置、方法和计算机存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017223299A1 (en) * 2016-06-22 2017-12-28 Massachusetts Institute Of Technology Methods and systems for optical beam steering
US20190056634A1 (en) * 2017-01-31 2019-02-21 Analog Photonics LLC Phase front shaping in one and two-dimensional optical phased arrays
US20180306925A1 (en) * 2017-04-25 2018-10-25 Analog Photonics LLC Wavelength division multiplexed lidar
CN107272016A (zh) * 2017-05-09 2017-10-20 中国科学院半导体研究所 基于光开关的波束扫描光控相控阵雷达
CN107144847A (zh) * 2017-05-26 2017-09-08 吉林大学 一种激光雷达收发***
CN108693504A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 相控阵激光发射单元及控制方法、激光雷达
CN109459816A (zh) * 2018-10-12 2019-03-12 上海交通大学 硅基光学任意波形发生芯片

Also Published As

Publication number Publication date
CN110720052A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
US11650296B2 (en) Optical sensing based on wavelength division multiplexed (WDM) light at different wavelengths in light detection and ranging LiDAR systems
WO2021012084A1 (zh) 相控阵发射装置、激光雷达和自动驾驶设备
US10613411B1 (en) Pseudo-randomly spaced two-dimensional phased array assembly
TWI780120B (zh) 模組式三維光學感測系統(二)
JP2023120335A (ja) 周波数変調連続波光を検出および距離測定のためのスイッチング可能なコヒーレントピクセルアレイ
Xu et al. Fully integrated solid-state LiDAR transmitter on a multi-layer silicon-nitride-on-silicon photonic platform
US20220050187A1 (en) Scan-less 3d optical sensing devices and associated lidar based on stacking of integrated photonic chips, wavelength division demultiplexing and position-to-angle conversion of a lens
US7558450B2 (en) Microwave photonic delay line with separate tuning of optical carrier
CN112034657B (zh) 全固态芯片化大角度光学波束成形***
WO2021012083A1 (zh) 相控阵发射装置、激光雷达和自动驾驶设备
WO2021012088A1 (zh) 相控阵检测装置、激光雷达和自动驾驶设备
US9461442B2 (en) Laser comb generator
CN115542345A (zh) Fmcw激光雷达、自动驾驶***及可移动设备
US20240219631A1 (en) Silicon-based reconfigurable microwave photonic multi-beam forming network chip
CN110501779A (zh) 微环延时矩阵及微波光子集成多波束相控阵芯片、***
Frankel et al. Array transmitter/receiver controlled by a true time-delay fiber-optic beamformer
EP3920347A1 (en) Tunable laser source and light steering apparatus including the same
KR100973981B1 (ko) 주파수 가변 신호 발생 장치 및 방법
US10488588B1 (en) Photonic integrated circuit using a quantum dot comb laser for heterodyne optical signals
WO2024045550A1 (zh) 激光雷达的发射模块、收发装置和激光雷达
CN113985603B (zh) 光束扫描***
CN110720053B (zh) 相控阵发射装置、激光雷达和自动驾驶设备
US5900965A (en) Wideband quasi-optical millimeter-wave resonator
CN218938498U (zh) 激光雷达光学***及激光雷达
CN103647212A (zh) 可实现激光振荡器模式补偿的寻址泵浦

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938218

Country of ref document: EP

Kind code of ref document: A1