WO2021010484A1 - Light distribution control device and vehicle light system - Google Patents

Light distribution control device and vehicle light system Download PDF

Info

Publication number
WO2021010484A1
WO2021010484A1 PCT/JP2020/027942 JP2020027942W WO2021010484A1 WO 2021010484 A1 WO2021010484 A1 WO 2021010484A1 JP 2020027942 W JP2020027942 W JP 2020027942W WO 2021010484 A1 WO2021010484 A1 WO 2021010484A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
infrared
visible light
vehicle
control device
Prior art date
Application number
PCT/JP2020/027942
Other languages
French (fr)
Japanese (ja)
Inventor
達磨 北澤
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2021533120A priority Critical patent/JPWO2021010484A1/ja
Publication of WO2021010484A1 publication Critical patent/WO2021010484A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/12Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of emitted light
    • F21S41/13Ultraviolet light; Infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/24Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead
    • B60Q1/249Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments for lighting other areas than only the way ahead for illuminating the field of view of a sensor or camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles

Definitions

  • the present invention relates to a light distribution control device and a vehicle lighting system.
  • ADB Adaptive Driving Beam
  • the present invention has been made in view of such a situation, and one of the exemplary purposes of the embodiment is to provide a technique for reducing power consumption when improving visibility in front of a vehicle during snowfall. is there.
  • One aspect of the present invention relates to a light distribution control device.
  • This light distribution control device is capable of irradiating an infrared beam having a variable intensity distribution in the front region based on a visible light image obtained from a camera having sensitivity in the visible light region, which images the front region of the vehicle. Control the lighting.
  • the front region includes an invalid region in which an object serving as a screen exists in the background of snow grains, and an effective region in which the object does not exist.
  • the light distribution control device controls the infrared illumination so that the intensity of the infrared rays irradiating the ineffective region forms an infrared pattern having an intensity distribution lower than the intensity of the infrared rays irradiating the effective region.
  • This vehicle lighting system includes infrared illumination capable of irradiating the front region of the vehicle with an infrared beam having a variable intensity distribution, a camera having sensitivity in the visible light region for imaging the front region, and light distribution control according to the above embodiment. It is equipped with a device.
  • the present invention it is possible to reduce the power consumption when improving the visibility in front of the vehicle during snowfall.
  • FIG. 2 (a) and 2 (b) are diagrams illustrating the operation of the vehicle lamp system of FIG. It is a figure explaining the influence which the reflection of light by a snow grain has on the visibility of a driver. It is a figure explaining the decrease of visibility with shading control.
  • 5 (a) and 5 (b) are diagrams illustrating an effective region and an invalid region.
  • 6 (a) and 6 (b) are diagrams illustrating an effective region and an invalid region. It is a figure explaining the setting of an invalid area based on a contrast ratio. It is a flowchart of light distribution control which concerns on one Example.
  • FIG. 1 is a block diagram of a vehicle lamp system according to an embodiment.
  • a part of the components of the vehicle lighting system 100 is drawn as a functional block.
  • These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
  • the vehicle lighting system 100 includes a variable light distribution lamp 110, an infrared lighting 120, an infrared camera 130, a visible light camera 132, and a light distribution control device 140 (light distribution controller). All of these may be built into the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
  • the variable light distribution lamp 110 is a white light source capable of irradiating the front region of the vehicle with a visible light beam L3 having a variable intensity distribution.
  • the variable light distribution lamp 110 receives data indicating the visible light pattern PTN1 from the light distribution control device 140, emits a visible light beam L3 having an intensity distribution corresponding to the visible light pattern PTN1, and emits a visible light beam L3 in front of the vehicle.
  • the configuration of the light distribution variable lamp 110 is not particularly limited, and may include, for example, a semiconductor light source such as an LD (laser diode) or an LED (light emitting diode), and a lighting circuit for driving and lighting the semiconductor light source.
  • the variable light distribution lamp 110 may include a matrix-type pattern forming device such as a DMD (Digital Mirror Device) or a liquid crystal device in order to form an illuminance distribution according to the visible light pattern PTN1.
  • the variable light distribution lamp 110 has a resolution sufficient to block only the snow grain portion.
  • the infrared illumination 120 is a probe light source capable of irradiating the front region of the vehicle with an infrared beam L1 having a variable intensity distribution.
  • the infrared beam L1 may be near infrared light or light having a longer wavelength.
  • the infrared illumination 120 receives data indicating the infrared pattern PTN2 from the light distribution control device 140, emits an infrared beam L1 having an intensity distribution corresponding to the infrared pattern PTN2, and forms the infrared pattern PTN2 in front of the vehicle.
  • the configuration of the infrared illumination 120 is not particularly limited, and may include, for example, a semiconductor light source such as an LD or an LED, and a lighting circuit for driving and lighting the semiconductor light source.
  • the infrared illumination 120 may include a matrix-type pattern forming device such as a DMD or a liquid crystal device in order to form an illuminance distribution corresponding to the infrared pattern PTN2.
  • the infrared illumination 120 has the same resolution as, for example, the variable light distribution lamp 110.
  • the infrared camera 130 has sensitivity in the infrared region and images the front region of the vehicle.
  • the infrared camera 130 captures the reflected light L2 of the infrared beam L1 by an object in front of the vehicle.
  • the infrared camera 130 only needs to have sensitivity in the wavelength range of the infrared beam L1 and is preferably insensitive to visible light.
  • the visible light camera 132 has sensitivity in the visible light region and images the front region of the vehicle.
  • the visible light camera 132 captures the reflected light L4 of the visible light beam L3 by an object in front of the vehicle.
  • the visible light camera 132 only needs to have sensitivity in the wavelength range of the visible light beam L3, and is preferably insensitive to infrared rays. It should be noted that one camera may perform the functions of both the infrared camera 130 and the visible light camera 132.
  • the light distribution control device 140 has a pattern determination unit 142 and a pattern indicator unit 144, and dynamically and adapts the visible light pattern PTN1 supplied to the light distribution variable lamp 110 based on the infrared image IMG2 obtained from the infrared camera 130. Control.
  • the visible light pattern PTN1 is grasped as a two-dimensional illuminance distribution of the white light irradiation pattern 902 formed by the light distribution variable lamp 110 on the virtual vertical screen 900 in front of the vehicle.
  • the light distribution control device 140 can be configured by a digital processor, for example, it may be configured by a combination of a microcomputer including a CPU and a software program, or it may be configured by an FPGA (Field Programmable Gate Array), an ASIC (Application Specified IC), or the like. You may.
  • a digital processor for example, it may be configured by a combination of a microcomputer including a CPU and a software program, or it may be configured by an FPGA (Field Programmable Gate Array), an ASIC (Application Specified IC), or the like. You may.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specified IC
  • the pattern determination unit 142 detects snow grains by image processing based on the infrared image IMG2 taken by the infrared camera 130.
  • the snowdrop detection algorithm is not particularly limited.
  • the pattern determination unit 142 may detect snow particles based on a plurality of consecutive frames of the infrared image IMG2. Then, the pattern determining unit 142 determines the visible light pattern PTN1 in which the portion corresponding to the snow grain is shielded.
  • the pattern indicator 144 transmits data indicating the visible light pattern PTN1 to the variable light distribution lamp 110.
  • Shade a certain part includes not only the case where the brightness (illuminance) of the part is completely set to zero, but also the case where the brightness (illuminance) of the part is lowered.
  • FIG. 2 (a) and 2 (b) are diagrams illustrating the operation of the vehicle lighting system 100 of FIG.
  • FIG. 2A shows an infrared image IMG2
  • FIG. 2B shows a visible light pattern PTN1 corresponding to the infrared image IMG2 of FIG. 2A.
  • the infrared image IMG2 shows 6, snowflakes, 8 people, and 10 vehicles.
  • the light distribution control device 140 detects snow particles 6 from the infrared image IMG2, and provides a light-shielding portion 7 at a portion corresponding to the snow particles 6 in the visible light pattern PTN1.
  • the light distribution control device 140 may perform so-called ADB control. In that case, when a target such as the vehicle 10 that should not be given glare is detected, a light-shielding portion 11 is also provided in a portion corresponding to the target.
  • the visible light pattern PTN1 is updated at a rate of, for example, 30 fps or higher, and the light-shielding portion 7 can be moved following the snowflakes 6. As a result, the reflected light of the snow particles 6 can be reduced, and the visibility in front can be improved.
  • FIG. 3 is a diagram illustrating the effect of light reflection by the snowdrops 6 on the visibility of the driver. It is assumed that an object 20 that can be regarded as a screen, such as a wall (fence) 22 or a road surface 24, exists on the other side of the snowdrop 6 in front of the vehicle, that is, in the background.
  • the object 20 that can be regarded as a screen also includes road signs, signboards, side walls of highways, and the like.
  • the driver visually recognizes the reflected light L4 from the snow grain 6 and the reflected light L4 from the object 20. Therefore, when the object 20 is in the background of the snow grain 6, the reflected light L4 from the snow grain 6 is mixed with the reflected light L4 from the object 20, and the brightness difference of the visible light between the background and the snow grain 6, that is, the contrast ratio is large. It becomes smaller. In this case, even if the light is reflected by the snow particles 6, the driver is less likely to feel annoyed. Therefore, shading the snow particles 6 that overlap the object 20 has little merit for the driver's visibility. It should be noted that this event should not be regarded as a general recognition of those skilled in the art, and is independently recognized by the present inventor.
  • FIG. 4 is a diagram illustrating a decrease in visibility due to shading control.
  • an irradiation pattern 902 in other words, a visible light pattern PTN1 is projected on the object 20.
  • the irradiation pattern 902 includes dark spots 904 randomly distributed, which reduces visibility.
  • the dark spot 904 since the snowflakes 6 move from moment to moment, the dark spot 904 also moves from moment to moment, and therefore the irradiation pattern 902 projected on the object 20 flickers. This flicker further reduces the visibility in front of the vehicle. It should be noted that this problem should not be regarded as a general recognition of those skilled in the art, and is independently recognized by the present inventor.
  • the light distribution control device 140 invalidates the detection of snow particles 6 and the shading control in that area (referred to as an invalid area).
  • the detection of snow grains 6 and the shading control are effective.
  • the invalid region it is possible to suppress an increase in power consumption due to the detection of snow particles 6.
  • 5 (a), 5 (b), 6 (a) and 6 (b) are diagrams for explaining the effective region and the invalid region.
  • 5 (a) shows the visible light image IMG1
  • FIG. 5 (b) shows the infrared pattern PTN2
  • FIG. 6 (a) shows the infrared image IMG2
  • FIG. 6 (b) shows the visible light pattern PTN1.
  • the pattern determination unit 142 sets an effective region A having a relatively low brightness (brightness of visible light) and an invalid region B having a relatively high brightness. Set. That is, the effective region A has a lower brightness than the invalid region B, and the invalid region B has a higher brightness than the effective region A. Therefore, the effective area A and the ineffective area B change dynamically and adaptively according to the situation in front of the vehicle. In FIG. 5A, the range corresponding to the road surface 24 is set in the invalid area B, and the other range is set in the effective area A.
  • the setting algorithm for the effective area A and the invalid area B is not particularly limited.
  • the pattern determination unit 142 holds in advance a first threshold value regarding the brightness (gradation) of visible light and a second threshold value regarding the size (area) of the invalid region B. Then, in the visible light image IMG1, a region having a brightness equal to or higher than the first threshold value and a magnitude equal to or higher than the second threshold value is set to the invalid region B, and the other ranges are set to the effective region A.
  • the visible light image IMG1 is subjected to known image processing such as shrinkage processing, and the pixels of the pixels corresponding to the snow grains 6.
  • the value is converted to the pixel value of the surrounding pixels. That is, the light spot corresponding to the snowdrop 6 is deleted.
  • the effective region A and the invalid region B are set based on the brightness of each pixel in the visible light image IMG1 subjected to this image processing.
  • the effective region A and the invalid region B may be set based on the contrast ratio of the visible light image IMG1.
  • FIG. 7 is a diagram for explaining the setting of the invalid region based on the contrast ratio.
  • FIG. 7 shows the visible light image IMG1. The sky is reflected above the visible light image IMG1, and there is no screen object. In this range A, the brightness (pixel value) of the snowdrop 6 is high, and the brightness is very low because there is no reflection around it. Therefore, the ratio (or difference) between the peak and the bottom of the brightness, that is, the contrast ratio becomes large.
  • the road surface that is, the screen object is included below the visible light image IMG1.
  • the visible light image IMG1 has a region where parts having a contrast ratio equal to or higher than a predetermined threshold value and a portion having a contrast ratio less than the threshold value. Is divided into areas where are gathered. Then, the region having a contrast ratio equal to or higher than the threshold value is set to the effective region A, and the region having a contrast ratio less than the threshold value is set to the invalid region B.
  • the pattern determination unit 142 determines the infrared pattern PTN2 having an intensity distribution in which the intensity of the infrared rays irradiating the invalid region B is lower than the intensity of the infrared rays irradiating the effective region A.
  • the intensity of the infrared ray irradiating the invalid region B may be completely zero (that is, the infrared ray is not irradiated), or is weaker (that is, weaker) than the intensity of the infrared ray irradiating the effective region A. (Irradiate infrared rays) may be used.
  • the pattern indicator 144 controls the infrared illumination 120 so as to form the infrared pattern PTN2 by transmitting the data indicating the determined infrared pattern PTN2 to the infrared illumination 120.
  • an infrared image IMG2 showing the snow particles 6 existing in the effective region A can be obtained.
  • the pattern determination unit 142 detects the snowdrops 6 based on the infrared image IMG2, and determines the visible light pattern PTN1 having the light-shielding portion 7 in the portion corresponding to the snowflakes 6.
  • the pattern indicator 144 controls the light distribution variable lamp 110 so as to form the determined visible light pattern PTN1.
  • the portion corresponding to the snow grain 6 is shaded by the shading control.
  • the visible light beam L3 is also irradiated to the portion corresponding to the snow grain 6.
  • the power consumption by the infrared illumination 120 can be suppressed, and the dark spot 904 can be prevented from being projected on the screen object.
  • the intensity of infrared rays irradiating the effective region A may be fixedly set, but may be dynamically and adaptively changed according to the situation around the vehicle and the situation of the vehicle itself. For example, when the amount of snowfall is small, the degree to which the driver's field of vision is obstructed by the reflection of the snow particles 6 is small. Therefore, the effect of improving the visibility obtained by shading the snow particles 6 is small. That is, when the amount of snowfall is small, the merit obtained with respect to the power consumption by the infrared illumination 120 becomes small. In particular, when detecting a distant snow grain 6, it is necessary to increase the intensity of infrared rays (that is, the power consumption increases), so that the merit obtained for the power consumption becomes smaller and smaller.
  • the pattern determination unit 142 changes the intensity of infrared rays to irradiate the effective region A based on the amount of snowfall.
  • the pattern determination unit 142 receives data indicating the amount of snowfall from the raindrop sensor 12 provided on the vehicle side, and when the amount of snowfall is relatively small, the intensity of infrared rays irradiating the effective region A is relatively weakened.
  • the intensity of infrared rays irradiating the effective region A is relatively increased. That is, the first amount of snowfall is the first intensity, and the second amount of snowfall, which is larger than the first amount of snowfall, is the second intensity, which is stronger than the first intensity.
  • the pattern determination unit 142 holds a third threshold value for the amount of snowfall in advance, and when the amount of snowfall is less than the third threshold value, the intensity of infrared rays is reduced from a preset reference value.
  • the intensity of infrared rays is set as a reference value or increased above the reference value. In this way, by weakening the intensity of the infrared rays irradiating the effective region A when the amount of snowfall is small, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level.
  • the raindrop sensor 12 may be provided on the vehicle lamp side.
  • the moving speed (vehicle speed) of the vehicle is slow, the time required from the driver visually recognizing the target to be avoided ahead to stopping the vehicle or switching the traveling direction becomes shorter. In other words, the degree of demand for seeing a distant place is reduced. Therefore, the merit obtained is small with respect to the power consumption due to the detection of the distant snow particles 6.
  • the pattern determination unit 142 changes the intensity of infrared rays irradiating the effective region A based on the vehicle speed.
  • the pattern determining unit 142 receives data indicating the vehicle speed from the vehicle speed sensor 14 provided on the vehicle side, and when the vehicle speed is relatively slow, the intensity of infrared rays irradiating the effective region A is relatively weakened.
  • the intensity of infrared rays irradiating the effective region A is relatively increased. That is, the first vehicle speed is the first strength, and the second speed, which is faster than the first speed, is the second strength, which is stronger than the first strength.
  • the pattern determination unit 142 holds a fourth threshold value related to the vehicle speed in advance, and when the vehicle speed is less than the fourth threshold value, the intensity of infrared rays is reduced from a preset reference value.
  • the intensity of infrared rays is set as a reference value or increased above the reference value. In this way, by weakening the intensity of the infrared rays irradiating the effective region A when the vehicle speed is slow, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level.
  • the vehicle speed sensor 14 may be provided on the vehicle lamp side.
  • the light distribution control device 140 may have an exception area setting unit (not shown) that sets an exception area in which the light blocking control is exceptionally executed in the invalid area B.
  • the portion corresponding to the snow grain 6 is shielded from light.
  • the portion corresponding to the snow grain 6 is not shaded, but the portion corresponding to the snow grain 6 included in the exception region is shaded.
  • the target to be detected by the driver is not limited to the delineator, and may include pedestrians, preceding vehicles, oncoming vehicles, driving signs, and the like.
  • FIG. 8 is a flowchart of light distribution control according to an embodiment.
  • a picture is taken with the visible light camera 132 (S100).
  • the effective area A and the invalid area B are set based on the visible light image IMG1 (S102).
  • the infrared pattern PTN2 is determined based on the set effective region A and invalid region B, the infrared pattern PTN2 is formed, and the image is taken by the infrared camera 130 (S104).
  • the snow grain 6 in the effective region A is detected in the infrared image IMG2
  • the portion of the snow grain 6 is shielded from light (S106).
  • the invalid area B includes an object to be watched such as a delineator (S108). If it is not included (N in S108), the visible light pattern PTN1 is updated (S114). If it is included (Y in S108), the circumference of the object is set as an exception area (S110). When the snow grain 6 in the exception region is detected, the portion of the snow grain 6 is shielded from light (S112) and the visible light pattern PTN1 is updated (S114).
  • an object to be watched such as a delineator (S108). If it is not included (N in S108), the visible light pattern PTN1 is updated (S114). If it is included (Y in S108), the circumference of the object is set as an exception area (S110). When the snow grain 6 in the exception region is detected, the portion of the snow grain 6 is shielded from light (S112) and the visible light pattern PTN1 is updated (S114).
  • the light distribution control device 140 has a variable intensity distribution in the front region based on the visible light image IMG1 obtained from the visible light camera 132 that captures the front region of the vehicle.
  • the infrared illumination 120 capable of irradiating the infrared beam L1 is controlled.
  • the front region includes an invalid region B in which an object 20 serving as a screen exists in the background of the snow particles 6, and an effective region A in which the object 20 does not exist.
  • the light distribution control device 140 controls the infrared illumination 120 so that the intensity of the infrared rays irradiating the invalid region B forms an infrared pattern PTN2 having an intensity distribution lower than the intensity of the infrared rays irradiating the effective region A. ..
  • the light distribution control device 140 sets the effective area A and the invalid area B based on the height of the brightness in the visible light image IMG1. Specifically, an infrared pattern PTN2 having an intensity distribution in which the intensity of infrared rays irradiating the invalid region B having a relatively high brightness is lower than the intensity of the infrared rays irradiating the effective region A having a relatively low brightness is formed. As such, the infrared illumination 120 is controlled. Alternatively, the light distribution control device 140 sets the effective region A and the invalid region B based on the contrast ratio in the visible light image IMG1.
  • the heat dissipation structure applied to the infrared illumination 120 can be reduced in size and weight. Therefore, it is possible to reduce the cost of the infrared lighting 120 and thus the vehicle lighting system 100.
  • the light distribution control device 140 detects snow particles 6 based on the infrared image IMG2 obtained from the infrared camera 130 that images the front region, and forms a visible light pattern PTN1 in which the portion corresponding to the snow particles 6 is shielded.
  • the variable light distribution lamp 110 capable of irradiating the front region with the visible light beam L3 having a variable intensity distribution is controlled. This makes it possible to improve the visibility in front of the vehicle during snowfall.
  • the light distribution control device 140 changes the intensity of infrared rays to irradiate the effective region A based on the amount of snowfall. Further, the light distribution control device 140 changes the intensity of infrared rays irradiating the effective region A based on the vehicle speed. As a result, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level.
  • the invalid area B is dynamically set, but this is not the case. Since the road surface 24 exists at substantially the same position with respect to the own vehicle, the range corresponding to the road surface 24 may be fixedly set as the invalid region B. On the contrary, in the area above the field of view where the high beam is irradiated, the background is space (sky), and there is a high possibility that the screen object does not exist. Therefore, that portion may be fixedly set as the effective region A.
  • the pattern determination unit 142 increases the brightness based on, for example, the brightness of the region having the highest visible light brightness and increasing the infrared intensity as the brightness decreases, or the brightness of the region having the lowest visible light brightness.
  • the infrared pattern PTN2 may be determined by setting to reduce the intensity of infrared rays.
  • Infrared illumination (120) capable of irradiating the front region of the vehicle with an infrared beam (L1) having a variable intensity distribution
  • a camera (132) that has sensitivity in the visible light region that captures the front region
  • Light distribution control device (140) and Vehicle lighting system (100) capable of irradiating the front region of the vehicle with an infrared beam (L1) having a variable intensity distribution
  • a camera 132
  • Light distribution control device 140
  • Vehicle lighting system 100
  • the present invention can be used for a light distribution control device and a vehicle lighting system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A light distribution control device (140) that controls infrared illumination (120) whereby an infrared beam (L1) can be irradiated that has variable intensity in a forward region, controlling same on the basis of visible light images (IMG1) obtained from a camera having sensitivity in the visible light range and which captures images of the forward region in front of a vehicle. The forward region includes: a disabled region in which an object that serves as a screen is present in the background of snowflakes; and an enabled region in which said object is not present. The light distribution control device (140) controls the infrared illumination (120) such that an infrared pattern (PTN2) is formed that has an intensity distribution whereby the intensity of the infrared rays irradiated in the disabled region is lower than the intensity of infrared rays irradiated in the enabled region.

Description

配光制御装置および車両用灯具システムLight distribution control device and vehicle lighting system
 本発明は、配光制御装置および車両用灯具システムに関する。 The present invention relates to a light distribution control device and a vehicle lighting system.
 夜間やトンネル内での安全な走行に車両用灯具が重要な役割を果たす。自車両の運転者による視認性を優先させて、車両前方を広範囲に明るく照射すると、自車前方に存在する先行車や対向車(以下、前方車という)の運転者、歩行者等にグレアを与えてしまうという問題がある。 Vehicle lighting plays an important role for safe driving at night and in tunnels. Prioritizing visibility by the driver of the own vehicle and illuminating the front of the vehicle brightly over a wide area causes glare to the drivers, pedestrians, etc. of the preceding vehicle and oncoming vehicle (hereinafter referred to as the preceding vehicle) existing in front of the own vehicle. There is a problem of giving.
 近年、車両の周囲の状態にもとづいて、配光パターンを動的、適応的に制御するADB(Adaptive Driving Beam)技術が提案されている。ADB技術は、前方車や歩行者の有無を検出し、前方車や歩行者に対応する領域を減光あるいは消灯するなどして、前方車の運転者や歩行者に与えるグレアを低減するものである。 In recent years, ADB (Adaptive Driving Beam) technology that dynamically and adaptively controls the light distribution pattern based on the surrounding conditions of the vehicle has been proposed. ADB technology detects the presence or absence of vehicles in front and pedestrians, dims or turns off the area corresponding to vehicles in front and pedestrians, and reduces glare given to drivers and pedestrians in front of vehicles. is there.
特開2015-064964号公報Japanese Unexamined Patent Publication No. 2015-0649464 特開2012-227102号公報Japanese Unexamined Patent Publication No. 2012-227102 特開2008-094127号公報Japanese Unexamined Patent Publication No. 2008-094127
 降雪時(あるいは降雨時)にヘッドランプを点灯すると、雪粒にビームが反射して自車両の運転者にグレアを与え、かって前方が見にくくなると言う問題がある。したがって、雪粒によるグレアの対策が望まれる。一方で、車両用灯具には消費電力の低減が常に求められる。特に電気自動車に搭載される車両用灯具では、消費電力の低減は重要な課題である。このため、雪粒によるグレアの対策を施す際も、消費電力の低減が望まれる。 When the headlamps are turned on during snowfall (or when it is raining), the beam is reflected by the snowflakes, giving glare to the driver of the own vehicle, which makes it difficult to see ahead. Therefore, measures against glare caused by snowflakes are desired. On the other hand, reduction of power consumption is always required for vehicle lamps. In particular, reduction of power consumption is an important issue for vehicle lighting fixtures installed in electric vehicles. Therefore, it is desired to reduce the power consumption even when taking measures against glare caused by snowflakes.
 本発明はこうした状況に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、降雪時における車両前方の視認性を改善する際の消費電力を低減する技術を提供することにある。 The present invention has been made in view of such a situation, and one of the exemplary purposes of the embodiment is to provide a technique for reducing power consumption when improving visibility in front of a vehicle during snowfall. is there.
 本発明のある態様は配光制御装置に関する。この配光制御装置は、車両の前方領域を撮像する、可視光領域に感度を有するカメラから得られる可視光画像に基づいて、前方領域に強度分布が可変である赤外線ビームを照射可能な赤外照明を制御する。前方領域には、雪粒の背景にスクリーンとなる物体が存在する無効領域と、当該物体が存在しない有効領域と、が含まれる。配光制御装置は、無効領域に照射する赤外線の強度が有効領域に照射する赤外線の強度よりも低い強度分布を有する赤外線パターンを形成するように、赤外照明を制御する。 One aspect of the present invention relates to a light distribution control device. This light distribution control device is capable of irradiating an infrared beam having a variable intensity distribution in the front region based on a visible light image obtained from a camera having sensitivity in the visible light region, which images the front region of the vehicle. Control the lighting. The front region includes an invalid region in which an object serving as a screen exists in the background of snow grains, and an effective region in which the object does not exist. The light distribution control device controls the infrared illumination so that the intensity of the infrared rays irradiating the ineffective region forms an infrared pattern having an intensity distribution lower than the intensity of the infrared rays irradiating the effective region.
 本発明の別の態様は車両用灯具システムに関する。この車両用灯具システムは、強度分布が可変である赤外線ビームを車両の前方領域に照射可能な赤外照明と、前方領域を撮像する可視光領域に感度を有するカメラと、上記態様の配光制御装置と、を備える。 Another aspect of the present invention relates to a vehicle lamp system. This vehicle lighting system includes infrared illumination capable of irradiating the front region of the vehicle with an infrared beam having a variable intensity distribution, a camera having sensitivity in the visible light region for imaging the front region, and light distribution control according to the above embodiment. It is equipped with a device.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム等の間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、降雪時における車両前方の視認性を改善する際の消費電力を低減することができる。 According to the present invention, it is possible to reduce the power consumption when improving the visibility in front of the vehicle during snowfall.
実施の形態に係る車両用灯具システムのブロック図である。It is a block diagram of the vehicle lighting system which concerns on embodiment. 図2(a)および図2(b)は、図1の車両用灯具システムの動作を説明する図である。2 (a) and 2 (b) are diagrams illustrating the operation of the vehicle lamp system of FIG. 雪粒による光の反射が運転者の視認性に与える影響を説明する図である。It is a figure explaining the influence which the reflection of light by a snow grain has on the visibility of a driver. 遮光制御にともなう視認性の低下を説明する図である。It is a figure explaining the decrease of visibility with shading control. 図5(a)および図5(b)は、有効領域と無効領域を説明する図である。5 (a) and 5 (b) are diagrams illustrating an effective region and an invalid region. 図6(a)および図6(b)は、有効領域と無効領域を説明する図である。6 (a) and 6 (b) are diagrams illustrating an effective region and an invalid region. コントラスト比にもとづく無効領域の設定を説明する図である。It is a figure explaining the setting of an invalid area based on a contrast ratio. 一実施例に係る配光制御のフローチャートである。It is a flowchart of light distribution control which concerns on one Example.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described based on a preferred embodiment with reference to the drawings. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and redundant description will be omitted as appropriate. In addition, the scale and shape of each part shown in each figure are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. In addition, when terms such as "first" and "second" are used in the present specification or claims, these terms do not represent any order or importance unless otherwise specified, and have a certain structure. It is for distinguishing between and other configurations. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.
(実施の形態の概要)
 雪粒を遮光するためには、雪粒を検出する必要がある。雪粒の検出に白色(可視)のプローブ光を用いる場合、プローブ光を照射する度に雪粒が白く光るため、視界不良となる。この問題を回避するため、本明細書に開示される一実施の形態に係る車両用灯具システムは、赤外線をプローブ光として雪粒を検出することとした。雪粒による赤外反射光は、運転者に認識されにくい。したがって、前方の視認性を損なわずに、雪粒を検出できる。加えて、赤外線をプローブ光として用いると、連続的に照射していても運転者に認識されにくい。したがって高速に移動する雪粒を追従して検出することが可能となる。
(Outline of Embodiment)
In order to block the snowflakes, it is necessary to detect the snowflakes. When a white (visible) probe light is used for detecting snow particles, the snow particles glow white each time the probe light is irradiated, resulting in poor visibility. In order to avoid this problem, the vehicle lighting system according to the embodiment disclosed in the present specification uses infrared rays as probe light to detect snow particles. Infrared reflected light from snowflakes is difficult for the driver to recognize. Therefore, snowflakes can be detected without impairing the visibility ahead. In addition, when infrared rays are used as probe light, it is difficult for the driver to recognize them even if they are continuously irradiated. Therefore, it is possible to follow and detect snowflakes moving at high speed.
 車両前方の雪粒の向こう側に、仮想的なスクリーンがあるものとする。このスクリーンに対して可視光を照射すると、可視光はスクリーンによって反射される。したがって、雪粒の背景にスクリーンがある場合は、背景の輝度と雪粒の輝度との差が小さくなる。一方、雪粒の背景にスクリーンがない場合は、背景の輝度と雪粒の輝度との差が大きくなる。一般に運転者は、背景と雪粒との輝度差が大きいと雪粒が視界を邪魔すると感じやすく、当該輝度差が小さいと視界を邪魔すると感じにくい。そこで、車両前方の視界に背景輝度が高まるスクリーンとして機能する部分が存在する場合、その領域については赤外線の照射を停止、あるいは強度を弱める。これにより、雪粒の検出にともなう消費電力を低減できる。 It is assumed that there is a virtual screen on the other side of the snowdrops in front of the vehicle. When the screen is irradiated with visible light, the visible light is reflected by the screen. Therefore, when there is a screen in the background of the snowflakes, the difference between the brightness of the background and the brightness of the snowflakes becomes small. On the other hand, when there is no screen in the background of the snowflakes, the difference between the brightness of the background and the brightness of the snowflakes becomes large. In general, the driver tends to feel that the snow particles obstruct the view when the brightness difference between the background and the snow particles is large, and it is difficult for the driver to feel that the snow particles obstruct the view when the brightness difference is small. Therefore, if there is a portion in the field of view in front of the vehicle that functions as a screen that increases the background brightness, infrared irradiation is stopped or the intensity is weakened in that region. As a result, the power consumption associated with the detection of snow particles can be reduced.
(実施の形態)
 図1は、実施の形態に係る車両用灯具システムのブロック図である。図1では、車両用灯具システム100の構成要素の一部を機能ブロックとして描いている。これらの機能ブロックは、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現される。これらの機能ブロックがハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
(Embodiment)
FIG. 1 is a block diagram of a vehicle lamp system according to an embodiment. In FIG. 1, a part of the components of the vehicle lighting system 100 is drawn as a functional block. These functional blocks are realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and are realized by a computer program or the like as a software configuration. Those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.
 車両用灯具システム100は、配光可変ランプ110、赤外照明120、赤外線カメラ130、可視光カメラ132および配光制御装置140(配光コントローラ)を備える。これらはすべて同じ筐体に内蔵されていてもよいし、いくつかの部材は、筐体の外部、言い換えれば車両側に設けられてもよい。 The vehicle lighting system 100 includes a variable light distribution lamp 110, an infrared lighting 120, an infrared camera 130, a visible light camera 132, and a light distribution control device 140 (light distribution controller). All of these may be built into the same housing, or some members may be provided outside the housing, in other words, on the vehicle side.
 配光可変ランプ110は、強度分布が可変である可視光ビームL3を車両の前方領域に照射可能な白色光源である。配光可変ランプ110は、配光制御装置140から可視光パターンPTN1を指示するデータを受け、可視光パターンPTN1に応じた強度分布を有する可視光ビームL3を出射し、車両前方に可視光パターンPTN1を形成する。配光可変ランプ110の構成は特に限定されず、たとえば、LD(レーザダイオード)やLED(発光ダイオード)などの半導体光源と、半導体光源を駆動して点灯させる点灯回路と、を含み得る。配光可変ランプ110は、可視光パターンPTN1に応じた照度分布を形成するために、たとえばDMD(Digital Mirror Device)や液晶デバイスなどの、マトリクス型のパターン形成デバイスを含んでもよい。配光可変ランプ110は、雪粒の部分のみを遮光できる程度の分解能を有する。 The variable light distribution lamp 110 is a white light source capable of irradiating the front region of the vehicle with a visible light beam L3 having a variable intensity distribution. The variable light distribution lamp 110 receives data indicating the visible light pattern PTN1 from the light distribution control device 140, emits a visible light beam L3 having an intensity distribution corresponding to the visible light pattern PTN1, and emits a visible light beam L3 in front of the vehicle. To form. The configuration of the light distribution variable lamp 110 is not particularly limited, and may include, for example, a semiconductor light source such as an LD (laser diode) or an LED (light emitting diode), and a lighting circuit for driving and lighting the semiconductor light source. The variable light distribution lamp 110 may include a matrix-type pattern forming device such as a DMD (Digital Mirror Device) or a liquid crystal device in order to form an illuminance distribution according to the visible light pattern PTN1. The variable light distribution lamp 110 has a resolution sufficient to block only the snow grain portion.
 赤外照明120は、強度分布が可変である赤外線ビームL1を車両の前方領域に照射可能なプローブ光源である。赤外線ビームL1は、近赤外であってもよいし、より長波長の光であってもよい。赤外照明120は、配光制御装置140から赤外線パターンPTN2を指示するデータを受け、赤外線パターンPTN2に応じた強度分布を有する赤外線ビームL1を出射し、車両前方に赤外線パターンPTN2を形成する。赤外照明120の構成は特に限定されず、たとえば、LDやLEDなどの半導体光源と、半導体光源を駆動して点灯させる点灯回路と、を含み得る。赤外照明120は、赤外線パターンPTN2に応じた照度分布を形成するために、たとえばDMDや液晶デバイスなどの、マトリクス型のパターン形成デバイスを含んでもよい。赤外照明120は、例えば配光可変ランプ110と同程度の分解能を有する。 The infrared illumination 120 is a probe light source capable of irradiating the front region of the vehicle with an infrared beam L1 having a variable intensity distribution. The infrared beam L1 may be near infrared light or light having a longer wavelength. The infrared illumination 120 receives data indicating the infrared pattern PTN2 from the light distribution control device 140, emits an infrared beam L1 having an intensity distribution corresponding to the infrared pattern PTN2, and forms the infrared pattern PTN2 in front of the vehicle. The configuration of the infrared illumination 120 is not particularly limited, and may include, for example, a semiconductor light source such as an LD or an LED, and a lighting circuit for driving and lighting the semiconductor light source. The infrared illumination 120 may include a matrix-type pattern forming device such as a DMD or a liquid crystal device in order to form an illuminance distribution corresponding to the infrared pattern PTN2. The infrared illumination 120 has the same resolution as, for example, the variable light distribution lamp 110.
 赤外線カメラ130は、赤外領域に感度を有し、車両の前方領域を撮像する。赤外線カメラ130は、車両前方の物体による赤外線ビームL1の反射光L2を撮像する。赤外線カメラ130は、少なくとも赤外線ビームL1の波長域に感度を有していればよく、可視光に対して不感であることが好ましい。 The infrared camera 130 has sensitivity in the infrared region and images the front region of the vehicle. The infrared camera 130 captures the reflected light L2 of the infrared beam L1 by an object in front of the vehicle. The infrared camera 130 only needs to have sensitivity in the wavelength range of the infrared beam L1 and is preferably insensitive to visible light.
 可視光カメラ132は、可視光領域に感度を有し、車両の前方領域を撮像する。可視光カメラ132は、車両前方の物体による可視光ビームL3の反射光L4を撮像する。可視光カメラ132は、少なくとも可視光ビームL3の波長域に感度を有していればよく、赤外線に対して不感であることが好ましい。なお、1つのカメラが赤外線カメラ130および可視光カメラ132の両方の機能を果たしてもよい。 The visible light camera 132 has sensitivity in the visible light region and images the front region of the vehicle. The visible light camera 132 captures the reflected light L4 of the visible light beam L3 by an object in front of the vehicle. The visible light camera 132 only needs to have sensitivity in the wavelength range of the visible light beam L3, and is preferably insensitive to infrared rays. It should be noted that one camera may perform the functions of both the infrared camera 130 and the visible light camera 132.
 配光制御装置140は、パターン決定部142およびパターン指示部144を有し、赤外線カメラ130から得られる赤外線画像IMG2に基づいて、配光可変ランプ110に供給する可視光パターンPTN1を動的、適応的に制御する。可視光パターンPTN1は、配光可変ランプ110が自車前方の仮想鉛直スクリーン900上に形成する白色光の照射パターン902の2次元の照度分布と把握される。配光制御装置140はデジタルプロセッサで構成することができ、たとえばCPUを含むマイコンとソフトウェアプログラムの組み合わせで構成してもよいし、FPGA(Field Programmable Gate Array)やASIC(Application Specified IC)などで構成してもよい。 The light distribution control device 140 has a pattern determination unit 142 and a pattern indicator unit 144, and dynamically and adapts the visible light pattern PTN1 supplied to the light distribution variable lamp 110 based on the infrared image IMG2 obtained from the infrared camera 130. Control. The visible light pattern PTN1 is grasped as a two-dimensional illuminance distribution of the white light irradiation pattern 902 formed by the light distribution variable lamp 110 on the virtual vertical screen 900 in front of the vehicle. The light distribution control device 140 can be configured by a digital processor, for example, it may be configured by a combination of a microcomputer including a CPU and a software program, or it may be configured by an FPGA (Field Programmable Gate Array), an ASIC (Application Specified IC), or the like. You may.
 パターン決定部142は、赤外線カメラ130が撮影した赤外線画像IMG2に基づいて、画像処理によって雪粒を検出する。雪粒の検出アルゴリズムは特に限定されない。パターン決定部142は、赤外線画像IMG2の連続する複数のフレームにもとづいて、雪粒を検出してもよい。そして、パターン決定部142は、雪粒に対応する部分が遮光された可視光パターンPTN1を決定する。パターン指示部144は、可視光パターンPTN1を指示するデータを配光可変ランプ110に送信する。「ある部分を遮光する」とは、その部分の輝度(照度)を完全にゼロとする場合のほか、その部分の輝度(照度)を低下させる場合も含む。 The pattern determination unit 142 detects snow grains by image processing based on the infrared image IMG2 taken by the infrared camera 130. The snowdrop detection algorithm is not particularly limited. The pattern determination unit 142 may detect snow particles based on a plurality of consecutive frames of the infrared image IMG2. Then, the pattern determining unit 142 determines the visible light pattern PTN1 in which the portion corresponding to the snow grain is shielded. The pattern indicator 144 transmits data indicating the visible light pattern PTN1 to the variable light distribution lamp 110. "Shading a certain part" includes not only the case where the brightness (illuminance) of the part is completely set to zero, but also the case where the brightness (illuminance) of the part is lowered.
 以上が車両用灯具システム100の基本構成および基本制御である。図2(a)および図2(b)は、図1の車両用灯具システム100の動作を説明する図である。図2(a)は赤外線画像IMG2を、図2(b)は図2(a)の赤外線画像IMG2に対応する可視光パターンPTN1を示す。赤外線画像IMG2には、雪粒6、人8、車両10が写っている。配光制御装置140は、赤外線画像IMG2の中から雪粒6を検出し、可視光パターンPTN1における雪粒6と対応する部分に遮光部7を設ける。 The above is the basic configuration and basic control of the vehicle lighting system 100. 2 (a) and 2 (b) are diagrams illustrating the operation of the vehicle lighting system 100 of FIG. FIG. 2A shows an infrared image IMG2, and FIG. 2B shows a visible light pattern PTN1 corresponding to the infrared image IMG2 of FIG. 2A. The infrared image IMG2 shows 6, snowflakes, 8 people, and 10 vehicles. The light distribution control device 140 detects snow particles 6 from the infrared image IMG2, and provides a light-shielding portion 7 at a portion corresponding to the snow particles 6 in the visible light pattern PTN1.
 配光制御装置140は、いわゆるADB制御を行ってもよい。その場合、車両10をはじめとするグレアを与えるべきでない物標を検出すると、この物標と対応する部分にも遮光部11を設ける。 The light distribution control device 140 may perform so-called ADB control. In that case, when a target such as the vehicle 10 that should not be given glare is detected, a light-shielding portion 11 is also provided in a portion corresponding to the target.
 可視光パターンPTN1は、たとえば30fpsあるいはそれ以上のレートで更新され、遮光部7を雪粒6に追従して移動させることができる。これにより、雪粒6の反射光を低減でき、前方の視認性を改善できる。 The visible light pattern PTN1 is updated at a rate of, for example, 30 fps or higher, and the light-shielding portion 7 can be moved following the snowflakes 6. As a result, the reflected light of the snow particles 6 can be reduced, and the visibility in front can be improved.
 雪粒6の検出に白色(可視)のプローブ光を用いる場合、プローブ光を照射する度に雪粒6が白く光りグレアとなり、視界不良となる。本実施の形態によれば、プローブ光として赤外線を用いるため、グレアを防止できるというメリットがある。また赤外線をプローブ光として用いるため、連続的にプローブ光を照射していても運転者に認識されにくいというメリットがある。したがって高速に移動する雪粒6を追従して検出することが可能となる。 When a white (visible) probe light is used to detect the snow particles 6, the snow particles 6 glow white and glare each time the probe light is irradiated, resulting in poor visibility. According to this embodiment, since infrared rays are used as the probe light, there is an advantage that glare can be prevented. Further, since infrared rays are used as the probe light, there is an advantage that it is difficult for the driver to recognize even if the probe light is continuously irradiated. Therefore, it is possible to follow and detect the snowdrop 6 moving at high speed.
 雪粒6に対する遮光制御は、雪粒6による光の反射に起因するグレアを低減するというメリットがあるが、状況によっては雪粒6による光の反射が運転者の視認性にさほど影響しない場合がある。図3は、雪粒6による光の反射が運転者の視認性に与える影響を説明する図である。車両前方の雪粒6の向こう側、つまり背景に、壁(フェンス)22や路面24等、スクリーンと見なせる物体20が存在したとする。スクリーンと見なせる物体20には、道路標識、看板、高速道路の側壁なども含まれる。車両前方に可視光ビームL3が出射されると、雪粒6だけでなく物体20によっても可視光が反射される。 The shading control for the snowdrops 6 has the advantage of reducing glare caused by the reflection of light by the snowflakes 6, but depending on the situation, the reflection of light by the snowflakes 6 may not significantly affect the visibility of the driver. is there. FIG. 3 is a diagram illustrating the effect of light reflection by the snowdrops 6 on the visibility of the driver. It is assumed that an object 20 that can be regarded as a screen, such as a wall (fence) 22 or a road surface 24, exists on the other side of the snowdrop 6 in front of the vehicle, that is, in the background. The object 20 that can be regarded as a screen also includes road signs, signboards, side walls of highways, and the like. When the visible light beam L3 is emitted from the front of the vehicle, the visible light is reflected not only by the snowflakes 6 but also by the object 20.
 このため、運転者は、雪粒6からの反射光L4と物体20からの反射光L4とを視認することになる。したがって、雪粒6の背景に物体20がある場合、雪粒6からの反射光L4が物体20からの反射光L4に紛れ、背景と雪粒6との可視光の輝度差、つまりコントラスト比が小さくなる。この場合、雪粒6によって光が反射されても、運転者は煩わしさを感じにくい。よって、物体20と重なる雪粒6に対する遮光は、運転者の視認性に対するメリットが小さい。なお、この事象を当業者の一般的な認識と捉えてはならず、本発明者が独自に認識したものである。 Therefore, the driver visually recognizes the reflected light L4 from the snow grain 6 and the reflected light L4 from the object 20. Therefore, when the object 20 is in the background of the snow grain 6, the reflected light L4 from the snow grain 6 is mixed with the reflected light L4 from the object 20, and the brightness difference of the visible light between the background and the snow grain 6, that is, the contrast ratio is large. It becomes smaller. In this case, even if the light is reflected by the snow particles 6, the driver is less likely to feel annoyed. Therefore, shading the snow particles 6 that overlap the object 20 has little merit for the driver's visibility. It should be noted that this event should not be regarded as a general recognition of those skilled in the art, and is independently recognized by the present inventor.
 また、雪粒に対する遮光制御は、状況によっては却って前方の視認性を低下させるおそれがある。図4は、遮光制御にともなう視認性の低下を説明する図である。車両前方の雪粒6の向こう側にスクリーンと見なせる物体20が存在するとき、その物体20には照射パターン902、言い換えれば可視光パターンPTN1が投影される。雪粒6に対応する部分を遮光すると、照射パターン902にはランダムに分布するダークスポット904が含まれることとなり、視認性を低下させる。それに加えて雪粒6は時々刻々と移動するため、ダークスポット904も時々刻々と移動し、したがって物体20に投影される照射パターン902がちらつく。このちらつきは、車両前方の視認性をさらに低下させる。なお、この問題を当業者の一般的な認識と捉えてはならず、本発明者が独自に認識したものである。 In addition, the light-shielding control for snowflakes may rather reduce the visibility ahead depending on the situation. FIG. 4 is a diagram illustrating a decrease in visibility due to shading control. When an object 20 that can be regarded as a screen exists on the other side of the snowdrop 6 in front of the vehicle, an irradiation pattern 902, in other words, a visible light pattern PTN1 is projected on the object 20. When the portion corresponding to the snow grain 6 is shielded from light, the irradiation pattern 902 includes dark spots 904 randomly distributed, which reduces visibility. In addition, since the snowflakes 6 move from moment to moment, the dark spot 904 also moves from moment to moment, and therefore the irradiation pattern 902 projected on the object 20 flickers. This flicker further reduces the visibility in front of the vehicle. It should be noted that this problem should not be regarded as a general recognition of those skilled in the art, and is independently recognized by the present inventor.
 そこで、配光制御装置140は、車両前方にスクリーンとして機能する物体20が存在する場合、その領域(無効領域という)については、雪粒6の検出および遮光制御を無効とする。一方、それ以外の領域(有効領域という)については、雪粒6の検出および遮光制御を有効とする。無効領域を設定することにより、雪粒6の検出にともなう消費電力の増大を抑制することができる。また、ダークスポット904に起因する視認性の低下を抑制することができる。 Therefore, when the object 20 that functions as a screen exists in front of the vehicle, the light distribution control device 140 invalidates the detection of snow particles 6 and the shading control in that area (referred to as an invalid area). On the other hand, for the other regions (referred to as effective regions), the detection of snow grains 6 and the shading control are effective. By setting the invalid region, it is possible to suppress an increase in power consumption due to the detection of snow particles 6. In addition, it is possible to suppress a decrease in visibility caused by the dark spot 904.
 図5(a)、図5(b)、図6(a)および図6(b)は、有効領域と無効領域を説明する図である。図5(a)は可視光画像IMG1を、図5(b)は赤外線パターンPTN2を、図6(a)は赤外線画像IMG2を、図6(b)可視光パターンPTN1を示す。 5 (a), 5 (b), 6 (a) and 6 (b) are diagrams for explaining the effective region and the invalid region. 5 (a) shows the visible light image IMG1, FIG. 5 (b) shows the infrared pattern PTN2, FIG. 6 (a) shows the infrared image IMG2, and FIG. 6 (b) shows the visible light pattern PTN1.
 パターン決定部142は、可視光カメラ132から得られる可視光画像IMG1に基づいて、相対的に輝度(可視光の輝度)の低い有効領域Aと、相対的に輝度の高い無効領域Bと、を設定する。つまり、有効領域Aは無効領域Bよりも輝度が低く、無効領域Bは有効領域Aよりも輝度が高い。したがって、有効領域Aおよび無効領域Bは、車両前方の状況に応じて動的、適応的に変化する。図5(a)において路面24に対応する範囲が無効領域Bに設定され、それ以外の範囲が有効領域Aに設定される。 Based on the visible light image IMG1 obtained from the visible light camera 132, the pattern determination unit 142 sets an effective region A having a relatively low brightness (brightness of visible light) and an invalid region B having a relatively high brightness. Set. That is, the effective region A has a lower brightness than the invalid region B, and the invalid region B has a higher brightness than the effective region A. Therefore, the effective area A and the ineffective area B change dynamically and adaptively according to the situation in front of the vehicle. In FIG. 5A, the range corresponding to the road surface 24 is set in the invalid area B, and the other range is set in the effective area A.
 有効領域Aおよび無効領域Bの設定アルゴリズムは特に限定されない。一例として、パターン決定部142は、可視光の輝度(階調)に関する第1しきい値と、無効領域Bの大きさ(面積)に関する第2しきい値を予め保持する。そして、可視光画像IMG1において輝度が第1しきい値以上で、且つ大きさが第2しきい値以上の領域を無効領域Bに設定し、それ以外の範囲を有効領域Aに設定する。なお、輝度の高さに基づいて有効領域Aおよび無効領域Bを設定する場合、好ましくは、可視光画像IMG1に収縮処理等の公知の画像処理が施され、雪粒6に対応する画素の画素値が周囲の画素の画素値に変換される。つまり、雪粒6に対応する光点が削除される。この画像処理が施された可視光画像IMG1における各画素の輝度に基づいて、有効領域Aおよび無効領域Bが設定される。 The setting algorithm for the effective area A and the invalid area B is not particularly limited. As an example, the pattern determination unit 142 holds in advance a first threshold value regarding the brightness (gradation) of visible light and a second threshold value regarding the size (area) of the invalid region B. Then, in the visible light image IMG1, a region having a brightness equal to or higher than the first threshold value and a magnitude equal to or higher than the second threshold value is set to the invalid region B, and the other ranges are set to the effective region A. When the effective region A and the invalid region B are set based on the height of the brightness, it is preferable that the visible light image IMG1 is subjected to known image processing such as shrinkage processing, and the pixels of the pixels corresponding to the snow grains 6. The value is converted to the pixel value of the surrounding pixels. That is, the light spot corresponding to the snowdrop 6 is deleted. The effective region A and the invalid region B are set based on the brightness of each pixel in the visible light image IMG1 subjected to this image processing.
 別の方法として、可視光画像IMG1のコントラスト比に基づいて、有効領域Aと無効領域Bとを設定してもよい。図7は、コントラスト比にもとづく無効領域の設定を説明する図である。図7には、可視光画像IMG1が示される。可視光画像IMG1の上方には空が映っており、スクリーン物体が存在しない。この範囲Aでは、雪粒6の輝度(画素値)が高く、その周囲は反射がないため輝度が非常に低い。したがって、輝度のピークとボトムの比(あるいは差)、すなわちコントラスト比が大きくなる。 As another method, the effective region A and the invalid region B may be set based on the contrast ratio of the visible light image IMG1. FIG. 7 is a diagram for explaining the setting of the invalid region based on the contrast ratio. FIG. 7 shows the visible light image IMG1. The sky is reflected above the visible light image IMG1, and there is no screen object. In this range A, the brightness (pixel value) of the snowdrop 6 is high, and the brightness is very low because there is no reflection around it. Therefore, the ratio (or difference) between the peak and the bottom of the brightness, that is, the contrast ratio becomes large.
 反対に、可視光画像IMG1の下方には路面、すなわちスクリーン物体が含まれている。この範囲Bでは、雪粒6の輝度が高く、その周囲はスクリーン物体による反射によって輝度がある程度高くなる。したがって、輝度のピークとボトムの比、すなわちコントラスト比は小さくなる。以上のことから、コントラスト比を利用することで、有効領域Aと無効領域Bとを動的に設定することができる。例えば、可視光画像IMG1に所定の画像処理を施すことで、可視光画像IMG1は、コントラスト比が所定のしきい値以上である部分が集合する領域と、コントラスト比がしきい値未満である部分が集合する領域とに区分けされる。そして、コントラスト比がしきい値以上の領域が有効領域Aに設定され、しきい値未満の領域が無効領域Bに設定される。 On the contrary, the road surface, that is, the screen object is included below the visible light image IMG1. In this range B, the brightness of the snowdrop 6 is high, and the brightness around it is increased to some extent due to reflection by the screen object. Therefore, the ratio of the peak to the bottom of the luminance, that is, the contrast ratio becomes small. From the above, the effective area A and the invalid area B can be dynamically set by using the contrast ratio. For example, by performing a predetermined image processing on the visible light image IMG1, the visible light image IMG1 has a region where parts having a contrast ratio equal to or higher than a predetermined threshold value and a portion having a contrast ratio less than the threshold value. Is divided into areas where are gathered. Then, the region having a contrast ratio equal to or higher than the threshold value is set to the effective region A, and the region having a contrast ratio less than the threshold value is set to the invalid region B.
 パターン決定部142は、図5(b)に示すように、無効領域Bに照射する赤外線の強度が有効領域Aに照射する赤外線の強度よりも低い強度分布を有する赤外線パターンPTN2を決定する。この赤外線パターンPTN2において、無効領域Bに照射する赤外線の強度は、完全にゼロ(つまり赤外線を非照射)であってもよいし、有効領域Aに照射する赤外線の強度よりも弱い強度(つまり弱い赤外線を照射)であってもよい。 As shown in FIG. 5B, the pattern determination unit 142 determines the infrared pattern PTN2 having an intensity distribution in which the intensity of the infrared rays irradiating the invalid region B is lower than the intensity of the infrared rays irradiating the effective region A. In this infrared pattern PTN2, the intensity of the infrared ray irradiating the invalid region B may be completely zero (that is, the infrared ray is not irradiated), or is weaker (that is, weaker) than the intensity of the infrared ray irradiating the effective region A. (Irradiate infrared rays) may be used.
 パターン指示部144は、決定した赤外線パターンPTN2を指示するデータを赤外照明120に送信することで、赤外線パターンPTN2を形成するよう赤外照明120を制御する。車両前方に赤外線パターンPTN2が形成されると、図6(a)に示すように、有効領域Aに存在する雪粒6が写った赤外線画像IMG2が得られる。 The pattern indicator 144 controls the infrared illumination 120 so as to form the infrared pattern PTN2 by transmitting the data indicating the determined infrared pattern PTN2 to the infrared illumination 120. When the infrared pattern PTN2 is formed in front of the vehicle, as shown in FIG. 6A, an infrared image IMG2 showing the snow particles 6 existing in the effective region A can be obtained.
 パターン決定部142は、この赤外線画像IMG2に基づいて雪粒6を検出し、雪粒6に対応する部分に遮光部7を有する可視光パターンPTN1を決定する。パターン指示部144は、決定した可視光パターンPTN1を形成するよう配光可変ランプ110を制御する。この結果、図6(b)に示すように、有効領域Aでは、遮光制御によって雪粒6に対応する部分が遮光される。一方、無効領域Bでは、遮光制御が無効化されるため、雪粒6に対応する部分にも可視光ビームL3が照射される。これにより、赤外照明120による電力の消費を抑制でき、またスクリーン物体にダークスポット904が投影されるのを防止できる。 The pattern determination unit 142 detects the snowdrops 6 based on the infrared image IMG2, and determines the visible light pattern PTN1 having the light-shielding portion 7 in the portion corresponding to the snowflakes 6. The pattern indicator 144 controls the light distribution variable lamp 110 so as to form the determined visible light pattern PTN1. As a result, as shown in FIG. 6B, in the effective region A, the portion corresponding to the snow grain 6 is shaded by the shading control. On the other hand, in the invalid region B, since the shading control is invalidated, the visible light beam L3 is also irradiated to the portion corresponding to the snow grain 6. As a result, the power consumption by the infrared illumination 120 can be suppressed, and the dark spot 904 can be prevented from being projected on the screen object.
 有効領域Aに照射する赤外線の強度は固定的に設定してもよいが、車両周囲の状況や車両自体の状況に応じて動的、適応的に変化させてもよい。例えば、降雪量が少ない場合、雪粒6の反射で運転者の視界が妨げられる程度は小さい。このため、雪粒6の遮光により得られる視認性向上の効果が小さい。つまり、降雪量が少ない場合、赤外照明120による電力の消費に対して、得られるメリットが小さくなる。特に、遠方の雪粒6を検出する場合は、赤外線の強度を上げる必要がある(つまり電力消費量が多くなる)ため、電力消費に対して得られるメリットがますます小さくなる。 The intensity of infrared rays irradiating the effective region A may be fixedly set, but may be dynamically and adaptively changed according to the situation around the vehicle and the situation of the vehicle itself. For example, when the amount of snowfall is small, the degree to which the driver's field of vision is obstructed by the reflection of the snow particles 6 is small. Therefore, the effect of improving the visibility obtained by shading the snow particles 6 is small. That is, when the amount of snowfall is small, the merit obtained with respect to the power consumption by the infrared illumination 120 becomes small. In particular, when detecting a distant snow grain 6, it is necessary to increase the intensity of infrared rays (that is, the power consumption increases), so that the merit obtained for the power consumption becomes smaller and smaller.
 そこで、パターン決定部142は、降雪量に基づいて有効領域Aに照射する赤外線の強度を変更する。パターン決定部142は、車両側に設けられた雨滴センサ12から降雪量を示すデータを受け、降雪量が相対的に少ない場合は有効領域Aに照射する赤外線の強度を相対的に弱める。一方、降雪量が相対的に多い場合は有効領域Aに照射する赤外線の強度を相対的に強める。つまり、第1の降雪量では第1の強度とし、第1の降雪量よりも多い第2の降雪量では第1の強度よりも強い第2の強度とする。例えば、パターン決定部142は、降雪量に関する第3しきい値を予め保持し、降雪量が第3しきい値未満であるとき、赤外線の強度を予め設定した基準値よりも低減する。一方、降雪量が第3しきい値以上であるとき、赤外線の強度を基準値とするか基準値よりも増大させる。このように、降雪量が少ないときに有効領域Aに照射する赤外線の強度を弱めることで、消費電力の低減と車両前方の視認性の改善とをより高い次元で両立することができる。なお、雨滴センサ12は、車両用灯具側に設けられてもよい。 Therefore, the pattern determination unit 142 changes the intensity of infrared rays to irradiate the effective region A based on the amount of snowfall. The pattern determination unit 142 receives data indicating the amount of snowfall from the raindrop sensor 12 provided on the vehicle side, and when the amount of snowfall is relatively small, the intensity of infrared rays irradiating the effective region A is relatively weakened. On the other hand, when the amount of snowfall is relatively large, the intensity of infrared rays irradiating the effective region A is relatively increased. That is, the first amount of snowfall is the first intensity, and the second amount of snowfall, which is larger than the first amount of snowfall, is the second intensity, which is stronger than the first intensity. For example, the pattern determination unit 142 holds a third threshold value for the amount of snowfall in advance, and when the amount of snowfall is less than the third threshold value, the intensity of infrared rays is reduced from a preset reference value. On the other hand, when the amount of snowfall is equal to or greater than the third threshold value, the intensity of infrared rays is set as a reference value or increased above the reference value. In this way, by weakening the intensity of the infrared rays irradiating the effective region A when the amount of snowfall is small, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level. The raindrop sensor 12 may be provided on the vehicle lamp side.
 また例えば、車両の移動速度(車速)が遅い場合、運転者が前方に回避すべき物標を視認してから、車両を停止あるいは進行方向を切り替えるまでに要する時間は短くなる。つまり、遠方を視認したいという要求の程度が下がる。このため、遠方の雪粒6の検出による電力消費に対して、得られるメリットが小さくなる。 Also, for example, when the moving speed (vehicle speed) of the vehicle is slow, the time required from the driver visually recognizing the target to be avoided ahead to stopping the vehicle or switching the traveling direction becomes shorter. In other words, the degree of demand for seeing a distant place is reduced. Therefore, the merit obtained is small with respect to the power consumption due to the detection of the distant snow particles 6.
 そこで、パターン決定部142は、車速に基づいて有効領域Aに照射する赤外線の強度を変更する。パターン決定部142は、車両側に設けられた車速センサ14から車速を示すデータを受け、車速が相対的に遅い場合は有効領域Aに照射する赤外線の強度を相対的に弱める。一方、車速が相対的に速い場合は有効領域Aに照射する赤外線の強度を相対的に強める。つまり、第1の車速では第1の強度とし、第1の速度よりも速い第2の速度では第1の強度よりも強い第2の強度とする。例えば、パターン決定部142は、車速に関する第4しきい値を予め保持し、車速が第4しきい値未満であるとき、赤外線の強度を予め設定した基準値よりも低減する。一方、車速が第4しきい値以上であるとき、赤外線の強度を基準値とするか基準値よりも増大させる。このように、車速が遅いときに有効領域Aに照射する赤外線の強度を弱めることで、消費電力の低減と車両前方の視認性の改善とをより高い次元で両立することができる。なお、車速センサ14は、車両用灯具側に設けられてもよい。 Therefore, the pattern determination unit 142 changes the intensity of infrared rays irradiating the effective region A based on the vehicle speed. The pattern determining unit 142 receives data indicating the vehicle speed from the vehicle speed sensor 14 provided on the vehicle side, and when the vehicle speed is relatively slow, the intensity of infrared rays irradiating the effective region A is relatively weakened. On the other hand, when the vehicle speed is relatively high, the intensity of infrared rays irradiating the effective region A is relatively increased. That is, the first vehicle speed is the first strength, and the second speed, which is faster than the first speed, is the second strength, which is stronger than the first strength. For example, the pattern determination unit 142 holds a fourth threshold value related to the vehicle speed in advance, and when the vehicle speed is less than the fourth threshold value, the intensity of infrared rays is reduced from a preset reference value. On the other hand, when the vehicle speed is equal to or higher than the fourth threshold value, the intensity of infrared rays is set as a reference value or increased above the reference value. In this way, by weakening the intensity of the infrared rays irradiating the effective region A when the vehicle speed is slow, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level. The vehicle speed sensor 14 may be provided on the vehicle lamp side.
 無効領域Bに、デリニエータが存在する状況を考える。遮光制御を無効化すると、デリニエータが雪粒6の反射に埋もれてしまい、デリニエータの視認性が低下し得る。そこで、画像処理によって無効領域B中にデリニエータを検出した場合、デリニエータを含む局所的な部分を例外領域とし、例外領域では遮光制御を有効化してもよい。つまり、配光制御装置140は、遮光制御が例外的に実行される例外領域を無効領域B中に設定する、例外領域設定部(図示せず)を有してもよい。 Consider the situation where a delineator exists in the invalid area B. When the shading control is disabled, the delineator is buried in the reflection of the snowflakes 6, and the visibility of the delineator may decrease. Therefore, when a deliniator is detected in the invalid area B by image processing, a local portion including the deliniator may be set as an exception area, and shading control may be enabled in the exception area. That is, the light distribution control device 140 may have an exception area setting unit (not shown) that sets an exception area in which the light blocking control is exceptionally executed in the invalid area B.
 この場合、有効領域Aでは、雪粒6に対応する部分が遮光される。一方、無効領域Bでは、雪粒6に対応する部分は遮光されないが、例外領域に含まれる雪粒6に対応する部分は遮光される。その結果、デリニエータの周囲の雪粒6の反射を抑制しつつ、デリニエータには可視光ビームL3を照射することができる。よって、デリニエータが、雪の反射に埋没するのを防止できる。なお、運転者が察知すべき物標はデリニエータに限定されず、歩行者、先行車や対向車、運転標識などを含めてもよい。 In this case, in the effective region A, the portion corresponding to the snow grain 6 is shielded from light. On the other hand, in the invalid region B, the portion corresponding to the snow grain 6 is not shaded, but the portion corresponding to the snow grain 6 included in the exception region is shaded. As a result, it is possible to irradiate the delineator with the visible light beam L3 while suppressing the reflection of the snow particles 6 around the delineator. Therefore, it is possible to prevent the delineator from being buried in the reflection of snow. The target to be detected by the driver is not limited to the delineator, and may include pedestrians, preceding vehicles, oncoming vehicles, driving signs, and the like.
 図8は、一実施例に係る配光制御のフローチャートである。まず、可視光カメラ132で撮影する(S100)。そして可視光画像IMG1に基づいて、有効領域Aと無効領域Bとを設定する(S102)。続いて、設定した有効領域Aと無効領域Bとに基づいて赤外線パターンPTN2を決定し、この赤外線パターンPTN2を形成して赤外線カメラ130で撮像する(S104)。そして、赤外線画像IMG2において有効領域A内の雪粒6を検知すると、雪粒6の部分を遮光する(S106)。さらに無効領域B内に、デリニエータなどの注視すべき物体が含まれるかが判定される(S108)。含まれない場合(S108のN)、可視光パターンPTN1が更新される(S114)。含まれる場合(S108のY)、当該物体の周囲を例外領域に設定する(S110)。そして例外領域内の雪粒6を検知すると、雪粒6の部分を遮光し(S112)、可視光パターンPTN1を更新する(S114)。 FIG. 8 is a flowchart of light distribution control according to an embodiment. First, a picture is taken with the visible light camera 132 (S100). Then, the effective area A and the invalid area B are set based on the visible light image IMG1 (S102). Subsequently, the infrared pattern PTN2 is determined based on the set effective region A and invalid region B, the infrared pattern PTN2 is formed, and the image is taken by the infrared camera 130 (S104). Then, when the snow grain 6 in the effective region A is detected in the infrared image IMG2, the portion of the snow grain 6 is shielded from light (S106). Further, it is determined whether or not the invalid area B includes an object to be watched such as a delineator (S108). If it is not included (N in S108), the visible light pattern PTN1 is updated (S114). If it is included (Y in S108), the circumference of the object is set as an exception area (S110). When the snow grain 6 in the exception region is detected, the portion of the snow grain 6 is shielded from light (S112) and the visible light pattern PTN1 is updated (S114).
 以上説明したように、本実施の形態に係る配光制御装置140は、車両の前方領域を撮像する可視光カメラ132から得られる可視光画像IMG1に基づいて、前方領域に強度分布が可変である赤外線ビームL1を照射可能な赤外照明120を制御する。前方領域には、雪粒6の背景にスクリーンとなる物体20が存在する無効領域Bと、当該物体20が存在しない有効領域Aと、が含まれる。配光制御装置140は、無効領域Bに照射する赤外線の強度が、有効領域Aに照射する赤外線の強度よりも低い強度分布を有する赤外線パターンPTN2を形成するように、赤外照明120を制御する。 As described above, the light distribution control device 140 according to the present embodiment has a variable intensity distribution in the front region based on the visible light image IMG1 obtained from the visible light camera 132 that captures the front region of the vehicle. The infrared illumination 120 capable of irradiating the infrared beam L1 is controlled. The front region includes an invalid region B in which an object 20 serving as a screen exists in the background of the snow particles 6, and an effective region A in which the object 20 does not exist. The light distribution control device 140 controls the infrared illumination 120 so that the intensity of the infrared rays irradiating the invalid region B forms an infrared pattern PTN2 having an intensity distribution lower than the intensity of the infrared rays irradiating the effective region A. ..
 例えば、配光制御装置140は、可視光画像IMG1における輝度の高さに基づいて、有効領域Aおよび無効領域Bを設定する。具体的には、相対的に輝度の高い無効領域Bに照射する赤外線の強度が、相対的に輝度の低い有効領域Aに照射する赤外線の強度よりも低い強度分布を有する赤外線パターンPTN2を形成するように、赤外照明120を制御する。あるいは、配光制御装置140は、可視光画像IMG1におけるコントラスト比に基づいて、有効領域Aおよび無効領域Bを設定する。 For example, the light distribution control device 140 sets the effective area A and the invalid area B based on the height of the brightness in the visible light image IMG1. Specifically, an infrared pattern PTN2 having an intensity distribution in which the intensity of infrared rays irradiating the invalid region B having a relatively high brightness is lower than the intensity of the infrared rays irradiating the effective region A having a relatively low brightness is formed. As such, the infrared illumination 120 is controlled. Alternatively, the light distribution control device 140 sets the effective region A and the invalid region B based on the contrast ratio in the visible light image IMG1.
 このように、赤外線を照射する範囲、もしくは強度の強い赤外線を照射する範囲を絞り込むことで、降雪時における車両前方の視認性を改善する際の消費電力を低減することができる。また、赤外照明120の発熱量を抑えることができるため、赤外照明120に施す放熱構造の小型化、軽量化を図ることができる。よって、赤外照明120ひいては車両用灯具システム100の低コスト化を図ることができる。 In this way, by narrowing down the range of irradiating infrared rays or the range of irradiating strong infrared rays, it is possible to reduce the power consumption when improving the visibility in front of the vehicle during snowfall. Further, since the amount of heat generated by the infrared illumination 120 can be suppressed, the heat dissipation structure applied to the infrared illumination 120 can be reduced in size and weight. Therefore, it is possible to reduce the cost of the infrared lighting 120 and thus the vehicle lighting system 100.
 また、配光制御装置140は、前方領域を撮像する赤外線カメラ130から得られる赤外線画像IMG2に基づいて雪粒6を検出し、雪粒6に対応する部分が遮光された可視光パターンPTN1を形成するように、強度分布が可変である可視光ビームL3を前方領域に照射可能な配光可変ランプ110を制御する。これにより、降雪時における車両前方の視認性を改善することができる。 Further, the light distribution control device 140 detects snow particles 6 based on the infrared image IMG2 obtained from the infrared camera 130 that images the front region, and forms a visible light pattern PTN1 in which the portion corresponding to the snow particles 6 is shielded. As such, the variable light distribution lamp 110 capable of irradiating the front region with the visible light beam L3 having a variable intensity distribution is controlled. This makes it possible to improve the visibility in front of the vehicle during snowfall.
 また、配光制御装置140は、降雪量に基づいて有効領域Aに照射する赤外線の強度を変更する。また、配光制御装置140は、車速に基づいて有効領域Aに照射する赤外線の強度を変更する。これらにより、消費電力の低減と車両前方の視認性の改善とをより高い次元で両立することができる。 Further, the light distribution control device 140 changes the intensity of infrared rays to irradiate the effective region A based on the amount of snowfall. Further, the light distribution control device 140 changes the intensity of infrared rays irradiating the effective region A based on the vehicle speed. As a result, it is possible to achieve both reduction of power consumption and improvement of visibility in front of the vehicle at a higher level.
 以上、本発明の実施の形態について詳細に説明した。前述した実施の形態は、本発明を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本発明の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The embodiments of the present invention have been described in detail above. The above-described embodiment merely shows a specific example in carrying out the present invention. The content of the embodiment does not limit the technical scope of the present invention, and many design changes such as modification, addition, and deletion of components are made without departing from the idea of the invention defined in the claims. Is possible. The new embodiment with the design change has the effects of the combined embodiment and the modification. In the above-described embodiment, the contents that can be changed in design are emphasized by adding notations such as "in the present embodiment" and "in the present embodiment". Design changes are allowed even if there is no content. Any combination of the above components is also valid as an aspect of the present invention. The hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.
(変形例1)
 実施の形態では、無効領域Bの設定を動的に行ったがその限りでない。路面24は自車両に対しておおよそ同じ位置に存在するため、路面24に対応する範囲については、固定的に無効領域Bとしてもよい。反対に、ハイビームが照射される視界上方の領域については、背景は空間(空)であり、スクリーン物体が存在しない可能性が高い。したがってその部分については固定的に有効領域Aとしてもよい。
(Modification example 1)
In the embodiment, the invalid area B is dynamically set, but this is not the case. Since the road surface 24 exists at substantially the same position with respect to the own vehicle, the range corresponding to the road surface 24 may be fixedly set as the invalid region B. On the contrary, in the area above the field of view where the high beam is irradiated, the background is space (sky), and there is a high possibility that the screen object does not exist. Therefore, that portion may be fixedly set as the effective region A.
(変形例2)
 実施の形態では、雪粒についての遮光制御を説明したが、雨粒や霧粒についても遮光制御の対象としてもよい。
(Modification 2)
In the embodiment, the shading control for snow particles has been described, but raindrops and fog particles may also be subject to shading control.
(変形例3)
 パターン決定部142は、例えば最も可視光輝度の高い領域の輝度を基準として、輝度が低くなるにつれて赤外線の強度を上げる設定、あるいは最も可視光輝度の低い領域の輝度を基準として、輝度が高くなるにつれて赤外線の強度を下げる設定を行うことで、赤外線パターンPTN2を決定してもよい。
(Modification 3)
The pattern determination unit 142 increases the brightness based on, for example, the brightness of the region having the highest visible light brightness and increasing the infrared intensity as the brightness decreases, or the brightness of the region having the lowest visible light brightness. The infrared pattern PTN2 may be determined by setting to reduce the intensity of infrared rays.
 上述した実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 強度分布が可変である赤外線ビーム(L1)を車両の前方領域に照射可能な赤外照明(120)と、
 前方領域を撮像する可視光領域に感度を有するカメラ(132)と、
 配光制御装置(140)と、
を備える車両用灯具システム(100)。
The invention according to the above-described embodiment may be specified by the items described below.
[Item 1]
Infrared illumination (120) capable of irradiating the front region of the vehicle with an infrared beam (L1) having a variable intensity distribution, and
A camera (132) that has sensitivity in the visible light region that captures the front region, and
Light distribution control device (140) and
Vehicle lighting system (100).
 本発明は、配光制御装置および車両用灯具システムに利用することができる。 The present invention can be used for a light distribution control device and a vehicle lighting system.
 6 雪粒、 10 車両、 100 車両用灯具システム、 110 配光可変ランプ、 120 赤外照明、 130 赤外線カメラ、 132 可視光カメラ、 140 配光制御装置。 6 snowflakes, 10 vehicles, 100 vehicle lighting system, 110 variable light distribution lamp, 120 infrared lighting, 130 infrared camera, 132 visible light camera, 140 light distribution control device.

Claims (7)

  1.  車両の前方領域を撮像する、可視光領域に感度を有するカメラから得られる可視光画像に基づいて、前記前方領域に強度分布が可変である赤外線ビームを照射可能な赤外照明を制御し、
     前記前方領域には、雪粒の背景にスクリーンとなる物体が存在する無効領域と、当該物体が存在しない有効領域と、が含まれ、
     前記無効領域に照射する赤外線の強度が前記有効領域に照射する赤外線の強度よりも低い強度分布を有する赤外線パターンを形成するように、前記赤外照明を制御することを特徴とする配光制御装置。
    Based on a visible light image obtained from a camera having sensitivity to the visible light region that captures the front region of the vehicle, infrared illumination capable of irradiating the front region with an infrared beam having a variable intensity distribution is controlled.
    The front region includes an invalid region in which an object serving as a screen exists in the background of snow grains, and an effective region in which the object does not exist.
    A light distribution control device characterized in that the infrared illumination is controlled so that an infrared pattern having an intensity distribution lower than the intensity of infrared rays radiating to the effective region is formed. ..
  2.  前記可視光画像における輝度の高さに基づいて、前記有効領域および前記無効領域を設定する請求項1に記載の配光制御装置。 The light distribution control device according to claim 1, wherein the effective region and the invalid region are set based on the height of the brightness in the visible light image.
  3.  前記可視光画像におけるコントラスト比に基づいて、前記有効領域および前記無効領域を設定する請求項1に記載の配光制御装置。 The light distribution control device according to claim 1, wherein the effective region and the invalid region are set based on the contrast ratio in the visible light image.
  4.  前記前方領域を撮像する赤外領域に感度を有するカメラから得られる赤外線画像に基づいて前記雪粒を検出し、前記雪粒に対応する部分が遮光された可視光パターンを形成するように、前記前方領域に強度分布が可変である可視光ビームを照射可能な配光可変ランプを制御する請求項1乃至3のいずれか1項に記載の配光制御装置。 The snow particles are detected based on an infrared image obtained from a camera having sensitivity to the infrared region for imaging the front region, and the portion corresponding to the snow particles forms a shaded visible light pattern. The light distribution control device according to any one of claims 1 to 3, which controls a light distribution variable lamp capable of irradiating a visible light beam having a variable intensity distribution in a front region.
  5.  降雪量に基づいて前記有効領域に照射する赤外線の強度を変更する請求項1乃至4のいずれか1項に記載の配光制御装置。 The light distribution control device according to any one of claims 1 to 4, which changes the intensity of infrared rays irradiating the effective region based on the amount of snowfall.
  6.  車速に基づいて前記有効領域に照射する赤外線の強度を変更する請求項1乃至5のいずれか1項に記載の配光制御装置。 The light distribution control device according to any one of claims 1 to 5, which changes the intensity of infrared rays irradiating the effective region based on the vehicle speed.
  7.  強度分布が可変である赤外線ビームを車両の前方領域に照射可能な赤外照明と、
     前記前方領域を撮像する可視光領域に感度を有するカメラと、
     請求項1乃至6のいずれか1項に記載の配光制御装置と、
    を備えることを特徴とする車両用灯具システム。
    Infrared illumination that can irradiate the front area of the vehicle with an infrared beam with a variable intensity distribution,
    A camera that is sensitive to the visible light region that captures the front region,
    The light distribution control device according to any one of claims 1 to 6.
    A vehicle lighting system characterized by being equipped with.
PCT/JP2020/027942 2019-07-18 2020-07-17 Light distribution control device and vehicle light system WO2021010484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021533120A JPWO2021010484A1 (en) 2019-07-18 2020-07-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133072 2019-07-18
JP2019-133072 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010484A1 true WO2021010484A1 (en) 2021-01-21

Family

ID=74171502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027942 WO2021010484A1 (en) 2019-07-18 2020-07-17 Light distribution control device and vehicle light system

Country Status (3)

Country Link
JP (1) JPWO2021010484A1 (en)
CN (1) CN112240529B (en)
WO (1) WO2021010484A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051488A (en) * 2010-09-02 2012-03-15 Koito Mfg Co Ltd Lamp control device
JP2013189072A (en) * 2012-03-14 2013-09-26 Koito Mfg Co Ltd Light distribution control device for vehicle lamp
JP2017193277A (en) * 2016-04-21 2017-10-26 株式会社東海理化電機製作所 Visually recognizing device for vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4206142A1 (en) * 1992-02-28 1993-09-02 Bosch Gmbh Robert Vehicle arrangement for visibility-dependent control of fog lamps - adjusts brightness of visible lamps in proportion to intensity of back-scatter of infrared radiation by atmosphere droplets
DE10359345B3 (en) * 2003-12-16 2005-09-15 Daimlerchrysler Ag Device for improving the visibility in a motor vehicle
KR101172954B1 (en) * 2009-12-23 2012-08-09 동의과학대학 산학협력단 Apparatus and method for automatically controling a vehicle lamp
JP5999483B2 (en) * 2011-11-02 2016-09-28 株式会社リコー Adhering matter detection device and in-vehicle device control device
US9534756B2 (en) * 2012-04-03 2017-01-03 Sharp Kabushiki Kaisha Light-emitting device, floodlight, and vehicle headlight
CN102826038B (en) * 2012-08-30 2015-07-22 中国人民解放军第四军医大学 Active automobile headlamp capable of improving visibility in rain and snow
CN104276076B (en) * 2014-10-31 2016-05-25 成都众易通科技有限公司 A kind of intelligent vehicle front light system
WO2017038385A1 (en) * 2015-09-03 2017-03-09 株式会社小糸製作所 Water heating device and lamp using same
JP6935815B2 (en) * 2017-03-21 2021-09-15 コニカミノルタ株式会社 Illumination imager

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051488A (en) * 2010-09-02 2012-03-15 Koito Mfg Co Ltd Lamp control device
JP2013189072A (en) * 2012-03-14 2013-09-26 Koito Mfg Co Ltd Light distribution control device for vehicle lamp
JP2017193277A (en) * 2016-04-21 2017-10-26 株式会社東海理化電機製作所 Visually recognizing device for vehicle

Also Published As

Publication number Publication date
JPWO2021010484A1 (en) 2021-01-21
CN112240529A (en) 2021-01-19
CN112240529B (en) 2022-12-09

Similar Documents

Publication Publication Date Title
JP5348100B2 (en) Headlamp device, brightness control method
JP7193452B2 (en) VEHICLE LAMP AND CONTROL DEVICE AND CONTROL METHOD THEREOF
US20160185276A1 (en) Vehicle lamp
JP2006518308A (en) Vehicle automatic external lighting control system
CN110805877B (en) Vehicle lamp
JP2019077204A (en) Vehicular lamp fitting system, control device of vehicular lamp fitting, and control method of vehicular lamp fitting
JP2013097885A (en) Headlight device and headlight system
CN115243930A (en) Light distribution control device, vehicle lamp system, and light distribution control method
JP7173780B2 (en) vehicle lamp
WO2021010484A1 (en) Light distribution control device and vehicle light system
JP7084392B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
JP7236453B2 (en) vehicle lamp
WO2022196296A1 (en) Vehicle lamp control device, vehicle lamp control method and vehicle lamp system
WO2022131043A1 (en) Light distribution control device, vehicular lamp system, and light distribution control method
JP7137414B2 (en) vehicle lamp
WO2022270413A1 (en) Light distribution control device, vehicle light system, and light distribution control method
JP7161337B2 (en) vehicle lamp
WO2023234388A1 (en) Light distribution control device, vehicle lighting tool system, and light distribution control method
WO2024057376A1 (en) Headlight control device and headlight control method
JP7442528B2 (en) Vehicle lighting system, vehicle lighting control device, and vehicle lighting control method
WO2022153754A1 (en) Headlight control device, headlight control method, and headlight system
WO2024009934A1 (en) Target detection device, light distribution control device, and target detection method
WO2021039577A1 (en) Vehicle lighting
JP2024101384A (en) Vehicle lighting system, control device, light distribution control method and program
KR20230101857A (en) Vehicle lighting adjustment method and vehicle when operating at a construction site

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839707

Country of ref document: EP

Kind code of ref document: A1