WO2021010409A1 - Rotary machine core and manufacturing method therefor - Google Patents

Rotary machine core and manufacturing method therefor Download PDF

Info

Publication number
WO2021010409A1
WO2021010409A1 PCT/JP2020/027436 JP2020027436W WO2021010409A1 WO 2021010409 A1 WO2021010409 A1 WO 2021010409A1 JP 2020027436 W JP2020027436 W JP 2020027436W WO 2021010409 A1 WO2021010409 A1 WO 2021010409A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
crystal
single crystal
core
region
Prior art date
Application number
PCT/JP2020/027436
Other languages
French (fr)
Japanese (ja)
Inventor
拓暉 ▲高▼橋
啓祐 竹内
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021010409A1 publication Critical patent/WO2021010409A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • This disclosure relates to a rotating machine core and a method for manufacturing the same.
  • a grain-oriented electrical steel sheet in which specific crystal orientations are aligned in one direction is known.
  • a grain-oriented electrical steel sheet oriented in a desired crystal orientation is used, for example, in a rotating machine core because it has excellent magnetic properties.
  • Single crystal steel has a directionality in which the crystal orientations are aligned in one direction, but it is not suitable for mass production because the production cost is high and the production takes time.
  • a technique for orienting the crystal orientation of a steel sheet due to a secondary recrystallization phenomenon or the like is known, but the manufacturing process is complicated or the orientation of a predetermined crystal orientation such as ⁇ 100 ⁇ ⁇ 001> orientation is difficult. It gets worse.
  • Patent Document 1 discloses a split type stator core. Specifically, a stator structure is disclosed in which at least the teeth portion and the yoke portion are separated and the teeth portion or the yoke portion is formed of a grain-oriented electrical steel sheet. According to Patent Document 1, the iron loss can be reduced by the stator structure.
  • the present disclosure is intended to provide a rotary machine core having low iron loss and a method for manufacturing the same.
  • the first aspect of the present disclosure is a tubular rotary machine core composed of laminated electromagnetic steel plates.
  • the electrical steel sheet has a core back portion extending along the circumferential direction of the rotary machine core, and a plurality of teeth portions extending from the core back portion along the direction orthogonal to the circumferential direction.
  • the core back portion and the teeth portion are integrally formed. It is in the rotating machine core in which the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction, and the crystal orientations of the electromagnetic steel sheets in the teeth portion are aligned along the extending direction of the teeth portions.
  • the first single crystal steel and the second single crystal steel are made of a polycrystalline steel plate so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other.
  • a bidirectional electromagnetic steel sheet having a first region and a second region in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction is obtained.
  • a comb-shaped sheet having a strip-shaped core back portion extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet and a plurality of parallel teeth portions extending in a direction along the crystal orientation of the second region is punched out. It is a method of manufacturing a rotary machine core in which the comb-shaped sheets are laminated while being spirally wound.
  • a third aspect of the present disclosure is that the first single crystal steel and the second single crystal steel are made of a polycrystalline steel plate so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other.
  • a bidirectional electromagnetic steel sheet having a first region and a second region in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction is obtained.
  • a comb-shaped sheet having a strip-shaped core back portion extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet and a plurality of parallel teeth portions extending in a direction along the crystal orientation of the second region is punched out.
  • An annular core plate is obtained by winding the comb-shaped sheet in an annular shape. It is a method of manufacturing a rotary machine core in which a plurality of the above core plates are laminated.
  • the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction, and the crystal orientations of the electromagnetic steel plates in the teeth portion are aligned along the extension direction of the teeth portion. Therefore, the easy-magnetization axis of the core back portion is in the direction along the circumferential direction, and the easy-magnetization axis of the teeth portion is in the direction along the extension direction. Since this is the ideal direction of the easily magnetized axis of the core back portion and the tooth portion, the rotating machine core is easily magnetized in the magnetic circuit and has low iron loss.
  • the core back portion and the teeth portion are integrally formed, there is no joint surface (specifically, a joint interface) between the core back portion and the teeth portion. That is, there is no air phase having a large magnetic resistance formed by joining the core back portion and the teeth portion. Therefore, the increase of the hysteresis loss due to the air phase is prevented, and the hysteresis loss of the rotating machine core is low.
  • a comb-shaped sheet is produced as described above.
  • the comb-shaped sheet is spirally wound to manufacture a rotary machine core in which electromagnetic steel sheets are spirally laminated.
  • an annular core plate is obtained by winding a comb-shaped sheet in an annular shape, and a plurality of core plates are laminated to produce a rotary machine core made of a laminated body of the core plates.
  • a rotating machine core in which the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction and the crystal orientations of the electromagnetic steel sheets in the teeth portion are aligned along the extending direction of the teeth portion can be obtained. Further, in the above manufacturing method, a rotary machine core in which a core back portion and a teeth portion are integrally formed can be obtained.
  • FIG. 1 is a schematic view of a spiral rotating machine core according to the first embodiment.
  • FIG. 2 is a partially enlarged schematic view of the rotary machine core in the first embodiment.
  • FIG. 3A is a schematic partial cross-sectional view of the core portion showing the crystal orientation in the core portion in the first embodiment
  • FIG. 3B is a portion of the teeth portion showing the crystal orientation in the teeth portion in the first embodiment.
  • FIG. 4 is a schematic view showing the manufacturing process of the bidirectional electromagnetic steel sheet in the first embodiment.
  • FIG. 5 is a schematic partial cross-sectional view of the polycrystalline steel sheet showing the crystal orientation of the polycrystalline steel according to the first embodiment.
  • FIG. 6A is a partial cross-sectional view of the first single crystal steel schematically showing the crystal orientation of the first single crystal steel in the first embodiment
  • FIG. 6B is a second single crystal in the first embodiment. It is a partial cross-sectional view of the second single crystal steel which shows the crystal orientation of the crystal steel schematically.
  • 7 (a) is a cross-sectional view taken along the line VIIa-VIIa in FIG. 4
  • FIG. 7 (b) is a cross-sectional view taken along the line VIIb-VIIb in FIG. 8
  • (a) is a cross-sectional view taken along the line VIIIa-VIIIa in FIG.
  • FIG. 8 (b) is a cross-sectional view taken along the line VIIIb-VIIIb in FIG. 9 (a) is a cross-sectional view taken along the line IXa-IXa in FIG. 4
  • FIG. 9 (b) is a cross-sectional view taken along the line IXb-IXb in FIG. 4
  • FIG. 9 (c) is a cross-sectional view taken along the line IXb-IXb.
  • FIG. 4 is a cross-sectional view taken along the line IXc-IXc.
  • FIG. 10 is a schematic view showing a step of punching a comb-shaped sheet from an electromagnetic steel sheet and a step of winding a comb-shaped sheet in the first embodiment.
  • FIG. 10 is a schematic view showing a step of punching a comb-shaped sheet from an electromagnetic steel sheet and a step of winding a comb-shaped sheet in the first embodiment.
  • FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG.
  • FIG. 12 is a schematic view of the process of spirally winding the comb-shaped sheet in the first embodiment.
  • FIG. 13 is a schematic view of the rotating machine core manufacturing line in the first modification.
  • FIG. 14 is a view of the bending device of FIG. 13 in the first modification seen from the direction of arrow XIV.
  • FIG. 15 is a view of the bending device of FIG. 13 in the first modification seen from the direction of arrow XV.
  • FIG. 16 is a schematic view of a laminated rotary machine core according to the second embodiment.
  • FIG. 17 is a partially enlarged schematic view of the rotary machine core in the second embodiment.
  • FIG. 18 is a schematic view showing a process of manufacturing a disk-shaped core plate in the second embodiment.
  • FIG. 19 is a partially enlarged schematic view of the rotating machine core in Comparative Form 1.
  • FIG. 20 is a partially enlarged schematic view of the rotating machine core in Comparative Form 2.
  • FIG. 21 is a schematic view showing a manufacturing process of a grain-oriented electrical steel sheet in Experimental Example 1.
  • FIG. 22 is a schematic view of the heating furnace in Experimental Example 1.
  • FIG. 23 is an explanatory diagram showing an angle map extracted from the EBSD image, the zero-saturation EBSD image, and the EBSD image in Experimental Example 1.
  • FIG. 24 is an explanatory diagram showing a simplified EBSD image in Experimental Example 1.
  • FIG. 25 is a reverse pole figure of the EBSD image in Experimental Example 1.
  • FIG. 26 is a schematic view showing the particle size of the directional region in the plane orthogonal to the rolling direction of the directional electromagnetic steel sheet in Experimental Example 2.
  • FIG. 27 is a schematic view showing the particle size of the directional region in the plane parallel to the rolling direction of the directional electromagnetic steel sheet in Experimental Example 2.
  • FIG. 28 is a graph showing the hysteresis loss of the example product and the comparative example product in Experimental Example 3.
  • the rotary machine core 1 is composed of a laminated electromagnetic steel plate.
  • the laminated state is formed by, for example, winding the electromagnetic steel sheet 100 in a spiral shape. That is, the rotary machine core 1 is composed of, for example, a laminated body 10 of electromagnetic steel plates 100 that are laminated while being spirally wound.
  • the laminated state of the rotary machine core 1 may be formed from, for example, a laminated body 10 of a plurality of annular electromagnetic steel sheets 100.
  • the rotary machine core 1 composed of the spiral laminated body 10 is appropriately referred to as "spiral rotary machine core 1A", and the rotary machine core 1 composed of the laminated body 10 of the annular electromagnetic steel plate 100 is appropriately referred to.
  • the machine core 1 can be appropriately referred to as a “laminated rotary machine core 1B”.
  • the stacking direction of the electromagnetic steel sheet 100 is appropriately referred to as "axial direction Z”.
  • the spiral rotary machine core 1A for example, a long electromagnetic steel sheet 100 is spirally wound, and the plate surfaces of the wound electromagnetic steel sheet 100 are in contact with each other. Specifically, the magnetic steel sheet 100 is wound and laminated while changing the position in the axial direction Z in one direction to form the spiral rotary machine core 1A. Compared with the laminated rotary machine core 1B, the spiral rotary machine core 1A can reduce the number of times the electromagnetic steel sheet 100 is cut at the time of manufacturing, and can continuously perform winding and cutting.
  • the rotary machine core 1 has a cylindrical shape such as a cylindrical shape, an elliptical tubular shape, and a square tubular shape, and has a through hole 19 penetrating the axial direction Z.
  • the rotary machine core 1 is preferably cylindrical from the viewpoint that it is desirable that the curvature is uniform.
  • the rotating machine core 1 has a cylindrical shape, it is possible to prevent the plate thickness from being varied at the time of winding at the manufacturing stage of the rotating machine core, as compared with the shape of an elliptical cylinder or a square cylinder.
  • the electromagnetic steel plate 100 is comb-shaped and has a core back portion 2 and a large number of teeth portions 3.
  • the core back portions 2 are in contact with each other in the axial direction Z, and the teeth portions 3 are also in contact with each other in the axial direction Z.
  • the electromagnetic steel plate 100 is composed of a comb-shaped sheet 105, which will be described later, and the spiral rotary machine core 1A is a spirally wound comb-shaped sheet 105.
  • the core back portion 2 is a strip-shaped portion extending along the circumferential direction X of the rotating machine core 1.
  • the core back portion 2 is also called, for example, a yoke portion.
  • the band-shaped core back portion 2 is spirally wound and has a circumferential direction X like the rotary machine core 1.
  • the teeth portion 3 extends from the core back portion 2 along the direction Y orthogonal to the circumferential direction X of the core back portion 2 and the rotary machine core 1.
  • the direction Y orthogonal to the circumferential direction X is the radial direction of the rotary machine core 1.
  • the teeth portion 3 extends toward, for example, the central axis A of the rotary machine core 1.
  • the tooth portion 3 may extend in the direction opposite to the central axis A. That is, as shown in FIGS. 1 and 2, the teeth portion 3 may extend toward the inside of the tubular rotary machine core 1, or may extend toward the outside although not shown. ..
  • the core back portion 2 and the teeth portion 3 are integrally formed. There are virtually no gaps, joints, or joint surfaces at the boundary between the core back portion 2 and the teeth portion 3, and the surface roughness hardly changes between the boundary and its surroundings. Specifically, the difference in surface roughness between the boundary between the core back portion 2 and the teeth portion 3 and the periphery thereof is preferably within 3.2 ⁇ m. In this case, the generation of voids during stacking is suppressed, and the output is improved.
  • the surface roughness is measured by a one-shot 3D shape measuring machine. As the one-shot 3D shape measuring machine, VR-5000 manufactured by KEYENCE Corporation can be used. The surface roughness is measured, for example, at a measurement magnification of 120 times. It is more preferable that the core back portion 2 and the teeth portion 3 are flush with each other, for example.
  • the crystal orientations of the core back portion 2 of the electrical steel sheet 100 are aligned along the circumferential direction X.
  • the easily magnetized axis in the core back portion 2 is in the direction along the circumferential direction X.
  • the crystal orientations of the electrical steel sheet 100 in the teeth portion 3 are aligned along the extending direction of the teeth portions 3.
  • the easily magnetized axis in the teeth portion 3 is in the direction along the extending direction.
  • the solid line arrows in the core back portion 2 and the teeth portion 3 represent the easy magnetization axis, and the broken line arrows represent the magnetic field and the magnetic circuit.
  • the extending direction of the tooth portion 3 is, for example, along the normal direction on the outer circumference of the cylindrical rotating machine core 1. Since such an electromagnetic steel sheet 100 has different crystal orientations in the core back portion 2 and the teeth portion 3, it can be called, for example, a bidirectional electromagnetic steel plate 100.
  • crystal orientation examples include ⁇ 100 ⁇ ⁇ 001>, ⁇ 123 ⁇ ⁇ 634>, ⁇ 011 ⁇ ⁇ 211>, ⁇ 112 ⁇ ⁇ 111>, ⁇ 110 ⁇ ⁇ 001>, and the like. It is preferable that the crystal orientation in the core back portion 2 is ⁇ 110 ⁇ ⁇ 001> and the crystal orientation in the teeth portion 3 is ⁇ 110 ⁇ ⁇ 110>.
  • the easy-magnetizing axis is oriented in the circumferential direction and the extension direction of the tooth portion.
  • the grain orientation can be easily realized by cutting the grain-oriented electrical steel sheet in a direction orthogonal to the rolling direction, for example.
  • the electromagnetic steel sheet 100 preferably has crystal grains having a particle size of 1.5 mm or more. In this case, the hysteresis loss becomes smaller. From the viewpoint of further improving this effect, the electromagnetic steel sheet 100 more preferably has crystal grains having a particle size of 1.5 mm or more in the core back portion 2 and the teeth portion 3, and crystal grains having a particle size of 3.0 mm or more. It is more preferable to have.
  • the rotating machine core 1 is manufactured using a bidirectional electromagnetic steel plate 100.
  • the bidirectional electromagnetic steel sheet 100 is manufactured, for example, as follows. As shown in FIGS. 4, 5, 6 (a), 6 (b), 7 (a), and 7 (b), first, the first single crystal steel 41 and the second single crystal steel 42 Is brought into contact with the main surface 401 of the polycrystalline steel plate 40. At this time, the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with the main surface 401 of the polycrystalline steel sheet 40 so that the crystal orientations are orthogonal to each other. Such an operation is hereinafter appropriately referred to as an “arrangement step”.
  • the first single crystal steel 41 is arranged on the main surface 401 of the polycrystalline steel plate 40 so that the crystal orientation of the first single crystal steel 41 is along the in-plane direction of the polycrystalline steel plate 40.
  • the second single crystal steel 42 is placed on the polycrystalline steel plate 40 so that the crystal orientation of the second polycrystalline steel is the in-plane direction of the polycrystalline steel plate 40 and is orthogonal to the crystal orientation of the first single crystal steel 41. It is arranged on the main surface 401.
  • the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are arranged is heat-treated.
  • This operation is appropriately referred to as a "heat treatment step" below.
  • the heat treatment is performed on, for example, the polycrystalline steel sheet 40, the first single crystal steel 41, and the second single crystal steel 42, and is performed, for example, by blowing hot air H.
  • a bidirectional electromagnetic steel sheet 100 is obtained as shown in FIGS. 9A to 9C.
  • the bidirectional electromagnetic steel sheet 100 has a first region 101 and a second region 102 in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction.
  • the placement process and heat treatment process will be explained in more detail.
  • the first single crystal steel 41 and the second single crystal steel 42 are produced, for example, by cutting out from single crystal steel having a predetermined crystal orientation. At this time, the contact surfaces 411 and 421 can be cut out so as to have a desired crystal orientation. As a result, the first single crystal steel 41 and the second single crystal steel 42 whose crystal orientations are orthogonal to each other can be obtained.
  • the contact surface 411 of the first single crystal steel 41 is, for example, a smooth surface configured to be in contact with the polycrystalline steel sheet 40. The same applies to the contact surface 421 of the second single crystal steel 42.
  • the polycrystalline steel sheet 40 is manufactured, for example, by hot-rolling a steel slab, cold-rolling if necessary, annealing, and the like.
  • steel include ferritic stainless steel, austenitic stainless steel, carbon steel, and electromagnetic steel.
  • crystal structure of steel include cubic crystals such as body-centered cubic and face-centered cubic.
  • the polycrystalline steel sheet 40 is composed of a large number of crystal grains having different crystal orientations, and the crystal orientations are random and non-oriented.
  • the polycrystalline steel sheet 40 is, for example, a non-oriented electrical steel sheet.
  • the first single crystal steel 41 and the second single crystal steel 42 are arranged on the main surface 401 of the polycrystalline steel sheet 40.
  • the first single crystal steel 41 and the second single crystal steel 42 are arranged so that their crystal orientations are orthogonal to each other.
  • FIGS. 4, 6 (a), 6 (b), 7 (a), and 7 (b) the first single crystal steel 41 and the second single crystal steel are shown on the main surface 401 of the polycrystalline steel plate 40.
  • the crystal orientations of the single crystal steels 41 and 42 when the 42 is arranged are shown.
  • the arrows shown in the single crystal steels 41 and 42, the polycrystalline steel sheet 40, and the electromagnetic steel sheet 100 indicate the direction of the crystal orientation, and the cross marks surrounded by circles are on the paper.
  • the direction of the crystal orientation from the front (in other words, the front) to the back (in other words, the back) is shown.
  • the crystal orientation in the drawings is an example and can be changed as appropriate.
  • the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42 and the arrangement of the first single crystal steel 41 and the second single crystal steel 42 on the polycrystalline steel plate 40 can be changed, and heat treatment is performed by the change. Later, regions in which the crystal orientation is oriented in a specific direction can be formed in various patterns.
  • a region in which the crystal orientation is oriented in a specific direction is referred to as a "directional region".
  • the first region 101 and the second region 102 which will be described later, are formed as the directional regions, which have different crystal orientations from each other.
  • first single crystal steel 41 and the second single crystal steel 42 those having a desired crystal orientation can be used.
  • Specific examples of the crystal orientation include ⁇ 100 ⁇ ⁇ 001>, ⁇ 123 ⁇ ⁇ 634>, ⁇ 011 ⁇ ⁇ 211>, ⁇ 112 ⁇ ⁇ 111>, and ⁇ 110 ⁇ ⁇ 001>.
  • the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42 is determined according to the desired crystal orientations of the first region 101 and the second region 102 of the bidirectional electromagnetic steel plate 100.
  • the contact between the first single crystal steel 41 and the polycrystalline steel sheet 40, and the contact between the second single crystal steel 42 and the polycrystalline steel sheet 40 is preferably surface contact.
  • the crystal orientation of the single crystal steel tends to grow into the polycrystalline steel sheet 40 during heating.
  • each directional region (specifically, the first region 101 and the second region 102) of the electrical steel sheet 100 can be expanded.
  • the shapes of the first single crystal steel 41 and the second single crystal steel 42 are not particularly limited, but are preferably plate-shaped, for example.
  • the main surface of the plate-shaped first single crystal steel 41 (that is, the contact surface 411) and the main surface of the second single crystal steel 42 (that is, the contact surface 421) are the main surfaces of the polycrystalline steel plate 40.
  • the thicknesses of the first single crystal steel 41 and the second single crystal steel 42 are not particularly limited, but when the first single crystal steel 41 and the second single crystal steel 42 are plate-shaped, for example, 0.1 to 1. It is 0 mm.
  • the thickness of the polycrystalline steel sheet 40 is also not particularly limited, but from the viewpoint of improving the productivity of the bidirectional electromagnetic steel sheet 100 because the crystal growth can proceed in the entire thickness direction in a short time, 0. It is preferably 8 mm or less, more preferably 0.5 mm or less, and even more preferably 0.35 mm or less. From the viewpoint of the manufacturing cost of the polycrystalline steel sheet 40 itself, the thickness of the polycrystalline steel sheet 40 is preferably 0.1 mm or more.
  • the crystal grain size of the polycrystalline steel sheet 40 is, for example, 20 to 100 ⁇ m.
  • the crystal grain size of the polycrystalline steel sheet 40 is the grain size of the polycrystalline steel sheet 40 before heat treatment, and is the grain size of the polycrystalline steel sheet 40 before applying strain, which will be described later.
  • the crystal grain size is measured by, for example, the average number of crystal grains per unit area measured by a microscope. Specifically, it is measured based on JIS G 0551: 2013 "Steel-Crystal Particle Size Microscopic Test Method".
  • Etching can be performed on the contact surfaces of the polycrystalline steel sheet 40 with the first single crystal steel 41 and the second single crystal steel 42. In this case, the crystal grain boundaries are exposed, so that the degree of adhesion of the joint surface is improved and crystal growth is promoted. Etching can be performed with hydrochloric acid, an alcohol nitrate solution, oxalic acid or the like.
  • the first single crystal steel 41 and the second single crystal steel 42 are arranged at the end of the main surface 401 of the polycrystalline steel sheet 40. Is preferable. In this case, the first single crystal steel 41 and the second single crystal steel 42 can be easily removed after the heat treatment by cutting the single crystal steels 41 and 42 in the contact direction with the polycrystalline steel sheet 40.
  • the end is, for example, the end of the polycrystalline steel sheet in the rolling direction RD.
  • the contact direction is, for example, the plate thickness direction.
  • the cutting position is shown by, for example, the broken line in FIGS. 9 (a) and 9 (b).
  • the first single crystal steel 41 and the second single crystal steel 42 may be arranged so as to overlap the entire surface of the polycrystalline steel sheet 40, for example. In this case, the contact area becomes large and the growth surface becomes large, so that crystal growth is likely to occur. More specifically, after the punching step described later, the first single crystal steel 41 and the second single crystal steel can be arranged in each region to be the strip-shaped core back portion 20 and the parallel teeth portion 30.
  • heat treatment is performed as described above.
  • the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are arranged on the main surface 401 is heated. Heating can be performed, for example, in a heating furnace. By this heating, the crystal orientation of each crystal grain constituting the polycrystalline steel plate 40 is oriented according to the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42, and crystal growth occurs in the polycrystalline steel plate 40. ..
  • the first single crystal steel 41 and the second single crystal steel 42 serve as the core of the crystal orientation, they can be called a core material, and the polycrystalline steel plate 40 is an object for which the crystal orientation is oriented according to the crystal orientation of the core material. Therefore, it can be called a material plate.
  • the first single crystal steel 41 and the polycrystalline steel plate 40 are subjected to heat treatment.
  • the polycrystalline steel is oriented from the contact surface 401a toward the polycrystalline steel plate 40 according to the crystal orientation of the first single crystal steel 41, and the crystal grains constituting the polycrystalline steel grow further.
  • the polycrystalline steel is oriented from the contact surface 401b between the second single crystal steel 42 and the polycrystalline steel plate 40 toward the polycrystalline steel plate 40 according to the crystal orientation of the second single crystal steel 42, and further, the polycrystalline steel.
  • the single crystal steel serves as the core material in the crystal orientation
  • the polycrystalline steel plate 40 serves as the material plate
  • crystal growth occurs from the core material toward the material plate
  • each crystal grain of the polycrystalline steel plate 40 is oriented.
  • the first region 101 and the second region 102 are formed as directional regions in the polycrystalline steel sheet 40, and the first region 101 and the second region 102 are formed as shown in FIGS. 9A to 9C.
  • a bidirectional electromagnetic steel sheet having the above can be obtained.
  • the first region 101 and the second region 102 each have a predetermined crystal orientation.
  • the first single crystal steel 41 and the second single crystal steel 42 are arranged at the end of the main surface 401 of the polycrystalline steel plate 40, the first single crystal steel It is preferable to heat the 41, the second single crystal steel 42, and the polycrystalline steel plate 40 from the contact portion side of the single crystal steels 41, 42.
  • the contact portion side is, for example, the contact surfaces 401a and 401b side.
  • the heat treatment causes crystal growth in the polycrystalline steel plate 40 in the plate thickness direction ND following the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42. Further, the crystal growth proceeds in the direction orthogonal to the plate thickness direction ND according to the crystal orientation of the grown crystal in the polycrystalline steel plate 40. Specifically, as shown in FIGS. 8A and 8B, crystal growth proceeds, for example, in the rolling direction RD.
  • the temperature gradient at which the contact portion side becomes high and becomes low as the distance from the contact portion side becomes, for example, the rolling direction RD is increased. It is preferable to form. In this case, the crystal growth of the portion away from the contact portion can be suppressed, and first, the crystal grows directly below the contact portion in accordance with the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42. Next, crystal growth occurs in the direction away from the rolling direction RD, and crystal growth of the entire polycrystalline steel sheet 40 is realized.
  • a temperature gradient can be formed by performing heat treatment in a tilting furnace.
  • a temperature gradient can be formed by, for example, local heating by a laser, induction heating, or the like.
  • the white arrows in FIG. 8 indicate the temperature gradient, and the tip of the arrow is on the low temperature side and the end is on the high temperature side. From the viewpoint of preventing oxidation of the polycrystalline steel sheet 40, heating is preferably performed in a non-oxidizing gas atmosphere or in a vacuum.
  • the crystal orientation is oriented by uniform heating.
  • the uniform heating is a method of uniformly heating the entire polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with each other.
  • the heating temperature of the heat treatment is preferably equal to or higher than the recrystallization temperature of the polycrystalline steel sheet 40 and lower than the melting point. Specifically, the heating temperature can be adjusted, for example, at 500 ° C. or higher and 1500 ° C. or lower.
  • the heat treatment is preferably performed by pressing the first single crystal steel 41, the second single crystal steel 42, and the polycrystalline steel plate 40 in the contact direction thereof. In this case, crystal growth is promoted by increasing the contact area.
  • the load at the time of pressurization is preferably 400 to 1000 N. In this case, the first single crystal steel 41, the second single crystal steel 42, and the polycrystalline steel sheet 40 can be sufficiently brought into contact with each other within a range that does not cause strain.
  • the heat treatment while pressurizing can be performed by hot pressing.
  • strain is applied to the polycrystalline steel sheet 40 before the heat treatment. In this case, recrystallization occurs during the heat treatment, and the orientation of the crystal orientation is further promoted.
  • the strain is, for example, compressive strain. The compressive strain is applied to the polycrystalline steel sheet 40 before the contact of the single crystal steels 41 and 42 in the plate thickness direction.
  • Compressive strain is applied by rolling, shot blasting, uniaxial compression, etc. Rolling is preferable. In this case, the strain can be continuously applied to the entire plate thickness direction, so that the productivity is improved. Further, when rolling, it is preferable to set the rolling reduction ratio to 5 to 75%. By setting the reduction ratio to 5% or more, recrystallization occurs during the heat treatment, and the orientation of the crystal orientation is further promoted. In order to further enhance the promoting effect, the reduction rate is more preferably 10% or more, further preferably 25% or more. Further, by setting the rolling reduction ratio to 75% or less, the productivity can be maintained without lowering the workability of rolling. From the viewpoint of further improving the productivity maintenance effect, the reduction rate is more preferably 60% or less, and further preferably 50% or less.
  • the electrical steel sheet 100 having the first region 101 and the second region 102 in which the crystal orientations are oriented, respectively.
  • the crystal orientation of the electrical steel sheet 100 is measured by, for example, an electron backscatter diffraction method.
  • the electron backscatter diffraction method is called the EBSD method.
  • An EBSD map of crystal orientation is obtained by the EBSD method. In EBSD maps, differences in crystal orientation are usually indicated by differences in color. Further, in the EBSD map, the crystal orientation can be displayed as a reverse pole figure.
  • the electrical steel sheet 100 has a first region 101 and a second region 102 in the plate, and these crystal orientations are formed at the boundary between the first region 101 and the second region 102. Areas may be formed in which they interfere with each other. In this region, one or more crystal grains having a crystal orientation further different from that of the first region 101 and the second region 102 and having a particle size smaller than that of the directional regions 101 and 102 tend to be formed.
  • the same crystal grains having a particle size of 1.5 mm or more can be used as an index.
  • the same here means that the directional difference is within 15 °.
  • An orientation difference of 15 ° or less is a general angle of small-angle grain boundaries.
  • the orientation difference and particle size can be measured by the EBSD image.
  • the particle size of the first region 101 and the second region 102 will be described in Experimental Example 2. It is particularly preferable that the first region 101 and the second region 102 of the electrical steel sheet 100 are each composed of a single crystal grain.
  • the rolling direction RD can be found, for example, by observing the crystal structure.
  • the crystal structure is, for example, a fibrous structure, and the longitudinal direction of the crystal grains constituting the crystal structure is the rolling direction RD.
  • the crystal structure can be examined by, for example, scanning electron microscopy and EBSD method.
  • the bidirectional electromagnetic steel sheet 100 can be manufactured by the above-mentioned arrangement step and heat treatment step.
  • the electrical steel sheet 100 does not substantially have a gap, a joint portion, or a joint surface at the boundary between the first region 101 and the second region 102, and the boundary between the first region 101 and the second region 102 and its surroundings.
  • the surface roughness of the electrical steel sheet 100 hardly changes between them.
  • the rotating machine core 1 is manufactured as follows using a bidirectional electromagnetic steel plate 100. As shown in FIGS. 10 and 11, first, the comb-shaped sheet 105 is punched from the electromagnetic steel plate 100. Such an operation is hereinafter appropriately referred to as a “punching process”.
  • the comb-shaped sheet 105 has a strip-shaped core back portion 20 and a large number of parallel tooth portions 30.
  • the strip-shaped core back portion 20 extends in a strip shape in the direction along the crystal orientation of the first region 101 of the electrical steel sheet 100, and the parallel teeth portion 30 extends in the direction along the crystal orientation of the second region 102.
  • the strip-shaped core back portion 20 is a portion corresponding to the core back portion 2 of the rotary machine core 1
  • the parallel teeth portion 30 is a portion corresponding to the teeth portion 3 of the rotary machine core 1.
  • the crystal orientation of the first region 101 is unknown from the appearance of the electrical steel sheet 100, but is determined in advance from, for example, the relationship between the arrangement pattern of the first single crystal at the time of its manufacture and the rolling direction of the electrical steel sheet 100. Can be left.
  • the boundary between the first region 101 and the second region 102 can be determined from, for example, the boundary position between the first single crystal steel 41 and the second single crystal steel 42. For example, by forming position marks on the polycrystalline steel sheet 40 and the electromagnetic steel sheet 100 after heat treatment in advance based on the boundary position, the first region 101, the second region 102, and the boundary between them can be analyzed. Can be predicted without. In this case, productivity is improved.
  • the comb-shaped sheet 105 can be punched, for example, so that the boundary between the strip-shaped core back portion 20 and the parallel teeth portion 30 in the comb-shaped sheet 105 becomes the boundary between the first region 101 and the second region 102.
  • the band-shaped core back portion 20 has the crystal orientation of the first region 101
  • the parallel teeth portion 30 has the crystal orientation of the second region 102.
  • the winding can be performed so that the strip-shaped core back portion 20 is on the outside and the parallel teeth portion 30 is on the inside.
  • the winding may be performed so that the band-shaped core back portion 20 is on the inside and the parallel teeth portion 30 is on the outside.
  • a rotating machine core 1 suitable for an inner rotor type motor can be obtained.
  • a rotary machine core 1 suitable for an outer rotor type motor can be obtained.
  • the spiral processing step is performed using, for example, the molding machine 5 shown in FIG.
  • the molding machine 5 includes a bending device 51 and a winding device 57.
  • the bending device 51 includes a cylindrical roller 513 and a taper roller 514.
  • the strip-shaped core back portion 20 is fed between the cylindrical roller 513 and the taper roller 514, the strip-shaped core back portion 20 is wound while being rolled by the cylindrical roller 513 and the taper roller 514, and is wound around the winding shaft 58 of the winding device 57. It is wound in a spiral shape.
  • the spiral processing step the comb-shaped sheets 105 are laminated while being spirally wound. After winding, finishing processes such as welding, heat treatment, straightening, surface facing, cutting, deburring, and cleaning are performed as necessary. In this way, the spiral rotary machine core 1A can be obtained as shown in FIGS. 1 to 3.
  • the crystal orientations of the electromagnetic steel plates 100 in the core back portion 2 are aligned along the circumferential direction X. Further, the crystal orientations of the electromagnetic steel sheets 100 in the teeth portion 3 are aligned along the extending direction of the teeth portions 3. Therefore, the easy-magnetization axis of the core back portion 2 is in the direction along the circumferential direction X, and the easy-magnetization axis of the teeth portion 3 is in the direction along the extension direction. This is the ideal direction of the easy axis of magnetization of the core back portion 2 and the teeth portion 3. Therefore, the rotating machine core 1 is easily magnetized in the magnetic circuit and has a low iron loss.
  • the core back portion 2 and the teeth portion 3 are integrally formed. That is, there is no joint surface between the core back portion 2 and the teeth portion 3. As a result, there is no air phase having a large magnetic resistance formed by joining the core back portion 2 and the teeth portion 3 as in the conventional case. This prevents an increase in the hysteresis loss due to the air phase, and the rotating machine core 1 has a low hysteresis loss.
  • the rotating machine core 1 is a core used for a rotating machine, for example, a stator core and a rotor core.
  • the rotating machine is, for example, a motor generator (that is, MG), an alternator, and an integrated starter generator (that is, ISG).
  • Modification example 1 This example is an example of continuously manufacturing the spiral rotary machine core 1A.
  • the same reference numerals as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.
  • the spiral rotary machine core 1A is continuously manufactured on the production line 6 shown in FIG.
  • the production line 6 includes an unwinding machine 61, a preforming machine 62, a heating furnace 63, a press machine 64, a buffer device 65, and a molding machine 5.
  • the polycrystalline steel plate 40 as the "plate material" used as the material of the rotary machine core 1 is unwound by the unwinding machine 61 from the coiled state and supplied to the preforming machine 62.
  • the preforming machine 62 includes a pair of cylindrical rollers 621 and 622 that sandwich the polycrystalline steel plate 40 supplied from the unwinding machine 61 in the thickness direction. Strain can be introduced into the polycrystalline steel sheet 40 by rolling the polycrystalline steel sheet 40 with the cylindrical rollers 621 and 622 of the preforming machine 62.
  • the strain is, for example, compressive strain.
  • the introduction of strain causes recrystallization during the heat treatment, further promoting the orientation of the crystal orientation.
  • the heating furnace 63 includes a pedestal 631, a pressure press 632, a single crystal steel supply device, a single crystal steel removal device, a heater built in the furnace wall, a hot air outlet provided on the wall surface, and the like.
  • the pedestal 631 is, for example, movable.
  • the heater, the spout, the single crystal steel supply device, and the single crystal steel removing device in the heating furnace 63 are not shown.
  • the single crystal steel supply device supplies the first single crystal steel 41 and the second single crystal steel 42 to the main surface 401 of the polycrystalline steel sheet 40.
  • the pedestal 631 and the pressure press 632 can pressurize the first single crystal steel 41 and the second single crystal steel 42 arranged on the polycrystalline steel plate 40.
  • the single crystal steel removing device removes the first single crystal steel 41 and the second single crystal steel 42 after heating. Removal is done, for example, by cutting. As a result, the bidirectional electromagnetic steel sheet 100 is manufactured.
  • the heating furnace 63 is an apparatus responsible for the arrangement step and the heat treatment step in the first embodiment.
  • the press machine 64 uses a lower die 642 provided on the bolster 641, an upper die 644 provided on the slide 643, and an electromagnetic steel plate 100 supplied from the heating furnace 63 as a lower die 642 and an upper die. It is provided with a feeding device 645 that intermittently feeds the die 644.
  • the upper mold 644 can be reciprocated so as to approach and separate from the lower mold 642. When the upper die 644 and the lower die 642 move relative to each other so as to approach each other, the electromagnetic steel plate 100 is punched to form a comb-shaped sheet 105 as shown in FIG.
  • the press machine 64 is a device responsible for punching a comb-shaped sheet 105 from an electromagnetic steel plate 100 (that is, a punching step).
  • the buffer device 65 accommodates the comb-shaped sheet 105 intermittently supplied from the press machine 64, and continuously supplies the accommodated comb-shaped sheet 105 to the molding machine 5.
  • the molding machine 5 includes a bending device 51 and a winding device 57.
  • the bending device 51 includes a motor 52, a speed reducer 53 connected to the output shaft of the motor 52, and a cylindrical roller 513 connected to the output member of the speed reducer 53. It includes a taper roller 514 that is rotatably provided at a position adjacent to the cylindrical roller 513, and a load control device 56 that can move the taper roller 514 in a direction that approaches and separates from the cylindrical roller 513.
  • the cylindrical roller 513 and the taper roller 514 roll the strip-shaped core back portion 20 of the comb-shaped sheet 105 supplied from the buffer device 65.
  • the load control device 56 controls the load acting on the comb-shaped sheet 105 from the taper roller 514 to a predetermined value.
  • the gap between the cylindrical roller 513 and the taper roller 514 gradually decreases from one end 25 to the other end 26 of the strip-shaped core back portion 20 of the comb-shaped sheet 105.
  • the strip-shaped core back portion 20 of the comb-shaped sheet 105 extends from one end portion 205 (specifically, the inner end portion 205) to the other end portion 206 (specifically, the outer end portion 206) in the longitudinal direction. It is rolled to be large and bent to be curved in the width direction.
  • the take-up device 57 spirally winds the sheet rolled by the bending device 51 around the take-up shaft 58 and stacks the sheets.
  • the molding machine 5 is a device responsible for a spiraling process in which a strip-shaped core back portion 20 of a comb-shaped sheet 105 is bent so as to be curved in the width direction and then spirally wound and laminated.
  • the laminated body 10 is separated from the comb-shaped sheet 105 when the axial length reaches a predetermined value.
  • the spiral rotary machine core 1A is obtained through various finishing steps performed as needed.
  • the spiral rotary machine core 1A can be manufactured by continuously performing the arrangement step, the heat treatment step, the punching step, and the spiral processing step.
  • the rotary machine core 1 is composed of, for example, a laminated electromagnetic steel sheet 100, and the laminated state in this embodiment is formed by laminating a large number of annular electromagnetic steel sheets 100 as shown in FIG.
  • the annular electromagnetic steel plate 100 is referred to as a core plate 104.
  • the ring shape is an annular plate shape.
  • the laminated rotary machine core 1B has a large number of core plates 104, and in the laminated rotary machine core 1B, a large number of core plates 104 are laminated to form a laminated body 10. There is.
  • the annular core plates 104 are coaxially arranged so that the central axes A are aligned.
  • the laminated rotary machine core 1B has a through hole 19 penetrating the axial direction Z.
  • Each core plate 104 has an annular core back portion 2 and a large number of teeth portions 3 extending toward the center thereof (specifically, the center of the ring). As shown in FIG. 17, the crystal orientations of the steels constituting the core back portion 2 are aligned in the direction along the circumferential direction X of the core plate 104. The crystal orientations of the steels constituting the teeth portion 3 are aligned in the direction along the extension direction of the teeth portions 3. The core back portion 2 and the teeth portion 3 are integrally formed. Others may have the same configuration as that of the first embodiment.
  • the laminated rotary machine core 1B is manufactured as follows by using the same bidirectional electromagnetic steel plate 100 as in the first embodiment. First, as shown in FIG. 18, a comb-shaped sheet 105 is obtained from the electromagnetic steel sheet 100 by a punching step as in the first embodiment.
  • the winding process is performed.
  • the comb-shaped sheet 105 is wound in an annular shape with the parallel teeth portion 30 inside.
  • the strip-shaped core back portion 20 forms the annular core back portion 2
  • the parallel teeth portion 30 forms the teeth portion 3.
  • each tooth portion 3 is processed so that the extension direction is the radial direction. In this way, the core plate 104 is obtained.
  • the laminating process is performed.
  • a large number of core plates 104 are laminated.
  • the core plates are coaxially laminated so that the centers O of the annular core plates 104 are aligned. In this way, as shown in FIG. 16, the laminated rotary machine core 1B can be obtained.
  • the rotary machine core 1B of this embodiment is a laminated type, and a large number of core plates 104 are laminated. Therefore, the effect of suppressing the eddy current and reducing the iron loss can be obtained.
  • the rotary machine core 1B of the present embodiment has the same effect as that of the first embodiment.
  • the rotary machine core 91 composed of the polycrystalline steel plate 40 will be described with reference to FIG. As shown in FIG. 19, the polycrystalline steel plate 40 is a non-oriented electrical steel plate 100 having a random crystal orientation, and the rotary machine core 91 of the present embodiment is composed of the polycrystalline steel plate 40. That is, in the rotary machine core 91, both the core back portion 911 and the teeth portion 912 are made of non-oriented electrical steel sheets. Other configurations may be, for example, a spiral type or a laminated type, as in the first or second embodiment, but in this embodiment, the core back portion 911 and the teeth portion 912 do not have easy-to-magnetize axes, and iron loss. Is big. Therefore, the rotating machine core 91 is inferior in magnetic characteristics to the first and second embodiments.
  • FIG. 20 A split-type rotary machine core 92 in which the core back portion 921 and the teeth portion 922 are joined will be described with reference to FIG.
  • the core back portion 921 and the teeth portion 922 are each composed of a separate electromagnetic steel plate 100, and the core back portion 921 and the teeth portion 922 are formed. Is joined. That is, there is a joint portion 925 between the core back portion 921 and the teeth portion 922. At least fine gaps may be formed in the joint portion 925.
  • Other configurations may be, for example, a spiral type or a laminated type as in the first or second embodiment, but the joints and gaps increase iron loss such as hysteresis loss of the rotating machine core 92. As a result, the loss of a rotating machine such as a motor increases, and the conversion efficiency between electric power and power deteriorates.
  • Example 1 This example is an example of manufacturing a bidirectional electromagnetic steel sheet 100 and examining the crystal orientation thereof.
  • the single crystal steels 41 and 42 are arranged on the entire surface of the main surface 401 of the polycrystalline steel sheet 40 to manufacture the bidirectional electromagnetic steel sheet 100.
  • the polycrystalline steel sheet 40 is made of a ferritic steel sheet.
  • the polycrystalline steel sheet 40 is a polycrystalline steel sheet having a large number of crystal grains having different crystal orientations.
  • the first single crystal steel 41 and the second single crystal steel 42 are made of ferritic steel sheets.
  • the first single crystal steel 41 and the second single crystal steel 42 are single crystals.
  • the polycrystalline steel sheet 40 a non-oriented electrical steel sheet containing 2.5 wt% of Si was used.
  • the polycrystalline steel sheet 40 has a length L of the rolling direction RD of 1000 mm, a width B of the rolling perpendicular direction TD of 300 mm, and a plate thickness t of 0.8 mm.
  • the first single crystal steel 41 and the second single crystal steel 42 directional electromagnetic steel sheets containing 3 wt% of Si were used.
  • This grain-oriented electrical steel sheet is composed of a single crystal steel having a specific crystal orientation.
  • the grain-oriented electrical steel sheet has a length L in the rolling direction RD of 1000 mm, a width B in the rolling perpendicular direction TD of 300 mm, and a plate thickness t of 0.23 mm.
  • the polycrystalline steel sheet 40 was rolled with a rolling reduction of 12.5% to bring the final plate thickness t to 0.7 mm.
  • the polycrystalline steel sheet 40 was cut into a size having a length L60 mm in the rolling direction RD and a width B50 mm in the rolling perpendicular direction TD. Further, from the plate-shaped single crystal steel, the first single crystal steel 41 having a rolling direction RD of L60 mm and a width B25 mm in the rolling perpendicular direction, and the second single crystal steel 41 having a rolling direction RD length L25 mm and a rolling perpendicular direction TD width B60 mm. Crystall steel 42 was cut out.
  • the surfaces of the polycrystalline steel sheet 40, the first single crystal steel 41, and the second single crystal steel 42 after being cut out were polished to remove the oxide film, and the surface roughness was set to Ra ⁇ 3.2 ⁇ m. ..
  • the first single crystal steel 41 and the second single crystal steel 42 were placed on the main surface 401 of the polycrystalline steel sheet 40 and brought into contact with each other.
  • the first single crystal steel 41 and the second single crystal steel 42 are arranged on the polycrystalline steel plate 40 so that the crystal orientations of the first single crystal steel 41 and the second single crystal steel 42 are orthogonal to each other. ..
  • the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 were brought into contact with each other was heat-treated.
  • the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with each other is referred to as a material to be treated 40A.
  • the heat treatment was performed in the heating furnace 63 as shown in FIG.
  • As the heating furnace 63 a resistance heating type vacuum hot press furnace manufactured by Fuji Electric Co., Ltd. was used.
  • the heating furnace 63 includes a pedestal 631, a pressure press 632, a heater built in the furnace wall, an outlet for hot air H provided on the wall surface, and the like. The heater and spout are not shown.
  • the heat treatment was carried out as follows. First, the material to be treated 40A was placed on the pedestal 631. Next, after the degree of vacuum in the heating furnace 63 is reduced to 10 -3 Pa or less, the pressure press 632 is operated to pressurize the material 40A to be processed in the plate thickness direction ND at 600 N, and the temperature is 6 ° C./ The temperature was raised in min, then held for 2 hours, and cooled by natural cooling for about 8 hours. In this way, as shown in FIG. 21C, a bidirectional electromagnetic steel sheet 100 having a first region 101 and a second region 102 having different crystal orientations was obtained.
  • FIGS. 23 and 25 show an EBSD image, an EBSD image with zero saturation, and an angle map extracted from the EBSD image.
  • the horizontal axis of the angle map of FIG. 23 indicates the distance, and the vertical axis indicates the directional difference (that is, the deviation in the directional direction).
  • FIG. 25 is a reverse pole diagram. Since the EBSD image in FIG. 23 is in color, FIG. 24 shows a schematic diagram in which the arrangement of the first region 101 and the second region 102 of the EBSD image is simplified.
  • the electrical steel sheet 100 of this example has a first region 101 and a second region 102 in which specific crystal orientations are oriented, and the first region 101 and the second region 102 are single. It is composed of crystals. There is a boundary between the first region 101 and the second region 102. Around this boundary, there was a region 103 having a crystal orientation different from the crystal orientation of the first region 101 and the crystal orientation of the second region 102 (see FIGS. 23 and 25). In the region 103, a plurality of regions having different crystal orientations are present, and each region constitutes a crystal grain.
  • the crystal orientation difference between the second region 102 and the region 13 is about 2 °, and can be regarded as substantially the same orientation. That is, it can be seen that the electromagnetic steel sheet 100 has grown according to the two types of crystal orientations of the first single crystal steel 41 and the second single crystal steel 42.
  • the electrical steel sheet 100 is oriented to ⁇ 001> and ⁇ 101> high integration. This result is also consistent with the EBSD image, indicating that the first region 101 is oriented in ⁇ 001> and the second region 102 is oriented in ⁇ 101>.
  • the bidirectional electromagnetic steel sheets 100 having different crystal orientations can be obtained by performing the arrangement step and the heat treatment step.
  • Example 2 This example describes a method for measuring the crystal grain size of the bidirectional electromagnetic steel sheet 100.
  • the particle size of the directional region (that is, the grain of a single crystal) is the particle size when observing a plane orthogonal to or parallel to the rolling direction RD of the electromagnetic steel plate 100.
  • the plane orthogonal to the rolling direction RD is a plane formed by the plate thickness direction ND and the direction TD perpendicular to the rolling direction RD (that is, the rolling perpendicular direction).
  • the plane parallel to the rolling direction RD is a plane formed by the plate thickness direction ND and the rolling perpendicular direction TD.
  • the electromagnetic steel sheet 100 preferably has a directional region in which the particle size on at least one of these two planes is 1.5 mm or more as described above. In this case, each directional region can sufficiently show the physical properties based on each crystal orientation.
  • FIG. 26 shows an example of the crystal structure of the electromagnetic steel plate 100 on a plane orthogonal to the rolling direction RD
  • FIG. 27 shows an example of the crystal structure of the electromagnetic steel plate 100 on a plane parallel to the rolling direction RD.
  • the particle size in the plane orthogonal to the rolling direction RD is the maximum width of the crystal grains in the rolling direction TD.
  • the maximum width of each crystal grain is represented by L 1 to L 3 .
  • the particle size in the plane parallel to the rolling direction RD is the maximum width of the crystal grains in the rolling direction RD.
  • the maximum width of each crystal grain is represented by L 4 to L 6 .
  • the rolling direction RD can be found, for example, by observing the crystal structure.
  • the crystal structure is, for example, a fibrous structure, and the longitudinal direction of the crystal grains constituting the crystal structure is the rolling direction RD.
  • the crystal structure can be examined by, for example, scanning electron microscopy and EBSD method.
  • the easily magnetized axis of the core back portion 2 is the circumferential direction X
  • the easily magnetized axis of the teeth portion 3 is the circumferential direction and the orthogonal direction Y.
  • the magnetic moment of iron is usually oriented in the ⁇ 100> direction, which is the ridgeline of the cube, and if the magnetic field applied from the outside is in the ⁇ 100> direction, the magnetism is easily passed without changing the direction of the magnetic moment.
  • the magnetic field is in the ⁇ 111> direction
  • energy loss occurs due to the movement of the domain wall or the like when the magnetic moment in the ⁇ 100> direction is rotated. This energy loss is a hysteresis loss.
  • the main magnetic field direction is the circumferential direction X in the core back portion 2 and the circumferential direction Y (for example, the radial direction) in the teeth portion 3, ⁇ 100> should be oriented in each direction as in the example product. Reduces hysteresis loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided are a rotary machine core (1) that is structured from an electromagnetic steel sheet (100) in a layered condition, and a manufacturing method therefor. The electromagnetic steel sheet has a core back section (2) and a plurality of tooth sections. The core back section (2) extends along a circumferential direction of the rotary machine core. The tooth sections (3) extend from the core back section (2), along a direction that is perpendicular to the circumferential direction of the rotary machine core (1). The core back section (2) and the tooth sections (3) are integrally formed. The crystal orientation of the electromagnetic steel sheet (100) in the core back section (2) is aligned along the circumferential direction. The crystal orientation of the electromagnetic steel sheet (100) in the tooth sections (3) is aligned along the extension direction of the tooth sections (3).

Description

回転機コア及びその製造方法Rotating machine core and its manufacturing method 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月18日に出願された日本出願番号2019-132408号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-132408 filed on July 18, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、回転機コア及びその製造方法に関する。 This disclosure relates to a rotating machine core and a method for manufacturing the same.
 特定の結晶方位が例えば一方向に揃った方向性電磁鋼板が知られている。所望の結晶方位に配向した方向性電磁鋼板は、磁気特性に優れるため、例えば回転機コアに用いられる。単結晶鋼は、結晶方位が一方向に揃った方向性を有するが、製造コストが高く、製造に時間がかかるため、大量生産に不向きである。一方、2次再結晶現象などにより、鋼板の結晶方位を配向させる技術が知られているが、製造工程が煩雑であったり、{100}<001>方位などの所定の結晶方位の配向性が悪くなったりする。 For example, a grain-oriented electrical steel sheet in which specific crystal orientations are aligned in one direction is known. A grain-oriented electrical steel sheet oriented in a desired crystal orientation is used, for example, in a rotating machine core because it has excellent magnetic properties. Single crystal steel has a directionality in which the crystal orientations are aligned in one direction, but it is not suitable for mass production because the production cost is high and the production takes time. On the other hand, a technique for orienting the crystal orientation of a steel sheet due to a secondary recrystallization phenomenon or the like is known, but the manufacturing process is complicated or the orientation of a predetermined crystal orientation such as {100} <001> orientation is difficult. It gets worse.
 例えば特許文献1には、分割式のステータコアが開示されている。具体的には、少なくともティース部とヨーク部とを別体とし、ティース部あるいはヨーク部を方向性電磁鋼板により形成したステータ構造が開示されている。特許文献1によれば、上記ステータ構造により、鉄損を低減できるとしている。 For example, Patent Document 1 discloses a split type stator core. Specifically, a stator structure is disclosed in which at least the teeth portion and the yoke portion are separated and the teeth portion or the yoke portion is formed of a grain-oriented electrical steel sheet. According to Patent Document 1, the iron loss can be reduced by the stator structure.
特開平7-67272号公報Japanese Unexamined Patent Publication No. 7-67272
 特許文献1のステータ構造では、ティース部とヨーク部との間に接合部があり、ティース部とヨーク部との間に隙間が生じるおそれがある。接合部や隙間は、ステータコアなどの回転機コアのヒステリシス損等の鉄損を増大させる。その結果、モータ等の回転機のロスが増大し、電力を動力へ変換する効率が悪くなる。 In the stator structure of Patent Document 1, there is a joint portion between the teeth portion and the yoke portion, and there is a possibility that a gap may be generated between the teeth portion and the yoke portion. Joints and gaps increase iron loss such as hysteresis loss of rotating machine cores such as stator cores. As a result, the loss of a rotating machine such as a motor increases, and the efficiency of converting electric power into power deteriorates.
 本開示は、鉄損の低い回転機コア及びその製造方法を提供しようとするものである。 The present disclosure is intended to provide a rotary machine core having low iron loss and a method for manufacturing the same.
 本開示の第1態様は、積層状態の電磁鋼板から構成された、筒状の回転機コアであって、
 上記電磁鋼板は、上記回転機コアの周方向に沿って延びるコアバック部と、該コアバック部から上記周方向に直交する方向に沿って延びる複数のティース部とを有し、
 上記コアバック部と上記ティース部とが一体的に形成されており、
 上記コアバック部における上記電磁鋼板の結晶方位が上記周方向に沿って揃い、上記ティース部における上記電磁鋼板の結晶方位が上記ティース部の延び方向に沿って揃っている、回転機コアにある。
The first aspect of the present disclosure is a tubular rotary machine core composed of laminated electromagnetic steel plates.
The electrical steel sheet has a core back portion extending along the circumferential direction of the rotary machine core, and a plurality of teeth portions extending from the core back portion along the direction orthogonal to the circumferential direction.
The core back portion and the teeth portion are integrally formed.
It is in the rotating machine core in which the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction, and the crystal orientations of the electromagnetic steel sheets in the teeth portion are aligned along the extending direction of the teeth portions.
 本開示の第2態様は、第1単結晶鋼と第2単結晶鋼とを、上記第1単結晶鋼と上記第2単結晶鋼との結晶方位が相互に直交するように多結晶鋼板の主面に接触させ、熱処理を行うことにより、結晶方位が相互に直交し、かつ上記結晶方位が特定方向に配向する第1領域と第2領域とを有する、2方向性の電磁鋼板を得、
 上記電磁鋼板の上記第1領域の結晶方位に沿う方向に帯状に延びる帯状コアバック部と、上記第2領域の結晶方位に沿う方向に延びる複数の平行ティース部とを有する櫛状シートを打ち抜き、
 上記櫛状シートを螺旋状に巻回させつつ積層する、回転機コアの製造方法にある。
In the second aspect of the present disclosure, the first single crystal steel and the second single crystal steel are made of a polycrystalline steel plate so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other. By contacting the main surface and performing heat treatment, a bidirectional electromagnetic steel sheet having a first region and a second region in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction is obtained.
A comb-shaped sheet having a strip-shaped core back portion extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet and a plurality of parallel teeth portions extending in a direction along the crystal orientation of the second region is punched out.
It is a method of manufacturing a rotary machine core in which the comb-shaped sheets are laminated while being spirally wound.
 本開示の第3態様は、第1単結晶鋼と第2単結晶鋼とを、上記第1単結晶鋼と上記第2単結晶鋼との結晶方位が相互に直交するように多結晶鋼板の主面に接触させ、熱処理を行うことにより、相互に結晶方位が直交し、かつ上記結晶方位が特定方向に配向する第1領域と第2領域とを有する、2方向性の電磁鋼板を得、
 上記電磁鋼板の上記第1領域の結晶方位に沿う方向に帯状に延びる帯状コアバック部と、上記第2領域の結晶方位に沿う方向に延びる複数の平行ティース部とを有する櫛状シートを打ち抜き、
 上記櫛状シートを環状に巻回させることにより環状のコア板を得、
 上記コア板を複数積層する、回転機コアの製造方法にある。
A third aspect of the present disclosure is that the first single crystal steel and the second single crystal steel are made of a polycrystalline steel plate so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other. By contacting the main surface and performing heat treatment, a bidirectional electromagnetic steel sheet having a first region and a second region in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction is obtained.
A comb-shaped sheet having a strip-shaped core back portion extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet and a plurality of parallel teeth portions extending in a direction along the crystal orientation of the second region is punched out.
An annular core plate is obtained by winding the comb-shaped sheet in an annular shape.
It is a method of manufacturing a rotary machine core in which a plurality of the above core plates are laminated.
 上記第1態様の回転機コアは、コアバック部における電磁鋼板の結晶方位が周方向に沿って揃い、ティース部における電磁鋼板の結晶方位がティース部の延び方向に沿って揃っている。そのため、コアバック部の磁化容易軸は周方向に沿う方向となり、ティース部の磁化容易軸は伸長方向に沿う方向となる。これは、コアバック部及びティース部の磁化容易軸の理想的な方向であるため、回転機コアは、磁気回路中での磁化が容易であり、鉄損が低い。 In the rotary machine core of the first aspect, the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction, and the crystal orientations of the electromagnetic steel plates in the teeth portion are aligned along the extension direction of the teeth portion. Therefore, the easy-magnetization axis of the core back portion is in the direction along the circumferential direction, and the easy-magnetization axis of the teeth portion is in the direction along the extension direction. Since this is the ideal direction of the easily magnetized axis of the core back portion and the tooth portion, the rotating machine core is easily magnetized in the magnetic circuit and has low iron loss.
 また、コアバック部とティース部とが一体的に形成されているため、コアバック部とティース部との間に両者の接合面(具体的には、接合界面)がない。つまり、コアバック部とティース部との接合によって形成される、磁気抵抗の大きな空気相がない。そのため、空気相によるヒステリシス損の増大が防止され、回転機コアはヒステリシス損が低い。 Further, since the core back portion and the teeth portion are integrally formed, there is no joint surface (specifically, a joint interface) between the core back portion and the teeth portion. That is, there is no air phase having a large magnetic resistance formed by joining the core back portion and the teeth portion. Therefore, the increase of the hysteresis loss due to the air phase is prevented, and the hysteresis loss of the rotating machine core is low.
 上記第2態様及び上記第3態様の製造方法では、上記のごとく櫛状シートを作製する。次いで、第2態様の製造方法では、櫛状シートを螺旋状に巻回させることにより、電磁鋼板が螺旋状に積層された回転機コアが製造される。第3態様の製造方法では、櫛状シートを環状に巻回させることにより環状のコア板を得、コア板を複数積層することにより、コア板の積層体からなる回転機コアが製造される。上記製造方法では、コアバック部における電磁鋼板の結晶方位が周方向に沿って揃い、ティース部における電磁鋼板の結晶方位がティース部の延び方向に沿って揃った回転機コアが得られる。また、上記製造方法では、コアバック部とティース部とが一体的に形成された回転機コアが得られる。 In the manufacturing methods of the second aspect and the third aspect, a comb-shaped sheet is produced as described above. Next, in the manufacturing method of the second aspect, the comb-shaped sheet is spirally wound to manufacture a rotary machine core in which electromagnetic steel sheets are spirally laminated. In the manufacturing method of the third aspect, an annular core plate is obtained by winding a comb-shaped sheet in an annular shape, and a plurality of core plates are laminated to produce a rotary machine core made of a laminated body of the core plates. In the above manufacturing method, a rotating machine core in which the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction and the crystal orientations of the electromagnetic steel sheets in the teeth portion are aligned along the extending direction of the teeth portion can be obtained. Further, in the above manufacturing method, a rotary machine core in which a core back portion and a teeth portion are integrally formed can be obtained.
 以上のごとく、上記態様によれば、鉄損の低い回転機コア及びその製造方法を提供することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
As described above, according to the above aspect, it is possible to provide a rotary machine core having a low iron loss and a method for manufacturing the same.
The reference numerals in parentheses described in the claims indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the present disclosure.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1における、螺旋状の回転機コアの模式図であり、 図2は、実施形態1における、回転機コアの部分拡大模式図であり、 図3(a)は、実施形態1におけるコア部における結晶方位を示すコア部の部分断面模式図であり、図3(b)は、実施形態1におけるティース部における結晶方位を示すティース部の部分断面模式図であり、 図4は、実施形態1における、2方向性電磁鋼板の製造工程を示す模式図であり、 図5は、実施形態1における、多結晶鋼の結晶方位を示す多結晶鋼板の部分断面模式図であり、 図6(a)は、実施形態1における第1単結晶鋼の結晶方位を模式的に示す第1単結晶鋼の部分断面図であり、図6(b)は、実施形態1における第2単結晶鋼の結晶方位を模式的に示す第2単結晶鋼の部分断面図であり、 図7(a)は、図4におけるVIIa-VIIa線の矢視断面図であり、図7(b)は、図4におけるVIIb-VIIb線の矢視断面図であり、 図8(a)は、図4におけるVIIIa-VIIIa線の矢視断面図であり、図8(b)は、図4におけるVIIIb-VIIIb線の矢視断面図であり、 図9(a)は、図4におけるIXa-IXa線の矢視断面図であり、図9(b)は、図4におけるIXb-IXb線の矢視断面図であり、図9(c)は、図4におけるIXc-IXc線の矢視断面図であり、 図10は、実施形態1における、電磁鋼板から櫛状シートを打ち抜く工程、櫛状シートを巻回する工程を示す模式図であり、 図11は、図10におけるXI-XI線の矢視断面図であり、 図12は、実施形態1における、櫛状シートを螺旋状に巻回させる工程の模式図であり、 図13は、変形例1における、回転機コアの製造ラインの模式図であり、 図14は、変形例1における、図13の曲げ装置を矢印XIV方向から見た図であり、 図15は、変形例1における、図13の曲げ装置を矢印XV方向から見た図であり、 図16は、実施形態2における、積層型の回転機コアの模式図であり、 図17は、実施形態2における、回転機コアの部分拡大模式図であり、 図18は、実施形態2における、円盤状のコア板を製造する工程を示す模式図であり、 図19は、比較形態1における、回転機コアの部分拡大模式図であり、 図20は、比較形態2における、回転機コアの部分拡大模式図であり、 図21は、実験例1における、方向性の電磁鋼板の製造工程を示す模式図であり、 図22は、実験例1における、加熱炉の模式図であり、 図23は、実験例1における、EBSD像、彩度ゼロのEBSD像、EBSD像より抽出した角度マップを示す説明図であり、 図24は、実験例1における、EBSD像を簡略化して示す説明図であり、 図25は、実験例1における、EBSD像の逆極点図であり、 図26は、実験例2における、方向性の電磁鋼板の圧延方向と直交する平面での方向性領域の粒径を示す模式図であり、 図27は、実験例2における、方向性の電磁鋼板の圧延方向と平行な平面での方向性領域の粒径を示す模式図であり、 図28は、実験例3における、実施例品及び比較例品のヒステリシス損を示すグラフである。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic view of a spiral rotating machine core according to the first embodiment. FIG. 2 is a partially enlarged schematic view of the rotary machine core in the first embodiment. FIG. 3A is a schematic partial cross-sectional view of the core portion showing the crystal orientation in the core portion in the first embodiment, and FIG. 3B is a portion of the teeth portion showing the crystal orientation in the teeth portion in the first embodiment. It is a schematic cross-sectional view, FIG. 4 is a schematic view showing the manufacturing process of the bidirectional electromagnetic steel sheet in the first embodiment. FIG. 5 is a schematic partial cross-sectional view of the polycrystalline steel sheet showing the crystal orientation of the polycrystalline steel according to the first embodiment. FIG. 6A is a partial cross-sectional view of the first single crystal steel schematically showing the crystal orientation of the first single crystal steel in the first embodiment, and FIG. 6B is a second single crystal in the first embodiment. It is a partial cross-sectional view of the second single crystal steel which shows the crystal orientation of the crystal steel schematically. 7 (a) is a cross-sectional view taken along the line VIIa-VIIa in FIG. 4, and FIG. 7 (b) is a cross-sectional view taken along the line VIIb-VIIb in FIG. 8 (a) is a cross-sectional view taken along the line VIIIa-VIIIa in FIG. 4, and FIG. 8 (b) is a cross-sectional view taken along the line VIIIb-VIIIb in FIG. 9 (a) is a cross-sectional view taken along the line IXa-IXa in FIG. 4, FIG. 9 (b) is a cross-sectional view taken along the line IXb-IXb in FIG. 4, and FIG. 9 (c) is a cross-sectional view taken along the line IXb-IXb. , FIG. 4 is a cross-sectional view taken along the line IXc-IXc. FIG. 10 is a schematic view showing a step of punching a comb-shaped sheet from an electromagnetic steel sheet and a step of winding a comb-shaped sheet in the first embodiment. FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. FIG. 12 is a schematic view of the process of spirally winding the comb-shaped sheet in the first embodiment. FIG. 13 is a schematic view of the rotating machine core manufacturing line in the first modification. FIG. 14 is a view of the bending device of FIG. 13 in the first modification seen from the direction of arrow XIV. FIG. 15 is a view of the bending device of FIG. 13 in the first modification seen from the direction of arrow XV. FIG. 16 is a schematic view of a laminated rotary machine core according to the second embodiment. FIG. 17 is a partially enlarged schematic view of the rotary machine core in the second embodiment. FIG. 18 is a schematic view showing a process of manufacturing a disk-shaped core plate in the second embodiment. FIG. 19 is a partially enlarged schematic view of the rotating machine core in Comparative Form 1. FIG. 20 is a partially enlarged schematic view of the rotating machine core in Comparative Form 2. FIG. 21 is a schematic view showing a manufacturing process of a grain-oriented electrical steel sheet in Experimental Example 1. FIG. 22 is a schematic view of the heating furnace in Experimental Example 1. FIG. 23 is an explanatory diagram showing an angle map extracted from the EBSD image, the zero-saturation EBSD image, and the EBSD image in Experimental Example 1. FIG. 24 is an explanatory diagram showing a simplified EBSD image in Experimental Example 1. FIG. 25 is a reverse pole figure of the EBSD image in Experimental Example 1. FIG. 26 is a schematic view showing the particle size of the directional region in the plane orthogonal to the rolling direction of the directional electromagnetic steel sheet in Experimental Example 2. FIG. 27 is a schematic view showing the particle size of the directional region in the plane parallel to the rolling direction of the directional electromagnetic steel sheet in Experimental Example 2. FIG. 28 is a graph showing the hysteresis loss of the example product and the comparative example product in Experimental Example 3.
(実施形態1)
 回転機コア1にかかる実施形態について、図1~図12を参照して説明する。図1及び図2に示されるように、回転機コア1は、積層状態の電磁鋼板から構成されている。積層状態は、例えば、電磁鋼板100が螺旋状に巻回されることにより形成される。つまり、回転機コア1は、例えば螺旋状に巻回されつつ積層された電磁鋼板100の積層体10から構成される。一方、実施形態2にて説明するが、回転機コア1の積層状態は、例えば、複数の環状の電磁鋼板100の積層体10から形成されていてもよい。本明細書では、螺旋状の積層体10から構成された回転機コア1のことを、適宜、「螺旋型回転機コア1A」といい、環状の電磁鋼板100の積層体10から構成された回転機コア1のことを、適宜「積層型回転機コア1B」ということができる。以下、電磁鋼板100の積層方向を、適宜「軸方向Z」という。
(Embodiment 1)
An embodiment of the rotary machine core 1 will be described with reference to FIGS. 1 to 12. As shown in FIGS. 1 and 2, the rotary machine core 1 is composed of a laminated electromagnetic steel plate. The laminated state is formed by, for example, winding the electromagnetic steel sheet 100 in a spiral shape. That is, the rotary machine core 1 is composed of, for example, a laminated body 10 of electromagnetic steel plates 100 that are laminated while being spirally wound. On the other hand, as described in the second embodiment, the laminated state of the rotary machine core 1 may be formed from, for example, a laminated body 10 of a plurality of annular electromagnetic steel sheets 100. In the present specification, the rotary machine core 1 composed of the spiral laminated body 10 is appropriately referred to as "spiral rotary machine core 1A", and the rotary machine core 1 composed of the laminated body 10 of the annular electromagnetic steel plate 100 is appropriately referred to. The machine core 1 can be appropriately referred to as a "laminated rotary machine core 1B". Hereinafter, the stacking direction of the electromagnetic steel sheet 100 is appropriately referred to as "axial direction Z".
 図1に示すように、螺旋型回転機コア1Aでは、例えば長尺の電磁鋼板100が螺旋状に巻回されており、巻回状態の電磁鋼板100の板面が相互に接触している。具体的には、電磁鋼板100が巻回されつつ軸方向Zの位置を一方向に変えながら積層されて螺旋型回転機コア1Aが形成されている。螺旋型回転機コア1Aは、積層型回転機コア1Bに比べて、製造時における電磁鋼板100の切断回数を減らすことができる共に、巻回と切断とを連続的に行うことができる。 As shown in FIG. 1, in the spiral rotary machine core 1A, for example, a long electromagnetic steel sheet 100 is spirally wound, and the plate surfaces of the wound electromagnetic steel sheet 100 are in contact with each other. Specifically, the magnetic steel sheet 100 is wound and laminated while changing the position in the axial direction Z in one direction to form the spiral rotary machine core 1A. Compared with the laminated rotary machine core 1B, the spiral rotary machine core 1A can reduce the number of times the electromagnetic steel sheet 100 is cut at the time of manufacturing, and can continuously perform winding and cutting.
 回転機コア1は、円筒状、楕円筒状、角筒状などの筒状であり、軸方向Zを貫通する貫通穴19を有する。例えば螺旋型の回転機コアでは、曲率が均一であることが望ましいという観点から、回転機コア1は、円筒状であることが好ましい。また、回転機コア1が円筒状の場合には、楕円筒状、角筒状などの形状に比べて、回転機コアの製造段階での巻回時に板厚にばらつきが生じることを防止できる。 The rotary machine core 1 has a cylindrical shape such as a cylindrical shape, an elliptical tubular shape, and a square tubular shape, and has a through hole 19 penetrating the axial direction Z. For example, in a spiral rotary machine core, the rotary machine core 1 is preferably cylindrical from the viewpoint that it is desirable that the curvature is uniform. Further, when the rotating machine core 1 has a cylindrical shape, it is possible to prevent the plate thickness from being varied at the time of winding at the manufacturing stage of the rotating machine core, as compared with the shape of an elliptical cylinder or a square cylinder.
 図1及び図2に示すように、電磁鋼板100は、櫛状であり、コアバック部2と多数のティース部3とを有する。コアバック部2は軸方向Zにおいて相互に接触し、ティース部3も軸方向Zにおいて相互に接触している。電磁鋼板100は、後述の櫛状シート105から構成されており、螺旋型回転機コア1Aは、櫛状シート105が螺旋状に巻回されたものである。 As shown in FIGS. 1 and 2, the electromagnetic steel plate 100 is comb-shaped and has a core back portion 2 and a large number of teeth portions 3. The core back portions 2 are in contact with each other in the axial direction Z, and the teeth portions 3 are also in contact with each other in the axial direction Z. The electromagnetic steel plate 100 is composed of a comb-shaped sheet 105, which will be described later, and the spiral rotary machine core 1A is a spirally wound comb-shaped sheet 105.
 コアバック部2は、回転機コア1の周方向Xに沿って延びる帯状の部分である。コアバック部2は、例えばヨーク部とも呼ばれる。帯状のコアバック部2は、螺旋状に巻回されており、回転機コア1と同様に周方向Xを有する。 The core back portion 2 is a strip-shaped portion extending along the circumferential direction X of the rotating machine core 1. The core back portion 2 is also called, for example, a yoke portion. The band-shaped core back portion 2 is spirally wound and has a circumferential direction X like the rotary machine core 1.
 ティース部3は、コアバック部2、回転機コア1の周方向Xに直交する方向Yに沿ってコアバック部2から延びる。回転機コア1が円筒状の場合には、周方向Xに直交する方向Yは回転機コア1の径方向である。図1及び図2に示すように、ティース部3は、例えば、回転機コア1の中心軸Aに向かって延びる。構成の図示を省略するが、ティース部3は、中心軸Aとは反対向きに延びていてもよい。つまり、ティース部3は、図1及び図2に示すように、筒状の回転機コア1の内側に向かって延びていてもよいし、図示を省略するが外側に向かって延びていてもよい。 The teeth portion 3 extends from the core back portion 2 along the direction Y orthogonal to the circumferential direction X of the core back portion 2 and the rotary machine core 1. When the rotary machine core 1 is cylindrical, the direction Y orthogonal to the circumferential direction X is the radial direction of the rotary machine core 1. As shown in FIGS. 1 and 2, the teeth portion 3 extends toward, for example, the central axis A of the rotary machine core 1. Although the configuration is not shown, the tooth portion 3 may extend in the direction opposite to the central axis A. That is, as shown in FIGS. 1 and 2, the teeth portion 3 may extend toward the inside of the tubular rotary machine core 1, or may extend toward the outside although not shown. ..
 コアバック部2とティース部3とは、一体的に形成されている。コアバック部2とティース部3との境界には、ギャップ、接合部、接合面が実質的になく、境界とその周囲との間で表面粗さはほとんど変化しない。具体的には、コアバック部2とティース部3の境界と、その周囲との表面粗さの差は3.2μm以内であることが好ましい。この場合には、積層時に空隙が発生することが抑制され、出力が向上する。表面粗さは、ワンショット3D形状測定機により測定される。ワンショット3D形状測定機としては、キーエンス社製のVR-5000を用いることができる。表面粗さは、例えば、測定倍率120倍で測定される。コアバック部2とティース部3とは、例えば面一であることがより好ましい。 The core back portion 2 and the teeth portion 3 are integrally formed. There are virtually no gaps, joints, or joint surfaces at the boundary between the core back portion 2 and the teeth portion 3, and the surface roughness hardly changes between the boundary and its surroundings. Specifically, the difference in surface roughness between the boundary between the core back portion 2 and the teeth portion 3 and the periphery thereof is preferably within 3.2 μm. In this case, the generation of voids during stacking is suppressed, and the output is improved. The surface roughness is measured by a one-shot 3D shape measuring machine. As the one-shot 3D shape measuring machine, VR-5000 manufactured by KEYENCE Corporation can be used. The surface roughness is measured, for example, at a measurement magnification of 120 times. It is more preferable that the core back portion 2 and the teeth portion 3 are flush with each other, for example.
 図3(a)に示すように、電磁鋼板100のコアバック部2における結晶方位は、周方向Xに沿って揃っている。これにより、図2に示すように、コアバック部2における磁化容易軸は、周方向Xに沿う方向となる。一方、図3(b)に示すように、電磁鋼板100のティース部3における結晶方位は、ティース部3の延び方向に沿って揃っている。これにより、図2に示すようにティース部3における磁化容易軸は、延び方向に沿う方向となる。なお、図2におおいて、コアバック部2内、ティース部3内の実線矢印は、磁化容易軸を表し、破線矢印は、磁界や磁気回路を表す。後述の図17、図19、図20についても同様である。ティース部3の延び方向は、例えば、円筒状の回転機コア1の外周での法線方向に沿う。このような電磁鋼板100は、コアバック部2及びティース部3においてそれぞれ異なる結晶方位を有するため、例えば2方向性の電磁鋼板100ということができる。 As shown in FIG. 3A, the crystal orientations of the core back portion 2 of the electrical steel sheet 100 are aligned along the circumferential direction X. As a result, as shown in FIG. 2, the easily magnetized axis in the core back portion 2 is in the direction along the circumferential direction X. On the other hand, as shown in FIG. 3B, the crystal orientations of the electrical steel sheet 100 in the teeth portion 3 are aligned along the extending direction of the teeth portions 3. As a result, as shown in FIG. 2, the easily magnetized axis in the teeth portion 3 is in the direction along the extending direction. In FIG. 2, the solid line arrows in the core back portion 2 and the teeth portion 3 represent the easy magnetization axis, and the broken line arrows represent the magnetic field and the magnetic circuit. The same applies to FIGS. 17, 19, and 20 described later. The extending direction of the tooth portion 3 is, for example, along the normal direction on the outer circumference of the cylindrical rotating machine core 1. Since such an electromagnetic steel sheet 100 has different crystal orientations in the core back portion 2 and the teeth portion 3, it can be called, for example, a bidirectional electromagnetic steel plate 100.
 結晶方位としては、{100}<001>、{123}<634>、{011}<211>、{112}<111>、{110}<001>などが例示される。コアバック部2における結晶方位は、{110}<001>であり、ティース部3における結晶方位は、{110}<110>であることが好ましい。この場合には、周方向とティース部の延び方向に磁化容易軸が配向する。さらに、この場合には、方向性電磁鋼板を、例えばその圧延方向と直交方向でカットすることにより、簡単に上記結晶方位の実現が可能になる。 Examples of the crystal orientation include {100} <001>, {123} <634>, {011} <211>, {112} <111>, {110} <001>, and the like. It is preferable that the crystal orientation in the core back portion 2 is {110} <001> and the crystal orientation in the teeth portion 3 is {110} <110>. In this case, the easy-magnetizing axis is oriented in the circumferential direction and the extension direction of the tooth portion. Further, in this case, the grain orientation can be easily realized by cutting the grain-oriented electrical steel sheet in a direction orthogonal to the rolling direction, for example.
 電磁鋼板100は粒径1.5mm以上の結晶粒を有することが好ましい。この場合には、ヒステリシス損がさらに小さくなる。この効果がより向上するという観点から、電磁鋼板100は、コアバック部2及びティース部3に粒径1.5mm以上の結晶粒を有することがより好まく、粒径3.0mm以上の結晶粒を有することがさらに好ましい。 The electromagnetic steel sheet 100 preferably has crystal grains having a particle size of 1.5 mm or more. In this case, the hysteresis loss becomes smaller. From the viewpoint of further improving this effect, the electromagnetic steel sheet 100 more preferably has crystal grains having a particle size of 1.5 mm or more in the core back portion 2 and the teeth portion 3, and crystal grains having a particle size of 3.0 mm or more. It is more preferable to have.
 回転機コア1は、2方向性の電磁鋼板100を用いて製造される。2方向性の電磁鋼板100は、例えば次のようにして製造される。図4、図5、図6(a)、図6(b)、図7(a)、図7(b)に示されるように、まず、第1単結晶鋼41と第2単結晶鋼42とを、多結晶鋼板40の主面401に接触させる。このとき、第1単結晶鋼41と第2単結晶鋼42の結晶方位が相互に直交するように多結晶鋼板40の主面401に接触させる。このような操作を、以下適宜「配置工程」という。配置工程では、例えば、第1単結晶鋼41の結晶方位が多結晶鋼板40の面内方向に沿う方向となるように第1単結晶鋼41を多結晶鋼板40の主面401に配置し、第2多結晶鋼の結晶方位が多結晶鋼板40の面内方向であって、第1単結晶鋼41の結晶方位と直交する方向となるように第2単結晶鋼42を多結晶鋼板40の主面401に配置する。 The rotating machine core 1 is manufactured using a bidirectional electromagnetic steel plate 100. The bidirectional electromagnetic steel sheet 100 is manufactured, for example, as follows. As shown in FIGS. 4, 5, 6 (a), 6 (b), 7 (a), and 7 (b), first, the first single crystal steel 41 and the second single crystal steel 42 Is brought into contact with the main surface 401 of the polycrystalline steel plate 40. At this time, the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with the main surface 401 of the polycrystalline steel sheet 40 so that the crystal orientations are orthogonal to each other. Such an operation is hereinafter appropriately referred to as an “arrangement step”. In the arranging step, for example, the first single crystal steel 41 is arranged on the main surface 401 of the polycrystalline steel plate 40 so that the crystal orientation of the first single crystal steel 41 is along the in-plane direction of the polycrystalline steel plate 40. The second single crystal steel 42 is placed on the polycrystalline steel plate 40 so that the crystal orientation of the second polycrystalline steel is the in-plane direction of the polycrystalline steel plate 40 and is orthogonal to the crystal orientation of the first single crystal steel 41. It is arranged on the main surface 401.
 次に、第1単結晶鋼41と第2単結晶鋼42とが配置された多結晶鋼板40の熱処理を行う。この操作を以下適宜、「熱処理工程」という。図4、図8に示されるように、熱処理は、例えば、多結晶鋼板40、第1単結晶鋼41、第2単結晶鋼42に対して行われ、例えば熱風Hを吹き付けることにより行われる。熱処理により、図9(a)~(c)に示されるように2方向性の電磁鋼板100が得られる。2方向性の電磁鋼板100は、結晶方位が相互に直交しかつ結晶方位が特定方向に配向する第1領域101と第2領域102とを有する。 Next, the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are arranged is heat-treated. This operation is appropriately referred to as a "heat treatment step" below. As shown in FIGS. 4 and 8, the heat treatment is performed on, for example, the polycrystalline steel sheet 40, the first single crystal steel 41, and the second single crystal steel 42, and is performed, for example, by blowing hot air H. By the heat treatment, a bidirectional electromagnetic steel sheet 100 is obtained as shown in FIGS. 9A to 9C. The bidirectional electromagnetic steel sheet 100 has a first region 101 and a second region 102 in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction.
 配置工程、熱処理工程について、さらに詳細に説明する。第1単結晶鋼41、第2単結晶鋼42は、例えば、所定の結晶方位を有する単結晶の鋼から切り出すことにより製造される。このとき、当接面411、421が所望の結晶方位となるように切り出すことができる。これにより、結晶方位が相互に直交する第1単結晶鋼41、第2単結晶鋼42が得られる。第1単結晶鋼41の当接面411は、多結晶鋼板40に当接するように構成された、例えば平滑面である。第2単結晶鋼42の当接面421についても同様である。 The placement process and heat treatment process will be explained in more detail. The first single crystal steel 41 and the second single crystal steel 42 are produced, for example, by cutting out from single crystal steel having a predetermined crystal orientation. At this time, the contact surfaces 411 and 421 can be cut out so as to have a desired crystal orientation. As a result, the first single crystal steel 41 and the second single crystal steel 42 whose crystal orientations are orthogonal to each other can be obtained. The contact surface 411 of the first single crystal steel 41 is, for example, a smooth surface configured to be in contact with the polycrystalline steel sheet 40. The same applies to the contact surface 421 of the second single crystal steel 42.
 多結晶鋼板40は、例えば、鋼スラブを熱間圧延、必要に応じて冷間圧延、焼鈍などを経ることにより製造される。鋼としては、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、炭素鋼、電磁鋼等が例示される。鋼の結晶構造としては、体心立方、面心立方などの立方晶が例示される。図5に例示されるように、多結晶鋼板40は、結晶方位が異なる多数の結晶粒から構成されており、結晶方位がランダムであり、無配向である。多結晶鋼板40は、例えば、無方向性電磁鋼板である。 The polycrystalline steel sheet 40 is manufactured, for example, by hot-rolling a steel slab, cold-rolling if necessary, annealing, and the like. Examples of steel include ferritic stainless steel, austenitic stainless steel, carbon steel, and electromagnetic steel. Examples of the crystal structure of steel include cubic crystals such as body-centered cubic and face-centered cubic. As illustrated in FIG. 5, the polycrystalline steel sheet 40 is composed of a large number of crystal grains having different crystal orientations, and the crystal orientations are random and non-oriented. The polycrystalline steel sheet 40 is, for example, a non-oriented electrical steel sheet.
 配置工程では、多結晶鋼板40の主面401上に、第1単結晶鋼41及び第2単結晶鋼42を配置する。第1単結晶鋼41及び第2単結晶鋼42は、これらの結晶方位が相互に直交する向きとなるように配置される。図4、図6(a)、図6(b)、図7(a)、図7(b)には、多結晶鋼板40の主面401に第1単結晶鋼41、第2単結晶鋼42を配置したときにおける、各単結晶鋼41、42の結晶方位を示す。なお、本明細書で参照する図面において、単結晶鋼41、42、多結晶鋼板40、電磁鋼板100内に示す矢印は、結晶方位の向きを示し、円で囲まれたばつ印は、紙面の表(換言すれば手前)から裏(換言すれば奥)に向かう結晶方位の向きを示す。図面における結晶方位は、例示であり、適宜変更することができる。第1単結晶鋼41、第2単結晶鋼42の結晶方位、第1単結晶鋼41、第2単結晶鋼42の多結晶鋼板40への配置は、変更可能であり、その変更により、熱処理後、結晶方位が特定方向に配向した領域を様々なパターンで形成することができる。電磁鋼板100において、結晶方位が特定方向に配向した領域のことを、「方向性領域」という。配置工程、熱処理工程を行うことにより、方向性領域として、相互に結晶方位が異なる、後述の第1領域101、第2領域102が形成される。 In the arranging step, the first single crystal steel 41 and the second single crystal steel 42 are arranged on the main surface 401 of the polycrystalline steel sheet 40. The first single crystal steel 41 and the second single crystal steel 42 are arranged so that their crystal orientations are orthogonal to each other. In FIGS. 4, 6 (a), 6 (b), 7 (a), and 7 (b), the first single crystal steel 41 and the second single crystal steel are shown on the main surface 401 of the polycrystalline steel plate 40. The crystal orientations of the single crystal steels 41 and 42 when the 42 is arranged are shown. In the drawings referred to in the present specification, the arrows shown in the single crystal steels 41 and 42, the polycrystalline steel sheet 40, and the electromagnetic steel sheet 100 indicate the direction of the crystal orientation, and the cross marks surrounded by circles are on the paper. The direction of the crystal orientation from the front (in other words, the front) to the back (in other words, the back) is shown. The crystal orientation in the drawings is an example and can be changed as appropriate. The crystal orientation of the first single crystal steel 41 and the second single crystal steel 42 and the arrangement of the first single crystal steel 41 and the second single crystal steel 42 on the polycrystalline steel plate 40 can be changed, and heat treatment is performed by the change. Later, regions in which the crystal orientation is oriented in a specific direction can be formed in various patterns. In the electromagnetic steel sheet 100, a region in which the crystal orientation is oriented in a specific direction is referred to as a "directional region". By performing the arranging step and the heat treatment step, the first region 101 and the second region 102, which will be described later, are formed as the directional regions, which have different crystal orientations from each other.
 第1単結晶鋼41、第2単結晶鋼42としては、所望の結晶方位が配向したものを用いることができる。具体的な結晶方位としては、{100}<001>、{123}<634>、{011}<211>、{112}<111>、{110}<001>などが例示される。第1単結晶鋼41、第2単結晶鋼42の結晶方位は、2方向性の電磁鋼板100における第1領域101、第2領域102の所望の結晶方位に合わせて決定される。 As the first single crystal steel 41 and the second single crystal steel 42, those having a desired crystal orientation can be used. Specific examples of the crystal orientation include {100} <001>, {123} <634>, {011} <211>, {112} <111>, and {110} <001>. The crystal orientation of the first single crystal steel 41 and the second single crystal steel 42 is determined according to the desired crystal orientations of the first region 101 and the second region 102 of the bidirectional electromagnetic steel plate 100.
 第1単結晶鋼41と多結晶鋼板40、第2単結晶鋼42と多結晶鋼板40との接触は、面接触であることが好ましい。この場合には、加熱時に、単結晶鋼の結晶方位が多結晶鋼板40に成長しやすくなる。その結果、電磁鋼板100における各方向性領域(具体的には、第1領域101、第2領域102)の拡大が可能になる。 The contact between the first single crystal steel 41 and the polycrystalline steel sheet 40, and the contact between the second single crystal steel 42 and the polycrystalline steel sheet 40 is preferably surface contact. In this case, the crystal orientation of the single crystal steel tends to grow into the polycrystalline steel sheet 40 during heating. As a result, each directional region (specifically, the first region 101 and the second region 102) of the electrical steel sheet 100 can be expanded.
 第1単結晶鋼41、第2単結晶鋼42の形状は、特に限定されないが、例えば板状であることが好ましい。この場合には、板状の第1単結晶鋼41の主面(つまり、当接面411)、第2単結晶鋼42の主面(つまり当接面421)を、多結晶鋼板40の主面401に接触させることにより、面接触が容易に実現できる。さらに、接触面積が大きくなるため、成長面が大きくなる。その結果、第1領域101、第2領域102の配向性がさらに向上する。 The shapes of the first single crystal steel 41 and the second single crystal steel 42 are not particularly limited, but are preferably plate-shaped, for example. In this case, the main surface of the plate-shaped first single crystal steel 41 (that is, the contact surface 411) and the main surface of the second single crystal steel 42 (that is, the contact surface 421) are the main surfaces of the polycrystalline steel plate 40. By contacting the surface 401, surface contact can be easily realized. Further, since the contact area becomes large, the growth surface becomes large. As a result, the orientation of the first region 101 and the second region 102 is further improved.
 第1単結晶鋼41、第2単結晶鋼42の厚みは、特に限定されないが、第1単結晶鋼41、第2単結晶鋼42が板状の場合には、例えば0.1~1.0mmである。多結晶鋼板40の厚みも、特に限定されないが、短時間で厚み方向の全体に結晶成長を進行させることができるため、2方向性の電磁鋼板100の生産性が向上するという観点から、0.8mm以下であることが好ましく、0.5mm以下であることがより好ましく、0.35mm以下であることがさらに好ましい。多結晶鋼板40自体の製造コストなどの観点から、多結晶鋼板40の厚みは、0.1mm以上であることが好ましい。 The thicknesses of the first single crystal steel 41 and the second single crystal steel 42 are not particularly limited, but when the first single crystal steel 41 and the second single crystal steel 42 are plate-shaped, for example, 0.1 to 1. It is 0 mm. The thickness of the polycrystalline steel sheet 40 is also not particularly limited, but from the viewpoint of improving the productivity of the bidirectional electromagnetic steel sheet 100 because the crystal growth can proceed in the entire thickness direction in a short time, 0. It is preferably 8 mm or less, more preferably 0.5 mm or less, and even more preferably 0.35 mm or less. From the viewpoint of the manufacturing cost of the polycrystalline steel sheet 40 itself, the thickness of the polycrystalline steel sheet 40 is preferably 0.1 mm or more.
 多結晶鋼板40の結晶粒径は、例えば20~100μmである。多結晶鋼板40の結晶粒径は、熱処理前の多結晶鋼板40の結晶粒径であり、後述のひずみを付与する前の多結晶鋼板40の結晶粒径である。結晶粒径は、例えば顕微鏡によって測定した単位面積当たりの結晶粒の平均数により測定される。具体的にはJIS G 0551:2013「鋼-結晶粒度の顕微鏡試験方法」に基づいて測定される。 The crystal grain size of the polycrystalline steel sheet 40 is, for example, 20 to 100 μm. The crystal grain size of the polycrystalline steel sheet 40 is the grain size of the polycrystalline steel sheet 40 before heat treatment, and is the grain size of the polycrystalline steel sheet 40 before applying strain, which will be described later. The crystal grain size is measured by, for example, the average number of crystal grains per unit area measured by a microscope. Specifically, it is measured based on JIS G 0551: 2013 "Steel-Crystal Particle Size Microscopic Test Method".
 多結晶鋼板40における第1単結晶鋼41、第2単結晶鋼42との接触面に対して、エッチングを行うことができる。この場合には、結晶粒界が露出することで、接合面の密着度が向上し、結晶成長が促進される。エッチングは、塩酸、硝酸アルコール溶液、シュウ酸などにより行うことができる。 Etching can be performed on the contact surfaces of the polycrystalline steel sheet 40 with the first single crystal steel 41 and the second single crystal steel 42. In this case, the crystal grain boundaries are exposed, so that the degree of adhesion of the joint surface is improved and crystal growth is promoted. Etching can be performed with hydrochloric acid, an alcohol nitrate solution, oxalic acid or the like.
 図4、図7(a)、図7(b)に示されるように、第1単結晶鋼41、第2単結晶鋼42は、多結晶鋼板40の主面401の端部に配置することが好ましい。この場合には、単結晶鋼41、42と多結晶鋼板40との接触方向での切断により、熱処理後に第1単結晶鋼41、第2単結晶鋼42を容易に除去することができる。端部は、例えば多結晶鋼板の圧延方向RDの端部である。接触方向は、例えば板厚方向である。切断位置は、例えば、図9(a)、図9(b)における破線で図示される。なお、実験例2にて示すように、第1単結晶鋼41、第2単結晶鋼42を、例えば多結晶鋼板40の全面に重なるように配置してもよい。この場合には、接触面積が大きくなり、成長面が大きくなるため、結晶成長が起こり易くなる。より具体的には、後述の打ち抜き工程後に、帯状コアバック部20、平行ティース部30となる各領域に、第1単結晶鋼41、第2単結晶鋼を配置することができる。 As shown in FIGS. 4, 7 (a) and 7 (b), the first single crystal steel 41 and the second single crystal steel 42 are arranged at the end of the main surface 401 of the polycrystalline steel sheet 40. Is preferable. In this case, the first single crystal steel 41 and the second single crystal steel 42 can be easily removed after the heat treatment by cutting the single crystal steels 41 and 42 in the contact direction with the polycrystalline steel sheet 40. The end is, for example, the end of the polycrystalline steel sheet in the rolling direction RD. The contact direction is, for example, the plate thickness direction. The cutting position is shown by, for example, the broken line in FIGS. 9 (a) and 9 (b). As shown in Experimental Example 2, the first single crystal steel 41 and the second single crystal steel 42 may be arranged so as to overlap the entire surface of the polycrystalline steel sheet 40, for example. In this case, the contact area becomes large and the growth surface becomes large, so that crystal growth is likely to occur. More specifically, after the punching step described later, the first single crystal steel 41 and the second single crystal steel can be arranged in each region to be the strip-shaped core back portion 20 and the parallel teeth portion 30.
 図8(a)及び(b)に示すように、第1単結晶鋼41、第2単結晶鋼42と多結晶鋼板40との接触後には、上記のように熱処理を行う。具体的には、第1単結晶鋼41及び第2単結晶鋼42を主面401に配置した多結晶鋼板40を加熱する。加熱は、例えば加熱炉内で行うことができる。この加熱により、多結晶鋼板40を構成する各結晶粒の結晶方位が第1単結晶鋼41、第2単結晶鋼42の結晶方位に倣って配向し、多結晶鋼板40内で結晶成長が起こる。第1単結晶鋼41、第2単結晶鋼42は、結晶方位の核となるため、核材ということができ、多結晶鋼板40は、核材の結晶方位に倣って結晶方位を配向させる対象であるため、素材板ということができる。 As shown in FIGS. 8A and 8B, after the contact between the first single crystal steel 41 and the second single crystal steel 42 and the polycrystalline steel sheet 40, heat treatment is performed as described above. Specifically, the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are arranged on the main surface 401 is heated. Heating can be performed, for example, in a heating furnace. By this heating, the crystal orientation of each crystal grain constituting the polycrystalline steel plate 40 is oriented according to the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42, and crystal growth occurs in the polycrystalline steel plate 40. .. Since the first single crystal steel 41 and the second single crystal steel 42 serve as the core of the crystal orientation, they can be called a core material, and the polycrystalline steel plate 40 is an object for which the crystal orientation is oriented according to the crystal orientation of the core material. Therefore, it can be called a material plate.
 結晶成長について説明する。図2、図7(a)、図7(b)、図8(a)、図8(b)に示すように、熱処理を行うことにより、第1単結晶鋼41と多結晶鋼板40との接触面401aから多結晶鋼板40の方向へ第1単結晶鋼41の結晶方位に倣って多結晶鋼が配向し、さらに多結晶鋼を構成する結晶粒が成長する。同様に、第2単結晶鋼42と多結晶鋼板40との接触面401bから多結晶鋼板40の方向へ第2単結晶鋼42の結晶方位に倣って多結晶鋼が配向し、さらに多結晶鋼を構成する結晶粒が成長する。つまり、単結晶鋼が結晶方位の核材、多結晶鋼板40が素材板となり、核材から素材板に向けて結晶成長が起こり、多結晶鋼板40を構成する多結晶の各結晶粒が配向し、結晶成長する。その結果、多結晶鋼板40内に方向性領域として、第1領域101と第2領域102とが形成され、図9(a)~(c)に示されるように第1領域101と第2領域とを有する、2方向性の電磁鋼板が得られる。第1領域101、第2領域102は、それぞれ所定の結晶方位を有する。 The crystal growth will be explained. As shown in FIGS. 2, 7 (a), 7 (b), 8 (a), and 8 (b), the first single crystal steel 41 and the polycrystalline steel plate 40 are subjected to heat treatment. The polycrystalline steel is oriented from the contact surface 401a toward the polycrystalline steel plate 40 according to the crystal orientation of the first single crystal steel 41, and the crystal grains constituting the polycrystalline steel grow further. Similarly, the polycrystalline steel is oriented from the contact surface 401b between the second single crystal steel 42 and the polycrystalline steel plate 40 toward the polycrystalline steel plate 40 according to the crystal orientation of the second single crystal steel 42, and further, the polycrystalline steel. The crystal grains that make up the above grow. That is, the single crystal steel serves as the core material in the crystal orientation, the polycrystalline steel plate 40 serves as the material plate, crystal growth occurs from the core material toward the material plate, and each crystal grain of the polycrystalline steel plate 40 is oriented. , Crystal growth. As a result, the first region 101 and the second region 102 are formed as directional regions in the polycrystalline steel sheet 40, and the first region 101 and the second region 102 are formed as shown in FIGS. 9A to 9C. A bidirectional electromagnetic steel sheet having the above can be obtained. The first region 101 and the second region 102 each have a predetermined crystal orientation.
 図4、図7~図9に示すように、第1単結晶鋼41及び第2単結晶鋼42を多結晶鋼板40の主面401の端部に配置する場合には、第1単結晶鋼41、第2単結晶鋼42、及び多結晶鋼板40を、単結晶鋼41、42の接触部側から加熱することが好ましい。接触部側は、例えば接触面401a、401b側である。この場合には、熱処理により、第1単結晶鋼41と第2単結晶鋼42の結晶方位に倣って多結晶鋼板40内で板厚方向NDに結晶成長が起こる。さらに多結晶鋼板40内の成長結晶の結晶方位に倣って板厚方向NDと直交方向に結晶成長が進行する。具体的には、図8(a)及び(b)に示されるように、例えば圧延方向RDに結晶成長が進行する。 As shown in FIGS. 4 and 7 to 9, when the first single crystal steel 41 and the second single crystal steel 42 are arranged at the end of the main surface 401 of the polycrystalline steel plate 40, the first single crystal steel It is preferable to heat the 41, the second single crystal steel 42, and the polycrystalline steel plate 40 from the contact portion side of the single crystal steels 41, 42. The contact portion side is, for example, the contact surfaces 401a and 401b side. In this case, the heat treatment causes crystal growth in the polycrystalline steel plate 40 in the plate thickness direction ND following the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42. Further, the crystal growth proceeds in the direction orthogonal to the plate thickness direction ND according to the crystal orientation of the grown crystal in the polycrystalline steel plate 40. Specifically, as shown in FIGS. 8A and 8B, crystal growth proceeds, for example, in the rolling direction RD.
 上記のような接触部側からの加熱では、図8(a)及び(b)に示すように、接触部側が高温になり、接触部側から例えば圧延方向RDに離れるにつれて低温となる温度勾配を形成することが好ましい。この場合には、接触部から離れた部分の結晶成長を抑制でき、先ず接触部の直下が第1単結晶鋼41、第2単結晶鋼42の結晶方位に倣って結晶成長する。次いで、圧延方向RDに離れる方向に結晶成長が起こり、多結晶鋼板40全体の結晶成長が実現される。例えば、傾斜炉内で熱処理を行うことにより、温度勾配を形成することができる。傾斜炉の他にも、例えば、レーザによる局所加熱、誘導加熱などにより、温度勾配を形成することができる。図8における白抜き矢印は、温度勾配を示し、矢印の先端が低温側、末端が高温側となる。多結晶鋼板40の酸化を防止するという観点から、加熱は非酸化性ガス雰囲気あるいは真空下で行うことが好ましい。 In the heating from the contact portion side as described above, as shown in FIGS. 8A and 8B, the temperature gradient at which the contact portion side becomes high and becomes low as the distance from the contact portion side becomes, for example, the rolling direction RD is increased. It is preferable to form. In this case, the crystal growth of the portion away from the contact portion can be suppressed, and first, the crystal grows directly below the contact portion in accordance with the crystal orientation of the first single crystal steel 41 and the second single crystal steel 42. Next, crystal growth occurs in the direction away from the rolling direction RD, and crystal growth of the entire polycrystalline steel sheet 40 is realized. For example, a temperature gradient can be formed by performing heat treatment in a tilting furnace. In addition to the tilting furnace, a temperature gradient can be formed by, for example, local heating by a laser, induction heating, or the like. The white arrows in FIG. 8 indicate the temperature gradient, and the tip of the arrow is on the low temperature side and the end is on the high temperature side. From the viewpoint of preventing oxidation of the polycrystalline steel sheet 40, heating is preferably performed in a non-oxidizing gas atmosphere or in a vacuum.
 また、図21を参照する実験例1のように、多結晶鋼板40の主面401の全体に重なるように単結晶鋼41、42を配置する場合には、例えば均一加熱により、結晶方位の配向を進行させることができる。均一加熱は、第1単結晶鋼41、第2単結晶鋼42を接触させた多結晶鋼板40の全体を均一に加熱する方法である。 Further, when the single crystal steels 41 and 42 are arranged so as to overlap the entire main surface 401 of the polycrystalline steel sheet 40 as in Experimental Example 1 with reference to FIG. 21, for example, the crystal orientation is oriented by uniform heating. Can be advanced. The uniform heating is a method of uniformly heating the entire polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with each other.
 熱処理の加熱温度は、多結晶鋼板40の再結晶温度以上、融点以下であることが好ましい。具体的には、加熱温度は、例えば500℃以上、1500℃以下で調整することができる。 The heating temperature of the heat treatment is preferably equal to or higher than the recrystallization temperature of the polycrystalline steel sheet 40 and lower than the melting point. Specifically, the heating temperature can be adjusted, for example, at 500 ° C. or higher and 1500 ° C. or lower.
 熱処理は、第1単結晶鋼41、第2単結晶鋼42、多結晶鋼板40を、これらの接触方向に加圧しながら行うことが好ましい。この場合には、接触面積の増加により結晶成長が促進される。加圧時の荷重は、400~1000Nであることが好ましい。この場合には、第1単結晶鋼41、第2単結晶鋼42、多結晶鋼板40にひずみを与えない範囲で両者を十分に接触させることができる。加圧しながらの熱処理は、具体的には、ホットプレス加工により行うことができる。 The heat treatment is preferably performed by pressing the first single crystal steel 41, the second single crystal steel 42, and the polycrystalline steel plate 40 in the contact direction thereof. In this case, crystal growth is promoted by increasing the contact area. The load at the time of pressurization is preferably 400 to 1000 N. In this case, the first single crystal steel 41, the second single crystal steel 42, and the polycrystalline steel sheet 40 can be sufficiently brought into contact with each other within a range that does not cause strain. Specifically, the heat treatment while pressurizing can be performed by hot pressing.
 熱処理前に多結晶鋼板40にひずみを付与することが好ましい。この場合には、熱処理時に再結晶が生じて結晶方位の配向がさらに促進される。ひずみは、例えば圧縮ひずみである。圧縮ひずみは、単結晶鋼41、42の接触前の多結晶鋼板40に対して、その板厚方向に付与される。 It is preferable to apply strain to the polycrystalline steel sheet 40 before the heat treatment. In this case, recrystallization occurs during the heat treatment, and the orientation of the crystal orientation is further promoted. The strain is, for example, compressive strain. The compressive strain is applied to the polycrystalline steel sheet 40 before the contact of the single crystal steels 41 and 42 in the plate thickness direction.
 圧縮ひずみの付与は、圧延加工、ショットブラスト加工、単軸圧縮加工等により行われる。好ましくは圧延加工がよい。この場合には、板厚方向全体に連続的にひずみを付与することができるため、生産性が向上する。また、圧延加工を行う場合には、圧下率を5~75%にすることが好ましい。圧下率を5%以上とすることにより、熱処理時に再結晶が生じて結晶方位の配向がさらにいっそう促進される。促進効果をさらに高めるためには、圧下率は、10%以上であることがより好ましく、25%以上であることがさらに好ましい。また、圧下率を75%以下とすることにより、圧延の加工性が低下せず生産性を維持できる。生産性の維持効果をさらに向上させるという観点から、圧下率は、60%以下であることがより好ましく、50%以下であることがさらに好ましい。 Compressive strain is applied by rolling, shot blasting, uniaxial compression, etc. Rolling is preferable. In this case, the strain can be continuously applied to the entire plate thickness direction, so that the productivity is improved. Further, when rolling, it is preferable to set the rolling reduction ratio to 5 to 75%. By setting the reduction ratio to 5% or more, recrystallization occurs during the heat treatment, and the orientation of the crystal orientation is further promoted. In order to further enhance the promoting effect, the reduction rate is more preferably 10% or more, further preferably 25% or more. Further, by setting the rolling reduction ratio to 75% or less, the productivity can be maintained without lowering the workability of rolling. From the viewpoint of further improving the productivity maintenance effect, the reduction rate is more preferably 60% or less, and further preferably 50% or less.
 このようにして、図4、図9(a)~(c)に示されるように、結晶方位がそれぞれ配向した第1領域101、第2領域102を有する電磁鋼板100を得ることができる。電磁鋼板100の結晶方位は、例えば電子線後方散乱回折法により測定される。電子線後方散乱回折法は、EBSD法とよばれる。EBSD法により、結晶方位のEBSDマップが得られる。EBSDマップでは、通常、結晶方位の違いが色の違いで示される。また、EBSDマップでは、逆極点図として結晶方位を表示することもできる。 In this way, as shown in FIGS. 4 and 9 (a) to 9 (c), it is possible to obtain the electrical steel sheet 100 having the first region 101 and the second region 102 in which the crystal orientations are oriented, respectively. The crystal orientation of the electrical steel sheet 100 is measured by, for example, an electron backscatter diffraction method. The electron backscatter diffraction method is called the EBSD method. An EBSD map of crystal orientation is obtained by the EBSD method. In EBSD maps, differences in crystal orientation are usually indicated by differences in color. Further, in the EBSD map, the crystal orientation can be displayed as a reverse pole figure.
 図9(c)に示されるように、電磁鋼板100は板内に第1領域101、第2領域102を有するが、第1領域101と第2領域102との境界には、これらの結晶方位が干渉し合った領域が形成される場合がある。この領域では、第1領域101、第2領域102とはさらに異なる結晶方位を有し、方向性領域101、102よりも粒径の小さな1つ以上の結晶粒が形成される傾向がある。 As shown in FIG. 9 (c), the electrical steel sheet 100 has a first region 101 and a second region 102 in the plate, and these crystal orientations are formed at the boundary between the first region 101 and the second region 102. Areas may be formed in which they interfere with each other. In this region, one or more crystal grains having a crystal orientation further different from that of the first region 101 and the second region 102 and having a particle size smaller than that of the directional regions 101 and 102 tend to be formed.
 電磁鋼板100における第1領域101、第2領域102は、粒径が1.5mm以上の同一の結晶粒を指標とすることができる。ここでいう同一は、方位差15°以内であること意味する。方位差15°以内は一般的な小角粒界の角度である。方位差、粒径は、EBSD像により測定することができる。第1領域101、第2領域102の粒径については、実験例2にて説明する。電磁鋼板100における第1領域101、第2領域102は、それぞれ単一の結晶粒からなることが特に好ましい。 In the first region 101 and the second region 102 of the electromagnetic steel sheet 100, the same crystal grains having a particle size of 1.5 mm or more can be used as an index. The same here means that the directional difference is within 15 °. An orientation difference of 15 ° or less is a general angle of small-angle grain boundaries. The orientation difference and particle size can be measured by the EBSD image. The particle size of the first region 101 and the second region 102 will be described in Experimental Example 2. It is particularly preferable that the first region 101 and the second region 102 of the electrical steel sheet 100 are each composed of a single crystal grain.
 圧延方向RDは、例えば結晶組織を観察することによりわかる。圧延板では、結晶組織が例えば繊維状組織になり、結晶組織を構成する結晶粒の長手方向が圧延方向RDとなる。結晶組織は、例えば、走査型電子顕微鏡観察、EBSD法により調べることができる。 The rolling direction RD can be found, for example, by observing the crystal structure. In the rolled plate, the crystal structure is, for example, a fibrous structure, and the longitudinal direction of the crystal grains constituting the crystal structure is the rolling direction RD. The crystal structure can be examined by, for example, scanning electron microscopy and EBSD method.
 上記の配置工程、熱処理工程により、2方向性の電磁鋼板100を製造することができる。電磁鋼板100は、第1領域101、第2領域102の境界に、ギャップ、接合部、接合面を実質的に有しておらず、第1領域101、第2領域102の境界とその周囲との間で電磁鋼板100の表面粗さはほとんど変化しない。 The bidirectional electromagnetic steel sheet 100 can be manufactured by the above-mentioned arrangement step and heat treatment step. The electrical steel sheet 100 does not substantially have a gap, a joint portion, or a joint surface at the boundary between the first region 101 and the second region 102, and the boundary between the first region 101 and the second region 102 and its surroundings. The surface roughness of the electrical steel sheet 100 hardly changes between them.
 回転機コア1は、2方向性の電磁鋼板100を用いて次のようにして製造される。図10、図11に示されるように、まず、電磁鋼板100から櫛状シート105を打ち抜く。このような操作を、以下適宜、「打ち抜き工程」という。櫛状シート105は、帯状コアバック部20と、多数の平行ティース部30とを有する。帯状コアバック部20は、電磁鋼板100の第1領域101の結晶方位に沿う方向に帯状に延び、平行ティース部30は、第2領域102の結晶方位に沿う方向に延びる。帯状コアバック部20は、回転機コア1のコアバック部2に対応する部分であり、平行ティース部30は、回転機コア1のティース部3に対応する部分である。 The rotating machine core 1 is manufactured as follows using a bidirectional electromagnetic steel plate 100. As shown in FIGS. 10 and 11, first, the comb-shaped sheet 105 is punched from the electromagnetic steel plate 100. Such an operation is hereinafter appropriately referred to as a “punching process”. The comb-shaped sheet 105 has a strip-shaped core back portion 20 and a large number of parallel tooth portions 30. The strip-shaped core back portion 20 extends in a strip shape in the direction along the crystal orientation of the first region 101 of the electrical steel sheet 100, and the parallel teeth portion 30 extends in the direction along the crystal orientation of the second region 102. The strip-shaped core back portion 20 is a portion corresponding to the core back portion 2 of the rotary machine core 1, and the parallel teeth portion 30 is a portion corresponding to the teeth portion 3 of the rotary machine core 1.
 第1領域101の結晶方位は、電磁鋼板100の外観からは不明であるが、例えば、その製造時における第1単結晶の配置パターンと電磁鋼板100の圧延方向との関係から、予め決定しておくことができる。また、第1領域101と第2領域102との境界は、例えば、第1単結晶鋼41と第2単結晶鋼42との境界位置から判断することができる。例えば境界位置に基づいて、多結晶鋼板40、熱処理後の電磁鋼板100に予め位置目印を形成しておくことにより、第1領域101、第2領域102、これらの境界を、分析などを行うことなく予測することができる。この場合には、生産性が向上する。 The crystal orientation of the first region 101 is unknown from the appearance of the electrical steel sheet 100, but is determined in advance from, for example, the relationship between the arrangement pattern of the first single crystal at the time of its manufacture and the rolling direction of the electrical steel sheet 100. Can be left. Further, the boundary between the first region 101 and the second region 102 can be determined from, for example, the boundary position between the first single crystal steel 41 and the second single crystal steel 42. For example, by forming position marks on the polycrystalline steel sheet 40 and the electromagnetic steel sheet 100 after heat treatment in advance based on the boundary position, the first region 101, the second region 102, and the boundary between them can be analyzed. Can be predicted without. In this case, productivity is improved.
 櫛状シート105の打ち抜きは、例えば、櫛状シート105における帯状コアバック部20と平行ティース部30の境界が、第1領域101と第2領域102との境界となるように行うことができる。この場合には、帯状コアバック部20が第1領域101の結晶方位を有し、平行ティース部30が第2領域102の結晶方位を有する。 The comb-shaped sheet 105 can be punched, for example, so that the boundary between the strip-shaped core back portion 20 and the parallel teeth portion 30 in the comb-shaped sheet 105 becomes the boundary between the first region 101 and the second region 102. In this case, the band-shaped core back portion 20 has the crystal orientation of the first region 101, and the parallel teeth portion 30 has the crystal orientation of the second region 102.
 次に、櫛状シート105を螺旋状に巻回させる。この操作を、以下適宜「螺旋加工工程」という。巻回は、図10,図12に示されるように、例えば、帯状コアバック部20が外側となり、平行ティース部30が内側になるように行うことができる。一方、巻回の図示を省略するが、帯状コアバック部20が内側となり、平行ティース部30が外側になるように巻回を行ってもよい。平行ティース部30を内側にしつつ巻回を行うと、インナーロータ型モータに好適な回転機コア1が得られる。一方、平行ティース部30を外側にしつつ巻回を行うと、アウターロータ型モータに好適な回転機コア1が得られる。 Next, the comb-shaped sheet 105 is spirally wound. This operation is appropriately referred to as a "spiral processing process". As shown in FIGS. 10 and 12, for example, the winding can be performed so that the strip-shaped core back portion 20 is on the outside and the parallel teeth portion 30 is on the inside. On the other hand, although the winding is not shown, the winding may be performed so that the band-shaped core back portion 20 is on the inside and the parallel teeth portion 30 is on the outside. When winding is performed with the parallel teeth portion 30 inside, a rotating machine core 1 suitable for an inner rotor type motor can be obtained. On the other hand, when the winding is performed with the parallel teeth portion 30 on the outside, a rotary machine core 1 suitable for an outer rotor type motor can be obtained.
 図12に示されるように、帯状コアバック部20を圧延しながら櫛状シート105を巻回させることが好ましい。この場合には、巻回を容易に行うことができる。 As shown in FIG. 12, it is preferable to wind the comb-shaped sheet 105 while rolling the strip-shaped core back portion 20. In this case, winding can be easily performed.
 螺旋加工工程は、例えば図12に示す成形機5を用いて行われる。成形機5は、曲げ装置51と巻取装置57とを備える。曲げ装置51は、円筒ローラ513、テーパローラ514を備える。円筒ローラ513とテーパローラ514との間に帯状コアバック部20が送り込まれると、帯状コアバック部20が円筒ローラ513、テーパローラ514により圧延されつつ巻回され、巻取装置57の巻取軸58に螺旋状に巻き取られる。螺旋加工工程では、櫛状シート105が螺旋状に巻回されながら積層される。巻取後、必要に応じて、溶接、熱処理、矯正、面出し、切削、バリ取り、洗浄などの仕上げ工程が行われる。このようにして、図1~図3に示すように螺旋型の回転機コア1Aを得ることができる。 The spiral processing step is performed using, for example, the molding machine 5 shown in FIG. The molding machine 5 includes a bending device 51 and a winding device 57. The bending device 51 includes a cylindrical roller 513 and a taper roller 514. When the strip-shaped core back portion 20 is fed between the cylindrical roller 513 and the taper roller 514, the strip-shaped core back portion 20 is wound while being rolled by the cylindrical roller 513 and the taper roller 514, and is wound around the winding shaft 58 of the winding device 57. It is wound in a spiral shape. In the spiral processing step, the comb-shaped sheets 105 are laminated while being spirally wound. After winding, finishing processes such as welding, heat treatment, straightening, surface facing, cutting, deburring, and cleaning are performed as necessary. In this way, the spiral rotary machine core 1A can be obtained as shown in FIGS. 1 to 3.
 図1~図3に示されるように、本形態の回転機コア1は、コアバック部2における電磁鋼板100の結晶方位が周方向Xに沿って揃っている。また、ティース部3における電磁鋼板100の結晶方位がティース部3の延び方向に沿って揃っている。そのため、コアバック部2の磁化容易軸は周方向Xに沿う方向となり、ティース部3の磁化容易軸は伸長方向に沿う方向となる。これは、コアバック部2及びティース部3の磁化容易軸の理想的な方向である。したがって、回転機コア1は、磁気回路中での磁化が容易であり、鉄損が低い。 As shown in FIGS. 1 to 3, in the rotary machine core 1 of this embodiment, the crystal orientations of the electromagnetic steel plates 100 in the core back portion 2 are aligned along the circumferential direction X. Further, the crystal orientations of the electromagnetic steel sheets 100 in the teeth portion 3 are aligned along the extending direction of the teeth portions 3. Therefore, the easy-magnetization axis of the core back portion 2 is in the direction along the circumferential direction X, and the easy-magnetization axis of the teeth portion 3 is in the direction along the extension direction. This is the ideal direction of the easy axis of magnetization of the core back portion 2 and the teeth portion 3. Therefore, the rotating machine core 1 is easily magnetized in the magnetic circuit and has a low iron loss.
 また、回転機コア1では、コアバック部2とティース部3とが一体的に形成されている。つまり、コアバック部2とティース部3との間に接合面などがない。その結果、従来のようにコアバック部2とティース部3との接合によって形成される、磁気抵抗の大きな空気相がない。これにより、空気相によるヒステリシス損の増大が防止され、回転機コア1はヒステリシス損が低い。 Further, in the rotary machine core 1, the core back portion 2 and the teeth portion 3 are integrally formed. That is, there is no joint surface between the core back portion 2 and the teeth portion 3. As a result, there is no air phase having a large magnetic resistance formed by joining the core back portion 2 and the teeth portion 3 as in the conventional case. This prevents an increase in the hysteresis loss due to the air phase, and the rotating machine core 1 has a low hysteresis loss.
 回転機コア1は、回転機に用いられるコアであり、例えば、ステータコア、ロータコアである。回転機としては、例えば、モータジェネレータ(つまり、MG)、オルタネータ、インテグレーテッド・スターター・ジェネレーター(つまり、ISG)である。 The rotating machine core 1 is a core used for a rotating machine, for example, a stator core and a rotor core. The rotating machine is, for example, a motor generator (that is, MG), an alternator, and an integrated starter generator (that is, ISG).
(変形例1)
 本例は、螺旋型の回転機コア1Aを連続的に製造する例である。なお、変形例1以降において用いた符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
(Modification example 1)
This example is an example of continuously manufacturing the spiral rotary machine core 1A. In addition, among the reference numerals used in the first and subsequent modifications, the same reference numerals as those used in the above-described embodiments represent the same components and the like as those in the above-mentioned embodiments, unless otherwise specified.
 螺旋型回転機コア1Aは、図13に示す製造ライン6で連続的に製造される。この製造ライン6は、巻出し機61、予備成形機62、加熱炉63、プレス機64、バッファー装置65、および成形機5から構成されている。回転機コア1の素材となる「板材」としての多結晶鋼板40は、コイル状に巻かれた状態から巻出し機61により巻き出され、予備成形機62に供給される。 The spiral rotary machine core 1A is continuously manufactured on the production line 6 shown in FIG. The production line 6 includes an unwinding machine 61, a preforming machine 62, a heating furnace 63, a press machine 64, a buffer device 65, and a molding machine 5. The polycrystalline steel plate 40 as the "plate material" used as the material of the rotary machine core 1 is unwound by the unwinding machine 61 from the coiled state and supplied to the preforming machine 62.
 予備成形機62は、巻出し機61から供給される多結晶鋼板40を厚み方向に挟む一対の円筒ローラ621、622を備えている。予備成形機62の円筒ローラ621、622にて多結晶鋼板40の圧延を行うことにより、多結晶鋼板40にひずみを導入することができる。ひずみは例えば圧縮ひずみである。ひずみの導入により、熱処理時に再結晶が生じて結晶方位の配向がさらにいっそう促進される。 The preforming machine 62 includes a pair of cylindrical rollers 621 and 622 that sandwich the polycrystalline steel plate 40 supplied from the unwinding machine 61 in the thickness direction. Strain can be introduced into the polycrystalline steel sheet 40 by rolling the polycrystalline steel sheet 40 with the cylindrical rollers 621 and 622 of the preforming machine 62. The strain is, for example, compressive strain. The introduction of strain causes recrystallization during the heat treatment, further promoting the orientation of the crystal orientation.
 加熱炉63は、台座631、加圧プレス632、単結晶鋼供給装置、単結晶鋼除去装置、炉壁に内蔵されたヒータ、壁面に設けられた熱風の噴出口などを備える。台座631は例えば可動式である。加熱炉63におけるヒータ、噴出口、単結晶鋼供給装置、単結晶鋼除去装置の図示は省略する。単結晶鋼供給装置は、多結晶鋼板40の主面401に第1単結晶鋼41、第2単結晶鋼42を供給する。台座631と加圧プレス632により、多結晶鋼板40に配置された第1単結晶鋼41、第2単結晶鋼42を加圧できる。加熱炉63の噴出口から炉内に熱が供給される。単結晶鋼除去装置により、加熱後に第1単結晶鋼41、第2単結晶鋼42が除去される。除去は例えば切断により行われる。これにより、2方向性の電磁鋼板100が製造される。加熱炉63は、実施形態1における配置工程、熱処理工程を担う装置である。 The heating furnace 63 includes a pedestal 631, a pressure press 632, a single crystal steel supply device, a single crystal steel removal device, a heater built in the furnace wall, a hot air outlet provided on the wall surface, and the like. The pedestal 631 is, for example, movable. The heater, the spout, the single crystal steel supply device, and the single crystal steel removing device in the heating furnace 63 are not shown. The single crystal steel supply device supplies the first single crystal steel 41 and the second single crystal steel 42 to the main surface 401 of the polycrystalline steel sheet 40. The pedestal 631 and the pressure press 632 can pressurize the first single crystal steel 41 and the second single crystal steel 42 arranged on the polycrystalline steel plate 40. Heat is supplied into the furnace from the outlet of the heating furnace 63. The single crystal steel removing device removes the first single crystal steel 41 and the second single crystal steel 42 after heating. Removal is done, for example, by cutting. As a result, the bidirectional electromagnetic steel sheet 100 is manufactured. The heating furnace 63 is an apparatus responsible for the arrangement step and the heat treatment step in the first embodiment.
 プレス機64は、ボルスタ641上に設けられている下金型642と、スライド643に設けられている上金型644と、加熱炉63から供給される電磁鋼板100を下金型642と上金型644との間に間欠的に送り出す送り装置645とを備えている。上金型644は、下金型642に対して接近および離間するように往復移動可能である。上金型644および下金型642は、互いに接近するように相対移動するとき図10に示すように、電磁鋼板100に打ち抜き加工を施し、櫛状シート105を形成する。プレス機64は、櫛状シート105を電磁鋼板100から打ち抜く工程(つまり打ち抜き工程)を担う装置である。 The press machine 64 uses a lower die 642 provided on the bolster 641, an upper die 644 provided on the slide 643, and an electromagnetic steel plate 100 supplied from the heating furnace 63 as a lower die 642 and an upper die. It is provided with a feeding device 645 that intermittently feeds the die 644. The upper mold 644 can be reciprocated so as to approach and separate from the lower mold 642. When the upper die 644 and the lower die 642 move relative to each other so as to approach each other, the electromagnetic steel plate 100 is punched to form a comb-shaped sheet 105 as shown in FIG. The press machine 64 is a device responsible for punching a comb-shaped sheet 105 from an electromagnetic steel plate 100 (that is, a punching step).
 バッファー装置65は、プレス機64から間欠的に供給される櫛状シート105を収容しつつ、収容した櫛状シート105を成形機5に連続的に供給する。成形機5は、曲げ装置51および巻取装置57を備えている。 The buffer device 65 accommodates the comb-shaped sheet 105 intermittently supplied from the press machine 64, and continuously supplies the accommodated comb-shaped sheet 105 to the molding machine 5. The molding machine 5 includes a bending device 51 and a winding device 57.
 図14および図15に示すように、曲げ装置51は、モータ52と、モータ52の出力軸に連結されている減速機53と、減速機53の出力部材に連結されている円筒ローラ513と、円筒ローラ513に隣接する位置で回転可能に設けられているテーパローラ514と、テーパローラ514を円筒ローラ513に対し接近および離間する方向へ移動可能な荷重制御装置56とを備えている。 As shown in FIGS. 14 and 15, the bending device 51 includes a motor 52, a speed reducer 53 connected to the output shaft of the motor 52, and a cylindrical roller 513 connected to the output member of the speed reducer 53. It includes a taper roller 514 that is rotatably provided at a position adjacent to the cylindrical roller 513, and a load control device 56 that can move the taper roller 514 in a direction that approaches and separates from the cylindrical roller 513.
 円筒ローラ513およびテーパローラ514は、バッファー装置65から供給される櫛状シート105の帯状コアバック部20に圧延加工を施す。荷重制御装置56は、テーパローラ514から櫛状シート105に作用する荷重を所定値に制御する。円筒ローラ513とテーパローラ514との間の隙間は、櫛状シート105の帯状コアバック部20の一端部25から他端部26にかけて徐々に小さくなっている。これにより、櫛状シート105の帯状コアバック部20は、長手方向の延び量が一端部205(具体的には内側端部205)から他端部206(具体的には外側端部206)にかけて大きくなるように圧延され、幅方向に湾曲するように曲げられる。 The cylindrical roller 513 and the taper roller 514 roll the strip-shaped core back portion 20 of the comb-shaped sheet 105 supplied from the buffer device 65. The load control device 56 controls the load acting on the comb-shaped sheet 105 from the taper roller 514 to a predetermined value. The gap between the cylindrical roller 513 and the taper roller 514 gradually decreases from one end 25 to the other end 26 of the strip-shaped core back portion 20 of the comb-shaped sheet 105. As a result, the strip-shaped core back portion 20 of the comb-shaped sheet 105 extends from one end portion 205 (specifically, the inner end portion 205) to the other end portion 206 (specifically, the outer end portion 206) in the longitudinal direction. It is rolled to be large and bent to be curved in the width direction.
 巻取装置57は、曲げ装置51による圧延後のシートを巻取軸58に螺旋状に巻きつつ積層する。成形機5は、櫛状シート105の帯状コアバック部20を幅方向に湾曲するように曲げた後に螺旋状に巻きつつ積層する螺旋工工程を担う装置である。積層体10は、軸方向長さが所定値になると櫛状シート105から切り離される。その後、必要に応じて行われる各種仕上げ工程を経て螺旋型の回転機コア1Aが得られる。以上のように、配置工程、熱処理工程、打ち抜き工程、螺旋加工工程を連続的に行うことにより、螺旋型回転機コア1Aを製造することができる。 The take-up device 57 spirally winds the sheet rolled by the bending device 51 around the take-up shaft 58 and stacks the sheets. The molding machine 5 is a device responsible for a spiraling process in which a strip-shaped core back portion 20 of a comb-shaped sheet 105 is bent so as to be curved in the width direction and then spirally wound and laminated. The laminated body 10 is separated from the comb-shaped sheet 105 when the axial length reaches a predetermined value. After that, the spiral rotary machine core 1A is obtained through various finishing steps performed as needed. As described above, the spiral rotary machine core 1A can be manufactured by continuously performing the arrangement step, the heat treatment step, the punching step, and the spiral processing step.
(実施形態2)
 積層型の回転機コア1Bの実施形態について、図16~図18を参照して説明する。回転機コア1は、例えば積層状態の電磁鋼板100から構成され、本形態での積層状態は、図16に示されるように環状の電磁鋼板100が多数積層されることにより形成されている。以下、環状の電磁鋼板100をコア板104という。環状は、具体的には、円環板状である。
(Embodiment 2)
An embodiment of the laminated rotary machine core 1B will be described with reference to FIGS. 16 to 18. The rotary machine core 1 is composed of, for example, a laminated electromagnetic steel sheet 100, and the laminated state in this embodiment is formed by laminating a large number of annular electromagnetic steel sheets 100 as shown in FIG. Hereinafter, the annular electromagnetic steel plate 100 is referred to as a core plate 104. Specifically, the ring shape is an annular plate shape.
 図16に示されるように、積層型回転機コア1Bは、コア板104を多数有しており、積層型回転機コア1Bでは、多数のコア板104が積層されて積層体10が形成されている。積層型回転機コア1Bでは、中心軸Aが揃うように環状のコア板104が同軸配置されている。積層型回転機コア1Bは、軸方向Zを貫通する貫通穴19を有する。 As shown in FIG. 16, the laminated rotary machine core 1B has a large number of core plates 104, and in the laminated rotary machine core 1B, a large number of core plates 104 are laminated to form a laminated body 10. There is. In the laminated rotary machine core 1B, the annular core plates 104 are coaxially arranged so that the central axes A are aligned. The laminated rotary machine core 1B has a through hole 19 penetrating the axial direction Z.
 各コア板104は、環状のコアバック部2と、その中心(具体的には、環の中心)に向かって延びる多数のティース部3とを有する。図17に示されるように、コアバック部2を構成する鋼の結晶方位がコア板104の周方向Xに沿う方向に揃っている。ティース部3を構成する鋼の結晶方位がティース部3の伸長方向に沿う方向に揃っている。コアバック部2とティース部3とが一体的に形成されている。その他は、実施形態1と同様の構成とすることができる。 Each core plate 104 has an annular core back portion 2 and a large number of teeth portions 3 extending toward the center thereof (specifically, the center of the ring). As shown in FIG. 17, the crystal orientations of the steels constituting the core back portion 2 are aligned in the direction along the circumferential direction X of the core plate 104. The crystal orientations of the steels constituting the teeth portion 3 are aligned in the direction along the extension direction of the teeth portions 3. The core back portion 2 and the teeth portion 3 are integrally formed. Others may have the same configuration as that of the first embodiment.
 積層型回転機コア1Bは、実施形態1と同様の2方向性の電磁鋼板100を用いて次のようにして製造される。まず、図18に示すように、実施形態1と同様に、打ち抜き工程により電磁鋼板100から櫛状シート105を得る。 The laminated rotary machine core 1B is manufactured as follows by using the same bidirectional electromagnetic steel plate 100 as in the first embodiment. First, as shown in FIG. 18, a comb-shaped sheet 105 is obtained from the electromagnetic steel sheet 100 by a punching step as in the first embodiment.
 次に、巻回加工工程を行う。巻回加工工程では、例えば平行ティース部30を内側にして櫛状シート105を環状に巻回させる。これにより、帯状コアバック部20が環状のコアバック部2を形成し、平行ティース部30がティース部3を形成する。そして、各ティース部3の伸長方向が径方向となるように加工される。このようにして、コア板104を得る。 Next, the winding process is performed. In the winding process, for example, the comb-shaped sheet 105 is wound in an annular shape with the parallel teeth portion 30 inside. As a result, the strip-shaped core back portion 20 forms the annular core back portion 2, and the parallel teeth portion 30 forms the teeth portion 3. Then, each tooth portion 3 is processed so that the extension direction is the radial direction. In this way, the core plate 104 is obtained.
 次に、積層工程を行う。積層工程では、多数のコア板104を積層する。積層時には、環状のコア板104の中心Oが揃うように同軸状にコア板を積層する。このようにして、図16に示すように、積層型回転機コア1Bを得ることができる。 Next, the laminating process is performed. In the laminating step, a large number of core plates 104 are laminated. At the time of laminating, the core plates are coaxially laminated so that the centers O of the annular core plates 104 are aligned. In this way, as shown in FIG. 16, the laminated rotary machine core 1B can be obtained.
 本形態の回転機コア1Bは、積層型であり、多数のコア板104が積層されている。そのため、渦電流を抑制して鉄損を低減するという効果が得られる。その他にも、本形態の回転機コア1Bは、実施形態1と同様の効果を奏する。 The rotary machine core 1B of this embodiment is a laminated type, and a large number of core plates 104 are laminated. Therefore, the effect of suppressing the eddy current and reducing the iron loss can be obtained. In addition, the rotary machine core 1B of the present embodiment has the same effect as that of the first embodiment.
(比較形態1)
 多結晶鋼板40から構成された回転機コア91について、図19を参照しながら説明する。図19に示すように、多結晶鋼板40は、結晶方位がランダムな無方向性の電磁鋼板100であり、本形態の回転機コア91は多結晶鋼板40で構成されている。つまり、回転機コア91は、コアバック部911、ティース部912がいずれも無方向性電磁鋼板から構成されている。その他の構成は、実施形態1又は実施形態2と同様に、例えば螺旋型、積層型とすることができるが、本形態ではコアバック部911、ティース部912で磁化容易軸が揃わず、鉄損が大きい。したがって、回転機コア91は、実施形態1及び2に比べて磁気特性が劣る。
(Comparison form 1)
The rotary machine core 91 composed of the polycrystalline steel plate 40 will be described with reference to FIG. As shown in FIG. 19, the polycrystalline steel plate 40 is a non-oriented electrical steel plate 100 having a random crystal orientation, and the rotary machine core 91 of the present embodiment is composed of the polycrystalline steel plate 40. That is, in the rotary machine core 91, both the core back portion 911 and the teeth portion 912 are made of non-oriented electrical steel sheets. Other configurations may be, for example, a spiral type or a laminated type, as in the first or second embodiment, but in this embodiment, the core back portion 911 and the teeth portion 912 do not have easy-to-magnetize axes, and iron loss. Is big. Therefore, the rotating machine core 91 is inferior in magnetic characteristics to the first and second embodiments.
(比較形態2)
 コアバック部921とティース部922とが接合された、分割式の回転機コア92について、図20を参照しながら説明する。図20に示すように、本形態の回転機コア92では、コアバック部921と、ティース部922とが、それぞれ別体の電磁鋼板100から構成されており、コアバック部921と、ティース部922とが接合されている。つまり、コアバック部921とティース部922との間に接合部925がある。接合部925には、少なくとも微細な隙間が生じるおそれがある。その他の構成は、実施形態1又は実施形態2と同様に、例えば螺旋型、積層型とすることができるが、接合部や隙間は、回転機コア92のヒステリシス損等の鉄損を増大させる。その結果、モータ等の回転機のロスが増大し、電力と動力との変換効率が悪くなる。
(Comparison form 2)
A split-type rotary machine core 92 in which the core back portion 921 and the teeth portion 922 are joined will be described with reference to FIG. As shown in FIG. 20, in the rotary machine core 92 of the present embodiment, the core back portion 921 and the teeth portion 922 are each composed of a separate electromagnetic steel plate 100, and the core back portion 921 and the teeth portion 922 are formed. Is joined. That is, there is a joint portion 925 between the core back portion 921 and the teeth portion 922. At least fine gaps may be formed in the joint portion 925. Other configurations may be, for example, a spiral type or a laminated type as in the first or second embodiment, but the joints and gaps increase iron loss such as hysteresis loss of the rotating machine core 92. As a result, the loss of a rotating machine such as a motor increases, and the conversion efficiency between electric power and power deteriorates.
(実験例1)
 本例は、2方向性の電磁鋼板100を製造し、その結晶方位を調べる例である。本例では、多結晶鋼板40の主面401の全面に単結晶鋼41、42を配置して、2方向性の電磁鋼板100作製する。
(Experimental Example 1)
This example is an example of manufacturing a bidirectional electromagnetic steel sheet 100 and examining the crystal orientation thereof. In this example, the single crystal steels 41 and 42 are arranged on the entire surface of the main surface 401 of the polycrystalline steel sheet 40 to manufacture the bidirectional electromagnetic steel sheet 100.
 図21に示すように、まず、第1単結晶鋼41と、第2単結晶鋼42と、多結晶鋼板40を準備した。多結晶鋼板40は、フェライト系鋼板から構成されている。多結晶鋼板40は、結晶方位が異なる多数の結晶粒を有する多結晶である。第1単結晶鋼41、第2単結晶鋼42は、フェライト系鋼板から構成されている。第1単結晶鋼41、第2単結晶鋼42は、単結晶である。 As shown in FIG. 21, first, the first single crystal steel 41, the second single crystal steel 42, and the polycrystalline steel sheet 40 were prepared. The polycrystalline steel sheet 40 is made of a ferritic steel sheet. The polycrystalline steel sheet 40 is a polycrystalline steel sheet having a large number of crystal grains having different crystal orientations. The first single crystal steel 41 and the second single crystal steel 42 are made of ferritic steel sheets. The first single crystal steel 41 and the second single crystal steel 42 are single crystals.
 具体的には、多結晶鋼板40としては、Siを2.5wt%含有する無方向性電磁鋼板を用いた。多結晶鋼板40は、圧延方向RDの長さLが1000mm、圧延直角方向TDの幅Bが300mm、板厚tが0.8mmである。また、第1単結晶鋼41、第2単結晶鋼42としては、Siを3wt%含有する方向性電磁鋼板を用いた。この方向性電磁鋼板は、特定の結晶方位を有する単結晶鋼から構成されている。方向性電磁鋼板は、圧延方向RDの長さLが1000mm、圧延直角方向TDの幅Bが300mm、板厚tが0.23mmである。 Specifically, as the polycrystalline steel sheet 40, a non-oriented electrical steel sheet containing 2.5 wt% of Si was used. The polycrystalline steel sheet 40 has a length L of the rolling direction RD of 1000 mm, a width B of the rolling perpendicular direction TD of 300 mm, and a plate thickness t of 0.8 mm. Further, as the first single crystal steel 41 and the second single crystal steel 42, directional electromagnetic steel sheets containing 3 wt% of Si were used. This grain-oriented electrical steel sheet is composed of a single crystal steel having a specific crystal orientation. The grain-oriented electrical steel sheet has a length L in the rolling direction RD of 1000 mm, a width B in the rolling perpendicular direction TD of 300 mm, and a plate thickness t of 0.23 mm.
 多結晶鋼板40に圧下率12.5%の圧延を行い、最終板厚tを0.7mmにした。次いで、多結晶鋼板40を、圧延方向RDの長さL60mm、圧延直角方向TDの幅B50mmのサイズに切り出した。また、板状の単結晶鋼から、圧延方向RDのL60mm、圧延直角方向の幅B25mmの第1単結晶鋼41と、圧延方向RDの長さL25mm、圧延直角方向TDの幅B60mmの第2単結晶鋼42を切り出した。 The polycrystalline steel sheet 40 was rolled with a rolling reduction of 12.5% to bring the final plate thickness t to 0.7 mm. Next, the polycrystalline steel sheet 40 was cut into a size having a length L60 mm in the rolling direction RD and a width B50 mm in the rolling perpendicular direction TD. Further, from the plate-shaped single crystal steel, the first single crystal steel 41 having a rolling direction RD of L60 mm and a width B25 mm in the rolling perpendicular direction, and the second single crystal steel 41 having a rolling direction RD length L25 mm and a rolling perpendicular direction TD width B60 mm. Crystall steel 42 was cut out.
 次に、切り出した後の、多結晶鋼板40、第1単結晶鋼41、及び第2単結晶鋼42の表面を研磨し、酸化被膜を除去し、表面粗さをRa<3.2μmにした。次いで、図21(a)及び(b)に示すように、第1単結晶鋼41と第2単結晶鋼42とを、多結晶鋼板40の主面401に配置して接触させた。このとき、第1単結晶鋼41と、第2単結晶鋼42との結晶方位が相互に直交するように、第1単結晶鋼41及び第2単結晶鋼42を多結晶鋼板40に配置した。 Next, the surfaces of the polycrystalline steel sheet 40, the first single crystal steel 41, and the second single crystal steel 42 after being cut out were polished to remove the oxide film, and the surface roughness was set to Ra <3.2 μm. .. Next, as shown in FIGS. 21A and 21B, the first single crystal steel 41 and the second single crystal steel 42 were placed on the main surface 401 of the polycrystalline steel sheet 40 and brought into contact with each other. At this time, the first single crystal steel 41 and the second single crystal steel 42 are arranged on the polycrystalline steel plate 40 so that the crystal orientations of the first single crystal steel 41 and the second single crystal steel 42 are orthogonal to each other. ..
 次に、第1単結晶鋼41及び第2単結晶鋼42を接触させた多結晶鋼板40の熱処理を行った。以下、第1単結晶鋼41及び第2単結晶鋼42を接触させた多結晶鋼板40のことを被処理材40Aという。熱処理は、図22に示すように加熱炉63内で行った。加熱炉63としては、富士電機株式会社製の抵抗加熱式真空ホットプレス炉を用いた。加熱炉63は、台座631、加圧プレス632、炉壁に内蔵されたヒータ、壁面に設けられた熱風Hの噴出口などを備える。ヒータ、噴出口の図示は省略する。 Next, the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 were brought into contact with each other was heat-treated. Hereinafter, the polycrystalline steel sheet 40 in which the first single crystal steel 41 and the second single crystal steel 42 are brought into contact with each other is referred to as a material to be treated 40A. The heat treatment was performed in the heating furnace 63 as shown in FIG. As the heating furnace 63, a resistance heating type vacuum hot press furnace manufactured by Fuji Electric Co., Ltd. was used. The heating furnace 63 includes a pedestal 631, a pressure press 632, a heater built in the furnace wall, an outlet for hot air H provided on the wall surface, and the like. The heater and spout are not shown.
 熱処理は、以下のようにして行った。まず、台座631に、被処理材40Aを配置した。次いで、加熱炉63内の真空度を10-3Pa以下にした後、加圧プレス632を作動させて被処理材40Aを板厚方向NDに600Nで加圧しながら、温度1100℃まで6℃/minで昇温し、その後2時間保持し、自然冷却にて8時間程度冷却した。このようにして、図21(c)に示すように、相互に結晶方位の異なる第1領域101、第2領域102を有する、2方向性の電磁鋼板100を得た。 The heat treatment was carried out as follows. First, the material to be treated 40A was placed on the pedestal 631. Next, after the degree of vacuum in the heating furnace 63 is reduced to 10 -3 Pa or less, the pressure press 632 is operated to pressurize the material 40A to be processed in the plate thickness direction ND at 600 N, and the temperature is 6 ° C./ The temperature was raised in min, then held for 2 hours, and cooled by natural cooling for about 8 hours. In this way, as shown in FIG. 21C, a bidirectional electromagnetic steel sheet 100 having a first region 101 and a second region 102 having different crystal orientations was obtained.
 次に、電磁鋼板100の結晶方位を調べた。結晶方位の測定には、EBSD法が用いられ、その測定装置として日本電子株式会社製のJSM-7100Fを用いた。測定条件は、測定倍率100倍、ステップサイズ1μm、フレーム速度140fps、照射電圧15kVである。その結果を図23及び図25に示す。なお、図23には、EBSD像、彩度ゼロのEBSD像と、EBSD像より抽出した角度マップを示す。図23の角度マップの横軸は距離を示し、縦軸は、方位差(つまり、方位におけるずれ)を示す。図25は、逆極点図である。なお、図23におけるEBSD像はカラーであるため、EBSD像の第1領域101、第2領域102の配置を簡略化した模式図を図24に示す。 Next, the crystal orientation of the electromagnetic steel sheet 100 was investigated. The EBSD method was used for measuring the crystal orientation, and JSM-7100F manufactured by JEOL Ltd. was used as the measuring device. The measurement conditions are a measurement magnification of 100 times, a step size of 1 μm, a frame speed of 140 fps, and an irradiation voltage of 15 kV. The results are shown in FIGS. 23 and 25. Note that FIG. 23 shows an EBSD image, an EBSD image with zero saturation, and an angle map extracted from the EBSD image. The horizontal axis of the angle map of FIG. 23 indicates the distance, and the vertical axis indicates the directional difference (that is, the deviation in the directional direction). FIG. 25 is a reverse pole diagram. Since the EBSD image in FIG. 23 is in color, FIG. 24 shows a schematic diagram in which the arrangement of the first region 101 and the second region 102 of the EBSD image is simplified.
 図23、図24に示されるように、本例の電磁鋼板100は、特定の結晶方位が配向した第1領域101及び第2領域102を有し、第1領域101、第2領域102は単結晶から構成されている。第1領域101と第2領域102との間には境界が存在する。この境界の周囲では、第1領域101の結晶方位及び第2領域102の結晶方位とは結晶方位が異なる領域103が存在していた(図23、図25参照)。領域103には、結晶方位が相互に異なるさらに複数の領域が存在しており、各領域が結晶粒を構成している。 As shown in FIGS. 23 and 24, the electrical steel sheet 100 of this example has a first region 101 and a second region 102 in which specific crystal orientations are oriented, and the first region 101 and the second region 102 are single. It is composed of crystals. There is a boundary between the first region 101 and the second region 102. Around this boundary, there was a region 103 having a crystal orientation different from the crystal orientation of the first region 101 and the crystal orientation of the second region 102 (see FIGS. 23 and 25). In the region 103, a plurality of regions having different crystal orientations are present, and each region constitutes a crystal grain.
 また、図23の角度マップから理解されるように、第2領域102と領域13の結晶方位差は約2°であり、実質的に同一方位とみなすことができる。すなわち、電磁鋼板100は第1単結晶鋼41および第2単結晶鋼42の2種類の結晶方位に倣って成長したことがわかる。 Further, as can be understood from the angle map of FIG. 23, the crystal orientation difference between the second region 102 and the region 13 is about 2 °, and can be regarded as substantially the same orientation. That is, it can be seen that the electromagnetic steel sheet 100 has grown according to the two types of crystal orientations of the first single crystal steel 41 and the second single crystal steel 42.
 また、図25のEBSD像の逆極点図から理解されるように、電磁鋼板100は<001>及び<101>高集積に配向している。この結果は、EBSD像とも一致しており、第1領域101が<001>に配向しており、第2領域102が<101>に配向していることを示す。 Further, as can be understood from the reverse pole figure of the EBSD image of FIG. 25, the electrical steel sheet 100 is oriented to <001> and <101> high integration. This result is also consistent with the EBSD image, indicating that the first region 101 is oriented in <001> and the second region 102 is oriented in <101>.
 このように、本例によれば、配置工程、熱処理工程を行うことにより、相互に結晶方位が異なる2方向性の電磁鋼板100が得られることがわかる。 As described above, according to this example, it can be seen that the bidirectional electromagnetic steel sheets 100 having different crystal orientations can be obtained by performing the arrangement step and the heat treatment step.
(実験例2)
 本例は、2方向性の電磁鋼板100における結晶粒径の測定方法を説明する。図26、図27に示されるように、方向性領域(つまり、単結晶の結晶粒)の粒径は、電磁鋼板100の圧延方向RDと直交する、あるいは平行な平面を観察したときの粒径である。圧延方向RDと直交する平面は、板厚方向NDと圧延方向RDと直角な方向TD(つまり、圧延直角方向)とがなす平面である。また、圧延方向RDと平行な平面は、板厚方向NDと圧延直角方向TDとがなす平面である。電磁鋼板100は、これらの2つの平面の少なくとも一方における粒径が上記の通り1.5mm以上となる方向性領域を有すること好ましい。この場合には、各方向性領域が各結晶方位に基づいた物性を十分に示すことができる。
(Experimental Example 2)
This example describes a method for measuring the crystal grain size of the bidirectional electromagnetic steel sheet 100. As shown in FIGS. 26 and 27, the particle size of the directional region (that is, the grain of a single crystal) is the particle size when observing a plane orthogonal to or parallel to the rolling direction RD of the electromagnetic steel plate 100. Is. The plane orthogonal to the rolling direction RD is a plane formed by the plate thickness direction ND and the direction TD perpendicular to the rolling direction RD (that is, the rolling perpendicular direction). The plane parallel to the rolling direction RD is a plane formed by the plate thickness direction ND and the rolling perpendicular direction TD. The electromagnetic steel sheet 100 preferably has a directional region in which the particle size on at least one of these two planes is 1.5 mm or more as described above. In this case, each directional region can sufficiently show the physical properties based on each crystal orientation.
 図26は、圧延方向RDと直交する平面での、電磁鋼板100の結晶構造の一例を示し、図27は、圧延方向RDと平行な平面での、電磁鋼板100の結晶構造の一例を示す。図26に示されるように、圧延方向RDと直交する平面での粒径は、圧延直角方向TDでの結晶粒の最大幅である。図26では、各結晶粒の最大幅は、L1~L3で表される。また、図27に示されるように、圧延方向RDと平行な平面での粒径は、圧延方向RDでの結晶粒の最大幅である。図27では、各結晶粒の最大幅は、L4~L6で表される。 FIG. 26 shows an example of the crystal structure of the electromagnetic steel plate 100 on a plane orthogonal to the rolling direction RD, and FIG. 27 shows an example of the crystal structure of the electromagnetic steel plate 100 on a plane parallel to the rolling direction RD. As shown in FIG. 26, the particle size in the plane orthogonal to the rolling direction RD is the maximum width of the crystal grains in the rolling direction TD. In FIG. 26, the maximum width of each crystal grain is represented by L 1 to L 3 . Further, as shown in FIG. 27, the particle size in the plane parallel to the rolling direction RD is the maximum width of the crystal grains in the rolling direction RD. In FIG. 27, the maximum width of each crystal grain is represented by L 4 to L 6 .
 圧延方向RDは、例えば結晶組織を観察することによりわかる。圧延板では、結晶組織が例えば繊維状組織になり、結晶組織を構成する結晶粒の長手方向が圧延方向RDとなる。結晶組織は、例えば、走査型電子顕微鏡観察、EBSD法により調べることができる。 The rolling direction RD can be found, for example, by observing the crystal structure. In the rolled plate, the crystal structure is, for example, a fibrous structure, and the longitudinal direction of the crystal grains constituting the crystal structure is the rolling direction RD. The crystal structure can be examined by, for example, scanning electron microscopy and EBSD method.
(実験例3)
 本例は、実施形態1、実施形態2のように、コアバック部2の磁化容易軸が周方向Xであり、ティース部3の磁化容易軸が周方向と直交方向Yである実施例品、比較形態1のように、ティース部912及びコアバック部911の磁化容易軸がランダムである比較例品の鉄損を解析、比較する例である。
(Experimental Example 3)
In this example, as in the first and second embodiments, the easily magnetized axis of the core back portion 2 is the circumferential direction X, and the easily magnetized axis of the teeth portion 3 is the circumferential direction and the orthogonal direction Y. This is an example of analyzing and comparing the iron loss of the comparative example product in which the easy-to-magnetize axes of the teeth portion 912 and the core back portion 911 are random as in Comparative Form 1.
 解析にはシミュレーションソフトウェアJSOL製の「JMAG-Designer」を用い、有限要素法(つまり、FEM)による鉄損解析を行った。解析条件は、以下の通りである。その結果を図28に示す。
・回転数:3387rpm
・概要:自動車用主機8極IPMモータ
・実施例品のティース部3及びコアバック部2には、厚み0.23mmの方向性の電磁鋼板の圧延方向RDを適用した。
・比較例品のティース部922及びコアバック部921には、厚み0.25mmの無方向性の電磁鋼板を適用した。
For the analysis, "JMAG-Designer" manufactured by simulation software JSOL was used, and iron loss analysis was performed by the finite element method (that is, FEM). The analysis conditions are as follows. The result is shown in FIG.
・ Rotation speed: 3387 rpm
-Summary: An 8-pole IPM motor for an automobile main engine-The rolling direction RD of a grain-oriented electrical steel sheet having a thickness of 0.23 mm was applied to the teeth portion 3 and the core back portion 2 of the example product.
A non-oriented electrical steel plate having a thickness of 0.25 mm was applied to the teeth portion 922 and the core back portion 921 of the comparative example product.
 鉄がもつ磁気モーメントは、通常、立方体の稜線である<100>方向を向いており、外部から加えた磁界が<100>方向であれば磁気モーメントの向きを変えることなく容易に磁気を通す。一方、磁界が<111>方向の場合には、<100>方向の磁気モーメントを回転させる際に、磁壁の移動等に伴うエネルギー損が生じる。このエネルギー損がヒステリシス損である。コアバック部2では周方向X、ティース部3では周方向と直交方向Y(例えば径方向)が主な磁界の向きであるから、実施例品のように<100>を各方位に配向させることでヒステリシス損が減少する。 The magnetic moment of iron is usually oriented in the <100> direction, which is the ridgeline of the cube, and if the magnetic field applied from the outside is in the <100> direction, the magnetism is easily passed without changing the direction of the magnetic moment. On the other hand, when the magnetic field is in the <111> direction, energy loss occurs due to the movement of the domain wall or the like when the magnetic moment in the <100> direction is rotated. This energy loss is a hysteresis loss. Since the main magnetic field direction is the circumferential direction X in the core back portion 2 and the circumferential direction Y (for example, the radial direction) in the teeth portion 3, <100> should be oriented in each direction as in the example product. Reduces hysteresis loss.
 本開示は、上記各実施形態、変形例、実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。 The present disclosure is not limited to each of the above embodiments, modifications, and experimental examples, and can be applied to various embodiments without departing from the gist thereof.
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 
Although this disclosure has been described in accordance with embodiments, it is understood that this disclosure is not limited to such embodiments or structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (5)

  1.  積層状態の電磁鋼板(100)から構成された、筒状の回転機コア(1、1A、1B)であって、
     上記電磁鋼板は、上記回転機コアの周方向(X)に沿って延びるコアバック部(2)と、該コアバック部から上記周方向に直交する方向(Y)に沿って延びる複数のティース部(3)とを有し、
     上記コアバック部と上記ティース部とが一体的に形成されており、
     上記コアバック部における上記電磁鋼板の結晶方位が上記周方向に沿って揃い、上記ティース部における上記電磁鋼板の結晶方位が上記ティース部の延び方向に沿って揃っている、回転機コア。
    A tubular rotary machine core (1, 1A, 1B) composed of laminated electromagnetic steel sheets (100).
    The electromagnetic steel plate has a core back portion (2) extending along the circumferential direction (X) of the rotating machine core and a plurality of teeth portions extending from the core back portion along a direction (Y) orthogonal to the circumferential direction. Has (3) and
    The core back portion and the teeth portion are integrally formed.
    A rotary machine core in which the crystal orientations of the electromagnetic steel sheets in the core back portion are aligned along the circumferential direction, and the crystal orientations of the electromagnetic steel sheets in the teeth portion are aligned along the extension direction of the teeth portions.
  2.  上記積層状態は、上記電磁鋼板が螺旋状に巻回されて構成されている、請求項1に記載の回転機コア。 The rotary machine core according to claim 1, wherein the laminated state is formed by spirally winding the electromagnetic steel plate.
  3.  上記積層状態は、環状の上記電磁鋼板が複数積層されて構成されている、請求項1に記載の回転機コア。 The rotary machine core according to claim 1, wherein the laminated state is configured by laminating a plurality of the annular electrical steel sheets.
  4.  第1単結晶鋼(41)と第2単結晶鋼(42)とを、上記第1単結晶鋼と上記第2単結晶鋼との結晶方位が相互に直交するように多結晶鋼板(40)の主面(401)に接触させ、熱処理を行うことにより、結晶方位が相互に直交し、かつ上記結晶方位が特定方向に配向する第1領域(101)と第2領域(102)とを有する、2方向性の電磁鋼板(100)を得、
     上記電磁鋼板の上記第1領域の上記結晶方位に沿う方向に帯状に延びる帯状コアバック部(20)と、上記第2領域の上記結晶方位に沿う方向に延びる複数の平行ティース部(30)とを有する櫛状シート(105)を打ち抜き、
     上記櫛状シートを螺旋状に巻回させつつ積層する、回転機コア(1、1A)の製造方法。
    The first single crystal steel (41) and the second single crystal steel (42) are made of polycrystalline steel plate (40) so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other. It has a first region (101) and a second region (102) in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction by contacting the main surface (401) of the steel and performing heat treatment. Obtained a bidirectional electromagnetic steel plate (100)
    A strip-shaped core back portion (20) extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet, and a plurality of parallel teeth portions (30) extending in a direction along the crystal orientation of the second region. Punching a comb-shaped sheet (105) having
    A method for manufacturing a rotary machine core (1, 1A) in which the comb-shaped sheets are laminated while being spirally wound.
  5.  第1単結晶鋼(41)と第2単結晶鋼(42)とを、上記第1単結晶鋼と上記第2単結晶鋼との結晶方位が相互に直交するように多結晶鋼板(40)の主面(401)に接触させ、熱処理を行うことにより、相互に結晶方位が直交し、かつ上記結晶方位が特定方向に配向する第1領域(101)と第2領域(102)とを有する、2方向性の電磁鋼板(100)を得、
     上記電磁鋼板の上記第1領域の上記結晶方位に沿う方向に帯状に延びる帯状コアバック部(20)と、上記第2領域の上記結晶方位に沿う方向に延びる複数の平行ティース部(30)とを有する櫛状シート(105)を打ち抜き、
     上記櫛状シートを環状に巻回させることにより環状のコア板(104)を得、
     上記コア板を複数積層する、回転機コア(1、1B)の製造方法。
    The first single crystal steel (41) and the second single crystal steel (42) are made of polycrystalline steel plate (40) so that the crystal orientations of the first single crystal steel and the second single crystal steel are orthogonal to each other. It has a first region (101) and a second region (102) in which the crystal orientations are orthogonal to each other and the crystal orientations are oriented in a specific direction by contacting the main surface (401) of the steel and performing heat treatment. Obtained a bidirectional electromagnetic steel plate (100)
    A strip-shaped core back portion (20) extending in a strip shape in a direction along the crystal orientation of the first region of the electromagnetic steel sheet, and a plurality of parallel teeth portions (30) extending in a direction along the crystal orientation of the second region. Punching a comb-shaped sheet (105) having
    By winding the comb-shaped sheet in an annular shape, an annular core plate (104) is obtained.
    A method for manufacturing a rotary machine core (1, 1B) in which a plurality of the core plates are laminated.
PCT/JP2020/027436 2019-07-18 2020-07-15 Rotary machine core and manufacturing method therefor WO2021010409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019132408A JP2021019385A (en) 2019-07-18 2019-07-18 Rotating machine core and manufacturing method thereof
JP2019-132408 2019-07-18

Publications (1)

Publication Number Publication Date
WO2021010409A1 true WO2021010409A1 (en) 2021-01-21

Family

ID=74210898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027436 WO2021010409A1 (en) 2019-07-18 2020-07-15 Rotary machine core and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2021019385A (en)
WO (1) WO2021010409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765315A (en) * 2021-09-14 2021-12-07 首钢智新迁安电磁材料有限公司 Processing method of outer rotor of motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023122104A (en) * 2022-02-22 2023-09-01 サンデン株式会社 Electric motor, and electric motor compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223830A (en) * 1995-02-10 1996-08-30 Toshiba Corp Core for rotating machine and salient-pole type rotor core
JP2001292542A (en) * 2000-04-05 2001-10-19 Nissan Motor Co Ltd Manufacturing method for stator core of motor and stator
JP2001302388A (en) * 2000-04-20 2001-10-31 Nippon Steel Corp Single crystal thin film material
JP2003523919A (en) * 2000-02-23 2003-08-12 セラコンプ カンパニー, リミテッド Method for growing single crystal of perovskite structure oxide
JP2003267797A (en) * 2002-03-15 2003-09-25 Akio Ikesue Single crystal for laser oscillator and laser oscillator using the same as laser medium
JP2004266025A (en) * 2003-02-28 2004-09-24 Japan Science & Technology Agency Electronic circuit element, manufacture thereof semiconductor thin film electronic circuit element and method of manufacturing the same
JP2006087289A (en) * 2004-09-15 2006-03-30 Lg Electronics Inc Stator of motor and manufacturing method therefor
JP2011244670A (en) * 2010-05-21 2011-12-01 Ihi Corp Stator core

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223830A (en) * 1995-02-10 1996-08-30 Toshiba Corp Core for rotating machine and salient-pole type rotor core
JP2003523919A (en) * 2000-02-23 2003-08-12 セラコンプ カンパニー, リミテッド Method for growing single crystal of perovskite structure oxide
JP2001292542A (en) * 2000-04-05 2001-10-19 Nissan Motor Co Ltd Manufacturing method for stator core of motor and stator
JP2001302388A (en) * 2000-04-20 2001-10-31 Nippon Steel Corp Single crystal thin film material
JP2003267797A (en) * 2002-03-15 2003-09-25 Akio Ikesue Single crystal for laser oscillator and laser oscillator using the same as laser medium
JP2004266025A (en) * 2003-02-28 2004-09-24 Japan Science & Technology Agency Electronic circuit element, manufacture thereof semiconductor thin film electronic circuit element and method of manufacturing the same
JP2006087289A (en) * 2004-09-15 2006-03-30 Lg Electronics Inc Stator of motor and manufacturing method therefor
JP2011244670A (en) * 2010-05-21 2011-12-01 Ihi Corp Stator core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765315A (en) * 2021-09-14 2021-12-07 首钢智新迁安电磁材料有限公司 Processing method of outer rotor of motor

Also Published As

Publication number Publication date
JP2021019385A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
WO2021010409A1 (en) Rotary machine core and manufacturing method therefor
CN1102670C (en) Non-directional electromagnetic steel sheet, and method for mfg. same
JP6658338B2 (en) Electrical steel sheet excellent in space factor and method of manufacturing the same
JP6880920B2 (en) Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method
JP2002530042A (en) Bulk amorphous metal magnetic components for electric motors
CN109478834B (en) Method for manufacturing core board
JP4019608B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2010062275A (en) Motor core and motor core material
JP7372521B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6604120B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6409521B2 (en) Electrical steel sheet for spiral wound core and method for producing the same, spiral wound core, and method for producing spirally wound core
JP2014065069A (en) Manufacturing method of metallic round cross-sectional wire rod, metallic round cross-sectional wire rod, nickel-free austenite stainless steel round cross-sectional wire rod and round cross-sectional wire rod for welding wire, resistance and electric heating wire
JP2001303213A (en) Nonoriented silicon steel sheet for high efficiency motor
JP7120038B2 (en) Split type stator and rotating electric machine
JP2021501693A (en) Multi-layer punching method for manufacturing metal parts
KR20230144583A (en) Non-oriented electrical steel sheet, iron core, iron core manufacturing method, motor, and motor manufacturing method
JPH07298570A (en) Manufacture of spiral core
JP4827368B2 (en) Manufacturing method of stator core for rotating machine with excellent magnetic properties
JP7255452B2 (en) Alloy thin strip and manufacturing method thereof
JP4157364B2 (en) Method for producing non-oriented electrical steel sheet for spiral core
JP2019178372A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor, and motor core and manufacturing method therefor
JP7488443B2 (en) Laminated core and rotating electrical machine
JP7303476B2 (en) Non-oriented electrical steel sheet, motor core, method for manufacturing non-oriented electrical steel sheet, and method for manufacturing motor core
JP4569104B2 (en) Helical machining core material with excellent magnetic properties, manufacturing method thereof, and helical machining stator core
WO2021097570A1 (en) Oriented magnetic core lamination and method of manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840870

Country of ref document: EP

Kind code of ref document: A1