WO2021010341A1 - 生体由来物の製造方法、産生物の製造方法及び電圧印加装置 - Google Patents

生体由来物の製造方法、産生物の製造方法及び電圧印加装置 Download PDF

Info

Publication number
WO2021010341A1
WO2021010341A1 PCT/JP2020/027109 JP2020027109W WO2021010341A1 WO 2021010341 A1 WO2021010341 A1 WO 2021010341A1 JP 2020027109 W JP2020027109 W JP 2020027109W WO 2021010341 A1 WO2021010341 A1 WO 2021010341A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
electrode pair
field region
suspension
flow path
Prior art date
Application number
PCT/JP2020/027109
Other languages
English (en)
French (fr)
Inventor
洋一 永井
高橋 直人
倫子 江戸
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021533050A priority Critical patent/JP7447117B2/ja
Priority to EP20840744.5A priority patent/EP3985099A4/en
Publication of WO2021010341A1 publication Critical patent/WO2021010341A1/ja
Priority to US17/572,011 priority patent/US20220127593A1/en
Priority to JP2023038992A priority patent/JP2023075259A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/07Means for pre-treatment of biological substances by electrical or electromagnetic forces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/50Vectors for producing vectors

Definitions

  • the disclosed technology relates to a method for producing a biological product, a method for producing a product, and a voltage applying device.
  • the electroporation method is a method of introducing a substance into a cell by making a hole in the cell membrane by an electric pulse, and is also called electroporation. For example, it is possible to transform a cell by making a minute hole in the cell membrane by applying an electric pulse to the cell suspension and introducing DNA (deoxyribonucleic acid) into the cell.
  • DNA deoxyribonucleic acid
  • the following techniques are known as techniques for introducing a bioactive substance such as DNA into cells using an electroporation method.
  • Japanese Patent Publication No. 2004-500022 describes a device in which electrodes are arranged in a flow path through which cells flow.
  • Japanese Patent Application Laid-Open No. 2015-8708 describes a method of introducing a foreign gene into eukaryotic algae cells by electroporation, in which a square wave electric pulse having three different conditions is applied to a solution containing green algae cells and a nucleic acid molecule. Is described in stages.
  • Batch as a process of introducing bioactive substances such as DNA, RNA (ribonucleic acid) and protein into living organisms such as cells, cell derivatives, organelles, intracellular granules and vesicles using electroporation.
  • bioactive substances such as DNA, RNA (ribonucleic acid) and protein into living organisms such as cells, cell derivatives, organelles, intracellular granules and vesicles using electroporation.
  • the process is widely used.
  • a suspension containing a biological substance and a bioactive substance is housed inside a vessel provided with a pair of parallel plate electrodes on the inner wall, and a predetermined voltage is applied to the parallel plate electrodes. ..
  • minute pores are opened in the membrane covering the surface of the biological product, and the permeability of the membrane is increased.
  • the bioactive substance is introduced into the biological substance by passing through the membrane whose permeability has been increased by diffusion or electrophoresis.
  • the electroporation method it is known that if the distance between the electrodes of the parallel plate electrodes becomes excessive, the introduction efficiency of the bioactive substance decreases.
  • the reaction space inside the vessel is limited by the distance between the electrodes, so shortening the distance between the electrodes of the parallel plate electrodes reduces the amount of suspension that can be processed. That is, it is difficult to improve the processing efficiency in the batch process, and it is considered that it is not suitable for processing a large amount of suspension.
  • One aspect of the disclosed technology is to increase the efficiency of introducing bioactive substances into living organisms.
  • the method for producing a biological product according to the disclosed technique is a method for producing a biological product into which a bioactive substance has been introduced, and is a suspension containing the biological product before the introduction of the bioactive substance and the bioactive substance.
  • the step of passing the liquid through the first electric field region having the first electric field strength and the second electric field strength lower than the first electric field strength after the suspension has passed through the first electric field region. Includes a step of passing through a second electric field region having.
  • the biological product may be a human-derived cell, and HEK293 cells are most preferable.
  • the introduction efficiency [%] is determined by the number of cells into which the bioactive substance has been introduced ⁇ 100 / (number of living cells + number of dead cells).
  • the number of live cells + dead cells indicates the total number of cells used in the analysis.
  • the first period during which the suspension passes through the first electric field region is preferably the same as or shorter than the second period during which the suspension passes through the second electric field region. It is more preferable that the ratio T1 / T2 of the period T1 of 1 to the period T2 of the second period is 1/1000 or more and 1 or less. This makes it possible to promote the effect of increasing the efficiency of introducing the bioactive substance into the biological substance.
  • T1 is a period obtained by dividing L1 by the average flow rate and the average flow velocity calculated from the cross-sectional area.
  • the voltage When the voltage is applied as a pulse, it is the total value of the pulse times of the pulses applied during the period obtained by dividing L1 by the average flow rate and the average flow velocity calculated from the cross-sectional area. Further, also for T2, when the voltage is applied by direct current, it is the period obtained by dividing L2 by the average flow rate calculated from the average flow rate and the cross-sectional area. When the voltage is applied as a pulse, it is the total value of the pulse times of the pulses applied during the period obtained by dividing L2 by the average flow rate and the average flow velocity calculated from the cross-sectional area.
  • the ratio E2 / E1 of the second electric field strength E2 and the first electric field strength E1 is preferably 1/1000 or more and less than 1, preferably 1/10 or more and less than 1, and 1/10 or more. It is particularly preferably less than 1/4.
  • the electric field strength can be obtained by dividing the voltage value measured by an oscilloscope by the distance between the electrodes.
  • the suspension containing the bioactive substance and the biological substance may pass through the non-electric field region after passing through the first electric field region and before passing through the second electric field region. This makes it possible to reduce the stress on the biological substance as compared with the case where the suspension passes through the second electric field region immediately after passing through the first electric field region.
  • the ratio T1 / T0 of the first period T1 through which the suspension passes through the first electric field region and the third period T0 through which the suspension passes through the no-electric field region is 1/25000 or more and less than 1. It is preferable, and more preferably 1/25000 or more and 1/10 or less. This makes it possible to promote the effect of reducing stress on biological substances. By setting T1 / T0 to 1/10 or less, it is possible to suppress a decrease in the viable cell rate due to accumulation of damage to cells due to fever.
  • T0 is preferably 50 ms or more and 5 minutes or less, and more preferably 2 minutes. By setting T0 to 50 ms or more, it is possible to prevent excessive heat generation and improve the cell viability.
  • T0 is obtained by dividing L0 by the average flow rate and the average flow velocity calculated from the cross-sectional area.
  • the first electric field is used. It may pass through a region and a second electric field region.
  • the suspension passes through the first electric field region and the second electric field region by flowing in the flow path, and the cross-sectional area of the flow path orthogonal to the flow direction of the suspension is S [m 2 ].
  • the circumference of the cross section of the flow path is C [m] and the average velocity of the suspension passing through the first electric field region and the second electric field region is u [m / s]
  • the following (1) shear rate D [s -1] that is defined by the equation, 1 [s -1] or 5000 is preferably [s -1] or less, 1 [s -1] or 2000 [s -1] or less More preferably, 1 [s -1 ] or more and 1000 [s -1 ] or less are most preferable.
  • the suspension may further include a step of passing through at least one electric field region separate from the first electric field region and the second electric field region.
  • the bioactive substance may be DNA.
  • the method for producing a product according to the disclosed technique includes a step of culturing the biological product produced by the above-mentioned production method and a step of extracting the product produced by the biological product. According to the production method according to the disclosed technique, the efficiency of introducing the bioactive substance into the biological product can be increased, so that the production efficiency of the product can be increased.
  • the product produced by a biological product that is a human-derived cell may be a virus.
  • the voltage application device includes a flow path for flowing a liquid, a first electrode pair provided on the wall surface of the flow path so as to face each other, and a first electrode pair on the wall surface of the flow path. It is provided with a second pair of electrodes provided so as to face each other on the downstream side in the flow direction of the liquid.
  • the length of the first electrode pair in the flow direction is the same as or shorter than the length of the second electrode pair in the flow direction. According to the voltage application device according to the disclosed technique, it is possible to increase the efficiency of introducing a bioactive substance into a biological substance.
  • the length of the first electrode pair may be 0.1 cm or more and 30 cm or less, preferably 0.2 cm or more and 10 cm or less, and more preferably 0.5 cm or more and 5 cm or less.
  • the length of the second electrode pair may be 0.1 cm or more and 30 cm or less, preferably 0.2 cm or more and 10 cm or less, and more preferably 0.5 cm or more and 5 cm or less.
  • the ratio L1 / L2 of the length L1 of the first electrode pair in the flow direction to the length L2 of the second electrode pair in the flow direction is preferably 1/1000 or more and 1 or less, preferably 1/200 or more. It is preferably 1/2 or less, and most preferably 1/100 or more and 1/10. This makes it possible to promote the effect of increasing the efficiency of introducing the bioactive substance into the biological substance. The shorter the first pulse, the better, but if L1 / L2 is 1/1000 or more, electrode processing becomes easy.
  • the ratio L1 / L0 of the length L1 in the flow direction of the first electrode pair to the length L0 in the flow direction between the first electrode pair and the second electrode pair is 1/30000 or more and 1/10. It is preferably 1/25000 or more and 1/100 or less. This makes it possible to promote the effect of reducing stress on biological substances.
  • the distance between the electrodes of the first electrode pair and the distance between the electrodes of the second electrode pair are preferably 10 ⁇ m or more and less than 10 mm, respectively, more preferably 20 ⁇ m or more and 7 mm or less, and most preferably 1 mm or more and 5 mm or less.
  • a first voltage is applied to the first electrode pair and a second voltage lower than the first voltage is applied to the second electrode pair. This makes it possible to increase the efficiency of introducing the bioactive substance into the biological substance.
  • the voltage application device may further include at least one electrode pair other than the first electrode pair and the second electrode pair provided on the wall surface of the flow path so as to face each other. ..
  • the conditions of the electric field in the electric field region through which the suspension passes can be set more finely, and the efficiency of introducing the bioactive substance into the biological substance can be further improved.
  • an electric field region may be provided according to the number of genes to be introduced. For example, when introducing three or more genes, the electric field region may be two or three.
  • the flow path may have at least one confluence or bifurcation.
  • FIG. 1B It is a top view which shows an example of the structure of the voltage application device which concerns on embodiment of the disclosed technique. It is sectional drawing along the line 1B-1B in FIG. 1A. It is sectional drawing along the line 1C-1C in FIG. 1A. It is a figure which shows the part of FIG. 1B enlarged. It is a top view which shows an example of the structure of the voltage application apparatus which concerns on other embodiment of the disclosed technique. It is a top view which shows an example of the structure of the voltage application apparatus which concerns on other embodiment of the disclosed technique. It is a top view which shows an example of the structure of the voltage application apparatus which concerns on other embodiment of the disclosed technique. It is sectional drawing along the line 5B-5B in FIG. 5A. FIG.
  • FIG. 5B is an enlarged view showing a part of FIG. 5B. It is a figure which shows an example of the relative relationship of the electric field strength in each electric field region which concerns on embodiment of the disclosed technique. It is a figure which shows an example of the relative relationship of the electric field strength in each electric field region which concerns on embodiment of the disclosed technique. It is a figure which shows an example of the relative relationship of the electric field strength in each electric field region which concerns on embodiment of the disclosed technique. It is a figure which shows an example of the relative relationship of the electric field strength in each electric field region which concerns on embodiment of the disclosed technique. It is sectional drawing which shows an example of the structure of the voltage application device 1C which concerns on the modification. It is a figure which shows an example of the structure of the product manufacturing apparatus which concerns on other embodiment of the disclosed technique. It is a graph which shows the gene transfer efficiency and the viable cell rate acquired for each sample.
  • the biological product is a human-derived cell.
  • the cells may be human T cells, HEK293, A549, SF9, EB66, Daudi, Hela, Vero, MDCK.
  • a bioactive substance is a substance that exerts some action on a biological substance by being introduced into the biological substance such as DNA, RNA, and protein.
  • DNA RNA
  • plasmids linear DNAs, mRNAs and proteins, with plasmids, mRNAs and linear DNAs being particularly preferred.
  • FIG. 1A is a plan view showing an example of the configuration of the voltage applying device 1 according to the first embodiment of the disclosed technology.
  • FIG. 1B is a cross-sectional view taken along the line 1B-1B in FIG. 1A.
  • FIG. 1C is a cross-sectional view taken along the line 1C-1C in FIG. 1A.
  • FIG. 2 is an enlarged view of a part of FIG. 1B.
  • the voltage application device 1 is a device used for introducing a bioactive substance into a biological substance by an electroporation method. For example, by introducing DNA, which is an example of a bioactive substance, into a cell, which is an example of a biological product, it becomes possible to prepare a new cell having a new genetic characteristic.
  • the voltage applying device 1 has an upper wall portion 11 and a lower wall portion 12 provided so as to face each other.
  • the voltage applying device 1 has a flow path 20 formed between the upper wall portion 11 and the lower wall portion 12.
  • the upper wall portion 11 is provided with an inflow port 21 and an outflow port 22 communicating with the flow path 20.
  • the inflow port 21 is provided on one end side of the flow path 20, and the outflow port 22 is provided on the other end side of the flow path 20.
  • a suspension containing a biological substance and a biologically active substance before the introduction of the bioactive substance hereinafter, simply referred to as a suspension
  • the area of the cross section of the flow path 20 orthogonal to the flow direction of the suspension is constant, and therefore the flow velocity of the suspension flowing through the flow path 20 is constant.
  • the upper electrode 31A is provided on the surface of the upper wall portion 11 on the flow path 20 side, and the lower electrode 32A facing the upper electrode 31A is provided on the surface of the lower wall portion 12 on the flow path 20 side.
  • the upper electrode 31A and the lower electrode 32A form an electrode pair 30A.
  • the electrode pair 30A has the form of a so-called parallel plate electrode.
  • the electrode pair 30A is an example of the first electrode pair in the disclosed technique.
  • the upper wall portion 11 is provided with a via 33A made of a conductor connected to the upper electrode 31A and penetrating in the thickness direction of the upper wall portion 11.
  • a wiring 34A and a pad 35A electrically connected to the upper electrode 31A via the via 33A are provided on the surface of the upper wall portion 11 opposite to the flow path 20, a wiring 34A and a pad 35A electrically connected to the upper electrode 31A via the via 33A are provided.
  • the lower wall portion 12 is provided with a via 36A made of a conductor connected to the lower electrode 32A and penetrating in the thickness direction of the lower wall portion 12.
  • wiring and pads (not shown) electrically connected to the lower electrode 32A via the via 36A are provided.
  • the electric field region 40A is an example of the first electric field region in the disclosed technique.
  • the direction of the electric field in the electric field region 40A may be, for example, the direction from the upper electrode 31A to the lower electrode 32A.
  • the upper electrode 31B is located downstream of the electrode pair 30A in the flow direction (hereinafter, simply referred to as the flow direction) of the suspension flowing through the flow path 20. Is provided.
  • a lower electrode 32B facing the upper electrode 31B is provided on the surface of the lower wall portion 12 on the flow path 20 side.
  • the upper electrode 31B and the lower electrode 32B form an electrode pair 30B.
  • the electrode pair 30B has the form of a so-called parallel plate electrode.
  • the electrode pair 30B is an example of a second electrode pair in the disclosed technique.
  • the upper wall portion 11 is provided with a via 33B made of a conductor connected to the upper electrode 31B and penetrating in the thickness direction of the upper wall portion 11.
  • a wiring 34B and a pad 35B electrically connected to the upper electrode 31B via a via 33B are provided on the surface of the upper wall portion 11 opposite to the flow path 20, a wiring 34B and a pad 35B electrically connected to the upper electrode 31B via a via 33B are provided.
  • the lower wall portion 12 is provided with a via 36B made of a conductor connected to the lower electrode 32B and penetrating in the thickness direction of the lower wall portion 12. Wiring and pads (not shown) electrically connected to the lower electrode 32B via the via 36B are provided on the surface of the lower wall portion 12 opposite to the flow path 20.
  • the electric field region 40B is an example of a second electric field region in the disclosed technique.
  • the direction of the electric field in the electric field region 40B may be, for example, the direction from the upper electrode 31B to the lower electrode 32B.
  • a voltage V1 is applied to the electrode pair 30A, and a voltage V2 lower than the voltage V1 is applied to the electrode pair 30B.
  • the voltage applied to the electrode pair 30A and the electrode pair 30B may be a DC voltage or an AC voltage.
  • the distance d between the electrodes of the electrode pair 30A and the electrode pair 30B is the same, and therefore, the electric field strength E2 of the electric field region 40B formed by the electrode pair 30B is the electric field formed by the electrode pair 30A. It is set to be lower than the electric field strength E1 in the region 40A.
  • the electric field strength E1 is an example of the first electric field strength in the disclosed technique
  • the electric field strength E2 is an example of the second electric field strength in the disclosed technique.
  • the voltage applied to the electrode pair 30A and the electrode pair 30B in order to obtain the desired electric field strength in the electric field region 40A and the electric field region 40B is increased. It gets higher. If the voltages applied to the electrode pair 30A and the electrode pair 30B become excessively high, the electrode pair 30A and the electrode pair 30B are likely to deteriorate. On the other hand, if the distance d between the electrodes of the electrode pair 30A and the electrode pair 30B becomes excessively short, the cross-sectional area of the flow path 20 becomes small, and it becomes difficult to process a large amount of suspension.
  • the distance d between the electrodes of the electrode pair 30A and the electrode pair 30B is preferably 10 ⁇ m or more and less than 10 mm. As a result, it is possible to prevent the voltage applied to the electrode pair 30A and the electrode pair 30B from becoming excessively high and the cross-sectional area of the flow path 20 from becoming excessively small.
  • the suspension flowing through the flow path 20 passes through the electric field region 40A and then passes through the electric field region 40B.
  • the length L1 of the electrode pair 30A in the flow direction is preferably the same as or shorter than the length L2 of the electrode pair 30B in the flow direction (L1 ⁇ L2).
  • the period T1 at which the suspension passes through the electric field region 40A is preferably the same as or shorter than the period T2 at which the suspension passes through the electric field region 40B.
  • the ratio L1 / L2 of the length L1 of the electrode pair 30A in the distribution direction and the length L2 of the electrode pair 30B in the distribution direction is 1/1000 or more and 1 or less.
  • the ratio T1 / T2 of the period T1 during which the suspension passes through the electric field region 40A and the period T2 during which the suspension passes through the electric field region 40B is preferably 1/1000 or more and 1 or less.
  • the period T1 is an example of a first period in the disclosed technology
  • the period T2 is an example of a second period in the disclosed technology.
  • the length L1 of the electrode pair 30A in the flow direction is preferably shorter than the length L0 of the region between the electrode pair 30A and the electrode pair 30B (that is, the electric field-free region 41) in the flow direction (L1 ⁇ L0).
  • the period T1 in which the suspension passes through the electric field region 40A is preferably shorter than the period T0 in which the suspension passes through the electric field region 41.
  • the ratio L1 / L0 of the length L1 of the electrode pair 30A in the distribution direction and the length L0 of the region between the electrode pair 30A and the electrode pair 30B in the distribution direction is 1/1000 or more and less than 1. Is preferable.
  • the ratio T1 / T0 of the period T1 during which the suspension passes through the electric field region 40A and the period T0 during which the suspension passes through the non-electric field region 41 is preferably 1/1000 or more and less than 1.
  • the area of the cross section of the flow path 20 orthogonal to the flow direction of the suspension is S [m 2 ]
  • the peripheral length of the cross section of the flow path 20 is C [m]
  • the suspension is the electric field region 40A and the electric field.
  • the shear rate D [s -1 ] defined by the following equation (1) is 1 [s -1 ] or more and 5000 [s -1 ]. ] Or less, more preferably 1 [s -1 ] or more and 2000 [s -1 ] or less, and even more preferably 1 [s -1 ] or more and 1000 [s -1 ] or less.
  • the voltage applying device 1 When the voltage applying device 1 is used, the voltage V1 is applied to the electrode pair 30A, and the voltage V2 smaller than the voltage V1 is applied to the electrode pair 30B. Then, the suspension containing the bioactive substance and the bioactive substance before the introduction of the bioactive substance is injected into the inflow port 21. The suspension injected into the inflow port 21 flows out from the outflow port 22 via the flow path 20.
  • a suspension containing a biological product before introduction of the bioactive substance and the bioactive substance passes through an electric field region 40A having an electric field strength E1. It comprises a step and a step of passing the suspension through the electric field region 40B having an electric field strength E2 lower than the electric field strength E1 after passing through the electric field region 40A. While the suspension injected from the inflow port 21 flows through the flow path 20, the treatments in each of the above steps are performed. That is, according to the voltage application device 1, the introduction of the bioactive substance into the biological substance by the electroporation method is performed by the flow process.
  • the suspension passes through the electric field region 40A where the electric field strength is relatively high, pores are opened in the membrane (for example, cell membrane) covering the surface of the biological substance, so that the permeability of the membrane is increased.
  • a part of the bioactive substance passes through the membrane whose permeability has been increased by diffusion or electrophoresis, so that the bioactive substance is introduced into the biological substance.
  • the suspension passes through the electric field region 40B where the electric field strength is relatively low, so that the electrophoresis of the bioactive substance further occurs while maintaining the permeability of the membrane, and the introduction into the biological substance is promoted.
  • the biological activity on the biological product is compared with the case where the suspension passes through a single electric field region. It is possible to increase the efficiency of introducing substances.
  • Equation (2) The total energy E [J / ⁇ L] per unit volume applied to the suspension while the suspension passes through both the electric field regions 40A and 40B is given by equation (2) below.
  • V1 [V] is the voltage value of the voltage pulse applied to the electrode pair 30A
  • I1 [A] is the current value flowing through the electrode pair 30A when the voltage pulse is applied to the electrode pair 30A.
  • T1 [sec] is the pulse width of the voltage pulse applied to the electrode pair 30A.
  • V2 [V] is the voltage value of the voltage pulse applied to the electrode pair 30B
  • I2 [A] is the current value flowing through the electrode pair 30B when the voltage pulse is applied to the electrode pair 30B, and T2 [sec].
  • the total energy E applied to the suspension has a strong influence on the efficiency of introducing the bioactive substance into the biological product and the survival rate of the biological product.
  • the total energy E applied to the suspension is 0.01 [J / ⁇ L] or more and 0.30 [J / ⁇ L] or less in order to increase the introduction efficiency of the bioactive substance and the survival rate of the biological product.
  • It is preferably 0.01 [J / ⁇ L] or more and 0.20 [J / ⁇ L] or less, and 0.02 [J / ⁇ L] or more and 0.13 [J / ⁇ L] or less. Is the most preferable.
  • T1 can be the same as or shorter than the period T2 during which the suspension passes through the low electric field region 40B.
  • the period T2 the same as or longer than the period T1
  • the introduction of the bioactive substance into the biological substance by electrophoresis can be promoted.
  • L1 / L2 or T1 / T2 to 1/1000 or more and 1 or less, the effect of increasing the efficiency of introducing the bioactive substance into the biological substance is remarkably exhibited.
  • L1 ⁇ L2 or T1 ⁇ T2 is preferable.
  • L1> L2 or T1> T2. preferable.
  • the non-electric field region after the suspension has passed through the electric field region 40A and before passing through the electric field region 40B. Pass through 41. After the suspension has passed through the electric field region 40A having a relatively high electric field strength, it passes through the electric field region 40B via the non-electric field region 41, thereby suppressing the influence of the electric field region 40A on the electric field region 40B. can do.
  • the ratio of the length L1 in the flow direction of the electrode pair 30A to the length L0 in the flow direction between the electrode pair 30A and the electrode pair 30B is set.
  • FIG. 3 is a plan view showing an example of the configuration of the voltage applying device 1A according to the second embodiment of the disclosed technique.
  • the voltage application device 1A has two inlets 21 and 21A.
  • the inflow port 21A communicates with the flow path 20A, and the flow path 20A is connected to the flow path 20. That is, the flow path 20 has a merging point 24 that merges with the flow path 20A.
  • a suspension containing a biological substance before the introduction of the bioactive substance is injected into the inflow port 21, and a suspension containing the bioactive substance is injected into the inflow port 21A. ..
  • the two types of suspensions flow through different channels 20A and 20 and are mixed at the confluence 24 and then pass through the electric field region 40A and the electric field region 40B. In this way, by circulating the two types of suspensions in separate flow paths and merging them, damage to the biological product can be suppressed and the survival rate of the biological product can be increased. Furthermore, since it leads to improvement in the survival rate of the introduced cells, it is possible to increase the efficiency of introduction of the bioactive substance into the biological substance.
  • the voltage applying device 1A may have two outlets 22 and 22A.
  • the outlet 22A communicates with the flow path 20B, and the flow path 20B is connected to the flow path 20. That is, the flow path 20 has a branch point 25 that branches into the flow path 20B.
  • the suspension that has passed through the electric field region 40A and the electric field region 40B flows out from the outlets 22 and 22A, respectively.
  • FIG. 5A is a plan view showing an example of the configuration of the voltage application device 1B according to the third embodiment of the disclosed technology.
  • FIG. 5B is a cross-sectional view taken along the line 5B-5B in FIG. 5A.
  • the voltage application device 1B further includes an electrode pair 30C and an electrode pair 30D in addition to the electrode pair 30A and the electrode pair 30B.
  • electrode pairs 30A, 30B, 30C, and 30D are provided in order from the upstream side in the flow direction of the suspension.
  • FIG. 6 is an enlarged view of a part of FIG. 5B.
  • the electrode pair 30C and the electrode pair 30D have the form of parallel plate electrodes, respectively, like the electrode pair 30A and the electrode pair 30B. That is, the electrode pair 30C is provided on the surface of the upper wall portion 11 on the flow path 20 side and the lower electrode 31C provided on the surface of the lower wall portion 12 on the flow path 20 side and faces the upper electrode 31C. It is configured to include 32C. Similarly, the electrode pair 30D is provided on the surface of the upper wall portion 11 on the flow path 20 side and the lower electrode 31D provided on the surface of the lower wall portion 12 on the flow path 20 side and faces the upper electrode 31D. It is configured to include an electrode 32D.
  • Wiring 34C and pad 35C electrically connected to the upper electrode 31C via the via 33C are provided on the surface of the upper wall portion 11 opposite to the flow path 20.
  • Wiring and pads (not shown) electrically connected to the lower electrode 32C via the via 36C are provided on the surface of the lower wall portion 12 opposite to the flow path 20.
  • a wiring 34D and a pad 35D electrically connected to the upper electrode 31D via the via 33D are provided on the surface of the lower wall portion 12 opposite to the flow path 20.
  • Wiring and pads (not shown) electrically connected to the lower electrode 32D via the via 36D are provided on the surface of the lower wall portion 12 opposite to the flow path 20.
  • FIGS. 7A to 7D are diagrams showing an example of the relative relationship between the electric field intensities E1 to E4 in the electric field regions 40A to 40D, respectively.
  • the electric field strengths E1 to E4 may be set so that the electric field strength gradually decreases from the upstream side to the downstream side in the flow direction of the suspension.
  • the relationship of E1> E2> E3> E4 is established for the electric field strengths E1 to E4.
  • the electric field strengths E1 to E4 may be set so that the regions having a relatively high electric field strength and the regions having a relatively low electric field strength are alternately arranged along the flow direction of the suspension.
  • the electric field strengths E1 to E4 gradually decrease. It may be set.
  • the flow path 20 is a section in which the electric field region having a relatively low electric field strength is arranged adjacent to the downstream side in the flow direction of the electric field region having a relatively high electric field strength. It suffices that the electric field strengths E1 to E4 are set so that there is at least one in the electric field.
  • the lengths L1 to L4 of the electrode pairs 30A to 30D in the flow direction may be configured to become shorter as the electric field strength formed in the electrode pairs increases.
  • each period T1 to T4 in which the suspension passes through each electric field region 40A to 40D may be configured to become shorter as the electric field strength in the electric field region increases.
  • the electrode pair 30A is such that L1 ⁇ L2 ⁇ L3 ⁇ L4.
  • the lengths L1 to L4 in the distribution direction of about 30D may be set.
  • each period T1 to T4 passing through each electric field region 40A to 40D may be set so that T1 ⁇ T2 ⁇ T3 ⁇ T4.
  • the length of the electrode pair forming the electric field region having the maximum electric field strength in the flow direction is L min and the length of the electrode pair forming the electric field region having the minimum electric field strength in the flow direction is L max .
  • L min and a ratio L min / L max and L max is 1/1000 or more and 1 or less.
  • T min the period during which the suspension passes through the electric field region where the electric field strength is maximum
  • T max the period during which the suspension passes through the electric field region where the electric field strength is minimum
  • T min. the ratio T min / T max between the T max is preferably not 1/1000 or more and 1 or less. This makes it possible to suppress irreparable membrane opening due to the maximum voltage and promote the introduction of the bioactive substance into the biological substance by electrophoresis.
  • the voltage application device 1B there are an electrode pair between the electrode pair 30A and the electrode pair 30B, an electrode pair 30B and the electrode pair 30C, and an electrode pair 30C and the electrode pair 30D, respectively. Is not provided, and a non-electric field region 41 in which the electric field strength is substantially zero is formed.
  • the length L0 of each region (that is, each electric field-free region 41) between the pair of electrodes adjacent to each other is the same as each other.
  • the length L min in the flow direction of the electrode pair forming the electric field region where the electric field strength is maximized is preferably shorter than the length L 0 in the flow direction of the no electric field region 41.
  • period T min which passes through the electric field area where a suspension is the electric field strength is maximum is preferably shorter than the period T0 of the suspension passes through the field-free region 41.
  • the ratio L min / L0 of L min and L 0 and the ratio T min / T 0 of T min and T 0 are 1/1000 or more and less than 1, respectively.
  • the case where the suspension passes through four electric field regions is illustrated, but the electric field regions through which the suspension passes may be three or five or more.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of the voltage applying device 1C according to the modified example.
  • the cross-sectional area of the flow path 20 in the electric field region 40A having a relatively high electric field strength may be smaller than the cross-sectional area of the flow path 20 in the electric field region 40B having a relatively low electric field strength.
  • the speed at which the suspension passes through the electric field region 40A is higher than the speed at which the suspension passes through the electric field region 40B.
  • the period T1 in which the suspension passes through the electric field region 40A is suspended.
  • the period during which the liquid passes through the electric field region 40B is shorter than T2. In this way, it is possible to adjust the period during which the suspension passes through each electric field region also by the cross-sectional area of the flow path 20.
  • the case where the bioactive substance is introduced into the biological substance by the electroporation method by the flow process is illustrated, but it may be carried out by the batch process.
  • a process in which a suspension containing a biological substance and a bioactive substance passes through one electric field region is one processing unit, and a plurality of this process is performed by changing the electric field strength stepwise. Do it over and over again.
  • a biological product produced by the production method according to the first to third embodiments described above (that is, a biological product into which a bioactive substance has been introduced) is cultured. It comprises a step and a step of extracting the product produced by the cultured biological product.
  • the product may be a viral vector such as adenovirus, adeno-associated virus, lentivirus, retrovirus, vaccinia virus, herpesvirus, human papillomavirus, Sendaivirus. Most preferably, it is an adeno-associated virus.
  • FIG. 9 is a diagram showing an example of the configuration of the product manufacturing apparatus 200 according to the fourth embodiment of the disclosed technology.
  • the antibody-producing cell is a biological product into which DNA useful for producing an antibody having a desired quality has been introduced by the production method according to the first to third embodiments described above.
  • the cells used for expressing the antibody are not particularly limited, and examples thereof include animal cells, plant cells, eukaryotic cells such as yeast, prokaryotic cells such as Bacillus subtilis, and Escherichia coli.
  • Animal cells such as CHO cells, BHK-21 cells and SP2 / 0-Ag14 cells are preferred, with CHO cells being more preferred.
  • the antibody to be expressed in animal cells is not particularly limited, and for example, anti-IL-6 receptor antibody, anti-IL-6 antibody, anti-glycican-3 antibody, anti-CD3 antibody, anti-CD20 antibody, anti-GPIIb / IIIa antibody, Examples thereof include anti-TNF antibody, anti-CD25 antibody, anti-EGFR antibody, anti-Her2 / neu antibody, anti-RSV antibody, anti-CD33 antibody, anti-CD52 antibody, anti-IgE antibody, anti-CD11a antibody, anti-VEGF antibody and anti-VLA4 antibody.
  • Antibodies include not only monoclonal antibodies derived from animals such as humans, mice, rats, hamsters, rabbits and monkeys, but also artificially modified antibodies such as chimeric antibodies, humanized antibodies and bispecific antibodies.
  • the obtained antibody or fragment thereof can be purified uniformly.
  • the separation and purification method used for ordinary polypeptides may be used.
  • an antibody can be separated and purified by appropriately selecting and combining a chromatography column such as affinity chromatography, a filter, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis and isoelectric focusing.
  • a chromatography column such as affinity chromatography, a filter, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis and isoelectric focusing.
  • the concentration of the obtained antibody can be measured by measuring the absorbance or by an enzyme-linked immunosorbent assay (ELISA) or the like.
  • the product production apparatus 200 includes a culture vessel 110 containing a cell suspension containing cells, and a first filter membrane 124 that performs a membrane separation treatment on the cell suspension extracted from the culture vessel 110. It includes a first filter unit 120 and a flow path 152 as a first circulation flow path for returning the components blocked by the first filter membrane 124 to the culture vessel 110.
  • the product production apparatus 200 further includes a second filter unit 130 having a second filter membrane 134 that performs a membrane separation treatment on a component that has permeated the first filter membrane 124 of the cell suspension, and a second filter unit 130.
  • a flow path 154 as a second circulation flow path for returning the components that have passed through the filter membrane 134 to the culture vessel 110, and a recovery flow path 156 and 157 for recovering the components blocked by the second filter film 134. Have.
  • the culture container 110 is a container for accommodating a cell suspension containing cells and a medium used for antibody expression. Inside the culture vessel 110, a stirring device having a stirring blade 111 is provided inside the culture vessel 110. By rotating the stirring blade 111, the medium contained together with the cells in the culture vessel 110 is stirred, and the homogeneity of the medium is maintained.
  • One end of the flow path 151 is connected to the bottom of the culture vessel 110, and the other end is connected to the inflow port 120a of the first filter unit 120.
  • a pump P1 for extracting the cell suspension contained in the culture vessel 110 and sending it to the first filter unit 120 is provided.
  • the first filter unit 120 divides the container 121 and the space inside the container 121 into the supply side 122 and the permeation side 123, and performs a membrane separation treatment on the cell suspension extracted from the culture container 110.
  • the filter film 124 of 1 is provided.
  • the first filter unit 120 has an inflow port 120a into which the cell suspension flows in and an outflow port 120b from which the cell suspension flows out on the supply side 122.
  • the cell suspension extracted from the culture vessel 110 passes through the first filter membrane 124 while flowing into the inside of the vessel 121 from the inflow port 120a and flowing out from the outlet 120b to the outside of the vessel 121.
  • the first filter unit 120 is a tangential that sends a permeation component to the permeation side while flowing a liquid to be membrane-separated along the membrane surface of the first filter membrane 124 (in a direction parallel to the membrane surface).
  • Membrane separation processing is performed by the flow (cross flow) method.
  • the tangential flow method which is a method of membrane separation treatment by the first filter membrane 124
  • the cell suspension extracted from the culture vessel is unidirectionally parallel to the membrane surface of the first filter membrane 124. It may form a circulating flow, or it may form a flow in which the cell suspension reciprocates alternately in parallel along the membrane surface of the first filter membrane 124.
  • the relatively large-sized component contained in the cell suspension does not permeate through the first filter membrane 124, flows out from the outlet 120b to the outside of the container 121, and enters the inside of the culture container 110 via the flow path 152. Returned. That is, among the cell suspensions extracted from the culture vessel 110, the components blocked by the first filter membrane 124 are returned to the inside of the culture vessel 110 via the flow path 152.
  • the relatively small-sized component contained in the cell suspension passes through the first filter membrane 124 and is discharged to the outside of the container 121 from the discharge port 120c provided on the permeation side 123.
  • a flow path 153 provided with a pump P2 is connected to the transmission side 123 of the first filter unit 120, and the component discharged to the transmission side 123 passes through the flow path 153 to the second filter unit 130. Will be sent to.
  • the first filter membrane 124 is used for the purpose of separating cells and components unnecessary for cell culture.
  • components unnecessary for cell culture include carcasses of cells, crushed cells, DNA, HCP, antibodies, waste products and the like. That is, the first filter membrane 124 is suitable for permeating components unnecessary for cell culture such as dead cells, crushed cells, DNA, HCP, antibodies, and waste products, while blocking permeation of cells. It has separation performance.
  • the size of the cells cultured in the culture vessel 110 is assumed to be larger than 20 ⁇ m. Further, it is assumed that the size of the dead cell and the crushed cell is 1 ⁇ m or more and 10 ⁇ m or less. Further, the size of DNA, HCP and antibody is assumed to be about several tens of nm.
  • the average pore size of the first filter film 124 is preferably more than 0 and 20 ⁇ m or less, more preferably 0.05 ⁇ m or more and 10 ⁇ m or less, further preferably 0.1 ⁇ m or more and 9 ⁇ m or less, and 2 ⁇ m or more and 8 ⁇ m or less. Most preferred.
  • the average pore diameter of the first filter membrane 124 can be measured by a 95% separation particle diameter when a mesh is used, and by a mercury injection method when an MF membrane or a UF membrane is used.
  • the first filter film 124 it is possible to use a mesh filter formed by weaving a fibrous member in a mesh shape.
  • a mesh filter As the first filter membrane 124, the discharge of components unnecessary for cell culture including dead cells and crushed cells to the permeation side is promoted as compared with the case of using a hollow fiber membrane. Can be made to. As a result, components unnecessary for cell culture can be effectively removed from the culture vessel 110, and the proliferation of cells in the culture vessel 110 can be enhanced.
  • the first filter membrane 124 a hollow fiber membrane such as a microfiltration membrane and an ultrafiltration membrane can be used.
  • the hollow fiber membrane By using the hollow fiber membrane as the first filter membrane 124, it is possible to reduce the risk of cells permeating to the permeation side as compared with the case of using the mesh filter. In addition, the risk of clogging due to cells entering the first filter membrane 124 can be reduced. From these, cell loss can be reduced.
  • the transmission side of the first filter unit 120 is connected to the supply side 132 of the second filter unit 130 via the flow path 153.
  • Valves Q1 and Q2 and a pump P2 are provided in the middle of the flow path 153.
  • the valves Q1 and Q2 are controlled to be in the open state when the permeate that has passed through the first filter membrane 124 is sent from the first filter unit 120 to the second filter unit 130, and are otherwise closed. Be controlled.
  • the second filter unit 130 divides the container 131 and the space inside the container 131 into the supply side 132 and the permeation side 133, and performs a membrane separation treatment on the permeated liquid that has passed through the first filter film 124.
  • the filter film 134 of the above is provided.
  • the second filter unit 130 has an inflow port 130a into which the cell suspension flows on the supply side 132.
  • the permeated liquid that has passed through the first filter membrane 124 flows into the inside of the container 131 from the inflow port 130a.
  • the second filter unit 130 performs a membrane separation process by a dead-end method for filtering substantially the entire amount of liquid on the supply side 132.
  • the relatively large-sized component contained in the permeate that has passed through the first filter film 124 does not permeate the second filter film 134, and the film surface of the second filter film 134 or the second filter portion 130 It remains on the supply side 132.
  • the relatively small-sized component contained in the permeate liquid that has passed through the first filter membrane 124 permeates through the second filter membrane 134 and permeates through the permeation side 133.
  • a discharge port 130c is provided on the transmission side 133 of the second filter unit 130, and a flow path 154 is connected to the discharge port 130c.
  • the component that has passed through the second filter membrane 134 is discharged from the discharge port 130c to the outside of the container 131, and is returned to the culture container 110 via the flow path 154.
  • One end of the flow path 154 is connected to the discharge port 130c, and the other end is connected to the culture vessel 110.
  • the second filter membrane 134 is used for the purpose of separating the medium from the components unnecessary for culturing containing the antibody contained in the permeate that has passed through the first filter membrane 124. That is, the second filter membrane 134 has a separation performance suitable for blocking the permeation of components unnecessary for cell culture containing an antibody.
  • the average pore size of the second filter film 134 is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, further preferably 0.05 ⁇ m or less, and most preferably 0.01 ⁇ m or less. preferable.
  • the average pore diameter of the second filter membrane 134 can be measured by a 95% separation particle diameter when a mesh is used, and by a mercury injection method when an MF membrane or a UF membrane is used.
  • MF membrane Microfiltration Membrane
  • the risk of clogging can be reduced as compared with the case where the hollow fiber ultrafiltration membrane is used.
  • UF membrane Ultrafiltration Membrane
  • UF membrane Ultrafiltration Membrane
  • a valve Q3 is provided in the middle of the flow path 154 in the vicinity of the transmission side 133 of the second filter unit 130.
  • the valve Q3 is controlled to the open state when the component that has passed through the second filter membrane 134 is sent to the culture vessel 110, and is controlled to the closed state in other cases.
  • the product production apparatus 200 has a recovery means for recovering components unnecessary for cell culture, including an antibody blocked by the second filter membrane 134.
  • the above recovery means includes a backwash flow path 155, a pump P3, a recovery flow path 156, 157, and a recovery tank 140.
  • the backwash flow path 155 forms a bypass flow path that bypasses the entry side and the exit side of the valve Q3.
  • the pump P3 is provided in the middle of the backwash flow path 155, and is located in the direction opposite to the liquid flow generated during the normal membrane separation process, from the permeation side 133 of the second filter unit 130 to the supply side 132.
  • the backwashing treatment of the second filter membrane 134 is performed by generating a liquid flow toward the liquid. While the backwash treatment is being performed, the valve Q3 is controlled to be closed, and the liquid used for the backwash flows through the backwash flow path 155 and is supplied to the second filter membrane 134.
  • the recovery flow path 156 is connected to a flow path 153 that connects the transmission side 123 of the first filter unit 120 and the supply side 132 of the second filter unit 130 in the vicinity of the inflow port 130a of the second filter unit 130.
  • a flow path 153 that connects the transmission side 123 of the first filter unit 120 and the supply side 132 of the second filter unit 130 in the vicinity of the inflow port 130a of the second filter unit 130.
  • the product production apparatus 200 has a medium supply flow path 158 for supplying a fresh medium to the culture vessel 110, and a pump P4 provided in the middle of the medium supply flow path 158. Further, in the product manufacturing apparatus 200, in order to prevent the concentration of cells in the culture vessel 110 from becoming excessively high, a part of the cells in the culture vessel 110 (for example, 10) is used at an appropriate timing during the culture period. A cell bleeding process is performed to extract (%). In the cell bleed treatment, the cells in the culture vessel 110 are discharged to the outside of the culture vessel 110 via the flow path 159. Further, the product manufacturing apparatus 200 has a control unit (not shown) that controls pumps P1 to P4 and valves Q1 to Q4. The operation of the product manufacturing apparatus 200 will be described below.
  • the pumps P1 and P2 are put into a driving state, and the pumps P3 are put into a stopped state. Further, the valves Q1, Q2 and Q3 are controlled to be in the open state, and the valves Q4 are controlled to be in the closed state.
  • the cell suspension contained in the culture vessel 110 is sent to the supply side 122 of the first filter unit 120.
  • the cell suspension extracted from the culture vessel 110 is subjected to membrane separation treatment by a tangential flow method by the first filter membrane 124.
  • the cells blocked by the first filter membrane 124 are returned into the culture vessel 110 via the flow path 152.
  • the permeated liquid that has passed through the first filter membrane 124 is sent to the supply side 132 of the second filter unit 130 via the flow path 153.
  • the permeate that has passed through the first filter film 124 is subjected to a membrane separation treatment by a dead-end method by the second filter film 134.
  • the components unnecessary for cell culture containing the antibody blocked by the second filter membrane 134 remain on the membrane surface of the second filter membrane 134 or on the supply side 132 of the second filter portion 130.
  • the clean medium from which components unnecessary for cell culture such as antibodies that have permeated through the second filter membrane 134 have been removed is returned to the culture vessel 110 via the flow path 154.
  • the pumps P3 are put into a driving state and the pumps P1 and P2 are put into a stopped state. Further, the valve Q4 is controlled to be in the open state, and the valves Q1, Q2 and Q3 are controlled to be in the closed state.
  • a liquid flow is generated from the permeation side to the supply side of the second filter unit 130, which is opposite to the liquid flow generated during the normal membrane separation process.
  • the backwash treatment of the second filter film 134 is performed.
  • components unnecessary for cell culture containing the antibody remaining on the film surface of the second filter film 134 and the supply side 132 of the second filter unit 130 can be obtained. It is discharged from the inflow port 130a of the second filter unit 130.
  • the components unnecessary for cell culture, including the antibody discharged from the second filter unit 130 by the backwash treatment, are stored in the recovery tank 140 via the recovery flow path 156.
  • the components unnecessary for culturing containing the antibody contained in the recovery tank 140 are sent to the antibody purification step, which is the next step, via the recovery flow path 157.
  • the pump P3 is driven intermittently and the backwash treatment is performed intermittently. Therefore, the liquid feeding to the recovery channel 156 of the component unnecessary for cell culture containing the antibody is performed intermittently.
  • the membrane separation treatment and the backwash treatment are alternately and repeatedly carried out during the culture period.
  • the pump P2 is driven continuously or at a predetermined timing during the membrane separation treatment and the backwash treatment, and has substantially the same amount of medium as the amount of the medium sent to the recovery tank 140 via the recovery flow path 156.
  • Fresh medium is supplied to the culture vessel 110 via the medium supply channel 158. As a result, the amount of the medium in the culture vessel 110 is kept substantially constant during the culture period.
  • a biological product that is, a bioactive substance
  • a method for producing a product including a step of culturing a biological product) and a step of extracting a product produced by the cultured biological product is realized.
  • the efficiency of introducing a bioactive substance into a biological product can be increased, so that the production efficiency of the product can be increased.
  • M shall mean 1,000,000.
  • 1M means 1,000,000
  • 0.1M means 100000
  • 10M means 10000000.
  • the bioactive substance was introduced into a biological substance according to the following procedure. First, HEK293 cells (Expi293F cells, Thermo Fisher) were seeded into Expi293 Expression Medium (Thermo Fisher) so that the cell concentration was 0.5 M cells / mL. This cell suspension was housed in an incubator having a CO 2 concentration of 8% and an atmospheric temperature of 37 ° C., and cultured for 1 day with stirring at 120 rpm.
  • a 50 mL syringe was filled with a cell-plasmid mixture, and 9 mL was sent to a flow path equipped with a pair of electrode pairs at a flow rate of 8 mL / min.
  • a voltage pulse of 130 V, 5 ms was applied to the electrode pair within a period of 150 ms in which the cell-plasmid mixture remained in the flow path. That is, a voltage is applied over 5 ms to all cells passing through the flow path, and 145 ms is a rest period.
  • the cell-plasmid mixture that passed through the channel was collected in a collection bottle. Of the 9 mL cell-plasmid mixture collected in the collection bottle, 6 mL was collected and the remaining 3 mL was used as sample 1. Since sample 1 applies voltage only once, it is a comparative example to which the disclosed technique is not applied.
  • 3 mL of the recovered 6 mL cell-plasmid mixture was re-delivered to the above channel at a flow rate of 8 mL / min.
  • a voltage pulse of 20 V, 75 ms was applied to the electrode pair within a period of 150 ms in which the cell-plasmid mixture remained in the flow path. That is, a voltage is applied over 75 ms to all the cells passing through the flow path, and 75 ms is the rest period.
  • the cell-plasmid mixture that passed through the channel was collected in a collection bottle. This collected cell-plasmid mixture was used as sample 2.
  • the remaining 3 mL of the 6 mL cell-plasmid mixture excluding sample 1 was re-delivered to the above flow path at a flow rate of 8 mL / min.
  • a voltage pulse of 40 V, 75 ms was applied to the electrode pair within a period of 150 ms in which the cell-plasmid mixture remained in the flow path. That is, a voltage is applied over 75 ms to all the cells passing through the flow path, and 75 ms is the rest period.
  • the cell-plasmid mixture that passed through the channel was collected in a collection bottle. This collected cell-plasmid mixture was used as sample 3.
  • the first voltage application was performed by the voltage pulse of 130 V and 5 ms, and then the second voltage application was performed by the voltage pulse of 40 V and 75 ms.
  • T1 / T2 1/15
  • E2 / E1 1 / 3.25
  • T1 / T0 1/24000
  • L1 / L2 1.
  • Table 1 summarizes the applied voltage pulses and total energy for Samples 1-3.
  • the total energy was calculated using Eq. (2).
  • V1 and T1 in the formula (2) the applied voltage and the pulse width in the first liquid feeding were applied, respectively.
  • V2 and T2 in the equation (2) the applied voltage and the pulse width in the second liquid feeding were applied, respectively.
  • I1 and I2 in the equation (2) were calculated by dividing the applied voltage by the resistance value (83 ⁇ ) between the electrodes. The resistance value between the electrodes was obtained in advance by the following procedure.
  • a suspension of HEK293 cells (Thermo Fisher) was filled in a 50 mL syringe, and the solution was sent to the above flow path at a flow rate of 8 mL / min, and the above flow path was filled with the cell suspension. Then, the resistance value between the electrodes provided in the flow path was measured. The resistance value was 83 ⁇ . The distance between the electrodes is 1 mm.
  • Each sample was added dropwise to a pre-warmed 2 mL Expi293 Expression Medium (Thermo Fisher) housed in a well plate so that the cell concentration was 1 Mcells / mL.
  • Each sample was placed in an incubator having a CO 2 concentration of 8% and an ambient temperature of 37 ° C., and allowed to stand for 24 hours.
  • FIG. 10 is a graph showing the gene transfer efficiency and viable cell rate obtained for Samples 1 to 3. As shown in FIG. 10, in Samples 2 and 3 in which the number of times of application of the voltage pulse is 2, the gene transfer efficiency and the viable cell rate are improved as compared with Sample 1 in which the number of times of application of the voltage pulse is 1. did. Furthermore, sample 2 had a higher cell viability than sample 3. In addition, the gene transfer efficiency of sample 3 was higher than that of sample 2. Specifically, the introduction efficiency was 8.64% on average for sample 1, 12.36% for sample 2, and 14.51% for sample 3. The average viable cell rate of sample 1 was 82.03%, that of sample 2 was 92.73%, and that of sample 3 was 85.97%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Electromagnetism (AREA)
  • Clinical Laboratory Science (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

開示の技術に係る製造方法は、生体活性物質が導入された生体由来物の製造方法であって、生体活性物質の導入前の生体由来物と、生体活性物質とを含む懸濁液が、第1の電界強度を有する第1の電界領域を通過する工程と、懸濁液が、第1の電界領域を通過した後に、第1の電界強度よりも低い第2の電界強度を有する第2の電界領域を通過する工程と、を含む。生体由来物は、ヒト由来細胞である。

Description

生体由来物の製造方法、産生物の製造方法及び電圧印加装置
 開示の技術は、生体由来物の製造方法、産生物の製造方法及び電圧印加装置に関する。
 電気穿孔法は、電気パルスにより細胞膜に孔をあけることにより細胞内に物質を導入する手法であり、エレクトロポレーションとも呼ばれる。例えば、細胞懸濁液に電気パルスを印加することで細胞膜に微小な孔を開け、DNA(deoxyribonucleic acid)を細胞内部に導入することで、細胞の形質転換を行うことが可能である。電気穿孔法を用いて細胞内にDNA等の生体活性物質を導入する技術として、以下の技術が知られている。
 例えば、特表2004-500022号公報には、細胞が流通する流路内に電極を配置した装置が記載されている。特開2015-8708号公報には、電気穿孔法によって真核藻類細胞に外来遺伝子を導入する方法において、緑藻類細胞と核酸分子を含有する溶液に対して、互いに異なる3つの条件の矩形波電気パルスを段階的に与えることが記載されている。
 電気穿孔法を用いて、細胞、細胞誘導体、細胞小器官、細胞内顆粒及び小胞等の生体由来物に、DNA、RNA(ribonucleic acid)及びタンパク質等の生体活性物質を導入するプロセスとして、バッチプロセスが広く用いられている。バッチプロセスにおいては、例えば、内壁に一対の平行平板電極が設けられたベッセルの内部に、生体由来物及び生体活性物質を含む懸濁液が収容され、平行平板電極に所定の電圧が印加される。これにより生体由来物の表面を覆う膜に微小な孔が開き、膜の透過性が高くなる。また、ここで、生体活性物質が拡散や電気泳動により透過性が高まった膜を通過することで、生体活性物質が生体由来物へ導入される。
 電気穿孔法においては、平行平板電極の電極間距離が過大となると、生体活性物質の導入効率が低下することが知られている。バッチプロセスではベッセル内部の反応空間が、電極間距離によって制限されるため、平行平板電極の電極間距離を短くすると、処理できる懸濁液の量が低下する。すなわち、バッチプロセスでは、処理効率を高めることが困難であり、大量の懸濁液の処理には不適であると考えられる。
 一方、平行平板電極を配置した流路中に、生体由来物及び生体活性物質を含む懸濁液を流通させるフロープロセスによれば、大量の懸濁液の処理に適していると考えられる。フロープロセスでは、平行平板電極への電圧印加により流路内に形成される電界領域を懸濁液が通過する。しかしながら、フロープロセスでは、流路内を懸濁液が流動するため、バッチプロセスに比べ生体活性物質が生体由来物へ導入されるための拡散や電気泳動が阻害される。その結果、フロープロセスではバッチプロセスに比べ生体活性物質の導入効率が低下する。
 開示の技術は、1つの側面として、生体由来物への生体活性物質の導入効率を高めることを目的とする。
 開示の技術に係る生体由来物の製造方法は、生体活性物質が導入された生体由来物の製造方法であって、生体活性物質の導入前の生体由来物と、生体活性物質とを含む懸濁液が、第1の電界強度を有する第1の電界領域を通過する工程と、懸濁液が、第1の電界領域を通過した後に、第1の電界強度よりも低い第2の電界強度を有する第2の電界領域を通過する工程と、を含む。生体由来物は、ヒト由来細胞であればよく、HEK293細胞が最も好ましい。開示の技術に係る製造方法によれば、生体由来物への生体活性物質の導入効率を高めることが可能となる。本明細書中において、導入効率[%]は、生体活性物質を導入された細胞数×100/(生細胞数+死細胞数)によって求められる。生細胞数+死細胞は分析に用いた総細胞数を示す。
 懸濁液が第1の電界領域を通過する第1の期間は、懸濁液が第2の電界領域を通過する第2の期間と、同じか第2の期間よりも短いことが好ましく、第1の期間T1と第2の期間T2との比T1/T2が1/1000以上1以下であることがより好ましい。これにより、生体由来物への生体活性物質の導入効率を高める効果を促進させることができる。T1は、電圧を直流で与える場合は、L1を平均流量と断面積から算出される平均流速で割った期間となる。電圧をパルスで与える場合は、L1を平均流量と断面積から算出される平均流速で割った期間の間に印加されるパルスのパルス時間の合計値となる。また、T2についても、電圧を直流で与える場合は、L2を平均流量と断面積から算出される平均流速で割った期間となる。電圧をパルスで与える場合は、L2を平均流量と断面積から算出される平均流速で割った期間の間に印加されるパルスのパルス時間の合計値となる。
 また、第2の電界強度E2と第1の電界強度E1との比E2/E1が1/1000以上1未満であることが好ましく、1/10以上1未満であることが好ましく、1/10以上1/4未満であることが特に好ましい。これにより、生体由来物への生体活性物質の導入効率を高める効果を促進させることができ、細胞生存率を高めることができる。電界強度は、オシロスコープにより測定した電圧値を電極間距離で割ることで求めることができる。
 生体活性物質及び生体由来物を含む懸濁液が、第1の電界領域を通過した後であり且つ第2の電界領域を通過する前に、無電界領域を通過してもよい。これにより、懸濁液が第1の電界領域の通過後、直ちに第2の電界領域を通過する場合と比較して、生体由来物へのストレスを軽減させることが可能となる。
 懸濁液が第1の電界領域を通過する第1の期間T1と、懸濁液が無電界領域を通過する第3の期間T0との比T1/T0が、1/25000以上1未満であることが好ましく、1/25000以上1/10以下が更に好ましい。これにより、生体由来物へのストレスを軽減させる効果を促進させることが可能となる。T1/T0を1/10以下にすることで、発熱による細胞へのダメージ蓄積による生細胞率の低下を抑制することができる。T0は好ましくは、50ms以上5分以下であり、より好ましくは2分間である。T0を50ms以上とすることで、過度な発熱を防ぎ細胞生存率を向上させることが可能となる。T0を5分以下とすることで、第一の電界領域を通過することで生じた細胞の孔が閉鎖する前に第二の電界領域を通過することにより、導入効率を向上させることが可能となる。T0はL0を平均流量と断面積から算出される平均流速で割ることで求められる。
 生体活性物質を含む懸濁液及び生体活性物質の導入前の生体由来物を含む懸濁液が、互いに異なる流路を流れ、それぞれの流路の合流点において混合された後、第1の電界領域及び第2の電界領域を通過してもよい。2種類の懸濁液を別々の流路に流通させ、合流させることで、生体由来物と生体活性物質との混合を促進させることが可能となる。
 懸濁液は、流路内を流通することにより第1の電界領域及び第2の電界領域を通過し、流路の、懸濁液の流通方向と直交する断面の面積をS[m]、流路の断面の周長をC[m]、懸濁液が第1の電界領域及び第2の電界領域を通過する平均速度をu[m/s]としたとき、下記の(1)式によって定義されるせん断速度D[s-1]が、1[s-1]以上5000[s-1]以下であることが好ましく、1[s-1]以上2000[s-1]以下がより好ましく、1[s-1]以上1000[s-1]以下が最も好ましい。この範囲にすることで、せん断に弱い細胞について生存性を高めることが可能となる。
 D=2u・C/S ・・・(1)
 せん断速度Dを上記の範囲にすることで、懸濁液に含まれる生体由来物が流路を流通しているときに、生体由来物に作用するせん断応力を抑制するとともに、懸濁液の時間あたりの流通量を増やすことができる。
 懸濁液が、第1の電界領域及び第2の電界領域とは別の少なくとも1つの電界領域を通過する工程を更に含んでいてもよい。これにより、懸濁液が通過する電界領域における電界の条件を、よりきめ細かく設定することが可能となり、生体由来物への生体活性物質の導入効率を更に高めることが可能となる。
 生体活性物質はDNAであってもよい。
 開示の技術に係る産生物の製造方法は、上記の製造方法によって製造された生体由来物を培養する工程と、生体由来物によって産生される産生物を抽出する工程と、を含む。開示の技術に係る製造方法によれば、生体由来物への生体活性物質の導入効率を高めることができるので、産生物の製造効率を高めることが可能となる。ヒト由来細胞である生体由来物によって産生される産生物は、ウイルスであってもよい。
 開示の技術に係る電圧印加装置は、液体を流通させるための流路と、流路の壁面に互いに対向して設けられた第1の電極対と、流路の壁面の、第1の電極対よりも液体の流通方向の下流側において、互いに対向して設けられた第2の電極対と、を備える。第1の電極対の流通方向における長さが、第2の電極対の流通方向における長さと同じか、これよりも短い。開示の技術に係る電圧印加装置によれば、生体由来物への生体活性物質の導入効率を高めることが可能となる。第一の電極対の長さは、0.1cm以上30cm以下であってもよく、好ましくは、0.2cm以上10cm以下であり、より好ましくは0.5cm以上5cm以下である。第二の電極対の長さは、0.1cm以上30cm以下であってもよく、好ましくは、0.2cm以上10cm以下であり、より好ましくは0.5cm以上5cm以下である。
 第1の電極対の流通方向の長さL1と、第2の電極対の流通方向の長さL2との比L1/L2が、1/1000以上1以下であることが好ましく、1/200以上1/2以下が好ましく、1/100以上1/10が最も好ましい。これにより、生体由来物への生体活性物質の導入効率を高める効果を促進させることができる。第1のパルスは短い方がよいが、L1/L2を1/1000以上とすることで電極加工が容易となる。
 第1の電極対の流通方向の長さL1と、第1の電極対と第2の電極対との間の流通方向の長さL0との比L1/L0が、1/30000以上1/10以下であることが好ましく、1/25000以上1/100以下が最も好ましい。これにより、生体由来物へのストレスを軽減させる効果を促進させることが可能となる。
 第1の電極対の電極間距離及び第2の電極対の電極間距離が、それぞれ10μm以上10mm未満であることが好ましく、20μm以上7mm以下が更に好ましく、1mm以上5mm以下が最も好ましい。これにより、第1の電極対及び第2の電極対に印加される電圧が過度に高くなること及び流路の断面積が過度に小さくなることを回避することができる。1mm以上であれば、濃縮細胞液であっても流路詰まりが発生せず、5mm以下であれば電圧をさげることが可能となる。
 第1の電極対には、第1の電圧が印加され、第2の電極対には、第1の電圧よりも低い第2の電圧が印加されることが好ましい。これにより、生体由来物への生体活性物質の導入効率を高めることが可能となる。
 開示の技術に係る電圧印加装置は、流路の壁面に互いに対向して設けられた、第1の電極対及び第2の電極対とは別の少なくとも1つの電極対を更に含んでいてもよい。これにより、懸濁液が通過する電界領域における電界の条件を、よりきめ細かく設定することが可能となり、生体由来物への生体活性物質の導入効率を更に高めることが可能となる。導入する生体活性物質の大きさや電気的性質により、導入に適した電界が存在する。そのため、導入する遺伝子の数に応じて、電界領域を設けてもよい。例えば、3つ以上の遺伝子を導入する場合、電界領域を2つにしてもよいし、3つにしてもよい。
 流路が少なくとも1つ以上の合流点または分岐点を有していてもよい。これにより、2種類の懸濁液を別々の流路に流通させ、合流させることで、生体由来物と生体活性物質との混合を促進させることが可能となる。
 開示の技術によれば、生体由来物への生体活性物質の導入効率を高めることが可能となる。
開示の技術の実施形態に係る電圧印加装置の構成の一例を示す平面図である。 図1Aにおける1B-1B線に沿った断面図である。 図1Aにおける1C-1C線に沿った断面図である。 図1Bの一部を拡大して示す図である。 開示の技術の他の実施形態に係る電圧印加装置の構成の一例を示す平面図である。 開示の技術の他の実施形態に係る電圧印加装置の構成の一例を示す平面図である。 開示の技術の他の実施形態に係る電圧印加装置の構成の一例を示す平面図である。 図5Aにおける5B-5B線に沿った断面図である。 図5Bの一部を拡大して示す図である。 開示の技術の実施形態に係る各電界領域における電界強度の相対的な関係の一例を示す図である。 開示の技術の実施形態に係る各電界領域における電界強度の相対的な関係の一例を示す図である。 開示の技術の実施形態に係る各電界領域における電界強度の相対的な関係の一例を示す図である。 開示の技術の実施形態に係る各電界領域における電界強度の相対的な関係の一例を示す図である。 変形例に係る電圧印加装置1Cの構成の一例を示す断面図である。 開示の技術の他の実施形態に係る産生物製造装置の構成の一例を示す図である。 各サンプルについて取得した遺伝子導入効率及び生細胞率を示すグラフである。
 以下、本開示の技術の実施形態について図面を参照しつつ説明する。尚、各図面において、実質的に同一又は等価な構成要素又は部分には同一の参照符号を付している。なお、本明細書において、生体由来物とは、ヒト由来細胞である。細胞はヒトT細胞、HEK293、A549、SF9、EB66、Daudi、Hela、Vero、MDCKであってもよい。生体活性物質とは、DNA、RNA及びタンパク質等の、生体由来物に導入されることにより、生体由来物に何らかの作用をもたらす物質である。例えば、プラスミド、線形DNA、mRNA、タンパク質があり、特にプラスミド、mRNA、線形DNAが好ましい。
[第1の実施形態]
 図1Aは、開示の技術の第1の実施形態に係る電圧印加装置1の構成の一例を示す平面図である。図1Bは、図1Aにおける1B-1B線に沿った断面図である。図1Cは、図1Aにおける1C-1C線に沿った断面図である。図2は、図1Bの一部を拡大して示す図である。
 電圧印加装置1は、電気穿孔法による生体由来物への生体活性物質の導入に用いられる装置である。例えば、生体由来物の一例である細胞に、生体活性物質の一例であるDNAを導入することにより、新たな遺伝的な特徴を持つ新たな細胞を作製することが可能となる。
 図1Bに示すように、電圧印加装置1は、互いに対向するように設けられた上壁部11及び下壁部12を有する。電圧印加装置1は、上壁部11及び下壁部12の間に形成された流路20を有する。上壁部11には流路20に連通する流入口21及び流出口22が設けられている。流入口21は、流路20の一端側に設けられ、流出口22は流路20の他端側に設けられている。電圧印加装置1の使用時において、生体活性物質導入前の生体由来物及び生体活性物質を含む懸濁液(以下、単に懸濁液という)が、流入口21に注入され、流路20を流通した後、流出口22から流出する。本実施形態において、流路20の、懸濁液の流通方向と直交する断面の面積は一定とされており、従って、流路20を流通する懸濁液の流速は一定とされている。
 上壁部11の流路20側の表面には、上部電極31Aが設けられ、下壁部12の流路20側の表面には、上部電極31Aと対向する下部電極32Aが設けられている。上部電極31A及び下部電極32Aにより電極対30Aが構成される。電極対30Aは、いわゆる平行平板電極の形態を有する。電極対30Aは、開示の技術における第1の電極対の一例である。
 上壁部11には、上部電極31Aに接続され、上壁部11の厚さ方向に貫通する導電体からなるビア33Aが設けられている。上壁部11の流路20とは反対側の表面には、ビア33Aを介して上部電極31Aに電気的に接続された配線34A及びパッド35Aが設けられている。同様に、下壁部12には、下部電極32Aに接続され、下壁部12の厚さ方向に貫通する導電体からなるビア36Aが設けられている。下壁部12の流路20とは反対側の表面には、ビア36Aを介して下部電極32Aに電気的に接続された、図示しない配線及びパッドが設けられている。このパッド及び上壁部11に設けられたパッド35Aに対して外部電源を用いて電圧を印加することにより、電極対30Aに電圧が印加され、上部電極31Aと下部電極32Aとの間の空間に、電界強度E1を有する電界領域40Aが形成される(図2参照)。電界領域40Aは、開示の技術における第1の電界領域の一例である。電界領域40Aにおける電界の向きは、例えば、上部電極31Aから下部電極32Aに向かう方向であってもよい。
 また、上壁部11の流路20側の表面には、電極対30Aよりも、流路20を流通する懸濁液の流通方向(以下、単に流通方向という)の下流側に、上部電極31Bが設けられている。下壁部12の流路20側の表面には、上部電極31Bと対向する下部電極32Bが設けられている。上部電極31B及び下部電極32Bにより電極対30Bが構成される。電極対30Bは、いわゆる平行平板電極の形態を有する。電極対30Bは、開示の技術における第2の電極対の一例である。
 上壁部11には、上部電極31Bに接続され、上壁部11の厚さ方向に貫通する導電体からなるビア33Bが設けられている。上壁部11の流路20とは反対側の表面には、ビア33Bを介して上部電極31Bに電気的に接続された配線34B及びパッド35Bが設けられている。同様に、下壁部12には、下部電極32Bに接続され、下壁部12の厚さ方向に貫通する導電体からなるビア36Bが設けられている。下壁部12の流路20とは反対側の表面には、ビア36Bを介して下部電極32Bに電気的に接続された、図示しない配線及びパッドが設けられている。このパッド及び上壁部11に設けられたパッド35Bに対して外部電源を用いて電圧を印加することにより、電極対30Bに電圧が印加され、上部電極31Bと下部電極32Bとの間の空間に電界強度E2を有する電界領域40Bが形成される(図2参照)。電界領域40Bは、開示の技術における第2の電界領域の一例である。電界領域40Bにおける電界の向きは、例えば、上部電極31Bから下部電極32Bに向かう方向であってもよい。
 電極対30Aには電圧V1が印加され、電極対30Bには電圧V1よりも低い電圧V2が印加される。電極対30A及び電極対30Bに印加される電圧は、直流電圧であってもよいし、交流電圧であってもよい。本実施形態において、電極対30A及び電極対30Bの電極間距離dは同一とされており、従って、電極対30Bによって形成される電界領域40Bの電界強度E2は、電極対30Aによって形成される電界領域40Aの電界強度E1よりも低くなるように設定される。これにより、電界領域40Bにおいて生体由来物の膜透過性を維持しつつ、生体活性物質の電気泳動が促進される。電界強度E1は、開示の技術における第1の電界強度の一例であり、電界強度E2は開示の技術における第2の電界強度の一例である。
 ここで、電極対30A及び電極対30Bの電極間距離dが過度に長くなると、電界領域40A及び電界領域40Bにおいて所望の電界強度を得るために電極対30A及び電極対30Bに印加される電圧が高くなる。電極対30A及び電極対30Bに印加される電圧が過度に高くなると、電極対30A及び電極対30Bが劣化しやすくなる。一方、電極対30A及び電極対30Bの電極間距離dが過度に短くなると、流路20の断面積が小さくなり、大量の懸濁液を処理することが困難となる。電極対30A及び電極対30Bの電極間距離dは、10μm以上10mm未満であることが好ましい。これにより、電極対30A及び電極対30Bに印加される電圧が過度に高くなること及び流路20の断面積が過度に小さくなることを回避することができる。
 流路20を流通する懸濁液は、電界領域40Aを通過した後に電界領域40Bを通過する。電極対30Aの流通方向の長さL1は、電極対30Bの流通方向の長さL2と同じか、これよりも短いことが好ましい(L1≦L2)。換言すれば、懸濁液が電界領域40Aを通過する期間T1は、懸濁液が電界領域40Bを通過する期間T2と同じか、これよりも短いことが好ましい。また、電極対30Aの流通方向の長さL1と、電極対30Bの流通方向の長さL2との比L1/L2が、1/1000以上1以下であることが好ましい。換言すれば、懸濁液が電界領域40Aを通過する期間T1と、懸濁液が電界領域40Bを通過する期間T2との比T1/T2が1/1000以上1以下であることが好ましい。期間T1は、開示の技術における第1の期間の一例であり、期間T2は、開示の技術における第2の期間の一例である。
 また、電極対30Aと電極対30Bとの間の領域には、電極対が設けられておらず、電界強度が実質的にゼロとされる無電界領域41が形成されている。ここで、電界強度が実質的にゼロであるとは、無電界領域41に隣接する電界領域40A及び電界領域40Bにおける電界の影響が、無電界領域41に及び得ることを意味する。電極対30Aの流通方向の長さL1は、電極対30Aと電極対30Bとの間の領域(すなわち無電界領域41)の流通方向の長さL0よりも短いことが好ましい(L1<L0)。換言すれば、懸濁液が電界領域40Aを通過する期間T1は、懸濁液が無電界領域41を通過する期間T0よりも短いことが好ましい。また、電極対30Aの流通方向の長さL1と、電極対30Aと電極対30Bとの間の領域の流通方向の長さL0との比L1/L0が、1/1000以上1未満であることが好ましい。換言すれば、懸濁液が電界領域40Aを通過する期間T1と、懸濁液が無電界領域41を通過する期間T0との比T1/T0が1/1000以上1未満であることが好ましい。上記の範囲にすることで、異なる電界領域が他の電界領域へ及ぼす影響を緩和することができる。
 また、流路20の、懸濁液の流通方向と直交する断面の面積をS[m]、流路20の上記断面の周長をC[m]、懸濁液が電界領域40A及び電界領域40Bを通過する平均速度をu[m/s]としたとき、下記の(1)式によって定義されるせん断速度D[s-1]が、1[s-1]以上5000[s-1]以下であることが好ましく、1[s-1]以上2000[s-1]以下がより好ましく、1[s-1]以上1000[s-1]以下が更に好ましい。せん断速度Dを上記の範囲にすることで、懸濁液に含まれる生体由来物が流路20を流通しているときに、生体由来物に作用するせん断応力を抑制するとともに、懸濁液の時間あたりの流通量を稼ぐことができる。
D=2u・C/S ・・・(1)
 電圧印加装置1の使用時において、電極対30Aには電圧V1が印加され、電極対30Bには電圧V1よりも小さい電圧V2が印加される。そして、生体活性物質の導入前の生体由来物と生体活性物質とを含む懸濁液が、流入口21に注入される。流入口21に注入された懸濁液は、流路20を経由して流出口22から流出する。電圧印加装置1を使用することで、以下に説明する開示の技術の実施形態に係る生体由来物の製造方法が実現される。
 開示の技術の実施形態に係る生体由来物の製造方法は、生体活性物質の導入前の生体由来物と、生体活性物質とを含む懸濁液が、電界強度E1を有する電界領域40Aを通過する工程と、懸濁液が、電界領域40Aを通過した後に、電界強度E1よりも低い電界強度E2を有する電界領域40Bを通過する工程と、を含む。流入口21から注入された懸濁液が、流路20を流動する間に、上記の各工程における処理が行われる。すなわち、電圧印加装置1によれば、電気穿孔法による生体由来物への生体活性物質の導入がフロープロセスにより行われる。
 懸濁液が、電界強度が比較的高い電界領域40Aを通過することで、生体由来物の表面を覆う膜(例えば細胞膜)に孔が開くことにより膜の透過性が高くなる。このとき、一部の生体活性物質が拡散や電気泳動により透過性が高まった膜を通過することで、生体活性物質が生体由来物へ導入される。その後、懸濁液が、電界強度が比較的低い電界領域40Bを通過することで、膜の透過性を維持したまま、生体活性物質の電気泳動がさらに起こり、生体由来物への導入が促進される。すなわち、開示の技術の実施形態に係る電圧印加装置1及び生体由来物の製造方法によれば、懸濁液が単一の電界領域を通過する場合と比較して、生体由来物への生体活性物質の導入効率を高めることが可能となる。
 懸濁液が電界領域40A及び40Bの双方を通過する間に、懸濁液に印加される単位体積あたりの総エネルギーE[J/μL]は、下記の(2)式によって与えられる。(2)式において、V1[V]は電極対30Aに印加される電圧パルスの電圧値であり、I1[A]は電極対30Aに電圧パルスを印加したときに電極対30Aに流れる電流値であり、T1[sec]は電極対30Aに印加される電圧パルスのパルス幅である。V2[V]は電極対30Bに印加される電圧パルスの電圧値であり、I2[A]は電極対30Bに電圧パルスを印加したときに電極対30Bに流れる電流値であり、T2[sec]は電極対30Bに印加される電圧パルスのパルス幅であり、M[μL]は、 電界領域40A及び40Bを通過する懸濁液の体積である。
E=(V1×I1×T1+V2×I2×T2)/M ・・・(2)
 懸濁液に印加される総エネルギーEは、生体由来物への生体活性物質の導入効率及び生体由来物の生存率に強い影響を与える。生体活性物質の導入効率及び生体由来物の生存率を高めるために、懸濁液に印加される総エネルギーEは、0.01[J/μL]以上0.30[J/μL]以下であることが好ましく、0.01[J/μL]以上0.20[J/μL]以下であることがより好ましく、0.02[J/μL]以上0.13[J/μL]以下であることが最も好ましい。
 また、電極対30Aの流通方向の長さL1を、電極対30Bの流通方向の長さL2と同じか、これよりも短くすることで、懸濁液が高電界の電界領域40Aを通過する期間T1を、懸濁液が低電界の電界領域40Bを通過する期間T2と同じか、これよりも短くすることができる。期間T2を期間T1に対して同じか長くすることで、電気泳動による生体由来物への生体活性物質の導入を促進させることができる。L1/L2またはT1/T2を1/1000以上1以下とすることで、生体由来物への生体活性物質の導入効率を高める効果が顕著に発揮される。例えば、低電界の電界領域40Bを形成するために電極対30Bに印加される電圧パルスとして、パルス幅が比較的長い電圧パルスが要求される場合、L1≦L2またはT1≦T2であることが好ましい。一方、高電界の電界領域40Aを形成するために電極対30Aに印加される電圧パルスを複数回に亘って印加することが要求される場合には、L1>L2またはT1>T2であることが好ましい。
 また、開示の技術の実施形態に係る電圧印加装置1及び生体由来物の製造方法によれば、懸濁液が、電界領域40Aを通過した後、電界領域40Bを通過する前に、無電界領域41を通過する。懸濁液が、電界強度が比較的高い電界領域40Aを通過した後に、無電界領域41を経由して電界領域40Bを通過することで、電界領域40Aの影響が電界領域40Bへ及ぶことを抑制することができる。
 また、開示の技術の実施形態に係る電圧印加装置1によれば、電極対30Aの流通方向の長さL1と、電極対30Aと電極対30Bとの間の流通方向の長さL0との比L1/L0及び懸濁液が電界領域40Aを通過する期間T1と、懸濁液が無電界領域41を通過する期間T0との比T1/T0を、それぞれ1/1000以上1未満とすることで、それぞれの電界領域の効果が顕著に発揮される。
[第2の実施形態]
 図3は、開示の技術の第2の実施形態に係る電圧印加装置1Aの構成の一例を示す平面図である。
 電圧印加装置1Aは、2つの流入口21及び21Aを有する。流入口21Aは、流路20Aに連通しており、流路20Aは、流路20に接続されている。すなわち、流路20は、流路20Aと合流する合流点24を有する。
 電圧印加装置1Aの使用時において、例えば、生体活性物質の導入前の生体由来物を含む懸濁液が流入口21に注入され、生体活性物質を含む懸濁液が流入口21Aに注入される。2種類の懸濁液が、互いに異なる流路20A及び20を流れ、合流点24において混合された後、電界領域40A及び前記電界領域40Bを通過する。このように、2種類の懸濁液を別々の流路に流通させ、合流させることで、生体由来物へのダメージを抑え、生体由来物の生存率を増加させることができる。さらに導入された細胞の生存率向上につながるため、生体由来物への生体活性物質の導入効率を高めることができる。
 また、図4に示すように、電圧印加装置1Aは、2つの流出口22及び22Aを有していてもよい。流出口22Aは、流路20Bに連通しており、流路20Bは、流路20に接続されている。すなわち、流路20は、流路20Bに分岐する分岐点25を有する。図4に示す電圧印加装置1Aによれば、電界領域40A及び電界領域40Bを通過した懸濁液は、流出口22及び22Aからそれぞれ流出する。このように流出口を2つ持たせることで複数の培養容器に供給することが可能となる。
[第3の実施形態]
 図5Aは、開示の技術の第3の実施形態に係る電圧印加装置1Bの構成の一例を示す平面図である。図5Bは、図5Aにおける5B-5B線に沿った断面図である。電圧印加装置1Bは、電極対30A及び電極対30Bに加え、電極対30C及び電極対30Dを更に含む。本実施形態において、懸濁液の流通方向の上流側から順に、電極対30A、30B、30C、30Dが設けられている。図6は、図5Bの一部を拡大して示す図である。
 電極対30C及び電極対30Dは、それぞれ、電極対30A及び電極対30Bと同様、平行平板電極の形態を有する。すなわち、電極対30Cは、上壁部11の流路20側の表面に設けられた上部電極31Cと、下壁部12の流路20側の表面に設けられ、上部電極31Cと対向する下部電極32Cとを含んで構成されている。同様に、電極対30Dは、上壁部11の流路20側の表面に設けられた上部電極31Dと、下壁部12の流路20側の表面に設けられ、上部電極31Dと対向する下部電極32Dとを含んで構成されている。
 上壁部11の流路20とは反対側の表面には、ビア33Cを介して上部電極31Cに電気的に接続された配線34C及びパッド35Cが設けられている。下壁部12の流路20とは反対側の表面には、ビア36Cを介して下部電極32Cに電気的に接続された、図示しない配線及びパッドが設けられている。このパッド及び上壁部11に設けられたパッド35Cに対して外部電源を用いて電圧を印加することにより、電極対30Cに電圧が印加され、上部電極31Cと下部電極32Cとの間の空間に電界強度E3を有する電界領域40Cが形成される(図6参照)。
 同様に、上壁部11の流路20とは反対側の表面には、ビア33Dを介して上部電極31Dに電気的に接続された配線34D及びパッド35Dが設けられている。下壁部12の流路20とは反対側の表面には、ビア36Dを介して下部電極32Dに電気的に接続された、図示しない配線及びパッドが設けられている。このパッド及び上壁部11に設けられたパッド35Dに対して外部電源を用いて電圧を印加することにより、電極対30Dに電圧が印加され、上部電極31Dと下部電極32Dとの間の空間に電界強度E4を有する電界領域40Dが形成される(図6参照)。流路20を流通する懸濁液は、電界領域40A、40B、40C、40Dの順で通過する。
 図7A~図7Dは、それぞれ、電界領域40A~40Dにおける電界強度E1~E4の相対的な関係の一例を示す図である。例えば、図7A及び図7Bに示すように、懸濁液の流通方向の上流側から下流側に向けて電界強度が段階的に低下するように電界強度E1~E4が設定されていてもよい。図7Aに示す例では、電界強度E1~E4について、E1>E2>E3>E4の関係が成立している。図7Bに示す例では、E1>E2=E3>E4の関係が成立している。また、図7Cに示すように、懸濁液の流通方向に沿って、電界強度が相対的に高い領域と低い領域が交互に並ぶように電界強度E1~E4が設定されていてもよい。図7Cに示す例では、電界強度E1~E4について、E1=E3>E2=E4の関係が成立している。また、図7Dに示すように、懸濁液の流通方向の上流側から下流側に向けて電界強度が段階的に上昇した後、電界強度が段階的に低下するように電界強度E1~E4が設定されていてもよい。図7Dに示す例では、電界強度E1~E4について、E1<E2=E3>E4の関係が成立している。本実施形態に係る電圧印加装置1Bにおいては、電界強度が相対的に高い電界領域の流通方向下流側に隣接して電界強度が相対的に低い電界領域が配置されている区間が、流路20内に少なくとも1箇所存在するように、電界強度E1~E4が設定されていればよい。
 電極対30A~30Dの流通方向の長さL1~L4は、当該電極対において形成される電界強度が高くなる程、短くなるように構成されていてもよい。換言すれば、懸濁液が、各電界領域40A~40Dを通過する各期間T1~T4は、当該電界領域における電界強度が高くなる程、短くなるように構成されていてもよい。例えば、図7Aに例示するように、電界強度E1~E4について、E1>E2>E3>E4の関係が成立している場合には、L1≦L2≦L3≦L4となるように、電極対30A~30Dの流通方向の長さL1~L4が設定されていてもよい。または、T1≦T2≦T3≦T4となるように、各電界領域40A~40Dを通過する各期間T1~T4が設定されていてもよい。
 また、電界強度が最大となる電界領域を形成する電極対の流通方向の長さをLmin、電界強度が最小となる電界領域を形成する電極対の流通方向の長さをLmaxとすると、LminとLmaxとの比Lmin/Lmaxが1/1000以上1以下であることが好ましい。換言すれば、懸濁液が、電界強度が最大となる電界領域を通過する期間をTmin、懸濁液が、電界強度が最小となる電界領域を通過する期間をTmaxとすると、TminとTmaxとの比Tmin/Tmaxが1/1000以上1以下であることが好ましい。これにより、最大電圧による修復不可能な程度の膜開孔を抑制し、電気泳動による生体由来物への生体活性物質の導入を促進させることができる。
 本実施形態に係る電圧印加装置1Bにおいて、電極対30Aと電極対30Bとの間、電極対30Bと電極対30Cとの間、電極対30Cと電極対30Dとの間には、それぞれ、電極対が設けられておらず、電界強度が実質的にゼロとされる無電界領域41が形成されている。本実施形態において、互いに隣接する電極対間の各領域(すなわち、各無電界領域41)の長さL0は、互いに同一とされている。
 電界強度が最大となる電界領域を形成する電極対の流通方向の長さLminは、無電界領域41の流通方向の長さL0よりも短いことが好ましい。換言すれば、懸濁液が電界強度が最大となる電界領域を通過する期間をTminは、懸濁液が無電界領域41を通過する期間T0よりも短いことが好ましい。また、LminとL0との比Lmin/L0及びTminとT0との比Tmin/T0が、それぞれ1/1000以上1未満であることが好ましい。上記の範囲にすることで、異なる電界領域が他の電界領域へ及ぼす影響を緩和することができる。
 電圧印加装置1Bを使用することにより実現される本実施形態に係る生体由来物の製造方法は、生体活性物質の導入前の生体由来物と生体活性物質とを含む懸濁液が、3つ以上の電界領域を通過する。これにより、懸濁液が通過する電界領域における電界の条件を、よりきめ細かく設定することが可能となり、生体由来物への生体活性物質の導入効率を更に高めることが可能となる。
 なお、本実施形態では、懸濁液が、4つの電界領域を通過する場合を例示したが、懸濁液が通過する電界領域は、3つまたは5つ以上であってもよい。
 また、上記の第1~第3の実施形態において、懸濁液が、各電界領域を通過する期間の調整を、各電極対の流通方向の長さによって行う場合を例示したが、この態様に限定されるものではない。図8は、変形例に係る電圧印加装置1Cの構成の一例を示す断面図である。図8に示すように、比較的高い電界強度を有する電界領域40Aにおける流路20の断面積は、比較的低い電界強度を有する電界領域40Bにおける流路20断面積よりも小さくてもよい。これにより、懸濁液が電界領域40Aを通過する速度は、懸濁液が電界領域40Bを通過する速度よりも速くなる。従って、例えば、電極対30Aの流通方向の長さL1と、電極対30Bの流通方向の長さL2とが、同じである場合、懸濁液が電界領域40Aを通過する期間T1は、懸濁液が電界領域40Bを通過する期間T2よりも短くなる。このように、流路20の断面積によっても、懸濁液が各電界領域を通過する期間の調整を行うことが可能である。
 また、第1~第3の実施形態において、電気穿孔法による生体由来物への生体活性物質の導入をフロープロセスにより行う場合を例示したが、バッチ処理によって行ってもよい。バッチ処理においては、例えば、生体由来物と生体活性物質とを含む懸濁液が、1つの電界領域を通過する工程が1つの処理単位なり、この工程を電界強度を段階的に変化させて複数回に亘って行う。
[第4の実施形態]
 以下に、開示の技術の第4の実施形態に係る産生物の製造方法について説明する。本実施形態に係る産生物の製造方法は、上記した第1~第3の実施形態に係る製造方法によって製造された生体由来物(すなわち、生体活性物質が導入された生体由来物)を培養する工程と、培養された生体由来物によって産生される産生物を抽出する工程と、を含む。産生物は、ウイルスベクター、例えばアデノウイルス、アデノ随伴ウイルス、レンチウイルス、レトロウイルス、ワクシニアウイルス、ヘルペスウイルス、ヒトパピローマウイルス、センダイウイルスであってもよい。最も好ましくは、アデノ随伴ウイルスである。
 図9は、開示の技術の第4の実施形態に係る産生物製造装置200の構成の一例を示す図である。以下の説明では、産生物製造装置200により、抗体を産生する細胞を用いて抗体を製造する場合を例示する。すなわち、抗体を産生する細胞は、上記した第1~第3の実施形態に係る製造方法によって、所望の品質を有する抗体を産生させるために有用なDNAが導入された生体由来物である。
 抗体の発現に用いる細胞としては、特に限定されないが、動物細胞、植物細胞、酵母などの真核細胞、枯草菌などの原核細胞及び大腸菌などが挙げられる。CHO細胞、BHK-21細胞及びSP2/0-Ag14細胞などの動物細胞が好ましく、CHO細胞がより好ましい。
 動物細胞において、発現させる抗体としては、特に限定されないが、例えば、抗IL-6レセプター抗体、抗IL-6抗体、抗グリピカン-3抗体、抗CD3抗体、抗CD20抗体、抗GPIIb/IIIa抗体、抗TNF抗体、抗CD25抗体、抗EGFR抗体、抗Her2/neu抗体、抗RSV抗体、抗CD33抗体、抗CD52抗体、抗IgE抗体、抗CD11a抗体、抗VEGF抗体及び抗VLA4抗体などが挙げられる。抗体としては、ヒト、マウス、ラット、ハムスター、ウサギ及びサル等の動物由来のモノクローナル抗体だけでなく、キメラ抗体、ヒト化抗体及びbispecific抗体など人為的に改変した抗体も含む。
 得られた抗体又はその断片は、均一にまで精製することができる。抗体又はその断片の分離及び精製は通常のポリペプチドで使用されている分離及び精製方法を使用すればよい。例えば、アフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルタ、限外濾過、塩析、透析、SDSポリアクリルアミドゲル電気泳動及び等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離及び精製することができるが、これらに限定されるものではない。得られた抗体の濃度測定は吸光度の測定又は酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay;ELISA)等により行うことができる。
 産生物製造装置200は、細胞を含む細胞懸濁液を収容する培養容器110と、培養容器110から抜き出された細胞懸濁液に対して膜分離処理を施す第1のフィルタ膜124を有する第1のフィルタ部120と、第1のフィルタ膜124によって阻止された成分を培養容器110に戻す第1の循環流路としての流路152とを含む。産生物製造装置200は、更に、細胞懸濁液の第1のフィルタ膜124を透過した成分に対して膜分離処理を施す第2のフィルタ膜134を有する第2のフィルタ部130と、第2のフィルタ膜134を透過した成分を培養容器110に戻す第2の循環流路としての流路154と、第2のフィルタ膜134によって阻止された成分を回収する回収流路156、157と、を有する。
 培養容器110は、抗体の発現に用いる細胞と培地とを含む細胞懸濁液を収容する容器である。培養容器110の内部には、撹拌翼111を有する撹拌装置が設けられている。撹拌翼111を回転させることで、培養容器110の内部に細胞とともに収容された培地が撹拌され、培地の均質性が保たれる。
 流路151は、一端が培養容器110の底部に接続され、他端が第1のフィルタ部120の流入口120aに接続されている。流路151の途中には、培養容器110に収容されている細胞懸濁液を抜き出して、第1のフィルタ部120に送るポンプP1が設けられている。
 第1のフィルタ部120は、容器121と、容器121内の空間を供給側122と透過側123とに隔て、培養容器110から抜き出された細胞懸濁液に対して膜分離処理を施す第1のフィルタ膜124と、を備える。また、第1のフィルタ部120は、供給側122において、細胞懸濁液が流入する流入口120aと細胞懸濁液が流出する流出口120bとを有する。培養容器110から抜き出された細胞懸濁液は、流入口120aから容器121の内部に流入して流出口120bから容器121の外部に流出する間に第1のフィルタ膜124上を通過する。第1のフィルタ部120は、膜分離処理の対象となる液体を第1のフィルタ膜124の膜面に沿って(膜面と平行な方向に)流しながら、透過成分を透過側に送るタンジェンシャルフロー(クロスフロー)方式による膜分離処理を行う。第1のフィルタ膜124による膜分離処理の方式である、タンジェンシャルフロー方式は、培養容器から抜き出された細胞懸濁液が第1のフィルタ膜124の膜面に沿って平行に一方向に循環する流れを形成するものであってもよいし、細胞懸濁液が第1のフィルタ膜124の膜面に沿って平行に交互に往復する流れを形成するものであってもよい。
 細胞懸濁液に含まれる比較的サイズの大きい成分は、第1のフィルタ膜124を透過せず、流出口120bから容器121の外部に流出し、流路152を介して培養容器110の内部に戻される。すなわち、培養容器110から抜き出された細胞懸濁液のうち、第1のフィルタ膜124によって阻止された成分は、流路152を介して培養容器110の内部に戻される。一方、細胞懸濁液に含まれる比較的サイズの小さい成分は、第1のフィルタ膜124を透過して、透過側123に設けられた排出口120cから容器121の外部に排出される。第1のフィルタ部120の透過側123には、ポンプP2が設けられた流路153が接続されており、透過側123に排出された成分は、流路153を介して第2のフィルタ部130に送られる。
 本実施形態に係る産生物製造装置200において、第1のフィルタ膜124は、細胞と、細胞培養に不要な成分と、を分離する目的で用いられる。細胞培養に不要な成分として、細胞の死骸、細胞の破砕物、DNA、HCP、抗体、老廃物等が挙げられる。すなわち、第1のフィルタ膜124は、細胞の死骸、細胞の破砕物、DNA、HCP、抗体、老廃物等の細胞培養に不要な成分を透過させる一方、細胞の透過を阻止するのに好適な分離性能を有している。なお、培養容器110内で培養される細胞のサイズは、20μmよりも大きいことが想定される。また、細胞の死骸及び細胞の破砕物のサイズは、1μm以上10μm以下であることが想定される。また、DNA、HCP及び抗体のサイズは、数十nm程度であることが想定される。
 第1のフィルタ膜124の平均孔径は、0を超えており且つ20μm以下であることが好ましく、0.05μm以上10μm以下がより好ましく、0.1μm以上9μm以下が更に好ましく、2μm以上8μm以下が最も好ましい。第1のフィルタ膜124の平均孔径を20μm以下とすることで、細胞が第1のフィルタ膜124を透過してしまうリスクを低減することができ、培養容器110内の細胞数の減少を抑制することができる。なお、第1のフィルタ膜124の平均孔径は、メッシュを使用する場合は95%分離粒子径で、MF膜もしくはUF膜を用いる場合は水銀圧入法で測定することができる。
 第1のフィルタ膜124として、繊維状部材を網目状に織ることにより構成されるメッシュフィルタを用いることが可能である。第1のフィルタ膜124として、メッシュフィルタを用いることで、中空糸膜を用いる場合と比較して、細胞の死骸及び細胞の破砕物を含む細胞培養に不要な成分の透過側への排出を促進させることができる。これにより、培養容器110内から細胞培養に不要な成分を効果的に除去することができ、培養容器110内における細胞の増殖性を高めることができる。
 また、第1のフィルタ膜124として、精密濾過膜及び限外濾過膜等の中空糸膜を用いることができる。第1のフィルタ膜124として中空糸膜を用いることで、メッシュフィルタを用いる場合と比較して、細胞が透過側に透過するリスクを低減することができる。また、第1のフィルタ膜124に細胞が入り込むことによる目詰まりの発生のリスクを低減することができる。これらより、細胞のロスを低減することができる。
 第1のフィルタ部120の透過側は、流路153を介して第2のフィルタ部130の供給側132に接続されている。流路153の途中には、バルブQ1、Q2及びポンプP2が設けられている。バルブQ1、Q2は、第1のフィルタ膜124を透過した透過液を、第1のフィルタ部120から第2のフィルタ部130に送る場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 第2のフィルタ部130は、容器131と、容器131内の空間を供給側132と透過側133とに隔て、第1のフィルタ膜124を透過した透過液に対して膜分離処理を施す第2のフィルタ膜134と、を備える。また、第2のフィルタ部130は、供給側132において、細胞懸濁液が流入する流入口130aを有する。第1のフィルタ膜124を透過した透過液は、流入口130aから容器131の内部に流入する。本実施形態において、第2のフィルタ部130は、供給側132の液体の略全量を濾過するデッドエンド方式による膜分離処理を行う。
 第1のフィルタ膜124を透過した透過液に含まれる比較的サイズの大きい成分は、第2のフィルタ膜134を透過せず、第2のフィルタ膜134の膜面または第2のフィルタ部130の供給側132に残留する。一方、第1のフィルタ膜124を透過した透過液に含まれる比較的サイズの小さい成分は、第2のフィルタ膜134を透過して透過側133に透過する。第2のフィルタ部130の透過側133には、排出口130cが設けられており、排出口130cには流路154が接続されている。第2のフィルタ膜134を透過した成分は、排出口130cから容器131の外部に排出され、流路154を介して培養容器110に戻される。流路154は、一端が排出口130cに接続され、他端が培養容器110に接続されている。
 第2のフィルタ膜134は、第1のフィルタ膜124を透過した透過液に含まれる、抗体を含む培養に不要な成分と、培地とを分離する目的で用いられる。すなわち、第2のフィルタ膜134は、抗体を含む細胞培養に不要な成分の透過を阻止するのに好適な分離性能を有している。
 第2のフィルタ膜134の平均孔径は、1μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.05μm以下であることが更に好ましく、0.01μm以下であることが最も好ましい。第2のフィルタ膜134の平均孔径を、1μm以下とすることで、抗体を含む細胞培養に不要な成分が流路154を介して培養容器10に戻るリスクを低減することができる。なお、第2のフィルタ膜134の平均孔径は、メッシュを使用する場合は95%分離粒子径で、MF膜もしくはUF膜を用いる場合は水銀圧入法で測定することができる。
 第2のフィルタ膜134として、中空糸精密濾過膜(MF膜:Microfiltration Membrane)を用いることができる。第2のフィルタ膜134として中空糸精密濾過膜を用いることで、中空糸限外濾過膜を用いる場合と比較して、目詰まりが発生するリスクを低減することができる。
 また、第2のフィルタ膜134として、中空糸限外濾過膜(UF膜:Ultrafiltration Membrane)を用いることができる。第2のフィルタ膜134として中空糸限外濾過膜を用いることで、中空糸精密濾過膜を用いる場合と比較して、抗体を含む細胞培養に不要な成分を効果的に捕集することができる。
 流路154の途中には、第2のフィルタ部130の透過側133の近傍にバルブQ3が設けられている。バルブQ3は、第2のフィルタ膜134を透過した成分を培養容器110に送る場合に開状態に制御され、それ以外の場合は閉状態に制御される。
 本実施形態に係る産生物製造装置200は、第2のフィルタ膜134によって阻止された抗体を含む細胞培養に不要な成分を回収する回収手段を有する。上記の回収手段は、逆洗流路155、ポンプP3、回収流路156、157及び回収タンク140を含んで構成されている。
 逆洗流路155は、バルブQ3の入側と出側をバイパスするバイパス流路を形成している。ポンプP3は、逆洗流路155の途中に設けられており、通常の膜分離処理の際に発生する液流とは逆向きの、第2のフィルタ部130の透過側133から供給側132に向かう液流を発生させることで、第2のフィルタ膜134の逆洗処理を行う。逆洗処理が行われている間、バルブQ3は閉状態に制御され、逆洗に使用される液は、逆洗流路155を流れ、第2のフィルタ膜134に供給される。第2のフィルタ膜134に対して逆洗処理を行うことで、第2のフィルタ膜134の膜面及び第2のフィルタ部130の供給側132に残留する抗体を含む培養に不要な成分が、第2のフィルタ部130の流入口130aから排出される。
 回収流路156は、第2のフィルタ部130の流入口130aの近傍において、第1のフィルタ部120の透過側123と第2のフィルタ部130の供給側132とを接続する流路153に接続されている。逆洗処理が行われている間、バルブQ1、Q2及びQ3は閉状態に制御され、バルブQ4は開状態に制御される。これにより、逆洗処理によって第2のフィルタ部130の流入口130aから排出された抗体を含む培養に不要な成分は、回収流路156を介して回収タンク140に収容される。回収タンク140に収容された抗体を含む培養に不要な成分は、回収流路157を介して、次工程である抗体の精製工程に送られる。
 産生物製造装置200は、新鮮な培地を培養容器110に供給するための培地供給流路158と、培地供給流路158の途中に設けられたポンプP4を有する。また、産生物製造装置200においては、培養容器110内の細胞の濃度が過度に高くなることを防止するために、培養期間内における適切なタイミングで培養容器110内の細胞の一部(例えば10%程度)を抜き取るセルブリード処理が行われる。セルブリード処理において、培養容器110内の細胞は、流路159を介して培養容器110の外部に排出される。また、産生物製造装置200は、ポンプP1~P4、バルブQ1~Q4を制御する図示しない制御部を有している。以下に、産生物製造装置200の動作について説明する。
 産生物製造装置200において、第1のフィルタ部120及び第2のフィルタ部130において膜分離処理を行う場合、ポンプP1及びP2が駆動状態とされ、ポンプP3が停止状態とされる。また、バルブQ1、Q2及びQ3が開状態に制御され、バルブQ4が閉状態に制御される。
 ポンプP1が駆動されることで、培養容器110内に収容されている細胞懸濁液が、第1のフィルタ部120の供給側122に送られる。培養容器110から抜き出された細胞懸濁液は、第1のフィルタ膜124により、タンジェンシャルフロー方式による膜分離処理が施される。第1のフィルタ膜124によって阻止された細胞は、流路152を介して培養容器110内に戻される。一方、抗体を含む培養に不要な成分は、第1のフィルタ膜124を透過する。
 第1のフィルタ膜124を透過した透過液は、流路153を介して第2のフィルタ部130の供給側132に送られる。第1のフィルタ膜124を透過した透過液は、第2のフィルタ膜134により、デッドエンド方式による膜分離処理が施される。第2のフィルタ膜134によって阻止された抗体を含む細胞培養に不要な成分は、第2のフィルタ膜134の膜面または第2のフィルタ部130の供給側132に残留する。一方、第2のフィルタ膜134を透過した、抗体等の細胞培養に不要な成分が除去された清浄な培地は、流路154を介して培養容器110に戻される。
 一方、産生物製造装置200において、逆洗処理を行う場合、ポンプP3が駆動状態とされ、ポンプP1及びP2が停止状態とされる。また、バルブQ4が開状態に制御され、バルブQ1、Q2及びQ3が閉状態に制御される。
 ポンプP3が駆動されることで、通常の膜分離処理の際に発生する液流とは逆向きの、第2のフィルタ部130の透過側から供給側に向かう液流が発生し、これにより、第2のフィルタ膜134の逆洗処理が行われる。第2のフィルタ膜134に対して逆洗処理を行うことで、第2のフィルタ膜134の膜面及び第2のフィルタ部130の供給側132に残留する抗体を含む細胞培養に不要な成分が第2のフィルタ部130の流入口130aから排出される。逆洗処理によって第2のフィルタ部130から排出された抗体を含む細胞培養に不要な成分は、回収流路156を介して回収タンク140に収容される。回収タンク140に収容された抗体を含む培養に不要な成分は、回収流路157を介して、次工程である抗体の精製工程に送られる。培養期間中、ポンプP3は、間欠的に駆動され、逆洗処理が間欠的に実施される。従って、抗体を含む細胞培養に不要な成分の回収流路156への送液は、間欠的に行われる。本実施形態に係る産生物製造装置200においては、培養期間中、膜分離処理と逆洗処理とが交互に繰り返し実施される。
 ポンプP2は、膜分離処理及び逆洗処理が行われている間、連続的または所定のタイミングで駆動され、回収流路156を介して回収タンク140に送られた培地の分量と略同じ分量の新鮮な培地が、培地供給流路158を介して培養容器110に供給される。これにより、培養容器110内における培地の分量は、培養期間中、略一定に保たれる。
 本実施形態に係る産生物製造装置200が、上記のように動作することで、第1~第3の実施形態に係る製造方法によって製造された生体由来物(すなわち、生体活性物質が導入された生体由来物)を培養する工程と、培養された生体由来物によって産生される産生物を抽出する工程と、を含む産生物の製造方法が実現される。
 本実施形態に係る産生物の製造方法によれば、生体由来物への生体活性物質の導入効率を高めることができるので、産生物の製造効率を高めることが可能となる。
[実施例]
 細胞数を示す上で「M」は1000000を意味するものとする。例えば、1Mは1000000、0.1Mは、100000、10Mは10000000を意味する。
 生体由来物への生体活性物質の導入を以下の手順で行った。初めに、細胞濃度が0.5M cells/mLとなるように、HEK293細胞(Expi293F細胞、ThermoFisher社)をExpi293 Expression Medium(ThermoFisher社)中にと播種した。この細胞懸濁液をCO濃度が8%、雰囲気温度が37℃のインキュベーター内に収容し、120rpmで攪拌しながら1日培養を行った。
 翌日、細胞懸濁液の細胞濃度が1Mcells/mLになっていることを確認した後、200×g、5分間の遠心分離処理を行った。遠心分離処理後の細胞懸濁液の上澄みを除去し、新たなExpi293 Expression Medium(ThermoFisher社)で再懸濁し、細胞濃度を30Mcells/mLに調整した。この細胞懸濁液に濃度が5μg/mLとなるようにpmaxGFP(Lonza社)を添加し、混合し、細胞-プラスミド混合液を得た。
 細胞-プラスミド混合液を50mLシリンジに充填し、一対の電極対を備えた流路に流速8mL/minで9mL送液した。細胞-プラスミド混合液が流路内に滞留する150msの期間内において、電極対に130V、5msの電圧パルスを印加した。すなわち、流路を通過する全ての細胞に対して5msに亘り電圧が印加され、145msが休止期間となる。流路を通過した細胞-プラスミド混合液を回収瓶に回収した。回収瓶に回収した9mLの細胞-プラスミド混合液のうち、6mLを回収し、残りの3mLをサンプル1とした。サンプル1は電圧印加が1回のみであるので開示の技術を適用しない比較例となる。
 回収した6mLの細胞-プラスミド混合液のうち3mLを、上記の流路に流速8mL/minで再び送液した。細胞-プラスミド混合液が流路内に滞留する150msの期間内において、電極対に20V、75msの電圧パルスを印加した。すなわち、流路を通過する全ての細胞に対して75msに亘り電圧が印加され、75msが休止期間となる。流路を通過した細胞-プラスミド混合液を回収瓶に回収した。この回収した細胞-プラスミド混合液をサンプル2とした。すなわち、サンプル2は、130V、5msの電圧パルスによる1回目の電圧印加が行われた後、20V、75msの電圧パルスによる2回目の電圧印加が行われたものである。このとき、1回目のパルス及び2回目のパルスの印加時における電極間距離は1mmであった。T1/T2=1/15であり、E2/E1=1/6.5、 T1/T0=1/24000、せん断速度400[s-1]、L1/L2=1である。
 サンプル1を除く6mLの細胞-プラスミド混合液のうち残りの3mLを、上記の流路に流速8mL/minで再び送液した。細胞-プラスミド混合液が流路内に滞留する150msの期間内において、電極対に40V、75msの電圧パルスを印加した。すなわち、流路を通過する全ての細胞に対して75msに亘り電圧が印加され、75msが休止期間となる。流路を通過した細胞-プラスミド混合液を回収瓶に回収した。この回収した細胞-プラスミド混合液をサンプル3とした。すなわち、サンプル3は、130V、5msの電圧パルスによる1回目の電圧印加が行われた後、40V、75msの電圧パルスによる2回目の電圧印加が行われたものである。T1/T2=1/15であり、E2/E1=1/3.25、T1/T0=1/24000、せん断速度400 [s-1]、 L1/L2=1である。
 下記の表1は、サンプル1~3について、印加された電圧パルス及び総エネルギーをまとめたものである。総エネルギーは(2)式を用いて算出した。(2)式におけるV1及びT1として、1回目の送液における印加電圧及びパルス幅をそれぞれ適用した。(2)式におけるV2及びT2として、2回目の送液における印加電圧及びパルス幅をそれぞれ適用した。(2)式におけるI1及びI2は、印加電圧を電極間の抵抗値(83Ω)で除算することで算出した。電極間の抵抗値を以下の手順で事前に取得した。HEK293細胞(ThermoFisher社)の懸濁液を50mLシリンジに充填し、上記の流路に流速8mL/minで送液し、上記の流路を細胞懸濁液で満たした。その後、流路に設けられた電極間の抵抗値を測定した。抵抗値は83Ωであった。なお、電極間距離は1mmである。
Figure JPOXMLDOC01-appb-T000001
 別々の回収瓶に回収したサンプル1~3を10分間静置した後、200×g、5分間の遠心分離処理を行った。遠心分離処理後の各サンプルの上澄みを除去し、新たなExpi293培地(ThermoFisher社)で再懸濁した。
 細胞濃度が1Mcells/mLとなるように、ウェルプレートに収容された予め温めておいた2mLのExpi293 Expression Medium(ThermoFisher社)に各サンプルを滴下した。各サンプルをCO濃度が8%、雰囲気温度が37℃のインキュベーター内に収容し、24時間静置培養した。
 各サンプルの遺伝子導入効率(transferring rate)をBD FACS Calibur(ベクトン・ディッキンソン)を用いて取得し、生細胞率(Viability)をVi-CELL XR(ベックマン・コールター)を用いて取得した。図10は、サンプル1~3について取得した遺伝子導入効率及び生細胞率を示すグラフである。図10に示すように、電圧パルスの印加回数が2回であるサンプル2、3においては、電圧パルスの印加回数が1回であるサンプル1と比較して、遺伝子導入効率及び生細胞率が向上した。更に、サンプル2はサンプル3と比較して、細胞生存率が高かった。また、サンプル3はサンプル2と比較して、遺伝子導入効率が高かった。具体的には、導入効率は、サンプル1は平均8.64%、サンプル2は12.36%、サンプル3は14.51%であった。生細胞率は、サンプル1は平均82.03%、サンプル2は平均92.73%、サンプル3は85.97%であった。
 なお、2019年7月12日に出願された日本国特許出願2019-130712の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (19)

  1.  生体活性物質が導入された生体由来物の製造方法であって、
     前記生体活性物質の導入前の生体由来物と、前記生体活性物質とを含む懸濁液が、第1の電界強度を有する第1の電界領域を通過する工程と、
     前記懸濁液が、前記第1の電界領域を通過した後に、前記第1の電界強度よりも低い第2の電界強度を有する第2の電界領域を通過する工程と、を含み、
     前記生体由来物がヒト由来細胞である
     製造方法。
  2.  前記懸濁液が前記第1の電界領域を通過する第1の期間は、前記懸濁液が前記第2の電界領域を通過する第2の期間と同じか、これよりも短い
     請求項1に記載の製造方法。
  3.  前記第1の期間T1と前記第2の期間T2との比T1/T2が1/1000以上1以下である
     請求項2に記載の製造方法。
  4.  前記第2の電界強度E2と前記第1の電界強度E1との比E2/E1が1/1000以上1未満である
     請求項1から請求項3のいずれか1項に記載の製造方法。
  5.  前記生体活性物質及び前記生体由来物を含む懸濁液が、前記第1の電界領域を通過した後であり且つ前記第2の電界領域を通過する前に、無電界領域を通過する
     請求項1から請求項4のいずれか1項に記載の製造方法。
  6.  前記懸濁液が前記第1の電界領域を通過する第1の期間T1と、前記懸濁液が前記無電界領域を通過する第3の期間T0との比T1/T0が、1/25000以上1未満である
     請求項5に記載の製造方法。
  7.  前記生体活性物質を含む懸濁液及び前記生体活性物質の導入前の生体由来物を含む懸濁液が、互いに異なる流路を流れ、それぞれの流路の合流点において混合された後、前記第1の電界領域及び前記第2の電界領域を通過する
     請求項1から請求項6のいずれか1項に記載の製造方法。
  8.  前記懸濁液は、流路内を流通することにより前記第1の電界領域及び前記第2の電界領域を通過し、
     前記流路の、前記懸濁液の流通方向と直交する断面の面積をS[m]、前記流路の前記断面の周長をC[m]、前記懸濁液が前記第1の電界領域及び前記第2の電界領域を通過する平均速度をu[m/s]としたとき、下記の(1)式によって定義されるせん断速度D[s-1]が、1[s-1]以上5000[s-1]以下である
     請求項1から請求項7のいずれか1項に記載の製造方法。
     D=2u・C/S ・・・(1)
  9.  前記懸濁液が、前記第1の電界領域及び前記第2の電界領域とは別の少なくとも1つの電界領域を通過する工程を更に含む
     請求項1から請求項8のいずれか1項に記載の製造方法。
  10.  前記生体活性物質がDNAである
     請求項1から請求項9のいずれか1項に記載の製造方法。
  11.  請求項1から請求項10のいずれか1項に記載の製造方法によって製造された生体由来物を培養する工程と、
     前記生体由来物によって産生される産生物を抽出する工程と、
     を含む産生物の製造方法。
  12.  前記産生物がウイルスである
     請求項11に記載の製造方法。
  13.  液体を流通させるための流路と、
     前記流路の壁面に互いに対向して設けられた第1の電極対と、
     前記流路の壁面の、前記第1の電極対よりも前記液体の流通方向の下流側において、互いに対向して設けられた第2の電極対と、
     を備え、
     前記第1の電極対の前記流通方向における長さが、前記第2の電極対の前記流通方向における長さと同じか、これよりも短い
     電圧印加装置。
  14.  前記第1の電極対の前記流通方向の長さL1と、前記第2の電極対の前記流通方向の長さL2との比L1/L2が、1/1000以上1以下である
     請求項13に記載の電圧印加装置。
  15.  前記第1の電極対の前記流通方向の長さL1と、前記第1の電極対と前記第2の電極対との間の前記流通方向の長さL0との比L1/L0が、1/1000以上1未満である
     請求項13または請求項14に記載の電圧印加装置。
  16.  前記第1の電極対の電極間距離及び前記第2の電極対の電極間距離が、それぞれ10μm以上10mm未満である
     請求項13から請求項15のいずれか1項に記載の電圧印加装置。
  17.  前記第1の電極対には、第1の電圧が印加され、
     前記第2の電極対には、前記第1の電圧よりも低い第2の電圧が印加される
     請求項13から請求項16のいずれか1項に記載の電圧印加装置。
  18.  前記流路の壁面に互いに対向して設けられた、前記第1の電極対及び前記第2の電極対とは別の少なくとも1つの電極対を更に含む
     請求項13から請求項17のいずれか1項に記載の電圧印加装置。
  19.  前記流路が少なくとも1つ以上の合流点または分岐点を有する
     請求項13から18のいずれか1項に記載の電圧印加装置。
PCT/JP2020/027109 2019-07-12 2020-07-10 生体由来物の製造方法、産生物の製造方法及び電圧印加装置 WO2021010341A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021533050A JP7447117B2 (ja) 2019-07-12 2020-07-10 生体由来物の製造方法、産生物の製造方法及び電圧印加装置
EP20840744.5A EP3985099A4 (en) 2019-07-12 2020-07-10 METHOD FOR PRODUCING A SUBSTANCE DERIVED FROM AN ORGANISM, METHOD FOR PRODUCING A PRODUCT, AND VOLTAGE APPLYING DEVICE
US17/572,011 US20220127593A1 (en) 2019-07-12 2022-01-10 Producing method for organism-derived material, producing method for product, and voltage applying device
JP2023038992A JP2023075259A (ja) 2019-07-12 2023-03-13 生体由来物の製造方法、産生物の製造方法及び電圧印加装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130712 2019-07-12
JP2019-130712 2019-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/572,011 Continuation US20220127593A1 (en) 2019-07-12 2022-01-10 Producing method for organism-derived material, producing method for product, and voltage applying device

Publications (1)

Publication Number Publication Date
WO2021010341A1 true WO2021010341A1 (ja) 2021-01-21

Family

ID=74210986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027109 WO2021010341A1 (ja) 2019-07-12 2020-07-10 生体由来物の製造方法、産生物の製造方法及び電圧印加装置

Country Status (4)

Country Link
US (1) US20220127593A1 (ja)
EP (1) EP3985099A4 (ja)
JP (2) JP7447117B2 (ja)
WO (1) WO2021010341A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049932A1 (en) * 2021-09-27 2023-03-30 Massachusetts Institute Of Technology Fabrication-free microfluidic device for scalable, high-volume bacterial electroporation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500022A (ja) 1999-04-16 2004-01-08 アストラゼネカ・アクチエボラーグ 物質を対象物に導入するための装置および方法
JP2011528550A (ja) * 2008-07-18 2011-11-24 マックスサイト インコーポレーティッド 電気穿孔を最適化するための方法
JP2015008708A (ja) 2013-07-02 2015-01-19 国立大学法人京都大学 3段階方式矩形波多重パルスを利用した藻類細胞への遺伝子導入法
WO2016017045A1 (ja) * 2014-07-28 2016-02-04 ネッパジーン株式会社 エレクトロポレーター用電気パルス発生器及び前記電気パルス発生器を備えたエレクトロポレーター装置
JP2016106526A (ja) * 2014-12-01 2016-06-20 独立行政法人国立高等専門学校機構 物質導入方法およびその装置
US20170283761A1 (en) * 2016-04-04 2017-10-05 CyteQuest, Inc. System, Device and Method for Electroporation of Cells
JP2019097499A (ja) * 2017-12-05 2019-06-24 株式会社ベックス 哺乳動物の受精卵に物質を導入する方法
JP2019130712A (ja) 2018-01-30 2019-08-08 株式会社小糸製作所 金型装置および樹脂部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500022A (ja) 1999-04-16 2004-01-08 アストラゼネカ・アクチエボラーグ 物質を対象物に導入するための装置および方法
JP2011528550A (ja) * 2008-07-18 2011-11-24 マックスサイト インコーポレーティッド 電気穿孔を最適化するための方法
JP2015008708A (ja) 2013-07-02 2015-01-19 国立大学法人京都大学 3段階方式矩形波多重パルスを利用した藻類細胞への遺伝子導入法
WO2016017045A1 (ja) * 2014-07-28 2016-02-04 ネッパジーン株式会社 エレクトロポレーター用電気パルス発生器及び前記電気パルス発生器を備えたエレクトロポレーター装置
JP2016106526A (ja) * 2014-12-01 2016-06-20 独立行政法人国立高等専門学校機構 物質導入方法およびその装置
US20170283761A1 (en) * 2016-04-04 2017-10-05 CyteQuest, Inc. System, Device and Method for Electroporation of Cells
JP2019097499A (ja) * 2017-12-05 2019-06-24 株式会社ベックス 哺乳動物の受精卵に物質を導入する方法
JP2019130712A (ja) 2018-01-30 2019-08-08 株式会社小糸製作所 金型装置および樹脂部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG H. ET AL.: "Microfluidic Electroporation for Delivery of Small Molecules and Genes Into Cells Using a Common DC Power Supply", BIOTECHNOLOGY AND BIOENGINEERING, vol. 100, no. 3, 2008, pages 579 - 586, XP055788119 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049932A1 (en) * 2021-09-27 2023-03-30 Massachusetts Institute Of Technology Fabrication-free microfluidic device for scalable, high-volume bacterial electroporation

Also Published As

Publication number Publication date
JP7447117B2 (ja) 2024-03-11
JPWO2021010341A1 (ja) 2021-01-21
EP3985099A4 (en) 2022-08-17
US20220127593A1 (en) 2022-04-28
EP3985099A1 (en) 2022-04-20
JP2023075259A (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
Zydney New developments in membranes for bioprocessing–A review
AU2006224893B2 (en) Electrofiltration method
ES2642629T3 (es) Métodos para la producción mejorada de proteínas
TWI767930B (zh) 處理包括重組治療性蛋白之流體的方法及其用途
CN108883368B (zh) 用于处理生物分子的溶液的方法
US11639367B2 (en) Process technology for biological product manufacturing and downstream purification
AU2016384285B2 (en) Tangential flow filtration process for concentrating biomolecule solutions
KR101484337B1 (ko) 세포에 삼투압 쇼크를 가하기 위한 장치 및 방법
WO2021010341A1 (ja) 生体由来物の製造方法、産生物の製造方法及び電圧印加装置
US20190292565A1 (en) Acoustically-Driven Buffer Switching for Microparticles
US11685888B2 (en) Method for producing product
US20210147781A1 (en) Cell culture method, product producing method, and cell culture device
Wan et al. Fractionation of bovine serum albumin and monoclonal antibody alemtuzumab using carrier phase ultrafiltration
CN115735006A (zh) 用于病毒转导的半自动中空纤维***
US20220169991A1 (en) Viral vector purification apparatus and method
EP4365284A1 (en) Virus recovery method
Cattaneo et al. Continuous VHU™ Perfusion for an order of magnitude increase in lentiviral vector production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533050

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020840744

Country of ref document: EP

Effective date: 20220111