WO2021009826A1 - 環境情報分析方法 - Google Patents

環境情報分析方法 Download PDF

Info

Publication number
WO2021009826A1
WO2021009826A1 PCT/JP2019/027843 JP2019027843W WO2021009826A1 WO 2021009826 A1 WO2021009826 A1 WO 2021009826A1 JP 2019027843 W JP2019027843 W JP 2019027843W WO 2021009826 A1 WO2021009826 A1 WO 2021009826A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental information
analysis method
information
flying object
information analysis
Prior art date
Application number
PCT/JP2019/027843
Other languages
English (en)
French (fr)
Inventor
鈴木陽一
Original Assignee
株式会社エアロネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアロネクスト filed Critical 株式会社エアロネクスト
Priority to PCT/JP2019/027843 priority Critical patent/WO2021009826A1/ja
Priority to JP2019547527A priority patent/JP7368840B2/ja
Publication of WO2021009826A1 publication Critical patent/WO2021009826A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to an environmental information analysis method capable of generating environmental information around an air vehicle.
  • Patent Document 1 discloses a delivery system using an air vehicle (see, for example, Patent Document 1).
  • an object of the present invention is to acquire environmental information around the flying object with a simple configuration.
  • a sensor information acquisition step of acquiring sensor information from an air vehicle provided with a sensor unit and A state analysis step that analyzes state information regarding the state around the flying object based on the sensor information, and An environmental information generation step that generates environmental information around the flying object based on the analysis result, and An environmental information analysis method can be obtained.
  • an environmental information analysis method for analyzing environmental information of an air vehicle using an air vehicle including a control unit.
  • the control unit causes the flying object to return from the second state to the first state when an action of transitioning from the first state to the second state acts on the flying object. It has a function to control return, The step of acquiring the return information related to the return control and Including a step of analyzing environmental information around the flying object based on the return information.
  • An environmental information analysis method can be obtained.
  • an environmental information analysis method capable of acquiring environmental information around an air vehicle with a simple configuration.
  • the system block diagram of the environmental information analysis system which concerns on 1st Embodiment of this invention A perspective view showing the configuration of an air vehicle. Side view showing the attitude change of the flying object. Top view showing the composition of the flying object.
  • the system block diagram of the environmental information analysis system which concerns on the 2nd Embodiment of this invention The plan view which shows an example of the state transition of an air vehicle. It is an idea diagram of an anemometer using the attitude control function of an air vehicle.
  • the environmental information analysis method has the following configurations.
  • [Item 1] A sensor information acquisition step to acquire sensor information from an air vehicle equipped with a sensor unit, A state analysis step that analyzes state information regarding the state around the flying object based on the sensor information, and An environmental information generation step that generates environmental information around the flying object based on the analysis result, and Environmental information analysis method.
  • [Item 2] The environmental information analysis method described in item 1.
  • the flying object has a plurality of propellers and a motor for rotating the plurality of propellers.
  • the sensor information includes at least the rotation speed of the motor.
  • Environmental information analysis method [Item 3] The environmental information analysis method described in item 2.
  • the air vehicle has a plurality of independent motors and has a plurality of independent motors.
  • the sensor information includes the rotation speed of each motor.
  • Environmental information analysis method. [Item 4] The environmental information analysis method according to any one of items 1 to 3.
  • the flying object has a plurality of propellers, a motor for rotating the plurality of propellers, and a motor load detecting unit for detecting the load of the motors.
  • the state information includes the load of the motor.
  • Environmental information analysis method [Item 5] The environmental information analysis method according to any one of items 1 to 4.
  • the airframe has a tilt information detection unit that detects the tilt of the aircraft.
  • the state information includes the inclination of the aircraft.
  • Environmental information analysis method. [Item 6] The environmental information analysis method according to any one of items 1 to 5.
  • the flying object has a flight altitude detecting unit that detects the flight altitude of the flying object.
  • the state information includes the flight altitude of the aircraft.
  • Environmental information analysis method. [Item 7] The environmental information analysis method according to any one of items 1 to 6.
  • the environmental information includes at least wind speed and direction.
  • Environmental information analysis method. [Item 8] The environmental information analysis method according to any one of items 1 to 7.
  • sensor information acquisition step sensor information from a plurality of flying objects is acquired.
  • Environmental information analysis method. It is an environmental information analysis method that analyzes the environmental information of the air vehicle using the air vehicle equipped with the control unit.
  • the control unit causes the flying object to return from the second state to the first state when an action of transitioning from the first state to the second state acts on the flying object. It has a function to control return, The step of acquiring the return information related to the return control and Including a step of analyzing environmental information around the flying object based on the return information.
  • Front-back direction + Y direction and -Y direction
  • Vertical direction or vertical direction
  • Left-right direction or horizontal direction
  • Travel direction forward
  • Backward direction (rear)
  • Ascending direction upward
  • Downward direction (downward): -Z direction
  • FIG. 1 is a diagram showing a system configuration of the environmental information analysis system 100 according to the present embodiment.
  • FIG. 2 is a perspective view showing the configuration of the flying object 10. The case where the environmental information analysis system 100 is applied to physical distribution will be described below.
  • the environmental information analysis system 100 enables a self-sustaining flight body 10 and a server 30 capable of carrying a luggage L to be connected via a network or a wireless LAN (including a mobile communication network). It is connected.
  • the above-mentioned flying object 10 generally has the following configuration.
  • the flight body 10 includes a flight controller 11, propellers 12A to 12D, motors 13A to 13D, arms 14A to 14D, and the like.
  • the flight controller 11 can have a programmable processor (eg, a central processing unit (CPU)) and the like, and also has a memory for storing logic code and program instructions that the flight controller 11 can execute. You may.
  • a programmable processor eg, a central processing unit (CPU)
  • CPU central processing unit
  • the memory may include, for example, a separable medium such as an SD card or an external storage device.
  • the data acquired from the cameras and sensors may be directly transmitted and stored in the memory. For example, still image / moving image data taken by a camera or the like is recorded in a built-in storage device or an external storage device.
  • the sensors in the flight controller 11 may include an inertial sensor (acceleration sensor, gyro sensor, etc.), GPS sensor, geomagnetic sensor, proximity sensor (eg, LIDAR), altitude sensor, or vision sensor (eg, camera).
  • Thrust generators and thrust control devices such as motors 13A to 13D, ESC (Electronic Speed Controller), and propellers 12A to 12D receive signals from the flight controller 11 and the transmitter / receiver to realize a desired flight.
  • ESC Electronic Speed Controller
  • propellers 12A to 12D receive signals from the flight controller 11 and the transmitter / receiver to realize a desired flight.
  • the thrust generator a gasoline engine or the like may be used in addition to the electric motor.
  • the propellers 12A to 12D of the present invention have elongated blades. Any number of blades (rotors) (eg, 1, 2, 3, 4, or more) may be used. Further, the shape of the blade can be any shape such as a flat shape, a bent shape, a twisted shape, a tapered shape, or a combination thereof.
  • the motors 13A to 13D cause the propellers 12A to 12D to rotate.
  • the blades are driveable by motors 13A-13D and rotate clockwise and / or counterclockwise around the axis of rotation (eg, major axis) of motors 13A-13D.
  • the aircraft body 10 has arms 14A to 14D that support the corresponding motors 13A to 13D and propellers 12A to 12D.
  • the arms 14A to 14D may be provided with a color-developing body such as an LED in order to indicate the flight state, flight direction, etc. of the flying object 10.
  • the arms 14A to 14D according to the present embodiment can be formed of carbon, stainless steel, aluminum, magnesium or the like, or a material appropriately selected from alloys or combinations thereof.
  • the flying object 10 may be provided with a mounting portion, if necessary.
  • the mounting unit is a mechanism for mounting and holding an object to be mounted (camera, luggage holding unit, work tool, etc.).
  • the mounting portion may be configured to always hold the mounting portion in a predetermined direction (for example, in the horizontal direction (vertically downward direction)) so that the position and orientation of the mounting object can be maintained.
  • the aircraft body 10 includes an energy source such as a battery. Not limited to electric energy, chemical energy such as gasoline and an energy conversion module may be provided. Further, for example, a power storage module by non-contact power supply such as wireless power transmission may be provided.
  • the flying object 10 may have a sensor and an operating mechanism provided for purposes not directly involved in the realization of flight, such as aerial photography and radio wave relay.
  • a camera sensor, a temperature sensor, a gimbal mechanism, a property dropping mechanism, and the like can be mentioned, and are not limited to these depending on the mission of the flying object 10.
  • the server 30 described above generally has the following configuration.
  • the server 30 has a sensor information acquisition unit 31, a state analysis unit 32, and an environment information generation unit 33.
  • the sensor information acquisition unit 31 is, for example, a processing unit that acquires signals measured by the sensors of the flying object 10 and signals indicating the rotation speeds of the motors 13A to 13D as sensor information.
  • the state analysis unit 32 analyzes the state information regarding the surrounding state of the flying object 10 based on the sensor information acquired by the sensor information acquisition unit 31.
  • the state information may be, for example, the load of the motors 13A to 13D obtained based on the rotation speeds of the motors 13A to 13D, or the inclination of the aircraft measured by the sensors of the flying object 10. It may be the flight altitude of the flying object 10.
  • the environmental information generation unit 33 generates environmental information around the flying object 10 based on the analysis result of the state information by the state analysis unit 32.
  • Environmental information may include the wind speed and direction of the airflow.
  • the relationship between the state information and the environmental information is stored in advance in the server 30 as table information obtained from an experiment or the like.
  • the server 30 instructs the aircraft 10 to move to the delivery destination based on the location information regarding the delivery destination location of the package L.
  • the delivery instruction may include location information and delivery date and time information.
  • the aircraft body 10 records each information included in the delivery instruction in the memory, and starts the flight toward the location information.
  • the package L to be delivered may be placed on the mounting portion of the flying object 10 in advance by a delivery company or the like.
  • the method of flying the flying object 10 to the designated place may be performed by a known autopilot method.
  • the aircraft 10 uses the latitude / longitude information obtained from the GPS sensor as the current location, sets the latitude / longitude information indicated by the location information as the delivery destination, and sets a predetermined airspace (a relatively low altitude above the ground). ) May fly automatically.
  • the air vehicle 10 may control the propellers 12A to 12D so that the direction from the current location to the delivery destination is the traveling direction.
  • the direction of travel is determined using, for example, the direction obtained from the geomagnetic sensors of the sensors.
  • the server 30 may instruct the flight body 10 of flight route information regarding the flight route to the delivery destination.
  • the flight route information is information indicating a flight route until reaching the delivery destination, and may be, for example, information in which latitude and longitude information to the delivery destination is sequentially connected so as to indicate a flight route.
  • the server 30 may generate flight route information based on a predetermined route search algorithm.
  • the flight route information may be included in the delivery instruction.
  • the aircraft body 10 executes autopilot control to the delivery destination based on the flight route information received from the server 30.
  • the rotation speeds of the propellers 12A to 12D are also increased by the control of the control device according to this operation.
  • the propellers 12A to 12D gradually generate the lift required for the ascent of the flying object 10.
  • the flying object 10 begins to float in the air and ascends in the direction of arrow A (see FIG. 3 (A)).
  • the rotation speeds of the propellers 12A to 12D are adjusted so that the flying object 10 stops in the air (hovering) (see FIG. 3B). That is, the number of rotations at this time is such that the lift due to the rotation of each propeller 12A to 12D and the gravity applied to the flying object 10 are balanced.
  • the rotation speeds of the propellers 12B and 12C rearward in the traveling direction are set to the rotation speeds of the propellers 12A and 12D in the front in the traveling direction.
  • Control is performed to increase the number of revolutions.
  • the lift from the rear propellers 12B and 12C is larger than the lift from the front propellers 12A and 12D, and the positions of the propellers 12B and 12C are higher than the positions of the propellers 12A and 12D (FIG. 3 (C). )reference).
  • the rotation speed of each propeller 12A to 12D is adjusted to a rotation speed that moves horizontally at a desired speed.
  • the flight body 10 may be flight-controlled so as not to lose its balance or crash due to the influence of the wind.
  • flight route information may be defined so that the flying object 10 can withstand the wind.
  • the fact that the air vehicle 10 can withstand the wind means, for example, that the air vehicle 10 takes a posture facing the windward side, the air vehicle body 10 moves toward the windward side, or the rotation speed of the propeller on the windward side is set to the leeward side. For example, make it less than the number of rotations of the propeller.
  • the propellers 12A to 12D so that the flying object 10 stays in a predetermined position without being swept by the wind.
  • the number of revolutions of is adjusted.
  • the rotation speeds of the leeward propellers 12B and 12C are adjusted to be smaller than the rotation speeds of the leeward propellers 12A and 12D.
  • the environment information generation unit 33 measures the wind direction / speed around the flying object 10 by converting the load of the motors 13A to 13D into the wind direction / speed with reference to the table information stored in advance in the server 30. ..
  • the environment information generation unit 33 measures the wind direction and speed, so that it is not necessary to deploy an anemometer on the flying object 1. That is, the wind direction and the wind speed can be measured by using the existing flying object 10. Therefore, it is possible to acquire the environmental information around the flying object 10 with a simple configuration.
  • the flying object 10 to which the environmental information analysis method according to the first embodiment is applied and the flying object 10 to which the environmental information analysis method according to the present embodiment is applied are the same. It may be omitted.
  • the flying object 10 and the server 30 are connected so as to be able to communicate with each other via a network or a wireless LAN (including a mobile communication network).
  • a network or a wireless LAN including a mobile communication network
  • the control unit of the flying object 10 returns the flying object 10 from the second state to the first state when the action of transitioning from the first state to the second state acts on the flying object 10.
  • the information indicating the first state and the information indicating the second information include information on the spatial arrangement of the aircraft 10, such as location or position information such as longitude, latitude, and altitude, and roll, pitch, and / or. May include orientation or attitude information such as yaw.
  • the server 30 has a return information acquisition unit 34 and an environmental information analysis unit 35.
  • the return information acquisition unit 34 acquires the return information related to the above-mentioned return control of the aircraft 10 from the aircraft 10.
  • the return information here may be, for example, the load of the motors 13A to 13D obtained based on the rotation speeds of the motors 13A to 13D, or the inclination / flight altitude of the aircraft measured by the sensors of the airframe 10.
  • the environmental information analysis unit 35 analyzes the environmental information around the aircraft 10 based on the return information acquired by the return information acquisition unit 34.
  • Environmental information may include the wind speed and direction of the airflow.
  • the relationship between the return information and the environment information is stored in advance in the server 30 as table information obtained from an experiment or the like.
  • FIG. 6 is a plan view showing an example of how the state of the flying object 10 changes.
  • the flying object 10 is in the first state a shown by the solid line at the first time point t in the windless state.
  • the flying object 10 is in the second state b shown by the broken line as shown in FIG. That is, from the first time point to the second time point, the flying object 10 moves toward the windward side so as to maintain a posture facing the windward side so as to withstand the wind.
  • the rotation speeds of the propellers 12A and 12B on the leeward side are adjusted to be smaller than the rotation speeds of the propellers 12C and 12D on the leeward side.
  • the environmental information analysis unit 35 refers to the table information stored in advance in the server 30 and converts the load of the motors 13A to 13D into the wind direction / speed to obtain the wind direction / speed around the flying object 10. measure.
  • the environmental information analysis unit 35 Since the wind direction and speed are measured by the environmental information analysis unit 35 by such a method, it is not necessary to deploy an anemometer on the flying object 1. Therefore, it is possible to acquire the environmental information around the flying object 10 with a simple configuration.
  • the anemometer using the attitude control function of the flying object 10 can be summarized as the following functions as shown in FIG. That is, from the flying object 10 during flight (in progress or hovering), information on the load (wind, etc.) applied to the flying object 10 can be acquired as additional information by the various sensor devices described above.
  • the additional information may be raw information (raw data) added to the flying object 10 such as wind speed and atmospheric pressure, or some preprocessing for performing processing in an analyzable manner may be performed.
  • the additional information is input to the control unit.
  • the control unit generates control information (all information for performing attitude control, etc.) so that the flight body 10 can fly safely based on the additional information.
  • the control information is the flight of the flight body 10.
  • the anemometer it is used to control each part (motor, etc.) to make it possible.
  • the anemometer according to the present embodiment generates (estimates) environmental information (wind speed information, etc.) using additional information, and the environment using the control information generated by the control unit. It is possible to divide into three types, one is to generate (estimate) information and the other is to use both of them. Any of the above-described embodiments can be adopted when these three patterns are used.
  • the present invention is an environmental information analysis method for analyzing environmental information around the flying object by using an flying object including a control unit.
  • the control unit acts on the flying object to transition from the first state (initial state) to the second state (position that is displaced / likely displaced according to the external force when receiving an external force such as wind).
  • the management server acquires return information related to return control via the aircraft, and analyzes the environmental information around the aircraft based on the return information.
  • the above embodiment may be modified as follows.
  • the environmental information generation unit 33 or the environmental information analysis unit 35 performs a fast Fourier transform (FFT) on the signal indicating the rotation speed of the drive motors 13A to 13D, and from the frequency spectrum of the signal, the wind direction around the flying object 10 is determined. Wind speed information may be generated.
  • FFT fast Fourier transform
  • mutual data may be compared by using a plurality of flying objects 10. Further, by using a plurality of flying objects 10, it is possible to perform a plurality of information gathering flights on the same flight route at the same altitude, and it is possible to collect information with higher accuracy in a situation that changes from moment to moment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

【課題】簡易な構成で、飛行体の周囲の環境情報を取得することのできる環境情報分析方法を提供すること。 【解決手段】本発明による環境情報分析方法は、センサ部を備えた飛行体からセンサ情報を取得するセンサ情報取得ステップと、前記センサ情報に基づいて前記飛行体の周囲の状態に関する状態情報を分析する状態分析ステップと、前記分析結果に基づいて、前記飛行体の周囲における環境情報を生成する環境情報生成ステップと、を備える

Description

環境情報分析方法
 本発明は、飛行体の周囲における環境情報を生成可能な環境情報分析方法に関する。
 近年、ドローン(Drone)や無人航空機(UAV:Unmanned Aerial Vehicle)などの飛行体(以下、「飛行体」と総称する)を利用して荷物Lの配達を行う試みがなされている。特許文献1には、飛行体による配達システムが開示されている(例えば、特許文献1参照)。
米国特許公開公報2015-0120094 A1
 一般に、飛行体の飛行に対しては、安定した飛行のために飛行体の周囲における情報を得る必要がある。ところが、現状、天気予報のようなマクロな情報では、地上空域の詳細な状態はわからない。
一方、地上にセンサ等を設置するのはコストや設置スペース確保の観点から現実的でない。
そこで、本発明は、簡易な構成で、飛行体の周囲の環境情報を取得することを目的とする。
 本発明によれば、センサ部を備えた飛行体からセンサ情報を取得するセンサ情報取得ステップと、
 前記センサ情報に基づいて前記飛行体の周囲の状態に関する状態情報を分析する状態分析ステップと、
 前記分析結果に基づいて、前記飛行体の周囲における環境情報を生成する環境情報生成ステップと、
を備える環境情報分析方法が得られる。
 本発明によれば、制御部を備える飛行体を利用して当該飛行体の環境情報を分析する環境情報分析方法であって、
 前記制御部は、前記飛行体に対して第1の状態から第2の状態に遷移する作用が働いた場合に、前記第2の状態から前記第1の状態に復帰させるように当該飛行体を復帰制御する機能を有しており、
 前記復帰制御に関する復帰情報を取得するステップと、
 前記復帰情報に基づいて前記飛行体の周囲の環境情報を分析するステップとを含む、
環境情報分析方法が得られる。
 本発明によれば、簡易な構成で、飛行体の周囲の環境情報を取得することのできる環境情報分析方法を提供し得る。
本発明の第1の実施の形態に係る環境情報分析システムのシステム構成図。 飛行体の構成を示す斜視図。 飛行体の姿勢変化を示す側面図。 飛行体の構成を示す平面図。 本発明の第2の実施の形態に係る環境情報分析システムのシステム構成図。 飛行体の状態が遷移する様子の一例を示す平面図。 飛行体の姿勢制御機能を利用した風速計の観念図である。
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態による環境情報分析方法は、以下のような構成を備える。
[項目1]
 センサ部を備えた飛行体からセンサ情報を取得するセンサ情報取得ステップと、
前記センサ情報に基づいて前記飛行体の周囲の状態に関する状態情報を分析する状態分析ステップと、
前記分析結果に基づいて、前記飛行体の周囲における環境情報を生成する環境情報生成ステップと、
を備える環境情報分析方法。
[項目2]
 項目1に記載の環境情報分析方法であって、
 前記飛行体は、複数のプロペラと、 前記複数のプロペラを回転させるモータとを有し、
 前記センサ情報には、少なくとも前記モータの回転数が含まれる、
環境情報分析方法。
[項目3]
 項目2に記載の環境情報分析方法であって、
 前記飛行体は、独立した複数個のモータを有し、
 前記センサ情報には、各モータの回転数が含まれる、
環境情報分析方法。
[項目4]
 項目1乃至項目3の何れか一項に記載の環境情報分析方法であって、
 前記飛行体は、複数のプロペラと、前記複数のプロペラを回転させるモータと、前記モータの負荷を検出するモータ負荷検出部を有し、
 前記状態情報には、前記モータの負荷が含まれる、
環境情報分析方法。
[項目5]
 項目1乃至項目4の何れか一項に記載の環境情報分析方法であって、
 前記飛行体は、機体の傾きを検出する傾き情報検出部を有し、
 前記状態情報には、前記機体の傾きが含まれる、
環境情報分析方法。
[項目6]
 項目1乃至項目5の何れか一項に記載の環境情報分析方法であって、
 前記飛行体は、前記飛行体の飛行高度を検出する飛行高度検出部を有し、
 前記状態情報には、前記飛行体の飛行高度が含まれる、
環境情報分析方法。
[項目7]
 項目1乃至項目6の何れか一項に記載の環境情報分析方法であって、
 前記環境情報には、少なくとも風速及び風向が含まれる、
環境情報分析方法。
[項目8]
 項目1乃至項目7の何れか一項に記載の環境情報分析方法であって、
 センサ情報取得ステップでは、複数の飛行体からのセンサ情報が取得される、
環境情報分析方法。
[項目9]
 制御部を備える飛行体を利用して当該飛行体の環境情報を分析する環境情報分析方法であって、
 前記制御部は、前記飛行体に対して第1の状態から第2の状態に遷移する作用が働いた場合に、前記第2の状態から前記第1の状態に復帰させるように当該飛行体を復帰制御する機能を有しており、
 前記復帰制御に関する復帰情報を取得するステップと、
 前記復帰情報に基づいて前記飛行体の周囲の環境情報を分析するステップとを含む、
環境情報分析方法。
<実施の形態の詳細>
(第1の実施の形態)
 以下、本発明の第1の実施の形態による環境情報分析方法について、図面を参照しながら説明する。
 なお、以下の説明において、以下の定義に従って用語を使い分けることがある。
  前後方向:+Y方向及び-Y方向
  上下方向(または鉛直方向):+Z方向及び-Z方向
  左右方向(または水平方向):+X方向及び-X方向
  進行方向(前方):-Y方向
  後退方向(後方):+YX方向
  上昇方向(上方):+Z方向
  下降方向(下方):-Z方向
 図1は、本実施形態における環境情報分析システム100のシステム構成を示す図である。図2は、飛行体10の構成を示す斜視図である。以下では、環境情報分析システム100を物流に適用する場合について説明する。環境情報分析システム100は、図1に示すように、荷物Lを搭載可能な自立飛行型の飛行体10及びサーバ30がネットワークや無線LAN(移動体通信網を含む)を介して通信接続可能に接続されている。
<飛行体の構成>
 図1及び図2を参照して、上述した飛行体10は、一般に以下のような構成を有している。飛行体10は、フライトコントローラ11、プロペラ12A~12D、モータ13A~13D、アーム14A~14Dなどで構成される。
 フライトコントローラ11は、プログラマブルプロセッサ(例えば、中央演算処理装置(CPU))などを有することができ、またフライトコントローラ11が実行可能であるロジック・コード・およびプログラム命令を記憶するためのメモリを有しても良い。
 メモリは、例えば、SDカードなどの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラやセンサ類から取得したデータは、メモリに直接に伝達されかつ記憶されてもよい。例えば、カメラ等で撮影した静止画・動画データが内蔵の記憶装置又は外部の記憶装置に記録される。
 フライトコントローラ11にあるセンサ類は、慣性センサ(加速度センサ、ジャイロセンサ等)、GPSセンサ、地磁気センサ、近接センサ(例えば、LIDAR)、高度センサ、またはビジョンセンサ(例えば、カメラ)を含み得る。
モータ13A~13D・ESC(Electronic Speed Controller)・プロペラ12A~12Dなどの推力発生装置および推力制御装置は、フライトコントローラ11および送受信機からの信号を受けて所望の飛行を実現する。推力発生装置は、電気モータの他にガソリンエンジンなどを用いてもよい。
 本発明のプロペラ12A~12Dは、羽根は細長い形状を有している。任意の羽根(回転子)の数(例えば、1、2、3、4、またはそれ以上の羽根)でよい。また、羽根の形状は、平らな形状、曲がった形状、よじれた形状、テーパ形状、またはそれらの組み合わせ等の任意の形状が可能である。
 モータ13A~13Dは、プロペラ12A~12Dの回転を生じさせるものである。羽根は、モータ13A~13Dによって駆動可能であり、時計方向に及び/または反時計方向に、モータ13A~13Dの回転軸(例えば、長軸)の周りに回転する。
 飛行体10は、対応するモータ13A~13D及びプロペラ12A~12Dを支持するアーム14A~14Dを有している。アーム14A~14Dには、飛行体10の飛行状態、飛行方向等を示すためにLED等の発色体を設けることとしてもよい。本実施の形態によるアーム14A~14Dは、カーボン、ステンレス、アルミニウム、マグネシウム等またはこれらの合金又は組合わせ等から適宜選択される素材で形成することが可能である。
 飛行体10は、必要に応じて搭載部を備えていてもよい。搭載部は、搭載対象物(カメラ、荷物保持部、作業ツール等)を搭載・保持するための機構である。搭載部は、搭載対象物位置及び向きを維持することができるように、常に所定の方向(例えば、水平方向(鉛直下向き))に、その状態を保持する構成としてもよい。
飛行体10は、バッテリーなどのエネルギー源を備える。電気エネルギーに限らず、ガソリン等の化学エネルギーおよびエネルギー変換モジュールを備えても良い。また、例えば、無線送電のような非接触給電による蓄電モジュールを備えてもよい。
飛行体10は、空中撮影や電波中継など、飛行を実現することに直接には関与しない目的にて備えられたセンサおよび動作機構を有することがある。例えば、カメラセンサ、温度センサ、ジンバル機構、物件の投下機構などがあげられ、飛行体10の任務によってはこれらには限らない。
<サーバの構成>
 図1を参照して、上述したサーバ30は、一般に以下のような構成を有している。
 サーバ30は、センサ情報取得部31、状態分析部32、環境情報生成部33を有する。
 センサ情報取得部31は、例えば、飛行体10のセンサ類が計測した信号や、モータ13A~13Dの回転数を示す信号を、センサ情報として取得する処理部である。
 状態分析部32は、センサ情報取得部31が取得したセンサ情報に基づいて、飛行体10の周囲の状態に関する状態情報を分析する。状態情報は、例えば、モータ13A~13Dの回転数に基づいて得られるモータ13A~13Dの負荷であってもよいし、飛行体10のセンサ類が計測した機体の傾きであってもよいし、飛行体10の飛行高度であってもよい。
 環境情報生成部33は、状態分析部32による状態情報の分析結果に基づいて、飛行体10の周囲における環境情報を生成する。環境情報には、気流の風速・風向が含まれ得る。状態情報と環境情報の関係は、実験等から得られるテーブル情報としてサーバ30に予め格納されている。
 サーバ30は、荷物Lの配送先の場所に関する場所情報に基づいて、飛行体10に配送先への移動を指示する。配送指示には、場所情報及び配送日時情報が含まれ得る。飛行体10は、配送指示に含まれる各情報をメモリに記録し、場所情報に向けて飛行を開始する。配送対象の荷物Lは、予め配送業者等により飛行体10の搭載部に載せておけばよい。 
なお、飛行体10が指定された場所に飛行する方法自体は、公知の自動操縦方法で行われるようにすればよい。例えば、飛行体10は、GPSセンサから得られた緯度経度情報を現在地とし、場所情報が示す緯度経度情報を配送先に設定して、予め定められた空域(地上に近い比較的低い高度の上空)を自動飛行してもよい。そして、飛行体10は、現在地から配送先に向けた方向が進行方向となるように、プロペラ12A~12Dの制御を行ってもよい。進行方向は、例えば、センサ類の地磁気センサから得られた方角を利用して決定される。
また、サーバ30から飛行体10に対して、配送先への飛行ルートに関する飛行ルート情報が指示されるようにしてもよい。飛行ルート情報は、配送先に到達するまでの飛行ルートを示す情報であり、例えば、飛行ルートを示すように配送先までの緯度経度情報を順番に繋いだ情報であってよい。サーバ30は、所定の経路検索アルゴリズムに基づいて飛行ルート情報を生成すればよい。なお、飛行ルート情報は、配送指示に含まれていてもよい。飛行体10は、サーバ30から受信した飛行ルート情報に基づいて、配送先への自動操縦制御を実行することになる。
飛行ルート情報に基づいて、飛行体10を上昇させる操作が行われると、この操作に応じた制御装置の制御によって、プロペラ12A~12Dの回転数も増加する。これにより、プロペラ12A~12Dは飛行体10の上昇に必要な揚力を徐々に生じさせる。揚力が飛行体10にかかる重力を超えると、飛行体10は空中に浮き始め、矢印A方向に浮上する(図3(A)参照)。
 そして、飛行体10が所望の高度に到着すると、飛行体10が空中停止(ホバリング)するように、プロペラ12A~12Dの回転数が調整される(図3(B)参照)。つまり、このときの回転数は、各プロペラ12A~12Dの回転による揚力と飛行体10にかかる重力とが釣り合う程度の回転数である。
 次に、自動操縦制御によって飛行体10を水平方向に移動させる場合には、進行方向に向かって後方にあるプロペラ12B、12Cの回転数を、進行方向に向かって前方にあるプロペラ12A、12Dの回転数よりも多くする制御が行われる。これにより、後方にあるプロペラ12B、12Cによる揚力が前方にあるプロペラ12A 、12Dによる揚力に比べて大きくなり、プロペラ12B、12Cの位置がプロペラ12A、12Dの位置よりも高くなる(図3(C)参照)。このような姿勢になると直ちに、各プロペラ12A~12Dの回転数は、所望の速度で水平方向に移動するような回転数に調整される。
 飛行体10は、風の影響でバランスが崩れたり墜落したりしないように飛行制御されていればよい。例えば、飛行体10が風に耐え得るように、飛行ルート情報が定義されていてもよい。飛行体10が風に耐え得るとは、例えば、風上側を向くような姿勢を取ること、風上側に向けて飛行体10が移動すること、又は、風上側のプロペラの回転数を風下側のプロペラの回転数よりも少なくすることなどである。
 例えば、飛行体10の進行方向Bに対して左から右に風が吹いている場合(図4参照)、飛行体10が風に流されることなく所定の位置に留まるように、プロペラ12A~12Dの回転数が調整される。このとき、風上側のプロペラ12B、12Cの回転数が風下側のプロペラ12A、12Dの回転数よりも少なくなるように調整される。環境情報生成部33は、サーバ30に予め格納されているテーブル情報を参照して、モータ13A~13Dの負荷を風向・風速に換算することで、飛行体10の周囲の風向・風速を計測する。
 このような手法により、環境情報生成部33において風向・風速の計測が行われることによって、飛行体1に風速計を配備する必要がない。つまり、既存の飛行体10を利用して風向・風速の計測を行うことができる。従って、簡易な構成で、飛行体10の周囲の環境情報を取得することができる。
(第2の実施の形態)
 以下、本発明の第2の実施の形態による環境情報分析方法について、図面を参照しながら説明する。なお、第1の実施の形態に係る環境情報分析方法が適用される飛行体10と、本実施形態に係る環境情報分析方法が適用される飛行体10とは同様のものであるので、説明を省略することがある。
 環境情報分析システム200は、図5に示すように、飛行体10及びサーバ30がネットワークや無線LAN(移動体通信網を含む)を介して通信接続可能に接続されている。
<飛行体の構成>
 飛行体10の制御部は、飛行体10に対して第1の状態から第2の状態に遷移する作用が働いた場合に、第2の状態から第1の状態に復帰させるように飛行体10を復帰制御する機能を有している。第1の状態を示す情報や、第2の情報を示す情報は、飛行体10の空間的配置についての情報、例えば、経度、緯度、高度などのロケーションまたは位置情報や、ロール、ピッチおよび/またはヨーなど向きまたは姿勢情報を含み得る。
<サーバの構成>
 サーバ30は、復帰情報取得部34と、環境情報分析部35とを有する。復帰情報取得部34は、飛行体10の上述した復帰制御に関する復帰情報を飛行体10から取得する。ここでの復帰情報は、例えば、モータ13A~13Dの回転数に基づいて得られるモータ13A~13Dの負荷であってもよいし、飛行体10のセンサ類が計測した機体の傾き・飛行高度であってもよい。環境情報分析部35は、復帰情報取得部34が取得した復帰情報に基づいて、飛行体10の周囲の環境情報を分析する。環境情報には、気流の風速・風向が含まれ得る。復帰情報と環境情報の関係は、実験等から得られるテーブル情報としてサーバ30に予め格納されている。
 図6は、飛行体10の状態が遷移する様子の一例を示す平面図である。飛行体10は、図6に示すように、無風状態にある第1時点tにおいて、実線で示す第1の状態aにある。そして、風が吹き始めた第2時点t+1において、飛行体10は、図6に示すように、破線で示す第2の状態bにある。すなわち、第1時点から第2時点に至るまでの間に、飛行体10は、風に耐え得るように、風上側を向くような姿勢を保つべく風上側に向けて移動する。このとき、風上側のプロペラ12A、12Bの回転数が風下側のプロペラ12C、12Dの回転数よりも少なくなるように調整される。
そして、環境情報分析部35は、サーバ30に予め格納されているテーブル情報を参照して、モータ13A~13Dの負荷を風向・風速に換算することで、飛行体10の周囲の風向・風速を計測する。
このような手法により、環境情報分析部35において風向・風速の計測が行われることによって、飛行体1に風速計を配備する必要がない。従って、簡易な構成で、飛行体10の周囲の環境情報を取得することができる。
以上、飛行体10の姿勢制御機能を利用した風速計は、図7に示されるように、以下の機能としてまとめることができる。即ち、飛行中(進行中又はホバリング中)における飛行体10からは、上述した様々なセンサデバイスによって、飛行体10に加わる負荷(風等)の情報を付加情報として取得することができる。当該付加情報は、風速や気圧などの飛行体10に加わる生の情報(ロウデータ)であってもいいし、分析可能に処理を行うための何らかの前処理が行われるていてもよい。当該付加情報は、制御部に入力される。制御部は、当該付加情報に基づいて、飛行体10が安全に飛行可能となるように、制御情報を生成する(姿勢制御を行うためのあらゆる情報等)制御情報は、飛行体10の飛行を可能にするための各部位(モータ等)の制御に用いられる。
かかる構成を前提とすると、本実施の形態による風速計は、付加情報を利用して環境情報(風速情報等)を生成(推定)する場合と、制御部によって生成され制御情報を利用して環境情報を生成(推定)する場合と、これらを両方利用する場合との3タイプに分けることが可能である。上述した実施の形態は、いずれも、この3パターンを利用した場合について採用することが可能である。
 本発明は、次のような把握の仕方をすることもできる。即ち、本発明は、制御部を備える飛行体を利用して当該飛行体の周囲における環境情報を分析する環境情報分析方法である。制御部は、飛行体に対して第1の状態(初期状態)から第2の状態(風などの外力を受けた場合に当該外力に従って変位する位置/変位したであろう位置)に遷移する作用が働いた場合に、第2の状態から前記第1の状態に復帰させるように当該飛行体を復帰制御する機能を有している。管理サーバは、飛行体を経由して復帰制御に関する復帰情報を取得し、当該復帰情報に基づいて飛行体の周囲の環境情報を分析する。
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。
 [変形例] 上記の実施形態を次のように変形してもよい。
 環境情報生成部33又は環境情報分析部35は、駆動モータ13A~13Dの回転数を示す信号に対して高速フーリエ変換(FFT)を行い、信号の周波数スペクトラムから、飛行体10の周囲の風向・風速の情報を生成してもよい。これにより、時々刻々と変化する飛行体10の周囲の環境について、各環境において適切な周波数スペクトラムを得ることができ、飛行体10の周囲の環境を正確に分析することができる。
 また、複数の飛行体10を用いることにより、相互のデータを比較してもよい。さらに、複数の飛行体10を用いることにより、同じ飛行ルートを同じ高度で複数回の情報収集飛行が可能となり、時々刻々と変化する状況について、より高い精度の情報収集が可能となる。
 10    飛行体
 12A~12D    プロペラ
 13A~13D    モータ
 30    サーバ
 31    センサ情報取得部
 32    状態分析部
 33    環境情報生成部
 34    復帰情報取得部
 35    環境情報分析部
 100、200   環境情報分析システム

 

Claims (8)

  1.  センサ部を備えた飛行体からセンサ情報を取得するセンサ情報取得ステップと、
    前記センサ情報に基づいて前記飛行体の周囲の状態に関する状態情報を分析する状態分析ステップと、
    前記分析結果に基づいて、前記飛行体の周囲における環境情報を生成する環境情報生成ステップと、
    を備える環境情報分析方法。
  2.  請求項1に記載の環境情報分析方法であって、
     前記飛行体は、複数のプロペラと、 前記複数のプロペラを回転させるモータとを有し、
     前記センサ情報には、少なくとも前記モータの回転数が含まれる、
    環境情報分析方法。
  3.  請求項2に記載の環境情報分析方法であって、
     前記飛行体は、独立した複数個のモータを有し、
     前記センサ情報には、各モータの回転数が含まれる、
    環境情報分析方法。
  4.  請求項1乃至請求項3の何れか一項に記載の環境情報分析方法であって、
     前記飛行体は、複数のプロペラと、前記複数のプロペラを回転させるモータと、前記モータの負荷を検出するモータ負荷検出部を有し、
     前記状態情報には、前記モータの負荷が含まれる、
    環境情報分析方法。
  5.  請求項1乃至請求項4の何れか一項に記載の環境情報分析方法であって、
     前記飛行体は、機体の傾きを検出する傾き情報検出部を有し、
     前記状態情報には、前記機体の傾きが含まれる、
    環境情報分析方法。
  6.  請求項1乃至請求項5の何れか一項に記載の環境情報分析方法であって、
     前記飛行体は、前記飛行体の飛行高度を検出する飛行高度検出部を有し、
     前記状態情報には、前記飛行体の飛行高度が含まれる、
    環境情報分析方法。
  7.  請求項1乃至請求項6の何れか一項に記載の環境情報分析方法であって、
     前記環境情報には、少なくとも風速及び風向が含まれる、
    環境情報分析方法。
  8.  項目1乃至項目7の何れか一項に記載の環境情報分析方法であって、
     センサ情報取得ステップでは、複数の飛行体からのセンサ情報が取得される、
    環境情報分析方法。

     
PCT/JP2019/027843 2019-07-16 2019-07-16 環境情報分析方法 WO2021009826A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/027843 WO2021009826A1 (ja) 2019-07-16 2019-07-16 環境情報分析方法
JP2019547527A JP7368840B2 (ja) 2019-07-16 2019-07-16 環境情報分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027843 WO2021009826A1 (ja) 2019-07-16 2019-07-16 環境情報分析方法

Publications (1)

Publication Number Publication Date
WO2021009826A1 true WO2021009826A1 (ja) 2021-01-21

Family

ID=74210346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027843 WO2021009826A1 (ja) 2019-07-16 2019-07-16 環境情報分析方法

Country Status (2)

Country Link
JP (1) JP7368840B2 (ja)
WO (1) WO2021009826A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262997A (ja) * 1991-02-18 1992-09-18 Mitsubishi Heavy Ind Ltd 簡易対気速度検出装置
JP2012083318A (ja) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan 気象観測装置
US20160018822A1 (en) * 2014-07-18 2016-01-21 Helico Aerospace Industries Sia Autonomous vehicle operation
JP2017501475A (ja) * 2014-09-05 2017-01-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 状況に基づく飛行モード選択
CN107860940A (zh) * 2017-11-02 2018-03-30 四川联众防务科技有限责任公司 一种基于无人机大数据的风速预测方法
KR101844727B1 (ko) * 2017-12-11 2018-04-02 세종대학교산학협력단 회전익 무인비행체를 이용한 바람 정보 추정 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016119152B4 (de) 2016-10-07 2018-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Windmessung mittels eines Multikopters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262997A (ja) * 1991-02-18 1992-09-18 Mitsubishi Heavy Ind Ltd 簡易対気速度検出装置
JP2012083318A (ja) * 2010-10-14 2012-04-26 Institute Of National Colleges Of Technology Japan 気象観測装置
US20160018822A1 (en) * 2014-07-18 2016-01-21 Helico Aerospace Industries Sia Autonomous vehicle operation
JP2017501475A (ja) * 2014-09-05 2017-01-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 状況に基づく飛行モード選択
CN107860940A (zh) * 2017-11-02 2018-03-30 四川联众防务科技有限责任公司 一种基于无人机大数据的风速预测方法
KR101844727B1 (ko) * 2017-12-11 2018-04-02 세종대학교산학협력단 회전익 무인비행체를 이용한 바람 정보 추정 시스템

Also Published As

Publication number Publication date
JPWO2021009826A1 (ja) 2021-01-21
JP7368840B2 (ja) 2023-10-25

Similar Documents

Publication Publication Date Title
US11673650B2 (en) Adaptive thrust vector unmanned aerial vehicle
JP6239619B2 (ja) 位置決め及び相互動作用紐集合体を備えたフライングカメラ
JP6308642B1 (ja) 飛行体
US11639221B2 (en) Flying vehicle and flying method therefor
JP2018203226A (ja) 飛行体
JP6384013B1 (ja) 飛行体
WO2019077694A1 (ja) 無人航空機制御システム、無人航空機制御方法、及びプログラム
CN111527460A (zh) 使用专用于操作基础设施的部署的无人机(uav)的方法和***
AU2022203944B2 (en) Safe unmanned aircraft
JP6664820B1 (ja) 飛行体
US20230013275A1 (en) Takeoff and landing system
JP6993711B2 (ja) 飛行体及び飛行体の飛行方法
WO2021009826A1 (ja) 環境情報分析方法
JP2019182390A (ja) 飛行体
JP6671705B2 (ja) 飛行体
JP6664821B2 (ja) 飛行体
JP6767070B2 (ja) 飛行体
US11661177B2 (en) Fold-out propeller tip extensions
US20240019876A1 (en) Tether-Based Wind Estimation
WO2022215266A1 (ja) 飛行体の着陸方法、飛行体、情報処理装置、プログラム
WO2021070363A1 (ja) 飛行体
JP2022024172A (ja) 飛行体及び飛行体の飛行方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547527

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937787

Country of ref document: EP

Kind code of ref document: A1